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Abstract

We study the thermodynamics of a non-abelian ferromagnet consisting of “atoms” each carrying a fun-
damental representation of SU(N), coupled with long-range two-body quadratic interactions. We uncover 
a rich structure of phase transitions from non-magnetized, global SU(N)-invariant states to magnetized 
ones breaking global invariance to SU(N − 1) × U(1). Phases can coexist, one being stable and the other 
metastable, and the transition between states involves latent heat exchange, unlike in usual SU(2) ferro-
magnets. Coupling the system to an external non-abelian magnetic field further enriches the phase structure, 
leading to additional phases. The system manifests hysteresis phenomena both in the magnetic field, as in 
usual ferromagnets, and in the temperature, in analogy to supercooled water. Potential applications are in 
fundamental situations or as a phenomenological model.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

Magnetic materials are of considerable physical and technological interest, and their proper-
ties have long been the subject of theoretical research. Ferromagnets, the first type of magnetism 
ever observed, hold a special place among them, as they manifest nontrivial properties and sym-
metry breaking.

All known ferromagnets consist of interacting localized magnetic dipoles and break rotational 
invariance below the Curie temperature. Each (quantum) dipole provides a representation of the 
group of rotations, that is, of SU(2). Although this is a nonabelian group, it is of a particu-
larly simple type: it has a unique Cartan generator, and SU(2) dipoles can interact with external 
abelian magnetic fields that couple to their Cartan generator. Nevertheless, the exact quantitative 
properties of physical ferromagnets remain an active topic of research [1].

Independently, nonabelian unitary groups SU(N) of higher rank play a crucial role in particle 
physics and, indirectly through matrix models, in string theory and gravity. Ungauged and gauged 
SU(3) groups are the most common, representing “flavor” and “color” degrees of freedom, re-
spectively. A collection of nucleons, or the constituents of the quark-gluon plasma, are physical 
systems of components carrying representations of SU(3). This raises the obvious question of 
the properties that large collections of such SU(3) or, more generally, SU(N) entities would 
have if they interacted with each other as well as with external nonabelian magnetic fields.

In this work we investigate the properties of such systems in the ferromagnetic regime, that 
is, in the regime where the mutual interaction of its components would tend to “align” their 
SU(N) charges, in a way that we will make precise. The results on the decomposition of the 
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direct product of an arbitrary number of representations of SU(N) into irreducible components 
that we derived in a recent publication [2] will be a crucial tool in our calculations. We will also 
study the effects of an external nonabelian magnetic field coupled to the system. As we shall 
demonstrate, the properties of nonabelian (N > 2) ferromagnets are qualitatively different from 
these of ordinary (N = 2) ferromagnets. They display a rich phase structure involving various 
critical temperatures, hysteresis both in the temperature and in the magnetic field, coexistence of 
phases, and latent heat transfer during phase transitions.

In the sequel we will present the basic SU(N) model, consisting of distinguishable quantum 
components in the fundamental representation, and will review the relevant group theory results 
of [2]. We will proceed to study the thermodynamic phases of the model in the absence, and 
subsequently in the presence, of external magnetic fields, and will derive its symmetry breaking 
patterns, critical temperatures, and magnetization. Stability issues will be crucial and will deter-
mine the pattern of SU(N) breaking in the various phases. We will further study the nontrivial 
situation of a magnetic field inducing an enhanced breaking of SU(N), and will conclude with 
some speculations about the phenomenological relevance of the model.

2. A system of interacting SU(N) “atoms”

Magnetic systems with SU(N) symmetry have been considered in the context of ultracold 
atoms [3–7] or of interacting atoms on lattice cites [8–14] and in the presence of SU(N) magnetic 
fields [15–17].

In this section we lay out the basic structure of any model of interacting SU(N) atoms, specify 
its ferromagnetic regime, and review the group theory results necessary for its analytic treatment.

2.1. The model

To motivate the basic model, consider a set of n atoms (or molecules) on a lattice, interacting 
with two-body interactions. Each atom is in one of N degenerate or quasi-degenerate states |s〉, 
s = 1, 2, . . . , N . The generic two-body interaction between atoms 1 and 2 with states |s1〉 and 
|s2〉 would be

H12 =
N∑

s1,s
′
1,s2,s

′
2=1

hs1s2;s′
1s

′
2
|s1〉 〈s′

1| ⊗ |s2〉 〈s′
2| , hs1s2;s′

1s
′
2
= h∗

s′
1s

′
2;s1s2

. (2.1)

Define ja , a = 0, 1, . . . , N2 − 1, the generators of U(N) in the fundamental N -dimensional 
representation, with j0 the identity operator (the U(1) part). Using the fact that the ja form a 
complete basis for the operators acting on an N -dimensional space, the above interaction can 
also be written as

H12 =
N2−1∑
a,b=0

hab j1,a j2,b , hab = h∗
ab , (2.2)

where

j1,a = ja ⊗ 1 , j2,a = 1 ⊗ ja , (2.3)

are the fundamental U(N) operators acting on the states of atoms 1 and 2.
3
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We now make the physical assumption that the above interaction is invariant under a change 
of basis in the states |s〉, that is, under a common unitary transformation of the states |s1〉 of 
atom 1 and |s2〉 of atom 2. This implies two equivalent facts: first, the interaction will necessarily 
be, up to trivial additive and multiplicative constants (proportional to the identity), the operator 
exchanging the states of the atoms,

H12 = C′
12 + C12

N∑
s,s′=1

|s〉 〈s′| ⊗ |s′〉 〈s| , (2.4)

with C′
12, C12 being real constants. Second, the interaction will necessarily be of the form

H12 = c′
12 + c12

N2−1∑
a=1

j1,a j2,a . (2.5)

Omitting the trivial constant c′
12 (due to the U(1) part), we obtain a unique two-body interaction 

depending on a single coupling constant c12. Note that the group U(N) emerges from the re-
quirement of invariance under general changes of basis of the N states, and leads to interactions 
linear in the operators in each atom. Using, instead, an N -dimensional representation of a smaller 
group would require the inclusion of higher polynomial terms in j1,a and j2,a .

The interaction Hamiltonian of the full system will be of the form

H =
n∑

r,s=1

crs

N2−1∑
a=1

jr,a js,a , (2.6)

where crs = csr is the strength of the interaction between atoms r and s (and crr = 0). This 
Hamiltonian involves an isotropic quadratic coupling between the fundamental generators of the 
n commuting SU(N) groups of the atoms.

Reasonable physical assumptions restrict the form of the couplings crs . We assume that the 
interaction is homogeneous, that is, crs is translationally invariant under the shift of both r and 
s by the same lattice translation (away from the boundary of the lattice). In terms of the lattice 
positions of the atoms �r ,

c�r,�s = c�r−�s , c0 = 0 . (2.7)

Therefore, each atom couples to a fixed weighted average of the SU(N) generators of its neigh-
boring atoms. We will also assume that interactions are reasonably long-range, that is, each atom 
couples to several of its neighboring atoms. This technical assumption justifies the mean field 
condition that, in the thermodynamic limit, the weighted average of the neighboring atoms is 
well approximated by their average over the full lattice. That is

∑
�s

c�s j�r+�s,a �
(∑

�s
c�s

) 1

n

n∑
s=1

js,a = − c

n
Ja , (2.8)

where we defined the total SU(N) generator

Ja =
n∑

js,a (2.9)

s=1

4
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and the effective mean coupling1

c = −
∑

�s
c�s . (2.10)

The minus sign is introduced such that ferromagnetic interactions, driving atom states to align, 
correspond to positive c. Altogether, the full effective interaction assumes the form

H = − c

n

N2−1∑
a=1

(
J 2

a −
n∑

s=1

j2
s,a

)
, (2.11)

where the second term in the parenthesis eliminates the terms r = s. The first part of H is pro-
portional to the quadratic Casimir of the total SU(N) group C(2) = ∑

a J 2
a . The second part is 

proportional to the sum of the quadratic Casimirs of each individual atom. Since all js,a are in 
the fundamental representation, their quadratic Casimir is a (common) constant, independent of 
their state. So the second term contributes a trivial constant and can be discarded.

In addition to the atoms’ mutual interaction, we can couple the states of the atoms to a global 
external field, contributing an additional term

HB =
n∑

r=1

N∑
s,s′=1

Bss′ |s〉r 〈s′|r . (2.12)

Parametrizing this one-atom operator in terms of the complete set of operators jr,a and omitting 
the trivial constant terms corresponding to jr,0, it becomes

HB =
n∑

r=1

N2−1∑
a=1

Ba jr,a =
N2−1∑
a=1

BaJa . (2.13)

We see that Ba acts as a global nonabelian magnetic field on the SU(N) “spins” jr,a . Finally, 
making use of the fact that the interaction Hamiltonian is invariant under global SU(N) trans-
formations, we may choose a basis of states in which the sum 

∑
a BaJa is rotated to the Cartan 

subspace spanned by the commuting generators Hi , i = 1, 2, . . . , N − 1. The full Hamiltonian of 
the model then emerges as

H = − c

n
C(2) −

N−1∑
i=1

BiHi . (2.14)

We will assume that c is positive, so that the model is of the ferromagnetic type.
For N = 2 the above model reduces to the ferromagnetic interaction of spin-half components. 

For higher N , the model has the same number of states per atom as a spin-S SU(2) model 
with 2S + 1 = N . The dynamics of the two models, however, are distinct: the SU(2) model is 
invariant only under global SU(2) transformations, which cannot mix the N states of the atoms 
in an arbitrary way, unlike the SU(N) case. The enhanced symmetry of the SU(N) model leads, 
as we shall see, to a richer structure and to qualitatively different thermodynamic properties.

1 The validity of the mean field approximation is strongest in three dimensions, since every atom has a higher number 
of near neighbors and the statistical fluctuations of their averaged coupling are weaker, but is expected to hold also in 
lower dimensions.
5
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Finding the eigenstates of the above model and determining its thermodynamics involves 
decomposing the full Hilbert space of states into irreducible representations (irreps) of the total 
SU(N), evaluating the quadratic Casimir C(2) and the magnetic sum 

∑
i BiHi in each irrep, 

and calculating the partition function as a sum over these irreps. This requires determining the 
decomposition of the direct product of a large, arbitrary number n of SU(N) fundamentals into 
irreps and the multiplicity of each irrep in the decomposition, as well as calculating the Casimir 
and the magnetic sum for large irreps of SU(N). This task was performed in a recent publication 
[2], and the relevant results will be reviewed in the next subsection.

