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Abstract

Milling is a key manufacturing process that requires the selection of operating parameters that provide efficient performance.
However, the presence of chatter, a self-excited vibration causing poor surface finish and potential damage to the machine
and cutting tool, makes it challenging to select the appropriate parameters. To predict chatter, stability maps are commonly
used, but their generation requires expensive data, making it difficult to employ these maps in industry. Therefore, there is a
pressing need for an approach that can accurately predict stability maps using limited experimental data. This study
introduces the new Encoder GAN (EGAN) approach based on Generative Adversarial Networks (GANs) that predicts
stability maps using limited experimental data. The approach consists of the encoder, generator, and discriminator
subnetworks and uses the trained encoder and generator to predict the target stability map. This versatile method can be
applied to various tool setups and can accurately predict stability maps with limited experimental data (five to 10 cutting
tests) even when there is little information available for unknown parameters. The study evaluates the proposed approach
using both numerical data and experiments and demonstrates its superior performance compared to state-of-the-art

benchmarks.
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Introduction

Milling is a common manufacturing process which uses a
rotating cutting tool to remove material from a workpiece
(Yan et al., 2023). Since milling is expensive, it is important
to select productive operating parameters, including spin-
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dle speed n, radial depth of cut @, and axial depth of cut b,
which enable efficient removal of material from the
workpiece (Fig.1) (Schmitz & Smith, 2019).

Ideally, these values should be set as high as possible to
minimizecuttingtime. However,therearevariousconstraints
thatpreventsomeparametercombinationsfrombeingviable,
such as chatter. Chatter is a self-excited vibration that occurs
atcertainselectionsofmachiningparametersandcausespoor
surface finish and can potentially damage the cutting tool
and machine (see Fig.2c) (Unver & Sener, 2023; Jauhari et
al., 2023). If the tool tip and workpiece dynamics are
notconsideredwhenselectingmachiningparameters,chatter
may occur, where varying chip thickness causes
regenerative vibration.

Stable (i.e., chatter-free) machining parameters can be
selected using the stability map (Fig.2a), which separates
spindle speed-axial depth pairs that are stable from those
that exhibit chatter. The stability map can be predicted based
on the tool tip frequency response function (FRF) and the
toolworkpiece cutting force model (Deng et al., 2023).
However, in practice, these are not typically known and the
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stability map and optimal machining parameters must be
inferred from experimental test cuts.

The importance of considering the system’s vibration
response when selecting machining parameters has been
thoroughly established in the literature. Despite numerous
research efforts to improve the accuracy of stability maps,
the theoretical and experimental results sometimes differ,
which can require validation testing prior to final parameter
selection. The dynamic model’s inputs, the machining
parameters,andthesolutionalgorithmallaffectstabilitymap
accuracy(Chenetal.,2021).Modeladvancesincludeprocess
damping (Wan et al., 2017) and symmetry breaking (Totis et
al., 2019). In addition, to verify the accuracy of the solving
algorithm, several methods such as full-discretization
method (FDM) (Ding et al, 2010), zeroth-order
approximation (Budak & Altintas, 1998), and semi-
discretization method (SDM) (Insperger & Stépan, 2002)
have been introduced. Despite these improvements, a key
challenge that remains is knowledge of the tool tip dynamics
and the cutting force coefficients (Chen et al., 2021).

Currently, modal impact testing is the technique that is
mostfrequentlyusedtomeasurethetooltipdynamics.Inthis
method, the tool tip is excited using an instrumented
hammer and the vibration response is measured using a
transducer (commonly a piezoelectric accelerometer).
While the measurementtechniqueiswell-
understood,errorsourcesremain, which include the influence
of the load condition (Postel et al., 2018), the mass loading
effect of the accelerometer (Ozs ahin et al., 2010), and the
centrifugal forces, gyroscopic moments, and temperature
increase in cutting operations (Gupta et al., 2020). Similarly,
the estimate of the cutting force coefficients is also subject
to various errors and uncertainties. These include fitting
errors in regression methods and coefficient variation with
cutting conditions (Dang et al., 2010; Grossi et al., 2015;
Campatelli & Scippa, 2012).

Due to these inherence uncertainties in the tool tip
dynamicsandcuttingforcecoefficients,uncertaintiesareintrod
uced into the deterministic stability maps. To address this
limita-
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Fig. 1 Illustration of the milling operation. N represents the number of
teeth (or flutes) on the milling cutter. £ is the feed per flute. It indicates
the chip thickness that each tooth of the milling cutter removes from
the material as it passes through it

tion researchers have focused on approaches that identify
dynamics during machining. Operational modal (Zaghbani
& Songmene, 2009) analysis has been implemented to
assess the machine’s response using an accelerometer
during routine machining operations. Although the
identification of the damping ratio and natural frequency is
straightforward, the dynamic stiffness is not easily obtained
using this approach. In Ozs,ahin et al. (2015), an inverse
identification approach is proposed in which chatter
frequencies and limiting
depthsofcutaredeterminedexperimentally.Inthisapproach,
data for two spindle speeds that are marginally different are
needed for the inverse identification of the tool tip
dynamics. Similar approaches are proposed in Eynian
(2019), (2016). However, these approaches
necessitate specialized
testsunderpredeterminedconditions,whichmakethemchallen
ging to implement in shop floor environments.
Recently,machinelearninghasbeenappliedtomachining
stability modeling. Karandikar et al. (2020) propose a novel
Bayesian learning approach to predict the stability limit and
find the optimal parameters utilizing test data only without
knowledgeoftheunderlyingcuttingforcecoefficientsortool
tip dynamics. Simulation results from physics-based models
offer another data source. In this approach, physics-based
models are used to generate stability maps. The predicted
stability maps are then discretized and used as training data
in machine learning approaches, such as artificial neural
networks (Cherukuri et al., 2019; Oleaga et al., 2018; Yin et
al., 2023), K-nearest neighbors (Greis et al., 2020), and
support vector machines (Friedrich et al., 2017). For
instance, Cornelius et al. (2021) propose a physics-guided
Bayesian approach in which first, prior uncertainties of
parameters are considered to obtain the probabilistic
stability map using the physics-based stability model.
Second, this probabilistic stability map is updated in each
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iteration based on the new information obtained from the
cutting test. A similar Bayesian approach is proposed in
Chen et al. (2021). Schmitz et al. (2022) presents a novel
approach to improving milling stability by combining
Receptance Coupling
SubstructureAnalysis(RCSA)andmachinelearningtechniqu
es. The method utilizes RCSA to predict the tool tip FRF
and a frequency-
domainapproachtopredictthestabilityboundary. Updating is
based on the binary test results (stable/unstable) and chatter
frequency, if the test cut is unstable, as well as the user’s risk
preference. The machine learning model is implemented
using Markov Chain Monte Carlo (MCMC) sampling.
Postel et al. (2020) propose ensemble transfer learning in
which the stability map is predicted using fully connected
neural networks. The neural networks are pretrained with
simulated data  obtained from the  analytical
stabilitymodelandfine-tunedbyre-trainingwithexperimental
test data to produce the final stability boundary. Yesilli et al.
(2022) addressed the challenge of automating chatter
detection in machining processes by exploring the poten-
Fig. 2 a Stability map showing 5
which cutting parameters will be
stable. Cuts above the blue stability
line will chatter and cuts below will

be stable. b Stable cut surface. ¢
Unstable cut surface

w -

Axial Depth of cut (mm)
N

0
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tial of transfer learning. Their study evaluates the transfer
learning capabilities of various chatter detection methods
across turning and milling datasets. The findings revealed
that Topological Data Analysis and Discrete Time Warping
approaches can achieve comparable classification
accuracies to time-frequency methods while offering the
advantage of automation, particularly for scenarios
involving limited data or small datasets of unique processes.
Deng et al. (2023) introduces a novel approach for
enhancing milling stability analysis. The paper proposes a
multi-fidelity (MF) surrogate model combined with transfer
learning to improve the
accuracyofstabilitylobediagram(SLD)predictions. Themeth
od leverages both analytical stability modeling and
experimental data to construct accurate stability models,
resulting in
morepreciselobeboundariesforselectingmachiningparamete
rs while reducing the number of required experimental
samples. Shanavas et al. (2023) introduces the application
of supervised neural networks to learn stability maps from
data, enhancing the prediction accuracy of machining

Il Stable
Il Unstable

10000 12000
Spindle Speed (rpm)

stability maps beyond traditional models. Their study
investigates the influence of hyperparameters on the
learning process of neural networks, providing insights into
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factors such as dataset size, learning rate, activation
functions, and network architecture. Greis et al. (2023)
introduces a physics-guided machine learning (PGML) for
stability modeling in machining. This study examines how
uncertain physics-based data can be employed to train a
PGML stability model, subsequently updated with
measured data, domain knowledge, and theory-based
information. The paper presents four novel update strategies
that enhance the PGML model’s accuracy and reduce the
need for extensive experimental measurements, showcasing
its potential for approximating the true stability model for
specific factory conditions.

