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Laser directed-energy deposition (DED) offers notable advantages in additive manufacturing (AM) for producing intricate 

geometries and facilitating material functional grading. However, inherent challenges such as material property inconsistencies 

and part variability persist, predominantly due to its layer-wise fabrication approach. Critical to these challenges is heat 

accumulation during DED, influencing the resultant material microstructure and properties. Although closed-loop control 

methods for managing heat accumulation and temperature regulation are prevalent in DED literature, few approaches 

integrate real-time monitoring, physics-based modeling, and control simultaneously in a cohesive framework. To address this, 

we present a digital twin (DT) framework for real-time model predictive control of process parameters of the DED for achieving 

a specific process design objective. To enable its implementation, we detail the development of a surrogate model utilizing 

Long Short- Term Memory (LSTM)-based machine learning which uses Bayesian Inference to predict temperatures across 

various spatial locations of the DED-built part. This model offers real-time predictions of future temperature states. In addition, 

we introduce a Bayesian Optimization (BO) method for Time Series Process Optimization (BOTSPO). Its foundational principles 

align with traditional BO, and its novelty lies in our unique time series process profile generator with a reduced dimensional 

representation. BOTSPO is used for dynamic process optimization in which we deploy BOTSPO to determine the optimal laser 

power profile, aiming to achieve desired mechanical properties in a DED build. The identified profile establishes a process 

trajectory that online process optimizations aim to match or exceed in performance. This paper elucidates components of the 

digital twin framework, advocating its prospective consolidation into a comprehensive digital twin system for AM.    

1. Introduction  

Laser directed-energy deposition (DED) is an additive manufacturing (AM) 

technique where powder or wire feedstock is introduced into a laser-formed 

moving melt pool, creating a deposition bead [1]. Stacking these beads 

produces a three-dimensional part [2]. Laser DED allows for near-net shape 

fabrication of freeform geometries with internal features and offers material 

grading unattainable by conventional methods, facilitating localized material 

optimization [3]. However, broad application of DED is currently limited by 

heterogeneity and anisotropy in DED part mechanical properties, as well as 

part-to-part variation, due to the incremental nature of DED fabrication [4].  

DED’s layer-wise fabrication, paired with high melt temperatures, induces 

cyclic thermal cycles, leading to unique microstructural textures [5]. The 

cumulative heat and additive nature create uneven thermal histories [6]. 

Although post-build treatments can moderate this, some DED phenomena, like 

δ-phase growth in Inconel 718, optimize subsequent treatments [7]. Thermal 

accumulation can result in chemical alterations due to selective evaporation of 

elements, while heterogeneous cooling conditions can result in spatially 

variate mechanical properties [8,9]. While hybrid additive manufacturing that 

introduces secondary energy sources can adjust microstructure, they increase 

costs and complexity [10]. Control of DED properties via control of laser power 

therefore remains a worthwhile technique [11]. Thermal objectives may be 

derived from experimentally observed insights, or solidification simulations 

using phase-field, cellular automata, or kinetic Monte Carlo techniques [12].  

Several works in DED sought to minimize part variations, using  

direct melt pool temperature measurements as an input for a PID controller. 

For instance, a rule-based controller was used to stabilize melt pool 

temperatures, reducing part-to-part porosity variation [13]. Such control 
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schemes fail to take advantage of disturbances known a priori, while 

feedforward control can proactively anticipate and compensate for such 

disturbances [14]. For instance, a virtual PID was employed in a heat transfer 

simulation to generate a feedforward control input [15]. Integrating these with 

feedback control compensates for discrepancies in the model versus real-

world conditions [16]. A hybrid feedback-feedforward system, merging a heat 

transfer model with a PI controller, effectively maintained melt pool 

temperatures by adjusting laser power [17]. However, such models may not 

intelligently track changes in system dynamics if such dynamics were not 

modelled explicitly. Incorporating additional physics to these closed-loop 

controllers typically increases the cycle time, reducing controller performance 

[18].  

Evidently, there is need for a manufacturing system model for DED that 1) 

models a target parameter, such as temperature or flaw concentration in the 

relevant regions that cannot be directly observed, 2) is updated during the 

online process to account for differences between the physical system and the 

virtual model, and 3) communicates changes in the system state to the real 

system, aiding control decisions based on these updated conditions [19]. Such 

a system is termed a digital twin (DT) [20,21]. Though many works have built 

so-called “digital twins” for DED that track model dynamics as a response to 

in-situ measurement data, these predictions are often not suited for online 

control due to the computational complexity and the lack of the characteristic 

bidirectional communication between the digital and physical twins [22]. As a 

result, these are more suited to be termed as “digital shadows” only.  

To build this digital twin for part temperature in DED, we must first 

construct a fast surrogate model for online evaluation. Various methods have 

been used for rapid, reduced-order temperature models in AM. Physics-

informed neural networks [23] were used to assess transient temperatures 

near a DED-like heat source [24]. However, modifications in boundary 

conditions, such as geometry changes, require extremely expensive retraining. 

GRU neural networks [25] and later, recurrent graph networks [26], were used 

for temperature prediction in DED parts. While they perform well for new 

geometries and longer time steps, their effectiveness under dynamic laser 

power variation remains untested. The heat conduction graph network [27] 

accommodates variable laser power, but its predictions lack the uncertainty 

quantification (UQ) and real-time prediction which is vital for the digital twin 

framework. UQ offers insights into model accuracy, a required feature for 

intelligent decision-making in the online system.  

