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Abstract

We study the thermodynamics of a non-abelian ferromagnet consisting of “atoms” each carrying a fun-
damental representation of SU (N ), coupled with long-range two-body quadratic interactions. We uncover
a rich structure of phase transitions from non-magnetized, global SU (N)-invariant states to magnetized
ones breaking global invariance to SU (N — 1) x U(1). Phases can coexist, one being stable and the other
metastable, and the transition between states involves latent heat exchange, unlike in usual SU (2) ferro-
magnets. Coupling the system to an external non-abelian magnetic field further enriches the phase structure,
leading to additional phases. The system manifests hysteresis phenomena both in the magnetic field, as in
usual ferromagnets, and in the temperature, in analogy to supercooled water. Potential applications are in
fundamental situations or as a phenomenological model.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Magnetic materials are of considerable physical and technological interest, and their proper-
ties have long been the subject of theoretical research. Ferromagnets, the first type of magnetism
ever observed, hold a special place among them, as they manifest nontrivial properties and sym-
metry breaking.

All known ferromagnets consist of interacting localized magnetic dipoles and break rotational
invariance below the Curie temperature. Each (quantum) dipole provides a representation of the
group of rotations, that is, of SU(2). Although this is a nonabelian group, it is of a particu-
larly simple type: it has a unique Cartan generator, and SU (2) dipoles can interact with external
abelian magnetic fields that couple to their Cartan generator. Nevertheless, the exact quantitative
properties of physical ferromagnets remain an active topic of research [1].

Independently, nonabelian unitary groups SU (V) of higher rank play a crucial role in particle
physics and, indirectly through matrix models, in string theory and gravity. Ungauged and gauged
SU (3) groups are the most common, representing “flavor” and “color” degrees of freedom, re-
spectively. A collection of nucleons, or the constituents of the quark-gluon plasma, are physical
systems of components carrying representations of SU(3). This raises the obvious question of
the properties that large collections of such SU(3) or, more generally, SU(N) entities would
have if they interacted with each other as well as with external nonabelian magnetic fields.

In this work we investigate the properties of such systems in the ferromagnetic regime, that
is, in the regime where the mutual interaction of its components would tend to “align” their
SU(N) charges, in a way that we will make precise. The results on the decomposition of the
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direct product of an arbitrary number of representations of SU (V) into irreducible components
that we derived in a recent publication [2] will be a crucial tool in our calculations. We will also
study the effects of an external nonabelian magnetic field coupled to the system. As we shall
demonstrate, the properties of nonabelian (N > 2) ferromagnets are qualitatively different from
these of ordinary (N = 2) ferromagnets. They display a rich phase structure involving various
critical temperatures, hysteresis both in the temperature and in the magnetic field, coexistence of
phases, and latent heat transfer during phase transitions.

In the sequel we will present the basic SU (N) model, consisting of distinguishable quantum
components in the fundamental representation, and will review the relevant group theory results
of [2]. We will proceed to study the thermodynamic phases of the model in the absence, and
subsequently in the presence, of external magnetic fields, and will derive its symmetry breaking
patterns, critical temperatures, and magnetization. Stability issues will be crucial and will deter-
mine the pattern of SU (N) breaking in the various phases. We will further study the nontrivial
situation of a magnetic field inducing an enhanced breaking of SU (N), and will conclude with
some speculations about the phenomenological relevance of the model.

2. A system of interacting SU (V) “atoms”

Magnetic systems with SU(N) symmetry have been considered in the context of ultracold
atoms [3—7] or of interacting atoms on lattice cites [§—14] and in the presence of SU (N) magnetic
fields [15-17].

In this section we lay out the basic structure of any model of interacting SU (N) atoms, specify
its ferromagnetic regime, and review the group theory results necessary for its analytic treatment.

2.1. The model

To motivate the basic model, consider a set of #n atoms (or molecules) on a lattice, interacting
with two-body interactions. Each atom is in one of N degenerate or quasi-degenerate states |s),
s =1,2,..., N. The generic two-body interaction between atoms 1 and 2 with states |s1) and
|s2) would be

N
_ / / %
Ho= ) hyguyls) @12 (5. Ay =hi 2.1)

’ /
51,87,52,8,=1

Define j,, a =0,1,...,N 2 _ 1, the generators of U(N) in the fundamental N-dimensional
representation, with jo the identity operator (the U (1) part). Using the fact that the j, form a
complete basis for the operators acting on an N-dimensional space, the above interaction can
also be written as

NZ-1
Hiy= Y hap jrajob - hab = hyy, 2.2
a,b=0
where
jl,azja®1a j2,a=1®ja’ (2-3)

are the fundamental U (N) operators acting on the states of atoms 1 and 2.
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We now make the physical assumption that the above interaction is invariant under a change
of basis in the states |s), that is, under a common unitary transformation of the states |sq) of
atom 1 and |s2) of atom 2. This implies two equivalent facts: first, the interaction will necessarily
be, up to trivial additive and multiplicative constants (proportional to the identity), the operator
exchanging the states of the atoms,

N
Hiy=Cl+Ci2 Y I9)(s/|®s') (s] . (24)

s,8'=1

with C {2, C17 being real constants. Second, the interaction will necessarily be of the form

NZ2-1
Hip =cjp+ci2 Z JlaJ2.a - (2.5)

a=1

Omitting the trivial constant c/12 (due to the U (1) part), we obtain a unique two-body interaction
depending on a single coupling constant c12. Note that the group U(N) emerges from the re-
quirement of invariance under general changes of basis of the N states, and leads to interactions
linear in the operators in each atom. Using, instead, an N -dimensional representation of a smaller
group would require the inclusion of higher polynomial terms in jj 4, and j» 4.

The interaction Hamiltonian of the full system will be of the form

N2-1

n
H= Z Crs Z Jra Js.a » (2.6)
a=1

r,s=1

where ¢, = ¢y, is the strength of the interaction between atoms r and s (and ¢, = 0). This
Hamiltonian involves an isotropic quadratic coupling between the fundamental generators of the
n commuting SU (N) groups of the atoms.

Reasonable physical assumptions restrict the form of the couplings c,;. We assume that the
interaction is homogeneous, that is, ¢,y is translationally invariant under the shift of both » and
s by the same lattice translation (away from the boundary of the lattice). In terms of the lattice
positions of the atoms 7,

€75 =Ci-5 co=0. 2.7

Therefore, each atom couples to a fixed weighted average of the SU (N) generators of its neigh-
boring atoms. We will also assume that interactions are reasonably long-range, that is, each atom
couples to several of its neighboring atoms. This technical assumption justifies the mean field
condition that, in the thermodynamic limit, the weighted average of the neighboring atoms is
well approximated by their average over the full lattice. That is

n
> esiisa= (D es) %st‘a =1, 2.8)
s 5 s=1

N

where we defined the total SU (N) generator

n
Ja=)_Jsa 2.9)
s=1
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and the effective mean coupling'
c:—Zc;. (2.10)
s

The minus sign is introduced such that ferromagnetic interactions, driving atom states to align,
correspond to positive c. Altogether, the full effective interaction assumes the form

H:-%I\]Z(Jj—zn:jﬁa), @.11)

where the second term in the parenthesis eliminates the terms r = s. The first part of H is pro-
portional to the quadratic Casimir of the total SU(N) group C? =Y a Jaz. The second part is
proportional to the sum of the quadratic Casimirs of each individual atom. Since all j; , are in
the fundamental representation, their quadratic Casimir is a (common) constant, independent of
their state. So the second term contributes a trivial constant and can be discarded.

In addition to the atoms’ mutual interaction, we can couple the states of the atoms to a global
external field, contributing an additional term

n N
Hg=)_ > Buls) (s'l, . (2.12)

r=1s,s'=1

Parametrizing this one-atom operator in terms of the complete set of operators j., and omitting
the trivial constant terms corresponding to j, o, it becomes

n N2-1 N2-1
Hg=>">" Bajra= Y Bala. (2.13)
r=1 a=1 a=1

We see that B, acts as a global nonabelian magnetic field on the SU(N) “spins” j. ,. Finally,
making use of the fact that the interaction Hamiltonian is invariant under global SU(N) trans-
formations, we may choose a basis of states in which the sum )", B, J, is rotated to the Cartan
subspace spanned by the commuting generators H;,i = 1,2, ..., N — 1. The full Hamiltonian of
the model then emerges as

N-1
H=-5c®_Y" BH . (2.14)
Tk
We will assume that c is positive, so that the model is of the ferromagnetic type.

For N = 2 the above model reduces to the ferromagnetic interaction of spin-half components.
For higher N, the model has the same number of states per atom as a spin-S SU(2) model
with 25 4+ 1 = N. The dynamics of the two models, however, are distinct: the SU (2) model is
invariant only under global SU (2) transformations, which cannot mix the N states of the atoms
in an arbitrary way, unlike the SU (N) case. The enhanced symmetry of the SU (N) model leads,
as we shall see, to a richer structure and to qualitatively different thermodynamic properties.

' The validity of the mean field approximation is strongest in three dimensions, since every atom has a higher number
of near neighbors and the statistical fluctuations of their averaged coupling are weaker, but is expected to hold also in
lower dimensions.
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Finding the eigenstates of the above model and determining its thermodynamics involves
decomposing the full Hilbert space of states into irreducible representations (irreps) of the total
SU(N), evaluating the quadratic Casimir C® and the magnetic sum > BiH; in each irrep,
and calculating the partition function as a sum over these irreps. This requires determining the
decomposition of the direct product of a large, arbitrary number n of SU (N) fundamentals into
irreps and the multiplicity of each irrep in the decomposition, as well as calculating the Casimir
and the magnetic sum for large irreps of SU (). This task was performed in a recent publication
[2], and the relevant results will be reviewed in the next subsection.

2.2. Decomposition of n fundamentals of SU (N) into irreps

We summarize the group theory results pertaining to the decomposition of the direct product
of n fundamentals of SU (N) into irreps, as presented in [2] (results on the simpler case of SU (2)
were previously derived in [18,19] and were applied in [18] to regular ferromagnetism).

