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Milling is a key manufacturing process that requires the selection of operating parameters that provide efficient performance. 

However, the presence of chatter, a self-excited vibration causing poor surface finish and potential damage to the machine 

and cutting tool, makes it challenging to select the appropriate parameters. To predict chatter, stability maps are commonly 

used, but their generation requires expensive data, making it difficult to employ these maps in industry. Therefore, there is a 

pressing need for an approach that can accurately predict stability maps using limited experimental data. This study 

introduces the new Encoder GAN (EGAN) approach based on Generative Adversarial Networks (GANs) that predicts 

stability maps using limited experimental data. The approach consists of the encoder, generator, and discriminator 

subnetworks and uses the trained encoder and generator to predict the target stability map. This versatile method can be 

applied to various tool setups and can accurately predict stability maps with limited experimental data (five to 10 cutting 

tests) even when there is little information available for unknown parameters. The study evaluates the proposed approach 

using both numerical data and experiments and demonstrates its superior performance compared to state-of-the-art 

benchmarks. 

Milling · Chatter · Generative adversarial network · Deep learning 

Milling is a common manufacturing process which uses a 

rotating cutting tool to remove material from a workpiece 

(Yan et al., 2023). Since milling is expensive, it is important 

to select productive operating parameters, including spin- 
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dle speed n, radial depth of cut a, and axial depth of cut b, 

which enable efficient removal of material from the 

workpiece (Fig.1) (Schmitz & Smith, 2019). 

Ideally, these values should be set as high as possible to 

minimizecuttingtime.However,therearevariousconstraints 

thatpreventsomeparametercombinationsfrombeingviable, 

such as chatter. Chatter is a self-excited vibration that occurs 

atcertainselectionsofmachiningparametersandcausespoor 

surface finish and can potentially damage the cutting tool 

and machine (see Fig.2c) (Unver & Sener, 2023; Jauhari et 

al., 2023). If the tool tip and workpiece dynamics are 

notconsideredwhenselectingmachiningparameters,chatter 

may occur, where varying chip thickness causes 

regenerative vibration. 

Stable (i.e., chatter-free) machining parameters can be 

selected using the stability map (Fig.2a), which separates 

spindle speed-axial depth pairs that are stable from those 

that exhibit chatter. The stability map can be predicted based 

on the tool tip frequency response function (FRF) and the 

toolworkpiece cutting force model (Deng et al., 2023). 

However, in practice, these are not typically known and the 

B 

http://orcid.org/0000-0001-6818-2048
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


 

123 

stability map and optimal machining parameters must be 

inferred from experimental test cuts. 

The importance of considering the system’s vibration 

response when selecting machining parameters has been 

thoroughly established in the literature. Despite numerous 

research efforts to improve the accuracy of stability maps, 

the theoretical and experimental results sometimes differ, 

which can require validation testing prior to final parameter 

selection. The dynamic model’s inputs, the machining 

parameters,andthesolutionalgorithmallaffectstabilitymap 

accuracy(Chenetal.,2021).Modeladvancesincludeprocess 

damping (Wan et al., 2017) and symmetry breaking (Totis et 

al., 2019). In addition, to verify the accuracy of the solving 

algorithm, several methods such as full-discretization 

method (FDM) (Ding et al., 2010), zeroth-order 

approximation (Budak & Altintas, 1998), and semi-

discretization method (SDM) (Insperger & Stépàn, 2002) 

have been introduced. Despite these improvements, a key 

challenge that remains is knowledge of the tool tip dynamics 

and the cutting force coefficients (Chen et al., 2021). 

Currently, modal impact testing is the technique that is 

mostfrequentlyusedtomeasurethetooltipdynamics.Inthis 

method, the tool tip is excited using an instrumented 

hammer and the vibration response is measured using a 

transducer (commonly a piezoelectric accelerometer). 

While the measurementtechniqueiswell-

understood,errorsourcesremain, which include the influence 

of the load condition (Postel et al., 2018), the mass loading 

effect of the accelerometer (Özs¸ahin et al., 2010), and the 

centrifugal forces, gyroscopic moments, and temperature 

increase in cutting operations (Gupta et al., 2020). Similarly, 

the estimate of the cutting force coefficients is also subject 

to various errors and uncertainties. These include fitting 

errors in regression methods and coefficient variation with 

cutting conditions (Dang et al., 2010; Grossi et al., 2015; 

Campatelli & Scippa, 2012). 

Due to these inherence uncertainties in the tool tip 

dynamicsandcuttingforcecoefficients,uncertaintiesareintrod

uced into the deterministic stability maps. To address this 

limita- 

 

Illustration of the milling operation. Nt represents the number of 

teeth (or flutes) on the milling cutter. fz is the feed per flute. It indicates 

the chip thickness that each tooth of the milling cutter removes from 
the material as it passes through it 

tion researchers have focused on approaches that identify 

dynamics during machining. Operational modal (Zaghbani 

& Songmene, 2009) analysis has been implemented to 

assess the machine’s response using an accelerometer 

during routine machining operations. Although the 

identification of the damping ratio and natural frequency is 

straightforward, the dynamic stiffness is not easily obtained 

using this approach. In Özs¸ahin et al. (2015), an inverse 

identification approach is proposed in which chatter 

frequencies and limiting axial 

depthsofcutaredeterminedexperimentally.Inthisapproach, 

data for two spindle speeds that are marginally different are 

needed for the inverse identification of the tool tip 

dynamics. Similar approaches are proposed in Eynian 

(2019), Grossi (2016). However, these approaches 

necessitate specialized 

testsunderpredeterminedconditions,whichmakethemchallen

ging to implement in shop floor environments. 

Recently,machinelearninghasbeenappliedtomachining 

stability modeling. Karandikar et al. (2020) propose a novel 

Bayesian learning approach to predict the stability limit and 

find the optimal parameters utilizing test data only without 

knowledgeoftheunderlyingcuttingforcecoefficientsortool 

tip dynamics. Simulation results from physics-based models 

offer another data source. In this approach, physics-based 

models are used to generate stability maps. The predicted 

stability maps are then discretized and used as training data 

in machine learning approaches, such as artificial neural 

networks (Cherukuri et al., 2019; Oleaga et al., 2018; Yin et 

al., 2023), K-nearest neighbors (Greis et al., 2020), and 

support vector machines (Friedrich et al., 2017). For 

instance, Cornelius et al. (2021) propose a physics-guided 

Bayesian approach in which first, prior uncertainties of 

parameters are considered to obtain the probabilistic 

stability map using the physics-based stability model. 

Second, this probabilistic stability map is updated in each 
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iteration based on the new information obtained from the 

cutting test. A similar Bayesian approach is proposed in 

Chen et al. (2021). Schmitz et al. (2022) presents a novel 

approach to improving milling stability by combining 

Receptance Coupling 

SubstructureAnalysis(RCSA)andmachinelearningtechniqu

es. The method utilizes RCSA to predict the tool tip FRF 

and a frequency-

domainapproachtopredictthestabilityboundary. Updating is 

based on the binary test results (stable/unstable) and chatter 

frequency, if the test cut is unstable, as well as the user’s risk 

preference. The machine learning model is implemented 

using Markov Chain Monte Carlo (MCMC) sampling. 

Postel et al. (2020) propose ensemble transfer learning in 

which the stability map is predicted using fully connected 

neural networks. The neural networks are pretrained with 

simulated data obtained from the analytical 

stabilitymodelandfine-tunedbyre-trainingwithexperimental 

test data to produce the final stability boundary. Yesilli et al. 

(2022) addressed the challenge of automating chatter 

detection in machining processes by exploring the poten- 

a Stability map showing 

which cutting parameters will be 

stable. Cuts above the blue stability 

line will chatter and cuts below will 

be stable. b Stable cut surface. c 

Unstable cut surface 

tial of transfer learning. Their study evaluates the transfer 

learning capabilities of various chatter detection methods 

across turning and milling datasets. The findings revealed 

that Topological Data Analysis and Discrete Time Warping 

approaches can achieve comparable classification 

accuracies to time-frequency methods while offering the 

advantage of automation, particularly for scenarios 

involving limited data or small datasets of unique processes. 

Deng et al. (2023) introduces a novel approach for 

enhancing milling stability analysis. The paper proposes a 

multi-fidelity (MF) surrogate model combined with transfer 

learning to improve the 

accuracyofstabilitylobediagram(SLD)predictions.Themeth

od leverages both analytical stability modeling and 

experimental data to construct accurate stability models, 

resulting in 

morepreciselobeboundariesforselectingmachiningparamete

rs while reducing the number of required experimental 

samples. Shanavas et al. (2023) introduces the application 

of supervised neural networks to learn stability maps from 

data, enhancing the prediction accuracy of machining 

stability maps beyond traditional models. Their study 

investigates the influence of hyperparameters on the 

learning process of neural networks, providing insights into 
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factors such as dataset size, learning rate, activation 

functions, and network architecture. Greis et al. (2023) 

introduces a physics-guided machine learning (PGML) for 

stability modeling in machining. This study examines how 

uncertain physics-based data can be employed to train a 

PGML stability model, subsequently updated with 

measured data, domain knowledge, and theory-based 

information. The paper presents four novel update strategies 

that enhance the PGML model’s accuracy and reduce the 

need for extensive experimental measurements, showcasing 

its potential for approximating the true stability model for 

specific factory conditions. 