Moving forward the offline trained surrogate model should be employed 

for online predictive control. In most cases, online predictive models need a 

process trajectory, which is obtained by offline optimization. As accurate DED 

simulations can involve detailed physics, they are typically expensive to 

execute. It is therefore beneficial to minimize the number of iterations in the 

optimization process [28]. Attempts at finding an optimized laser power profile 

of DED have been made; however, many require a fully differentiable surrogate 

model [29]. Differentiable simulations make the derivatives of objective 

functions with respect to process inputs directly available; however, they have 

very high memory requirements, which limits their applicability to part scale 

builds.  

Recognizing these challenges, the integration of digital twin technology 

within the laser DED process aligns with Industry 4.0’s drive towards intelligent 

manufacturing [30]. Digital twins, key elements of Industry 4.0, facilitate a 

dynamic manufacturing environment, enhancing real-time control and 

predictive accuracy through seamless integration of cyber-physical systems 

[31]. This approach not only embodies the principles of Industry 4.0 but also 

marks a significant advancement in adaptive, data-driven manufacturing 

process control and optimization [32].  

In this study, we present a digital twin architecture to control and optimize 

manufacturing processes, with the following contributions:  

We propose a digital twin framework for the additive manufacturing 

process that facilitates a bidirectional information exchange between 

virtual and physical systems where the framework incorporates online 

model predictive control for real-time process adjustments and offline 

model updates for enhanced prediction accuracy. Additionally, the 

framework mitigates sources of uncertainties including the “unknown of 

unknowns”.  

We develop a Bayesian LSTM architecture as a surrogate model which 

predicts the future temperature state by looking at the past measurable 

temperature state, and other input variables It handles the spatial-

temporal dynamics of the DED process and emphasizes significant past 

events while quantifying uncertainty—vital for informed decision-making 

within a digital twin framework. Different from conventional LSTMs, our 

model adopts Bayesian inference, utilizing Monte Carlo dropout methods 

to gauge predictive uncertainty by estimating Bayesian posterior 

distributions.  

We develop a low-dimensional representation for high dimensional time 

series of process inputs by decomposing high-dimensional laser profile 

time series into a set of low-dimensional parametric time series functions 

that capture distinct laser profile characteristics. This enables the use of BO 

to find an optimal time series profile with adaptive sampling using fewer 

samples. We demonstrate the capabilities of this method by optimizing a 

time series profile of laser power with the objective of maximizing heat 

treatment time throughout DED-built parts for better material quality.  

This paper is structured as follows: Section 2 delineates the architecture of 

a digital twin framework applied to additive manufacturing. Section 3 

discusses the implementation and validation of a Bayesian LSTM designed to 

forecast temperatures during laser DED. Section 4 explicates the novel 

Bayesian Optimization for Time Series Process Optimization (BOTSPO) method, 

which reduces the complexity of time- series data for laser power inputs in 

DED processes and examines its efficacy in deriving an optimal power profile. 

The paper concludes with a synopsis of its contributions and a discourse on 

prospective research directions.  

2. Digital Twin (DT) framework for the additive manufacturing 

process  

Many existing DTs only provide a “digital shadow” of the physical system. 

In this work, a DT framework is proposed to integrate physics- based models 

together with real-time data collection (physics-based ML) for fast and 

accurate -property prediction and process optimization. Different from existing 

works that use system performance as objective function in optimization or 

decision making, we introduce two-way (physical-to-virtual and virtual-to-

physical) information-centric value proposition. Model Predictive Control 

(MPC) is included for anticipating and taking control actions based on current 

and future events, which distinguish it from linear–quadratic regulators and 

PID controllers. Unlike standard practices where model validation is a one-

time, offline event, our DT leverages continuous online data to ensure the 

model remains accurate and reliable, effectively bridging the gap between the 

physical and digital realms. This method advances how we implement model 

predictive control, offering a more adaptive and responsive system compared 

to conventional control strategies.  
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To demonstrate the above-described DT framework, we present a DT to 

support real-time DED manufacturing process optimization, which is shown in 

Fig. 1. The left block is the physical system, and the right block is the digital 

system. The two blocks in between show the bidirectional interplay between 

the physical system and the digital system. The physical system is the 

manufacturing process which is guided and programed by pre-process inputs 

and monitored by sensors. The process parameters are controlled, e.g., laser 

power. To achieve the objective of temperature control, the digital system is 

created using high fidelity finite element method (FEM) simulations which take 

geometric parameters, material parameters and process parameters as inputs, 

and predict temperature at each location of the built part. In this study, the 

process control parameters are the laser power at each step in time. To enable 

real time analysis and decision making, a surrogate time series model is 

needed to replace the expensive FEM simulations. Uncertainties exist in the 

DT including aleatoric uncertainty arising from inherent randomness and 

unavoidable variations (e.g., material and manufacturing variability, and 

sensor noise) and epistemic uncertainty arising from limited knowledge and 

data (e.g., numerical uncertainty, and model uncertainty). To account for both 

aleatoric and epistemic uncertainties, the predictive model is updated by 

combining data from both the physical and the digital system. The offline 

updated surrogate model is then fed into an online MPC system. Different from 

traditional feedback control techniques, MPC can better handle constraints 

and nonlinearities associated with the object or system of interest and 

performs process optimization to identify the best control action based on the 

current state of the system, a predictive model, and a decision- making 

objective. MPC optimizes the current timeslot while considering future 

timeslots through iterative optimization of a finite time- horizon, implemented 

sequentially. With real-time sensing, the capability of MPC allows the digital 

twin to make real-time (online) adjustments and optimizations in response to 

uncertainty and variations that cannot be predicted or mitigated offline, the 

so-called unknown of unknowns (i.e., unexpected or unforeseeable 

conditions).  