The setting and results become most tractable and intuitive in the momentum representation,
in which irreps of SU (V) are labeled by a set of distinct integers k;, i = 1,2, ..., N ordered as

ki >ky > >ky . 2.15)

Each irrep corresponds to a given set {k; }, for which we will use the symbol k. The corresponding
Young Tableaux (YT) of the irrep may be described by its lengths ¢;, i.e., number of boxes per
row, fori =1,2,..., N — 1. The correspondence with k; is

bi=ki—ky+i—N, bhz2lr>--->20n_120. (2.16)

Note that the k; representation is redundant, since a shift of all k; by a common constant k; —
ki + ¢ leaves ¢; invariant and leads to the same irrep of SU (N) (the shift changes the U (1) charge
of the irrep, which equals the sum of the ;). This freedom can be used to simplify relevant
formulae. In our situation, where irreps will arise from the direct product of n fundamentals, it
will be convenient to choose the convention

N
Zk,-:n—l—w. (2.17)
i=1

For the singlet representation (n = 0) all ¢; are zero, which in the above convention corresponds
toki=N—i,i=1,2,...,N. The fundamental (n = 1) has a single box, and corresponds to
k1 = N and the rest of the k; as above.

In SU(N) there are N — 1 Casimir operators which, for the irrep k, can be expressed in terms
of the k;’s. For our purposes we need the quadratic Casimir, which is given in terms of the k; by

N(N?2-1)
) 2 2 _ 7
C*¥ (k)= E ki — — [n + N(N —1)/2] 7 . (2.18)

Note that, using (2.16), (2.17), C ) takes the more familiar form

Nl
cPw) = Zz(z +N+1—21)——(Z£) ) (2.19)
ll

For the singlet C® = 0, while for the fundamental C® = (N — N~1)/2.

6
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For our purposes we also need the trace of the exponential of the magnetic term in a giver
irrep k,

N
Try exp(,s 3 B ,-H,-) , (2.20)

j=1
which will appear in the calculation of the partition function of our model. This was calculated
in [2]. To express it, define the Slater determinant

ki ko kn-1 kn
Zl Zl Zl Zl
ki k2 kn-1 ky
1 T bd Z oo Zz bd
Yi(2) = (1 zy) N2k T2 22 z={ze€C), (21
ki ka kn—1  _ky

which is antisymmetric under the interchange of any two z;’s and of any two k;’s. Also define
the Vandermonde determinant

A AN g1

I B AR A |
A(Z)=(z1---2zN)" 2 ) . R (2.22)

ANy

which is the Slater determinant (2.21) for the singlet irrep. Then

. Y k(@ s,
neexp(B Y BjH; ) = N u=d (2.23)
j=1

The prefactors involving the product z; - - - zx in (2.21) and (2.22) eliminate the U (1) part of the
irrep, which couples to the trace of the magnetic field ) ; B;. If B is traceless, then the U (1)
charge decouples and we can ignore these prefactors. As a check of (2.23), we can take the limit
z; — 1 and verify that the ratio of determinants goes to

N N

Tnd=dimto= [ =2 =[] ko bl (2.24)
L J—1 T J 1
j>i=l j>i=1
which is the standard expression for the dimension of the irrep.
The last nontrivial element needed for our purposes is the multiplicity d, x of each irrep k
arising in the decomposition of n fundamental representations. This was also calculated in [2],

and the result is

N
Ak = Oky 4 thy ntN(N—1)/2 l_[ Si—S)Duk .,
j=i=1 (2.25)
n!
JAEYSE
where S; is a shift operator acting on the right by replacing k; by k; — 1. Note that D, x and d, x
are manifestly symmetric and antisymmetric, respectively, under exchange of the k;. In [2] the

Dn,k =
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action of the operator ]_[]/V> i=1(Si — §;) on D, x was performed and an explicit combinatorial
formula for d, x was obtained, but it will not be needed for our purposes.

2.3. The thermodynamic limit of the model

We now have all the ingredients to study the statistical mechanics of our SU (N) ferromagnet.
The partition function is

N
Z=Y P =Y dyye T €W Trkexp(,BZBjHj) , (2.26)

states <k> j=1

where S is the inverse of the temperature 7 and <k> denotes distinct ordered integers k| >
ko > --- > ky satisfying the constraint (2.17). Using the results (2.18), (2.23) and (2.25), and
removing the trivial (k;-independent) terms in the Casimir (2.18), the partition function becomes

N'Z ity et D ”( H s = 1‘[ Lk ') a@ =t

j>i=1

2
=Y"s ( (S; — ) e Ls ks +BBiks (2.27)
Z ki+-+kn, n4 YN=D A( ) /17[1 Hr 1kr'
3 1 n! ﬁ (5! 1) 5 kA Bk
= 8k1+'--+kN,l’l NN . Sl_ - S] eZn s
k A@ T k! j>i=1

In the first line above we made the sum unrestricted, since the summand is symmetric under
permutation of the k; and vanishes for k; = k;, and introduced the constraint explicitly. The
second line follows since d, x (the expression in the parenthesis) is antisymmetric in the k;,
and thus it picks the fully antisymmetric part of z’f K N » reproducing ¥ (z). The third line is
obtained by shifting summation variables. In doing so, the factor N(N — 1)/2 in the Kronecker
8 is absorbed.

The above holds for arbitrary n. We now take the thermodynamic limit n > 1. The typical k;
is of order n, and thus the exponent in the expression is of order n, and any prefactor polynomial
in n is irrelevant, as is the factor A(z). Similarly, the action of H(Sl._ - Sj_l) produces a

>i
subleading factor that can be ignored (one way to see this is to noté that in the large n limit the
shift operators act as derivatives (Si_1 - Sj_1 >~ O, — dk;) and bring down subleading terms).
Further, we apply to k! the Stirling approximation. Altogether we obtain

Z= St peikyme PROHOCD (2.28)
k
where the free energy of the system is, up to a trivial overall constant,

N
)
F(k) = —Tnlnn + Z} (Tkl- Ink; — 5-k? = B,-k,-) . (2.29)
1=
In the large-n limit, quantities k; and F are extensive variables of order n. We will now transi-
tion to intensive variables, that is, quantities per atom. To this end, we define rescaled variables
X; as
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ki=nx;, i=12,...,N . (2.30)

satisfying the constraint

N
in =1. (2.31)
i=1

In terms of the x;, the non-extensive term —7nInn in the free energy cancels and F becomes
properly extensive,

ol NTy
F(x) =n Z; (Txl- Inx; — Tx,? — Bl-xi) —nF(x), (2.32)
1=
where we have defined

c=NTp, (2.33)

introducing a temperature scale 7p. From now on we will work with the intensive quantities x;
(magnetization per atom) and F (free energy per atom) and will omit the qualifier “per atom”.

In the large-n limit the sum in (2.28) can be obtained by a saddle-point approximation, as
the exponent is of order n, by minimizing the free energy F'(x) while respecting the constraint
ZlNzl x; = 1. This can be done with a Lagrange multiplier. Adding the term A(1 — ZZN=1 Xi) to
(2.32) and varying with respect to x; we obtain

0, F, =Thhx; — NTox; — B —2=0, i=1,2,...,N . (2.34)

The Lagrange multiplier A can be eliminated by subtracting one of the relations, say fori = N,
from the rest (which is equivalent to solving the constraint and expressing one of the x;, say xy,
in terms of the others). We obtain

T — NTy(xi —xn) — (Bi — By) =0, i=1,2.....N—1, (2.35)
XN

where x y is determined from the constraint (2.31). Also, from (2.34) we obtain the second deriva-
tives

T
E)iajF,\:(——NTQ)S,-j, ij=12...,N, (2.36)
X
subject to (2.31). The above Hessian will be needed later in order to investigate the stability of the
solutions. The simpler form of the equations (2.34) involving A will also be useful in determining
the nature of solutions and in the stability analysis.

3. Phase transitions with vanishing magnetic fields

We now put B; = 0 (setting all of the B; equal is equivalent, as this would be a U (1) field and
would contribute a trivial constant to the energy) and examine the phase structure of the system.
We can collectively write equations (2.34) for B; =0 as

Tlnx — NTopx = A, 3.1

dropping the index i in x; to emphasize that it is the same equation for all x;’s, unlike the case
with generic non-vanishing magnetic fields. The value of A is fixed by the summation condition
(2.31).
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Tinx-NTyx

= X
Xo

T
Fig. 1. Plot of the LHS of (3.1), with its maximum occurring at xo = N The intersection with some constant value of
0

the Lagrange multiplier A occurs at x = x4, with x— < xg < x4.

We note that (3.1) always admits the trivial solution x; = 1/N (for an appropriate A), cor-
responding to the singlet irrep and an unbroken SU (N) phase. Generically, however, the above
equation has two solutions (see Fig. 1). So, each x; can have one of two fixed values, x_ or
x4+ > x_. This means that the dominant irreps are those with M equal rows, where M is the num-
ber of x; having the large stvalue x in the solution, and gives SU(M) x SU(N — M) x U(1) as
the possible a priori spontaneous breaking of SU (), the subgroup that preserves a matrix with
M equal and N — M different and equal diagonal entries. We will see, however, that stability of
the configuration requires that at most one x; value in the full solution be x = x; that is, either
M = 0, corresponding to the singlet, or M = 1, corresponding to a one-row YT, a completely
symmetric representation.

Then equations (2.35) with B; = 0 become

Thhil = NTo(y —xn), i=1,2,....N—1, (3.2)
XN
where xy =1 —x; — --- — xy_1 is determined by the constraint in (2.31).