Although the data-driven approaches provide 

improvements in specific circumstances, they have several 

limitations. For instance, machine learning approaches can 

lack physical interpretability, meaning that the stability 

maps do not expose the physical constraints that underlie the 

system’s dynamics; in some cases, they even produce 

solutions that defy operational restrictions or the physical 

rules of stability limits (Greis et al., 2020; Postel et al., 

2020). In addition, several approaches, exemplified by 

Friedrich et al. (2017), Cherukuri et al. (2019), and 

Karandikar et al. (2020), require a large number of sample 

data to learn the shape of stability maps, which can be 

expensive. While successful stability map prediction 

approaches have been proposed, a balance between the 

number of actual test experiments, physical interpretability, 

and prediction accuracy has not yet been achieved. To 

advance capabilities, this study introduces the Encoder 

GAN (EGAN) approach, which is based on Generative 

Adversarial Networks (GANs), for predicting stability maps 

using limited experimental data. EGAN is a modification of 

the traditional GAN that includes an additional encoder 

network to predict stability maps. The EGAN 

approachiscomposedoftheencoder,generator,anddiscriminat

or subnetworks. A similar GAN structure can be found in 

the work of Schlegl et al. (2019) but with a different 

application focus, namely anomaly detection. Furthermore, 

while Schlegl et al. trains their encoder separately from the 

generator and discriminator, our approach simultaneously 

trains all three components to improve overall performance. 

The input dataset for EGAN includes stability maps 

generated using a physics-based analytical stability model 

and the generator learnstomimicthephysics-

basedmodel’sbehaviorbytaking a noise vector from the 

latent space and outputting a 

plausiblestabilitymap.Theencoderlearnstoprojectstabilitym

aps back into the corresponding latent space parameter. The 

discriminator distinguishes generated/fake stability maps 

from sample maps in the input dataset. In the evaluation 

process, the trained encoder projects a stability map into the 

latent space to find the unique parameters that correspond to 

the map and the trained generator produces the 

corresponding stability maps based on the physics it learned. 

The approach is used to predict stability maps with a limited 

numberofcuttingtestexperimentsbyapplyingasimplenonphy

sics-based Bayesian updating approach to obtain partial 

knowledge about the target stability map. The hypothesis is 

that the perfectly trained EGAN has a regularized latent 

space that can map similar stability maps to closed points in 

the latent space, enabling the encoder to find the best 

parametersthatleveragealltheinformationitreceives,evenifth

ere is incomplete knowledge about the parameters and the 

stability maps. The novelty of the approach lies in the use of 

EGAN and the regularization property of the latent space to 

predict stability maps with limited information, which has 

the potential to reduce the number of cutting tests needed to 

predict stability maps accurately. We demonstrate the 

effectiveness of the proposed EGAN approach through 

extensive numerical simulations and experiments. We 

demonstrate the proficiency of the EGAN approach in 

effectively predicting stability maps, even when there is 

minimal data available regarding the unknown parameters. 

This is achieved through the consideration of wide normal 

and uniform distributions for uncertain parameters. A 

comprehensive comparison is also provided against state-

of-the-art approaches, including ensemble transfer learning 

(Postel et al., 2020) and Bayesian learning (Karandikar et 

al., 2020). 

The remainder of this paper is organized as follows: 

“Methodology”sectiondescribestheproposedEGANapproac

h used to predict the stability map. “Experimental 

verification” section evaluates the proposed approach. 

Finally, “Conclusion and future work” section concludes the 

study and discusses future work. 

Chatter occurs due to the relative vibration between the 

cutting tool and workpiece during cutting (Schmitz & 

Smith, 2019). This vibration is imprinted on the workpiece 

surface (Fig.3). The next tooth encounters this wavy surface 

and experiences varying chip thickness h and, therefore, 

cutting force. During a stable cut, the cutting force and 

vibration will converge to an equilibrium that repeats for 

each tooth. In an unstable (chatter) cut, the force and 

vibration do not repeat from tooth to tooth and grow until 

the vibration is large enough that the tooth temporarily 

leaves the cut. This is referred to as the regenerative effect. 

Theoccurrenceofchatterdependsontwomainfactors:the 

vibrationofthetool,governedbythetool’sFRF,andtheforce 
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involvedinthecuttingprocess,describedbythecuttingforce 

model. The tool tip FRF is described by a complex-valued, 

frequency-dependent matrix: 

[FRFxx(ω) 0 

 (1) 

 0 FRFyy(ω) 

where x isthefeeddirectionand y istheorthogonaldirection in 

the plate of the cut. The cutting force is assumed to be 

proportional to the chip thickness F = Ksbh, where Ks is the 

specific cutting force coefficient and b is the chip width. 

This cutting force can be decomposed into the tangential 

force Ft = sin(β)Ksbh andnormalforce Fn = cos(β)Ksbh, where 

β is the force angle. 

The stability map can be estimated from these inputs 

using the zero-order approximation algorithm proposed by 

Altintas and Budak (1995). This method solves the 

periodiccoefficient delay differential equation by 

approximating the 

 

Variable chip thickness due to tool vibration Schmitz and Smith 

(2019) 

periodic cutting force as a matrix , where 

αij defines the amount that the average cutting force in the i 

direction will change for a unit displacement in the j 

direction. Please refer to Altintas and Budak (1995) for a full 

derivation. 

The purpose of the proposed study is to predict the stability 

map in milling operations using a novel deep learning 

approach named EGAN and limited experimental data. The 

primary distinction of the EGAN approach from previous 

approaches lies in the utilization of the GAN’s structure for 

stability prediction. As far as our investigation shows, the 

proposed EGAN approach is the first study to employ a 

GAN-based architecture for predicting stability maps in 

machining processes. This incorporation of GAN 

architecture introduces a novel and innovative dimension to 

stability prediction that sets the proposed method apart from 

the existing approaches. By integrating an encoder network 

within the GAN framework, EGAN effectively bridges the 

gap between physics-based modeling and data-driven 

learning. This allows us to harness the advantages of GANs, 

such as generating plausible stability maps from latent space 

parameters, while also benefiting from the analytical 

insights of physics-based models. We believe that this 

pioneering utilization of GANs in the context of stability 

prediction not only contributes to the advancement of 

machining research but also opens avenues for future 

explorations at the intersection of deep learning and 

manufacturing. 

In this section, the problem definition is first discussed. 

Then a brief background on the traditional GAN is provided. 

Next, the encoder GAN (EGAN), which is a leveraged 

version of the traditional GAN, is proposed for the purpose 

of the milling stability prediction. Then, common training 

challenges for GANs are discussed. Following that, a 

description of the state-of-the-art approaches that are used 

as benchmarks in this study are presented. Next, a grid 

search approach is introduced for the selection of cutting 

tests, 

specificallyintendedforevaluationpurposes.Lastly,thegenera

l framework of the proposed and benchmark approaches are 

presented. 

Assuming a symmetric single degree-of-freedom (SDOF) 

system, there are five unknown parameters θ = (Ks,β, fn, k,ζ) 

to predict the stability map, where Ks is the specific cutting 

force coefficient, β is the force angle, fn is natural frequency, 

k is the modal stiffness, and ζ is the modal viscous damping 

ratio (i.e., the SDOF FRF is approximated using these three 

parameters). 

As described in “Introduction” section, an accurate 

estimation of the FRF and cutting force coefficients is 

required to estimate an accurate stability map. However, 

obtaining the FRF and cutting force coefficient information 

needs 

specializedsensorsandcanbechallenginginindustry.Neverthe

less, there exists a prior knowledge about these parameters. 

The prior represents the initial beliefs about parameters and 

incorporates all available information, whether it comes 
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from expert opinions, available experimental data, 

theoretical considerations, or analytical models. In this 

study, a prior distribution is first defined for these 

parameters P(θ) and N 

sampleparametersaregeneratedfromthisdistribution.Next, 

these sample parameters are used together with the physics 

model to generate prior/simulated stability maps, which are 

used as training data for the proposed approach. Finally, the 

trained networks apply limited experimental data to predict 

the target stability map. 

The traditional GAN is a deep learning-based generative 

model that was initially proposed by Goodfellow et al. 

(2014). The primary goal of this approach is to generate 

synthetic but realistic images by learning the input data 

distribution by predicting features from an initially hidden 

representation, which is also called the latent space 

representation. The traditional GAN includes the generator 

and discriminator networks, competing with each other in 

an adversarial manner in the training process. Specifically, 

the traditional GAN is designed as a minimax game, where 

the generator and discriminator networks compete in a zero-

sum 

gameframework,asoriginallyusedingametheory(Akcayet 

al.,2019).Thegenerator networklearnstogenerateanimage 

thatresemblesimagesintheinputdataset,whilethediscriminat

ornetworklearnstodistinguishthegeneratedimagesfrom the 

input images. 

Figure4 illustrates the scheme of the traditional GAN to 

generate handwritten digit numbers. In the traditional GAN, 

the generator (G) has a decoder network architecture and 

learns to capture the input data distribution (pX) by 

generating plausible images from a latent space distribution 

(pz), which is commonly a standard normal distribution. In 

contrast, the discriminator (D) adopts an encoder network 

architecture and works as a classification algorithm, reading 

an input image and labeling it as real or generated/fake. Both 

the generator and the discriminator networks are 

simultaneously trained through a two-player minimax game. 