Although the data-driven approaches provide
improvements in specific circumstances, they have several
limitations. For instance, machine learning approaches can
lack physical interpretability, meaning that the stability
maps do not expose the physical constraints that underlie the
system’s dynamics; in some cases, they even produce
solutions that defy operational restrictions or the physical
rules of stability limits (Greis et al., 2020; Postel et al.,
2020). In addition, several approaches, exemplified by
Friedrich et al. (2017), Cherukuri et al. (2019), and
Karandikar et al. (2020), require a large number of sample
data to learn the shape of stability maps, which can be
expensive. While successful stability map prediction
approaches have been proposed, a balance between the
number of actual test experiments, physical interpretability,
and prediction accuracy has not yet been achieved. To
advance capabilities, this study introduces the Encoder
GAN (EGAN) approach, which is based on Generative
Adversarial Networks (GANSs), for predicting stability maps
using limited experimental data. EGAN is a modification of
the traditional GAN that includes an additional encoder
network to predict stability maps. The EGAN
approachiscomposedoftheencoder,generator,anddiscriminat
or subnetworks. A similar GAN structure can be found in
the work of Schlegl et al. (2019) but with a different
application focus, namely anomaly detection. Furthermore,
while Schlegl et al. trains their encoder separately from the
generator and discriminator, our approach simultaneously
trains all three components to improve overall performance.
The input dataset for EGAN includes stability maps
generated using a physics-based analytical stability model
and the generator learnstomimicthephysics-
basedmodel’sbehaviorbytaking a noise vector from the
latent space and outputting a
plausiblestabilitymap.Theencoderlearnstoprojectstabilitym
aps back into the corresponding latent space parameter. The
discriminator distinguishes generated/fake stability maps
from sample maps in the input dataset. In the evaluation
process, the trained encoder projects a stability map into the
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latent space to find the unique parameters that correspond to
the map and the trained generator produces the
corresponding stability maps based on the physics it learned.
The approach is used to predict stability maps with a limited
numberofcuttingtestexperimentsbyapplyingasimplenonphy
sics-based Bayesian updating approach to obtain partial
knowledge about the target stability map. The hypothesis is
that the perfectly trained EGAN has a regularized latent
space that can map similar stability maps to closed points in
the latent space, enabling the encoder to find the best
parametersthatleveragealltheinformationitreceives,evenifth
ere is incomplete knowledge about the parameters and the
stability maps. The novelty of the approach lies in the use of
EGAN and the regularization property of the latent space to
predict stability maps with limited information, which has
the potential to reduce the number of cutting tests needed to
predict stability maps accurately. We demonstrate the
effectiveness of the proposed EGAN approach through
extensive numerical simulations and experiments. We
demonstrate the proficiency of the EGAN approach in
effectively predicting stability maps, even when there is
minimal data available regarding the unknown parameters.
This is achieved through the consideration of wide normal
and uniform distributions for uncertain parameters. A
comprehensive comparison is also provided against state-
of-the-art approaches, including ensemble transfer learning
(Postel et al., 2020) and Bayesian learning (Karandikar et
al., 2020).

The remainder of this paper is organized as follows:
“Methodology”’sectiondescribestheproposedEGANapproac
h used to predict the stability map. “Experimental
verification” section evaluates the proposed approach.
Finally, “Conclusion and future work™ section concludes the
study and discusses future work.

Model-based stability prediction

Chatter occurs due to the relative vibration between the
cutting tool and workpiece during cutting (Schmitz &
Smith, 2019). This vibration is imprinted on the workpiece
surface (Fig.3). The next tooth encounters this wavy surface
and experiences varying chip thickness / and, therefore,
cutting force. During a stable cut, the cutting force and
vibration will converge to an equilibrium that repeats for
each tooth. In an unstable (chatter) cut, the force and
vibration do not repeat from tooth to tooth and grow until
the vibration is large enough that the tooth temporarily
leaves the cut. This is referred to as the regenerative effect.
Theoccurrenceofchatterdependsontwomainfactors:the
vibrationofthetool,governedbythetool’sFRF,andtheforce
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involvedinthecuttingprocess,describedbythecuttingforce
model. The tool tip FRF is described by a complex-valued,
frequency-dependent matrix:

[FRE'cx(w) 0
()

0 FRE(w)

()] = [FRF

where x isthefeeddirectionand y istheorthogonaldirection in
the plate of the cut. The cutting force is assumed to be
proportional to the chip thickness F = K;bh, where Kjis the
specific cutting force coefficient and b is the chip width.
This cutting force can be decomposed into the tangential
force F,=sin(B)K;bh andnormalforce F, = cos(B)K;bh, where
B is the force angle.

The stability map can be estimated from these inputs
using the zero-order approximation algorithm proposed by
Altintas and Budak (1995). This method solves the
periodiccoefficient delay differential equation by
approximating the

Current tooth
vibration

\ Nominal
\ tool path
Wavy surface

left by previous
tooth

Fig. 3 Variable chip thickness due to tool vibration Schmitz and Smith
(2019)

periodic cutting force as a matrix| @ex @ry @y a."}‘], where
a;; defines the amount that the average cutting force in the i
direction will change for a unit displacement in the j
direction. Please refer to Altintas and Budak (1995) for a full
derivation.

Methodology

The purpose of the proposed study is to predict the stability
map in milling operations using a novel deep learning
approach named EGAN and limited experimental data. The
primary distinction of the EGAN approach from previous
approaches lies in the utilization of the GAN’s structure for

stability prediction. As far as our investigation shows, the
proposed EGAN approach is the first study to employ a
GAN-based architecture for predicting stability maps in
machining processes. This incorporation of GAN
architecture introduces a novel and innovative dimension to
stability prediction that sets the proposed method apart from
the existing approaches. By integrating an encoder network
within the GAN framework, EGAN effectively bridges the
gap between physics-based modeling and data-driven
learning. This allows us to harness the advantages of GANSs,
such as generating plausible stability maps from latent space
parameters, while also benefiting from the analytical
insights of physics-based models. We believe that this
pioneering utilization of GANs in the context of stability
prediction not only contributes to the advancement of
machining research but also opens avenues for future
explorations at the intersection of deep learning and
manufacturing.

In this section, the problem definition is first discussed.
Then a brief background on the traditional GAN is provided.
Next, the encoder GAN (EGAN), which is a leveraged
version of the traditional GAN, is proposed for the purpose
of the milling stability prediction. Then, common training
challenges for GANs are discussed. Following that, a
description of the state-of-the-art approaches that are used
as benchmarks in this study are presented. Next, a grid
search approach is introduced for the selection of cutting
tests,
specificallyintendedforevaluationpurposes.Lastly,thegenera
1 framework of the proposed and benchmark approaches are
presented.

Problem definition

Assuming a symmetric single degree-of-freedom (SDOF)
system, there are five unknown parameters 0 = (K,B, f, £,0)
to predict the stability map, where K is the specific cutting
force coefficient, B is the force angle, f, is natural frequency,
k is the modal stiffness, and  is the modal viscous damping
ratio (i.e., the SDOF FREF is approximated using these three
parameters).

As described in “Introduction” section, an accurate
estimation of the FRF and cutting force coefficients is
required to estimate an accurate stability map. However,
obtaining the FRF and cutting force coefficient information
needs
specializedsensorsandcanbechallenginginindustry.Neverthe
less, there exists a prior knowledge about these parameters.
The prior represents the initial beliefs about parameters and
incorporates all available information, whether it comes
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from expert opinions, available data,
theoretical considerations, or analytical models. In this
study, a prior distribution is first defined for these
parameters P(06) and N
sampleparametersaregenerated fromthisdistribution.Next,
these sample parameters are used together with the physics
model to generate prior/simulated stability maps, which are
used as training data for the proposed approach. Finally, the
trained networks apply limited experimental data to predict
the target stability map.

experimental

Traditional GAN

The traditional GAN is a deep learning-based generative
model that was initially proposed by Goodfellow et al.
(2014). The primary goal of this approach is to generate
synthetic but realistic images by learning the input data
distribution by predicting features from an initially hidden
representation, which is also called the latent space
representation. The traditional GAN includes the generator
and discriminator networks, competing with each other in
an adversarial manner in the training process. Specifically,
the traditional GAN is designed as a minimax game, where
the generator and discriminator networks compete in a zero-
sum
gameframework,asoriginallyusedingametheory(Akcayet
al.,2019).Thegenerator ~ networklearnstogenerateanimage
thatresemblesimagesintheinputdataset,whilethediscriminat
ornetworklearnstodistinguishthegeneratedimagesfrom the
input images.

Figure4 illustrates the scheme of the traditional GAN to

Real (¥)

11—
Generator
Input noise (%) (©))
Fake (X')

prem—————————

Journal of Intelligent Manufacturing
contrast, the discriminator (D) adopts an encoder network
architecture and works as a classification algorithm, reading
an input image and labeling it as real or generated/fake. Both
the generator and the discriminator networks are
simultaneously trained through a two-player minimax game.
During the training process, the generator aims to make the
discriminator’s loss larger. In other words, it tries to fool the
discriminator by generating new plausible data (resembling
the input data) so that the discriminator fails to detect them
as fake images. Specifically, the original GAN solves the
Fig.4 Scheme of the traditional GAN

following minmax game (Goodfellow et al., 2014):

min max V(D,G) 2)
G D
where
(D,G) = _[E [log(D(x)]+ E [log(1 —D(G(2)))]
14 x~py ~pz
3)

The discriminator is trained to maximize its outputs on
input images (i.c., log(D(x)); labeling input images as “real
”) and minimize its outputs on fake images (i.e.,
log(D(G(z))); labeling generated images as “fake”). In
contrast, the trained based on the
discriminator’s performance on fake images. The generator
tries to minimize V(G) = log(l - D(G(z))), or equivalently,
maximize V(G) = log(D(G(z))), so fool the
discriminator such that this network treats fake images as

generator  is

it can

] Gradients
' £
a
Discriminator *| Real/Fake *  Loss |
(D)

G loss

Gradients

generate handwritten digit numbers. In the traditional GAN,
the generator (G) has a decoder network architecture and
learns to capture the input data distribution (px) by
generating plausible images from a latent space distribution
(p-), which is commonly a standard normal distribution. In
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input images. Note that the generator is not able to control
the discriminator’s performance on input images (i.e.,

log(D(x))).
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Encoder GAN (EGAN)

Forpredictingstabilitymaps,theGANisadvancedbyadding
encoder network (E) to the traditional GAN structure. The
proposedapproachiscalledEncoderGAN(EGAN).Figure5
illustrates the scheme of the proposed approach.

