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Source-field approach to phase-matched cascade correlated emission
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A theory of phase-matched cascade correlated emission is developed based on a source field approach. An
ensemble of three-level atoms is prepared in a phased state for which the probability to have two excitations
is negligibly small. The field intensity radiated on each of the transitions is calculated. The radiation on the
upper transition is isotropic and unpolarized, but the phase-matched component on the lower transition can be
directional and polarized. Moreover, for sufficiently high optical densities, the emission on the lower transition
can be superradiant. In addition to the field intensities, the joint probability for emission on both transitions is
calculated, exhibiting correlations in both the directions of emission and polarization of the fields.
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I. INTRODUCTION

Cascade emission from a single atom or from an en-
semble of atoms is a fundamental process encountered in
atomic physics. For a “three-level” atom prepared in its
highest excited state, the vacuum radiation field induces a
cascade emission to its lower levels. Kimble, Mezzacappa,
and Milonni (KMM) [1] review the literature related to
single-atom cascade emission and point out its importance in
experiments used to test Bell’s inequalities. They also note
that the central idea behind some calculations of correlated
emission on the two transitions involves the assumption that
the observation of a photon emitted on the upper transition
projects the system into a state from which the subsequent
emission occurs. One goal of their paper was to show that
the same conclusions could be reached more formally using
source-field theory. Subsequently, quantum state trajectory
methods [2] were used to analyze this problem. In their
paper, KMM focused on the time evolution of the radiated
signals and did not allow for magnetic state degeneracy of
the levels involved in the transitions. In contrast, theories of
polarization correlation in cascade emission such as those
used to analyze experiments that test Bell’s inequalities [3],
must properly account for the magnetic state structure of the
levels.

Over the past two decades, cascade systems have taken
on increased importance owing to their relevance in quan-
tum information protocols. In a typical scenario [4], radiation
fields are used to create a two-photon coherence between
levels 1 and 3 in the three-level scheme depicted in Fig. 1.
One can then apply a readout field on the 3-2 transition to
produce collectively enhanced phase-matched emission on the
2-1 transition. The same level scheme can be used without
a readout pulse to produce phase-matched, correlated photon
pairs [5]. Attractive features of this approach include high rate
generation of narrow-bandwidth photonic entanglement of
near-infrared (~780 nm or ~850 nm) and telecom (~1.35 um
and ~1.35 um) fields. The former are suitable for mapping
into quantum memories while the latter may be used for
long-distance transmission over optical fibers. Thus, photon
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pair generation using the cascade level scheme is naturally
suited for applications in scalable quantum networks. In a
state trajectory theory of such correlated emission [6] it is cus-
tomary to assert that observation of the first photon projects
the ensemble into a collective state. This collective state, in
turn, emits superradiant, phase-matched emission on the 1-2
transition, provided the optical density of the atomic ensem-
ble is much greater than unity. Other theoretical approaches
involve the use of stochastic differential equations [7] and
biphoton probability distributions [8].

In this paper, we extend the source-field theory of KMM
to the case of phase-matched emission from an ensemble
of three-level atoms that have been prepared in a spatially
correlated superposition of levels 1 and 3 with a negligibly
small probability to have two excitations in the ensemble.
Such an initial state can be approximated by using weak
excitation fields. Alternatively a mechanism such as the dipole
blockade [9] can be used to excite a single collective Ry-
dberg excitation in the ensemble, followed by a transfer of
this state to a single collective excitation of level 3. Levels
1 and 3 have total angular momentum J = 0, while level 2
has total angular momentum J = 1. As such we take into
account effects arising from the magnetic state degeneracy
of level 2. Subsequent emission from the initial state con-
sists of two components. First, there is “normal” spontaneous
decay that depends only on the level-3 populations of the
atoms created by the excitation fields. The polarizations of
the emitted photons are correlated, but there is no enhanced
phased-matched emission for this component. Second, and
of relevance to the present discussion, there can be phased-
matched, correlated two-photon emission that depends on the
1-3 coherence created by the excitation fields. The emission of
the radiation on the lower transition is strongly correlated with
the emission on the upper transition when phase matching
is achieved. Moreover, the emission on the lower transition
can be collectively enhanced for large optical densities. The
polarization and spatial distribution of the radiation emitted
on the lower transition can depend critically on whether the
initial state is prepared by co- or counterpropagating laser
fields.

©2023 American Physical Society
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In general this problem poses considerable theoretical chal-
lenges. The central problem that must be addressed is how
excitation is transferred from a sublevel of level 2 in a given
atom to a sublevel of level 2 in all the other atoms. In the
simplest approach to this problem, all interactions between the
atoms are neglected, as are propagation effects. This low den-
sity limit is the one normally considered in optical coherent
transients [10]. One can arrive at expressions for correlated
phase-matched emission, but the theory is problematic for
two, connected reasons. The low density assumption rules
out any superradiant emission on the 2-1 transition. Moreover
the calculation in this optical coherent transient limit leads
to a total energy radiated by the sample that is greater than
the energy originally stored in the atomic ensemble [11]. To
include superradiant effects for higher density samples, the
next simplest approach is that taken by Rehler and Eberly
(RE) [12]. They assume that each atom in the ensemble decays
at the same rate, and use that assumption plus energy conser-
vation to calculate the decay rate. This produces qualitatively
correct results, but results that, nevertheless, cannot be totally
correct since the calculation neglects propagation effects. In
other words, as the phase-matched emission leaves the sample
it is clear that atoms at different points in the sample cannot
decay at the same rate. The RE model actually corresponds to
the second type of superradiance discussed by Dicke [13] in
his seminal paper, that resulting from phase-matched emission
from a sample that is prepared with spatial phase coherence.
This is distinct from the first type of superradiance discussed
by Dicke in which the atoms are initially in a totally inverted
state.

A fully rigorous treatment of this problem would account
for all dipole-dipole interactions between an atom in a sub-
level of level 2 with other atoms in their ground states. For
two, two-level atoms, the role of excitation exchange of this
nature has been studied by numerous authors, starting with
the papers of Stephen [14] and Hutchinson and Hameka
[15]. A complete description of the radiation pattern of the
two atoms was given by Lehmberg [16], although he did
not include any effects related to magnetic state degeneracy.
Attempts to generalize the two-atom result for a single exci-
tation in an ensemble of N two-level atoms were developed
by Svindinsky et al. [17] and by Friedberg and Manassah
[18]. These theories were based on numerical solutions of the
coupled differential equations for an ensemble of N atoms (for
which the numerical calculations become increasingly time
intensive with increasing N) and on the use of a continuum
approximation for the atomic density. The role of magnetic
degeneracy on phase-matched emission from an atomic array
was considered by Miroshnychenko et al. [19], but the upper
transition was driven by a classical laser field in the problem
they considered. We are not aware of other studies of the
role of excitation exchange in cascade systems that include
effects arising from magnetic state degeneracy, aside from
state trajectory models that, in effect, employ an approxima-
tion of the RE type [6]. The combination of the source-field
approach with the RE approximation that we adopt in this
paper leads to relatively simple analytic results for the quan-
tities of physical interest, even if the RE model has its
limitations.
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FIG. 1. Atomic energy level diagram of each atom in the ensem-
ble. Levels 1 and 3 have total angular momentum J = 0, while level
2 has total angular momentum J = 1. Pulsed laser fields create a
coherence between levels 1 and 3. The fields can be co- or counter-
propagating. In the case of counterpropagating fields, it is assumed
that k;y ~ kio = kyy = k3 = w3 /c.