During the training process, the generator aims to make the 

discriminator’s loss larger. In other words, it tries to fool the 

discriminator by generating new plausible data (resembling 

the input data) so that the discriminator fails to detect them 

as fake images. Specifically, the original GAN solves the 

Scheme of the traditional GAN 

following minmax game (Goodfellow et al., 2014): 

min max V(D,G) (2) 
G D 

where 

V  

(3) 

The discriminator is trained to maximize its outputs on 

input images (i.e., log(D(x)); labeling input images as “real 

”) and minimize its outputs on fake images (i.e., 

log(D(G(z))); labeling generated images as “fake”). In 

contrast, the generator is trained based on the 

discriminator’s performance on fake images. The generator 

tries to minimize V(G) = log(1 − D(G(z))), or equivalently, 

maximize V(G) = log(D(G(z))), so it can fool the 

discriminator such that this network treats fake images as 

input images. Note that the generator is not able to control 

the discriminator’s performance on input images (i.e., 

log(D(x))). 

Input noise ( ) 

Real ( ) 

Fake ( ) 

Real/Fake 

Generator  
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Forpredictingstabilitymaps,theGANisadvancedbyadding 

encoder network (E) to the traditional GAN structure. The 

proposedapproachiscalledEncoderGAN(EGAN).Figure5 

illustrates the scheme of the proposed approach. 

The input/real dataset in EGAN includes stability maps 

generated using the physics-based analytical stability 

model, considering a distribution for the unknown 

parameters. The goal of the generator (G) in EGAN is to 

learn the physics 

underlyingthestabilitymapsintheinputdata.Thatis,ittakes 

avectorofnoisesfromthelatentspaceandoutputsaplausible 

stability map. The generator learns to mimic the 

physicsbasedanalyticalstabilitymodel’sbehavior.However,i

nstead of taking the real parameters (θ), the generator takes 

some noise vector (z) from the latent space, which it is 

referred to as the latent space parameter in the remainder of 

the paper. It is important to clarify that the latent space is 

characterized as a Gaussian random noise vector. It serves 

as a transformed representation of parameters in an 

alternative space, devoid of direct physical interpretability. 

It is essential to underscore that the latent space lacks 

inherent interpretability. 

On the other hand, the encoder E learns the opposite side 

of the generator. That is, it uses a stability map that is 

generated by the generator and returns the corresponding 

latent space parameter z. The discriminator (D) has the same 

role as it has in the traditional GAN. That is, it distinguishes 

the generated/fake stability maps output by the generator 

from sample maps in the input dataset. Through adversarial 

learning,thegeneratorlearnstogeneraterealisticstabilitymaps

to fool the discriminator and the decoder learns to find 

unique latent space parameters for each stability map. 

The hypothesis is that if EGAN is perfectly trained, the 

generator connects each set of latent space parameters to a 

unique stability map, and, in contrast, the trained encoder 

projects back each stability map to a unique set of 

parameters. In addition, it is hypothesized that the perfectly 

trained EGAN has a regularized latent space, which means 

that the encoder 

canmapsimilarstabilitymapstoclosedpointsinthe latent 

space. These hypotheses are applied in the test process to 

predict the intended stability map with a limited number of 

cutting test experiments. For now, assume that complete 

knowledge of the target stability map is available, as seen in 

Fig.6.Thetrainedencodertakesthismapandprojectsitback 

into the latent space. The trained encoder finds the unique 

parametersthatcorrespondtothismap.Next,thetrainedgenerat

ortakestheparametersthatthetrainedencoderfoundand 

produces the corresponding stability maps because it knows 

 

Scheme of the EGAN 
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Evaluation step in EGAN 

with complete knowledge of the 

stability map 
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Evaluation step in EGAN 

with partial information obtained 

from cutting tests 

the physics. If both the generator and encoder are perfectly 

trained, the generator should output the exact map that the 

encoder receives. This is because, as hypothesized, there is 

only one vector of parameters for each stability map. 

In practice, however, knowledge regarding the 

parameters (θ) and, consequently, the stability maps is 

incomplete. Hence, cutting tests are performed to obtain 

partial information about the target stability map and then 

this information is used as input to the proposed approach to 

predict the actual stability boundary. In this study, a simple 

non-physicsbased Bayesian updating approach is applied (as 

proposed in Karandikar et al. (2020)) to obtain partial 

knowledge (see Fig.7) about the target stability map using a 

limited number of experiments. This approach is discussed 

in the benchmark 

section(“Bayesianlearning”section).Itishypothesizedthat, 

given this partial knowledge of the stability map, the 

perfectly trained encoder will find the best parameters in 

latent space that incorporates all the information that it 

receives. If there is sufficient information, it can find the 

exact vector of parameters in the latent space that 

corresponds to the target stability map and, as a result, the 

generator can then return the target stability limit. However, 

if the information is not sufficient, the encoder may not be 

able to find the true latent space parameters, but at least it 

can find parameters that are close enough to the true 

parameters. Consequently, the generator may not be able to 

reconstruct the target stability map, but it can output a map 

that is close enough to the target stability map. This behavior 

is explained using the regularization property of the latent 

space. 

To train the model in a way that enables the hypotheses to 

be tested, the loss functions of each sub-network are 

formulated as follows: 

Generator Loss: The generator network G is trained to learn 

the physics underlying the input dataset and generate unique 

stability maps for each set of latent space parameters. To do 

so, the generator needs to fool the discriminator to be able 

to generate plausible stability maps. Hence, the generator’s 

loss should compute how effectively the discriminator 

distinguishes generated/fake stability maps from input 

stability maps. To capture this, the generator’s loss is 

calculated as: 

LG  (4) 

Encoder Loss: The encoder network E should learn the 

opposing side of the generator. That is, it should be able to 

project the stability maps generated by network G back into 

the latent space to find the corresponding latent space 

parameters. The encoder can learn this information by 

calculating dissimilarities between the input parameters of 

the generator (z) and the corresponding reconstructed 
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parameters z = 

E(G(z)).Therefore,theencoder’slossiscalculated as: 

LE  E(G(z))1 (5) Discriminator Loss: In 

adversarial learning, the discriminator is trained to classify 

both the real data and the fake data from the generator. It 

penalizes itself for incorrectly categorizing a fake instance 

(generated by the generator) as real or a real instance as fake 

by maximizing the function shown in Eq.(6). 

LD  (6) 

The traditional GAN in its original form suffers from two 

major limitations including mode collapse and 

nonconvergence(ortraininginstability).Modecollapseisknow

n as the lack of image diversity in GAN training and happens 

when the generator learns to associate multiple input z 

values with a single output point. Non-convergence mainly 

happens when the equilibrium between the discriminator 

and 

thegeneratorisnotfound.Forinstance,whenthediscriminator 

perfectly distinguishes between the fake and real images and 

starts to reject the generated samples by the generator, there 

is no longer enough information for the generator to learn 

from, which causes the vanishing gradient problem for the 

generator. 

In recent years, empirical approaches have been 

introduced to enhance the training efficiency of GANs 

regarding mode collapse and/or training instability. For 

instance, the Wasserstein GAN (WGAN) proposed in 

Arjovsky et al. 

(2017)hasdemonstrateditscapacitytomitigatebothofthese 

issues. In addition, past studies (Ham et al., 2020; Munjal et 

al., 2020; Rosca et al., 2017; Bang & Shim, 2021; Chong et 

al., 2020; Bang & Shim, 2018; Lazarou, 2020) have shown 

that autoencoder-based GANs generally have the ability to 

prevent mode collapse. One of the most effective approaches 

to overcome non-convergence (i.e., instability in training) is 

Deep Convolutional GAN (DCGAN) proposed by Radford 

et al. (2015), where convolutional layers replace fully 

connected layers. In addition, Chakraborty et al. (2018) 

mention 

thatusingbatchnormalizationinGAN’sstructurecanreduce 

the problem of training instability, which is caused by poor 

initialization. Salimans et al. (2016) show that the feature 

matchinglosscanaddresstheinstabilityoftrainingcausedby 

over-training on the discriminator response. Goodfellow et 

al. (2014) suggest training the discriminator for nd > 1 steps 

every time the generator is trained for one step. This would 

help balancing the power/optimization of the discriminator 

andgeneratornetworks.Goodfellow(2016)alsorecommend to 

balance the generator and discriminator by optimizing the 

model size. 

Figure8 provides examples of the mode collapse as well 

as the training instability problems in EGAN. Specifically, 

this figure presents a complete batch of 16 stability maps, 

whicharegeneratedusingthegeneratornetworkbyinputting 16 

random Gaussian noise samples. As seen in Fig.8a, it is 

apparent that the generator network suffers from the mode 

collapse problem and fails to produce diverse and realistic 

stability maps. In addition, Fig.8b demonstrates that the 

generator network is affected by training instability, which 

leads to the generation of noisy stability maps. 

Although many approaches have been proposed to 

overcome mode collapse and instability of training 

problems, they have not been completely solved. In this 

study, existing approaches are applied to address both 

problems, which are explained later in the results section. 