The input/real dataset in EGAN includes stability maps
generated using the physics-based analytical stability
model, considering a distribution for the unknown
parameters. The goal of the generator (G) in EGAN is to
learn the physics
underlyingthestabilitymapsintheinputdata. Thatis,ittakes
avectorofnoisesfromthelatentspaceandoutputsaplausible
stability map. The generator learns to mimic the
physicsbasedanalyticalstabilitymodel’sbehavior.However,i
nstead of taking the real parameters (0), the generator takes
some noise vector (z) from the latent space, which it is
referred to as the latent space parameter in the remainder of
the paper. It is important to clarify that the latent space is
characterized as a Gaussian random noise vector. It serves
as a transformed representation of parameters in an
alternative space, devoid of direct physical interpretability.
It is essential to underscore that the latent space lacks
inherent interpretability.

On the other hand, the encoder E learns the opposite side
of the generator. That is, it uses a stability map that is

1(}mdienfc

_Eloss

3 Encoder
Latent space (E)
*)

1 Generator —_—

;2
o
Input noise G) S"‘;
(] 0 E
: Fake (¥) ©
i Real (X)
H Gradients

. N
Discriminator
-5 (D) > Real/Fake > Los

generated by the generator and returns the corresponding
latent space parameter z. The discriminator (D) has the same
role as it has in the traditional GAN. That is, it distinguishes
the generated/fake stability maps output by the generator
from sample maps in the input dataset. Through adversarial
learning,thegeneratorlearnstogeneraterealisticstabilitymaps

to fool the discriminator and the decoder learns to find
unique latent space parameters for each stability map.

The hypothesis is that if EGAN is perfectly trained, the
generator connects each set of latent space parameters to a
unique stability map, and, in contrast, the trained encoder
projects back each stability map to a unique set of
parameters. In addition, it is hypothesized that the perfectly
trained EGAN has a regularized latent space, which means
that the encoder
canmapsimilarstabilitymapstoclosedpointsinthe latent
space. These hypotheses are applied in the test process to
predict the intended stability map with a limited number of
cutting test experiments. For now, assume that complete
knowledge of the target stability map is available, as seen in
Fig.6.Thetrainedencodertakesthismapandprojectsitback
into the latent space. The trained encoder finds the unique
parametersthatcorrespondtothismap.Next,thetrainedgenerat
ortakestheparametersthatthetrainedencoderfoundand
produces the corresponding stability maps because it knows

Gradients

Fig.5 Scheme of the EGAN
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Fig. 6 Evaluation step in EGAN
with complete knowledge of the
stability map
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Fig.7 Evaluation step in EGAN
with partial information obtained
from cutting tests

E
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Latent space
parameters

G

the physics. If both the generator and encoder are perfectly
trained, the generator should output the exact map that the
encoder receives. This is because, as hypothesized, there is
only one vector of parameters for each stability map.

In practice, knowledge regarding the
parameters () and, consequently, the stability maps is
incomplete. Hence, cutting tests are performed to obtain
partial information about the target stability map and then
this information is used as input to the proposed approach to
predict the actual stability boundary. In this study, a simple
non-physicsbased Bayesian updating approach is applied (as
proposed in Karandikar et al. (2020)) to obtain partial
knowledge (see Fig.7) about the target stability map using a
limited number of experiments. This approach is discussed
in the benchmark
section(“Bayesianlearning”’section).Itishypothesizedthat,
given this partial knowledge of the stability map, the
perfectly trained encoder will find the best parameters in
latent space that incorporates all the information that it
receives. If there is sufficient information, it can find the
exact vector of parameters in the latent space that
corresponds to the target stability map and, as a result, the
generator can then return the target stability limit. However,
if the information is not sufficient, the encoder may not be
able to find the true latent space parameters, but at least it
can find parameters that are close enough to the true

however,
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parameters. Consequently, the generator may not be able to
reconstruct the target stability map, but it can output a map
that is close enough to the target stability map. This behavior
is explained using the regularization property of the latent
space.

To train the model in a way that enables the hypotheses to
be tested, the loss functions of each sub-network are
formulated as follows:

Generator Loss: The generator network G is trained to learn
the physics underlying the input dataset and generate unique
stability maps for each set of latent space parameters. To do
so, the generator needs to fool the discriminator to be able
to generate plausible stability maps. Hence, the generator’s
loss should compute how effectively the discriminator
distinguishes generated/fake stability maps from input
stability maps. To capture this, the generator’s loss is
calculated as:

= E [log(D(G
E llog(DG@))] @

Lg

Encoder Loss: The encoder network E should learn the
opposing side of the generator. That is, it should be able to
project the stability maps generated by network G back into
the latent space to find the corresponding latent space
parameters. The encoder can learn this information by
calculating dissimilarities between the input parameters of
the generator (z) and the corresponding reconstructed

123



parameters z =
E(G(z)).Therefore,theencoder’slossiscalculated as:

Journal of Intelligent Manufacturing
to overcome non-convergence (i.e., instability in training) is
Deep Convolutional GAN (DCGAN) proposed by Radford

(a) Mode collapse

(b) Instability of training

Fig. 8 Examples of mode collapse and training instability in the EGAN approach

= E [|lz -
Ly ape E(GE)

adversarial learning, the discriminator is trained to classify
both the real data and the fake data from the generator. It
penalizes itself for incorrectly categorizing a fake instance
(generated by the generator) as real or a real instance as fake
by maximizing the function shown in Eq.(6).

(5) Discriminator Loss: In

= L log(D)I+ E [og(l — D(G@N)]

Lp (6)

Common training problems in GANs

The traditional GAN in its original form suffers from two
major including collapse  and
nonconvergence(ortraininginstability).Modecollapseisknow
n as the lack of image diversity in GAN training and happens
when the generator learns to associate multiple input z
values with a single output point. Non-convergence mainly
happens when the equilibrium between the discriminator
and
thegeneratorisnotfound.Forinstance,whenthediscriminator
perfectly distinguishes between the fake and real images and
starts to reject the generated samples by the generator, there
is no longer enough information for the generator to learn
from, which causes the vanishing gradient problem for the
generator.

In recent years, empirical approaches have been
introduced to enhance the training efficiency of GANSs
regarding mode collapse and/or training instability. For
instance, the Wasserstein GAN (WGAN) proposed in
Arjovsky et al.
(2017)hasdemonstrateditscapacitytomitigatebothofthese
issues. In addition, past studies (Ham et al., 2020; Munjal et
al., 2020; Rosca et al., 2017; Bang & Shim, 2021; Chong et
al., 2020; Bang & Shim, 2018; Lazarou, 2020) have shown
that autoencoder-based GANs generally have the ability to
prevent mode collapse. One of the most effective approaches

limitations mode
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et al. (2015), where convolutional layers replace fully
connected layers. In addition, Chakraborty et al. (2018)
mention

thatusingbatchnormalizationinGAN ’sstructurecanreduce
the problem of training instability, which is caused by poor
initialization. Salimans et al. (2016) show that the feature
matchinglosscanaddresstheinstabilityoftrainingcausedby
over-training on the discriminator response. Goodfellow et
al. (2014) suggest training the discriminator for 74> 1 steps
every time the generator is trained for one step. This would
help balancing the power/optimization of the discriminator
andgeneratornetworks.Goodfellow(2016)alsorecommend to
balance the generator and discriminator by optimizing the
model size.

Figure8 provides examples of the mode collapse as well
as the training instability problems in EGAN. Specifically,
this figure presents a complete batch of 16 stability maps,
whicharegeneratedusingthegeneratornetworkbyinputting 16
random Gaussian noise samples. As seen in Fig.8a, it is
apparent that the generator network suffers from the mode
collapse problem and fails to produce diverse and realistic
stability maps. In addition, Fig.8b demonstrates that the
generator network is affected by training instability, which
leads to the generation of noisy stability maps.

Although many approaches have been proposed to
overcome mode collapse and instability of training
problems, they have not been completely solved. In this
study, existing approaches are applied to address both
problems, which are explained later in the results section.

Benchmarks

In this section, two state-of-the-art machine learning
approaches are described, including Bayesian learning and
ensemble transfer learning approaches, that have been
successfully applied for stability prediction. These two
approaches are used as benchmarks in this study.
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Bayesian learning

The Bayesian learning approach, which is proposed by
Karandikar et al. (2020), finds the stability boundary in
milling without knowledge of the underlying tool dynamics
or cutting force coefficients. In this approach, a prior for

p+1) = p(+1 |s6)p(sc) + p(+1 |uc)p(uc) 3

Based on expert knowledge of the stability behavior, the
likelihood probabilities p(+7 |sg) and p(+7 |ug) are defined.
For more details please refer to Karandikar et al. (2020).

Input layer O 0 Figure 9b and c present the posterior probabilities
updated using these equations for a stable and unstable test
Fully connected layer, . result, respectively.
Relu layer O O : O O
O 0O Ensemble transfer learning
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Fig. 9 Stability prior and updatet posterior given stable and unstable results

Fig. 10 Neural network architecture in ensemble transfer learning

the stability map is first identified. The prior is the current
beliefs about the parameters that are formed based on all
available data. Second, the prior probability is updated using
the Bayes’ rule and experimental data.