II. GENERAL CONSIDERATIONS

The level scheme of each atom is shown in Fig. 1. To sim-
plify the calculation without sacrificing the relevant physics,
we assume that levels 1 and 3 have total angular momentum
J = 0, while level 2 has total angular momentum J = 1. It is
fairly straightforward to generalize the calculation to arbitrary
angular momenta. The frequency separation between levels 2
and 1 is denoted by w;; and that between levels 3 and 2 by
w3y. There are two detectors located at positions D4 and Dyg,
both of which are in the radiation zone of the fields emitted by
the atoms.

Each atom is assumed to have been prepared in a su-
perposition of levels 1 and 3. We consider two initial state
vectors for the ensemble. The first is a factorized state of the
atoms that is prepared using two weak, coherent state fields
having frequencies wy; = kzjc and wrr = kpoc, giving rise to
an initial state vector
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where k =Kk;; + kg, R; is the position of atom j,
[111...3;...111) is the state in which atom j is in state 3 and
all the other atoms are in their ground state, o and § are state
amplitudes, and it has been assumed that N| B|> <« 1, where
N is the number of atoms in the ensemble. The second initial
state we consider is the single-phased-excitation state
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The nonvanishing initial state density matrix elements are
pi(0) =l ~ 1, p(0) = IBI%,
P50 = [P (O] = e 3)
for the factorized state and
pRO)=1/N, p(0) =[pFO)] = (1/VN)e*® )

for the single phased excitation state.

To calculate the intensity recorded at the detectors we need
to obtain an expression for the source field operator associated
with emission from the ensemble of atoms. A general expres-
sion for the positive frequency component of the source field
operator is given in Appendix A. For the level scheme of Fig. 1
this expression reduces to
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(Glle||H) is a reduced matrix element of the dipole operator
between levels G and H, ¢, =t — R/c is a retarded time,

k3 = (w32/c)(R/R), ky1 = (w21/¢)(R/R), ®)

iy and @iy are unit vectors, 6 and ¢ are polar coordinates, and
01(51) is a lowering operator between state |2m) and state |1)
in atom j, while O’r%) is a lowering operator between state |3)
and state |2m) in atom j. All atomic and field operators are
written in an interaction representation. It has been assumed
that yL/c < 1, where y is a characteristic decay rate and L
a characteristic dimension of the sample. In effect, retardation
is neglected within the sample.

We can use the equation for the field operator to obtain
formal expressions for quantities of physical interest. Let us
assume that detector A records only emission on the 3-2
transition and detector B only emission on the 2-1 transition.
Moreover, let us further assume that D4y = Dy = D, implying
that the probability to obtain a photocount at detector A at time
tand a photocount at detector B at time ¢ + T is nonvanishing
only for 7 > 0. We denote the spherical coordinates of detec-

tor ¢ by (D, 0, ¢,) (¢ = A, B). Then the intensity of the A

polarization component (¢ = 6, ¢) of the field per unit solid
angle at detector D, at time ¢ is given by

L(Qg:1) = 260cD*E; (Dy, t;A9)Ef (Dy, ;1)) (9)

where E;r Dy, 1; A(lq)) is the fiy component of E;*(Dq, 1),
E;F(D,, ;1) is the &, component of Ef(D,, ) and E; =
(E} )", and Q, = (8,4, ¢) denotes the spherical angles of de-
tector g. We shall also need to find the joint probability to
detect a photon having polarization A% at time ¢ at detector A
and a photon having polarization Xff ) at time 7 + 7 at detector
B, which is proportional to the function

8o (824, Q2p31, T)

~ eepry| B O tHE Dyt |
E}(Dp, 1 + 730" )EF (D, 1:2(")

(10)

The field operators in Eqs. (9) and (10) are related by
Eq. (5) and its adjoint to the atomic lowering and raising
operators of the individual atoms. In general, Eqgs. (9) and (10)
are very difficult to evaluate using Eq. (5) because the evolu-
tion operators for the atomic lowering operators appearing in
Eq. (5) form a set of at least N coupled differential equations,
owing to the vacuum-field-induced coupling between pairs of
atoms.

To further simplify matters, we shall assume that the exci-
tation fields are either co- or counterpropagating along the z
axis,

k =Kk +kpp = (kpy £ k12)2, (11D

and that the fields are in two-photon resonance with the 1-3
transition,

wr1 + o = w3 + w = w3y (12)

The fields excite an atomic density N (R) which is taken to be
given by

NR) = %e"’z/“zH(L) =Ne”H®L), (13)

where

1 —-L/2<z<L/2

H(L) = {O otherwise (14)

N = N/(mwa’L), and p is the cylindrical coordinate. The ex-
citation scheme and atomic density distribution are meant to
mirror that of typical experimental setups.

III. INTENSITIES AT BOTH DETECTORS

To treat the vacuum-induced coupling between the atoms,
we adopt the simplified model that was used by Rehler and
Eberly (RE) [12]. In effect we assume that each atom has the
same decay dynamics. The emission on the upper transition
occurs at the isolated atom decay rate,

_ w§2|(2||ﬂ||3)|2, (15)
T Brephc3

there can be no collective decay on this transition since there
is at most one excitation in the sample. That is, a given atom
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in level 3 cannot exchange its excitation with another atom in
level 2 since we have ruled out the possibility of two excita-
tions in the ensemble. On the other hand radiation from level
2 can be exchanged with other ground state atoms, leading to
superradiant emission. In the RE model this is accounted for
by assuming that decay from level 2 occurs at a rate I', that
differs from the isolated atom decay rate

oy (Ul l12))?

16
Omephic? (16)

The rate ', is chosen to guarantee energy conservation. Al-
though interactions are not included explicitly in the RE
model, they are included implicity owing to the fact that
I', # y». While the RE model may not properly account for
some propagation effects and can lead to some unphysical
predictions, it can provide a semiquantitative approximation
to the actual decay dynamics and the resulting radiation pat-
tern.

In Appendix B, it is shown that the intensity per unit solid
angle at detector A having polarization 8, or &Ais given by

hw3soys
8

Iy, 3,(824:0) =N p33(0), (17)
where p33(0) is the j-independent initial upper state popula-
tion of atom j. As could have been anticipated, this radiation
is unpolarized and isotropic since the transition originates on
a level having J = 0 that is (obviously) unpolarized. The total
energy radiated on this transition is

Wa= [t [ (@0 + (i) = Niwnpsa ),
0
()

This result is independent of whether the fields are co- or
counterpropagating.

A. Copropagating excitation fields

For emission on the lower transition, the calculation is
somewhat more involved (see Appendix B). If the fields are
copropagating, then

k= (kpi 4+ ki2)Z = (w31 /)2 = (k3 + ka1)2. (19)

The intensity can be written as the sum of two terms, a
non-phase-matched ‘“spontaneous” component and a phase-
matched component,

i1 yays e T2 — el
033(0)0(,)

Iés,:bB(QB; t)=N

87 y3— I
X [1 + G,;B,,;,B(QB)], (20)
where
93 = c0s 6 cos ¢pX + cos Op sin ¢py — sin OpZ, 21)
¢z = — sin gk + cos P (22)

are unit polarization vectors, Gy 551;(93) represent the phase-
matched contribution, given approximately by

Gy, (68) ~ r(68)Gy (Op), (23a)

where
3(N — 1) sin® [M(65)]
Gy, (6s) ~ 5 >, (23b)
d(kzpa)”  [M(0p)]
knL[1 — /1~ (22 sin65)"] + ka1 L(1 — cos )
M(0g) = — ,
(24)
and
3 2
k k
r(0g) = cosGB\/ 1—<kﬁ sin93> —k—msin293 . (25)
32 32

Equations (23) provide a very good approximation to the exact
results provided k3L > 10 and F3, > 2, where the Fresnel
number F3, is defined here as

_ 2nd> kpd®  (kna)
AL L kal

with A3 = 27 /k3;.