In this section, two state-of-the-art machine learning 

approaches are described, including Bayesian learning and 

ensemble transfer learning approaches, that have been 

successfully applied for stability prediction. These two 

approaches are used as benchmarks in this study. 

 

 (a) Mode collapse (b) Instability of training 

Examples of mode collapse and training instability in the EGAN approach 
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The Bayesian learning approach, which is proposed by 

Karandikar et al. (2020), finds the stability boundary in 

milling without knowledge of the underlying tool dynamics 

or cutting force coefficients. In this approach, a prior for 

 

Neural network architecture in ensemble transfer learning 

the stability map is first identified. The prior is the current 

beliefs about the parameters that are formed based on all 

available data. Second, the prior probability is updated using 

the Bayes’ rule and experimental data. 

In this study, the prior probabilities are established using 

the basic knowledge that high axial depths are more likely 

to be unstable at a selected spindle speed. To define the prior, 

the space of the stability map is first divided into several grid 

points. Then, the prior probability of stability (p(sG)) for 

each grid point G on the map is defined using the prior 

knowledge (see Fig.9a). As a result, each grid point has a 

p(sG) probability of stability and a p(uG) = 1 − p(sG) 

probability of instability (Fig. 10). 

The goal is to update the probability of all grid points 

given a stable (+) or unstable (−) result at the test point T. 

Equation(7) shows the Bayes’ rule to update the probability 

at grid point G based on a stable result at test point T. 

p(sG  (7) 

 p(+T ) = p(+T |sG)p(sG) + p(+T |uG)p(uG) (8) 

Based on expert knowledge of the stability behavior, the 

likelihood probabilities p(+T |sG) and p(+T |uG) are defined. 

For more details please refer to Karandikar et al. (2020). 

Figure 9b and c present the posterior probabilities 

updated using these equations for a stable and unstable test 

result, respectively. 

Ensemble transfer learning, which was originally proposed 

by Postel et al. (2020), is a deep learning-based approach 

that is designed to predict milling stability maps in milling 

by utilizing simulated and experimental data. In this 

approach, simulated data is utilized as the starting point for 

training feed-forward neural networks to learn the concept 

of stability maps. Next, experimental data are used to fine-

tune the pre-trained neural networks so that these networks 

can adapt to the actual behavior of the system. The ensemble 

transfer learning framework includes six steps, as follows: 

(1) Parameter sampling In this step, the uncertain 

parameters are sampled Nnet times from their 

distributions and then fed to an existing stability model 

to generate the corresponding stability maps. This step 

results in Nnet simulated stability maps. 

(2) Generating training datasets Each stability map 

generated in Step 1 is divided into several grid points to 

construct Nsim artificial cutting tests (ni,bi). As a result, 

Nnet training datasets are constructed in this step, each of 

which contains Nsim cutting tests. 

(3) Stability evaluation In this step, the stable or unstable 

labels ci for all pairs of spindle speed and cutting depth 

(ni,bi) in each training dataset are determined by 

 
(a) Prior probability of stability 

map 

(b) Posterior probability of stability 
given a stable result at 
11,000 rpm, 1.5 mm 

(c) Posterior probability of 
stability given an unstable result 
at 
11,000 rpm, 1.5 mm 

Stability prior and updatet posterior given stable and unstable results 
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utilizing the corresponding stability map generated in 

Step 1. 

(4) Pre-training Each generated dataset from Step 2 and 

corresponding output labels fromStep3areusedtopre-

train a fully connected neural network. As a result, Nnet 

neural networks are trained to learn the shape of the each 

of 

the stability map in the training dataset. The structure of 

these neural networks is presented in Fig.31. 

(5) Fine tuning In this step, each pre-trained neural network 

in Step 4 is fine-tuned by utilizing the experimental 

cutting tests. As a result, the pre-trained neural network 

that had learned the general shape of the stability 

boundary is now adapted to the actual stability behavior 

using the experimental data. 

(6) Prediction Finally, each of the fine-tuned networks in 

Step 5 is used to predict the target stability map. Next, a 

truncated mean approach is used to average the stability 

maps obtained from Nnet fine-tuned networks to get the 

final stability map. 

This section outlines the approach for selecting five and ten 

cutting tests, which are conducted for evaluation. This study 

initiates by randomly selecting five cutting tests from the 

stability map space (i.e., spindle speed and axial depth of 

cut) to predict the actual stability map. Subsequently, an 

additional five cutting tests are selected based on the 

previous set of five chosen points to form a total of ten test 

points, to increase the accuracy of the stability map 

prediction. 

The initial selection of five test points is accomplished 

through the use of a grid-based approach, which is detailed 

below. First, the stability map space is partitioned into 25 

subspaces by equally dividing the range of spindle speed and 

axial depth of cut into five parts (see Fig.11a). Next, the first 

test point is randomly selected from the second subspace. 

Note that the second subspace is always used as the starting 

point in all setups. Then, the next subspace is selected from 

the second range of spindle speed (i.e. from subspaces 6, 7, 

8, 9, and 10) considering the stability behavior of the current 

test result. If the current test result is stable, the subsequent 

subspace is selected from the upper range of axial depth of 

cut. Conversely, if the current test result is unstable, the next 

subspace is selected from the lower range of axial depth 

 

 (b) Five test cuts (c) Ten test cuts 

Grid search to select five and 10 test cuts in the numerical analysis 

( a)stabilitymapsubspaces 
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ofcut.Once thesubspace isselected, thenext testpoint is 

chosen randomly from the selected subspace. This process 

is repeated until all five test points are selected. In this way, 

this approach ensures that at least one test from each range 

of spindle speed is selected. Figure11b presents a sample 

path for the selection of five cutting tests from a known 

stability limit. 

To obtain 10 test cuts, the initial selection of five is 

extended by including an additional set of five. The selection 

begins by partitioning the axial depth of cut into 10 equal 

parts, thereby subdividing the stability map space into more 

subspaces. Next, a test cut is selected from the previous set 

of tests and, depending on the stability of this selected test 

cut, tests with larger axial depth of cuts but the same spindle 

speed are chosen if stable, or tests with lower axial depth of 

cuts but the same spindle speed are chosen if unstable. 

Figure11c illustrates a sample path to extract 10 test points 

from a known stability limit. As depicted in the figure, this 

approachyieldstheselectionofpointsthatareinproximityto the 

stability boundary, thereby providing adequate information 

for both the EGAN and other approaches to accurately 

predict the target stability map. 

The general framework of the proposed and benchmarks 

approaches is presented in Fig.12. In the first step, N sample 

parameters  are 

generated from their distribution P(θ). These parameters are 

input to the physics model to find the stability limit blim for 

each axial depth of cut n and, as a result, the corresponding 

stability map. This step results in N simulated stability maps. 

These simulated stability maps are then used as training 

samples to train the EGAN and ensemble transfer learning 

approaches in the second step. Note that in the EGAN 

approach, the last M = 100 trained networks are selected to 

make prediction. Next, in the third step, a small number of 

test cuts are selected based on the grid search approach 

proposed in “Cutting tests selection” section. As seen in the 

figure, the cutting test points are augmented by establishing 

that for a stable test, all test points at the same spindle speed 

and a lower axial depth of cut will also exhibit stability. 

Conversely, if a test is unstable, then all test points with the 

same spindle speed and a higher axial depth of cut will also 

exhibit instability. 

Finally, in the fourth step, the target stability map is 

predicted using the Bayesian learning, ensemble transfer 

learning, and EGAN approaches. The cutting tests are used 

by the Bayesian learning approach to predict the target 

stability map. The augmented cutting tests are used to fine 

tune the pre-trained neural networks. Next these fine-tuned 

neural networks are used to predict the stability map. Lastly, 

the partial information obtained by the Bayesian learning 

approach is used as input for the M trained encoders and 

generators in EGAN to predict the target stability map. Each 

trained encoder receives the partial information as input and 

attempts to find the best latent space parameters that cover 

the maximum amount of information it receives. Next, each 

of the trained generators is used to predict the actual stability 

map from the latent parameters that the encoder found. 

Lastly, the prediction is obtained by taking the average of 

the M outputs of the generators. 

In this section, numerical experiments are conducted to 

evaluate the proposed and benchmark approaches to 

identifying a known stability map. A description of the 

setups for the numerical experiments is first provided. Next, 

the training performances of the EGAN and ensemble 

transfer learning approaches are presented. Finally, a 

comparison between the EGAN, ensemble transfer learning, 

and Bayesian learning approaches using numerical 

experiments is provided. 

ToinvestigatetheefficiencyoftheproposedEGANapproach 

for milling stability prediction under different target 

conditions, three tool setups with different process and 

modal parameters are selected, and their specific 

information is listed in Tables 1 and 2. Specifically, Table 1 

presents process parameters for these three tool setups, 

including the tool diameter, number of teeth, feed, feed 

direction, and radial immersion, which refers to the depth of 

cut as a percentage of the tool diameter. As seen in this table, 

a climb-milling machining process is considered with tool 

diameters in the range of 12.7 mm to 25.4 mm, three or four 

teeth, and radial, and radial immersion in the range of 25% 

to 75% for different setups. These simulations are not based 

on specific work materials, but the cutting force values are 

generally in the range common for aluminum and other soft 

metals. 