In this study, the prior probabilities are established using
the basic knowledge that high axial depths are more likely
to be unstable at a selected spindle speed. To define the prior,
the space of the stability map is first divided into several grid
points. Then, the prior probability of stability (p(sg)) for
each grid point G on the map is defined using the prior
knowledge (see Fig.9a). As a result, each grid point has a
plsg) probability of stability and a p(ug) = 1 - p(sc)
probability of instability (Fig. 10).

The goal is to update the probability of all grid points
given a stable (+) or unstable (=) result at the test point 7.
Equation(7) shows the Bayes’ rule to update the probability

at grid point G based on a stable result at test point 7.

7)) = P(+T|SG)P(SG)’

plse p(+1) (7)

by Postel et al. (2020), is a deep learning-based approach
that is designed to predict milling stability maps in milling
by utilizing simulated and experimental data. In this
approach, simulated data is utilized as the starting point for
training feed-forward neural networks to learn the concept
of stability maps. Next, experimental data are used to fine-
tune the pre-trained neural networks so that these networks
can adapt to the actual behavior of the system. The ensemble
transfer learning framework includes six steps, as follows:

(1) Parameter sampling In this step, the uncertain
parameters are sampled N, times from their
distributions and then fed to an existing stability model
to generate the corresponding stability maps. This step
results in N, simulated stability maps.

(2) Generating training datasets Each stability map
generated in Step | is divided into several grid points to
construct Ny, artificial cutting tests (n;,b;). As a result,
Nertraining datasets are constructed in this step, each of
which contains Nj;, cutting tests.

(3) Stability evaluation In this step, the stable or unstable
labels c; for all pairs of spindle speed and cutting depth
(ni,bi) in each training dataset are determined by
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utilizing the corresponding stability map generated in
Step 1.

(4) Pre-training Each generated dataset from Step 2 and
corresponding output labels fromStep3arcusedtopre-
train a fully connected neural network. As a result, N
neural networks are trained to learn the shape of the each
of

Journal of Intelligent Manufacturing
Cutting tests selection

This section outlines the approach for selecting five and ten
cutting tests, which are conducted for evaluation. This study
initiates by randomly selecting five cutting tests from the
stability map space (i.e., spindle speed and axial depth of
cut) to predict the actual stability map. Subsequently, an
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(c) Ten test cuts

Fig. 11 Grid search to select five and 10 test cuts in the numerical analysis

the stability map in the training dataset. The structure of
these neural networks is presented in Fig.31.

(5) Fine tuning In this step, each pre-trained neural network
in Step 4 is fine-tuned by utilizing the experimental
cutting tests. As a result, the pre-trained neural network
that had learned the general shape of the stability
boundary is now adapted to the actual stability behavior
using the experimental data.

(6) Prediction Finally, each of the fine-tuned networks in
Step 5 is used to predict the target stability map. Next, a
truncated mean approach is used to average the stability
maps obtained from N, fine-tuned networks to get the
final stability map.

123

additional five cutting tests are selected based on the
previous set of five chosen points to form a total of ten test
points, to increase the accuracy of the stability map
prediction.

The initial selection of five test points is accomplished
through the use of a grid-based approach, which is detailed
below. First, the stability map space is partitioned into 25
subspaces by equally dividing the range of spindle speed and
axial depth of cut into five parts (see Fig.11a). Next, the first
test point is randomly selected from the second subspace.
Note that the second subspace is always used as the starting
point in all setups. Then, the next subspace is selected from
the second range of spindle speed (i.e. from subspaces 6, 7,
8,9, and 10) considering the stability behavior of the current
test result. If the current test result is stable, the subsequent
subspace is selected from the upper range of axial depth of
cut. Conversely, if the current test result is unstable, the next
subspace is selected from the lower range of axial depth
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ofcut.Once thesubspace isselected, thenext testpoint is
chosen randomly from the selected subspace. This process
is repeated until all five test points are selected. In this way,
this approach ensures that at least one test from each range
of spindle speed is selected. Figurellb presents a sample
path for the selection of five cutting tests from a known
stability limit.

To obtain 10 test cuts, the initial selection of five is
extended by including an additional set of five. The selection
begins by partitioning the axial depth of cut into 10 equal
parts, thereby subdividing the stability map space into more
subspaces. Next, a test cut is selected from the previous set
of tests and, depending on the stability of this selected test
cut, tests with larger axial depth of cuts but the same spindle
speed are chosen if stable, or tests with lower axial depth of
cuts but the same spindle speed are chosen if unstable.
Figurellc illustrates a sample path to extract 10 test points
from a known stability limit. As depicted in the figure, this
approachyieldstheselectionofpointsthatareinproximityto the
stability boundary, thereby providing adequate information
for both the EGAN and other approaches to accurately
predict the target stability map.

General framework of the proposed and
benchmarks approaches

The general framework of the proposed and benchmarks
approaches is presented in Fig.12. In the first step, N sample
parameters ({0" = (K¢, B' o k5. ¢00i = 1..... N} are
generated from their distribution P(8). These parameters are
input to the physics model to find the stability limit by, for
each axial depth of cut n and, as a result, the corresponding
stability map. This step results in NV simulated stability maps.
These simulated stability maps are then used as training
samples to train the EGAN and ensemble transfer learning
approaches in the second step. Note that in the EGAN
approach, the last M = 100 trained networks are selected to
make prediction. Next, in the third step, a small number of
test cuts are selected based on the grid search approach
proposed in “Cutting tests selection” section. As seen in the
figure, the cutting test points are augmented by establishing
that for a stable test, all test points at the same spindle speed
and a lower axial depth of cut will also exhibit stability.
Conversely, if a test is unstable, then all test points with the
same spindle speed and a higher axial depth of cut will also
exhibit instability.

Finally, in the fourth step, the target stability map is
predicted using the Bayesian learning, ensemble transfer
learning, and EGAN approaches. The cutting tests are used
by the Bayesian learning approach to predict the target
stability map. The augmented cutting tests are used to fine

tune the pre-trained neural networks. Next these fine-tuned
neural networks are used to predict the stability map. Lastly,
the partial information obtained by the Bayesian learning
approach is used as input for the M trained encoders and
generators in EGAN to predict the target stability map. Each
trained encoder receives the partial information as input and
attempts to find the best latent space parameters that cover
the maximum amount of information it receives. Next, each
of the trained generators is used to predict the actual stability
map from the latent parameters that the encoder found.
Lastly, the prediction is obtained by taking the average of
the M outputs of the generators.

Experimental verification
Numerical experiments

In this section, numerical experiments are conducted to
evaluate the proposed and benchmark approaches to
identifying a known stability map. A description of the
setups for the numerical experiments is first provided. Next,
the training performances of the EGAN and ensemble
transfer learning approaches are presented. Finally, a
comparison between the EGAN, ensemble transfer learning,
and Bayesian learning approaches
experiments is provided.

using numerical

Experiments setup

ToinvestigatetheefficiencyoftheproposedEGANapproach
for milling stability prediction under different target
conditions, three tool setups with different process and
modal parameters are selected, and their specific
information is listed in Tables 1 and 2. Specifically, Table 1
presents process parameters for these three tool setups,
including the tool diameter, number of teeth, feed, feed
direction, and radial immersion, which refers to the depth of
cut as a percentage of the tool diameter. As seen in this table,
a climb-milling machining process is considered with tool
diameters in the range of 12.7 mm to 25.4 mm, three or four
teeth, and radial, and radial immersion in the range of 25%
to 75% for different setups. These simulations are not based
on specific work materials, but the cutting force values are
generally in the range common for aluminum and other soft
metals.

Table 2 presents the uncertain process and modal
parameters with their respective distributions for the three
tool setups. As seen in Table 2, in Setups 1 and 2, a SDOF
system is considered with five unknown parameters related
to the cutting coefficients and tool tip dynamics, including
K, B, k, fu, and . The entries for Setups 1 and 2 can be
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considered as a series of five univariate normal distributions
with mean values of pi, Mo, 13,14, M5 and standard deviations
of 01,0,,03,04,05. Generating sample parameters from each
of these distributions gives a series of values

0" = (Kg, B, fp. k' ¢H), However, it is more beneficial to
consider the inputs as a single five-dimensional multivariate
normal distribution N5(/s. Xs)with a mean vector p, and
covariance matrix :

Hs = Lu‘lvnuza K3, (L4, #5] (9)
g2 0 0 0 0
0 o3 0 0 0
Es=|0 0 o 0 0 (10)
0 0 0 a7 0
0 0 0 0 o?
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Table 1 Process parameters for three tool setups
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Setup 1 Setup 2 Setup 3 Unit
Tool diameter 254 254 12.7 mm
Number of teeth 4 4 3 —
Feed 0.1 0.1 0.1 mm/tooth
Feed direction Climb Climb Climb -
Radial immersion 25% 50% 75% -

InSetup3,a2DOFwitheightunknownparametersrelated to
the cutting coefficients and tool tip dynamics is considered.