As argued before from (3.1), each x; can have one of two possible values. Hence, take M of
the x; to be equal, and the remaining N — M also equal and different. The integer M can take
any value from O to N, but the values M =0 and M = N correspond to the singlet configuration
x; = 1/N that trivially satisfies (3.1). For M # 0, N, taking into account the summation to one
condition, we set

1
x; = ;x, i=1,2,...,M,
1 —ax . M 3.3)
X; = , Ii=M+1,...,N, a= .
N N-M

Note that, according to (2.15), the x;’s cannot strictly be equal for finite n. However, in the large n
limit, differences of O(1/n) are ignored. Further, the choice of the specific x; that we set to each
value is irrelevant, since the saddle point equations for B; = 0 are invariant under permutations of
the x;. With the choice (3.3), N — M of the equations are identically satisfied and the remaining
M amount to

1+x

1—ax

T In

—(14+a)Tox =0. (34

This transcendental equation is invariant under the transformation

10
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1.0~
0.5
0.5+

. , ‘ | ‘ ‘ ‘ ‘
- 1 2 w ¢
-05)

Fig. 2. Plots of the left hand side of (3.4) for N =7. Leftt M =3, T =0.7. Rightt M =1, T = 1.6 (blue) and for
T = T ~ 1.72 (corresponding to x = x =~ 3.88) (orange). Temperature is in units of 7g.

x— —ax, a— 1/a (equivalently M - N — M) . 3.5
Thus, without loss of generality we can choose
M <[N/2], or O<a<l, xe(—1,1/a), 3.6)

where [ -] denotes the integer part. Solutions with x > 0 specify an irrep with M equal rows of
length, using (2.16) and (3.3),

i= N_Mn—i-(’)(l), i=1,....M, L=01), i=M+1,....N—-1. 3.7
Instead, an x < O specifies an irrep with N — M equal rows (corresponding to the conjugate
representation), with length given by (3.7) but with x replaced by x — —x. The reason is that in
this case the x;’s in the second line of (3.3) are larger than those of the first line and therefore the
roles of M and N — M are reversed.

There are generically either one or three solutions to (3.4) depending on T (see Fig. 2). If the
temperature is higher than a critical temperature 7, then the only solution is that with x = 0, that
is, the singlet. If T < T, then there are two additional solutions. For 7' = T, these two solutions
coalesce at x = x., implying that the x-derivate of (3.4) is zero as well at x.. These conditions
are summarized as

T. . 14+ x.
In

F() 1—ax.

=1 +a)x.,

T (3.8)

I+x)1—ax;)=—=t¢.
To

Solving the first condition for t = T,/ Ty and substituting into the second we obtain a transcen-
dental equation that determines x

(1+a)x. I 14+ x.

(1+x)(A—axy)  1—ax.

and from that and the first of (3.8) the critical temperature 7,. Alternatively, solving the second

equation in (3.8) for x, and substituting into the first one yields the transcendental equation for
t=T/Ty

11 1+a)? -4 1
ln(— +a+V/(+a) ar)_ +a(1_a+ (1+a)? —4ar) =0, (3.10)
a@1+a—+/(1+a)?—4at 2at

which assumes that a < 1. For a > 1 we simply replace a — 1/a.

3.9)

11
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For SU(2), a = 1 is the only possibility, and for a = 1 the solution of (3.10) is t = 1. Hence,
the critical temperature is just 7Tp, i.e. the one in (2.33). For generic a, it can be checked that the
left hand side of (3.10) is monotonically increasing in ¢ and the equation has a unique solution in

the range 1 <t < % for all a < 1. For a near 1 we have

t:l—i—é(l—a)z—i-..., (3.11)
whereas for a near 0

;=a(—lna—|—ln(—lna))+... (3.12)

and therefore + — oo. Hence, the solution to (3.10) varies monotonically between these two
limiting cases. Note that for the case M =1, a = 1/(N — 1) (which is particularly relevant, as
we shall see)

N
M=1: T.~To——>Ty, as N>1. (3.13)
InN

In conclusion, 7, > Ty for any group SU(N) with N > 3. For T > T, the only solution is the
trivial one, x = 0, while for T < T, there are two additional solutions x1, x2: two positive ones
0 <x1 <xc <xp for Ty <T < T,, and one positive and one negative one x; < 0 < x for
T < Tp. A few generic cases are depicted in Fig. | where the left hand side of (3.4) is plotted.

3.1. Stability analysis and critical temperatures

The solutions of (3.4) may be local extrema or saddle points of the action. To determine their
stability we examine the second variation of the free energy. From (2.36), 82 F is

S R AU T -
6F=§ZCi 8x2, Cil=——NT, Zax,:o. (3.14)
i=1 ! i=1

Note that this remains the same even in the presence of magnetic fields, so the stability argument
below is fully general.

If all coefficients C; are positive at a stationary point, then clearly the solution is stable.
If two or more C;’s are negative, on the other hand, it is unstable. Indeed, we can take, e.g.,
8x;, + 6x;, = 0 for two of the negative coefficients C;; and C;,, and set the rest of the dx; to zero
in order to satisfy the constraint. Then, an obvious instability arises. However, if only one C; is
negative and the rest of them positive, then the solution could still be stable due to the presence
of the constraint. A standard analysis shows that the condition for stability in this case is”

N
> ci<o. (3.15)

i=1
2 A nice way to derive this is to view dx; as covariant coordinates on a space with metric g;; = C;4;; of Minkowski
signature (—, +, ..., +). Then 82 F and the constraint become

82F =glUsxisx;, ulsx; =0 with u' =1.

For the space spanned by the restricted §x; to be spacelike (with positive definite metric), #; must be timelike, and
u'uj = gjju'u’/ <0 implies (3.15).

12
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Tinx-NTyx

T
Fig. 3. Plot of (3.16), with its maximum occurring at xg = NT The intersection with some constant value of the

Lagrange multiplier A occurs at the values x; = x+, with x_ < xg < x4. The left (green) part of the curve corresponds
to stable solutions, whereas the right one (red) to unstable ones.

For the case of vanishing magnetic field, x; satisfy the common equation (3.1)
Tlnx —NTopx =\ (3.16)

The function on the left hand side is plotted in Fig. 1, repeated here as Fig. 3, and has a maximum
atxg = NLTO for all i. For x = xo, the coefficient C; ! determining the perturbative stability at this

value vanishes, while C; 'S0 forx < xp and C; ' <0 for > xo. Therefore, the left branch of
the curve represents a priori stable points and the right branch unstable ones.

From the above general discussion, we understand that fully stable configurations correspond
either to choosing all x;’s on the stable branch (all C; > 0), or N — 1 of them on the stable branch
and one on the unstable branch (only one C; < 0). This last configuration can still be stable if
it satisfies the condition (3.15). So the only potentially stable configurations for zero magnetic
field are the singlet (M = 0), corresponding to a paramagnetic phase, and the fully symmetric
single-row irrep (M = 1), corresponding to a specific ferromagnetic phase, with order parameter
the variable x in (3.3) determining the length of the single row.

For the remainder of the zero magnetic field discussion we will focus on the nontrivial solution
M =1 and set for the constant a = M /(N — M) the corresponding value

1
=—. 3.17
=7 (3.17)
For this choice, and with x; as in (3.3), the coefficients C; become
Crl=NA©), C7'=NA(-ax), i=2,3,....N, (3.18)
where we defined
T
Ax)=——-Tp. 3.19
(x) T [0 (3.19)

The stability of the no magnetization solution x = 0 corresponding to the singlet is easy to find.
In that case A(0) =T — Ty, so that for T < Ty the solution x = 0 is a local maximum and
unstable, and for T > Tj it is a local minimum.

For M =1, itis clear from Fig. 3 that we must have C; < 0, corresponding to the single value
x1 = (14x)/N on the unstable branch, and the remaining C; > 0,s0 A(x) <0 and A(—ax) > 0.
Also, 1 +x > 1 — ax, so that x > 0. Condition (3.15) must also be satisfied,

13
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Ax)+aA(—ax) >0 — A+x)1—ax)< TZ , (3.20)
0

where weused N — 1 =a~ 1. Using (3.4) to eliminate T this rewrites as

(I4+a)x 1+x
> In .
(I14+x)(1—ax) 1—ax

Note that this has the same form as (3.9) determining the critical x.. It can be seen that it is
satisfied for x > x. and violated for x < x,.

As analyzed in the previous section, the existence of solutions with M =1 requires T < T¢.
For such temperatures, equation (3.4) has two solutions, one larger and one smaller than x.. Only
the solution with x > x, satisfies (3.21). Therefore, for temperatures T < T, the solution with
X > x. is stable and a local minimum and the one with x < x, unstable. Referring again to Fig. 2,
the solution to the left of x = x. for T < T, (blue) on the right plot is unstable, whereas the one
to the right is stable.

We conclude by noting that at low temperatures T < Ty, we expect the stable configuration
of the system to be the fully polarized one with x >~ xp.x = N — 1, corresponding to the maximal
one-row symmetric representation with £; >~ n boxes. Indeed, the solution of equation (3.4) in
that case can by well approximated by

(3.21)

x~(N— 1)(1 —Ne*NTo/T), T<NTp, (3.22)

manifesting a nonperturbative behavior in 7 around 7 = 0.
3.2. Phase transitions and metastability

We saw in the previous section that for 7o < T < T, both the completely symmetric repre-
sentation and the singlet are locally stable. The globally stable configuration is determined by
comparing the free energies of the two solutions. The free energy per atom was found in (2.32).
For zero magnetic fields, it takes the form

N
FxT)=)Y (Txi Inx; — %x?) (3.23)

i=1

and for the single-row zero magnetic field solution the free energy per atom becomes

Fsym(x, T)=

a(l+x)In(1 +x) + (1 —ax)In(1l — ax))
1+a“( (3.24)
- EToxz ~ThN.

Variation of this expression with respect to x leads to (3.4).> For the singlet we have

Fsinglet(T) =—ThN. (3.25)

3 Positivity of the second derivative gives the stability condition (3.20), but without any restriction on a, that is, the
number M of equal rows in the YT. The reason is that this expression only captures stability under variations of the
length of the YT. Taking also into account perturbations into configurations with additional rows recovers the general
stability condition requiring M =0 or M = 1.