Table 2 presents the uncertain process and modal 

parameters with their respective distributions for the three 

tool setups. As seen in Table 2, in Setups 1 and 2, a SDOF 

system is considered with five unknown parameters related 

to the cutting coefficients and tool tip dynamics, including 

Ks, β, k, fn, and ζ. The entries for Setups 1 and 2 can be 
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considered as a series of five univariate normal distributions 

with mean values of μ1,μ2,μ3,μ4,μ5 and standard deviations 

of σ1,σ2,σ3,σ4,σ5. Generating sample parameters from each 

of these distributions gives a series of values 

. However, it is more beneficial to 

consider the inputs as a single five-dimensional multivariate 

normal distribution N  with a mean vector μs and 

covariance matrix s: 

 

(9) 

(10) 
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General framework of the proposed and benchmarks 

approaches 
Process parameters for three tool setups 

Forth step:  Predicting the target stability map 

Third step:  Experimental/artificial cutting tests  

Second step:  Training EGAN and ensemble transfer learning  

First step: Generating the training dataset 

Physics Model ( , ) ~ ( ) 
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 Setup 1 Setup 2 Setup 3 Unit 

Tool diameter 25.4 25.4 12.7 mm 

Number of teeth 4 4 3 – 

Feed 0.1 0.1 0.1 mm/tooth 

Feed direction Climb Climb Climb – 

Radial immersion 25% 50% 75% – 

InSetup3,a2DOFwitheightunknownparametersrelated to 

the cutting coefficients and tool tip dynamics is considered. 

The uncertainty of these parameters is captured through an 

eight-dimensional multivariate normal distribution N

 with mean vector μs3 and covariance matrix 

; the subscript 3 denotes the setup number. The values for 

the vector μs3 and matrix  are presented in Eqs.(11) and 

(12). 

out chatter blim for some spindle speeds n. Determining this 

value for each spindle speed and for each parameter results 

in the probabilistic stability map depicted in Fig.13. The 

grayscale level of each point (n,b) is the probability of 

stability, which is calculated using the following equation: 

N 

1 

Pstability =  b (13) 

N 
i=1 

The probability of stability at a specific point indicates 

the number of stability maps that forecast stable cutting test 

at that point. Figure13 shows the resulting probabilistic 

stabilitymap along withthepriorand target stabilitymaps 

foreach setup. As expected, the probabilistic stability map 

could represent the stability map that is related to the prior 

mean with a good approximation; however, it does not 

represent the stability maps that are related to Targets 1 and 

2. For instance, Target 2 in Setup 2 completely contradicts 

the probabilistic 

Each tool setup has two target stability maps associated 

with it. These target stability maps represent specific desired 

outcomesforthecuttingprocessunderinvestigation.Toelabora

tefurther,thesetargetstabilitymapsareextractedthrough 

aprocesswhereparametersaregeneratedfromtheparameter 

distributions outlined in Table 2. For each generated 

parameterset,thephysicsanalyticalmodelisemployedtoextrac

tthe corresponding stability map. These extracted stability 

maps, 

termed“targetstabilitymaps,”serveasbenchmarkreferences 

for evaluating the predictive performance of stability 

prediction methods, such as the EGAN approach. Table 2 

presents the parameter values and corresponding stability 

maps for the two targets considered in each setup. In this 

table, the target stability maps are shown along with the 

stability map that is obtained using the mean of the normal 

distribution, which is labeled “Prior Mean” in the map. 

Toshowhowcloselythepriorwouldrepresenteachtarget, 

theprobabilisticmapisconstructed.Todoso,thepriordistributi

on listed in Table 2 is used to generate N = 4000 sample 

parameters, which are used as input to the physics model to 

predict the stability maps. For each sample parameter θ, the 

physics model computes the maximum cutting depth 

withstability map. Note that the simulated stability maps 

that are applied here to draw the probabilistic stability map 

are also used as the training dataset to train the EGAN and 

transfer learning approaches. 

The rationale behind generating the probabilistic map and 

subsequently comparing it with the target stability maps in 

Fig.13 is to underscore a significant observation: the 

training dataset, instrumental in the construction of the 

probabilistic stability map, does not inherently encompass 

the intricate characteristics of the target stability maps 

employed during the evaluation process. This distinction 

 

(11) 

(12) 
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highlights the 

challengefacedbytheapproachinaccuratelypredictingthetarg

et stability maps, given the dissimilarity between the 

training and evaluation datasets. 

This section presents the training performance of the EGAN 

and transfer learning approaches.1 It should be noted that the 

Bayesian learning approach does not include a distinct 

training step. To train these approaches, 4000 sample 

stability maps are generated using the uncertainty 

distribution provided in Table 2. These samples are then 

employed to train the EGAN approach and pre-train the 

neural networks 

intheensembletransferlearningapproach.Thisenablesboth 

approaches to acquire a comprehensive understanding of 

stability maps. 

EGAN Network Architecture Per the discussion in 

“Common training problems in GANs” section, deep con- 

 
1 The code is available at https://github.com/srezaei90/GANs-

topredict-stability-maps-in-milling-machining.git. 

https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
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Uncertain process and modal parameters with their respective distributions for three tool setups 

 Parameter Distribution (N(μ,σ)) Target 1 Target 2 Stability map 

Setup 1 Ks(N/m2) 
N(8 × 108,1.6 × 108) 5.2 × 108 10.2 × 108  

 β (degree) N(68,6.8) 63 74  

 fn (Hz) N(1000,100) 929 1164  

 k (N/m) N(8 × 106,1.6 × 106) 6.16 × 106 9.94 × 106 

 
 ζ N(0.03,0.006) 0.027 0.027  

Setup 2 Ks(N/m2) 
N(6 × 108,1.2 × 108) 6.67 × 108 4.99 × 108  

 β (degree) N(68,6.8) 67 58  

 fn (Hz) N(1200,120) 1096 1484  

 k (N/m) N(5 × 106,1 × 106) 5.1 × 106 4.28 × 106 

 
 ζ N(0.02,0.004) 0.017 0.024  

Setup 3 Ks(N/m2)  6 × 108 3.7 × 108  

 β (degree)  68 57  

 fn1 (Hz)  1286 1272  

 k1 (N/m) 

 

4.72 × 106 8.2 × 106  

 ζ1  0.041 0.040  

 fn2 (Hz)  1694 1584 

 
 k2 (N/m)  7.90 × 106 5.50 × 106  

 ζ2 0.033 0.038 

Two target stability maps in each setup are considered for prediction in the numerical experiments 
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volutional layers with batch normalization are used for the 

sub-networks in the architecture of the EGAN approach to 

overcome mode collapse and training instability. The 

models (i.e., the generator, encoder, and discriminator) are 

initialized with the hyperparameter values suggested in 

(Radford et al., 2015), but the parameters that are most 

important to learning, including number of hidden layers, 

activation functions, learning rate, batch size, and latent 

space dimension are updated to get a perfectly trained 

generator and encoder. To balance the power of the 

discriminator and generator  
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networks, the discriminator’s size is decreased to two 

convolutional layers and the generator’s size is increased to 

eight 

convolutionaltransposelayers.Inaddition,itisobservedthat 

increasing the number of steps for training the discriminator 

(nd) per iteration of generator training can aid in reducing 

noise in the generated images. However, the optimal value 

of nd may vary depending on the specific tool setup being 

used. Therefore, it is recommended to experiment with 

different values of nd, ranging from 1, and iteratively adjust 

it to find the best-performing model for a given tool setup. 

Furthermore, one can choose between the sigmoid and 

hyperbolic tangent (tanh) activation functions in the last 

layer of the generator to reduce the noise in the generated 

images. Table 3 provides detailed information on the layers 

of the generator, encoder, and discriminator networks, 

including the corresponding activation functions, optimizer 

used for each 

network,andrelevanthyperparameters.Notethattheoptimal 

dimensionality of the latent space is set to four. 

EGAN Training Performance The performance of the 

achieved generator and encoder networks during the 

training process on Setup 2 is illustrated in Figs.14 and 15. 

Specifically,Fig.14depictstheprogressionofthegenerator’sab

ility to produce plausible stability maps throughout the 

training process. As depicted in the figure, the generator 

initially produces random noise in the first few epochs. 

However, as training progresses, it acquires the ability to 

fool the discriminator and ultimately generate plausible 

stability maps. Despite the generator’s ability to produce a 

diverse range of 

stabilitymaps,itstillexhibitssomelevelofnoiseinthegenerated 

output. This suggests that the issue of training instability 

hasnotbeenentirelyresolved,eventhoughthegeneratordoes 

not suffer from mode collapse. 

Figure15 depicts the advancement of both the encoder 

and generator’s capability to reproduce a given stability map 

throughout the training process. More specifically, this 

figure demonstrates how the encoder can find the unique 

latent space parameters that correspond to the input stability 

map as it undergoes the training process. As explained in the 

Methodology section, a perfectly trained encoder and 

generator should result in a reconstructed stability map 

(G(E(x))) that is either identical or very similar to the input 

stability map x. The input stability map depicted in this 

figure is derived from the“Prior Mean” utilized in Setup 2. 

As illustrated in the figure, during the initial epochs, the 

encoder is unable to identify the latent parameter that 

corresponds to the input map. This outcome is to be 

expected, given that the generator possesses only a limited 

understanding of stability maps in the initial epochs. 