Journal of Intelligent Manufacturing

grayscale level of each point (n,b) is the probability of
stability, which is calculated using the following equation:

N
> biim(n,6) <
1

Pstability = b (13)
N
i=1

The probability of stability at a specific point indicates

153 = [4 x 103,68, 1301, 6.64 x 10%,0.049, 1659, 6.75 x 10°, 0.03] (11)
[1x 10 0 0 0 0 0 0 0 7
0  46.24 0 0 0 0 0 0
0 0 53x100 —1.2x108 0.67 1.3x 10  1x108 —1.5
Bs3 = 0 0 —12x10% 57x10"2 —2.1x10* —3.6 x 10® —3.8 x 10" 6.1 x 10*
§ 0 0 067 —21x10* 1.1x10% 172  17x10* —1.9x10* (12)
0 0 13x10* —3.6x 108 1.72 35 % 104 2.8 x 108 —4.57
0 0 1 x 108 —38x10% 1.7x10* 28x10% 2.8x10% —4.1x 10
L0 0 —-1.5 6.1 x 10 —1.9x 107* —457 —41x10* 83 x107* |

The uncertainty of these parameters is captured through an
eight-dimensional multivariate normal distribution N
8(4s3, Ls3) with mean vector i and covariance matrix 2s3
; the subscript 3 denotes the setup number. The values for
the vector W and matrix Zs3 are presented in Eqs.(11) and
(12).
out chatter by, for some spindle speeds n. Determining this
value for each spindle speed and for each parameter results
in the probabilistic stability map depicted in Fig.13. The
Each tool setup has two target stability maps associated
with it. These target stability maps represent specific desired
outcomesforthecuttingprocessunderinvestigation. Toelabora
tefurther,thesetargetstabilitymapsareextractedthrough
aprocesswhereparametersaregeneratedfromtheparameter
distributions outlined in Table 2. For each generated
parameterset,thephysicsanalyticalmodelisemployedtoextrac
tthe corresponding stability map. These extracted stability
maps,
termed‘‘targetstabilitymaps,”’serveasbenchmarkreferences
for evaluating the predictive performance of stability
prediction methods, such as the EGAN approach. Table 2
presents the parameter values and corresponding stability
maps for the two targets considered in each setup. In this
table, the target stability maps are shown along with the
stability map that is obtained using the mean of the normal
distribution, which is labeled “Prior Mean” in the map.
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the number of stability maps that forecast stable cutting test
at that point. Figurel3 shows the resulting probabilistic
stabilitymap along withthepriorand target stabilitymaps
foreach setup. As expected, the probabilistic stability map
could represent the stability map that is related to the prior
mean with a good approximation; however, it does not
represent the stability maps that are related to Targets 1 and
2. For instance, Target 2 in Setup 2 completely contradicts
the probabilistic

Toshowhowcloselythepriorwouldrepresenteachtarget,
theprobabilisticmapisconstructed. Todoso,thepriordistributi
on listed in Table 2 is used to generate N = 4000 sample
parameters, which are used as input to the physics model to
predict the stability maps. For each sample parameter 6, the
physics model computes the maximum cutting depth
withstability map. Note that the simulated stability maps
that are applied here to draw the probabilistic stability map
are also used as the training dataset to train the EGAN and
transfer learning approaches.

The rationale behind generating the probabilistic map and
subsequently comparing it with the target stability maps in
Fig.13 is to underscore a significant observation: the
training dataset, instrumental in the construction of the
probabilistic stability map, does not inherently encompass
the intricate characteristics of the target stability maps
employed during the evaluation process. This distinction
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highlights the
challengefacedbytheapproachinaccuratelypredictingthetarg
et stability maps, given the dissimilarity between the
training and evaluation datasets.

Training performance

This section presents the training performance of the EGAN
and transfer learning approaches.' It should be noted that the
Bayesian learning approach does not include a distinct
training step. To train these approaches, 4000 sample
stability maps are generated using the uncertainty
distribution provided in Table 2. These samples are then
employed to train the EGAN approach and pre-train the
neural networks
intheensembletransferlearningapproach. Thisenablesboth
approaches to acquire a comprehensive understanding of
stability maps.

EGAN Network Architecture Per the discussion in
“Common training problems in GANs” section, deep con-

! The code is available at https://github.com/srezaei90/GANs-
topredict-stability-maps-in-milling-machining.git.
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Table 2 Uncertain process and modal parameters with their respective distributions for three tool setups

Parameter Distribution (N(u,0)) Target 1 Target 2 Stability map
Setup | KN a?) N(8 x 10%,1.6 x 108) 5.2% 108 10.2 x 108
Journal of Intelligent Manufacturing
B (degree) N(68,6.8) 63 74
fa(Hz) N(1000,100) 929 1164
k(N/m) N(8 x 106,1.6 X 106) 6.16 x 10° 9.94 x 10° 101 Prior Mean
—— Target 1
81 — Target 2
E
E 5
o
3
%000 6432 10855 15477 20000
n [rpm]
14 N(0.03,0.006) 0.027 0.027
8 8 8 8
Setup 2 K (N/m) N(6 x 10%,1.2 x 10°) 6.67 x 10 4.99 x 10
B (degree) N(68,6.8) 67 58
f»(Hz) N(1200,120) 1096 1484
k (N/m) N(5 x 106,1 x 109) 5.1%10° 4.28 x 10° el oo
gl — Target 1
i ‘ —— Target 2
£ 5|
&
1
%000 6231 7487 8744 10000
n [rpm]
14 N(0.02,0.004) 0.017 0.024
3 8
Setup 3 KAN/m?) 610 3710
B (degree) 68 57
f»1 (Hz) 1286 1272
k1 (N/m) N(pts3, Es3) 4.72 x 10° 8.2 x10°
JV’(,LL,@, E,\G)
JV-(M.\‘L E,\G)
N (a3, Ey3)
Ar(pu'.\‘fh E,\'3)
N (g3, Eg3)
N (53, Eg3)
J\”(H.\‘Ba 3)
4 0.041 0.040
5 .
f;lz (HZ) 1694 1584 ~— Prior Mean
4 — Target 1
- —— Target 2
£,
a
1
08000 9477 10985 12492 14000
n [rpm]
k2 (N/m) 7.90 x 106 5.50 x 10
Q 0.033 0.038

Two target stability maps in each setup are considered for prediction in the numerical experiments
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volutional layers with batch normalization are used for the
sub-networks in the architecture of the EGAN approach to
overcome mode collapse and training instability. The
models (i.e., the generator, encoder, and discriminator) are
initialized with the hyperparameter values suggested in
(Radford et al., 2015), but the parameters that are most
important to learning, including number of hidden layers,
activation functions, learning rate, batch size, and latent
space dimension are updated to get a perfectly trained
generator and encoder. To balance the power of the
discriminator and generator
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networks, the discriminator’s size is decreased to two
convolutional layers and the generator’s size is increased to
eight
convolutionaltransposelayers.Inaddition,itisobservedthat
increasing the number of steps for training the discriminator
(na) per iteration of generator training can aid in reducing
noise in the generated images. However, the optimal value
of nymay vary depending on the specific tool setup being
used. Therefore, it is recommended to experiment with
different values of ng4, ranging from 1, and iteratively adjust
it to find the best-performing model for a given tool setup.
Furthermore, one can choose between the sigmoid and
hyperbolic tangent (tanh) activation functions in the last
layer of the generator to reduce the noise in the generated
images. Table 3 provides detailed information on the layers
of the generator, encoder, and discriminator networks,
including the corresponding activation functions, optimizer
used for each
network,andrelevanthyperparameters.Notethattheoptimal
dimensionality of the latent space is set to four.

EGAN Training Performance The performance of the
achieved generator and encoder networks during the
training process on Setup 2 is illustrated in Figs.14 and 15.
Specifically,Fig.14depictstheprogressionofthegenerator’sab
ility to produce plausible stability maps throughout the
training process. As depicted in the figure, the generator
initially produces random noise in the first few epochs.
However, as training progresses, it acquires the ability to
fool the discriminator and ultimately generate plausible
stability maps. Despite the generator’s ability to produce a
diverse range of
stabilitymaps,itstillexhibitssomelevelofnoiseinthegenerated
output. This suggests that the issue of training instability
hasnotbeenentirelyresolved,eventhoughthegeneratordoes
not suffer from mode collapse.

Figurel5 depicts the advancement of both the encoder
and generator’s capability to reproduce a given stability map
throughout the training process. More specifically, this
figure demonstrates how the encoder can find the unique
latent space parameters that correspond to the input stability
map as it undergoes the training process. As explained in the
Methodology section, a perfectly trained encoder and
generator should result in a reconstructed stability map
(G(E(x))) that is either identical or very similar to the input
stability map x. The input stability map depicted in this
figure is derived from the“Prior Mean” utilized in Setup 2.
As illustrated in the figure, during the initial epochs, the
encoder is unable to identify the latent parameter that
corresponds to the input map. This outcome is to be
expected, given that the generator possesses only a limited
understanding of stability maps in the initial epochs.
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Consequently, the encoder, which relies on the generator’s
outputs for learning purposes, is unable to accurately
connect the input stability map to the latent space. As the
training progresses, the generator gains a deeper
understanding of the physics underlying stability maps, and
as a result, the encoder becomes more adept at accurately
connecting the input stability map to the latent space. As
depicted in the figure, at epoch 100, the encoder and
generator are able to successfully reconstruct the input
stability map with a high degree of accuracy.

Ensemble Transfer Learning Architecture In ensemble
transfer learning, it is necessary to pre-train N, fully
connected neural networks on N, simulated stability maps
so that each neural network can learn the shape of each
stability map. However, the entire training dataset, including
4000 simulated maps, cannot be used to train 4000 neural
networks, as it would be computationally expensive. Hence,
a subset is selected from the training dataset containing 200
sample stability maps to train N, = 200 neural networks.
Figurel6 illustrates the probabilistic stability map for each
setup that is obtained by 200 simulated stability maps that
are used to pre-train neural networks. This figure shows that
even though only 200 sample stability maps are used, the
resulting probabilistic map is very close to the one that is
made with 4000 sample stability maps (see Fig.13).