2.2. Decomposition of n fundamentals of SU(N) into irreps

We summarize the group theory results pertaining to the decomposition of the direct product 
of n fundamentals of SU(N) into irreps, as presented in [2] (results on the simpler case of SU(2)

were previously derived in [18,19] and were applied in [18] to regular ferromagnetism).
The setting and results become most tractable and intuitive in the momentum representation, 

in which irreps of SU(N) are labeled by a set of distinct integers ki , i = 1, 2, . . . , N ordered as

k1 > k2 > · · · > kN . (2.15)

Each irrep corresponds to a given set {ki}, for which we will use the symbol k. The corresponding 
Young Tableaux (YT) of the irrep may be described by its lengths �i , i.e., number of boxes per 
row, for i = 1, 2, . . . , N − 1. The correspondence with ki is

�i = ki − kN + i − N , �1 � �2 � · · ·� �N−1 � 0 . (2.16)

Note that the ki representation is redundant, since a shift of all ki by a common constant ki →
ki +c leaves �i invariant and leads to the same irrep of SU(N) (the shift changes the U(1) charge 
of the irrep, which equals the sum of the ki). This freedom can be used to simplify relevant 
formulae. In our situation, where irreps will arise from the direct product of n fundamentals, it 
will be convenient to choose the convention

N∑
i=1

ki = n + N(N − 1)

2
. (2.17)

For the singlet representation (n = 0) all �i are zero, which in the above convention corresponds 
to ki = N − i, i = 1, 2, . . . , N . The fundamental (n = 1) has a single box, and corresponds to 
k1 = N and the rest of the ki as above.

In SU(N) there are N − 1 Casimir operators which, for the irrep k, can be expressed in terms 
of the ki ’s. For our purposes we need the quadratic Casimir, which is given in terms of the ki by

C(2)(k) = 1

2

N∑
i=1

k2
i − 1

2N
[n + N(N − 1)/2]2 − N(N2 − 1)

24
. (2.18)

Note that, using (2.16), (2.17), C(2) takes the more familiar form

C(2)(�) = 1

2

N−1∑
i=1

�i(�i + N + 1 − 2i) − 1

2N

(
N−1∑
i=1

�i

)2

. (2.19)

For the singlet C(2) = 0, while for the fundamental C(2) = (N − N−1)/2.
6
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For our purposes we also need the trace of the exponential of the magnetic term in a giver 
irrep k,

Trk exp
(
β

N∑
j=1

BjHj

)
, (2.20)

which will appear in the calculation of the partition function of our model. This was calculated 
in [2]. To express it, define the Slater determinant

ψk(z) = (z1 · · · zN)−
1
N

∑
i ki

∣∣∣∣∣∣∣∣∣∣∣

z
k1
1 z

k2
1 · · · z

kN−1
1 z

kN

1

z
k1
2 z

k2
2 · · · z

kN−1
2 z

kN

2
...

...
. . .

...
...

z
k1
N z

k2
N · · · z

kN−1
N z

kN

N

∣∣∣∣∣∣∣∣∣∣∣
, z = {zi ∈C} , (2.21)

which is antisymmetric under the interchange of any two zi’s and of any two ki’s. Also define 
the Vandermonde determinant

�(z) = (z1 · · · zN)−
N−1

2

∣∣∣∣∣∣∣∣∣∣∣

zN−1
1 zN−2

1 · · · z1 1

zN−1
2 zN−2

2 · · · z2 1
...

...
. . .

...
...

zN−1
N zN−2

N · · · zN 1

∣∣∣∣∣∣∣∣∣∣∣
, (2.22)

which is the Slater determinant (2.21) for the singlet irrep. Then

Trk exp
(
β

N∑
j=1

BjHj

)
= ψk(z)

�(z)
, zj = eβBj . (2.23)

The prefactors involving the product z1 · · · zN in (2.21) and (2.22) eliminate the U(1) part of the 
irrep, which couples to the trace of the magnetic field 

∑
i Bi . If B is traceless, then the U(1)

charge decouples and we can ignore these prefactors. As a check of (2.23), we can take the limit 
zi → 1 and verify that the ratio of determinants goes to

Trk1 = dim(k) =
N∏

j>i=1

ki − kj

j − i
=

N∏
j>i=1

�i − �j + j − i

j − i
, (2.24)

which is the standard expression for the dimension of the irrep.
The last nontrivial element needed for our purposes is the multiplicity dn,k of each irrep k

arising in the decomposition of n fundamental representations. This was also calculated in [2], 
and the result is

dn,k = δk1+···+kN ,n+N(N−1)/2

N∏
j>i=1

(Si − Sj )Dn,k ,

Dn,k = n!∏N
r=1 kr !

,

(2.25)

where Si is a shift operator acting on the right by replacing ki by ki − 1. Note that Dn,k and dn,k
are manifestly symmetric and antisymmetric, respectively, under exchange of the ki . In [2] the 
7
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action of the operator 
∏N

j>i=1(Si − Sj ) on Dn,k was performed and an explicit combinatorial 
formula for dn,k was obtained, but it will not be needed for our purposes.

2.3. The thermodynamic limit of the model

We now have all the ingredients to study the statistical mechanics of our SU(N) ferromagnet. 
The partition function is

Z =
∑
states

e−βH =
∑
<k>

dn;k e
βc
n

C(2)(k) Trk exp
(
β

N∑
j=1

BjHj

)
, (2.26)

where β is the inverse of the temperature T and <k > denotes distinct ordered integers k1 >

k2 > · · · > kN satisfying the constraint (2.17). Using the results (2.18), (2.23) and (2.25), and 
removing the trivial (ki-independent) terms in the Casimir (2.18), the partition function becomes

Z = 1

N !
∑

k

δ
k1+···+kN ,n+ N(N−1)

2

( N∏
j>i=1

(Si − Sj )
n!∏N

r=1 kr !
)

ψk(z)
�(z)

e
βc
2n

∑
s k2

s

=
∑

k

δ
k1+···+kN ,n+ N(N−1)

2

1

�(z)

( N∏
j>i=1

(Si − Sj )
n!∏N

r=1 kr !
)

e
βc
2n

∑
s k2

s +βBsks

=
∑

k

δk1+···+kN ,n

1

�(z)
n!∏N

r=1 kr !
N∏

j>i=1

(
S−1

i − S−1
j

)
e

βc
2n

∑
s k2

s +βBsks .

(2.27)

In the first line above we made the sum unrestricted, since the summand is symmetric under 
permutation of the ki and vanishes for ki = kj , and introduced the constraint explicitly. The 
second line follows since dn,k (the expression in the parenthesis) is antisymmetric in the ki , 
and thus it picks the fully antisymmetric part of zk1

1 · · · zkN

N , reproducing ψk(z). The third line is 
obtained by shifting summation variables. In doing so, the factor N(N − 1)/2 in the Kronecker 
δ is absorbed.

The above holds for arbitrary n. We now take the thermodynamic limit n � 1. The typical ki

is of order n, and thus the exponent in the expression is of order n, and any prefactor polynomial 
in n is irrelevant, as is the factor �(z). Similarly, the action of 

∏
j>i

(S−1
i − S−1

j ) produces a 

subleading factor that can be ignored (one way to see this is to note that in the large n limit the 
shift operators act as derivatives (S−1

i − S−1
j � ∂ki

− ∂kj
) and bring down subleading terms). 

Further, we apply to kr ! the Stirling approximation. Altogether we obtain

Z =
∑

k

δk1+···+kN ,ne
−β F(k)+O(n0) , (2.28)

where the free energy of the system is, up to a trivial overall constant,

F(k) = −T n lnn +
N∑

i=1

(
T ki ln ki − c

2n
k2
i − Biki

)
. (2.29)

In the large-n limit, quantities ki and F are extensive variables of order n. We will now transi-
tion to intensive variables, that is, quantities per atom. To this end, we define rescaled variables 
xi as
8
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ki = nxi , i = 1,2, . . . ,N . (2.30)

satisfying the constraint

N∑
i=1

xi = 1 . (2.31)

In terms of the xi , the non-extensive term −T n lnn in the free energy cancels and F becomes 
properly extensive,

F(x) = n

N∑
i=1

(
T xi lnxi − NT0

2
x2
i − Bixi

)
= nF(x) , (2.32)

where we have defined

c = NT0 , (2.33)

introducing a temperature scale T0. From now on we will work with the intensive quantities xi

(magnetization per atom) and F (free energy per atom) and will omit the qualifier “per atom”.
In the large-n limit the sum in (2.28) can be obtained by a saddle-point approximation, as 

the exponent is of order n, by minimizing the free energy F(x) while respecting the constraint ∑N
i=1 xi = 1. This can be done with a Lagrange multiplier. Adding the term λ(1 − ∑N

i=1 xi) to 
(2.32) and varying with respect to xi we obtain

∂iFλ = T lnxi − NT0xi − Bi − λ = 0 , i = 1,2, . . . ,N . (2.34)

The Lagrange multiplier λ can be eliminated by subtracting one of the relations, say for i = N , 
from the rest (which is equivalent to solving the constraint and expressing one of the xi , say xN , 
in terms of the others). We obtain

T ln
xi

xN

− NT0(xi − xN) − (Bi − BN) = 0 , i = 1,2, . . . ,N − 1 , (2.35)

where xN is determined from the constraint (2.31). Also, from (2.34) we obtain the second deriva-
tives

∂i∂jFλ =
( T

xi

− NT0

)
δij , i, j = 1,2, . . . ,N , (2.36)

subject to (2.31). The above Hessian will be needed later in order to investigate the stability of the 
solutions. The simpler form of the equations (2.34) involving λ will also be useful in determining 
the nature of solutions and in the stability analysis.

3. Phase transitions with vanishing magnetic fields

We now put Bi = 0 (setting all of the Bi equal is equivalent, as this would be a U(1) field and 
would contribute a trivial constant to the energy) and examine the phase structure of the system. 
We can collectively write equations (2.34) for Bi = 0 as

T lnx − NT0x = λ , (3.1)

dropping the index i in xi to emphasize that it is the same equation for all xi’s, unlike the case 
with generic non-vanishing magnetic fields. The value of λ is fixed by the summation condition 
(2.31).
9
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Fig. 1. Plot of the LHS of (3.1), with its maximum occurring at x0 = T

NT0
. The intersection with some constant value of 

the Lagrange multiplier λ occurs at x = x± , with x− < x0 < x+ .

We note that (3.1) always admits the trivial solution xi = 1/N (for an appropriate λ), cor-
responding to the singlet irrep and an unbroken SU(N) phase. Generically, however, the above 
equation has two solutions (see Fig. 1). So, each xi can have one of two fixed values, x− or 
x+ > x−. This means that the dominant irreps are those with M equal rows, where M is the num-
ber of xi having the large stvalue x+ in the solution, and gives SU(M) ×SU(N −M) ×U(1) as 
the possible a priori spontaneous breaking of SU(N), the subgroup that preserves a matrix with 
M equal and N − M different and equal diagonal entries. We will see, however, that stability of 
the configuration requires that at most one xi value in the full solution be x = x+; that is, either 
M = 0, corresponding to the singlet, or M = 1, corresponding to a one-row YT, a completely 
symmetric representation.