Consequently, the encoder, which relies on the generator’s 

outputs for learning purposes, is unable to accurately 

connect the input stability map to the latent space. As the 

training progresses, the generator gains a deeper 

understanding of the physics underlying stability maps, and 

as a result, the encoder becomes more adept at accurately 

connecting the input stability map to the latent space. As 

depicted in the figure, at epoch 100, the encoder and 

generator are able to successfully reconstruct the input 

stability map with a high degree of accuracy. 

Ensemble Transfer Learning Architecture In ensemble 

transfer learning, it is necessary to pre-train Nnet fully 

connected neural networks on Nnet simulated stability maps 

so that each neural network can learn the shape of each 

stability map. However, the entire training dataset, including 

4000 simulated maps, cannot be used to train 4000 neural 

networks, as it would be computationally expensive. Hence, 

a subset is selected from the training dataset containing 200 

sample stability maps to train Nnet = 200 neural networks. 

Figure16 illustrates the probabilistic stability map for each 

setup that is obtained by 200 simulated stability maps that 

are used to pre-train neural networks. This figure shows that 

even though only 200 sample stability maps are used, the 

resulting probabilistic map is very close to the one that is 

made with 4000 sample stability maps (see Fig.13). 

To achieve effective transfer learning, it’s crucial to use a 

neural network architecture that is appropriate for 

replicating stability behavior. To accomplish this, 

hyperparameter tuning is done by evaluating the network’s 

performance on a simulated dataset. The number of hidden 

layers and the number of nodes in each layer are set as 

hyperparameters to determine an acceptable network 

structure. Table 4 provides detailed information on the 

layers of all Nnet neural networks, and their corresponding 

learning rate, optimizer, and training epochs. Note that all 

Nnet neural networks share a common network architecture. 

Ensemble Transfer Learning Training Performance 

Fig.17showstheoutputpredictionofthreepre-trainedneural 

networks, which are trained on three sample stability maps 

(shown as red lines) from the training dataset of Setup 1. As 

this figure shows, all three neural networks are perfectly 

pretrained to replicate the behavior of the respective 

stability maps. 

This section utilizes the proposed EGAN approach and 

benchmarks including the ensemble transfer learning and 

Bayesian learning to make predictions by utilizing 

numerical tests derived from a known stability map. The 

objective is to evaluate the accuracy of the stability 
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predictions made by the proposed and benchmark 

approaches through a comparison of their forecasts against 

a known stability map. The primary focus is to demonstrate 

the proficiency of the EGAN approach in predicting the 

stability map, even with a limited number of numerical tests 

(limited to five and 10 numerical test cuts). Through these 

methods, a thorough assessment of the stability predictions 

made by different approaches and their potential for 

practical applications is provided. 
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Layer Kernel size Stride size Panel size Output size 

Generator 

Input 
– – – (4, 1, 1) 

ConvTran (Batchnorm/ReLU) (6,3) (1,1) (0,0) (4096, 6, 3) 

ConvTran (Batchnorm/ReLU) (2,2) (1,1) (0,0) (2048, 7, 4) 

ConvTran (Batchnorm/ReLU) (2,2) (1,1) (0,0) (1024, 8, 5) 

ConvTran (Batchnorm/ReLU) (2,2) (2,2) (1,1) (512, 14, 8) 

ConvTran (Batchnorm/ReLU) (2,2) (2,2) (1,1) (256, 26, 14) 

ConvTran (Batchnorm/ReLU) (3,2) (2,2) (1,1) (128, 51, 26) 

ConvTran (Batchnorm/ReLU) (3,3) (2,2) (1,1) (64, 101, 51) 

ConvTran (Tanh) (2,2) (2,2) (1,1) (1, 200, 100) 

Encoder 

Input – – – (1, 200, 100) 

Conv (LeakyReLU/Batchnorm) (2,2) (2,2) (1,1) (64, 101, 51) 

Conv (LeakyReLU/Batchnorm (3,3) (2,2) (1,1) (128, 51, 26) 

Conv (LeakyReLU/Batchnorm (3,2) (2,2) (1,1) (256, 26, 14) 

Conv (LeakyReLU/Batchnorm (2,2) (2,2) (1,1) (512, 14, 8) 

Conv (LeakyReLU/Batchnorm (2,2) (2,2) (1,1) (1024, 8, 5) 

Conv (LeakyReLU/Batchnorm (2,2) (1,1) (0,0) (2048, 7, 4) 

Conv (LeakyReLU/Batchnorm (2,2) (1,1) (0,0) (4096, 6, 3) 

Conv  (6,3) (1,1) (0,0) (4, 1, 1) 

Discriminator 

Input 

 

– – – (1, 200, 100) 

Conv (LeakyReLU)  (100,50) (14,4) (1,1) (64, 8, 14) 

Conv (Sigmoid)  (8,14) (1,1) (0,0) (1, 1, 1) 

 Generator  Encoder Discriminator 

Optimizer Adam  Adam Adam 

(β1,β2) (0.500,0.500) (0.500,0.500) (0.500,0.999) 

Learning rate 0.002 0.002 0.0002 

Architecture of the 
EGAN approach 

β = Momentum 

Architecture of the ensemble transfer learning networks 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Learning rate Optimizer Epoch 

N N1 5 20 200 100 50 2 0.01 Adam 100 

N N2 5 20 200 100 50 2 0.01 Adam 100 
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N N200 5 20 200 100 50 2 0.01 Adam 100 
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As outlined in “Experiments setup” section, to assess the 

effectiveness of the proposed EGAN approach in predicting 

milling stability across various target conditions, three 

different tool setups and two distinct target stability maps 

for prediction within each setup are considered. To ensure a 

comprehensive assessment of the proposed approach’s 

performance and facilitate the creation of mean and 

confidence 

intervals(CIs),thegridsearchapproachisemployedtoselect 10 

distinct sets of five test cuts. In addition, to conduct a 

comparative analysis against state-of-the-art techniques, 

two evaluation metrics, the Geometric Mean (G-Mean) 

Espindola and Ebecken (2005) and L1 norm Sinwar and 

Kaushik (2014), are employed. The G-Mean assesses the 

approach’s ability to balance false positives (incorrectly 

labeling stable cuts as unstable) and false negatives 

(incorrectly labeling unstable cuts as stable). The G-Mean 

computes the square root of the product of sensitivity and 

specificity. Sensitivity represents the proportion of true 

positives to the total number of actual positives, while 

specificity represents the proportion of true negatives to the 

total number of actual negatives. Meanwhile, the L1 norm 

measures the extent of dissimilarity between the predicted 

and actual stability maps by computing the absolute 

differences between 

correspondingelementsandsummingthemup.Theseevaluatio

nmetrics are chosen to provide a comprehensive evaluation 

of the proposed approach’s performance and assess its 

practicality in real-world applications. 

Table 5 presents the average performance metrics and 

their 95% confidence intervals (CIs) over 10 different sets 

of five and 10 test cuts for both the proposed EGAN 

approach and the benchmark methods. The evaluation is 

performed on Targets 1 and 2 for each of the three tool 

setups. These results provide a comprehensive assessment 

of the proposed approach’s performance in predicting 

milling stability for various tool setups and target 

conditions. Additionally, to visually showcase the stability 

predictions for each of the scenarios, Figs.18, 19, 20, 21, 22 

and 23 present three representative samples from the 10 sets 

of test cuts performed for each scenario, namely Setup 1 

Target 1, Setup 1 Target 2, Setup 2 Target 1, Setup 2 Target 

2, Setup 3 Target 1, and Setup 3 Target 2, respectively. These 

figures provide a visual representation of the stability 

 

 (c) Epoch 10 (d) Epoch 100 

Stability maps produced by the generator during the training process for Setup 2 

 

(a) Input stability (b) Epoch 1 (c) Epoch 5 (d) Epoch 10 (e) Epoch 100 map 

The reconstruction (G(E(x))) of the “Prior Mean” stability map in Setup 2 during the training process 

( a)Epoch 1 ( b)Epoch 5 
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predictions made by the EGAN approach and the 

benchmark methods, which further complement the 

quantitative results presented in Table 5. Specifically, each 

figure displays the predicted probabilistic stability maps 

generated by the EGAN and benchmark approaches for each 

of the target within different setups. The true stability limit 

for each target is shown as a red line in all figures. These 

figures also show the predicted stability boundary, which is 

determined by applying a threshold of 0.5 to the output 

probability of the approaches. These figures enable a direct 

comparison between the predicted stability 

boundaries and the true stability limit, thereby providing 

insight into the accuracy and effectiveness of the EGAN and 

benchmarkapproachesinpredictingmillingstabilityforeach 

scenario. In addition, Figs.29, 30, and 31 in the appendix 

present the test cuts selected by the grid search approach for 

these numerical experiments. 