In this work, we focus on the development of the surrogate model and 

offline process optimization in the digital system, which are described in the 

following sections.  

3. The Bayesian LSTM network as a surrogate model  

3.1. Architecture of the Bayesian LSTM model  

To be effective for real-time operation, and tightly coupled operation with 

a physical system that it mirrors, the digital twin must be capable of rapid data 

processing and control [20]. As even simplified pure physics models are much 

too slow to run in real time, we turn to a machine learning (ML) model to 

estimate the temperature throughout the part [33]. We achieve this speedup 

using a recurrent neural network-based surrogate model, which also considers 

past events while making predictions. In this section, we describe the 

architecture of the model and the design decisions behind it [34].  

The surrogate model as shown in Fig. 2 predicts the temperature history at 

a particular point by taking the following features, as illustrated by Fig. 4: the 

distance from the point to the laser deposition point (DLt) and to the nearest 

surface boundary (DNt), the time at which the point is deposited (Tbirth), the 

laser power at the deposition time (LPbirth), the current laser power (LPt), and 

the measured temperature from the previous time window (Tt− 1:t− n). We 

identify these inputs from previous successful RNN-based modeling of the DED 

process [25], with the addition of the time and spatially variant laser power 

features. The current temperature prediction at a location can be written as a 

function of Bayesian LSTM model as follows:  

Tt = f(DLt, DNt, Tbirth, LPbirth, LPt,Tt− n )# (1)  

These input features are either time-variant or time-invariant. We found 

through experimentation that the Bayesian LSTM performed poorly when 

provided with time-invariant data as opposed to the time- variant data. This 

performance degradation occurs even if only a portion of the input data is 

time-invariant. Therefore, our surrogate model is composed of two primary 

data paths, one for time-variant data and the other for time-invariant data, 

which are eventually concatenated. The time-invariant data is fed to a forward 

layer with 100 nodes whose output corresponds to spatial information, such 

as location.  

In this model, we have two LSTM layers with 500 LSTM neuron units. This 

neuron count strikes a balance between computational efficiency and model 

complexity. LSTMs are preferred in our study for their architecture, which 

includes a memory cell and three gates. This enables the model to effectively 

regulate the flow of information, remembering patterns over long sequences 

and discarding irrelevant data [35]. The selection of these hyperparameters 

followed a tuning process to ensure the model’s performance is maximized for 

 

Fig. 1. Schematic of our proposed Digital Twin Framework for DED Additive Manufacturing; In this paper we focus on the Bayesian LSTM, the Surrogate Model we selected, and the offline 

optimization, which aids the Model Predictive Control.  
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our specific dataset and task requirements. Their ability to handle complex 

dependencies makes them similar to GRUs for modeling the intricate thermal 

patterns in DED applications [36,37]. Their capability to utilize past data for 

future forecasts aligns with our need to monitor the evolving state of the DED-

built part [38]. Our enhanced Bayesian LSTM model integrates an attention  

temperature of the current time step of the selected node.  

 

Fig. 4. Snapshot of FEA simulation, illustrating extracted features. The laser, indicated by 

LPt, travels in the direction of the red arrow. The point of interest is represented by the 

pink star, which is at a distance DNt from the closest free surface and DLt from the laser. 

The laser power is recorded for the current time, as well as the time at which the first 

element containing the node was activated. When an element in the current layer is within 

the laser spot boundary, (A in the Fig.), it is activated. The final wall height is 30 mm. The 

location of the three nodes under consideration are included.  

layer [39]. Specifically, the attention mechanism in our Bayesian LSTM model 

operates by assigning varying weights to different time steps in the 

temperature data sequence, thereby allowing the network to ’attend’ more to 

moments with significant thermal activity and less to others [40, 41]. This 

facilitates the model’s ability to dynamically emphasize temperature 

anomalies or shifts that could lead to defects, enabling precise adjustments to 

process inputs.  

To enhance the model’s accuracy in representing the spatial variations in 

DED, we incorporated a feedforward layer with 100 nodes [42]. This 

feedforward layer aggregates the features extracted by the LSTM layers, 

combining the sequential temporal data processed by the LSTM with spatial 

correlations [40] Recognizing the importance of model robustness, we 

introduced post-LSTM dropout layers. Dropout techniques [43], serve as 

effective regularization tools that prevent overfitting. Our model employs 

Monte Carlo dropout to quantify uncertainty alongside mitigating overfitting 

by sampling with random node exclusion. Specifically, Monte Carlo dropout is 

applied during both the training and prediction phases to all the layers of the 

neural network, repeatedly ’turning off’ a random subset of neurons in the 

network [44]. This process creates multiple ’thinned’ networks, each 

generating its own predictions [45]. The variance among these samples 

indicates uncertainty. Through this architecture, our model can predict future 

temperature while simultaneously quantifying uncertainty.  