14



A.P. Polychronakos and K. Sfetsos Nuclear Physics B 996 (2023) 116353

Table 1
Phases in various temperature ranges for N > 3 and their stability characteriza-
tion.

irrep T <Ty To<T <T T <T<T; Te<T
Singlet unstable metastable stable stable
Symmetric stable stable metastable not a solution

For a specific temperature 77 and magnetization x; the singlet and symmetric configurations will
have the same free energy. Equating the two expressions and using (3.4) we obtain

1
Tiln < Y (4 a)Tox
—an . (3.26)
Tiin(l+x1) = Zx1 (2 —ax) |
where we used (3.4) to simplify the expression for Fgyy,. This system is solved by*
T N(N =2
=22 V-2 = —N-2. (3.27)
2 (N—=1In(N-1)
In general
To<T <Tg, (3.28)

except for N = 2 where we have Ty = T = T, implying that for the SU (2) case there is a single
critical temperature. For large N

T ~Ty

21]:N >Ty, as N>1. (3.29)
Recalling the limiting behavior of 7, in (3.13), we note that for large N, T} ~ T, /2. For Ty <
T < T1, Fsinglet > Foym, while for 1 < T < T, Fsinglet < Fsym. The situation is summarized in
Table 1.

Hence, at high enough temperature the only solution is the singlet with no magnetization. At
temperature 7, a magnetized state corresponding to the symmetric irrep (one-row) also emerges,
and is metastable until some lower temperature 77. Between these two temperatures the singlet
is the stable solution. Below 77 and down to Ty the roles of stable and unstable solutions are
interchanged. Below Ty the only stable solution is the one-row symmetric representation. Hence,
we have a spontaneous symmetry breaking as

SU(N) = SUN — 1) x U(1) . (3.30)

Note that the free energy changes discontinuously at 7 = Ty and at 7 = 7. The plot of the free
energy is at Fig. 4. The low temperature plateaux in Fig. 4 for the one-row configuration (blue
curve) is explained by the fact that due to (3.22) we have

N -1

T
Fym =~ —— TO(I—I—ZTe_NTO/T), T<NT. (3.31)
0

4 In the next section we will present a method for solving it even in the presence of a magnetic field.
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F
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Fsinglet
=3.0-
=35

Fig. 4. Plot of the free energy F for N =7, for the one-row solution (blue) up to 7. 2~ 1.72 and for the singlet one (red)
from 7' = 1, in units of 7. These cover the temperature range in which we have stability or metastability. The crossover
behavior is at 7 = T ~ 1.63, in agreement with Table 1.

To better understand the situation, we may use the thermodynamic relations between the free
energy F, the internal energy U and the entropy S

F
F=U-TS, U:—ﬂ&(7>, S=—0rF, (3.32)
for Fgym given by (3.24) to obtain

a
Usym(x) = _ETO)C2 )
(3.33)

Ssym(x) =InN — 7 j_ (a(l +x)In(l +x) 4+ (1 —ax)In(1 — ax)) .

a
These are readily recognized as the coupling energy and the logarithm of the number of states
per atom for representations close to the dominant symmetric one (we emphasize that x = x(7')
via (3.4)). For the singlet (x = 0) we simply have

Usinglet = 0, Ssinglet =InN, (3.34)

that is, the maximal energy and maximal entropy.

Even though the free energy is discontinuous at 7' = 7, we may still think of the transitions
at Ty and T as a first order phase transitions, in the sense that the discontinuity of U implies that
latent heat has to be transferred for the phase transition to occur. In detail we have

T T : Usym:—LXZ’ Sym =10 N + — _ln(1 4 x,)
¢ 2IN—=1)"°¢ 14 x¢ (3.35)
T — TcJr : Usinglet =0, Ssinglet =InN,

where we simplified Ssyny, by using relations (3.8). When we transition from below to above T,
we must give energy to the system, which also increases its entropy (recall that, in the absence
of volume effects, dU = T'dS). The behavior of the energy and the entropy with temperature is
depicted in Fig. 5.

At the intermediate temperature T = T7, given in (3.27), there is the possibility of a first order
phase transition from a metastable to a stable phase. Near that temperature

Fym=—TInN +

In(N = 1)(T = T1) +..., (3.36)

Fsinglet =—T1InN .
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Fig. 5. Plots of U (left) and S (right) for N = 7. For the one-row solution (blue) up to 7, >~ 1.72 and for the singlet one
(red) from 7' = 1, in units of 7. The sharp rise for T — T, is according to (3.38).

This transition is typical in statistical physics where latent heat transfer is involved. Hence we
have that

T— T U 1L_Z)QT S, InN N_21(N 1
— : =—z ) =IniN — n(N — 1),

! ym=T T TN —q 0 Pom (3.37)
T— T1+ : Usinglet = 0, Ssinglet = InN .

The transition from metastable to stable configurations near the temperature 77 will not occur
spontaneously under ideal conditions, leading to hysteresis. Only when the system is perturbed,
or given an exponentially large time such that large thermal fluctuations occur, will it transition
from a metastable to a stable configuration. This is reminiscent of the hysteresis in temperature
exhibited in certain materials and in supercooled water [20]. The discontinuity in U implies that
(latent) heat has to be transferred for the phase transition to occur. When we transit 77 from
above the system releases energy, which also lowers its entropy, the opposite happening when it
transit above 77 (the term “pseudo phase transition” has been used in the literature for this kind
of process).

To understand the nature of the phase transitions that the system can undergo, imagine that
we start at a temperature 7 > T, with the (paramagnetic) singlet state and adiabatically lower the
temperature by bringing the system into contact with a cooling agent (reservoir). If the system is
not perturbed, it will stay at the paramagnetic state until 7 = Ty, where this state becomes unsta-
ble, the (ferromagnetic) symmetric representation solution takes over, and the system undergoes a
phase transition releasing latent heat into the reservoir. Similarly, starting at a temperature below
Ty with the (ferromagnetic) symmetric irrep state and raising adiabatically the temperature, the
system will remain in this state if it is not perturbed and will transition to the singlet at 7 = T,
absorbing latent heat from the reservoir and undergoing a phase transition. Clearly the system
presents hysteresis, and no unique Curie temperature exists, since in the range Ty < T < T, the
two phases coexist.

The situation is somewhat different if the system is isolated (decoupled from the reservoir)
while it is in a metastable state (that is, a ferromagnetic state at 71 < T < T, or a paramagnetic
state at Typ < T < T1). A transition to the stable state would involve exchange of latent heat,
which can only be provided by, or absorbed into, the stable phase. However, the heat capacity of
the paramagnetic phase is zero (see Fig. 5), so no such exchange can take place and the system
is “trapped” in the unstable phase. This is unlike, say, supercooled water, where perturbations
nucleate the formation of a stable solid state, releasing latent heat into the unstable liquid phase
and raising the temperature until the liquid phase is eliminated or the temperature reaches the
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Fig. 6. Typical plot of x(T) (here for N = 5) for the symmetric irrep for 0 < T < T, >~ 1.40. For T = 0 it reaches the
maximum value x(0) = N — 1 and for T — T, it goes sharply to x. according to (3.38).

point at which the two phases become equally stable. This feature of our system is somewhat
unrealistic, since we have ignored all other degrees of freedom except SU (N) spins. A realistic
system would also have vibrational degrees of freedom of the atoms, which would serve as
a reservoir absorbing or receiving latent heat and thus enabling transitions from metastable to
stable states.

The parameter x is a measure of the spontaneous magnetization and constitutes the order
parameter for the phase transition. Recalling (3.7), x is a measure of the length of the single row
YT corresponding to the solution. From (3.4) and (3.8) we can deduce that x(7') near T, behaves

5
N—1 T.—T
p ez | )Xe c 1 (3.38)
“+1-N2\ T

as
Hence, the deviation from x. near the critical temperature follows Bloch’s law for spontaneous
magnetization of materials with an exponent of 1/2 and an N-dependent coefficient. The behav-
ior of x(T') is depicted in Fig. 6.

The SU (2) case: The above results are valid for a £ 1 that is for N > 3. When a = 1, as
in the SU(2) case, Ty = T1 = T, and the stable-metastable range in Table 1 does not exist.
The transition between the singlet and the symmetric representations occurs at the unique Curie
temperature 7 = Ty and at x, = 0. In this case we have

To—T
Ty
Singlet (T > Tp): x=0, F=-TIn2, (3.39)

3T
Symm. irrep (T < Tp): x ~~/3 , F:—Tan—ﬁ(To—T)z,
0

which shows that at T = Tj there is a second order phase transition.

Note that the naive limit a — 1 of the result (3.38) for a < 1 would not recover the above
behavior. The reason is that the range of validity of (3.38) is Ty < T < T, and it shrinks to zero
as T, — Tp. The two first-order phase transition points at 7p and 7, fuse into a single second-

5 Positivity of x. + 1 — N /2 follows from the fact that between the unstable and the stable solutions the left hand side
of (3.4) as a function of x reaches a minimum (see the right plot in Fig. 2.
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Fig. 7. Plot of the free F for N = 2. The continuity of the expression and its first derivative between the one-row solution
(blue) up to 7 =1 and the singlet one (red) from 7 = 1, in units of T}, is manifest.

‘ ‘ -
12 14 0.6 Ssinglet

Usinglet Ssym

05
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03
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0.1

Fig. 8. Plots of U (left) and S (right) for N =2 for T in units of 7j, for the magnetized (blue) state up to 7y and the
singlet (red) state above Tj.

Table 2
Behavior near critical point for N =2,3,4,5, as well as for N > 1
(the corresponding entries are leading).

N 2 3 4 5 N>»1
T./To 1 1.0926  1.2427 14027 N/InN
Xe/¥max O 03772 05071 05749 1

K 17320 12177 09862 08480  2/N

order transition in the limit a — 1. Fig. 7 depicts the free energy against the temperature for the
SU(2) case.

The behavior of x(T') near T = Ty follows Bloch’s law with an exponent 1/2, as in the general
SU(N) case, but with a different coefficient. The internal energy and entropy are continuous but
their first derivatives at T = Ty are not, as depicted in Fig. 8.