The comparison between the EGAN and Bayesian 

learning approaches is presented in Table 5. As can be seen, 

the EGAN approach outperforms the Bayesian learning 

approach in predicting stability limits, as indicated by the 

higher values of the G-Mean and/or lower values for L1 

metrics under both five and 10 test cuts in all scenar- 

Mean and 95% CI of the performance metrics over 10 different sets of five and 10 test cuts for the Bayesian learning, ensemble transfer 

learning, and EGAN approaches 

   5 Test Cuts   10 Test Cuts   

   BL ETL EGAN BL ETL EGAN 

Setup 1 Target 1 G-Mean 75.90 ± 0.55 83.05 ± 2.83 84.36 ± 4.22 78.66 ± 0.99 88.55 ± 2.76 87.94 ± 3.62 

 

Target 2 

L1 

G-Mean 

L1 

0.31 ± 0.01 

76.68 ± 1.01 

0.32 ± 0.01 

0.14 ± 0.01 

83.59 ± 3.09 

0.14 ± 0.02 

 

0.27 ± 0.01 

79.16 ± 1.75 

0.28 ± 0.02 

0.10 ± 0.01 

87.25 ± 2.62 

0.09 ± 0.02 

0.11 ± 0.02 

91.77∗ ± 5.46 

0.09 ± 0.03 
Setup 2 Target 1 G-Mean 79.91 ± 1.09 81.01 ± 3.30 83.22 ± 6.15 83.24 ± 0.86 88.76 ± 3.08 87.21 ± 5.58 

 

 (a) Setup1 (b) Setup 2 (c) Setup 3 

Prior probabilistic stability map for each setup obtained by 200 sample stability maps that are used to pre-train neural networks in ensemble 

transfer learning 

 

Three sample stability maps from the training dataset of Setup 1 represented as red lines, along with their respective output 

probability of stability predictions obtained through the process of transfer learning 
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Setup 3 

Target 2 

Target 1 

Target 2 

L1 

G-Mean 

L1 

G-Mean 

L1 

G-Mean 

L1 

0.30 ± 0.01 

84.14 ± 0.93 

0.26 ± 0.01 

86.19 ± 0.55 

0.24 ± 0.01 

84.74 ± 0.43 

0.25 ± 0.01 

0.17 ± 0.02 

77.39 ± 4.63 

0.19 ± 0.02 

87.67 ± 1.5 

0.16 ± 0.01 

87.34 ± 0.75 

0.16 ± 0.01 

0.16 ± 0.04 

82.14∗ ± 3.55 

0.16∗ ± 0.02 

90.36∗ ± 2.90 

0.12∗ ± 0.02 

87.43 ± 2.15 

0.14∗ ± 0.02 

0.25 ± 0.01 

85.94 ± 0.68 

0.23 ± 0.01 

88.59 ± 0.56 

0.19 ± 0.01 

87.55 ± 0.74 

0.20 ± 0.01 

0.11 ± 0.01 

84.71 ± 3.46 

0.14 ± 0.02 

90.69 ± 2.66 

0.12 ± 0.01 

90.97 ± 2.51 

0.11 ± 0.01 

0.13 ± 0.03 

82.67 ± 2.58 

0.15 ± 0.02 

92.02∗ ± 

1.15 0.10∗ ± 

0.01 

93.57∗ ± 2.01 

0.08∗ ± 0.02 

The bold formatting is used to highlight instances where EGAN demonstrates superior performance compared to benchmarks BL 

Bayesian learning, ETL ensemble transfer learning 

∗p value < 0.1: Paired t-tests between the EGAN and ensemble transfer learning 
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fer learning, and EGAN approaches in predicting Target 1 within setup the EGAN approach outperforms benchmarks especially in samples 1 1 

using five and ten test cuts. The results are shown for three representa- and 2 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 

 ThenumericalresultsoftheBayesianlearning,ensembletrans- tivesamplesfromthe10setsoftestcuts.Asdemonstratedbytheresults, 
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fer learning, and EGAN approaches in predicting Target 2 within setup results, the EGAN approach consistently outperforms the benchmarks 1 

using five and ten test cuts. The results are shown for three repre- across all samples, particularly in scenarios involving ten test cuts 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 

 ThenumericalresultsoftheBayesianlearning,ensembletrans- sentativesamplesfromthe10setsoftestcuts.Asdemonstratedbythe 



 

Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction 

123 

ThenumericalresultsoftheBayesianlearning,ensembletransfer 

learning, and EGAN approaches in predicting Target 1 within setup 2 

using five and ten test cuts. The results are shown for three 

representative samples from the 10 sets of test cuts. As demonstrated 

by the results, the EGAN approach exhibits superior performance 

compared to the benchmarks in sample 1. However, it is notable that 

none of the approaches achieved satisfactory predictions for the other 

two test samples 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 



 

Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction 

123 

 
fer learning, and EGAN approaches in predicting Target 2 within setup results, the EGAN approach consistently outperforms the benchmarks 2 

using five and ten test cuts. The results are shown for three repre- across all samples 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 

 ThenumericalresultsoftheBayesianlearning,ensembletrans- sentativesamplesfromthe10setsoftestcuts.Asdemonstratedbythe 
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ThenumericalresultsoftheBayesianlearning,ensembletransferlearning,

andEGANapproachesinpredictingTarget1withinsetup3 

usingfiveandtentestcuts.Theresultsareshownforthreerepresentative 

samples from the 10 sets of test cuts. As demonstrated by the results, 

the EGAN approach consistently demonstrates superior performance 

over the benchmarks across a majority of the samples particularly in 

samples 1 and 3 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 
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ThenumericalresultsoftheBayesianlearning,ensembletransfer 

learning, and EGAN approaches in predicting Target 2 within setup 3 

using five and ten test cuts. The results are shown for three 

representative samples from the 10 sets of test cuts. As demonstrated 

by the results, the EGAN approach demonstrates superior performance 

in comparison to the benchmarks in sample 1. While in samples 2 and 

3, none of the approaches perform adequately with five test cuts; 

however, it is notable that EGAN outperforms the other approaches 

with ten test cuts 

1 
5 tests 

10 tests 

2 5 tests 

10 tests 

3 5 tests 

10 tests 
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ios. Paired t-tests confirm the statistical significance of this 

improvement. The only exception to this trend is observed 

in predicting Target 2 in setup 2, where the Bayesian 

learning approach appears to outperform the EGAN 

approach in terms of the G-Mean metric measurements 

(84.14 ± 0.93 versus 82.14 ± 3.55 under 5 test cuts, and 85.94 

± 0.68 versus 82.67 ± 2.58 under 10 test cuts). However, 

considering the L1 norm, it is the EGAN approach that 

outperforms the Bayesian learning approach (0.26±0.01 

versus 0.16±0.02 under 5 test cuts, and 0.23 ± 0.01 versus 

0.15 ± 0.02 under 10 test cuts). The sample results presented 

in Fig.21 confirm the superiority of the EGAN approach to 

the Bayesian learning in predicting stability limits as 

indicated by the L1 norm results. 

Table 5 also provides a comprehensive comparison of the 

EGAN and ensemble transfer learning approaches. The 

results reveal that the EGAN approach exhibits superior 

performance to the ensemble transfer learning approach for 

most scenarios, based on G-Mean and/or L1 metrics, for five 

test cuts. The statistical significance of this improvement is 

confirmed through paired t-tests, as presented in the table. 

For instance, in Target 1 of Setup 3, the EGAN approach 

attains a G-Mean measurement of 90.36, which is higher 

than the G-Mean measurement of 87.67 achieved by the 

ensemble transfer learning approach. Similarly, the L1 norm 

measurements for the EGAN and ensemble transfer learning 

approaches in this scenario are 0.12 and 0.16, respectively, 

indicating a reduction of 0.04 in the L1 norm 

bytheEGANapproach.However,thereareexceptionstothis 

trend,asobservedinTarget1ofSetup1andTarget1ofSetup 2, 

where both approaches exhibit similar performance under 

both metrics. For instance, the G-Mean measurement for 

EGAN in Setup 1 Target 1 is 84.36±4.22, while the G-Mean 

measurement for ensemble transfer learning is 83.05 ± 2.83 

(paired t-tests > 0.1). Furthermore, the results indicate that 

increasing the number of test cuts to 10 enhances the 

performance of all approaches. Nonetheless, for 10 test cuts, 

the EGAN approach still outperforms the ensemble transfer 

learning in predicting Target 1 in Setup 2, as well as Targets 

1 and 2 in Setup 3. In the remaining setups, no significant 

differences are observed between these two approaches. 

The results presented in Table 5 and Figs.18, 19, 20, 21, 

22 and 23 highlight the effectiveness of the proposed EGAN 

approach in accurately identifying the actual stability 

boundary, even with a limited number of numerical tests (to 

present cutting experiments) employing only five or 10 test 

cuts. For instance, the third sample presented in Fig.21 

demonstrates the ability of the EGAN approach to detect the 

target stability boundary using only five or 10 test cuts, 

whereas the ensemble transfer learning approach fails to 

identify the boundary evenwith10tests.Thisexemplifies 

thepotentialof the EGAN approach to achieve accurate 

stability predictions in scenarios with limited experimental 

data. Furthermore, Figs.18, 19, 20, 21, 22 and 23 

demonstrate the ability of the EGAN approach to predict all 

stability maps, whereas the ensemble transfer learning 

approach fails to do so. For instance, the samples presented 

in Fig.19 illustrate that the 

EGANapproachcanpredicttheentirestabilityboundary,not 

only the high spindle speed range, with only limited 

information from five or 10 tests. Conversely, in most 

scenarios, the ensemble transfer learning approach is unable 

to predict 

theseboundariesaccurately.Thisobservationemphasizesthe 

superiority of the EGAN approach over the ensemble 

transfer learning approach in predicting all stability maps 

with limited experimental data. 