Equation (20) hides the fact that the spontaneous and
phase-matched components actually depend on different
properties of the initial state vector. The spontaneous com-
ponent is proportional to the initial atomic state popula-
tion (03(%)(0)) = p33(0), while the phase-matched component
is proportional to the 1 —3 coherence (03('1’)(0)01({)(0)) =
033(0)e™Rii’ between atoms j and j’. For our initial state
vector, both quantities are proportional to p33(0), which is
why the off-diagonal density matrix element p;3(0) does not
appear explicitly in Eq. (20).

The maximum contribution from the phase-matched com-
ponent occurs for 85 = 0 [20],

(26)

3(N—1)  3NA3,L

Gy 3 (0) ~ = 27
0@ ™ Yy’ 167 @7

For phase-matched emission, we would normally expect that
G(;B . (0, ¢p) is of order N. Here we see that the contribution

is reduced by 1/(kspa)? This reduction can be given a simple
physical explanation. For phase-matched emission to occur,
the first photon to be emitted must be in the forward direction.
Out of all possible emission directions, the probability of
emission into a solid angle that will allow for phase-matched
emission is 1/(k3ya)?. As a consequence, the phase-matched
emission on the lower transition is reduced by this factor.

As we move away from the phase-matched direction 6 =
0, the signal is no longer unpolarized, Gy, (0p) # G@B (0p).

The ratio of the 85 to the (}B phase-matched component is
r(6p). In Fig. 2 we plot Gy, (0)/(N — 1) and G(}B(GB)/(N —
1) for k3261 = 20, kz](l = 15, k32L = 40, kz]L = 30, kL =
70, F3 = 10. The exact results given by Eq. (B48) of
Appendix B are represented by the solid curves and the ap-
proximate solutions given by Egs. (23) by the dashed ones,
with Gy (0p)/(N — 1) lying below G4 (65)/(N — 1).

We can integrate the intensity over time and over solid
angle Qp to get the total energy Wp radiated by the atoms on
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FIG. 2. Phase-matched contributions G;,B(QB)/(N —1) and
G,,EB(QB)/(N — l) for k3za = 20, kzla = 15, k32L = 40, k21L = 30,
kL = 70. The exact results are represented by the solid curves and
the approximate solutions by the dashed ones. The curve for with
Gy, (0p)/(N — 1) lies below that for G5 (0p)/(N — 1).

the lower transition,

o0
Ws 2/ dfr/dQB[[(;B(QB;tr)+1,3,B(QB;l‘r)]
0

h
= N@m(om +O)), (28)
2
where
1
C] = g/dQB[G(%(GB) +G$B(93)] (29)

Within the RE model, to conserve energy we must have
=yl +C). (30)

For k3, L, ko1 L > 4, the GJSB (0p) integral in Eq. (29) can
be approximated as

% / %Gy, (65) ~ —i((lzm)lz)% /0 Opd6p
N sin® (ka1 L(1 + k1 /k32)03 /4]
[kt L(L + kn /k2)603 /4]
37 (N — 1)
 16(kna) o L(1 + ka1 /ks2)”

The integral involving G(;B (0p) in Eq. (29) cannot be done ana-
lytically owing to the factor r(0g) appearing in Eq. (23a). This
factor reduces the Gy (6p) contribution to the energy from that
of the G 4, (0) component. A very rough approximation for
the reduction can be obtained by expanding

€2y

r(0g) ~ 1 (kgl Lok 1)92 (32)
)~ 1 — (24 ok
k3 k32 ’

and then replacing 9§ by its average value from 65 = 0 to
O™ = /4r [ko L(1 + ko /k32), with 0** chosen as the first
zero of the angular distribution. In this manner we obtain

- 3 (N — 1)
16(k32a)* ka1 L(1 + ko /k32)

4 k2 k
x[z— T <%+2ﬂ+1>].
3kot L(1 + ko1 /k32) \ k3, k32
(33)

C
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FIG. 3. Cooperativity parameter C;/(N — 1) [multiplied by
(kspa)?] for copropagating excitation as a function of kL for ka = 20
with ky; /ks, = 0.75. The solid, red curve is the exact solution, and
the blue, dashed curve the approximate solution given by Eq. (33).

In Fig. 3 we plot C; /(N — 1) as a function of kL for k3a =
20 with ky;/k3, = 0.75. The result obtained from Eq. (29)
integrated over solid angle is represented by the solid curve
and the approximate solution obtained using Eq. (33) by the
dashed curve. As can be seen, the agreement becomes good
for ky1 L > 30 [21].

We see that C; is of order N/[(ksa)?(ka1L)]. As a con-
sequence, C; < 1 if the atoms are separated, on average, by
more than a wavelength, as is assumed. Even though C; « 1
and modifies the decay rate only slightly (and leads to a
phase-matched contribution to the signal that is much less
than the spontaneous component), the fact that C; is of order
N/[(kspa)*(ky;L)] is somewhat surprising. One might think
that C; would be of order N/ (kp1k3pa®)? with a factor of
1/(koza)? coming from the integral over 24 and another factor
of 1/(ky1a)? coming from the integral over Qp, corresponding
to the small solid angle for phase-matched emission. However,
this underestimates the energy. As is discussed in more detail
in Appendix B, for certain transverse directions of phase-
matched emission, there is a phase cancellation that results in
an angular distribution for G, . (6p) that is governed solely

by the sin’[M(63)]/[M (63)]? factor in Egs. (23). The angular
integration over 25 then leads to a factor of order 1/ky; L.

B. Counterpropagating excitation fields

We now examine the corresponding result for counterprop-
agating field excitation with nearly equal magnitude propaga-
tion vectors, kp; & k3o, ko1 — koL < 1, | k1 — k3pla < 1,
but |w3 — wa1| > (¥2 + y3). In this limit, it is possible to
have phase matching, regardless of the direction of emission
of the first photon. We might expect the result to be somewhat
independent of 85; however, this is not necessarily true in the
RE model since the solid angle for phase-matched emission
varies with 0p (or 6,4).

The intensity is

cp CeN _ TCP .
198 (2p;1) = Ia)B(QB,t)

finiyrys e — e
=N—" S 0)O(@)
3— 12

x [14+ GP(6p)], (34)

063713-5



P. R. BERMAN AND A. KUZMICH

PHYSICAL REVIEW A 108, 063713 (2023)

G (17/2)/G%(0)

6
5
4f
3
2
1

kL
0 20 40 60 80 100

FIG. 4. Ratio G?( /2)/GP(0) as a function of kL for ka = 20.
The red, solid curve is the exact result, and the dashed, blue curve is
the approximate result obtained using Eq. (37).

where the phase-matched component G°”(6p) is given approx-
imately by (see Appendix B)

GP () ~ 3N -1 * dee*kzaz(e cos fp—e? sin 93/2)2/2
dka 21 -
sin’ [kLe sin (63)/2]
(kLe sin (65)/2)?

(35)

For counterpropagating excitation, the phase-matched com-
ponent is unpolarized, in contrast to that for copropagating
excitation. Equation (35) provides an excellent approximation
to the exact result, provided ka > 10, kL > 10, and F3; > 1.
In the forward direction (6 = 0) the result is unchanged from
the copropagating case.