For comparison between SU (2) and higher groups, we present in Table 2 the values of the
critical temperature in units of Ty, the critical magnetization as a fraction of the maximal magne-
tization xymax = N — 1 and the coefficient of x — x. in Bloch’s law in (3.38) again as a fraction of
the maximal magnetization, i.e. K = /(N — D)x./(xc + 1 — N/2)/xmax for the first few values
of N, as well as for N > 1.
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4. Turning on magnetic fields

We now turn to incorporating nonzero magnetic fields in the system. We recall the equilibrium
equation (2.34)

TInx; — NTpx;i = B; + A, i=12,...,N, “4.1)

where the x; sum to 1 due to the constraint in (2.31).
4.1. Small fields

For small magnetic fields the solution of the coupled equations (4.1) can be found as a pertur-
bation of the solution for vanishing fields. In fact, we can do better than that. We may consider the
response of the system in the presence of generic magnetic fields B; under small perturbations
8 B;. The state will change as

Xi—>xi+d6x;, i=1,2,....,N, “4.2)
where 8x; is a perturbation to the solution of (4.1). To linear order we have that
T
(—n-NnO&nzc;%m=5&+wx. (4.3)
Xi
N

Since Z 8x; = 0 we obtain the change of A as

i=1

N
. 1CiéB;
SA = _# . 4.4)
>i=1Cj
Then, combining with (4.3) we get
N
- 1CiéB;
m:QG&—;%%LJ» “.5)
Zj:l Cj
from which the magnetizability matrix m;; obtains as
ax; CiC;
mij=i=ci5ij—7j\; I i,j=1,2,...,N. (4.6)
9B; 2 k=1Ck

N

Note that m;; is symmetric and satisfies Zmi-/ = 0 as a consequence of the fact that the U (1)
i=1

part decouples.

We may infer the signs of m;; for general C;’s from the stability condition on the configura-
tion. Recall that, for stability, either all C; are positive (including infinity), or only one of them
is negative, say C, and the rest positive (x; is the largest among the x;’s). In the latter case,
stability further requires that (3.15) be satisfied. Using these we can show that

C;>0: mii, mi; >0, my; <0, m;; <0,
C1<0: mii, mii >0, my; <0, m;j>0, @7
Cf1=03 miy, mij >0, my; <0, m;j=0,
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where i, j =2,3,..., N and i # j. According to (3.14), the last case above happens for 7' =
NTpx1, which is possible only for T < NTj, and corresponds to one of the solutions of (4.1)
reaching the top of the function in the LHS of (3.1), depicted in Fig. 1.

4.1.1. The singlet
For the unmagnetized singlet configuration, stable for temperatures 7' > Ty, x; = 1/N and
Cc = N(T — Tp). The magnetizability is

1 1
singlet: mjj=————68;ij—— ] - 4.8

£ ’~’ N(T—To>(” N) @9
As expected, it diverges as (T — Tp)~! at the critical temperature Ty where the configuration
destabilizes, and the signs of its components are in agreement with (4.7). This determines the
linear response of the system to small magnetic fields, of typical magnitude B such that B <«
T —Tp.

4.1.2. The symmetric representation

For the spontaneously magnetized configuration corresponding to the symmetric representa-
tion M = 1, stable for T < T, the x; are as in (3.3), with x the solution of (3.4) that corresponds
to a stable configuration. The components of the magnetization matrix take the form

_N-—1
1 .

m1i=—m, l?él, (49)

1 <5”_A(x>> .

m"/_NA(—ax) ij A(x) , l,‘]7é )

where a = 1/(N — 1) and A(x) =T /(1 + x) — Tj as before, and
1 T

As T — T, (3.8) shows that the magnetization diverges. To compute its asymptotic behavior at
T ~ T, we use (3.38) to obtain

T. T.—T
(1+x)(1—ax)=——\/2xc(2axc+a—1) +..., “4.11)
To To
which implies
Tt T.—T
A= N?O\/2xc(2axc+a —1 CT TR (4.12)
c

Hence the entries of the magnetizability matrix as T — T, become

N—1 0
my S —
W="N ToT

19 (4.13)
my~—— —, :
WEUNI T =T

1
mij Q i,j=2,...,N,

T N2N-1) JT.-T
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Fig. 9. Left: Plots of the four different types of magnetization matrix entries for the symmetric irrep. up to 7 = T, for
N > 3. Right: Same plot for SU (2).

where

T./T,
0 /To

- V2x:Qaxe+a— DTy

4.14)

So the magnetizability diverges as (7. — T)~!/?, and the signs of its components are in agreement

with (4.7). We have depicted these in Fig. 9 above.

The SU (2) case: This is special since T, = Ty. For the singlet solution (T > Tj), (4.8) remains
valid for N =2, giving

1 1

= = — = — s T — T+ . 4.15
my| =ma mip AT T, 0 (4.15)
For the magnetized solution
S el T <T, (4.16)
mipg =my =—mpp = — > < . :
11 22 12 AT - Ty —x2) 0
Using (3.39) we obtain the magnetizability
1 1
== —mip LTIy 4.17
mip =ma mia 8Ty T 0 4.17)

We note that m;; diverges as |T — Tol~"' on both sides of the critical temperature, unlike for
N > 2. The reason is that the coefficient of /T, — Tj in the expansion (4.11) vanishes for N =2
and thus the next order in the expansion, O(Tp — T'), becomes the leading one. We have depicted
these in Fig. 9.

4.2. Finite fields

We now consider the state of the system, given by (4.1), for general non-vanishing magnetic
fields.

The general qualitative picture can be obtained by the same considerations as in the case of
B; = 0. For fixed A, each x; satisfies (4.1) for a different effective Lagrange multiplier A; =
A + B; and can take two possible values x;+, the two solutions of (4.1) for fixed i. The stability
considerations of section 3.1, which remain valid for arbitrary magnetic fields, determine that
at most one of these solutions can lie on the unstable branch of the curve x. So, fully stable
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T
Fig. 10. Plot of (3.16), with its maximum occurring at xg = NT ‘We consider a magnetic field B along one direction,
0

say for i = 1. The intersection with the lines A and A + B occur at two values of x! on each side of x for each line.

configurations correspond either to choosing all x;_ on the stable branch, or N — 1 of them on
the stable branch and one on the unstable branch. The stability condition Z Ci <0in (3.15)

1
must also be satisfied in the latter case.

To gain intuition on the behavior of the system, we focus on the case when only one of the
magnetic fields, say By, is different from the rest. We can absorb the equal terms B;, i > 1 in
the Lagrange multiplier and call B = By — B;. Then the set of equations (4.1) becomes just two
distinct equations: one for x1, with RHS A 4+ B, and one for the remaining N — 1 x;’s, with RHS
A, as depicted in Fig. 10.

Referring to Fig. 10, denote the four solutions of (4.1) by x4 (at the intersections of the
curve with A), and by xf (at the intersections with A + B). For the choice of B > 0 in the
figure we have the ordering x_ < xZ < x < xf < x4. For B < 0 the ordering would change to
xB<x_<xo<xy< xf. Since we have a magnetic field only in direction 1, x| can take values
x% while each x; (i > 1) can take values x.

For a stable configuration we may choose at most one value at x4 or x f. Thus, we have the
following possible cases:

e a) N — 1 values x_ and one value x5, corresponding to a one-row YT (if xB > x_)orits
conjugate (if x? < x_). This is the deformation of the singlet for B = 0.

e b) N — 1 values x_ and one value xf , corresponding, again, to a one-row YT. This is the
deformation of the one-row solution for B = 0.

e ¢) N — 2 values x_, one value x5, and one value x, corresponding to a two-row YT. This
is a deformation of the one-row YT solution at B = 0 by increasing its depth and breaking
the SU (N) symmetry further. Following a similar analysis, these would correspond either to
irreps with two rows, or to irreps with N — 1 rows, N — 2 of which have equal lengths. We
will encounter such cases below.

Although we will not examine in detail the more general configuration of a magnetic field with M
equal components and the remaining N — M equal and distinct, its qualitative analysis is similar.
Fig. 10 remains valid, but now with M values of x; at A + B and N — M at 1. Implementing the
stability criterion we have the following cases (for B > 0):
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e N — M values x_ and M values xfi, corresponding to a YT with M rows. This is the
deformation of the singlet for B = 0.

e N — M values x_, M — 1 values x5 , and one value xfi , corresponding to a YT with M
rows. This is the deformation of the one-row solution for B = 0.

e N — M — 1 values x_, M values xf" , and one value x4, corresponding to a YT with M + 1
rows. This is the deformation of the one-row solution for B = 0 by increasing its depth and

breaking the SU (N) symmetry further.
Overall, equality of magnetic field components results in states with equal rows in their YT.

4.2.1. One-row and conjugate one-row states

We proceed to investigate quantitatively the effect of a magnetic field in one direction (say, 1)
in the case where the system is in a one-row solution in the same direction, or the corresponding
conjugate representation. That is, we will examine the cases (a) and (b) above (case (c) will be
examined in the next subsection). Then the equation for the system becomes®

1+x 1
=Ty(1l+a)x+B, —l<x<—-=N-1. (4.20)
1—ax a

T In

Solutions to this equation with x > 0 correspond to a single row YT, whereas solutions with x < 0
to its conjugate, that is, a YT with N — 1 rows of equal lengths. These are related by observing
that (4.20) is invariant under x - —x/a, B — —B, and a — 1/a, which maps symmetric irreps
to their conjugate.

The stability conditions for the solution are determined by the general discussion in the previ-
ous subsection. As before, according to (3.18) Cfl = NA(x), with A(x) defined in (3.19), and

thus Cfl = NA(—ax) for i > 1. By its definition, A(x) satisfies
x>0: Ax) <A(—ax),
) ( ) 4.21)
x<0: Ax)> A(—ax).