3.2. Bayesian LSTM model training strategy  

To train our Bayesian LSTM machine learning model, we used FEM 

simulations to generate a bank of simulated full-field temperature 

measurements for our test geometry. To that end, we used a GPU- accelerated 

explicit heat transfer model to simulate our test geometry’s temperature 

history across a range of deposition laser power profiles. Then, we sampled 

temperature histories from individual locations across the build, and used the 

temperatures experienced by these individual points to train the data-driven 

model. This approach is illustrated by Fig. 3.  

Fig. 4. illustrates the test geometry used in this work, which consists of a 

bidirectionally scanned thin wall constructed from Inconel 718 built on a 

substrate of low-carbon 1018 steel. The scanning speed was set to 7 mm/s, 

and the 1/e2 beam diameter was set to 2.24 mm. The build consists of 40 

consecutive 0.75 mm tall layers. The simulation parameters are calibrated to 

an in-house laser-powder DED machine, the Additive Rapid Prototyping 

Instrument (ARPI). A detailed discussion of the formulation of the thermal 

model and comparison of full-field temperature predictions with the physical 

DED system be found in Liao et al. [15]. The model was also proven to offer 

sufficiently accurate melt pool temperature predictions for laser power 

optimization in [17].  

Fig. 2. Architecture of the LSTM-based neural network to predict temperature at different spatial locations; time-invariant inputs include laser power at element birth (LPbirth), and Node 

deposition time (Tbirth), while time-varying inputs include distance from node to edge of built part (closest) (DNt), distance from laser deposition point to node (DLt), laser power at current 

time (LPt), and temperature of previous time step at the same location (Tt− n). The temporal output is the  
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A two-step method, combining Latin Hypercube sampling (LHS) and 

Markov-chain Monte Carlo (MCMC) was used to generate a representative 

library of laser power profiles; namely, LHS is used to sample from a space of 

parameters that describe the laser history. LHS is used for its ability to 

efficiently sample from the entire high-dimensional space of experimental 

parameters [46]. To accurately sample the space of possible laser profiles, the 

laser power profile was broken into three fundamental properties: frequency, 

mean, and variance. The frequency component captures how rapidly the laser 

power is allowed to change from one time step to the next. High-frequency 

changes are reflective of events such as rapid drops in laser power, as may be 

experienced in an optimized trajectory near a turnaround point [17]. The mean 

component alters the average of the laser power in the trajectory. Finally, the 

variance component gauges the extent of variability or fluctuation within the 

laser power trajectory. These three variables provide a comprehensive 

coverage of the parameter space [47].  

Using LHS, 50 parameter sets were generated within set bounds (Mean: 

400–700 W, Variance: 50–300 W, Frequency: 0–1 Hz) heuristically based on 

prior IN718 deposition experience. The profiles were then generated via 

MCMC in arbitrary unit space and scaled and shifted to the requested mean 

and variance. The signals were then filtered to the required temporal 

frequency with a 2nd-order low-pass Butterworth filter. The Butterworth 

filter is a general-use filter in signal processing with a flat frequency response 

in the passband [48].  

From each run of the FEM simulation, we collect various data which will 

form the input features to our surrogate model. Throughout the paper, we 

refer to “locations” of importance in the DED-built part; these locations are 

one-to-one mappings with nodes in the finite element model. At each time 

step, we record the input and output data required to train our machine 

learning model. The finite element simulation runs at an explicit time step of 

0.002 s. The full-field temperature field and training parameters are 

continuously gathered every 10 simulation steps, or every 0.02 s. We then 

repeat the simulation using different laser profiles, resulting in training 

datasets for each laser profile.  

To achieve location-agnosticism of the surrogate model, we must sample 

from datasets of multiple laser profiles from all the available 96000 nodes 

during training. For this purpose, we have developed a data management 

pipeline. Each sample used for training is a sliding window of time-series data 

[49] as shown in Fig. 5. During sampling, time windows are overlapped such 

that the latter half of data points in one window are also included as the 

former half of data points in the next window [50]. During training, individual 

time windows are sampled randomly from datasets of 80 laser power profiles 

of 280 s to create mini batches of samples.  

Using these mini-batches, training of the model proceeds using the 

gradient descent method. Loss is calculated using the evidence lower bound 

(ELBO) [51] method and is defined as follows:  

( ) L(ϕ,θ, x) := Ez∼qϕ(⋅|x)[lnpθ(x|z)] 

− DKL qϕ(⋅|x) ‖ p # (2)  where x is the observed data points, ϕ are the 

parameters defining the approximate posterior distribution, θ is the 

Parameters of the true intractable distribution, z is a latent (unknown) 

continuous random variable, pθ (x|z)is the true, intractable distribution of x, 

qϕ (⋅|x) is the  

 

Fig. 5. Schematic of sliding window which is applied to feed data while training the 

Bayesian LSTM Model. The sliding window has a length of 200- time steps, which is 2 s. 