3N -1

cp
( A(ka)*

05,05 (36)
A characteristic departure from this value occurs for 0 =
7 /2, where

L > in? [kLe /2
GP(n)2) ~ 3W-D dee ﬁ%ﬁw. (37)
dka~/2m J - (kLe/2)

The ratio GP(rr /2)/GP(0) decreases with increasing kL for
fixed ka. In Fig. 4 we plot GP(;r /2)/G°P(0) as a function of
kL for ka = 20. The exact result obtained from Eqs. (B47)
of Appendix B (with kyja =~ kypa = ka and kL = 0) is rep-
resented by the solid curve and the approximate solution
obtained using Eq. (37) by the dashed curve. As can be seen,
the approximate solution agrees with the exact solution for
kL > 10 [21]. In Fig. 5 we plot G°?(6g)/(N — 1) as a function
of 05 for ka =20 and kL = 20 (upper curve), 40 (mid-
dle curve), and 60 (lower curve). The exact result obtained
from Eq. (B47) and the approximate solution obtained using
Eq. (35) give virtually identical results for these parameters.

The total energy radiated by the atoms is still given by
Eq. (28) with

haw 1y,
2

W? =N

p33(0)(1 +C7"), (38)

G/(N=1)
0.005;
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0.002¢
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00 05 10 15 20 25 30 2

FIG. 5. Phase-matched component G?(6g)/(N — 1) as a func-
tion of 6, for ka = 20 and kL = 20 (red, upper curve), 40 (blue,
middle curve), and 60 (green, lower curve).

where

W 1
Clp: _n/dQBG‘?’B(QB)

4
3AIN—-1) 7 .

EE g sin 6 d6,
8ka 2w Jo B

00
. 2
« / d€€7k2a2(€ cosOg—e? sinf/2)"/2
—c0

sin® [kLe sin (63)/2]

39
(kLe sin (65)/2)? %9)

Within the RE model, to conserve energy we must have
M = (1 +C7). 0)

A very rough approximation for Ci” can be obtained
by replacing the sin’[kLe sin(6z)/2]/(kLe sin(05)/2)*> by
V27t exp[—k2a?(sin” 0)/8], as if we had chosen a Gaussian
distribution for the longitudinal component of the density.
The factor ¢ is an adjustable parameter of order unity. In this
manner, the integral can be approximated as

sin 93 d@B

P DV2m¢ /”
! 8ka 0

1
x —
\/k2a2 cos? O + k212 sin® 03 /4

3N — D)y/27g sinh ™! (F/k2a? — K212 /4)
B 4ka JRZ = ks

In Fig. 6 we plot C;” /(N — 1) as a function of kL for ka = 20
with ¢ = 0.88. The result obtained from Eq. (41) integrated
over solid angle is represented by the solid curve and the
approximate solution obtained using Eq. (41) by the dashed
curve. Similar agreement is found for other values of ka.

(41)

IV. JOINT PROBABILITY DISTRIBUTION

We next turn our attention to the joint probability distribu-
tion, proportional to the function g, o (24, 25;1,, T) given in
Eq. (10). Using Eqgs. (10) and (5), we find that the function
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0.008f
0.006f

0.004f
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FIG. 6. Cooperativity parameter C,” /(N — 1) for counterpropa-
gating excitation as a function of kL for ka = 20 with { = 0.88. The

solid, red curve is the exact solution, and the blue, dashed curve the
approximate solution given by Eq. (41).

8u.or (24, 2p; t,, T) depends on factors of the type

N 1

S Y 00608+ 0o+ 10l ). @42

joj'=lm=—1

It is shown in Appendix B that the only nonvanishing con-
tributions are those for which j = j = j” = j” and for
which (j=j,j" =j",j# j’). The quantum regression

J

sin® [(k

— k32 Cos QA — k21 Cos GB)L/Z]

G(Q24,Q2p)=(N—-1)

The polarizations I, (S24, $2p) are those associated with
cascade emission from a single isolated atom. The phase-
matched contribution to the joint probability density modifies
the single-atom result.
The decay rate I'; is chosen so as to conserve probability,
[ =y+C) 47

with

3
= ——N[aa, [
"7 @n) / A/ ?

X > Moy ay (R4, 2)G(Q, ). (48)

oA,0B

which is identical to that given in Eq. (29).

The decay rate has been chosen in a manner consistent with
the RE approach. The probability to find a photon emitted on
the second transition is given by

t
Puy(R.1,) = / ar / AP, o (s Rt 1y — 1),
0
49)

which reproduces Eq. (20). So far so good. However, using
the RE approach for this cascade emission, we run into some
problems for emission on the upper transition, given by

00
PaA(QAvtr) :/ dt/‘dQBPaA,aB(QAv QB;tr» t)- (50)
0

[(k — k3p cOs B4 — koj cos O)L /217

theorem [22] is then used to obtain the needed expecta-
tion values. Explicitly, we find the joint probability density
Py, 0, (24, 2551, T) for a photon having polarization oy to
be detected at detector A at time #. and a photon having
polarization ag to be detected at detector B at time ¢, + T is
given by

PO(A,O(B(QAv QB;tr’ f)

———Nyyse e B, 0, (Q, Q). (43)

3
(8 >
where

F)OtA,OtB(QAv QB) =

with

Moy 0y (S24, 25)[1 + G(S21, Qp)],  (44)

IT3, 5,(S24, Q2p) = [cos 6,4 cos O cos (pa — Pp)

+ sin 6, sin 6z]°, (45a)

My, 5, (R4, ) = cos’ 04 sin® (4 — ¢5), (45b)
3.9, (Ra, Qp) = cos’ O sin” (¢4 — ¢), (45¢)

bo.d, (45 2p) = co8” (da — Pp), (45d)

and

k322a2 sin? 60, /2 + k%la sin® 0 /2
expi— . (46)
+kaoko1a? sin 64 sin O cos (¢4 — @)

(

Since G(S24, 2p) is unchanged on the exchanges Q4 <> Q2p
and ky; < k3, the field emitted on the upper transition is
polarized in a manner similar to that on the second transition,
whereas P,, (€24, ¢,) must be isotropic and unpolarized [see
Eq. (17)]. In other words, the assumption of a single decay rate
for all sublevels of state 2 leads to an unphysical prediction for
the polarization of the field radiated on the upper transition. A
proper treatment, in which an atom in state 2 can exchange its
energy with other ground-state atoms, would not lead to such
inconsistencies.

A. Copropagating excitation fields

If the fields are copropagating, then x = (k3 + k»;) and
the maximum phase-matched probability occurs for 64 =
0 = 0, for which

Py, 5,00 = 08 =0,0a,98) = P} 4 (02 =05 =0, da, dp)
= cos” (¢a — ¢p)[1 + (N — 1],
Py, 3,01 =05 =0,¢a,¢5) = Py 5 (02 = 0p = 0, ha, dp)

= sin® (¢4 — dp)[1 + (N - Dl (51b)

The fields are unpolarized in the forward direction [note that
d==%and b = ¥ in the forward direction and the cos?(¢4 —
¢p) and sin’(¢4 — ¢) factors simply represent projections
onto these axes]. The phase-matched component is (N — 1)

(51a)
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FIG. 7. Dimensionless joint probability density P(Q,, Q2z) as
a function of 6p for 6, = 0 (red, solid curve), 0.1 (blue, dashed
curve), /2 (green, solid line), with ky;a = 10, kypa = 15, ko L =
20, k3, L = 30, N = 100, ¢pp = ¢4.

times the spontaneous component. Of course, the measured
signals are calculated by averaging the field intensities over
the detector areas. If the detector areas are matched to the
angular width of the signals, Eqs. (51) remain valid for the
measured joint probabilities. Once 64 becomes larger 1/ks,a,
the phase-matched contribution to the signal becomes neg-
ligibly small, leaving only the spontaneous contribution. To
illustrate this dependence, in Fig. 7 we plot P(Q4, Q3) as a
function of 6 for 8, = 0 (red, solid curve), 0.1 (blue, dashed
curve), /2 (green, solid line), with kyja = 10, ksa = 15,
kz]L = 20, k32L = 30, N = 100, (]53 = ¢A- From Eq (46),
one can deduce that there can phase matching only if 64 <

V2/kpa.