The general stability argument requires C; > 0 for i > 1, that is, A(—ax) > 0. For C; < 0 we
must also have ) ; C; <0, or A(x) +aA(—ax) > 0, as it was shown in (3.15) and (3.20). Alto-
gether, combined with (4.21), the stability conditions that cover all cases are

x>0: Ax)+aA(—ax)>0, 4.22)
which guarantees positivity of A(—ax) no matter what the sign of A(x), and

x<0: A(—ax)>0. (4.23)

® Note that for a = 1 (the SU(2) case) and after setting x = Tlo y— % equation (4.20) becomes

B T
y=oot 70tanhy, (4.18)

which is the standard expression in phenomenological investigations of ferromagnetism [21]. For a # 1 (the SU (N) case
with N > 3) this is modified by setting x = % and results to the generalization
B To 1

y=omt

1o ) (4.19
2T T cothy — %
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B(x)

Fig. 11. Plot of B(x) for T > T4 (left), To < T < T+ (middle) and T < Ty (right).

The condition (4.22) above will be satisfied for

_N-2+/N2—4(N-DT/Ty

X <X_ Oor x>Xx4, Xt 2 (4.24)
while (4.23) will be satisfied for
T
x0<x<0, xo=(N—1)(1——>. (4.25)
To
The existence of x4, and the condition that xo > —1, introduce two more temperatures
N2
T,=—Ty>Ty, T_ = To>Tp . 4.26
= aN ) o>To ~_q1lo>To (4.26)

For T > T4, (4.22) is satisfied for all x > 0, while for T > T_, (4.23) is satisfied for all x < 0.
Note that both x4 € (—1, N — 1), and that x; > 0, while x_ > 0 for T > Ty and x_ < O for
T < Tp. In terms of relative ordering of temperature scales,

9T 3T
N=3: T+=?0<T,=TO,

AT,
N=4: T+:T_:TO, 4.27)

N>4: Ty >T_.

We proceed to the analysis of the states of the system. It is most convenient to keep x and T as
the free variables and consider the magnetic field B as a function of x with 7 as a parameter.
Then (4.20) implies

B(x)=TIn 11_” — To(l +a)x . (4.28)
Note that
dB __ad+aT \  oxy= To(A(x) + aA(—ax)) . (4.29)

dx  (1+x)(1 —ax)

Hence, d B/dx is proportional to the stability condition (4.22) for x > 0. Therefore, B(x) is an
increasing function of x for T > Ty and T < T_, and a decreasing one for x_ < x < x4, with
x_ and x4 as local maxima and minima. The function B(x) is plotted in Fig. 11 for various
values of the temperature. The intersection of these graphs with the horizontal at B determines
the solutions for the configuration of the system.

The above allow us to determine the stability of solutions for various values of the temperature
and magnetic field. We consider two cases, according to (4.22) and (4.23).
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Positive x: The constraint (4.22) is relevant. Therefore, when 7" > T., all solutions with x > 0
are stable. For Ty < T < T4, stability singles out solutions with 0 < x < x_ and x > x.. Finally,
for T < Tp, since then x_ < 0, stability requires that x > x.

Negative x: The constraint (4.23) is now relevant, or equivalently x > xg. Since x < 0, we con-
clude that no stable solutions exist for xg > 0, or T < Ty. For xo < —1,or T > T_,all x <0
solutions are stable. Finally, for intermediate temperatures Top < T < T_, we have stability for
—1<xyg<x<O.

The above are tabulated in Table 3 below (we assume that N > 4 so that Ty > T_):

Table 3

Stable solutions for various ranges of 7 and x and for N > 4.

X T <Ty To<T<T- T-<T<T4 T+ <T
x <0 none —l<xg<x all all
x>0 X > X4 X <x_ &x>xy X <x_ &x>xy all

We can now investigate the existence of stable solutions for the full range of values of the
temperature and the magnetic field. The complete analysis is relegated to appendix A. The results
are summarized in the temperature-magnetic field phase diagram of Fig. 12, presented for a
generic value for N > 4. The phase diagram is qualitatively the same for N =3 and N =4,
changing only for N = 2. The only difference is that, for N =4, T, = T_, while for N =3
Ty < T_. This does not affect the general features of the diagram, simply shifting the critical
point vertex (7, B4 ) to the left of the bottom asymptote 7 = T_, for N = 3, or on top of it, for
N =4.

Each region in the T—B plane depicted in the figure corresponds to a discrete phase of the
system. Moving within these regions without crossing any of the critical lines interpolates con-
tinuously between configurations. In the connected regions Ci, C», and C3 there is a unique
one-row configuration at each point (7', B). In regions A and B inside the curvilinear triangle
there are rwo locally stable configurations at each point, one absolutely stable and the other
metastable, with the line separating A and B being the border of metastability where the two
phases have equal free energy. In region D there are no stable one-row solutions, signifying that
a two-row solution must exist there. The lines separating regions C1 2 3 and the other regions are
phase boundaries, the configuration changing discontinuously as we cross a boundary.

The dashed curve for Tp < T < NTj represents configurations with C; = 0o, that is, A(x) =
0. This corresponds to points where x; = (1 4 x)/N reaches the top of the curve in Fig. 10,
transiting from the unstable to the stable branch of the curve or vice versa. For such points,
x=T/Ty— 1, and (4.28) gives B on this curve as

(N-DT N(T -Tp
NTy—T N—-1

B(T)=TIn (4.30)
Configurations to the left of this curve are in a “broken-like” SU(N) phase, with one of the
solutions of (4.1) in the unstable branch of the curve in Fig. 10, while those to the right of the
curve are in an “unbroken-like” phase, with all solutions on the stable branch. For B = 0 these are
the true spontaneously broken or unbroken phases of the system. A nonzero magnetic field breaks
SU (N) explicitly, and the dashed line represents a soft phase boundary, which must be crossed to
transit between the two phases as we move on the 7—B plane. The physical signature of crossing
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Fig. 12. The phase diagram of the system for generic N > 4. The (orange) curve separating regions A and C5 is B(x_);
the (blue) curve separating regions A, B, C1 and C3, D is B(x4), intersecting the T-axis at the B = 0 critical temperature
T = T; and the (red) curve separating regions A, B, C3 and C1, D is B(x() and it asymptotes to the vertical 7 = 7_.
Crossing any of these lines precipitates a discontinuous change in the magnetization, i.e. the order parameter x. The
(green) straight line separating regions A and B is the metastability frontier of the two coexisting phases inside these
regions (see appendix A.l); crossing it exchanges the metastable and the absolutely stable states, and its intersection
with the T'-axis is the B = O critical temperature 7' = 7. Regions C1 7 3 constitute one continuous phase with nonzero
magnetization (except at B =0 and T > T,), all points being accessible through continuous paths in the B — T space,
while regions A, B and D are separated from C 3 3 by discontinuous transitions in the order parameter. The (gray)
dashed curve from 7 to its vertical asymptote at T = N Tjy separates “broken-like” and “unbroken-like” configurations
but otherwise mark no sharp phase transition. The shaded region D corresponds to a two-row (double magnetization)
phase. For N = 3 the phase diagram remains qualitatively the same with the order of 7 and 7_ interchanged, while for
N =4, we simply have Ty =T_.

this boundary is that the off-diagonal elements of the magnetizability m;;, withi # j # 1, change
sign, vanishing on the boundary (see (4.7)).

The line separating regions B and C3 intersects the T axis at the critical temperature 7;. found
in the B = 0 section. Points (7y, 0) and (74, B+ ), with

N N

are critical points, while point (7}, Bp) at the lower tip of region B, satisfying the transcendental
equation

B(xo(Tp)) = B(x+(Tp)) = By (4.32)

is a multiple critical point, connecting several different configurations: one one-row state in Cj,
two in B, and one in C3, as well as a two-row state in D, and possible two-row states in the other
neighboring regions (see next section). One of the states in B, and possibly other one-row or
two-row states, are metastable.
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4.2.2. Two-row states and their (N — 1)-row conjugates

As we have seen, for T < T_ and for sufficiently negative magnetic fields there is no stable
solution to (4.20), and thus no state corresponding to the one-row YT symmetric representation.
From the general analysis of subsection 4.2, we expect the solution to be the only other allowed
configuration, that is, a state corresponding to a two-row YT. In this subsection we recover this
solution and check its stability.

We consider a configuration with two (generally unequal) lengths x; and x» and an applied
magnetic field in the x-direction, representing the generic breaking pattern

SUN)— SUN=-2)xU)xU(), (4.33)

of the SU(N) symmetry. This includes a spontaneous breaking of SU(N) in addition to the
dynamical breaking SU(N) — SU(N — 1) x U (1) due to the magnetic field. We note that in the
special case x; = x; the symmetry breaking pattern would be SU (N) — SU(N —2) x SU(2) x
U (1), but as we shall demonstrate this pattern is never realized in the present case of a magnetic
field in a single direction.

The x; must satisfy the system of equations

Tl = NTy(r; — xn) + B,

g (4.34)
Tln—=NTo(x; —xy), i=2,3,...,N—1,
XN
where x is determined from the constraint in (2.30). We write
1+x 1+y
X1 = N X2 = N
1—a(x+y) 1 (4.35)
X3= - =XyN=—"77—""", ad=——.
} N N N-2
For y = —ax/(1 + o) = —ax = —x /(N — 1) this ansatz reduces to the one for the one-row
solution. (4.34) gives rise to the system of transcendental equations
1+x
In—————— =Ty(ay + (1 +a)x) + B,
I—alx+y)
14y (4.36)
n—— =Typlax =+ 1 + o .
oGy ol (tay)

The free energy of the configuration is

2 2, .2 r
F(x,y,T)= x—y) —Nx“+y ))-G—N((l—l—x)ln(l—i-x)

el

(1 +y)In(1+y)+ (N -2 )ln(l x+y) B TN
—2—x- - ——x— .
y y y > ~

(4.37)

The transcendental equations (4.36) will be solved numerically. The full analysis of solutions
and their stability is relegated to the Appendix. Here we simply state the results and present
relevant plots.