To achieve effective transfer learning, it’s crucial to use a
neural network architecture that is appropriate for
replicating stability behavior. To accomplish this,
hyperparameter tuning is done by evaluating the network’s
performance on a simulated dataset. The number of hidden
layers and the number of nodes in each layer are set as
hyperparameters to determine an acceptable network
structure. Table 4 provides detailed information on the
layers of all N, neural networks, and their corresponding
learning rate, optimizer, and training epochs. Note that all
Nyerneural networks share a common network architecture.

Ensemble Transfer Learning Training Performance
Fig.17showstheoutputpredictionofthreepre-trainedneural
networks, which are trained on three sample stability maps
(shown as red lines) from the training dataset of Setup 1. As
this figure shows, all three neural networks are perfectly
pretrained to replicate the behavior of the respective
stability maps.

EGAN versus benchmarks

This section utilizes the proposed EGAN approach and
benchmarks including the ensemble transfer learning and
Bayesian learning to make predictions by utilizing
numerical tests derived from a known stability map. The
objective is to evaluate the accuracy of the stability
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predictions made by the proposed and benchmark
approaches through a comparison of their forecasts against
a known stability map. The primary focus is to demonstrate
the proficiency of the EGAN approach in predicting the
stability map, even with a limited number of numerical tests
(limited to five and 10 numerical test cuts). Through these
methods, a thorough assessment of the stability predictions
made by different approaches and their potential for
practical applications is provided.
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Table 3 Architecture of the

Layer Kernel size Stride size Panel size Output size
EGAN approach
Generator
Input B B B @1.1)
ConvTran (Batchnorm/ReLU) (6,3) (1,1) (0,0) (4096, 6, 3)
ConvTran (Batchnorm/ReLU) 2,2) (1,1) (0,0) (2048, 7, 4)
ConvTran (Batchnorm/ReLU) 2,2) (1,1) (0,0) (1024, 8, 5)
ConvTran (Batchnorm/ReLU) 2,2) 2,2) (1,1) (512, 14, 8)
ConvTran (Batchnorm/ReLU) 2,2) 2,2) (1,1) (256, 26, 14)
ConvTran (Batchnorm/ReLU) (3,2) (2,2) (LD (128,51, 26)
ConvTran (Batchnorm/ReLU) (3,3) (2,2) (LD (64, 101, 51)
ConvTran (Tanh) (2,2) (2,2) (1,1) (1,200, 100)
Encoder
Input — - — (1,200, 100)
Conv (LeakyReLU/Batchnorm) 2,2) 2,2) (1,1) (64,101, 51)
Conv (LeakyReLU/Batchnorm (3,3) (2,2) (1,1) (128,51, 26)
Conv (LeakyReLU/Batchnorm (3,2) (2,2) (1,1) (256, 26, 14)
Conv (LeakyReLU/Batchnorm 2,2) 2,2) (1,1) (512, 14, 8)
Conv (LeakyReLU/Batchnorm (2,2) (2,2) (1,1 (1024, 8, 5)
Conv (LeakyReLU/Batchnorm (2,2) (1,1 (0,0) (2048,7,4)
Conv (LeakyReLU/Batchnorm (2,2) (1,1 0,0) (4096, 6, 3)
Conv (6,3) (1,1 (0,0) “4,1,1)
Discriminator
Input — - - (1,200, 100)
Conv (LeakyReLU) (100,50) (14,4) (1,1 (64, 8, 14)
Conv (Sigmoid) (8,14) (1,1 (0,0) 1,1, 1)
Generator Encoder Discriminator
Optimizer Adam Adam Adam
(B1,B2) (0.500,0.500) (0.500,0.500) (0.500,0.999)
Learning rate 0.002 0.002 0.0002
B =Momentum
Table 4 Architecture of the ensemble transfer learning networks
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Learning rate Optimizer Epoch
NM 5 20 200 100 50 2 0.01 Adam 100
N N> 5 20 200 100 50 2 0.01 Adam 100
123 . . . . . . .
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As outlined in “Experiments setup” section, to assess the
effectiveness of the proposed EGAN approach in predicting
milling stability across various target conditions, three
different tool setups and two distinct target stability maps
for prediction within each setup are considered. To ensure a
comprehensive assessment of the proposed approach’s
performance and facilitate the creation of mean and
confidence
intervals(Cls),thegridsearchapproachisemployedtoselect 10
distinct sets of five test cuts. In addition, to conduct a
comparative analysis against state-of-the-art techniques,
two evaluation metrics, the Geometric Mean (G-Mean)
Espindola and Ebecken (2005) and L; norm Sinwar and
Kaushik (2014), are employed. The G-Mean assesses the

measures the extent of dissimilarity between the predicted
and actual stability maps by computing the absolute
differences between
correspondingelementsandsummingthemup.Theseevaluatio
nmetrics are chosen to provide a comprehensive evaluation
of the proposed approach’s performance and assess its
practicality in real-world applications.

Table 5 presents the average performance metrics and
their 95% confidence intervals (CIs) over 10 different sets
of five and 10 test cuts for both the proposed EGAN
approach and the benchmark methods. The evaluation is
performed on Targets 1 and 2 for each of the three tool
setups. These results provide a comprehensive assessment
of the proposed approach’s performance in predicting

(c) Epoch 10

(d) Epoch 100

Fig. 14 Stability maps produced by the generator during the training process for Setup 2

(a) Input stability (b) Epoch 1 (c) Epoch 5 (d) Epoch 10 (e) Epoch 100 map

Fig. 15 The reconstruction (G(E(x))) of the “Prior Mean” stability map in Setup 2 during the training process

approach’s ability to balance false positives (incorrectly
labeling stable cuts as unstable) and false negatives
(incorrectly labeling unstable cuts as stable). The G-Mean
computes the square root of the product of sensitivity and
specificity. Sensitivity represents the proportion of true
positives to the total number of actual positives, while
specificity represents the proportion of true negatives to the
total number of actual negatives. Meanwhile, the L; norm

milling stability for wvarious tool setups and target
conditions. Additionally, to visually showcase the stability
predictions for each of the scenarios, Figs.18, 19, 20, 21, 22
and 23 present three representative samples from the 10 sets
of test cuts performed for each scenario, namely Setup 1
Target 1, Setup 1 Target 2, Setup 2 Target 1, Setup 2 Target
2, Setup 3 Target 1, and Setup 3 Target 2, respectively. These
figures provide a visual representation of the stability
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predictions made by the EGAN approach and the
benchmark methods, which further complement the
quantitative results presented in Table 5. Specifically, each
figure displays the predicted probabilistic stability maps
generated by the EGAN and benchmark approaches for each
of the target within different setups. The true stability limit
for each target is shown as a red line in all figures. These
figures also show the predicted stability boundary, which is
determined by applying a threshold of 0.5 to the output
probability of the approaches. These figures enable a direct

comparison between the predicted stability
10

Journal of Intelligent Manufacturing
boundaries and the true stability limit, thereby providing
insight into the accuracy and effectiveness of the EGAN and
benchmarkapproachesinpredictingmillingstabilityforeach
scenario. In addition, Figs.29, 30, and 31 in the appendix
present the test cuts selected by the grid search approach for
these numerical experiments.

The comparison between the EGAN and Bayesian
learning approaches is presented in Table 5. As can be seen,
the EGAN approach outperforms the Bayesian learning
approach in predicting stability limits, as indicated by the
higher values of the G-Mean and/or lower values for L,

— Prior Mean — Prior Mean —— Prior Mean Es
_ 84— Targetl — Target 1 4 —— Target 1 b
E 5 —— Target 2 — Target 2 3 _ Target 2 §
93 ; 1
20000 6432 10955 15477 20000 50000 6231 7487 8744 10000 8000 9477 10985 12492 14000
n [rpm] n [rpm] n [rpm]
(a) Setup1 (b) Setup 2 (c) Setup 3

Fig. 16 Prior probabilistic stability map for each setup obtained by 200 sample stability maps that are used to pre-train neural networks in ensemble

transfer learning
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Three sample stability maps from the training dataset of Setup 1 represented as red lines, along with their respective output

probability of stability predictions obtained through the process of transfer learning

metrics under both five and 10 test cuts in all scenar-

Table 5 Mean and 95% CI of the performance metrics over 10 different sets of five and 10 test cuts for the Bayesian learning, ensemble transfer

learning, and EGAN approaches

5 Test Cuts 10 Test Cuts
BL ETL EGAN BL ETL EGAN
Setupl Targetl G-Mean 75.90+0.55 83.05+2.83 84.36+4.22 78.66 £0.99 88.55+2.76 87.94+3.62
L 0.31+0.01 0.14+0.01 001 0.14 4 0.03 027 027+0.01 0.10£0.01  0.11 £0.02
G-Mean 88.37* +337  79.16
Target 2 L 76.68 +1.01  83.59 +3.09 0.11* £ 0.02 0og 7916175 87.25£2.62 91.77°+5.46
032+0.01  0.14+0.02 028+0.02 0.09+0.02  0.09 +0.03
Setup2 Target] G-Mean 79.91+1.09 81.01+3.30 83.22+6.15 83.24+0.86 88.76 £+3.08 87.21+5.58
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L1 0.30+0.01  0.17 +0.02 0.16 +0.04 0.25+0.01  0.11+0.01
G-Mean
84.14+0.93 7739+4.63 82.14*%3.55 85.94 +0.68 84.71 +3.46
L1
- + * + +
Target 2 G-Mean 0.26+0.01  0.1920.02  ¢.16°+0.02 0.23+0.01  0.14 +0.02
Li 86.19£0.55 87.67+15  9036'+2.90 88.59+0.56 90.69 +2.66
Setup3  Target 1 G-Mean
I 024£0.01  016%0.01 9.0 0.19+0.01  0.12+0.01
Target 2 84.74£043 87342075  ¢o 43,95 87.55+0.74 90.97 +2.51
0.25£0.01  0.16£0.01 0oy 020+0.01  0.11 +0.01