B. Counterpropagating excitation fields

We now set k3, = k1 and x = 0. The maximum phase-
matched probability occurs for 6 = m — 64 and ¢p = ¢a £
7. In that limit,

ﬁgf93(93=ﬂ—9A,¢B=¢A + )
=f’£”$ (6 =7 —Ox, pp = Ppa £ 1)
A>VB
=[1+®-D]

p?)A,asg(@B =7 —0p, Pp=Pa )
=P, (0 =7 — 6,5 = $a £7) = 0. (52b)

(52a)

The fields are unpolarized in the phase-matched direction,
but the polarizations are correlated. In contrast to the coprop-
agating case, phase matching now occurs for any 6,4, provided
field B is counterpropagating relative to field A. In Fig. 8 we
plot Per(Q,4, Qp) as a function of 0 for 64, = 0.5 (red, solid
curve), /2 (blue, dashed curve), and 2.5 (black, dotted curve)
with k2|a = 10, k3261 = 15, kz]L = 20, k32L = 30, N = 100,
¢p = ¢4 + . As can be seen, there can now be phase match-
ing for any 6,.

V. DISCUSSION

We have use a source-field approach to calculate the inten-
sity and polarizations of radiation emitted from an ensemble

cp

o

0.8f
0.6f
0.4f
0.2f

-~ 3N " " " M GB
0.5 1.0 1.5 20 25 3.0

FIG. 8. Dimensionless probability density Pr(Q, Q) as a
function of 6 for 64 = 0.5 (red, solid curve), 7 /2 (blue, dashed
curve), and 2.5 (black, dotted curve) with kyja = 10, k3a = 15,
kzlL = 20, k32L = 30, N = ]00, d’B = d)A + .

of atoms having a cascade level scheme. The atoms were
prepared either in a factorized state for which the prob-
ability of having more than one excitation was negligible
or in a spatially phased single excitation state. The upper-
most level of each atom had angular momentum J = 0,
the intermediate state J = 1, and the ground state J = 0.
For this system, the field intensity on the upper transition
is isotropic and unpolarized. The radiation emitted on the
lower transition has two components, a “spontaneous” com-
ponent which is unpolarized and a phase-matched component
which can be polarized. Phase matching can occur if the
atoms are excited using copropagating fields provided the
radiation emitted on both transitions is confined to a small
angular region about the direction of excitation. If coun-
terpropagating fields are used to excite the atoms, phase
matching can be achieved provided the radiation on the
two transitions is emitted in opposite directions (and pro-
vided the transition frequencies are nearly equal). The joint
probability distribution for both excitation schemes was also
calculated.

To allow for collective emission on the lower transition,
the Rehler-Eberly (RE) model was adopted, in which it is
assumed that each atom decays in an identical fashion. In a
source-field approach, the RE model correctly leads to the
prediction that the radiation emitted on the upper transition
is isotropic and unpolarized. It also gives a good semiquan-
titative picture of the collective enhancement of the radiation
emitted on the lower transition. However, if the RE model is
used to calculate the joint probability density and if that joint
probability density is used to calculate the radiation emitted
on the upper transition by tracing over the radiation emitted
on the lower transition, the RE model leads to the incorrect
prediction that the radiation emitted on the upper transition is
polarized and anisotropic.

Instead of using a source-field approach, one can develop a
theory based on state amplitudes. That is, as long as there is at
most one excitation in the system, one can calculate the proba-
bility as ¢ ~ oo that all the atoms are in their ground states and
photons having propagation vectors ki3, and k| are emitted
with polarizations o4 and ap. The advantage of using this
approach is that atom-atom interactions can be included ex-
actly for fixed positions of the atoms. In such a model, energy
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is always conserved and and the field emitted on the upper
transition is unpolarized and isotropic. Collective effects are
included naturally in such a model, although one is faced with
solving 3N coupled differential equations. If N = 2, one can
obtain an analytic expression for the joint probability density
Py, (24, 2p) that has both spontaneous and phase-matched
components. In contrast to the RE model, the integral over Qg
now leads to unpolarized and isotropic emission on the upper
transition. Moreover, it turns out that, for counterpropagating
excitation and k,; = k3;, the radiation emitted on the lower
transition is also unpolarized and isotropic, in contrast to the
RE model prediction.

The amplitude approach is closely related to a state-
trajectory approach that has been used to analyze phase-
matched cascade emission [6]. In such an approach, the clock
is started when a photocount is recorded on the upper transi-
tion, projecting the atoms into a spatially phased superposition
of their ground and intermediate states. In effect, one creates
a new initial state that can be used to calculate the emission
on the lower transition.

If the single excitation requirement is relaxed, new physics
can emerge. Suppose, for example, that all the atoms are ex-
cited initially. Then it is possible for the ensemble to undergo
superradiant emission of the type considered by Dicke [13]
for completely inverted systems. At the other extreme of a
single excitation considered in this paper, we encounter the
type of superradiance associated with spatial phase matching.
For arbitrary initial conditions, there may be a competition
between the two mechanisms.
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APPENDIX A: SOURCE-FIELD EQUATIONS

A general expression for the source field in the radiation
zone resulting associated with dipole transitions from a state
having angular momentum H and z component of angular
momentum mpy to a lower energy state having angular mo-
mentum G and z component of angular momentum mg is

J

(GllplH)

Q(GJgmg, Hlgmy) = «/ﬁ

Ju
my

]

given by [23]

3 N
) Z Z Z“)%{G(GmGWMHmH)

mg,my a,f=1 j=1

X [fup — 8up(0, )Nac YV (Gme, Hmy; 1

EJ(RJ)=<

4megc’R

— IR =Rjl|/0), (Al)
where
fap = (2/3)8up, (A2a)
3cos’0 — 1  sin®6 cos (2¢)
gll(ev ¢): - + ) (Azb)
6 2
3cos’0 —1  sin®6 cos (2¢)
gn(0,¢)=— - , (A20)
6 2
3cos?6 — 1

850, ¢) = — (A24d)
g12(0, ) = go1 = sin’ 0 sin (2¢)/2, (A2e)
g13(0, ¢) = g31 = sin6 cos O cos ¢, (A2f)
823(0, ¢) = g3 =sinf cos O sin ¢, (A2g)

0 = i, = sin 6 cos @i, + cos O cos pliy — sin @iy,
(A3a)

0y = 0y, = sin @ sin @@, + cos O sin @iy + sin Py,
(A3b)
3 = G, = cos A1, — sin Oy, (A3c)
Wi = e, M2 = [hy, U3 = [ (A4)

1 is the dipole moment operator, wyg is a transition frequency,
afj)(Gmg, Hmpy;t — |R — Rj|/c) is a lowering operator, and
0 and ¢ are the polar angles of R. It is assumed that the
radiated field consists of components whose frequencies are
close to those of the atomic transitions.