Then equations (2.35) with Bi = 0 become

T ln
xi

xN

= NT0(xi − xN) , i = 1,2, . . . ,N − 1 , (3.2)

where xN = 1 − x1 − · · · − xN−1 is determined by the constraint in (2.31).
As argued before from (3.1), each xi can have one of two possible values. Hence, take M of 

the xi to be equal, and the remaining N − M also equal and different. The integer M can take 
any value from 0 to N , but the values M = 0 and M = N correspond to the singlet configuration 
xi = 1/N that trivially satisfies (3.1). For M �= 0, N , taking into account the summation to one 
condition, we set

xi = 1 + x

N
, i = 1,2, . . . ,M ,

xi = 1 − ax

N
, i = M + 1, . . . ,N , a = M

N − M
.

(3.3)

Note that, according to (2.15), the xi’s cannot strictly be equal for finite n. However, in the large n
limit, differences of O(1/n) are ignored. Further, the choice of the specific xi that we set to each 
value is irrelevant, since the saddle point equations for Bi = 0 are invariant under permutations of 
the xi . With the choice (3.3), N − M of the equations are identically satisfied and the remaining 
M amount to

T ln
1 + x

1 − ax
− (1 + a)T0x = 0 . (3.4)

This transcendental equation is invariant under the transformation
10
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Fig. 2. Plots of the left hand side of (3.4) for N = 7. Left: M = 3, T = 0.7. Right: M = 1, T = 1.6 (blue) and for 
T = Tc � 1.72 (corresponding to x = xc � 3.88) (orange). Temperature is in units of T0.

x → −ax , a → 1/a (equivalently M → N − M) . (3.5)

Thus, without loss of generality we can choose

M � [N/2] , or 0 < a � 1 , x ∈ (−1,1/a) , (3.6)

where [ · ] denotes the integer part. Solutions with x > 0 specify an irrep with M equal rows of 
length, using (2.16) and (3.3),

�i = x

N − M
n+O(1) , i = 1, . . . ,M , �i =O(1) , i = M + 1, . . . ,N − 1 . (3.7)

Instead, an x < 0 specifies an irrep with N − M equal rows (corresponding to the conjugate 
representation), with length given by (3.7) but with x replaced by x → −x. The reason is that in 
this case the xi ’s in the second line of (3.3) are larger than those of the first line and therefore the 
roles of M and N − M are reversed.

There are generically either one or three solutions to (3.4) depending on T (see Fig. 2). If the 
temperature is higher than a critical temperature Tc, then the only solution is that with x = 0, that 
is, the singlet. If T < Tc , then there are two additional solutions. For T = Tc these two solutions 
coalesce at x = xc, implying that the x-derivate of (3.4) is zero as well at xc. These conditions 
are summarized as

Tc

T0
ln

1 + xc

1 − axc

= (1 + a)xc ,

(1 + xc)(1 − axc) = Tc

T0
≡ t .

(3.8)

Solving the first condition for t = Tc/T0 and substituting into the second we obtain a transcen-
dental equation that determines xc

(1 + a)xc

(1 + xc)(1 − axc)
= ln

1 + xc

1 − axc

(3.9)

and from that and the first of (3.8) the critical temperature Tc. Alternatively, solving the second 
equation in (3.8) for xc and substituting into the first one yields the transcendental equation for 
t = T/T0

ln

(
1

a

1 + a + √
(1 + a)2 − 4at

1 + a − √
(1 + a)2 − 4at

)
− 1 + a

2at

(
1 − a +

√
(1 + a)2 − 4at

)
= 0 , (3.10)

which assumes that a � 1. For a � 1 we simply replace a → 1/a.
11
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For SU(2), a = 1 is the only possibility, and for a = 1 the solution of (3.10) is t = 1. Hence, 
the critical temperature is just T0, i.e. the one in (2.33). For generic a, it can be checked that the 
left hand side of (3.10) is monotonically increasing in t and the equation has a unique solution in 

the range 1 < t <
(1 + a)2

4a
for all a � 1. For a near 1 we have

t = 1 + 1

6
(1 − a)2 + . . . , (3.11)

whereas for a near 0
1

t
= a

( − lna + ln(− lna)
) + . . . (3.12)

and therefore t → ∞. Hence, the solution to (3.10) varies monotonically between these two 
limiting cases. Note that for the case M = 1, a = 1/(N − 1) (which is particularly relevant, as 
we shall see)

M = 1 : Tc � T0
N

lnN
� T0 , as N � 1 . (3.13)

In conclusion, Tc > T0 for any group SU(N) with N � 3. For T > Tc the only solution is the 
trivial one, x = 0, while for T < Tc there are two additional solutions x1, x2: two positive ones 
0 < x1 < xc < x2 for T0 < T < Tc, and one positive and one negative one x1 < 0 < x2 for 
T < T0. A few generic cases are depicted in Fig. 1 where the left hand side of (3.4) is plotted.

3.1. Stability analysis and critical temperatures

The solutions of (3.4) may be local extrema or saddle points of the action. To determine their 
stability we examine the second variation of the free energy. From (2.36), δ2F is

δ2F = 1

2

N∑
i=1

C−1
i δx2

i , C−1
i = T

xi

− NT0 ,

N∑
i=1

δxi = 0 . (3.14)

Note that this remains the same even in the presence of magnetic fields, so the stability argument 
below is fully general.

If all coefficients Ci are positive at a stationary point, then clearly the solution is stable. 
If two or more Ci ’s are negative, on the other hand, it is unstable. Indeed, we can take, e.g., 
δxi1 + δxi2 = 0 for two of the negative coefficients Ci1 and Ci2 , and set the rest of the δxi to zero 
in order to satisfy the constraint. Then, an obvious instability arises. However, if only one Ci is 
negative and the rest of them positive, then the solution could still be stable due to the presence 
of the constraint. A standard analysis shows that the condition for stability in this case is2

N∑
i=1

Ci < 0 . (3.15)

2 A nice way to derive this is to view δxi as covariant coordinates on a space with metric gij = Ciδij of Minkowski 
signature (−, +, . . . , +). Then δ2F and the constraint become

δ2F = gij δxiδxj , uiδxi = 0 with ui = 1 .

For the space spanned by the restricted δxi to be spacelike (with positive definite metric), ui must be timelike, and 
uiui = gij uiuj < 0 implies (3.15).
12
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Fig. 3. Plot of (3.16), with its maximum occurring at x0 = T

NT0
. The intersection with some constant value of the 

Lagrange multiplier λ occurs at the values xi = x± , with x− < x0 < x+ . The left (green) part of the curve corresponds 
to stable solutions, whereas the right one (red) to unstable ones.

For the case of vanishing magnetic field, xi satisfy the common equation (3.1)

T lnx − NT0 x = λ . (3.16)

The function on the left hand side is plotted in Fig. 1, repeated here as Fig. 3, and has a maximum 
at x0 = T

NT0
for all i. For x = x0, the coefficient C−1

i determining the perturbative stability at this 

value vanishes, while C−1
i > 0 for x < x0 and C−1

i < 0 for > x0. Therefore, the left branch of 
the curve represents a priori stable points and the right branch unstable ones.

From the above general discussion, we understand that fully stable configurations correspond 
either to choosing all xi’s on the stable branch (all Ci > 0), or N −1 of them on the stable branch 
and one on the unstable branch (only one Ci < 0). This last configuration can still be stable if 
it satisfies the condition (3.15). So the only potentially stable configurations for zero magnetic 
field are the singlet (M = 0), corresponding to a paramagnetic phase, and the fully symmetric 
single-row irrep (M = 1), corresponding to a specific ferromagnetic phase, with order parameter 
the variable x in (3.3) determining the length of the single row.

For the remainder of the zero magnetic field discussion we will focus on the nontrivial solution 
M = 1 and set for the constant a = M/(N − M) the corresponding value

a = 1

N − 1
. (3.17)

For this choice, and with xi as in (3.3), the coefficients Ci become

C−1
1 = N A(x) , C−1

i = N A(−ax) , i = 2,3, . . . ,N , (3.18)

where we defined

A(x) = T

1 + x
− T0 . (3.19)

The stability of the no magnetization solution x = 0 corresponding to the singlet is easy to find. 
In that case A(0) = T − T0, so that for T < T0 the solution x = 0 is a local maximum and 
unstable, and for T > T0 it is a local minimum.

For M = 1, it is clear from Fig. 3 that we must have C1 < 0, corresponding to the single value 
x1 = (1 +x)/N on the unstable branch, and the remaining Ci > 0, so A(x) < 0 and A(−ax) > 0. 
Also, 1 + x > 1 − ax, so that x > 0. Condition (3.15) must also be satisfied,
13
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A(x) + aA(−ax) > 0 =⇒ (1 + x)(1 − ax) <
T

T0
, (3.20)

where we used N − 1 = a−1. Using (3.4) to eliminate T this rewrites as

(1 + a)x

(1 + x)(1 − ax)
> ln

1 + x

1 − ax
. (3.21)

Note that this has the same form as (3.9) determining the critical xc. It can be seen that it is 
satisfied for x > xc and violated for x < xc.

As analyzed in the previous section, the existence of solutions with M = 1 requires T < Tc. 
For such temperatures, equation (3.4) has two solutions, one larger and one smaller than xc. Only 
the solution with x > xc satisfies (3.21). Therefore, for temperatures T < Tc the solution with 
x > xc is stable and a local minimum and the one with x < xc unstable. Referring again to Fig. 2, 
the solution to the left of x = xc for T < Tc (blue) on the right plot is unstable, whereas the one 
to the right is stable.

We conclude by noting that at low temperatures T � T0, we expect the stable configuration 
of the system to be the fully polarized one with x � xmax = N −1, corresponding to the maximal 
one-row symmetric representation with �1 � n boxes. Indeed, the solution of equation (3.4) in 
that case can by well approximated by

x � (N − 1)
(

1 − Ne−NT0/T
)

, T � NT0 , (3.22)

manifesting a nonperturbative behavior in T around T = 0.

3.2. Phase transitions and metastability

We saw in the previous section that for T0 < T < Tc both the completely symmetric repre-
sentation and the singlet are locally stable. The globally stable configuration is determined by 
comparing the free energies of the two solutions. The free energy per atom was found in (2.32). 
For zero magnetic fields, it takes the form

F(x, T ) =
N∑

i=1

(
T xi lnxi − NT0

2
x2
i

)
(3.23)

and for the single-row zero magnetic field solution the free energy per atom becomes

Fsym(x, T ) = T

1 + a

(
a(1 + x) ln(1 + x) + (1 − ax) ln(1 − ax)

)
− a

2
T0x

2 − T lnN .

