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ABSTRACT

Laser directed-energy deposition (DED) offers notable advantages in additive manufacturing (AM) for producing intricate
geometries and facilitating material functional grading. However, inherent challenges such as material property inconsistencies
and part variability persist, predominantly due to its layer-wise fabrication approach. Critical to these challenges is heat
accumulation during DED, influencing the resultant material microstructure and properties. Although closed-loop control
methods for managing heat accumulation and temperature regulation are prevalent in DED literature, few approaches
integrate real-time monitoring, physics-based modeling, and control simultaneously in a cohesive framework. To address this,
we present a digital twin (DT) framework for real-time model predictive control of process parameters of the DED for achieving
a specific process design objective. To enable its implementation, we detail the development of a surrogate model utilizing
Long Short- Term Memory (LSTM)-based machine learning which uses Bayesian Inference to predict temperatures across
various spatial locations of the DED-built part. This model offers real-time predictions of future temperature states. In addition,
we introduce a Bayesian Optimization (BO) method for Time Series Process Optimization (BOTSPO). Its foundational principles
align with traditional BO, and its novelty lies in our unique time series process profile generator with a reduced dimensional
representation. BOTSPO is used for dynamic process optimization in which we deploy BOTSPO to determine the optimal laser
power profile, aiming to achieve desired mechanical properties in a DED build. The identified profile establishes a process
trajectory that online process optimizations aim to match or exceed in performance. This paper elucidates components of the
digital twin framework, advocating its prospective consolidation into a comprehensive digital twin system for AM.

1. Introduction

Although post-build treatments can moderate this, some DED phenomena, like
6-phase growth in Inconel 718, optimize subsequent treatments [7]. Thermal

Laser directed-energy deposition (DED) is an additive manufacturing (AM)
technique where powder or wire feedstock is introduced into a laser-formed
moving melt pool, creating a deposition bead [1]. Stacking these beads
produces a three-dimensional part [2]. Laser DED allows for near-net shape
fabrication of freeform geometries with internal features and offers material
grading unattainable by conventional methods, facilitating localized material
optimization [3]. However, broad application of DED is currently limited by
heterogeneity and anisotropy in DED part mechanical properties, as well as
part-to-part variation, due to the incremental nature of DED fabrication [4].

DED’s layer-wise fabrication, paired with high melt temperatures, induces

accumulation can result in chemical alterations due to selective evaporation of
elements, while heterogeneous cooling conditions can result in spatially
variate mechanical properties [8,9]. While hybrid additive manufacturing that
introduces secondary energy sources can adjust microstructure, they increase
costs and complexity [10]. Control of DED properties via control of laser power
therefore remains a worthwhile technique [11]. Thermal objectives may be
derived from experimentally observed insights, or solidification simulations
using phase-field, cellular automata, or kinetic Monte Carlo techniques [12].
Several works in DED sought to minimize part variations, using
direct melt pool temperature measurements as an input for a PID controller.
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cyclic thermal cycles, leading to unique microstructural textures [5]. The
cumulative heat and additive nature create uneven thermal histories [6].
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For instance, a rule-based controller was used to stabilize melt pool
temperatures, reducing part-to-part porosity variation [13]. Such control
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schemes fail to take advantage of disturbances known a priori, while
feedforward control can proactively anticipate and compensate for such
disturbances [14]. For instance, a virtual PID was employed in a heat transfer
simulation to generate a feedforward control input [15]. Integrating these with
feedback control compensates for discrepancies in the model versus real-
world conditions [16]. A hybrid feedback-feedforward system, merging a heat
transfer model with a Pl controller, effectively maintained melt pool
temperatures by adjusting laser power [17]. However, such models may not
intelligently track changes in system dynamics if such dynamics were not
modelled explicitly. Incorporating additional physics to these closed-loop
controllers typically increases the cycle time, reducing controller performance
[18].

Evidently, there is need for a manufacturing system model for DED that 1)
models a target parameter, such as temperature or flaw concentration in the
relevant regions that cannot be directly observed, 2) is updated during the
online process to account for differences between the physical system and the
virtual model, and 3) communicates changes in the system state to the real
system, aiding control decisions based on these updated conditions [19]. Such
a system is termed a digital twin (DT) [20,21]. Though many works have built
so-called “digital twins” for DED that track model dynamics as a response to
in-situ measurement data, these predictions are often not suited for online
control due to the computational complexity and the lack of the characteristic
bidirectional communication between the digital and physical twins [22]. As a
result, these are more suited to be termed as “digital shadows” only.

To build this digital twin for part temperature in DED, we must first
construct a fast surrogate model for online evaluation. Various methods have
been used for rapid, reduced-order temperature models in AM. Physics-
informed neural networks [23] were used to assess transient temperatures
near a DED-like heat source [24]. However, modifications in boundary
conditions, such as geometry changes, require extremely expensive retraining.
GRU neural networks [25] and later, recurrent graph networks [26], were used
for temperature prediction in DED parts. While they perform well for new
geometries and longer time steps, their effectiveness under dynamic laser
power variation remains untested. The heat conduction graph network [27]
accommodates variable laser power, but its predictions lack the uncertainty
quantification (UQ) and real-time prediction which is vital for the digital twin
framework. UQ offers insights into model accuracy, a required feature for
intelligent decision-making in the online system.