Carrying out the summation, it is possible to show that

1 N
Ej(R,;)=<m> > > 0hcQGmg, Hmy)

Gmg.Hmy j=1
x o (Gmg, Hmy;t — |R — R|/c). (A5)

where

1
—1

1
1

Je
mg

Jc
mg

i|(—l'fl¢ + cos iy )e_i¢

Ju
my

i

:| (—ifiy — cos Ol )e'® (A6)

1
0

J| J PN
H G | sin Oy,
my mg

(Gl ||H) is a reduced matrix element, and the square brackets are Clebsch-Gordan coefficients.
In the radiation zone we can write the lowering operators in an interaction representation as

o (Glgmg, Hlymy:t — R = R;|/c) = 0V (Glgmg, Hlymy:t — |R — Rj|/c)etnok=enan) g=ikiaR;

(AT)
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where kHG = LL)H(‘,R/(CR). Thus

1
ETR,t)=—-
« (R1) (47‘[6062R>

Gmg,HmH j=]

N
Y Y 0 Q(Ggmg, Higmy)e' ek ncte=kioRig DN G lomg, Hlgmy;t — R — Ryl /c).

(A8)

For our specific level scheme of Fig. 1 and with the neglect of retardation across the atomic ensemble, the field operator is given

by Eq. (5) with Q3

= Q(21m, 300), Q;,, = Q(100, 21m), oV (1) = (100, 21m; 1), and 02 (1) = o (21m, 300;1).

APPENDIX B: CALCULATION DETAILS

In an interaction representation, the Hamiltonian for the atom-vacuum field interaction for our J/ = 0 — 1 — O three-level

system is

N o1
hws, () kR; —i(wp—wn) hy, ( o (J)
Ho=i(222) 3 5w rom om0 S S om0
k,x j=1 m=—1 kA j=1 m=-1
x e Rig=il@=mnl 4 adjoint, (B1)
[
where Attime t = 0, the atomic state operators are

(J) ) )
elig) = c0s 6k cos kX + cos Oy sin ¢y — sin Oz, (B2) 3(0) =12, m) (3, O], (B7a)
o o §>(0) = 13,0)(3,0/, (B7b)

€ = —sin ¢xX + cos Py ¥, (B3) ) .
k - W e ) = 1,092, m|P, (B70)
k = sin 6, cos kX + sin Gy sin ¢ ¥ + cos 6;Z, (B4) o,é)(O) = 11,0)9(3, 0|9, (B7d)
o2 0) = 12,m)P(2, m'|. (B7e)

and we have evaluated the radiated field frequencies at the
atomic transition frequencies. Starting from this Hamilto-
nian, and using the evolution equations for any Heisenberg
operator O(t),

. 1
0@) = —10(), H@)], (B5)

we can obtain the evolution equations for the various expecta-
tion values that are needed in the calculation.

Within the RE model, the evolution equations for the ex-
pectation values of the atomic operators are

(os0) = =5l (B6w
(63 0) = —ps{o3®), (B6b)
(60) = - 2o o), (B6o)
G “kt)):—%ﬂzﬁz( oD 1)), (B6d)
(G 0) = =Tl O) + yalo @) (Bbe)

The quantities o G )(t) and o, () are atomic population opera-
tors, while or(ﬂ",i, (t) for m # m' is an atomic Zeeman coherence
operator. It has been assumed that the frequency difference
|w3p — wa1| > (y2 + y3), allowing us to ignore any transfer of
electronic state coherence produced by spontaneous emission.

It is now a relatively simple task to calculate the field
intensities using Egs. (5), (B5), (3), and (4). In doing
so, one encounters factors of the type (03,71)(t,)0,;’ )(t,)) or

(0 D)o ,)).
1. Field intensities

a. Upper transition. Using Egs. (5) and (9), we find that
at detector A, the intensity per unit solid angle Iy, 4, (£24;1)

having polarization 04 or (75 4 1S given by

3% N 1
5= = ST S 1Qualla w5,

Jj=lmm=—1

X [Qur3Oar ¢a)l;, 4, (050 )0 (1))
x e kR (B8)

where

K3y = (w32/c)(Da/Dy)
= (sin B4 cos PpaX + sin G4 sin Ppa§ + cos G4 Z) (B9)

and

Rj; =R; —R;. (B10)

063713-10



SOURCE-FIELD APPROACH TO PHASE-MATCHED ... PHYSICAL REVIEW A 108, 063713 (2023)

First, we calculate where
d ) ) () ) |,3|2 factorized state
dt <[ n ()0 (t)D ([ n ()97 (t)]) Px(0) = = single excitation state B14)
N

+ adjoint(m ). (BI11) If j # j/, one might think that

If] = j’, we can use the identity ( (j)(t)a(/ )([)> ( U?(Z))(O’(j,,)(l‘)) (BlS)
Cpp aq ’
a[(,i, /)(t)a‘;é,) )= a}ié,)(t)épr,q, (B12) since the atoms decay independently, but, in general, this is
) need not be the case if the atoms are prepared in an entangled
to obtain state. On the other hand, when j # j/,
(032t @)) = (08 ))mm = 03 (0)e 8y, o D10 =00 D1). (B16)
(B13)

For j # j’, we use Eq. (B5) to obtain
|

N 1
I (o) A KR, it
O(j)(l‘)a(j )(t) — _E Z( Z Z TR El(( )0'35;1)(2‘)[ ;Szjﬂ)z”(t) O'g(é )(t)am’.nl/’]ak,\(f)elk R —i(o—on)
kA

260V =l m—1

1 hoe \" ¢ (A) Dy G (43 KR =i )

J J i v —i(wp—w )t
7 Z <2€0V> Z [[Lm/l ] akk (t)os, (t)oy ()e™ e "t B17)

kA j=1
which is written in normal order form. From Egs. (B1) and (BY), it follows that
N 1 N 1
a, (1) = hws 2 Z Z [M €l ] (J”)(t)e—lk-Rjnei(wk—wgz)z + l Fiany 172 Z Z [IL e G(A)] (’ )(t)
- i\2¢V ) - ok 3 n\2eV ) mi Tk
J’=1m"=-1 J'=1m"=-1

% &Ry pilor—on) (B18)

We now use the standard approach [23] of formally integrating Eq. (B18),

g \'? Vo R ilon s’
ax, t) = a, 0)+ - <2 V) Z Z Wy - ek / Y yil]//’s)(t Ye~ iRy i(wx—ws)t
€0 -
j : =

+ l Fl(,()k 12 ﬁ: 21: IL Y ()») /t dt/o_(]) (t)e*ikR/u ei(wk*wzl)f/ (B19)
W\2eV ) £ = N : 0 ' ’
and substituting it back into Eq. (B17). Since Eq. (B17) is normal ordered, all terms containing ax, (0) and aLA (0) will vanish
when expectation values are taken. When the summation over {k, A} in Eq. (B17) is carried out, there will be contributions to

Y. )(t) from atoms having j” # j’; however since we are neglecting atom-atom interactions, we keep only those terms with
] = j'. The summation over Kk is converted to an integral over k, which, in turn, leads to a delta function §(¢ — t'), so the atomic
operators are all evaluated at the same time and we can use Egs. (B12) and (B16). In this manner,

o wm) =~ LI 000 R0 (B20)
As a consequence, for arbitrary j and j’, we obtain
< D0l 0) = —yslo OPumd;; — (vs + D)o o )1 = 8. (B21)
having solution
(D)) = (62(0)e ™8, m8; ;0 + (02 (0)a U O))e™ P (1 =5, ;). (B22)
For the initial states given in Egs. (1) or (2), this reduces to
(o3 o)) = P (0™ 8,8 ;. (B23)