(3.24)

Variation of this expression with respect to x leads to (3.4).3 For the singlet we have

Fsinglet(T ) = −T lnN . (3.25)

3 Positivity of the second derivative gives the stability condition (3.20), but without any restriction on a, that is, the 
number M of equal rows in the YT. The reason is that this expression only captures stability under variations of the 
length of the YT. Taking also into account perturbations into configurations with additional rows recovers the general 
stability condition requiring M = 0 or M = 1.
14
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Table 1
Phases in various temperature ranges for N � 3 and their stability characteriza-
tion.

irrep T < T0 T0 < T < T1 T1 < T < Tc Tc < T

Singlet unstable metastable stable stable

Symmetric stable stable metastable not a solution

For a specific temperature T1 and magnetization x1 the singlet and symmetric configurations will 
have the same free energy. Equating the two expressions and using (3.4) we obtain

T1 ln
1 + x1

1 − ax1
= (1 + a)T0x1 ,

T1 ln(1 + x1) = T0

2
x1(2 − ax1) ,

(3.26)

where we used (3.4) to simplify the expression for Fsym. This system is solved by4

T1 = T0

2

N(N − 2)

(N − 1) ln(N − 1)
, x1 = N − 2 . (3.27)

In general

T0 < T1 < Tc , (3.28)

except for N = 2 where we have T0 = T1 = Tc, implying that for the SU(2) case there is a single 
critical temperature. For large N

T1 � T0
N

2 lnN
� T0 , as N � 1 . (3.29)

Recalling the limiting behavior of Tc in (3.13), we note that for large N , T1 � Tc/2. For T0 <

T < T1, Fsinglet > Fsym, while for T1 < T < Tc, Fsinglet < Fsym. The situation is summarized in 
Table 1.

Hence, at high enough temperature the only solution is the singlet with no magnetization. At 
temperature Tc a magnetized state corresponding to the symmetric irrep (one-row) also emerges, 
and is metastable until some lower temperature T1. Between these two temperatures the singlet 
is the stable solution. Below T1 and down to T0 the roles of stable and unstable solutions are 
interchanged. Below T0 the only stable solution is the one-row symmetric representation. Hence, 
we have a spontaneous symmetry breaking as

SU(N) → SU(N − 1) × U(1) . (3.30)

Note that the free energy changes discontinuously at T = T0 and at T = Tc . The plot of the free 
energy is at Fig. 4. The low temperature plateaux in Fig. 4 for the one-row configuration (blue 
curve) is explained by the fact that due to (3.22) we have

Fsym � −N − 1

2
T0

(
1 + 2

T

T0
e−NT0/T

)
, T � NT0 . (3.31)

4 In the next section we will present a method for solving it even in the presence of a magnetic field.
15
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Fig. 4. Plot of the free energy F for N = 7, for the one-row solution (blue) up to Tc � 1.72 and for the singlet one (red) 
from T = 1, in units of T0. These cover the temperature range in which we have stability or metastability. The crossover 
behavior is at T = T1 � 1.63, in agreement with Table 1.

To better understand the situation, we may use the thermodynamic relations between the free 
energy F , the internal energy U and the entropy S

F = U − T S , U = −T 2∂T

(
F

T

)
, S = −∂T F , (3.32)

for Fsym given by (3.24) to obtain

Usym(x) = −a

2
T0 x2 ,

Ssym(x) = lnN − 1

1 + a

(
a(1 + x) ln(1 + x) + (1 − ax) ln(1 − ax)

)
.

(3.33)

These are readily recognized as the coupling energy and the logarithm of the number of states 
per atom for representations close to the dominant symmetric one (we emphasize that x = x(T )

via (3.4)). For the singlet (x = 0) we simply have

Usinglet = 0 , Ssinglet = lnN , (3.34)

that is, the maximal energy and maximal entropy.
Even though the free energy is discontinuous at T = Tc, we may still think of the transitions 

at T0 and Tc as a first order phase transitions, in the sense that the discontinuity of U implies that 
latent heat has to be transferred for the phase transition to occur. In detail we have

T → T −
c : Usym = − T0

2(N − 1)
x2
c , Ssym = lnN + xc

1 + xc

− ln(1 + xc) ,

T → T +
c : Usinglet = 0 , Ssinglet = lnN ,

(3.35)

where we simplified Ssym by using relations (3.8). When we transition from below to above Tc, 
we must give energy to the system, which also increases its entropy (recall that, in the absence 
of volume effects, dU = T dS). The behavior of the energy and the entropy with temperature is 
depicted in Fig. 5.

At the intermediate temperature T = T1, given in (3.27), there is the possibility of a first order 
phase transition from a metastable to a stable phase. Near that temperature

Fsym = −T lnN + N − 2

N
ln(N − 1)

(
T − T1

) + . . . ,
(3.36)
Fsinglet = −T lnN .
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Fig. 5. Plots of U (left) and S (right) for N = 7. For the one-row solution (blue) up to Tc � 1.72 and for the singlet one 
(red) from T = 1, in units of T0. The sharp rise for T → T −

c is according to (3.38).

This transition is typical in statistical physics where latent heat transfer is involved. Hence we 
have that

T → T −
1 : Usym = −1

2

(N − 2)2

N − 1
T0 , Ssym = lnN − N − 2

N
ln(N − 1) ,

T → T +
1 : Usinglet = 0 , Ssinglet = lnN .

(3.37)

The transition from metastable to stable configurations near the temperature T1 will not occur 
spontaneously under ideal conditions, leading to hysteresis. Only when the system is perturbed, 
or given an exponentially large time such that large thermal fluctuations occur, will it transition 
from a metastable to a stable configuration. This is reminiscent of the hysteresis in temperature 
exhibited in certain materials and in supercooled water [20]. The discontinuity in U implies that 
(latent) heat has to be transferred for the phase transition to occur. When we transit T1 from 
above the system releases energy, which also lowers its entropy, the opposite happening when it 
transit above T1 (the term “pseudo phase transition” has been used in the literature for this kind 
of process).

To understand the nature of the phase transitions that the system can undergo, imagine that 
we start at a temperature T > Tc with the (paramagnetic) singlet state and adiabatically lower the 
temperature by bringing the system into contact with a cooling agent (reservoir). If the system is 
not perturbed, it will stay at the paramagnetic state until T = T0, where this state becomes unsta-
ble, the (ferromagnetic) symmetric representation solution takes over, and the system undergoes a 
phase transition releasing latent heat into the reservoir. Similarly, starting at a temperature below 
T0 with the (ferromagnetic) symmetric irrep state and raising adiabatically the temperature, the 
system will remain in this state if it is not perturbed and will transition to the singlet at T = Tc, 
absorbing latent heat from the reservoir and undergoing a phase transition. Clearly the system 
presents hysteresis, and no unique Curie temperature exists, since in the range T0 < T < Tc the 
two phases coexist.

The situation is somewhat different if the system is isolated (decoupled from the reservoir) 
while it is in a metastable state (that is, a ferromagnetic state at T1 < T < Tc or a paramagnetic 
state at T0 < T < T1). A transition to the stable state would involve exchange of latent heat, 
which can only be provided by, or absorbed into, the stable phase. However, the heat capacity of 
the paramagnetic phase is zero (see Fig. 5), so no such exchange can take place and the system 
is “trapped” in the unstable phase. This is unlike, say, supercooled water, where perturbations 
nucleate the formation of a stable solid state, releasing latent heat into the unstable liquid phase 
and raising the temperature until the liquid phase is eliminated or the temperature reaches the 
17
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Fig. 6. Typical plot of x(T ) (here for N = 5) for the symmetric irrep for 0 < T < Tc � 1.40. For T = 0 it reaches the 
maximum value x(0) = N − 1 and for T → T −

c it goes sharply to xc according to (3.38).

point at which the two phases become equally stable. This feature of our system is somewhat 
unrealistic, since we have ignored all other degrees of freedom except SU(N) spins. A realistic 
system would also have vibrational degrees of freedom of the atoms, which would serve as 
a reservoir absorbing or receiving latent heat and thus enabling transitions from metastable to 
stable states.

The parameter x is a measure of the spontaneous magnetization and constitutes the order 
parameter for the phase transition. Recalling (3.7), x is a measure of the length of the single row 
YT corresponding to the solution. From (3.4) and (3.8) we can deduce that x(T ) near Tc behaves 
as5

x − xc �
√

(N − 1)xc

xc + 1 − N/2

√
Tc − T

T0
. (3.38)

Hence, the deviation from xc near the critical temperature follows Bloch’s law for spontaneous 
magnetization of materials with an exponent of 1/2 and an N -dependent coefficient. The behav-
ior of x(T ) is depicted in Fig. 6.

The SU(2) case: The above results are valid for a �= 1 that is for N � 3. When a = 1, as 
in the SU(2) case, T0 = T1 = Tc and the stable-metastable range in Table 1 does not exist. 
The transition between the singlet and the symmetric representations occurs at the unique Curie 
temperature T = T0 and at xc = 0. In this case we have

Symm. irrep (T < T0): x � √
3

√
T0 − T

T0
, F � −T ln 2 − 3T0

4T0

(
T0 − T

)2
,

Singlet (T > T0): x = 0 , F = −T ln 2 , (3.39)

which shows that at T = T0 there is a second order phase transition.
Note that the naïve limit a → 1 of the result (3.38) for a < 1 would not recover the above 

behavior. The reason is that the range of validity of (3.38) is T0 < T � Tc, and it shrinks to zero 
as Tc → T0. The two first-order phase transition points at T0 and Tc fuse into a single second-

5 Positivity of xc + 1 − N/2 follows from the fact that between the unstable and the stable solutions the left hand side 
of (3.4) as a function of x reaches a minimum (see the right plot in Fig. 2.
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Fig. 7. Plot of the free F for N = 2. The continuity of the expression and its first derivative between the one-row solution 
(blue) up to T = 1 and the singlet one (red) from T = 1, in units of T0, is manifest.

Fig. 8. Plots of U (left) and S (right) for N = 2 for T in units of T0, for the magnetized (blue) state up to T0 and the 
singlet (red) state above T0.

Table 2
Behavior near critical point for N = 2, 3, 4, 5, as well as for N � 1
(the corresponding entries are leading).

N 2 3 4 5 N � 1

Tc/T0 1 1.0926 1.2427 1.4027 N/ lnN

xc/xmax 0 0.3772 0.5071 0.5749 1

K 1.7320 1.2177 0.9862 0.8480
√

2/N

order transition in the limit a → 1. Fig. 7 depicts the free energy against the temperature for the 
SU(2) case.