The frequency is 50 Hz, and the sliding window slides for 100 time steps.  

approximate posterior, and DKL is the Kullbach-Leibler (KL) divergence from 

distribution pθ (⋅|x) to distribution qϕ (⋅|x). The ELBO loss function is originally 

described in Auto-Encoding Variational Bayes [51], and we found via 

experimentation that it is highly effective when used for training our surrogate 

model. The ELBO method stands out for uncertainty quantification due to its 

decomposition of the marginal likelihood into two interpretable components: 

the expected log-likelihood and the KL divergence. The first term, expected 

log-likelihood, quantifies how well the model explains the observed data, 

whereas the KL divergence penalizes deviations from the prior and acts as a 

regularize, preventing overfitting. This decomposition provides a robust 

balance between data fidelity and model complexity, ensuring a principled 

 

Fig. 3. Flowchart demonstrating the data preparation, simulation, and training strategy steps of Section 3.2 “Bayesian LSTM model training strategy”.   



V. Karkaria et al.                                                                                                                                                                                                                               Journal of Manufacturing Systems 75 (2024) 322–332 

327 

quantification of uncertainties. In the next section, we will look at the 

prediction capability of the Bayesian LSTM model.  

3.3. Evaluation of the LSTM Model  

In evaluating the performance of our Bayesian LSTM model, we compare 

the resulting outputs against simulated measurements. In our first evaluation 

we input the past measurable temperature or the actual temperature as an 

input. The LSTM model’s performance assessment is carried out using a set of 

20 distinct laser power profiles, each with a duration of 280 s, specifically 

reserved for validation purposes.  

In this case the models achieved an R2 score of 0.75, indicative of a good 

degree of accuracy and alignment with the expected outcomes. The R2 score, 

commonly referred to as the coefficient of determination, quantitatively 

measures the proportion of the variance in the dependent variable that is 

predictably explained by the independent variables in a regression model. This 

result was validated through k-fold cross- validation and independent set 

evaluation to ensure model robustness against overfitting.  

The temperature profiles for nodes 27550, 37550, and 32550 are shown 

over an extended period for a representative laser power profile in Fig. 6. 

These points were chosen to illustrate the thermal history at a variety of 

distances from the turnaround regions and part surface. Fig. 6. shows that the 

ground truth temperature (represented in orange) aligns closely with the LSTM 

predictions (shown in blue). The accompanying shaded region illustrates the 

uncertainty bounds, which are derived using a 95% confidence interval. By 

examining these diagrams, it is evident that while the model offers a 

reasonable approximation of the actual temperature profiles, the prediction 

quality is poorer when the laser is further from the node under investigation, 

with predictions tending to be higher than the ground truth simulation.  

For effective prediction of the internal temperatures of the fabricated 

part—temperatures which are inherently unobservable—the model can 

leverage prior temperature estimations from the Bayesian LSTM to 

subsequently predict upcoming temperatures. This sequential prediction will 

be important when interfaced with the physical plant. While the main 

emphasis of this study revolves around surface temperatures, where prior 

temperatures are assumed to be known, the LSTM may also be run using the 

temperature predictions at previous time steps as input. As shown in Fig. 7, 

the model reliably predicts internal temperatures with a confidence level of 

ninety-five percent for six seconds. Although the model demonstrates high 

predictive accuracy overall, the model’s reliance on its own outputs results in 

substantial error accumulation past the first temperature peak.  

In the digital twin context, the Bayesian LSTM model serves as a critical 

predictive tool for advanced manufacturing. By incorporating the Bayesian 

LSTM into the digital twin framework, the system can proactively monitor 

thermal behavior in real-time during DED processes and update its 

understanding of system dynamics. This integration is vital for precision in 

complex structures, where slight changes in deposition conditions can greatly 

affect the properties of built parts.  

4. Bayesian Optimization for Time Series Process Optimization 

(BOTSPO)  

4.1. Description of the BOTSPO method  

Digital twin technology underlines the essential link between offline 

analyses and online implementations. Offline optimization fine-tunes  

 

Fig. 7. Evaluation of Bayesian LSTM with its own temperature prediction as an input to the 

LSTM.  

parameters using historical data to enhance online predictive control 

effectiveness [52,53]. Fundamentally, offline optimization transcends mere 

preparatory operations, laying the foundation for the performance of online 

optimization [54].  

In this section, we develop a methodology to efficiently represent the laser 

power profile utilizing a minimal set of parameters as shown in  Fig. 8. Within 

the BO framework, we employ a Gaussian process (GP) model to capture the 

nonlinear relationships between laser profile parameters and the desired 

characteristics of laser profile along with their uncertainties, thereby enabling 

robust and efficient exploration and exploitation of the process design domain. 

In BO, as the dimensionality of the parameter space increases, the 

computational complexity of the GP inference grows exponentially, leading to 

prohibitive computational overheads [55]. This phenomenon, often referred 

to as the "curse of dimensionality," necessitates judicious selection of 

parameters to ensure the optimization remains tractable and efficient. We 

developed a Fourier series-based time series profile generator for laser power, 

leveraging its ability to dissect signals into sinusoids for clear frequency 

domain analysis and reconstruction of complex laser behaviors.  

To derive our time series generator, we start with a simple Fourier series 

profile [56]. Fourier series offer immense flexibility because they can 

approximate any periodic function with a weighted sum of sines.  