The Kronecker delta §; ; is present since we have allowed for at most one excitation in our initial state.
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When Eq. (B23) is substituted into Eq. (B8), the expression for the field intensity reduces to

hw3sys

3

3, (Qu30) = === p ()" Z [Qua(6a. g5, 4 [Qus (6. &)y, 4, (B24)

mm'=—1

Using the identity
1 1
1

D [QusOn T 5 1QusOas )Ty, 5, = D [Qun(Os, #5)T; 5 [QuiOn, 0))s, 5, = 3 (B25)

m=—1 m=—1

we arrive at Eq. (17). This result is independent of whether or not the excitation fields are co- or counterpropagating. In contrast
the emission on the lower transition is different for co- or counterpropagating excitation fields.

a. Lower transition

For emission on the lower transition, the calculation is somewhat more involved. The intensity at detector B, calculated from
Egs. (9), (5), and (16), is given by

N 1
9w .
Iy, 4,(251) = 8—2‘” Do D [Qualbs ¢l 4 [Qui 6. B0y, g (o) 1)o 1) a)e ™ oy, (B26)
T ji=1mm'=—1
where
ky1 = (wy1/¢)(Dp/Dp)(sin Op cos ¢ppX + sin O sin ¢pg§ + cos OpZ). B27)
The differential equation for (o' (1)o") (1)) is
d i (o () (DG . ,
dt( V()02 @) = (o)) ()61 ) () + adjoint(m <= m). (B28)

Following the same procedure we find used to find 0(’ )(t)o,ff,; (¢), we obtain

N
1 hwk 12 A kR, —i(wp—
o6l =2 :( ) > §j Wan - €T3 O[0,],0 ) = 033 O3 Jar, ()R 722
kA

ZEOV j=1m"=-1
1 fiog \/* al A y . .
—5 ( ) D [ - 6] af, ()0, (000 (1) Ry e, (B29)
h . 2¢pV o ki
We substitute Eq. (B18) into Eq. (B29) and carry out the integral over Kk to arrive at
d
2o 0o ) = =Ta{e 0o O) + il O ), (B30)
having solution
< (])(t)o, J )(l)> < (])(0)0.(] )(O)) -t + /l dt/e—l"z(l—t )(O' j)(l )O,(] )([ )> (B31)
Ol 1m' Im’ Vij'smm' 0 31 13
where
— (}\) lkgz-R»»r
P—— € - i B32
Vi = Vg 2||MII3 87 |2lul3) Z/ Db T D e B

and (03{ )(t)cr(’ )(1)) satisfies the differential equation

d Lo 00 (0) = —ysfosl o] @) (B33)

The second term in Eq. (B31) reflects the fact that the relative spatial phase of the 1-3 coherence between different atoms that
is created by the excitation fields is transferred to level 2 via spontaneous emission. Note that y;;,uw = Y38 . The solution of
Eq. (B33)is

(o)) = e (6(0)0 3 (0)) = e p33(0)e™ R (B34)

Although <O'3{) (0)0(’ )(0)) = p3q(0)e”( R, for our choice of initial conditions, it is important to note that, when j # j/, the

nonvanishing of (o%({ )(O)Ufg )(0)) depends on the correlation between the excited state amplitudes of different atoms. Using
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Egs. (B31), (B34), (B7), and (1)-(4), we then find
—Iht _ e*)/3t

e .
(00 0013 O) = iim — —— PO, (B35)

since (0,7 (0)a2)(0)) = 0.

Im
Substituting this solution into Eq. (B26), we find that the intensity emitted on the lower transition is

ha)21)/2]/% e Tatr _ o= vitr

3,(@s:1) =N o : v p33(0)0@)[1 + CPNCS o8], (B36)
where
0.3, O Qe 1011 120 2 m Op, - Op, L PRy =Ko Ry
3,08 8) = 2||M||3)|2N JZ:1 mmz::_ [Q1m (05 4’3)] [Q 168, ¢)]3, 3, € e i
J#

x Z/dQA[“M’ 'El((;)]*[’l’?am el((’;)] —iks2 R,y
Py

N

9 1 —1Ky —1 *
=N 2 Z [Qun (5. 8515, 5 [Qur1 B, By, g, € ey Z / dQue ™R () [(6), ]
jj=1mm'=—1
J#T
(B37)
and (ek My, isa spherical component of the polarization vector,
(), = Feosba/v2e*®, (V) = —sinby, (B38a)
(), = —ie*™ /N2 (e2), =0. (B38b)
The sums over j and j’ in Eq. (B37) are converted into spatial integrals using the prescription
Z f(R)) = / dRN(R)f(R), (B39)
where NV (R) is the atomic density given in Eq. (13).
a. Copropagating fields. For copropagating fields, with
ke = (kpy + ki2)Z = (w31/0)Z = (k32 + ka1)Z, (B40)
Eq. (B37) reduces to
IN-1)
Giy O 98) = —o—— D [Quns, 85Ty, 5 1Qui (O, By, 5, Z f du(e) [(€),]
mm'=—1
% g7K3a2/237K3a2/2 sin (KZL/Z) (B41)

(K:L/2)?
where
K = (k3 8in 04 cos ¢4 + ka1 sin 0 cos ¢p)X + (k3p Sin 04 sin ¢4 + kp; sin Op sin ¢p)§ + [k32(1 — cos64) + kp1 (1 — cos Op)]Z.
(B42)
Note that
e—Kfaz /2 e—K‘?az 2 — e—k§2a2 sin? 6, /2 e—kglaz sin” 6/2 e—kgzkﬂaz sin 6, sin O cos (¢a —¢B). (B43)

The sum in Eq. (B41) can be evaluated as

1
> 1QuEs. 6801, [Quii 6. d5)T5, > (), [(€),,]"

mm'=—1 A

1 in” 6 1 1
=3 |:cos2 O — sz A (1 —3sin’ 93):| ~ sin® 04 cos® O cos [2(¢a — ¢5)] + A sin (20,4) sin (205) cos (P4 — ¢5),
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1
Y Qs $0)T; [Qui O de)ly, Y (€) [(6),, ]

mm'=—1 A

1 sin” 0, 1.,
=—|1- + —sin” 64 cos [2(¢p4 — PB)]. (B44)
3 2 6
The integral over ¢, in Eq. (B41) can be calculated analytically if the e~#<°5(?4=#5) in that equation is expanded as

e 1O = [y(a) +2 ) u(a)(—1)" cos [m(pa — )], (B45)

m=1

where I, is a Bessel function of the first kind. It then follows that

2 1
/ dgs Y [Qun(s, &)1 [Qui O, 0y, Y (), [(€),,]
0

mm'=—1 A

27 ) sin29A .2 2 . . T . 9 2 2 . .
= 3 cos“ O — 5 (1 — 3sin 93) Io(ksakr1a” sin 04 sinOg) — 3 sin” 64 cos” Ogl, (ksrky1a” sin 04 sin Op)

— % sin (26,) sin (20p)1; (kyakaya® sin 6, sin 6), (B46a)

2 1
/0 dos Y 1QuuOa, da)Ty [Qui(6s. 9wy, 3 (), (), ]

mm'=—1 A
2 in%0
= Trr (l - sz A )10(k32k21a2 sin B4 sin Og) + % sin? Ou b (k3ako1a® sin 6, sin Og), (B46b)
independent of ¢p.
We then find

G; (6p) = M ndg sin 0, e sin’ 04/2 =5, °
05 \VB) — 4 o A A (KZL/z)Z

)
sin” 6, 1
X { <Cos2 O — ! > 4 (l — 3sin? 93))10(k32k21a2 sin @4 sinfg) — 3 sin? 6, cos? 9312(k32k21a2 sin 64 sin Og)