The behavior of x(T ) near T = T0 follows Bloch’s law with an exponent 1/2, as in the general 
SU(N) case, but with a different coefficient. The internal energy and entropy are continuous but 
their first derivatives at T = T0 are not, as depicted in Fig. 8.

For comparison between SU(2) and higher groups, we present in Table 2 the values of the 
critical temperature in units of T0, the critical magnetization as a fraction of the maximal magne-
tization xmax = N − 1 and the coefficient of x − xc in Bloch’s law in (3.38) again as a fraction of 
the maximal magnetization, i.e. K = √

(N − 1)xc/(xc + 1 − N/2)/xmax for the first few values 
of N , as well as for N � 1.
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4. Turning on magnetic fields

We now turn to incorporating nonzero magnetic fields in the system. We recall the equilibrium 
equation (2.34)

T lnxi − NT0xi = Bi + λ , i = 1,2, . . . ,N , (4.1)

where the xi sum to 1 due to the constraint in (2.31).

4.1. Small fields

For small magnetic fields the solution of the coupled equations (4.1) can be found as a pertur-
bation of the solution for vanishing fields. In fact, we can do better than that. We may consider the 
response of the system in the presence of generic magnetic fields Bi under small perturbations 
δBi . The state will change as

xi → xi + δxi , i = 1,2, . . . ,N , (4.2)

where δxi is a perturbation to the solution of (4.1). To linear order we have that(
T

xi

− NT0

)
δxi = C−1

i δxi = δBi + δλ . (4.3)

Since 
N∑

i=1

δxi = 0 we obtain the change of λ as

δλ = −
∑N

i=1 CjδBj∑N
i=1 Cj

. (4.4)

Then, combining with (4.3) we get

δxi = Ci

(
δBi −

∑N
j=1 CjδBj∑N

j=1 Cj

)
, (4.5)

from which the magnetizability matrix mij obtains as

mij = ∂xi

∂Bj

= Ci δij − CiCj∑N
k=1 Ck

, i, j = 1,2, . . . ,N . (4.6)

Note that mij is symmetric and satisfies 
N∑

i=1

mij = 0 as a consequence of the fact that the U(1)

part decouples.
We may infer the signs of mij for general Ci ’s from the stability condition on the configura-

tion. Recall that, for stability, either all Ci are positive (including infinity), or only one of them 
is negative, say C1, and the rest positive (x1 is the largest among the xi ’s). In the latter case, 
stability further requires that (3.15) be satisfied. Using these we can show that

C1 > 0 : m11, mii > 0 , m1i < 0 , mij < 0 ,

C1 < 0 : m11, mii > 0 , m1i < 0 , mij > 0 ,

C−1 = 0 : m , m > 0 , m < 0 , m = 0 ,

(4.7)
1 11 ii 1i ij
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where i, j = 2, 3, . . . , N and i �= j . According to (3.14), the last case above happens for T =
NT0x1, which is possible only for T < NT0, and corresponds to one of the solutions of (4.1)
reaching the top of the function in the LHS of (3.1), depicted in Fig. 1.

4.1.1. The singlet
For the unmagnetized singlet configuration, stable for temperatures T > T0, xi = 1/N and 

C−1
i = N(T − T0). The magnetizability is

singlet : mij = 1

N(T − T0)

(
δij − 1

N

)
. (4.8)

As expected, it diverges as (T − T0)
−1 at the critical temperature T0 where the configuration 

destabilizes, and the signs of its components are in agreement with (4.7). This determines the 
linear response of the system to small magnetic fields, of typical magnitude B such that B �
T − T0.

4.1.2. The symmetric representation
For the spontaneously magnetized configuration corresponding to the symmetric representa-

tion M = 1, stable for T < Tc, the xi are as in (3.3), with x the solution of (3.4) that corresponds 
to a stable configuration. The components of the magnetization matrix take the form

m11 = N − 1

N�(x)
,

m1i = − 1

N�(x)
, i �= 1,

mij = 1

NA(−ax)

(
δij − A(x)

�(x)

)
, i, j �= 1 ,

(4.9)

where a = 1/(N − 1) and A(x) = T/(1 + x) − T0 as before, and

�(x) = A(−ax) + 1

a
A(x) = N

[
T

(1 + x)(1 − ax)
− T0

]
. (4.10)

As T → T −
c , (3.8) shows that the magnetization diverges. To compute its asymptotic behavior at 

T � Tc we use (3.38) to obtain

(1 + x)(1 − ax) = Tc

T0
− √

2xc(2axc + a − 1)

√
Tc − T

T0
+ . . . , (4.11)

which implies

� = N
T0

Tc

√
2xc(2axc + a − 1)

√
Tc − T

T0
+ . . . . (4.12)

Hence the entries of the magnetizability matrix as T → T −
c become

m11 � N − 1

N2

Q√
Tc − T

,

m1i � − 1

N2

Q√
Tc − T

,

mij � 1
2

Q√ , i, j = 2, . . . ,N ,

(4.13)
N (N − 1) Tc − T
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Fig. 9. Left: Plots of the four different types of magnetization matrix entries for the symmetric irrep. up to T = Tc for 
N � 3. Right: Same plot for SU(2).

where

Q = Tc/T0√
2xc(2axc + a − 1)T0

. (4.14)

So the magnetizability diverges as (Tc −T )−1/2, and the signs of its components are in agreement 
with (4.7). We have depicted these in Fig. 9 above.

The SU(2) case: This is special since Tc = T0. For the singlet solution (T > T0), (4.8) remains 
valid for N = 2, giving

m11 = m22 = −m12 = 1

4

1

T − T0
, T → T +

0 . (4.15)

For the magnetized solution

m11 = m22 = −m12 = 1

4

1 − x2

T − T0(1 − x2)
, T < T0 . (4.16)

Using (3.39) we obtain the magnetizability

m11 = m22 = −m12 � 1

8

1

T0 − T
, T → T −

0 . (4.17)

We note that mij diverges as |T − T0|−1 on both sides of the critical temperature, unlike for 
N � 2. The reason is that the coefficient of 

√
Tc − T0 in the expansion (4.11) vanishes for N = 2

and thus the next order in the expansion, O(T0 −T ), becomes the leading one. We have depicted 
these in Fig. 9.

4.2. Finite fields

We now consider the state of the system, given by (4.1), for general non-vanishing magnetic 
fields.

The general qualitative picture can be obtained by the same considerations as in the case of 
Bi = 0. For fixed λ, each xi satisfies (4.1) for a different effective Lagrange multiplier λi =
λ + Bi and can take two possible values xi±, the two solutions of (4.1) for fixed i. The stability 
considerations of section 3.1, which remain valid for arbitrary magnetic fields, determine that 
at most one of these solutions can lie on the unstable branch of the curve x+. So, fully stable 
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Fig. 10. Plot of (3.16), with its maximum occurring at x0 = T

NT0
. We consider a magnetic field B along one direction, 

say for i = 1. The intersection with the lines λ and λ + B occur at two values of xi on each side of x0 for each line.

configurations correspond either to choosing all xi− on the stable branch, or N − 1 of them on 
the stable branch and one on the unstable branch. The stability condition 

∑
i

Ci < 0 in (3.15)

must also be satisfied in the latter case.
To gain intuition on the behavior of the system, we focus on the case when only one of the 

magnetic fields, say B1, is different from the rest. We can absorb the equal terms Bi , i > 1 in 
the Lagrange multiplier and call B = B1 − Bi . Then the set of equations (4.1) becomes just two 
distinct equations: one for x1, with RHS λ + B , and one for the remaining N − 1 xi ’s, with RHS 
λ, as depicted in Fig. 10.

Referring to Fig. 10, denote the four solutions of (4.1) by x± (at the intersections of the 
curve with λ), and by xB± (at the intersections with λ + B). For the choice of B > 0 in the 
figure we have the ordering x− < xB− < x0 < xB+ < x+. For B < 0 the ordering would change to 
xB− < x− < x0 < x+ < xB+ . Since we have a magnetic field only in direction 1, x1 can take values 
xB± while each xi (i > 1) can take values x±.

For a stable configuration we may choose at most one value at x+ or xB+ . Thus, we have the 
following possible cases:

• a) N − 1 values x− and one value xB− , corresponding to a one-row YT (if xB− > x−) or its 
conjugate (if xB− < x−). This is the deformation of the singlet for B = 0.

• b) N − 1 values x− and one value xB+ , corresponding, again, to a one-row YT. This is the 
deformation of the one-row solution for B = 0.

• c) N − 2 values x−, one value xB− , and one value x+, corresponding to a two-row YT. This 
is a deformation of the one-row YT solution at B = 0 by increasing its depth and breaking 
the SU(N) symmetry further. Following a similar analysis, these would correspond either to 
irreps with two rows, or to irreps with N − 1 rows, N − 2 of which have equal lengths. We 
will encounter such cases below.

Although we will not examine in detail the more general configuration of a magnetic field with M
equal components and the remaining N −M equal and distinct, its qualitative analysis is similar. 
Fig. 10 remains valid, but now with M values of xi at λ + B and N − M at λ. Implementing the 
stability criterion we have the following cases (for B > 0):
23



A.P. Polychronakos and K. Sfetsos Nuclear Physics B 996 (2023) 116353
• N − M values x− and M values xBi− , corresponding to a YT with M rows. This is the 
deformation of the singlet for B = 0.

• N − M values x−, M − 1 values xBi− , and one value xBi+ , corresponding to a YT with M
rows. This is the deformation of the one-row solution for B = 0.

• N − M − 1 values x−, M values xBi− , and one value x+, corresponding to a YT with M + 1
rows. This is the deformation of the one-row solution for B = 0 by increasing its depth and 
breaking the SU(N) symmetry further.

Overall, equality of magnetic field components results in states with equal rows in their YT.

4.2.1. One-row and conjugate one-row states
We proceed to investigate quantitatively the effect of a magnetic field in one direction (say, 1) 

in the case where the system is in a one-row solution in the same direction, or the corresponding 
conjugate representation. That is, we will examine the cases (a) and (b) above (case (c) will be 
examined in the next subsection). Then the equation for the system becomes6

T ln
1 + x

1 − ax
= T0 (1 + a)x + B , −1 < x <

1

a
= N − 1 . (4.20)

Solutions to this equation with x > 0 correspond to a single row YT, whereas solutions with x < 0
to its conjugate, that is, a YT with N − 1 rows of equal lengths. These are related by observing 
that (4.20) is invariant under x → −x/a, B → −B , and a → 1/a, which maps symmetric irreps 
to their conjugate.