Moving forward the offline trained surrogate model should be employed
for online predictive control. In most cases, online predictive models need a
process trajectory, which is obtained by offline optimization. As accurate DED
simulations can involve detailed physics, they are typically expensive to
execute. It is therefore beneficial to minimize the number of iterations in the
optimization process [28]. Attempts at finding an optimized laser power profile
of DED have been made; however, many require a fully differentiable surrogate
model [29]. Differentiable simulations make the derivatives of objective
functions with respect to process inputs directly available; however, they have
very high memory requirements, which limits their applicability to part scale
builds.

Recognizing these challenges, the integration of digital twin technology
within the laser DED process aligns with Industry 4.0’s drive towards intelligent
manufacturing [30]. Digital twins, key elements of Industry 4.0, facilitate a
dynamic manufacturing environment, enhancing real-time control and
predictive accuracy through seamless integration of cyber-physical systems
[31]. This approach not only embodies the principles of Industry 4.0 but also
marks a significant advancement in adaptive, data-driven manufacturing
process control and optimization [32].

In this study, we present a digital twin architecture to control and optimize

manufacturing processes, with the following contributions:

We propose a digital twin framework for the additive manufacturing
process that facilitates a bidirectional information exchange between
virtual and physical systems where the framework incorporates online
model predictive control for real-time process adjustments and offline
model updates for enhanced prediction accuracy. Additionally, the
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framework mitigates sources of uncertainties including the “unknown of
unknowns”.

We develop a Bayesian LSTM architecture as a surrogate model which
predicts the future temperature state by looking at the past measurable
temperature state, and other input variables It handles the spatial-
temporal dynamics of the DED process and emphasizes significant past
events while quantifying uncertainty—uvital for informed decision-making
within a digital twin framework. Different from conventional LSTMs, our
model adopts Bayesian inference, utilizing Monte Carlo dropout methods
to gauge predictive uncertainty by estimating Bayesian posterior
distributions.

We develop a low-dimensional representation for high dimensional time
series of process inputs by decomposing high-dimensional laser profile
time series into a set of low-dimensional parametric time series functions
that capture distinct laser profile characteristics. This enables the use of BO
to find an optimal time series profile with adaptive sampling using fewer
samples. We demonstrate the capabilities of this method by optimizing a
time series profile of laser power with the objective of maximizing heat
treatment time throughout DED-built parts for better material quality.

This paper is structured as follows: Section 2 delineates the architecture of
a digital twin framework applied to additive manufacturing. Section 3
discusses the implementation and validation of a Bayesian LSTM designed to
forecast temperatures during laser DED. Section 4 explicates the novel
Bayesian Optimization for Time Series Process Optimization (BOTSPO) method,
which reduces the complexity of time- series data for laser power inputs in
DED processes and examines its efficacy in deriving an optimal power profile.
The paper concludes with a synopsis of its contributions and a discourse on
prospective research directions.

2. Digital Twin (DT) framework for the additive manufacturing
process

Many existing DTs only provide a “digital shadow” of the physical system.
In this work, a DT framework is proposed to integrate physics- based models
together with real-time data collection (physics-based ML) for fast and
accurate -property prediction and process optimization. Different from existing
works that use system performance as objective function in optimization or
decision making, we introduce two-way (physical-to-virtual and virtual-to-
physical) information-centric value proposition. Model Predictive Control
(MPC) is included for anticipating and taking control actions based on current
and future events, which distinguish it from linear—quadratic regulators and
PID controllers. Unlike standard practices where model validation is a one-
time, offline event, our DT leverages continuous online data to ensure the
model remains accurate and reliable, effectively bridging the gap between the
physical and digital realms. This method advances how we implement model
predictive control, offering a more adaptive and responsive system compared
to conventional control strategies.
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To demonstrate the above-described DT framework, we present a DT to
support real-time DED manufacturing process optimization, which is shown in
Fig. 1. The left block is the physical system, and the right block is the digital
system. The two blocks in between show the bidirectional interplay between
the physical system and the digital system. The physical system is the
manufacturing process which is guided and programed by pre-process inputs
and monitored by sensors. The process parameters are controlled, e.g., laser
power. To achieve the objective of temperature control, the digital system is
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3. The Bayesian LSTM network as a surrogate model
3.1. Architecture of the Bayesian LSTM model