1
— E sin (29,4) sin (293 )Il (k32k2] a2 sin 9A sin 93)} s (B47a)

3(N-1) /” s k2 sin? gy SN (KL /2) sin® 6, o
Gy (0p) = ———— | dOysinGpe @S al2pmhasinifp/a X TTO ] — Io(ks2kaia® sin 6, sin @
3,(08) ) | doasiny K.L/27 57— Jfolkska A 8in 0p)

1
+2 sin” 0415 (k32kz1a sin 64 sin 6p) } : (B47b)

To get good approximations to these equations, let us assume that k3»k1a® sin 64 sin 6 > 1, allowing us to use the asymptotic
form for the Bessel functions, 1,,(z) ~ €*/+/2mz. In this limit

3N — 1 T — (k32 sin 64—k sin 0p)?a?/2 in2 (k2 (1 — 0 kor (1 — 0)1L/2
Gy, (0n) ~ ( )f dGAme . cos? (9A+93)51n {lk32(1 — cos 04) + ka1 (1 — cos B)]Z/ }’
4 0 2 k3pkoia? sin O {[k32(1 — cos 64) + ka1 (1 — cos6p)]}
(B48a)
T 2
G, 6p) ~ 3(N—-1) / d@A\/m{(kﬂ Sin 63 —kay sin 22 SN {[k32(1 — €08 64) + ko1 (1 — cos 93)]L/22} (B48b)
s 4 0 {[k32(1 — cos O4) + ka1 (1 — cos Op)]L/2}

If kspa > 1 the integrand is sharply peaked at 64 = sin’l(kgl sin Op/k3y), provided that kp; sin0p/ks» < 1, and the Fresnel
number, defined in Eq. (26), is greater than one. [There is also a peak near 64 = w — sin’l(km sin Op/ks3), but this is killed
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by the other factors provided k3, L >> 1, as we assume.] In those limits, we can approximate Eqs. (B48) as

3(N — 1) sin® [M(6)] k 2k n . -
G;, (0p) ~ ( ) sin” [M( l;)] cos ‘98\/1 . (ﬂ sin 03) M Sil’lz 05 / deAe—(kgz sin 64 —ky; sinOp) a2/2’ (B49a)
? 4kzav/2m [M(0p)] k k 0

32 32
2 T
Gas (0g) ~ 3(N —1) sin [M(Ql;)] Ao ko sinfa—hn sinGB)zuz/Z’ (B49b)
B dksra~/2m [M ()] 0
where
kaL[1 — /1 = (&2 sin5)"] + kay L(1 — cos 65)
My(6p) = . (B50)

2

By setting 64 = sin™!(ky; sin 0g/k3») — € in Egs. (B49) and extending the resulting integral over € from —oo to co, we obtain a
value of «/2m /ka for the integral, leading to Egs. (23).
In the forward direction, 6g = 0, we can use Eqs. (B47) to obtain

Bs1)

P ) ) )
Gy 2 (0) = 3(IN—1) in QAdQAe"‘§2“2 sin? g, /2 S [k32L sin“(64/2)] - sin” 6, .
0p,05 4 0

[ks2L sin®(64/2)12 2

The signal is unpolarized in the phase-matched direction. If k3pa > 1 the major contribution to the integral over 64 comes
from 64 < 1. (There is also a contribution near 4 = 7, but this is killed by the sin?[ks, L sin®(04 /2)1/1ksaL sin?(64 /2)1? factor
provided k3L >> 1, as we assume) and we can approximate G s (0) by

Gy, 5 (0~ 3(N 1) / R sin? [k32L9§/24] ”
[k22L63/4]
3N —1) » ( 1 )“
=" |2 1/F) — Foln [ 1+ — ) | 1. B52
2 ) { 32|: tan™ (1/F3) — FaIn |1+ 3 (B52)

This expression is valid if k3L 2 10 and k3pa 2 1. It gives the wrong value as k3, L ~ 0 (F3; ~ 00), since the contribution to the
integral near 4 = 7 makes an equal contribution in this limit; that is, as F3; ~ 00, the exact result given by Eq. (B51) is twice
that given by Eq. (B52).

b. Counterpropagating fields. We now set ky; & ks, ka1 — k2|l < 1, | kp1 — k3pla < 1, but |ws; — wa1] > (12 + 3). In
this limit, we can take over all the previous results simply by setting k>ja & ks,a = ka and replacing kL = kL + k3L ~ 0 in
Eqgs. (B47). As before, we expand the Bessel functions using their asymptotic forms to obtain

b4 : 2
G () ~ M / do, S?n_eAe—kzaz(sin Oa—sinf5)*/2 (2 (04 + 03) sin” [kL(cos 64 + cos 93)/22] , (B53a)
05 4ka~/2m Jo sin Op (k(cos 8y + cosOp)L/2)
G (Op) ~ 3(N / sin QA —k2¢12(31n 0—sin0z)2/2 sin? [kL(cos 84 + cos 93)/22] . (BS3b)
b sin 93 [kL(cos 84 + cosbp)/2]

It is not difficult to show that Ggp P (0) is still given by Eq. (B52), but the major contribution to the integral occurs for 64 ~ 7
B:9¥B

instead of 64 ~ 0.

The integrands in Egs. (35)) are sharply peaked at 64 = & — 6p, provided tan 6 > 1/(2kL) and sin 6 > 1/(ka). In this limit
the most of the factors in the integrands can be evaluated at 64 = m — 05 Setting 4, = 7 — 0 — €, we can approximate Egs. (35)
by

_ 00
Gy, 5. (O) ~ 3(N-1) deo— P (ccosty—e in6s/2)’ /2 sin? [kLe sin (93)/22
508 4ka2m J- [kLe sin (63)/2]
The phase-matched contribution of the intensity is unpolarized, in contrast to the copropagating case. Equation (B54) provides
an excellent approximation to the exact result, provided ka > 10, kL > 10, and F3, > 1.

(B54)

2. Joint probability density

The joint probability distribution Py, o,(S24, 25;¢,, T) is proportional to the function gy (24, 25;1-, T) given in Eq. (10).
Aslong as T > 0, negligibly small errors are introduced if we neglect the field creation and annihilation operators at time t = 0
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in evaluating g, o/ (24, Q2p; 1., T) [1]. In this manner we obtain

> ¥

mm'q.q'==1 j.j’.j".j"=1

Py ooy (824, 2p5 1, T) X

x (og) t)ol b + D)o (1 + 1oy (1),

ik3;-R; kR 71( Rr*k R/r
e R R g TR R g KR [Q 3]aA[Q*/1]aB[qu]aB[Qq 3]0!A

Using the quantum regression theorem [22] in connection with Egs. (B6), we can obtain

(o)t + Dol 1 + Do (1)

m'l

( (’)(t,)a(’ )(tr)o.l] )(l‘r)O'(jW)([r)> —I'ht + yj

q'3

For our initial conditions, the second term vanishes and the first contributes only if j = j" and j = j

(o3 o)t + o)t + 110 @) = p3a0)e e T8 . jL N8 (m, m)8(q. q))

(B5S5)
7F2t, _ e*VSI .
rang— e 6ol el ). B56)
Y3 —12
/" . Explicitly,
+ (03] )0 (] (O))e = Rire " e 75, j)8(j" j")8(m. m)8(q. q).  (BST)

where the 6 functions are equal to unity when all arguments are equal and vanish otherwise.
Equation (B57) is substituted into Eq. (B55), the summations over m, m’, ¢, q' are carried out, and the summations over

111

5J T

are converted to integrals using the prescription (B39), then we find that P, o, (R4, 25;¢,, T) is given by Eq. (43).
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