The stability conditions for the solution are determined by the general discussion in the previ-
ous subsection. As before, according to (3.18) C−1

1 = NA(x), with A(x) defined in (3.19), and 
thus C−1

i = NA(−ax) for i > 1. By its definition, A(x) satisfies

x > 0 : A(x) < A(−ax) ,

x < 0 : A(x) > A(−ax) .
(4.21)

The general stability argument requires Ci > 0 for i > 1, that is, A(−ax) > 0. For C1 < 0 we 
must also have 

∑
i Ci < 0, or A(x) + aA(−ax) > 0, as it was shown in (3.15) and (3.20). Alto-

gether, combined with (4.21), the stability conditions that cover all cases are

x > 0 : A(x) + aA(−ax) > 0 , (4.22)

which guarantees positivity of A(−ax) no matter what the sign of A(x), and

x < 0 : A(−ax) > 0 . (4.23)

6 Note that for a = 1 (the SU(2) case) and after setting x = T
T0

y − B
2T0

equation (4.20) becomes

y = B

2T
+ T0

T
tanhy , (4.18)

which is the standard expression in phenomenological investigations of ferromagnetism [21]. For a �= 1 (the SU(N) case 
with N � 3) this is modified by setting x = 2Ty−B

(1+a)T0
and results to the generalization

y = B

2T
+ T0

T

1

cothy − N−2
N

. (4.19)
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Fig. 11. Plot of B(x) for T > T+ (left), T0 < T < T+ (middle) and T < T0 (right).

The condition (4.22) above will be satisfied for

x < x− or x > x+ , x± = N − 2 ± √
N2 − 4(N − 1)T /T0

2
, (4.24)

while (4.23) will be satisfied for

x0 < x < 0 , x0 = (N − 1)

(
1 − T

T0

)
. (4.25)

The existence of x±, and the condition that x0 > −1, introduce two more temperatures

T+ = N2

4(N − 1)
T0 > T0 , T− = N

N − 1
T0 > T0 . (4.26)

For T > T+, (4.22) is satisfied for all x > 0, while for T > T−, (4.23) is satisfied for all x < 0. 
Note that both x± ∈ (−1, N − 1), and that x+ > 0, while x− > 0 for T > T0 and x− < 0 for 
T < T0. In terms of relative ordering of temperature scales,

N = 3 : T+ = 9T0

8
< T− = 3T0

2
,

N = 4 : T+ = T− = 4T0

3
,

N > 4 : T+ > T− .

(4.27)

We proceed to the analysis of the states of the system. It is most convenient to keep x and T as 
the free variables and consider the magnetic field B as a function of x with T as a parameter. 
Then (4.20) implies

B(x) = T ln
1 + x

1 − ax
− T0(1 + a)x . (4.28)

Note that
dB

dx
= a(1 + a)T0

(1 + x)(1 − ax)
(x − x+)(x − x−) = T0

(
A(x) + aA(−ax)

)
. (4.29)

Hence, dB/dx is proportional to the stability condition (4.22) for x > 0. Therefore, B(x) is an 
increasing function of x for T > T+ and T < T−, and a decreasing one for x− < x < x+, with 
x− and x+ as local maxima and minima. The function B(x) is plotted in Fig. 11 for various 
values of the temperature. The intersection of these graphs with the horizontal at B determines 
the solutions for the configuration of the system.

The above allow us to determine the stability of solutions for various values of the temperature 
and magnetic field. We consider two cases, according to (4.22) and (4.23).
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Positive x: The constraint (4.22) is relevant. Therefore, when T > T+, all solutions with x > 0
are stable. For T0 < T < T+, stability singles out solutions with 0 < x < x− and x > x+. Finally, 
for T < T0, since then x− < 0, stability requires that x > x+.
Negative x: The constraint (4.23) is now relevant, or equivalently x > x0. Since x < 0, we con-
clude that no stable solutions exist for x0 > 0, or T < T0. For x0 < −1, or T > T−, all x < 0
solutions are stable. Finally, for intermediate temperatures T0 < T < T−, we have stability for 
−1 < x0 < x < 0.

The above are tabulated in Table 3 below (we assume that N > 4 so that T+ > T−):

Table 3
Stable solutions for various ranges of T and x and for N > 4.

x T < T0 T0 < T < T− T− < T < T+ T+ < T

x < 0 none −1 < x0 < x all all

x > 0 x > x+ x < x− & x > x+ x < x− & x > x+ all

We can now investigate the existence of stable solutions for the full range of values of the 
temperature and the magnetic field. The complete analysis is relegated to appendix A. The results 
are summarized in the temperature-magnetic field phase diagram of Fig. 12, presented for a 
generic value for N > 4. The phase diagram is qualitatively the same for N = 3 and N = 4, 
changing only for N = 2. The only difference is that, for N = 4, T+ = T−, while for N = 3
T+ < T−. This does not affect the general features of the diagram, simply shifting the critical 
point vertex (T+, B+) to the left of the bottom asymptote T = T−, for N = 3, or on top of it, for 
N = 4.

Each region in the T –B plane depicted in the figure corresponds to a discrete phase of the 
system. Moving within these regions without crossing any of the critical lines interpolates con-
tinuously between configurations. In the connected regions C1, C2, and C3 there is a unique 
one-row configuration at each point (T , B). In regions A and B inside the curvilinear triangle 
there are two locally stable configurations at each point, one absolutely stable and the other 
metastable, with the line separating A and B being the border of metastability where the two 
phases have equal free energy. In region D there are no stable one-row solutions, signifying that 
a two-row solution must exist there. The lines separating regions C1,2,3 and the other regions are 
phase boundaries, the configuration changing discontinuously as we cross a boundary.

The dashed curve for T0 < T < NT0 represents configurations with C1 = ∞, that is, A(x) =
0. This corresponds to points where x1 = (1 + x)/N reaches the top of the curve in Fig. 10, 
transiting from the unstable to the stable branch of the curve or vice versa. For such points, 
x = T/T0 − 1, and (4.28) gives B on this curve as

B(T ) = T ln
(N − 1)T

NT0 − T
− N(T − T0)

N − 1
. (4.30)

Configurations to the left of this curve are in a “broken-like” SU(N) phase, with one of the 
solutions of (4.1) in the unstable branch of the curve in Fig. 10, while those to the right of the 
curve are in an “unbroken-like” phase, with all solutions on the stable branch. For B = 0 these are 
the true spontaneously broken or unbroken phases of the system. A nonzero magnetic field breaks 
SU(N) explicitly, and the dashed line represents a soft phase boundary, which must be crossed to 
transit between the two phases as we move on the T –B plane. The physical signature of crossing 
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Fig. 12. The phase diagram of the system for generic N > 4. The (orange) curve separating regions A and C2 is B(x−); 
the (blue) curve separating regions A, B, C1 and C3, D is B(x+), intersecting the T -axis at the B = 0 critical temperature 
T = Tc ; and the (red) curve separating regions A, B, C3 and C1, D is B(x0) and it asymptotes to the vertical T = T− . 
Crossing any of these lines precipitates a discontinuous change in the magnetization, i.e. the order parameter x. The 
(green) straight line separating regions A and B is the metastability frontier of the two coexisting phases inside these 
regions (see appendix A.1); crossing it exchanges the metastable and the absolutely stable states, and its intersection 
with the T -axis is the B = 0 critical temperature T = T1. Regions C1,2,3 constitute one continuous phase with nonzero 
magnetization (except at B = 0 and T > Tc), all points being accessible through continuous paths in the B − T space, 
while regions A, B and D are separated from C1,2,3 by discontinuous transitions in the order parameter. The (gray) 
dashed curve from T0 to its vertical asymptote at T = NT0 separates “broken-like” and “unbroken-like” configurations 
but otherwise mark no sharp phase transition. The shaded region D corresponds to a two-row (double magnetization) 
phase. For N = 3 the phase diagram remains qualitatively the same with the order of T+ and T− interchanged, while for 
N = 4, we simply have T+ = T− .

this boundary is that the off-diagonal elements of the magnetizability mij , with i �= j �= 1, change 
sign, vanishing on the boundary (see (4.7)).

The line separating regions B and C3 intersects the T axis at the critical temperature Tc found 
in the B = 0 section. Points (T0, 0) and (T+, B+), with

B+ = B(x+(T+)) = N

2(N − 1)

(
N

2
ln(N − 1) − N + 2

)
, (4.31)

are critical points, while point (Tb, Bb) at the lower tip of region B, satisfying the transcendental 
equation

B(x0(Tb)) = B(x+(Tb)) ≡ Bb (4.32)

is a multiple critical point, connecting several different configurations: one one-row state in C1, 
two in B, and one in C3, as well as a two-row state in D, and possible two-row states in the other 
neighboring regions (see next section). One of the states in B, and possibly other one-row or 
two-row states, are metastable.
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4.2.2. Two-row states and their (N − 1)-row conjugates
As we have seen, for T < T− and for sufficiently negative magnetic fields there is no stable 

solution to (4.20), and thus no state corresponding to the one-row YT symmetric representation. 
From the general analysis of subsection 4.2, we expect the solution to be the only other allowed 
configuration, that is, a state corresponding to a two-row YT. In this subsection we recover this 
solution and check its stability.

We consider a configuration with two (generally unequal) lengths x1 and x2 and an applied 
magnetic field in the x1-direction, representing the generic breaking pattern

SU(N) → SU(N − 2) × U(1) × U(1) , (4.33)

of the SU(N) symmetry. This includes a spontaneous breaking of SU(N) in addition to the 
dynamical breaking SU(N) → SU(N − 1) ×U(1) due to the magnetic field. We note that in the 
special case x1 = x2 the symmetry breaking pattern would be SU(N) → SU(N − 2) ×SU(2) ×
U(1), but as we shall demonstrate this pattern is never realized in the present case of a magnetic 
field in a single direction.

The xi must satisfy the system of equations

T ln
x1

xN

= NT0(x1 − xN) + B ,

T ln
xi

xN

= NT0(xi − xN) , i = 2,3, . . . ,N − 1 ,
(4.34)

where xN is determined from the constraint in (2.30). We write

x1 = 1 + x

N
, x2 = 1 + y

N
,

x3 = · · · = xN = 1 − α(x + y)

N
, α = 1

N − 2
.

(4.35)

For y = −αx/(1 + α) = −ax = −x/(N − 1) this ansatz reduces to the one for the one-row 
solution. (4.34) gives rise to the system of transcendental equations

T ln
1 + x

1 − α(x + y)
= T0

(
αy + (1 + α)x

) + B ,

T ln
1 + y

1 − α(x + y)
= T0

(
αx + (1 + α)y

)
.