To be effective for real-time operation, and tightly coupled operation with
a physical system that it mirrors, the digital twin must be capable of rapid data
processing and control [20]. As even simplified pure physics models are much
too slow to run in real time, we turn to a machine learning (ML) model to
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Fig. 1. Schematic of our proposed Digital Twin Framework for DED Additive Manufacturing; In this paper we focus on the Bayesian LSTM, the Surrogate Model we selected, and the offline

optimization, which aids the Model Predictive Control.
created using high fidelity finite element method (FEM) simulations which take
geometric parameters, material parameters and process parameters as inputs,
and predict temperature at each location of the built part. In this study, the
process control parameters are the laser power at each step in time. To enable
real time analysis and decision making, a surrogate time series model is
needed to replace the expensive FEM simulations. Uncertainties exist in the
DT including aleatoric uncertainty arising from inherent randomness and
unavoidable variations (e.g., material and manufacturing variability, and
sensor noise) and epistemic uncertainty arising from limited knowledge and
data (e.g., numerical uncertainty, and model uncertainty). To account for both
aleatoric and epistemic uncertainties, the predictive model is updated by
combining data from both the physical and the digital system. The offline
updated surrogate model is then fed into an online MPC system. Different from
traditional feedback control techniques, MPC can better handle constraints
and nonlinearities associated with the object or system of interest and
performs process optimization to identify the best control action based on the
current state of the system, a predictive model, and a decision- making
objective. MPC optimizes the current timeslot while considering future
timeslots through iterative optimization of a finite time- horizon, implemented
sequentially. With real-time sensing, the capability of MPC allows the digital
twin to make real-time (online) adjustments and optimizations in response to
uncertainty and variations that cannot be predicted or mitigated offline, the
so-called unknown of unknowns (i.e., unexpected or unforeseeable
conditions).

In this work, we focus on the development of the surrogate model and
offline process optimization in the digital system, which are described in the
following sections.

estimate the temperature throughout the part [33]. We achieve this speedup
using a recurrent neural network-based surrogate model, which also considers
past events while making predictions. In this section, we describe the
architecture of the model and the design decisions behind it [34].

The surrogate model as shown in Fig. 2 predicts the temperature history at
a particular point by taking the following features, as illustrated by Fig. 4: the
distance from the point to the laser deposition point (DL:) and to the nearest
surface boundary (DN;), the time at which the point is deposited (Tsi), the
laser power at the deposition time (LPirts), the current laser power (LP;), and
the measured temperature from the previous time window (T 1:+- n). We
identify these inputs from previous successful RNN-based modeling of the DED
process [25], with the addition of the time and spatially variant laser power
features. The current temperature prediction at a location can be written as a
function of Bayesian LSTM model as follows:

Te=f(DLy, DNt  Thirth,  LPpirth, LPyTe-n ) (1)

These input features are either time-variant or time-invariant. We found
through experimentation that the Bayesian LSTM performed poorly when
provided with time-invariant data as opposed to the time- variant data. This
performance degradation occurs even if only a portion of the input data is
time-invariant. Therefore, our surrogate model is composed of two primary
data paths, one for time-variant data and the other for time-invariant data,
which are eventually concatenated. The time-invariant data is fed to a forward
layer with 100 nodes whose output corresponds to spatial information, such
as location.

In this model, we have two LSTM layers with 500 LSTM neuron units. This
neuron count strikes a balance between computational efficiency and model
complexity. LSTMs are preferred in our study for their architecture, which
includes a memory cell and three gates. This enables the model to effectively
regulate the flow of information, remembering patterns over long sequences
and discarding irrelevant data [35]. The selection of these hyperparameters
followed a tuning process to ensure the model’s performance is maximized for
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our specific dataset and task requirements. Their ability to handle complex
dependencies makes them similar to GRUs for modeling the intricate thermal
patterns in DED applications [36,37]. Their capability to utilize past data for
future forecasts aligns with our need to monitor the evolving state of the DED-
built part [38]. Our enhanced Bayesian LSTM model integrates an attention
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Monte Carlo dropout to quantify uncertainty alongside mitigating overfitting
by sampling with random node exclusion. Specifically, Monte Carlo dropout is
applied during both the training and prediction phases to all the layers of the
neural network, repeatedly ‘turning off’ a random subset of neurons in the
network [44]. This process creates multiple ‘thinned’ networks, each

Fig. 2. Architecture of the LSTM-based neural network to predict temperature at different spatial locations; time-invariant inputs include laser power at element birth (LPy;), and Node

deposition time (Tirs), while time-varying inputs include distance from node to edge of built part (closest) (DN,), distance from laser deposition point to node (DL;), laser power at current

time (LP;), and temperature of previous time step at the same location (T;-,). The temporal output is the
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temperature of the current time step of the selected node.

Fig. 4. Snapshot of FEA simulation, illustrating extracted features. The laser, indicated by
LP,, travels in the direction of the red arrow. The point of interest is represented by the
pink star, which is at a distance DN, from the closest free surface and DL, from the laser.
The laser power is recorded for the current time, as well as the time at which the first
element containing the node was activated. When an element in the current layer is within
the laser spot boundary, (A in the Fig.), it is activated. The final wall height is 30 mm. The
location of the three nodes under consideration are included.

layer [39]. Specifically, the attention mechanism in our Bayesian LSTM model
operates by assigning varying weights to different time steps in the
temperature data sequence, thereby allowing the network to ‘attend’ more to
moments with significant thermal activity and less to others [40, 41]. This
facilitates the model’s ability to dynamically emphasize temperature
anomalies or shifts that could lead to defects, enabling precise adjustments to
process inputs.