We consider temperatures T < Ty for which spontaneous magnetization exists. As discussed
earlier, for such temperatures and negative magnetic fields we expect the state to be in a two-
row stable state, which includes the possibility of “antirows,” that is, N — 2 equal rows plus an
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Fig. 13. Typical contour plots for 7 < Ty in the x —y plane of the two egs. in (4.36), in blue (Ist eq.) and orange
(2nd eq., for which one of the branches is a straight line). The intersection points of the blue curves with the orange
curves represent solutions of (4.36). Stable and metastable solutions are indicated by black and magenta colored dots,
respectively. By is the value of B for which the central bulges of the curves would touch (bet. 3rd and 4th plot). Plots are
for N=7and T =0.9, and for B =0.2,0, —0.4, —2, —3 (note that By >~ —1.01 and B(xy) >~ —2.62) in units of Ty.

additional row. Further, such states may coexist with a one-row state and be either globally stable
or metastable.

All cases refer to plots in Fig. 13. The blue and orange curves represent the solutions of the first
and second equation in (4.36), resp. The orange line y = —aux, in particular, solves the second
equation in the system (4.36) while the first one reduces to the one for the one-row configuration
(4.20). Intersections of blue and orange lines represent the solutions the (4.36). Only locally
stable solutions are considered.

e B > 0: We recover the known one-row solution on the y = —ax line for x > 0. There is also
a metastable two-row solution with x <0,y > 0.

e B =0: The system is symmetric under x <> y and we recover the known one-row solution
on the y = —ax line for x > 0. There is also a stable solution on the y = —x/a line for
x < 0, which is equivalent to the previous one, representing spontaneous magnetization in
direction x;.

e B(x4) < B < 0: We recover the known one-row solution on the y = —ax line for x > 0, but
now it is metastable. There is a stable two-row solution with x < 0, y > 0.

e B < B(x4): There are no stable one-row solutions, in accordance with region D of the one-
row phase diagram of Fig. 12. There is a unique stable two-row solution.
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We note that there are no solutions with x = y since this is not a consistent truncation of the
system (4.36), unless B = 0 in which case we already know that the corresponding two-row
solution is unstable. Thus the symmetry breaking pattern SU(N) — SU(N —2) x SU(2) x U (1)
is never realized.

Recalling fig. (12), the picture that emerges, at least for 7 < Tp, is that a two-row solution
coexists with the one-row solution in both regions Ci, C». The two-row solution is metastable
in Cy (B > 0) and becomes absolutely stable in C; (B < 0). The one-row solution is absolutely
stable in C,, becomes metastable in Cp, and ceases to exist in region D, leaving the two-row
state as the only stable solution there. The line B = 0 is a metastability frontier between one-row
and two-row solutions for 7 < Tp. We expect this picture to extend for a range of temperatures
T > Top, with a two-row state coexisting with the one-row one outside of region D, although for
high enough temperatures the two-row solution should cease to exist.

5. Conclusions

The thermodynamic properties and phase structure of the SU (N) ferromagnet emerge as sur-
prisingly rich and nontrivial, manifesting qualitatively new features compared to the standard
SU (2) ferromagnet. The phase structure of the system, in particular, is especially rich and dis-
plays various phase transitions. Specifically, at zero magnetic field the system has three critical
temperatures (vs. only one for SU (2)), one of them signaling a crossover between two metastable
states. Spontaneous breaking of the global SU (N) group in the ferromagnetic phase at zero ex-
ternal magnetic fields happens only in the SU(N) — SU (N — 1) x U (1) channel. In the presence
of a nonabelian magnetic field with M nontrivial components (M < N), the explicit symmetry
breaking (paramagnetic state) is SU(N) — SU(N — M) x U (1)M, while the spontaneous break-
ing (ferromagnetic state) is SU(N) — SU(N — M — 1) x U(1)"*! Finally, due to the presence
of metastable states, the system exhibits hysteresis phenomena both in the magnetic field and in
the temperature.

The model studied in this work, and its various generalizations described below, could be rel-
evant in a variety of physical situations. It could serve as a phenomenological model for physical
ferromagnets, in which the interaction between atoms is not purely of the dipole type and ad-
ditional states participate in the dynamics. In such cases, the SU (N) interactions could appear
as perturbations on top of the SU(2) dipole interactions, leading to modified thermodynamics.
The model could also be relevant to the physics of the quark-gluon plasma [22], which can be
described as a fluid of particles carrying SU (3) degrees of freedom, assuming their SU (3) states
interact. Exotic applications, such as matrix models and brane models in string theory, can also
be envisaged (see, e.g. [23,24]).

Various possible generalizations of the model, relevant to or motivated by potential applica-
tions, and related directions for further investigation suggest themselves. They can be organized
along various distinct themes: starting with atoms carrying a higher representation of SU(N),
generalizing the form of the two-atom interaction, or including three- and higher-atom interac-
tions.

The choice of fundamental representations for each atom was imposed by the physical re-
quirement of invariance of their interaction under common change of basis for the atom states.
Its effect on the thermodynamics is to “bias” the properties towards states with a large funda-
mental content. This manifests, e.g., in the qualitatively different properties of the system under
positive and negative magnetic fields (with respect to the system’s spontaneous magnetization).
Starting with atoms carrying a higher irrep of SU (N) would modify these properties. In partic-
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ular, starting with atoms in the adjoint of SU(N) would eliminate this bias altogether. It might
also eliminate phases of spontaneous magnetization, and this is worth investigating.

The interaction of atoms j 4 js,, Was isotropic in the group indices a, an implication of the
requirement of invariance under change of basis. Anisotropic generalizations of the form (2.2)
can also be considered, involving an “inertia tensor” A,y in the group. Clearly this generalization
contains the higher representation generalizations of the previous paragraph as special cases.
E.g., SU(2) interactions with the atoms in spin-1 states can be equivalently written as SU (3)
fundamental atoms with a tensor A, equal to §,, when a, b are in the SU (2) subgroup of SU (3)
that admits the fundamental of SU(3) as a spin-1 irrep, and zero otherwise. The more interesting
special case in which &, deviates from §,5 only along the directions of the Cartan generators, in
the presence of magnetic fields along these directions, seems to be the most motivated and most
tractable, and is worth exploring. The phase properties of the model under generic %, is also an
interesting issue.

Including higher than two-body interactions between the atoms is another avenue for gener-
alizations. Physically, such terms would arise from higher orders in the perturbation expansion
of atom interactions, and would thus be of subleading magnitude, but the possibility to include
them is present. Insisting on invariance under common change of basis and a mean-field ap-
proximation would imply that such interactions appear as higher Casimirs of the global SU(N)
and/or as higher powers of Casimirs, the most general interaction being a general function
F(CP ... cN=Dy of the full set of Casimirs of the global SU(N). These can be readily
examined using the formulation in this paper and may lead to models with richer phase struc-
ture. An interesting extension of this study is in the context of topological phases nonabelian
models. Such topological phases have been proposed in one dimension [25-28] and it would be
interesting to see if they exist in higher dimensions.

Another independent direction of investigation is the large-N limit of the model. This could
be conceivably relevant to condensed matter situations involving interacting Bose condensates,
or to more exotic situations in string theory and quantum gravity. The presence of two large
parameters, n and N, presents the possibility of different scaling limits. These will be explored
in an upcoming publication.

Finally, the nontrivial and novel features of this system offer a wide arena for experimental
verification and suggest a rich set of possible experiments. The experimental realization of this
model, or the demonstration of its relevance to existing systems, remain as the most interesting
and physically relevant open issues.
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Fig. 14. Plot of B(x) for T > T.
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Appendix A. Analysis of one-row states with a magnetic field

In this appendix we present the details of the analysis that we have summarized in the main
text.
T > Ty (Fig. 14): B(x) is increasing and all values of x are stable, so there exists a unique stable
solution for all B, one-row for B > 0 and its conjugate for B < 0.
T_ < T < T4 (Fig. 15): We have stability for —1 < x < x_ and x4 < x < N — 1, the regions
of increasing B(x). Further, note that x_ > 0 and B(x_) > B(x4), and that B(x_) > 0 while
B(x4) can be positive or negative. The critical temperature 7, satisfies the condition

T=T, <= B(x;)=0, (A.1)

which is precisely the condition (3.8). Note that, for N >4, T_ < T, < Ty.For T > T;, B(x4) >
Oand for T < T,, B(x4+) <O.

So within this temperature range we distinguish two sub-cases:
T, < T < T4 (left plot in Fig. 15): we have for various values of the magnetic field:

e For B <0, x varies from —1 to 0 and there is a unique stable solution corresponding to the
conjugate one-row YT.

e For 0 < B < B(x4), x varies from 0 to some x < x_ and there is a unique stable solution
corresponding to a one-row YT.
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Fig. 15. Plot of B(x) for T < T < T4+ (Left) and for 7— < T < T (Right).

For B(x4+) < B < B(x_) we have two locally stable solutions, one for some 0 < x < x_ and
one for some x > x (a third solution in between is unstable). The first one corresponds to an
unbroken phase, as it represents a continuous deformation of the singlet for B = 0, and the
second one to a broken phase. One is absolutely stable and the other metastable. To decide
which, we need to compare their free energies.

For B > B(x_), x varies from some value greater than x4 to N — 1 and there is a unique
stable solution.

Note that for B = 0 there is only the solution x = 0, as expected.

T_ < T < T, (right plot in Fig. 15): we have for various values of the magnetic field:

For B < B(x4), x varies from —1 to some negative value x obtained from B(x;) = B(x)
and there is a unique stable solution corresponding to the conjugate one-row YT.

For B(x4+) < B < B(x_) we have two locally stable solutions, one for some x < x_ and one
for some x > x. The first one represents an unbroken phase and the second one a broken
phase, as they map to the singlet and the one-row solutions for B = 0. One is absolutely
stable and the other metastable. To decide, we need to compare their free energies.

For B > B(x_), x varies from some x > x4 to N — 1 and there is a unique stable solution
corresponding to a one-row YT.

Note that B = 0 is in the range B(x4+) < B < B(x_) and we recover the expected two
solutions, x = 0 (singlet) and x > 0 (one-row).