) 

y

  # (3)  

In the above Fourier series formula, the parameters A, n, f, and ϕ represent 

the amplitude, number of terms, frequency, and phase of the Fourier series 

respectively. To keep the number of parameters low, and  
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Fig. 6. Evaluation of the Bayesian LSTM model on test dataset for three locations in the thin wall with a sliding window prediction length of 2 s in future over a total duration of 280 s; 

Comparison of model prediction (blue line) and the actual value (orange line) with 95% uncertainty band (grey shaded area).  
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Fig. 8. Framework illustrating the data flow in Bayesian Optimization for Time Series Process optimization (BOTSPO). This application of BOTSPO is specifically  
illustrated for finding the optimal laser power for DED.  

to increase the flexibility of the time series profile generator we introduce ΔA, 

Δf and Δϕ.  

) 

y(t) = (A + n## 

(4)  

In the above time series generator, we employ a modified Fourier series 

characterized by three parameters: ΔA, Δf, andΔϕ. The ΔA parameter 

represents the rate of change of amplitude, adding adaptability to the model 

by allowing the amplitude to evolve over time. Concurrently, Δf signifies the 

rate of change of frequency, enabling the model to responsively adjust the 

oscillation frequency of the laser power. Lastly, Δϕ describes the rate of change 

of the wave’s phase, ensuring the model can compensate for temporal shifts 

in the laser power profile for alignment with real-world observations. The 

introduction of these rates of change (Δparameters) provides the 

representation with the flexibility to change its morphology gradually during 

the build while only introducing a three new terms.  

Temporal trends and seasonality are essential components when modeling 

time series data, which comprises data points listed at successive time 
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intervals. A temporal trend, signified by the term t in the equation y′
(t) = y(t) + 

T⋅t, denotes a consistent trajectory the data adheres to over time. The 

coefficient T represents the slope, capturing whether the laser power profile 

gradually increases, decreases, or remains stable over time. While the Fourier 

terms could theoretically capture such a trend, explicitly implementing a linear 

trend reduces the burden on the sinusoidal terms to represent noncyclic 

behavior.  

On the other hand, seasonality captures recurring local behavior in a time 

profile. This cyclic behavior is embodied in the term Ssin(2π⋅t⋅SF) in the 

equation. Here, S adjusts the amplitude of the seasonal fluctuation, SF 

represent the frequency in which this cyclicity is captured, and the sine 

function represents the cyclical pattern. Seasonality can also be captured by a 

custom function if the underlying cyclic behavior is known. By integrating both 

the temporal trend and seasonality, the equation y′
(t) provides a 

comprehensive portrayal of the laser power profile over time, ensuring the 

digital twin closely mirrors real-world dynamics.  

y′(t) = y(t) + Tt + Ssin(2πt⋅SF) (5)  

In total, the system utilizes ten tunable parameters, encompassing 

amplitude, frequency, phase, their rates of change, and temporal dynamics to 

accurately capture and represent the laser power profile over time, yielding a 

robust and adaptive model for real-world applications.  

The selection of ten parameters for the time series generator was 

empirically determined to strike a balance between model complexity and 

computational efficiency. These terms allow for a sufficiently detailed 

representation of the laser power profile (time series profile), capturing the 

essential dynamics without overfitting, which is a common concern with more 

parameters [57].  

To optimize the time series laser power profile, we employed BO, a model-

based optimization approach for maximizing GP Models. The GP Model 

function links the ten adjustable parameters of our time series to the target 

objective. Denoting the ten parameters as p where p = [p1, p2, 

…, p10] and the heat treatment time as f(p), the GP Model will be,  

f(p) ∼ GP(m(p),k(p,p′))# (6)  where m(p) is the mean function and 

k(p,p′
) is the covariance function or kernel. In our study, we employed the 

radial basis function (RBF) [58]. The Radial Basis Function (RBF) kernel is a 

covariance function used in Gaussian processes that measures similarity based 

on the Euclidean distance between points in the input space, with points closer 

to each other having higher covariance. It is recommended to set an upper 

limit, and lower limit of the ten parameters of the time-series profile generator 

while linking the time-series profile generator to the BOTSPO. The time-series 

profile generator can generate a wide range of time series profiles which might 

not be required for all the applications, and this limit on the parameters should 

be made according to domain knowledge.  

Our optimization sequence, as outlined in Fig. 8, initiates with Latin 

hypercube sampling to establish an initial Gaussian Process (GP) model, setting 

the stage for capturing the underlying function dynamics of the DED. Under 

this setup, the Latin hypercube sampling method is employed to efficiently 

cover the 10 dimensional parameter space. This initial GP model then serves 

as a probabilistic surrogate for the objective function, facilitating the 

estimation of both the function’s value and uncertainty across the parameter 

space. Then, BO focuses on the objective function and leverages the ten 

parameters to generate a respective time series laser profile. Following the 

initialization phase, the BO process exploits the GP posterior to identify regions 

in the parameter space that likely contain optimal solutions. To make this 

selection, we employ the Upper Confidence Bound (UCB) as our acquisition 

function, formulated as:  

UCB(x) = μ(x) + κσ(x)# (7) where μ(x) is the GP posterior mean, 

σ(x) represents the standard deviation, and κ is an exploration-exploitation 

parameter that dictates the trade-off between exploring 

uncertain regions and exploiting known optima. By adjusting κ, we can 

finetune the balance between exploration and exploitation in our 

optimization routine. As iterations progress, the GP model is updated with 

the newly observed data, refining the predictive landscape. The BO iteratively 

utilizes the UCB acquisition function to select new samples, specifically 

targeting regions that promise the most significant potential improvement. It 

guides the search towards an optimal laser power profile by aiming to 

maximize the UCB with respect to the objective function as shown in Eq. (10) 

that is characterized by the ten parameters.  