0.13+£0.03

82.67 £2.58

0.15+0.02

92.02"+

1.150.10"+

0.01

93.57*+2.01

0.08*+0.02

The bold formatting is used to highlight instances where EGAN demonstrates superior performance compared to benchmarks BL
Bayesian learning, ETL ensemble transfer learning

xp value < 0.1: Paired #-tests between the EGAN and ensemble transfer learning
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fer learning, and EGAN approaches in predicting Target 2 within setup results, the EGAN approach consistently outperforms the benchmarks 1
using five and ten test cuts. The results are shown for three repre- across all samples, particularly in scenarios involving ten test cuts
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Fig.20  ThenumericalresultsoftheBayesianlearning,ensembletransfer
learning, and EGAN approaches in predicting Target 1 within setup 2
using five and ten test cuts. The results are shown for three
representative samples from the 10 sets of test cuts. As demonstrated
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by the results, the EGAN approach exhibits superior performance
compared to the benchmarks in sample 1. However, it is notable that
none of the approaches achieved satisfactory predictions for the other
two test samples
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ThenumericalresultsoftheBayesianlearning,ensembletransferlearning,
andEGANapproachesinpredictingTarget 1 withinsetup3
usingfiveandtentestcuts. Theresultsareshownforthreerepresentative
samples from the 10 sets of test cuts. As demonstrated by the results,
the EGAN approach consistently demonstrates superior performance
over the benchmarks across a majority of the samples particularly in
samples 1 and 3
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Fig.23  ThenumericalresultsoftheBayesianlearning,ensembletransfer
learning, and EGAN approaches in predicting Target 2 within setup 3
using five and ten test cuts. The results are shown for three
representative samples from the 10 sets of test cuts. As demonstrated
by the results, the EGAN approach demonstrates superior performance
in comparison to the benchmarks in sample 1. While in samples 2 and
3, none of the approaches perform adequately with five test cuts;
however, it is notable that EGAN outperforms the other approaches
with ten test cuts
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ios. Paired #-tests confirm the statistical significance of this
improvement. The only exception to this trend is observed
in predicting Target 2 in setup 2, where the Bayesian
learning approach appears to outperform the EGAN
approach in terms of the G-Mean metric measurements
(84.14 £0.93 versus 82.14 £3.55 under 5 test cuts, and 85.94
+ 0.68 versus 82.67 = 2.58 under 10 test cuts). However,
considering the L; norm, it is the EGAN approach that
outperforms the Bayesian learning approach (0.260.01
versus 0.16+0.02 under 5 test cuts, and 0.23 + 0.01 versus
0.15 £ 0.02 under 10 test cuts). The sample results presented
in Fig.21 confirm the superiority of the EGAN approach to
the Bayesian learning in predicting stability limits as
indicated by the L, norm results.

Table 5 also provides a comprehensive comparison of the
EGAN and ensemble transfer learning approaches. The
results reveal that the EGAN approach exhibits superior
performance to the ensemble transfer learning approach for
most scenarios, based on G-Mean and/or L metrics, for five
test cuts. The statistical significance of this improvement is
confirmed through paired f-tests, as presented in the table.
For instance, in Target 1 of Setup 3, the EGAN approach
attains a G-Mean measurement of 90.36, which is higher
than the G-Mean measurement of 87.67 achieved by the
ensemble transfer learning approach. Similarly, the L norm
measurements for the EGAN and ensemble transfer learning
approaches in this scenario are 0.12 and 0.16, respectively,
indicating a reduction of 0.04 in the L; norm
bytheEGANapproach.However,thereareexceptionstothis
trend,asobservedinTarget1ofSetuplandTargetl ofSetup 2,
where both approaches exhibit similar performance under
both metrics. For instance, the G-Mean measurement for
EGAN in Setup 1 Target 1 is 84.3614.22, while the G-Mean
measurement for ensemble transfer learning is 83.05 + 2.83
(paired t-tests > 0.1). Furthermore, the results indicate that
increasing the number of test cuts to 10 enhances the
performance of all approaches. Nonetheless, for 10 test cuts,
the EGAN approach still outperforms the ensemble transfer
learning in predicting Target 1 in Setup 2, as well as Targets
1 and 2 in Setup 3. In the remaining setups, no significant
differences are observed between these two approaches.

The results presented in Table 5 and Figs.18, 19, 20, 21,
22 and 23 highlight the effectiveness of the proposed EGAN
approach in accurately identifying the actual stability
boundary, even with a limited number of numerical tests (to
present cutting experiments) employing only five or 10 test
cuts. For instance, the third sample presented in Fig.21
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demonstrates the ability of the EGAN approach to detect the
target stability boundary using only five or 10 test cuts,
whereas the ensemble transfer learning approach fails to
identify the boundary evenwithlOtests.Thisexemplifies
thepotentialof the EGAN approach to achieve accurate
stability predictions in scenarios with limited experimental
data. Furthermore, Figs.18, 19, 20, 21, 22 and 23
demonstrate the ability of the EGAN approach to predict all
stability maps, whereas the ensemble transfer learning
approach fails to do so. For instance, the samples presented
in Fig.19 illustrate that the
EGANapproachcanpredicttheentirestabilityboundary,not
only the high spindle speed range, with only limited
information from five or 10 tests. Conversely, in most
scenarios, the ensemble transfer learning approach is unable
to predict
theseboundariesaccurately. Thisobservationemphasizesthe
superiority of the EGAN approach over the ensemble
transfer learning approach in predicting all stability maps
with limited experimental data.

However, it is important to note that there are some cases
where the EGAN approach does not receive sufficient
information to predict the stability boundary with only five
instance, the sample in Fig.23
demonstrates this limitation. As seen in the figure, the
information obtained from five test cuts is insufficient,
resulting in failure for both the EGAN and ensemble transfer
learning approaches to find the stability boundary.
Nevertheless, by increasing the number of tests to 10, both
approaches are able to predict the stability boundary with
good accuracy. Variations in the shape and positioning of
predicted stability boundaries have emerged as a noteworthy
consideration, influenced by the selection of test cuts. These
variations signify the sensitivity of the EGAN approach to
the specificities of the chosen test cases. Overall, the results
of this study demonstrate the potential of the EGAN
approach as an effective method for stability prediction in
scenarios with limited experimental data, and highlight its
superiority over the ensemble transfer learning approach in
accurately identifying the stability boundary.

tests. For second

Experimental validation

In this section, a series of experiments are conducted to
further verify the proposed EGAN approach using real-
world cutting data. The tool setup 3 and a new tool setup,
named tool setup 4, are used for this evaluation.
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Actual experiment for setup 3

In this section, actual cutting tests are performed for tool
setup3,asoutlinedinTables1and2,toutilizetheEGANand

ensemble transfer learning approaches to predict the actual
(unknown) stability map that best represents the test cuts. To
make predictions, the previously trained networks in EGAN
and ensemble transfer learning are utilized to provide a
subset of the performed test cuts as input and output the
actual stability map. This approach is taken to further
demonstrate the effectiveness of the EGAN approach in
practical settings.

Fig. 24 Machining setup for cutting tests Schmitz et al. (2022)

These test cuts are performed on a DMG Mori Ultrasonic
65 machining center using a three flute 12.7 mm diameter
carbide endmill (Robbjack FMHV-304-16). The work
material is 7050-T7451 aluminum. The test setup is shown
in Fig.24. Figure25 displays the selected five test cuts and
the predicted probabilistic stability map generated by the
ensemble transfer learning, and EGAN approaches. The
accuracy and efficacy of these predictions can be evaluated
by examining the remaining actual cutting tests that are
displayed in the figure alongside the predictions. As can be
observed from Fig.25, the proposed EGAN approach is
capable of generating a stability map that most accurately
reflects the actual cutting tests. While it is not possible to
carry out a comprehensive comparison between these

approaches due to the limited number of available test cuts,
comparing the probabilistic maps shows that the ensemble
transfer learning approach is uncertain about the stability
boundary in areas where no information is available, while
the EGAN can predict the boundary even in these areas.
Actual experiment for setup 4

TofurtherinvestigatetheeffectivenessoftheEGANapproach
on actual experiments, a new tool setup (Setup 4) is
introduced for a climb-milling process. This tool setup
includes a cutting tool with a diameter of 12.7 mm, equipped
with four cutting teeth. The recommended feed rate for this
tool is 0.1mm per tooth. Additionally, the radial immersion
is set at 40%. For the uncertain parameters, three
distributions are considered, referred to as Case 1, Case 2,
and Case 3, where
somevaluesarcoverestimated,someareunderestimated,and
some provide a good initial estimate, with the largest
uncertainty generally applied to damping ratio. Specifically,
Case
IrepresentsasituationwherethetoolFRFwasmeasured,but the
FRF changes with spindle speed. The cutting force model is
based on prior experience using similar tool/workpiece
material combinations, but is not measured specifically for
this case. Case 2 represents a situation where the FRF
uncertainty is low, but not zero due to modeling efforts. The
work material is similar to previous testing, but not the same.
Case 3 represents a wide distribution where very little is
known about the system to explore the bounds of the EGAN
capabilities.

Tables 6, 7 and 8 contain detailed information about these
distributions. These tables also provide the nominal values
for the unknown parameters obtained through tap testing. In
Figure 26, the red line identifies the stability boundary for
these nominal values, along with the test cuts performed. As
seen in this figure, there is uncertainty in the analytical
predictionand,consequently,thenominalstabilitymapisnot
able to accurately predict all test cuts. The goal is to assess
the prediction performance of the EGAN approach for either
the nominal or actual stability map.