To < T < T_ (Fig. 16): The situation is as in case 7_ < T < T, except now x cannot be more
negative than xo = (N — 1)(1 — T/ Tp) defined in (4.25). The relative size of B(xgp) and B(x4)
will also play a role:

For B < min{B(x0), B(x4)} there is no stable one-row solution and the stable solution must
necessarily have more rows. According to the general stability analysis, it must be one with
N — 1 rows out of which N — 2 have equal length.

For min{B(xg), B(x+)} < B < max{B(xg), B(x4+)} there is one stable solution, for x < 0
(x > xy) if B(xo) < B(x4) (B(x0) > B(x4)).

For max{B(x¢), B(x4+)} < B < B(x_) there are two stable solutions, one absolutely stable
and the other metastable. To decide, we need to compare their free energy.

For B > B(x_), x there is a single stable solution varying from some x > x4 to N — 1.
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B(x)
10
B
I r——— I I \/ x
-1 1 2 TS 4-- - - 6
S Bk

2

Fig. 16. Plot of B(x) for Ty < T < T—. The dashed lines refer to the value B(xg) which could be higher (green) or lower
(red) than B(x4).

T < Tp: Only x > x4 solutions are stable.

e For B < B(xy4) there is no stable one-row solution, and the solution must again be one with
(N — 1)-rows.
e For B > B(x.) there is one stable solution for x > x

A.l. Resolving metastability
To determine which configuration is absolutely stable and which is metastable when there

are two locally stable solutions, we need to compare their free energies. The free energy of the
system is given by (3.24) with the addition of the magnetic field term,

Fsym(x, T) = (a(l+x)ln(l+x)+(1 —ax)In(1 —ax))
l1+a (A2)
a_. , B() '
— =Tox~ — x—TInN,
2 N

where a = 1/(N — 1) and where B = B(x) is expressed in terms of x, T via (4.28).
To facilitate the comparison, define the modified free energy ® (we use F(x) instead of
Fsym(x, T') for notational convenience)

O = Fo+ 2 —2p A3
(x) = F(x) N (x) . (A.3)
We can show that ®(x) and B(x) satisfy
O(N —2—x)=D(x) (A4)
and
N(N —2)

B)+ BN =2—x)=2TIn(N — 1) = Ty— . (A.5)

For two solutions with different x, x” but the same B, F(x) — F(x') = ®(x) — ®(x’), so we can
compare their @ to resolve metastability. At the transition point, when the two solutions have the
same free energy, (A.4) implies

PxX)=d(x) = x=N-2-—x (A.6)
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and from (A.5) with B(x) = B(x") = B(N — 2 — x) the magnetic field B; at which this happens
is

B,=T In(N —1) To NN = 2) (A.7)
=TI(N-1)— ————. .

' 2 N-1

For fixed B, this gives the transition temperature 7; at which the two solutions will transit from
stable to metastable as

R N(N —2)

For B = 0 this reproduces the temperature 77 and magnetization x; that we determined before
in (3.27).

Appendix B. Analysis of two-row states in a magnetic field

In this appendix we investigate in detail two-row solutions, including their (N — 1)-row conju-
gates. We analyze the conditions for their stability, present the corresponding YT of their irreps,
and derive numerical results for the case of temperatures T < Tj.

To proceed, we write the coefficients C; defined in (3.14) in terms of the variables x and y of
(4.35). We obtain

Ci'=NAW, C'=NA®G),

(B.1)
Ci_lzNA(—oc(x+y)), i=3,4,...,N,

with our usual A(x) defined in (3.19). The variables x and y are restricted by the conditions
0 < x; < 1 to the range

1
x,y>—1, X+y<—=N-2. (B.2)
o

Thus, the allowed solutions are within the triangle in the (x, y)-plane with corners at the points
(1/a,—-1), (—1,1/a) and (—1, —1), depicted in Fig. 17. This triangle is further subdivided by
the curves y = x, y = —ax and y = —x/a into six regions representing the possible ordering of
X1, %2, x; (i 2 3) and thus the various YT renditions of the two-row solution. These regions are
accordingly labeled by (ijk) for x; > x; > x;. Assuming N > 3, most of the C;’s are propor-
tional to 1/A(—a(x + y)), so we choose solutions with A(—a(x + y)) > 0. Then at most one
of the functions A(x) and A(y) can be negative. We list below the various possibilities together
with conditions for stability:

Region A, or (123): x1 > x2 > x3, with

—ax<y<x = AX)<AQy)<A(—a(x—+Yy)). (B.3)

The stability condition is

A(y) >0, afA(x) + AN ]A(—a(x +y)) + A(x)A(y) > 0. (B.4)
In this region all C;’s are positive, except C; which may have either sign. We define
1 1
g = dfoxfay o, (taytax o, . (B.5)
N N
The YT has the partition
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(-1,1/a) Y

231 213 x+y=1/n

Y= 123

321 y=-ax
312 132

(-1,-1) (1/a,-1)

Fig. 17. The domain of x, y. Coordinate axes do not create subdivisions.

(€1, £2) . (B.6)

Hence, it represents a two-row YT with €1 and £, boxes, respectively. This follows from the fact
that x3 is the smallest among the three x;’s and appears N — 2 times.
Region B, or (132): x1 > x3 > x», with

—x/a<y<—ax, Alx) < A(—a(x +y)) < A(y) . B.7)
The stability condition is
A(—a(x+y) >0, a[Ax) + A(W)]A(—a(x +y)) + A(x)A(y) > 0. (B.8)

In this region all C;’s are positive expect C1 which may have either sign. We define

— 1
zlszy, 132:—(“‘)%, 6 >0, (B.9)
The (N — 1)-row YT has the partition
(L1, €2, 82,...,42) . (B.10)
——

N-2

Hence, it represents a YT with £; boxes in the first line and ¢, boxes in the following N — 2
lines. This follows from the fact that the smallest among the three x;’s, x, appears only once.
Region C, or (213): x3 > x1 > x3, with

—ay<x<y, AY) < Ax) < A(—a(x +y)) . (B.11)

The stability condition is

A(x) >0, alA(x) + AWJA(—a(x +y)) + A(x)A(y) > 0. (B.12)

In this region all C;’s are positive expect C, which could be either positive or negative. Defining
1 1

61:(4-(1)%7 52:(—#0[)%’ 0 >0>0, (B.13)

this case represents a two-row YT with the partition (B.6).
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Region D, or (231): x > x3 > x1, with

—ax <y<-—x/a, A(y) < A(—a(x +y)) < A(x) . (B.14)

The stability condition is

A(—a(x+y) >0, a[A(x) + AW ]A(=a(x +y)) + A(x)A(y) > 0. (B.15)

In this region all C;’s are positive expect C> which could be either positive or negative. Defining
— 1

elzny, zzz—(“‘)%, 6>0>0), (B.16)

this case represents a YT with the partition (B.10).
Region E, or (312): x3 > x| > x, with y < x < —ay, equivalently x3 > x| > xp, with

y<x<-—ay, A(—a(x+y) <Alx) < A(y) . (B.17)
The stability condition is

A(—a(x+y))>0. (B.18)
In these two regions all C;’s are positive. Defining

_(l+a)y+ax _x—=y

312 N s KQ— N . £1>£2>0, (B.19)
this case represents a (N — 1)-row YT with the partition

(L1, 1,...,41,£2) , (B.20)

—_——

N-2

Region F, or (321): x3 > x > x1, with

X <y<-—ax A(—a(x+y)) <A(y) <Ax) . (B.21)
The stability condition is

A(—a(x+y))>0. (B.22)
In these two regions all C;’s are positive. Defining

1 _
31:_(“‘)%, zzzny, >0 >0, (B.23)

this case represents a (N — 1)-row YT with the partition (B.20).
B.1. The case of low temperatures

We consider temperatures 7 < Ty for which spontaneous magnetization exists. Various cases
arise depending on the sign of B and, if negative, on the value B(x;) < 0 with x defined in
(4.24) (recall that B(x4) is negative for T < Tp) and some other intermediate value By to be
defined shortly. In the plots below all points on the red line y = —ax solve identically the second
equation in the system (4.36), whereas the first one reduces to the equation for the one-row
configuration (4.20). This line can be approached for x > 0 from the regions A and B and for
x < 0 from the regions D and F. In addition, the stability conditions for these regions reduce to
those in (4.22). All cases below map to one of the plots in Fig. 13.

37



A.P. Polychronakos and K. Sfetsos Nuclear Physics B 996 (2023) 116353

e B > 0: We know that the one-row configuration has a stable solution which in this two-
parameter plot is on the y = —ax red line for x > 0. The intersection point in the middle
(region C in Fig. 17) is unstable, whereas that on the upper left corner is, having a higher
value for the free energy, metastable (region C).

e B =0: We have included the case with B = 0, which is symmetric with respect to the y =
x line. We know that the one-row configuration has a stable solution which in this two-
parameter plot is on the y = —ax red line for x > 0. Due to the above symmetry there is
stable solution also on the y = —x/a line for x < 0, which however is equivalent to the
above. The other three intersecting points are unstable.

e By < B < 0: The value of the magnetic field By arises when the two curves in the plot meet
tangentially. The one-row configuration has a stable solution which in this two-parameter
plot is on the y = —ax red line for x > 0. However, this becomes now metastable, as the
stable intersection point is on the upper left corner (region D in Fig. 17), corresponding to
an (N — 1)-row YT with partition (B.10). The other intersection points are unstable.

e B(x1) < B < By: There are typically three intersection points along the y = —ax line cor-
responding to the one-row configuration, the far right is now metastable and the other two
unstable. However, there are two additional intersecting points in the far left of that plot, the
lower one being unstable and the upper one stable (region D in Fig. 17) corresponding to an
(N — 1)-row YT with partition (B.10).

e B < B(x4): There is one intersection points along the y = —ax line corresponding to the
one-row configuration. This has x < 0 and is, as we have shown unstable. In fact, there is
no stable one-row configurations for B < B(x1). Among the other two intersection points
the lower one is unstable and the upper one is stable (region D in Fig. 17) and again it
corresponds to a (N — 1)-row YT with partition (B.10).
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