To dynamically strike an optimal balance between exploration and 

exploitation in our BO process, we implemented an adaptive approach for 

the parameter κ, leveraging recent uncertainties in the GP model predictions. 

Specifically, we designed an adaptive κ, defined by:  

κadjusted(i) = βbase(i)⋅(1 + α⋅ρ)# (8)   

βbase(i) = β0⋅γi# (9)  

Here, i denotes the iteration count, β0 is a base value, γ is the decay factor 

fixed at 0.90, and ρ calculates the standard deviation, which quantifies the 

mean uncertainty over the previous five BOTSPO iterations. The uncertainty 

adjustment factor α is set to 0.1. By scaling κ with a base value β0 and an 

decay factor γi, we ensure that exploration is more aggressive in early 

iterations to discover the potential regions of interest and gradually becomes 

more refined. The inclusion of a responsiveness factor α multiplied by the 

recent prediction uncertainty ρ allows κ to adjust dynamically, promoting a 

balance between exploration and exploitation based on the evolving 

confidence in the model’s predictions [55]. By incorporating this adaptive 

approach, our optimization process can respond flexibly to the changing 

dynamics and uncertainties inherent in modeling of the DED process, 

providing a more responsive and efficient search for optimal laser profiles.  

Striking an equilibrium between the exploration of parameter domains 

and the exploitation of regions of high performance is pivotal. BOTSPO’s 

algorithmic architecture, characterized by its adaptive mechanism, inherent 

noise robustness, and sampling efficiency [52], is important for 

manufacturing process optimization when the cost of collecting data is high. 

This is particularly crucial for manufacturing process optimization, where the 

cost of data collection is high. The use of Bayesian methods allows BOTSPO 

to make informed decisions about which points in the parameter space to 

sample next, leveraging prior knowledge to improve both exploration and 

exploitation strategies. In the next section, we will look at the results 

achieved by the BOTSPO method in the context of DED. 4.2. Results from the 

BOTSPO method  

For our objective function, we aimed to maximize the heat treatment time 

of the material used in the simulation, which is defined as follows, ⎛} ⎞ 

≤ dfij ≤ Tmax 
 ⎠##

# (10)   

Where T is the heat treatment time, N is the total number of nodes, r is the 

data collection rate, Tminand Tmax are the minimum and maximum temperatures 

of the desired range, dfij is the temperature at the j− th index for the i− th node, 

min{j|Tmin ≤ dfij ≤ Tmax}) is the first index where the temperature is within the 

desired range of the i− th node, and max{j|Tmin ≤ dfij ≤ Tmax}) is the last index 

where the temperature is within the desired range of the i− th node.  

In DED of IN718, multiple precipitates drive improved strength in IN718, 

including the body centered tetragonal Ni3Nb γ′′ phase, which directly 

improves material strength [59], and the orthorhombic Ni3Nb δ phase, whose 

plate-like morphology has been demonstrated to cut up brittle Nb-rich Laves 

phases, thus improving the effectiveness of post-build heat treatments [7]. Xie 

et al. [60], identified using data-driven techniques that the local strength of 

IN718 parts made using laser-powder DED was related to the time spent 

between 654 ◦C and 857 ◦C. As typical aging times for IN718 are in the range of 
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hours at the effective soak temperatures [61] the objective was set to strictly 

maximize the in-situ age time.  

In Fig. 9, we present the BO progression, illustrating the advancement of 

the laser power profiles from the preliminary first iteration to the concluding 

50th iteration. Initially, the GP model is trained utilizing a dataset of 50 laser 

power profile samples prior to its integration into the BOTSPO algorithm. This 

pre-training of the GP Model is imperative as it establishes a foundational 

understanding of the underlying parameter space, facilitating more informed 

and efficient exploratory decisions in subsequent optimization stages.  

In Fig. 10, the BO function call history is delineated. In the preliminary 

iterations, there is a predominant focus on exploration to determine the 

optimal power profile to maximize the heat treatment time. Later stages 

exhibit plateaus, indicating a stable state and exploitation. A notable strength 

of BO, and subsequently BOTSPO, lies in its sample efficiency: it requires fewer 

data points relative to traditional techniques, thus achieving optimal 

parameter discernment at a reduced computational expense.  

The parameters outlined in Table 1 control the build quality by influencing 

the laser power profile in the DED process. The "Amplitude of Fourier (A)" sets 

the base intensity of the laser; a higher amplitude translates to more energy 

input, essential for initial layers. The "Frequency of Fourier (f)" controls the 

oscillation frequency of laser intensity, affecting energy distribution over time. 

"Rate of Change in  

Amplitude (ΔA)" and "Rate of Change for Phase Shift (Δϕ)" adjust the laser’s 

response to thermal dynamics during printing. "Linear Trend Coefficient (T)" 

indicates a general trend in laser power requirement as the build progresses. 