To enhance the model’s accuracy in representing the spatial variations in
DED, we incorporated a feedforward layer with 100 nodes [42]. This
feedforward layer aggregates the features extracted by the LSTM layers,
combining the sequential temporal data processed by the LSTM with spatial
correlations [40] Recognizing the importance of model robustness, we
introduced post-LSTM dropout layers. Dropout techniques [43], serve as
effective regularization tools that prevent overfitting. Our model employs

generating its own predictions [45]. The variance among these samples
indicates uncertainty. Through this architecture, our model can predict future
temperature while simultaneously quantifying uncertainty.

3.2. Bayesian LSTM model training strategy

To train our Bayesian LSTM machine learning model, we used FEM
simulations to generate a bank of simulated full-field temperature
measurements for our test geometry. To that end, we used a GPU- accelerated
explicit heat transfer model to simulate our test geometry’s temperature
history across a range of deposition laser power profiles. Then, we sampled
temperature histories from individual locations across the build, and used the
temperatures experienced by these individual points to train the data-driven
model. This approach is illustrated by Fig. 3.

Fig. 4. illustrates the test geometry used in this work, which consists of a
bidirectionally scanned thin wall constructed from Inconel 718 built on a
substrate of low-carbon 1018 steel. The scanning speed was set to 7 mm/s,
and the 1/e? beam diameter was set to 2.24 mm. The build consists of 40
consecutive 0.75 mm tall layers. The simulation parameters are calibrated to
an in-house laser-powder DED machine, the Additive Rapid Prototyping
Instrument (ARPI). A detailed discussion of the formulation of the thermal
model and comparison of full-field temperature predictions with the physical
DED system be found in Liao et al. [15]. The model was also proven to offer
sufficiently accurate melt pool temperature predictions for laser power
optimization in [17].
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A two-step method, combining Latin Hypercube sampling (LHS) and
Markov-chain Monte Carlo (MCMC) was used to generate a representative
library of laser power profiles; namely, LHS is used to sample from a space of
parameters that describe the laser history. LHS is used for its ability to
efficiently sample from the entire high-dimensional space of experimental
parameters [46]. To accurately sample the space of possible laser profiles, the
laser power profile was broken into three fundamental properties: frequency,
mean, and variance. The frequency component captures how rapidly the laser
power is allowed to change from one time step to the next. High-frequency
changes are reflective of events such as rapid drops in laser power, as may be
experienced in an optimized trajectory near a turnaround point [17]. The mean
component alters the average of the laser power in the trajectory. Finally, the
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Using these mini-batches, training of the model proceeds using the
gradient descent method. Loss is calculated using the evidence lower bound
(ELBO) [51] method and is defined as follows:

() L@B, X) := EengotnlInpslx| 2)]
- Dieqqel-1x) | p # (2) where x is the observed data points, ¢ are the
parameters defining the approximate posterior distribution, ¢ is the
Parameters of the true intractable distribution, z is a latent (unknown)

continuous random variable, ps (x| 2)is the true, intractable distribution of x,

qe (-]x) is the
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Fig. 3. Flowchart demonstrating the data preparation, simulation, and training strategy steps of Section 3.2 “Bayesian LSTM model training strategy”.

variance component gauges the extent of variability or fluctuation within the
laser power trajectory. These three variables provide a comprehensive
coverage of the parameter space [47].

Using LHS, 50 parameter sets were generated within set bounds (Mean:
400-700 W, Variance: 50-300 W, Frequency: 0-1 Hz) heuristically based on
prior IN718 deposition experience. The profiles were then generated via
MCMC in arbitrary unit space and scaled and shifted to the requested mean
and variance. The signals were then filtered to the required temporal
frequency with a 2nd-order low-pass Butterworth filter. The Butterworth
filter is a general-use filter in signal processing with a flat frequency response
in the passband [48].

From each run of the FEM simulation, we collect various data which will
form the input features to our surrogate model. Throughout the paper, we
refer to “locations” of importance in the DED-built part; these locations are
one-to-one mappings with nodes in the finite element model. At each time
step, we record the input and output data required to train our machine
learning model. The finite element simulation runs at an explicit time step of
0.002 s. The full-field temperature field and training parameters are
continuously gathered every 10 simulation steps, or every 0.02 s. We then
repeat the simulation using different laser profiles, resulting in training
datasets for each laser profile.

To achieve location-agnosticism of the surrogate model, we must sample
from datasets of multiple laser profiles from all the available 96000 nodes
during training. For this purpose, we have developed a data management
pipeline. Each sample used for training is a sliding window of time-series data
[49] as shown in Fig. 5. During sampling, time windows are overlapped such
that the latter half of data points in one window are also included as the
former half of data points in the next window [50]. During training, individual
time windows are sampled randomly from datasets of 80 laser power profiles
of 280 s to create mini batches of samples.
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Fig. 5. Schematic of sliding window which is applied to feed data while training the
Bayesian LSTM Model. The sliding window has a length of 200- time steps, which is 2 s.
The frequency is 50 Hz, and the sliding window slides for 100 time steps.

approximate posterior, and Dy is the Kullbach-Leibler (KL) divergence from

distribution ps (- | ) to distribution gs (- | x). The ELBO loss function is originally
described in Auto-Encoding Variational Bayes [51], and we found via
experimentation that it is highly effective when used for training our surrogate
model. The ELBO method stands out for uncertainty quantification due to its
decomposition of the marginal likelihood into two interpretable components:
the expected log-likelihood and the KL divergence. The first term, expected
log-likelihood, quantifies how well the model explains the observed data,
whereas the KL divergence penalizes deviations from the prior and acts as a
regularize, preventing overfitting. This decomposition provides a robust
balance between data fidelity and model complexity, ensuring a principled
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quantification of uncertainties. In the next section, we will look at the
prediction capability of the Bayesian LSTM model.