(4.36)

The free energy of the configuration is

F(x, y,T ) = T0

2N(N − 2)

(
(x − y)2 − N(x2 + y2)

)
+ T

N

(
(1 + x) ln(1 + x)

+ (1 + y) ln(1 + y) + (N − 2 − x − y) ln
(

1 − x + y

N − 2

))
− B

N
x − T lnN .

(4.37)

The transcendental equations (4.36) will be solved numerically. The full analysis of solutions 
and their stability is relegated to the Appendix. Here we simply state the results and present 
relevant plots.

We consider temperatures T < T0 for which spontaneous magnetization exists. As discussed 
earlier, for such temperatures and negative magnetic fields we expect the state to be in a two-
row stable state, which includes the possibility of “antirows,” that is, N − 2 equal rows plus an 
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Fig. 13. Typical contour plots for T < T0 in the x −y plane of the two eqs. in (4.36), in blue (1st eq.) and orange 
(2nd eq., for which one of the branches is a straight line). The intersection points of the blue curves with the orange 
curves represent solutions of (4.36). Stable and metastable solutions are indicated by black and magenta colored dots, 
respectively. B0 is the value of B for which the central bulges of the curves would touch (bet. 3rd and 4th plot). Plots are 
for N = 7 and T = 0.9, and for B = 0.2, 0, −0.4, −2, −3 (note that B0 � −1.01 and B(x+) � −2.62) in units of T0.

additional row. Further, such states may coexist with a one-row state and be either globally stable 
or metastable.

All cases refer to plots in Fig. 13. The blue and orange curves represent the solutions of the first 
and second equation in (4.36), resp. The orange line y = −ax, in particular, solves the second 
equation in the system (4.36) while the first one reduces to the one for the one-row configuration 
(4.20). Intersections of blue and orange lines represent the solutions the (4.36). Only locally 
stable solutions are considered.

• B > 0: We recover the known one-row solution on the y = −ax line for x > 0. There is also 
a metastable two-row solution with x < 0, y > 0.

• B = 0: The system is symmetric under x ↔ y and we recover the known one-row solution 
on the y = −ax line for x > 0. There is also a stable solution on the y = −x/a line for 
x < 0, which is equivalent to the previous one, representing spontaneous magnetization in 
direction x2.

• B(x+) < B < 0: We recover the known one-row solution on the y = −ax line for x > 0, but 
now it is metastable. There is a stable two-row solution with x < 0, y > 0.

• B < B(x+): There are no stable one-row solutions, in accordance with region D of the one-
row phase diagram of Fig. 12. There is a unique stable two-row solution.
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We note that there are no solutions with x = y since this is not a consistent truncation of the 
system (4.36), unless B = 0 in which case we already know that the corresponding two-row 
solution is unstable. Thus the symmetry breaking pattern SU(N) → SU(N −2) ×SU(2) ×U(1)

is never realized.
Recalling fig. (12), the picture that emerges, at least for T < T0, is that a two-row solution 

coexists with the one-row solution in both regions C1, C2. The two-row solution is metastable 
in C2 (B > 0) and becomes absolutely stable in C1 (B < 0). The one-row solution is absolutely 
stable in C2, becomes metastable in C1, and ceases to exist in region D, leaving the two-row 
state as the only stable solution there. The line B = 0 is a metastability frontier between one-row 
and two-row solutions for T < T0. We expect this picture to extend for a range of temperatures 
T > T0, with a two-row state coexisting with the one-row one outside of region D, although for 
high enough temperatures the two-row solution should cease to exist.

5. Conclusions

The thermodynamic properties and phase structure of the SU(N) ferromagnet emerge as sur-
prisingly rich and nontrivial, manifesting qualitatively new features compared to the standard 
SU(2) ferromagnet. The phase structure of the system, in particular, is especially rich and dis-
plays various phase transitions. Specifically, at zero magnetic field the system has three critical 
temperatures (vs. only one for SU(2)), one of them signaling a crossover between two metastable 
states. Spontaneous breaking of the global SU(N) group in the ferromagnetic phase at zero ex-
ternal magnetic fields happens only in the SU(N) → SU(N −1) ×U(1) channel. In the presence 
of a nonabelian magnetic field with M nontrivial components (M < N ), the explicit symmetry 
breaking (paramagnetic state) is SU(N) → SU(N −M) ×U(1)M , while the spontaneous break-
ing (ferromagnetic state) is SU(N) → SU(N −M − 1) ×U(1)M+1. Finally, due to the presence 
of metastable states, the system exhibits hysteresis phenomena both in the magnetic field and in 
the temperature.

The model studied in this work, and its various generalizations described below, could be rel-
evant in a variety of physical situations. It could serve as a phenomenological model for physical 
ferromagnets, in which the interaction between atoms is not purely of the dipole type and ad-
ditional states participate in the dynamics. In such cases, the SU(N) interactions could appear 
as perturbations on top of the SU(2) dipole interactions, leading to modified thermodynamics. 
The model could also be relevant to the physics of the quark-gluon plasma [22], which can be 
described as a fluid of particles carrying SU(3) degrees of freedom, assuming their SU(3) states 
interact. Exotic applications, such as matrix models and brane models in string theory, can also 
be envisaged (see, e.g. [23,24]).

Various possible generalizations of the model, relevant to or motivated by potential applica-
tions, and related directions for further investigation suggest themselves. They can be organized 
along various distinct themes: starting with atoms carrying a higher representation of SU(N), 
generalizing the form of the two-atom interaction, or including three- and higher-atom interac-
tions.

The choice of fundamental representations for each atom was imposed by the physical re-
quirement of invariance of their interaction under common change of basis for the atom states. 
Its effect on the thermodynamics is to “bias” the properties towards states with a large funda-
mental content. This manifests, e.g., in the qualitatively different properties of the system under 
positive and negative magnetic fields (with respect to the system’s spontaneous magnetization). 
Starting with atoms carrying a higher irrep of SU(N) would modify these properties. In partic-
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ular, starting with atoms in the adjoint of SU(N) would eliminate this bias altogether. It might 
also eliminate phases of spontaneous magnetization, and this is worth investigating.

The interaction of atoms jr,ajs,a was isotropic in the group indices a, an implication of the 
requirement of invariance under change of basis. Anisotropic generalizations of the form (2.2)
can also be considered, involving an “inertia tensor” hab in the group. Clearly this generalization 
contains the higher representation generalizations of the previous paragraph as special cases. 
E.g., SU(2) interactions with the atoms in spin-1 states can be equivalently written as SU(3)

fundamental atoms with a tensor hab equal to δab when a, b are in the SU(2) subgroup of SU(3)

that admits the fundamental of SU(3) as a spin-1 irrep, and zero otherwise. The more interesting 
special case in which hab deviates from δab only along the directions of the Cartan generators, in 
the presence of magnetic fields along these directions, seems to be the most motivated and most 
tractable, and is worth exploring. The phase properties of the model under generic hab is also an 
interesting issue.

Including higher than two-body interactions between the atoms is another avenue for gener-
alizations. Physically, such terms would arise from higher orders in the perturbation expansion 
of atom interactions, and would thus be of subleading magnitude, but the possibility to include 
them is present. Insisting on invariance under common change of basis and a mean-field ap-
proximation would imply that such interactions appear as higher Casimirs of the global SU(N)

and/or as higher powers of Casimirs, the most general interaction being a general function 
f (C(2), · · · , C(N−1)) of the full set of Casimirs of the global SU(N). These can be readily 
examined using the formulation in this paper and may lead to models with richer phase struc-
ture. An interesting extension of this study is in the context of topological phases nonabelian 
models. Such topological phases have been proposed in one dimension [25–28] and it would be 
interesting to see if they exist in higher dimensions.

Another independent direction of investigation is the large-N limit of the model. This could 
be conceivably relevant to condensed matter situations involving interacting Bose condensates, 
or to more exotic situations in string theory and quantum gravity. The presence of two large 
parameters, n and N , presents the possibility of different scaling limits. These will be explored 
in an upcoming publication.

Finally, the nontrivial and novel features of this system offer a wide arena for experimental 
verification and suggest a rich set of possible experiments. The experimental realization of this 
model, or the demonstration of its relevance to existing systems, remain as the most interesting 
and physically relevant open issues.
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Fig. 14. Plot of B(x) for T > T+ .
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Appendix A. Analysis of one-row states with a magnetic field

In this appendix we present the details of the analysis that we have summarized in the main 
text.
T > T+ (Fig. 14): B(x) is increasing and all values of x are stable, so there exists a unique stable 
solution for all B , one-row for B > 0 and its conjugate for B < 0.
T− < T < T+ (Fig. 15): We have stability for −1 < x < x− and x+ < x < N − 1, the regions 
of increasing B(x). Further, note that x− > 0 and B(x−) > B(x+), and that B(x−) > 0 while 
B(x+) can be positive or negative. The critical temperature Tc satisfies the condition

T = Tc ⇐⇒ B(x+) = 0 , (A.1)

which is precisely the condition (3.8). Note that, for N > 4, T− < Tc < T+. For T > Tc , B(x+) >
0 and for T < Tc, B(x+) < 0.

So within this temperature range we distinguish two sub-cases:
Tc < T < T+ (left plot in Fig. 15): we have for various values of the magnetic field:

• For B < 0, x varies from −1 to 0 and there is a unique stable solution corresponding to the 
conjugate one-row YT.

• For 0 < B < B(x+), x varies from 0 to some x < x− and there is a unique stable solution 
corresponding to a one-row YT.
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Fig. 15. Plot of B(x) for Tc < T < T+ (Left) and for T− < T < Tc (Right).

• For B(x+) < B < B(x−) we have two locally stable solutions, one for some 0 < x < x− and 
one for some x > x+ (a third solution in between is unstable). The first one corresponds to an 
unbroken phase, as it represents a continuous deformation of the singlet for B = 0, and the 
second one to a broken phase. One is absolutely stable and the other metastable. To decide 
which, we need to compare their free energies.

• For B > B(x−), x varies from some value greater than x+ to N − 1 and there is a unique 
stable solution.
Note that for B = 0 there is only the solution x = 0, as expected.

T− < T < Tc (right plot in Fig. 15): we have for various values of the magnetic field:

• For B < B(x+), x varies from −1 to some negative value x obtained from B(x+) = B(x)

and there is a unique stable solution corresponding to the conjugate one-row YT.
• For B(x+) < B < B(x−) we have two locally stable solutions, one for some x < x− and one 

for some x > x+. The first one represents an unbroken phase and the second one a broken 
phase, as they map to the singlet and the one-row solutions for B = 0. One is absolutely 
stable and the other metastable. To decide, we need to compare their free energies.