"Seasonality Amplitude (S)" and “Frequency of Seasonality (SF)”accounts for 

periodic variations in laser energy needs due to changes in the build geometry 

or material state. The "Rates of Change for Frequency (Δf)" adapts the laser’s 

temporal response to the evolving thermal profile.  

In the optimum power sequence (Fig. 9, right), the laser power is initially 

high. This is likely due to the longer heat treatment times at the beginning of 

the thin-wall build, as observed in previous works [29]. The optimizer thus 

sought to maximize this effect by driving up the early laser power. As the thin 

wall build progressed, the radiative and convective heat transfer increased; like 

a fin, the build became more efficient in rejecting heat and the amount of time 

in the heat treatment range decreased for the higher locations. The optimizer 

thus did not seek to increase the laser power in later parts of the build, as even 

laser powers at the top of the specified range did not substantially improve the 

total heat treatment duration.  

This result, while increasing the average heat treatment duration in  

 

Fig. 10. BOTSPO function calls. The function call depicts the optimization history used to 

find the optimal laser power in this paper.  

Table 1  
Parameter Values of the Obtained Optimal Laser Power Profile at iteration 50 of 

BOTSPO.   
Parameter Name  Value  

Amplitude of Fourier (A)   6.89  

Frequency of Fourier (f)   1.60  
Number of Terms of Fourier (n)   1.00  
Phase Shift of Fourier (ϕ)   0.71  
Linear Trend Coefficient (T)   -90.0  
Seasonality Amplitude (S)   45.0  
Rates of Change for Frequency (Δf)   -0.27  
Rates of Change for Amplitude (ΔA)   0.57  
Rates of Change for Phase Shift (Δϕ)   -0.85  
Frequency of Seasonality (SF)   0.94   

the part, does not achieve material homogeneity. Future work on the BOTSPO 

will implement multi-objective optimization that can balance joint objectives 

of maximizing heat treatment duration and homogeneity, thus preventing the 

front-biased result in this work.  

Utilizing the proposed methodology allows us to determine an offline laser 

power profile, serving as a foundational process trajectory for online predictive 

control during the laser-based additive manufacturing process. This process 

trajectory can streamline real-time adjustments, enhancing consistent 

deposition quality and decreasing potential discrepancies arising from 

fluctuating process dynamics in laser-based additive manufacturing.  

 

Fig. 9. Laser Power Profiles at different BOTSPO iterations whose aim is to maximize heat treatment time; First figure is the laser power profile at iteration 1, second figure is the laser 

power profile at iteration 25, and the third figure is the laser power profile at iteration 50.  
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5. Conclusion  

In this paper, we proposed a digital twin framework for DED process control 

and optimization, an autonomous and systematic approach that enables 

repeatable fabrication of complex parts. This paper contributes two major 

components of implementing the overall digital twin framework: a data-

driven, surrogate model that enables dynamic prediction of temperatures with 

uncertainty quantification throughout the part in real-time, and a Bayesian 

Optimization Method for Time Series Process Optimization (BOTSPO) that 

determines appropriate laser power profiles for maximizing the part’s 

precipitation hardening time.  

First, we developed a Bayesian LSTM based surrogate model which is 

capable of temperature prediction for selected areas of the built part in real-

time. The Bayesian LSTM model is laser profile-agnostic and is capable of 

accurate location-based temperature prediction for simple geometries like 

thin walls. We demonstrated the capability by training and analyzing the 

predictive capabilities of the Bayesian LSTM model on a thin wall geometry 

with an R2 score of 0.75. This surrogate modelling capability will enable real-

time MPC in the online digital system when online monitoring information 

becomes available. The distinctiveness of our Bayesian LSTM lies in its 

architecture that not only retrospectively considers measurable states and 

input variables but also adeptly understands the spatial-temporal dynamics 

inherent to the DED process. It has been designed to provide emphasis on 

significant historical events, while also quantifying the inherent model 

uncertainty—a critical feature for making informed decisions in a digital twin 

environment. Unlike traditional LSTMs, our model incorporates Bayesian 

inference principles through the implementation of Monte Carlo dropout 

techniques. This allows for an approximation of Bayesian posterior 

distributions, thereby furnishing a quantifiable measure of uncertainty in its 

predictions, which is important for optimizing the manufacturing process.  

Secondly, we introduced BOTSPO, which efficiently identifies optimized 

laser power profiles to enhance heat treatment and precipitation hardening. 

Given the computational demands of high-fidelity FEM models, BOTSPO is 

engineered to ascertain optimal profiles with minimal function evaluations. 

Addressing the potentially infinite dimensionality of time series profiles, we 

employ a dimension reduction strategy by devising a time series profile 

generator that leverages a set of 10 parameters, facilitating a comprehensive 

exploration of the time series space without incurring prohibitive 

computational costs. This approach is crucial as BO’s efficiency inversely 

correlates with the number of parameters to optimize. We tested this 

approach with the objective of maximizing the heat treatment time for the 

thin-wall IN718 build and found that the heat treatment time was maximized 

to 38.19 s. The off-line process optimization result will serve as the reference 

process trajectory in online model predictive control.  

Future work will focus on the integration of the methods presented in this 

paper with a physical DED system. For physical realization of a DED- DT 

systems, there are additional tasks to be considered, including online 

optimization of the laser power profile, continuous model update using both 

online and off-line data, and drift correction of the surrogate model via model 

update from a more accurate sub-real-time model.  
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