3.3. Evaluation of the LSTM Model

In evaluating the performance of our Bayesian LSTM model, we compare
the resulting outputs against simulated measurements. In our first evaluation
we input the past measurable temperature or the actual temperature as an
input. The LSTM model’s performance assessment is carried out using a set of
20 distinct laser power profiles, each with a duration of 280 s, specifically
reserved for validation purposes.

In this case the models achieved an R? score of 0.75, indicative of a good
degree of accuracy and alignment with the expected outcomes. The R?score,
commonly referred to as the coefficient of determination, quantitatively
measures the proportion of the variance in the dependent variable that is
predictably explained by the independent variables in a regression model. This
result was validated through k-fold cross- validation and independent set
evaluation to ensure model robustness against overfitting.

The temperature profiles for nodes 27550, 37550, and 32550 are shown
over an extended period for a representative laser power profile in Fig. 6.
These points were chosen to illustrate the thermal history at a variety of
distances from the turnaround regions and part surface. Fig. 6. shows that the
ground truth temperature (represented in orange) aligns closely with the LSTM
predictions (shown in blue). The accompanying shaded region illustrates the
uncertainty bounds, which are derived using a 95% confidence interval. By
examining these diagrams, it is evident that while the model offers a
reasonable approximation of the actual temperature profiles, the prediction
quality is poorer when the laser is further from the node under investigation,
with predictions tending to be higher than the ground truth simulation.

For effective prediction of the internal temperatures of the fabricated
part—temperatures which are inherently unobservable—the model can
leverage prior temperature estimations from the Bayesian LSTM to
subsequently predict upcoming temperatures. This sequential prediction will
be important when interfaced with the physical plant. While the main
emphasis of this study revolves around surface temperatures, where prior
temperatures are assumed to be known, the LSTM may also be run using the
temperature predictions at previous time steps as input. As shown in Fig. 7,
the model reliably predicts internal temperatures with a confidence level of
ninety-five percent for six seconds. Although the model demonstrates high
predictive accuracy overall, the model’s reliance on its own outputs results in
substantial error accumulation past the first temperature peak.

In the digital twin context, the Bayesian LSTM model serves as a critical
predictive tool for advanced manufacturing. By incorporating the Bayesian
LSTM into the digital twin framework, the system can proactively monitor
thermal behavior in real-time during DED processes and update its
understanding of system dynamics. This integration is vital for precision in
complex structures, where slight changes in deposition conditions can greatly
affect the properties of built parts.

4, Bayesian Optimization for Time Series Process Optimization
(BOTSPO)

4.1. Description of the BOTSPO method

Digital twin technology underlines the essential link between offline
analyses and online implementations. Offline optimization fine-tunes
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Fig. 7. Evaluation of Bayesian LSTM with its own temperature prediction as an input to the
LSTM.

parameters using historical data to enhance online predictive control
effectiveness [52,53]. Fundamentally, offline optimization transcends mere
preparatory operations, laying the foundation for the performance of online
optimization [54].

In this section, we develop a methodology to efficiently represent the laser
power profile utilizing a minimal set of parameters as shown in Fig. 8. Within
the BO framework, we employ a Gaussian process (GP) model to capture the
nonlinear relationships between laser profile parameters and the desired
characteristics of laser profile along with their uncertainties, thereby enabling
robust and efficient exploration and exploitation of the process design domain.
In BO, as the dimensionality of the parameter space increases, the
computational complexity of the GP inference grows exponentially, leading to
prohibitive computational overheads [55]. This phenomenon, often referred
to as the "curse of dimensionality," necessitates judicious selection of
parameters to ensure the optimization remains tractable and efficient. We
developed a Fourier series-based time series profile generator for laser power,
leveraging its ability to dissect signals into sinusoids for clear frequency
domain analysis and reconstruction of complex laser behaviors.

To derive our time series generator, we start with a simple Fourier series
profile [56]. Fourier series offer immense flexibility because they can
approximate any periodic function with a weighted sum of sines.