• For B > B(x−), x varies from some x > x+ to N − 1 and there is a unique stable solution 
corresponding to a one-row YT.
Note that B = 0 is in the range B(x+) < B < B(x−) and we recover the expected two 
solutions, x = 0 (singlet) and x > 0 (one-row).

T0 < T < T− (Fig. 16): The situation is as in case T− < T < Tc, except now x cannot be more 
negative than x0 = (N − 1)(1 − T/T0) defined in (4.25). The relative size of B(x0) and B(x+)

will also play a role:

• For B < min{B(x0), B(x+)} there is no stable one-row solution and the stable solution must 
necessarily have more rows. According to the general stability analysis, it must be one with 
N − 1 rows out of which N − 2 have equal length.

• For min{B(x0), B(x+)} < B < max{B(x0), B(x+)} there is one stable solution, for x < 0
(x > x+) if B(x0) < B(x+) (B(x0) > B(x+)).

• For max{B(x0), B(x+)} < B < B(x−) there are two stable solutions, one absolutely stable 
and the other metastable. To decide, we need to compare their free energy.

• For B > B(x−), x there is a single stable solution varying from some x > x+ to N − 1.
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Fig. 16. Plot of B(x) for T0 < T < T− . The dashed lines refer to the value B(x0) which could be higher (green) or lower 
(red) than B(x+).

T < T0: Only x > x+ solutions are stable.

• For B < B(x+) there is no stable one-row solution, and the solution must again be one with 
(N − 1)-rows.

• For B > B(x+) there is one stable solution for x > x+

A.1. Resolving metastability

To determine which configuration is absolutely stable and which is metastable when there 
are two locally stable solutions, we need to compare their free energies. The free energy of the 
system is given by (3.24) with the addition of the magnetic field term,

Fsym(x, T ) = T

1 + a

(
a(1 + x) ln(1 + x) + (1 − ax) ln(1 − ax)

)
− a

2
T0x

2 − B(x)

N
x − T lnN ,

(A.2)

where a = 1/(N − 1) and where B = B(x) is expressed in terms of x, T via (4.28).
To facilitate the comparison, define the modified free energy 
 (we use F(x) instead of 

Fsym(x, T ) for notational convenience)


(x) = F(x) + N − 2

2N
B(x) . (A.3)

We can show that 
(x) and B(x) satisfy


(N − 2 − x) = 
(x) (A.4)

and

B(x) + B(N − 2 − x) = 2T ln(N − 1) − T0
N(N − 2)

N − 1
. (A.5)

For two solutions with different x, x′ but the same B , F(x) − F(x′) = 
(x) − 
(x′), so we can 
compare their 
 to resolve metastability. At the transition point, when the two solutions have the 
same free energy, (A.4) implies


(x) = 
(x′) =⇒ x′ = N − 2 − x (A.6)
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and from (A.5) with B(x) = B(x ′) = B(N − 2 − x) the magnetic field Bt at which this happens 
is

Bt = T ln(N − 1) − T0

2

N(N − 2)

N − 1
. (A.7)

For fixed B , this gives the transition temperature Tt at which the two solutions will transit from 
stable to metastable as

Tt = 1

ln(N − 1)

(
B + T0

N(N − 2)

2(N − 1)

)
. (A.8)

For B = 0 this reproduces the temperature T1 and magnetization x1 that we determined before 
in (3.27).

Appendix B. Analysis of two-row states in a magnetic field

In this appendix we investigate in detail two-row solutions, including their (N −1)-row conju-
gates. We analyze the conditions for their stability, present the corresponding YT of their irreps, 
and derive numerical results for the case of temperatures T < T0.

To proceed, we write the coefficients Ci defined in (3.14) in terms of the variables x and y of 
(4.35). We obtain

C−1
1 = N A(x) , C−1

2 = N A(y) ,

C−1
i = N A

( − α(x + y)
)
, i = 3,4, . . . ,N ,

(B.1)

with our usual A(x) defined in (3.19). The variables x and y are restricted by the conditions 
0 < xi < 1 to the range

x, y > −1 , x + y <
1

α
= N − 2 . (B.2)

Thus, the allowed solutions are within the triangle in the (x, y)-plane with corners at the points 
(1/a, −1), (−1, 1/a) and (−1, −1), depicted in Fig. 17. This triangle is further subdivided by 
the curves y = x, y = −ax and y = −x/a into six regions representing the possible ordering of 
x1, x2, xi (i � 3) and thus the various YT renditions of the two-row solution. These regions are 
accordingly labeled by (ijk) for xi > xj > xk . Assuming N > 3, most of the Ci ’s are propor-
tional to 1/A(−α(x + y)), so we choose solutions with A(−α(x + y)) > 0. Then at most one 
of the functions A(x) and A(y) can be negative. We list below the various possibilities together 
with conditions for stability:
Region A, or (123): x1 > x2 > x3, with

−ax < y < x =⇒ A(x) < A(y) < A(−α(x + y)) . (B.3)

The stability condition is

A(y) > 0 , α[A(x) + A(y)]A(−α(x + y)) + A(x)A(y) > 0 . (B.4)

In this region all Ci’s are positive, except C1 which may have either sign. We define

�1 = (1 + α)x + αy

N
, �2 = (1 + α)y + αx

N
, �1 > �2 > 0 . (B.5)

The YT has the partition
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Fig. 17. The domain of x, y. Coordinate axes do not create subdivisions.

(�1, �2) . (B.6)

Hence, it represents a two-row YT with �1 and �2 boxes, respectively. This follows from the fact 
that x3 is the smallest among the three xi’s and appears N − 2 times.
Region B, or (132): x1 > x3 > x2, with

−x/a < y < −ax , A(x) < A(−α(x + y)) < A(y) . (B.7)

The stability condition is

A(−α(x + y) > 0 , α[A(x) + A(y)]A(−α(x + y)) + A(x)A(y) > 0 . (B.8)

In this region all Ci’s are positive expect C1 which may have either sign. We define

�1 = x − y

N
, �2 = − (1 + α)y + αx

N
, �1 > �2 > 0 . (B.9)

The (N − 1)-row YT has the partition

(�1, �2, �2, . . . , �2︸ ︷︷ ︸
N−2

) . (B.10)

Hence, it represents a YT with �1 boxes in the first line and �2 boxes in the following N − 2
lines. This follows from the fact that the smallest among the three xi’s, x2 appears only once.
Region C, or (213): x2 > x1 > x3, with

−ay < x < y , A(y) < A(x) < A(−α(x + y)) . (B.11)

The stability condition is

A(x) > 0 , α[A(x) + A(y)]A(−α(x + y)) + A(x)A(y) > 0 . (B.12)

In this region all Ci ’s are positive expect C2 which could be either positive or negative. Defining

�1 = (1 + α)y + αx

N
, �2 = (1 + α)x + αy

N
, �1 > �2 > 0 , (B.13)

this case represents a two-row YT with the partition (B.6).
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Region D, or (231): x2 > x3 > x1, with

−ax < y < −x/a , A(y) < A(−α(x + y)) < A(x) . (B.14)

The stability condition is

A(−α(x + y) > 0 , α[A(x) + A(y)]A(−α(x + y)) + A(x)A(y) > 0 . (B.15)

In this region all Ci ’s are positive expect C2 which could be either positive or negative. Defining

�1 = y − x

N
, �2 = − (1 + α)x + αy

N
, �1 > �2 > 0 , (B.16)

this case represents a YT with the partition (B.10).
Region E, or (312): x3 > x1 > x2, with y < x < −ay, equivalently x3 > x1 > x2, with

y < x < −ay , A(−α(x + y)) < A(x) < A(y) . (B.17)

The stability condition is

A(−α(x + y)) > 0 . (B.18)

In these two regions all Ci’s are positive. Defining

�1 = − (1 + α)y + αx

N
, �2 = x − y

N
, �1 > �2 > 0 , (B.19)

this case represents a (N − 1)-row YT with the partition

(�1, �1, . . . , �1︸ ︷︷ ︸
N−2

, �2) , (B.20)

Region F, or (321): x3 > x2 > x1, with

x < y < −ax A(−α(x + y)) < A(y) < A(x) . (B.21)

The stability condition is

A(−α(x + y)) > 0 . (B.22)

In these two regions all Ci’s are positive. Defining

�1 = − (1 + α)x + αy

N
, �2 = y − x

N
, �1 > �2 > 0 , (B.23)

this case represents a (N − 1)-row YT with the partition (B.20).

B.1. The case of low temperatures

We consider temperatures T < T0 for which spontaneous magnetization exists. Various cases 
arise depending on the sign of B and, if negative, on the value B(x+) < 0 with x+ defined in 
(4.24) (recall that B(x+) is negative for T < T0) and some other intermediate value B0 to be 
defined shortly. In the plots below all points on the red line y = −ax solve identically the second 
equation in the system (4.36), whereas the first one reduces to the equation for the one-row 
configuration (4.20). This line can be approached for x > 0 from the regions A and B and for 
x < 0 from the regions D and F. In addition, the stability conditions for these regions reduce to 
those in (4.22). All cases below map to one of the plots in Fig. 13.
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• B > 0: We know that the one-row configuration has a stable solution which in this two-
parameter plot is on the y = −ax red line for x > 0. The intersection point in the middle 
(region C in Fig. 17) is unstable, whereas that on the upper left corner is, having a higher 
value for the free energy, metastable (region C).

• B = 0: We have included the case with B = 0, which is symmetric with respect to the y =
x line. We know that the one-row configuration has a stable solution which in this two-
parameter plot is on the y = −ax red line for x > 0. Due to the above symmetry there is 
stable solution also on the y = −x/a line for x < 0, which however is equivalent to the 
above. The other three intersecting points are unstable.

• B0 < B < 0: The value of the magnetic field B0 arises when the two curves in the plot meet 
tangentially. The one-row configuration has a stable solution which in this two-parameter 
plot is on the y = −ax red line for x > 0. However, this becomes now metastable, as the 
stable intersection point is on the upper left corner (region D in Fig. 17), corresponding to 
an (N − 1)-row YT with partition (B.10). The other intersection points are unstable.

• B(x+) < B < B0: There are typically three intersection points along the y = −ax line cor-
responding to the one-row configuration, the far right is now metastable and the other two 
unstable. However, there are two additional intersecting points in the far left of that plot, the 
lower one being unstable and the upper one stable (region D in Fig. 17) corresponding to an 
(N − 1)-row YT with partition (B.10).

• B < B(x+): There is one intersection points along the y = −ax line corresponding to the 
one-row configuration. This has x < 0 and is, as we have shown unstable. In fact, there is 
no stable one-row configurations for B < B(x+). Among the other two intersection points 
the lower one is unstable and the upper one is stable (region D in Fig. 17) and again it 
corresponds to a (N − 1)-row YT with partition (B.10).
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