The EGAN and ensemble transfer learning approaches
are trained on stability maps generated by each distribution
presented in Tables 6, 7 and 8. To evaluate the performance
of these models, a set of five test cuts is selected and used
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Fig. 25 The actual cutting tests in Setup 3 and predicted probabilistic stability maps generated by the ensemble transfer learning and EGAN

approaches using five test points

Table 6 Case 1: Tight normalParameter Nominal value Mean (p) StdDev (o) Error (stdDevs) Error (%)
distribution for the Setup 4

Ja(Hz) 1998 1950 100 048 -0.02

k(N/m) 4.47x106 5x100 1x10° 0.53 0.12

4 0.0123 0.01 0.0025 -0.92 -0.19

Ky(N/m?) 6x108 6x108 1x108 0 0

B (degree) 68 65 5 -0.6 -0.04
Table 7 Case 2: Wide normal
distribution for the Setup 4 Parameter Nominal value Mean (p) StdDev (o) Error (stdDevs) Error (%)

u(Hz) 1998 1800 100 198 01

k(N/m) 4.47x10° 5x100 2x100 0.265 0.12

4 0.0123 0.01 0.01 -0.23 -0.19

Ks(N/m) 6x10% 7x10% 1x10% 1 0.17
Table 8 Case 3: Wide uniformg (degree) 68 60 10 ~0.8 -0.12
distribution for the Setup 4

Parameter Nominal value Min Max Width as % of nominal

1998 1600 2400 0.4

Ja(Hz)

k(N/m) 4.47x10° 3x10° 6x10° 0.67

4 0.0123 0.005 0.025 1.63

K(N/m?) 6x108 3x108 10x108 1.17

B (degree) 68 55 75 0.29
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Fig. 26 Actual test cuts along with the stability boundary for the
nominal values obtained through tap test in Setup 4

as input to predict the stability maps. Figure27 displays the
selected test cuts alongside the probabilistic stability
predictionsofthemodelsandtheexperimentalresultsforeachca
se. The predicted stability boundary is also shown in the
figure as a green line, which is determined by applying the
threshold 0.5 on the probabilistic maps. The results indicate
that, while the EGAN approach cannot predict the true
stability map covering all cutting tests, it can identify the
best stability map based on the available information. In
Case 1, the tight normal distribution limits the EGAN’s
ability to learn various stability behaviors including the true
stability, and thus, the best stability map that it finds closely
matches the nominal map. Conversely, in Cases 2 and 3,
where a wider range of stability behavior is observed, the
EGAN can adjust the nominal stability boundary and predict
a stability map that covers more information than the
nominal map. The figure illustrates that this adjustment is
more significant when the EGAN is trained on a wide
uniform distribution. Notably, the
EGANoutperformstheensembletransferlearningapproach,
particularly in Cases 2 and 3, where the latter exhibits low
accuracy in predicting the true stability boundary.
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This example experiences a degree of mode collapse. For
instance, inthe case of a wide normal distribution, the
EGAN encounters various stability maps but fails to identify
the true stability map. This could be due to the fact that the
EGAN
doesnotlearnandgenerateawiderangeofstabilitybehaviors as
observed in the training dataset. One possible explanation
for this is the imbalanced dataset, where some similar

Journal of Intelligent Manufacturing
of instability of training and mode collapse can significantly
enhancetheEGANapproach’sperformance. Thestudyanticipa
tes that the rapid development of GANs will soon yield a
robust structure that does not have these issues.

It is important to consider that variations in workpiece
material have a direct impact on cutting force coefficients.
This implies that altering the work material could lead to
changes in the resulting stability map. However, in the

Case 1 Case 2 Case 3
5
—— Nominal —— Nominal —— Nominal
—— [auk ETL ETL
+ Stable « Stable = Stable
= Unstable *  Unstable = Unstable
Transfer £
E
learning =
?000 6000 7000 8000 9000 100001100012000 goloo 6000 7000 8000 9000 100001100012000 g0.00 6000 7000 8000 9000 100001100012000
n [rpm] n [rpm] n [rpm]
—— Nominal —— Nominal
EGAN EGAN
s Stable e Stable
» Unstable «  Unstable
EGAN
?000 6000 7000 8000 9000 100001100012000 8000 6000 7000 8000 9000 100001100012000 é’OIGO 6000 7000 8000 9000 100001100012000
n [rpm] n [rpm] n [rpm]
« Stable
4 Unstable
E
Test cuts £ £
el 2 .
L
0
6000 8000 10000 12000

n [rpm]

Fig. 27 The performance of the EGAN and ensemble transfer learning approaches on actual experiments in Setup 4, using Case 1, Case 2, and
Case 3. The figure shows the predictions of the models compared to the experimental results and nominal stability map

samples occur more frequently than others. To address this,
K-Means is used to cluster the stability maps and up-sample
the clusters with fewer samples to balance the dataset. This
approach prevents the EGAN from being biased towards the
clusters with more samples. The performance of the EGAN
approach in predicting the boundary is depicted in Fig.28
before and after applying K-Means to balance the dataset
generated under Case 3 in Setup 4. The figure demonstrates
a

substantialimprovementintheEGAN sperformancefollowin

g the dataset balancing. The stability map that is calculated
using tap-testing is inaccurate. Even so, EGAN is still able
to find a stability map that’s able to match the actual cutting
test results. The results suggest that addressing the problems

123

context of the proposed EGAN approach, our training
process relies on a dataset of stability maps derived from a
physicsbased analytical stability model. This dataset
accounts for a distribution of unknown parameters,
encompassing cutting force coefficients among others.
Consequently, it
encompassesstabilitymapsrepresentingaspectrumofcuttingf
orce coefficient variations.

The training of the generator and encoder networks
within the EGAN framework is rooted in this diverse
dataset. This enables the model to acquire insights into the
inherent stability behaviors and patterns linked to different
combinations of materials and machining parameters. Given
that the model is trained across a range of distinct cutting
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forces, it exhibits an inherent adaptability that may extend
to different work materials within the bounds of its training
data. However, it is worth noting that to ensure the seamless
adaptation of the EGAN approach to new materials,
retraining the model using stability maps generated from the
dynamic characteristics of the new material is a prudent
recommendation. This ensures that the model captures the
material-specific behavior required for accurate stability
predictions.

The novelty of the approach lies in the use of EGAN and
the regularization property of the latent space to predict
stability maps with limited information, which has the
potential to reduce the number of cutting tests needed to
predict stability maps accurately. The study demonstrates
the effectiveness of the proposed EGAN approach through
extensivenumericalsimulationsandreal-worldexperiments,
with a comprehensive comparison against state-of-the-art
approaches.

« Stable 4| — Eean s 41 — EGAN
4 Unstable —— Nominal —— Nominal
- - « Stable — e Stable
E é E 2 Unstable E 2 Unstable
a2 : Py Y
0 0 -
6000 8000 10000 12000 6000 8000 10000 12000 6000 8000 10000 12000
n [rpm] n [rpm] n[rpm]

(a) Test cuts

(b) EGAN without K-Means

(c) EGAN with K-Means

Fig. 28 The performance of the EGAN with and without applying K-Means to balance the training dataset generated under Case 3 in Setup 4

Conclusion and future work

In this study, Encoder GAN (EGAN) is introduced for
predictingstabilitymapsusingsimulatedandexperimentaldata
. The proposed approach is based on Generative Adversarial
Networks (GANs) and consists of the generator, encoder,
and discriminator subnetworks. The simulated data
generatedusingaphysics-
basedanalyticalstabilitymodelareused as training dataset for
EGAN. The generator learns to mimic the physics-based
model’s behavior by outputting a plausible stability map.
The encoder learns to project stability maps back into the
corresponding space parameter, while the
discriminator distinguishes generated/fake stability maps
from sample maps in the input dataset. The EGAN approach
is designed to generate plausible and distinctive stability
maps for each latent space parameter set, while
simultaneously enabling the encoder to identify the unique
set of latent parameters associated with each stability map.
This is achieved through a rigorous training process that
involves regularization of the latent space, ensuring that
similar stability maps are assigned to nearby points in the
latent space. These properties allow the EGAN to accurately
reconstruct
partialstabilityinformationandeffectivelyidentifytheactual
stability map. To obtain partial information about the target
stabilitymap,alimitednumberofcuttingtestsareinputintoa
non-physics-based Bayesian heuristics approach. Once
partial information is obtained, the trained EGAN is utilized
to predict the actual stability map.

latent

Several promising directions for future research are
suggested. For instance, the proposed approach could be
evaluatedusingothervariationsofGANs,suchasvariational G
AN, cycle GAN, DRAGAN, and others, to reduce mode
collapse and instability of training problems. These methods
may further enhance the accuracy and robustness of the
proposed approach. Moreover, future studies can explore
alternative approaches to the grid search method proposed
in this study,
whichcouldprovideadditionalinformationtotheEGANand
potentially accelerate the identification of the target stability
map. Such investigations may improve the efficiency and
effectiveness of the proposed approach and contribute to its
broader applicability. Furthermore, the effectiveness of the
proposedapproachcanbeevaluatedforothermachiningproces
ses, such as turning. Investigating the applicability of the
proposed method to other machining processes would
provide valuable insights into its generalizability and
potential for wider adoption across various industrial
applications.
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Fig.29  Sample test
points for numerical Sample Setup 1, Target 1

Setup 1, Target 2

experiments: Setup 1

5 tests

10 tests
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Fig.30  Sample test
points for numerical Sample Setup 2, Target 1
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Fig.31  Sample test
points for numerical Sample Setup 3, Target 1
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