2 1 )

(1) = /'l( s ))
y
,,Z; 1, imod2-1; sin(2zf i+ (¢ # (3)
In the above Fourier series formula, the parameters A, n, f, and ¢ represent

the amplitude, number of terms, frequency, and phase of the Fourier series
respectively. To keep the number of parameters low, and
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Fig. 6. Evaluation of the Bayesian LSTM model on test dataset for three locations in the thin wall with a sliding window prediction length of 2 s in future over a total duration of 280 s;
Comparison of model prediction (blue line) and the actual value (orange line) with 95% uncertainty band (grey shaded area).
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Fig. 8. Framework illustrating the data flow in Bayesian Optimization for Time Series Process optimization (BOTSPO). This application of BOTSPO is specifically

illustrated for finding the optimal laser power for DED.

to increase the flexibility of the time series profile generator we introduce 4A,
Af and Ag.
2
A (
F3

y(t) = (A + nit#

S . I%sin(Zz(f+ iAf)it + (¢ + iA) )

(4)

In the above time series generator, we employ a modified Fourier series

characterized by three parameters: pAA, Af andA¢. The AA parameter
represents the rate of change of amplitude, adding adaptability to the model
by allowing the amplitude to evolve over time. Concurrently, Af signifies the
rate of change of frequency, enabling the model to responsively adjust the
oscillation frequency of the laser power. Lastly, A¢ describes the rate of change
of the wave’s phase, ensuring the model can compensate for temporal shifts
in the laser power profile for alignment with real-world observations. The
introduction of these rates of change (Aparameters) provides the
representation with the flexibility to change its morphology gradually during
the build while only introducing a three new terms.

Temporal trends and seasonality are essential components when modeling
time series data, which comprises data points listed at successive time
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intervals. A temporal trend, signified by the term t in the equation y'(t) =y(t) +
T-t, denotes a consistent trajectory the data adheres to over time. The
coefficient T represents the slope, capturing whether the laser power profile
gradually increases, decreases, or remains stable over time. While the Fourier
terms could theoretically capture such a trend, explicitly implementing a linear
trend reduces the burden on the sinusoidal terms to represent noncyclic
behavior.

On the other hand, seasonality captures recurring local behavior in a time

profile. This cyclic behavior is embodied in the term Ssin(27m.t-SF) in the
equation. Here, S adjusts the amplitude of the seasonal fluctuation, SF
represent the frequency in which this cyclicity is captured, and the sine
function represents the cyclical pattern. Seasonality can also be captured by a
custom function if the underlying cyclic behavior is known. By integrating both

the temporal trend and seasonality, the equation y'(t) provides a

comprehensive portrayal of the laser power profile over time, ensuring the
digital twin closely mirrors real-world dynamics.

y'(t) = y(t) + Tt + Ssin(2rtt-SF) (5)

In total, the system utilizes ten tunable parameters, encompassing
amplitude, frequency, phase, their rates of change, and temporal dynamics to
accurately capture and represent the laser power profile over time, yielding a
robust and adaptive model for real-world applications.

The selection of ten parameters for the time series generator was
empirically determined to strike a balance between model complexity and
computational efficiency. These terms allow for a sufficiently detailed
representation of the laser power profile (time series profile), capturing the
essential dynamics without overfitting, which is a common concern with more
parameters [57].

To optimize the time series laser power profile, we employed BO, a model-
based optimization approach for maximizing GP Models. The GP Model
function links the ten adjustable parameters of our time series to the target

objective. Denoting the ten parameters as p where p = [py, pa,

..., p1o] and the heat treatment time as f{p), the GP Model will be,

flp) ~ GP(m(p),k(p,p))#
k(p,p') is the covariance function or kernel. In our study, we employed the
radial basis function (RBF) [58]. The Radial Basis Function (RBF) kernel is a
covariance function used in Gaussian processes that measures similarity based
on the Euclidean distance between points in the input space, with points closer
to each other having higher covariance. It is recommended to set an upper
limit, and lower limit of the ten parameters of the time-series profile generator
while linking the time-series profile generator to the BOTSPO. The time-series
profile generator can generate a wide range of time series profiles which might
not be required for all the applications, and this limit on the parameters should
be made according to domain knowledge.

Our optimization sequence, as outlined in Fig. 8, initiates with Latin
hypercube sampling to establish an initial Gaussian Process (GP) model, setting
the stage for capturing the underlying function dynamics of the DED. Under
this setup, the Latin hypercube sampling method is employed to efficiently
cover the 10 dimensional parameter space. This initial GP model then serves
as a probabilistic surrogate for the objective function, facilitating the
estimation of both the function’s value and uncertainty across the parameter
space. Then, BO focuses on the objective function and leverages the ten
parameters to generate a respective time series laser profile. Following the
initialization phase, the BO process exploits the GP posterior to identify regions
in the parameter space that likely contain optimal solutions. To make this
selection, we employ the Upper Confidence Bound (UCB) as our acquisition
function, formulated as:

(6) where m(p) is the mean function and

UCB(x) = u(x) + ko(x)# (7) where p(x) is the GP posterior mean,

o(x) represents the standard deviation, and « is an exploration-exploitation
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parameter max {j|Tmi,, that dictates the trade-off between exploring
uncertain regions and exploiting known optima. By adjusting k, we can
finetune the balance between exploration and exploitation in our
optimization routine. As iterations progress, the GP model is updated with
the newly observed data, refining the predictive landscape. The BO iteratively
utilizes the UCB acquisition function to select new samples, specifically
targeting regions that promise the most significant potential improvement. It
guides the search towards an optimal laser power profile by aiming to
maximize the UCB with respect to the objective function as shown in Eq. (10)
that is characterized by the ten parameters.

To dynamically strike an optimal balance between exploration and
exploitation in our BO process, we implemented an adaptive approach for
the parameter k, leveraging recent uncertainties in the GP model predictions.
Specifically, we designed an adaptive k, defined by:

Kadjusted(i) = 6base(i)'(1 + ap)# (8)

Brase(i) = Boy'# (9)

Here, i denotes the iteration count, 8ois a base value, y is the decay factor
fixed at 0.90, and p calculates the standard deviation, which quantifies the
mean uncertainty over the previous five BOTSPO iterations. The uncertainty
adjustment factor « is set to 0.1. By scaling k with a base value 8oand an
decay factor y/, we ensure that exploration is more aggressive in early
iterations to discover the potential regions of interest and gradually becomes
more refined. The inclusion of a responsiveness factor a multiplied by the
recent prediction uncertainty p allows k to adjust dynamically, promoting a
balance between exploration and exploitation based on the evolving
confidence in the model’s predictions [55]. By incorporating this adaptive
approach, our optimization process can respond flexibly to the changing
dynamics and uncertainties inherent in modeling of the DED process,
providing a more responsive and efficient search for optimal laser profiles.

Striking an equilibrium between the exploration of parameter domains
and the exploitation of regions of high performance is pivotal. BOTSPO’s
algorithmic architecture, characterized by its adaptive mechanism, inherent
noise robustness, and sampling efficiency [52], is important for
manufacturing process optimization when the cost of collecting data is high.
This is particularly crucial for manufacturing process optimization, where the
cost of data collection is high. The use of Bayesian methods allows BOTSPO
to make informed decisions about which points in the parameter space to
sample next, leveraging prior knowledge to improve both exploration and
exploitation strategies. In the next section, we will look at the results
achieved by the BOTSPO method in the context of DED. 4.2. Results from the
BOTSPO method

For our objective function, we aimed to maximize the heat treat/ne\nt time
of the material used in the simulation, which is defined as}follows, }

= 1 N r
T=-%" . [ -
< dfiiS Trmax NZ'*W \ _mln{‘”]min < (ij < ‘rmu(} ### (10)

Where F is the heat treatment time, N is the total number of nodes, r is the
data collection rate, Tminand Tmaxare the minimum and maximum temperatures
of the desired range, dfjjis the temperature at the j- th index for the i- th node,
min{j| Tmin < df;< Tmax}) is the first index where the temperature is within the
desired range of the i- th node, and max{j| Tmin < df;< Tmax}) is the last index
where the temperature is within the desired range of the i- th node.

In DED of IN718, multiple precipitates drive improved strength in IN718,
including the body centered tetragonal Ni3Nb y'' phase, which directly
improves material strength [59], and the orthorhombic NisNb 6 phase, whose
plate-like morphology has been demonstrated to cut up brittle Nb-rich Laves
phases, thus improving the effectiveness of post-build heat treatments [7]. Xie
et al. [60], identified using data-driven techniques that the local strength of
IN718 parts made using laser-powder DED was related to the time spent
between 654 °C and 857 °C. As typical aging times for IN718 are in the range of
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Fig. 9. Laser Power Profiles at different BOTSPO iterations whose aim is to maximize heat treatment time; First figure is the laser power profile at iteration 1, second figure is the laser
power profile at iteration 25, and the third figure is the laser power profile at iteration 50.

hours at the effective soak temperatures [61] the objective was set to strictly Bayesian Optimization Function Calls
maximize the in-situ age time. 38 -

In Fig. 9, we present the BO progression, illustrating the advancement of
the laser power profiles from the preliminary first iteration to the concluding 37
50th iteration. Initially, the GP model is trained utilizing a dataset of 50 laser

]
power profile samples prior to its integration into the BOTSPO algorithm. This E 361
pre-training of the GP Model is imperative as it establishes a foundational J’__‘
understanding of the underlying parameter space, facilitating more informed 5 351
and efficient exploratory decisions in subsequent optimization stages. E 34 1
In Fig. 10, the BO function call history is delineated. In the preliminary 8
iterations, there is a predominant focus on exploration to determine the i~ 33
optimal power profile to maximize the heat treatment time. Later stages ©
exhibit plateaus, indicating a stable state and exploitation. A notable strength % 32

of BO, and subsequently BOTSPO, lies in its sample efficiency: it requires fewer
data points relative to traditional techniques, thus achieving optimal 31 -
parameter discernment at a reduced computational expense.
The parameters outlined in Table 1 control the build quality by influencing
the laser power profile in the DED process. The "Amplitude of Fourier (A)" sets
the base intensity of the laser; a higher amplitude translates to more energy
input, essential for initial layers. The "Frequency of Fourier (f)" controls the Fig. 10. BOTSPO function calls. The function call depicts the optimization history used to
oscillation frequency of laser intensity, affecting energy distribution over time. find the optimal laser power in this paper.
"Rate of Change in
Amplitude (AA)" and "Rate of Change for Phase Shift (Ad)" adjust the laser’s

T T T T

0 10 20 30 40
Number of Function Calls

. . L - _ " Table 1
response to thermal dynamics during printing. "Linear Trend Coefficient (T) avie . . ) ) .
e . . . Parameter Values of the Obtained Optimal Laser Power Profile at iteration 50 of
indicates a general trend in laser power requirement as the build progresses. BOTSPO
"Seasonality Amplitude (S)" and “Frequency of Seasonality (SF)”accounts for Parameter Name Value
periodic variations in laser energy needs due to changes in the build geometry —— 5
. , Amplit Fourier (A .
or material state. The "Rates of Change for Frequency (Af)" adapts the laser’s mplitude of Fourier (A)
temporal response to the evolving thermal profile Frequency of Fourier (f) 1.60
P p 8 . P K : o Number of Terms of Fourier (n) 1.00
In the optimum power sequence (Fig. 9, right), the laser power is initially Phase Shift of Fourier (&) 0.71
high. This is likely due to the longer heat treatment times at the beginning of Linear Trend Coefficient (T) -90.0
the thin-wall build, as observed in previous works [29]. The optimizer thus Seasonality Amplitude (S) 45.0
sought to maximize this effect by driving up the early laser power. As the thin Rates of Change for Frequency (Af) -0.27
X L k . R Rates of Change for Amplitude (AA) 0.57
wall build progressed, the radiative and convective heat transfer increased; like Rates of Change for Phase Shift (Ad) 0.85

a fin, the build became more efficient in rejecting heat and the amount of time Frequency of Seasonality (SF) 0.94
in the heat treatment range decreased for the higher locations. The optimizer
thus did not seek to increase the laser power in later parts of the build, as even
laser powers at the top of the specified range did not substantially improve the
total heat treatment duration.

This result, while increasing the average heat treatment duration in

the part, does not achieve material homogeneity. Future work on the BOTSPO
will implement multi-objective optimization that can balance joint objectives
of maximizing heat treatment duration and homogeneity, thus preventing the
front-biased result in this work.

Utilizing the proposed methodology allows us to determine an offline laser
power profile, serving as a foundational process trajectory for online predictive
control during the laser-based additive manufacturing process. This process
trajectory can streamline real-time adjustments, enhancing consistent
deposition quality and decreasing potential discrepancies arising from
fluctuating process dynamics in laser-based additive manufacturing.
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5. Conclusion

In this paper, we proposed a digital twin framework for DED process control
and optimization, an autonomous and systematic approach that enables
repeatable fabrication of complex parts. This paper contributes two major
components of implementing the overall digital twin framework: a data-
driven, surrogate model that enables dynamic prediction of temperatures with
uncertainty quantification throughout the part in real-time, and a Bayesian
Optimization Method for Time Series Process Optimization (BOTSPO) that
determines appropriate laser power profiles for maximizing the part’s
precipitation hardening time.

First, we developed a Bayesian LSTM based surrogate model which is
capable of temperature prediction for selected areas of the built part in real-
time. The Bayesian LSTM model is laser profile-agnostic and is capable of
accurate location-based temperature prediction for simple geometries like
thin walls. We demonstrated the capability by training and analyzing the
predictive capabilities of the Bayesian LSTM model on a thin wall geometry
with an R?score of 0.75. This surrogate modelling capability will enable real-
time MPC in the online digital system when online monitoring information
becomes available. The distinctiveness of our Bayesian LSTM lies in its
architecture that not only retrospectively considers measurable states and
input variables but also adeptly understands the spatial-temporal dynamics
inherent to the DED process. It has been designed to provide emphasis on
significant historical events, while also quantifying the inherent model
uncertainty—a critical feature for making informed decisions in a digital twin
environment. Unlike traditional LSTMs, our model incorporates Bayesian
inference principles through the implementation of Monte Carlo dropout
techniques. This allows for an approximation of Bayesian posterior
distributions, thereby furnishing a quantifiable measure of uncertainty in its
predictions, which is important for optimizing the manufacturing process.

Secondly, we introduced BOTSPO, which efficiently identifies optimized
laser power profiles to enhance heat treatment and precipitation hardening.
Given the computational demands of high-fidelity FEM models, BOTSPO is
engineered to ascertain optimal profiles with minimal function evaluations.
Addressing the potentially infinite dimensionality of time series profiles, we
employ a dimension reduction strategy by devising a time series profile
generator that leverages a set of 10 parameters, facilitating a comprehensive
exploration of the time series space without incurring prohibitive
computational costs. This approach is crucial as BO’s efficiency inversely
correlates with the number of parameters to optimize. We tested this
approach with the objective of maximizing the heat treatment time for the
thin-wall IN718 build and found that the heat treatment time was maximized
to 38.19 s. The off-line process optimization result will serve as the reference
process trajectory in online model predictive control.

Future work will focus on the integration of the methods presented in this
paper with a physical DED system. For physical realization of a DED- DT
systems, there are additional tasks to be considered, including online
optimization of the laser power profile, continuous model update using both
online and off-line data, and drift correction of the surrogate model via model
update from a more accurate sub-real-time model.
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