However, it is important to note that there are some cases 

where the EGAN approach does not receive sufficient 

information to predict the stability boundary with only five 

tests. For instance, the second sample in Fig.23 

demonstrates this limitation. As seen in the figure, the 

information obtained from five test cuts is insufficient, 

resulting in failure for both the EGAN and ensemble transfer 

learning approaches to find the stability boundary. 

Nevertheless, by increasing the number of tests to 10, both 

approaches are able to predict the stability boundary with 

good accuracy. Variations in the shape and positioning of 

predicted stability boundaries have emerged as a noteworthy 

consideration, influenced by the selection of test cuts. These 

variations signify the sensitivity of the EGAN approach to 

the specificities of the chosen test cases. Overall, the results 

of this study demonstrate the potential of the EGAN 

approach as an effective method for stability prediction in 

scenarios with limited experimental data, and highlight its 

superiority over the ensemble transfer learning approach in 

accurately identifying the stability boundary. 

In this section, a series of experiments are conducted to 

further verify the proposed EGAN approach using real-

world cutting data. The tool setup 3 and a new tool setup, 

named tool setup 4, are used for this evaluation. 
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In this section, actual cutting tests are performed for tool 

setup3,asoutlinedinTables1and2,toutilizetheEGANand 

ensemble transfer learning approaches to predict the actual 

(unknown) stability map that best represents the test cuts. To 

make predictions, the previously trained networks in EGAN 

and ensemble transfer learning are utilized to provide a 

subset of the performed test cuts as input and output the 

actual stability map. This approach is taken to further 

demonstrate the effectiveness of the EGAN approach in 

practical settings. 

 

Machining setup for cutting tests Schmitz et al. (2022) 

These test cuts are performed on a DMG Mori Ultrasonic 

65 machining center using a three flute 12.7 mm diameter 

carbide endmill (Robbjack FMHV-304-16). The work 

material is 7050-T7451 aluminum. The test setup is shown 

in Fig.24. Figure25 displays the selected five test cuts and 

the predicted probabilistic stability map generated by the 

ensemble transfer learning, and EGAN approaches. The 

accuracy and efficacy of these predictions can be evaluated 

by examining the remaining actual cutting tests that are 

displayed in the figure alongside the predictions. As can be 

observed from Fig.25, the proposed EGAN approach is 

capable of generating a stability map that most accurately 

reflects the actual cutting tests. While it is not possible to 

carry out a comprehensive comparison between these 

approaches due to the limited number of available test cuts, 

comparing the probabilistic maps shows that the ensemble 

transfer learning approach is uncertain about the stability 

boundary in areas where no information is available, while 

the EGAN can predict the boundary even in these areas. 

TofurtherinvestigatetheeffectivenessoftheEGANapproach 

on actual experiments, a new tool setup (Setup 4) is 

introduced for a climb-milling process. This tool setup 

includes a cutting tool with a diameter of 12.7 mm, equipped 

with four cutting teeth. The recommended feed rate for this 

tool is 0.1mm per tooth. Additionally, the radial immersion 

is set at 40%. For the uncertain parameters, three 

distributions are considered, referred to as Case 1, Case 2, 

and Case 3, where 

somevaluesareoverestimated,someareunderestimated,and 

some provide a good initial estimate, with the largest 

uncertainty generally applied to damping ratio. Specifically, 

Case 

1representsasituationwherethetoolFRFwasmeasured,but the 

FRF changes with spindle speed. The cutting force model is 

based on prior experience using similar tool/workpiece 

material combinations, but is not measured specifically for 

this case. Case 2 represents a situation where the FRF 

uncertainty is low, but not zero due to modeling efforts. The 

work material is similar to previous testing, but not the same. 

Case 3 represents a wide distribution where very little is 

known about the system to explore the bounds of the EGAN 

capabilities. 

Tables 6, 7 and 8 contain detailed information about these 

distributions. These tables also provide the nominal values 

for the unknown parameters obtained through tap testing. In 

Figure 26, the red line identifies the stability boundary for 

these nominal values, along with the test cuts performed. As 

seen in this figure, there is uncertainty in the analytical 

predictionand,consequently,thenominalstabilitymapisnot 

able to accurately predict all test cuts. The goal is to assess 

the prediction performance of the EGAN approach for either 

the nominal or actual stability map. 

The EGAN and ensemble transfer learning approaches 

are trained on stability maps generated by each distribution 

presented in Tables 6, 7 and 8. To evaluate the performance 

of these models, a set of five test cuts is selected and used 
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 (a) Test cuts (b) Ensemble transfer learning (c) EGAN

The actual cutting tests in Setup 3 and predicted probabilistic stability maps generated by the ensemble transfer learning and EGAN 

approaches using five test points 
Case 1: Tight normal 

distribution for the Setup 4 

Case 2: Wide normal 

distribution for the Setup 4 

Case 3: Wide uniform 

distribution for the Setup 4 

Parameter Nominal value Mean (μ) StdDev (σ) Error (stdDevs) Error (%) 

fn (Hz) 
1998 1950 100 

−0.48 −0.02 

k(N/m) 4.47×106 5×106 1×106 0.53 0.12 

ζ 0.0123 0.01 0.0025 −0.92 −0.19 

Ks(N/m2) 6×108 6×108 1×108 0 0 

β (degree) 68 65 5 −0.6 −0.04 

      

Parameter Nominal value Mean (μ) StdDev (σ) Error (stdDevs) Error (%) 

fn (Hz) 
1998 1800 100  −1.98 −0.1 

k(N/m) 4.47×106 5×106 2×106  0.265 0.12 

ζ 0.0123 0.01 0.01  −0.23 −0.19 

Ks(N/m) 6×108 7×108 1×108  1 0.17 

β (degree) 68 60 10  −0.8 −0.12 

      

Parameter Nominal value Min  Max Width as % of nominal 

fn (Hz) 
1998 1600  2400 0.4 

k(N/m) 4.47×106 3×106  6×106 0.67 

ζ 0.0123 0.005  0.025 1.63 

Ks(N/m2) 6×108 3×108  10×108 1.17 

β (degree) 68 55  75 0.29 
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Actual test cuts along with the stability boundary for the 

nominal values obtained through tap test in Setup 4 

as input to predict the stability maps. Figure27 displays the 

selected test cuts alongside the probabilistic stability 

predictionsofthemodelsandtheexperimentalresultsforeachca

se. The predicted stability boundary is also shown in the 

figure as a green line, which is determined by applying the 

threshold 0.5 on the probabilistic maps. The results indicate 

that, while the EGAN approach cannot predict the true 

stability map covering all cutting tests, it can identify the 

best stability map based on the available information. In 

Case 1, the tight normal distribution limits the EGAN’s 

ability to learn various stability behaviors including the true 

stability, and thus, the best stability map that it finds closely 

matches the nominal map. Conversely, in Cases 2 and 3, 

where a wider range of stability behavior is observed, the 

EGAN can adjust the nominal stability boundary and predict 

a stability map that covers more information than the 

nominal map. The figure illustrates that this adjustment is 

more significant when the EGAN is trained on a wide 

uniform distribution. Notably, the 

EGANoutperformstheensembletransferlearningapproach, 

particularly in Cases 2 and 3, where the latter exhibits low 

accuracy in predicting the true stability boundary. 
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This example experiences a degree of mode collapse. For 

instance, inthe case of a wide normal distribution, the 

EGAN encounters various stability maps but fails to identify 

the true stability map. This could be due to the fact that the 

EGAN 

doesnotlearnandgenerateawiderangeofstabilitybehaviors as 

observed in the training dataset. One possible explanation 

for this is the imbalanced dataset, where some similar 

samples occur more frequently than others. To address this, 

K-Means is used to cluster the stability maps and up-sample 

the clusters with fewer samples to balance the dataset. This 

approach prevents the EGAN from being biased towards the 

clusters with more samples. The performance of the EGAN 

approach in predicting the boundary is depicted in Fig.28 

before and after applying K-Means to balance the dataset 

generated under Case 3 in Setup 4. The figure demonstrates 

a 

substantialimprovementintheEGAN’sperformancefollowin

g the dataset balancing. The stability map that is calculated 

using tap-testing is inaccurate. Even so, EGAN is still able 

to find a stability map that’s able to match the actual cutting 

test results. The results suggest that addressing the problems 

of instability of training and mode collapse can significantly 

enhancetheEGANapproach’sperformance.Thestudyanticipa

tes that the rapid development of GANs will soon yield a 

robust structure that does not have these issues. 

It is important to consider that variations in workpiece 

material have a direct impact on cutting force coefficients. 

This implies that altering the work material could lead to 

changes in the resulting stability map. However, in the 

context of the proposed EGAN approach, our training 

process relies on a dataset of stability maps derived from a 

physicsbased analytical stability model. This dataset 

accounts for a distribution of unknown parameters, 

encompassing cutting force coefficients among others. 

Consequently, it 

encompassesstabilitymapsrepresentingaspectrumofcuttingf

orce coefficient variations. 

The training of the generator and encoder networks 

within the EGAN framework is rooted in this diverse 

dataset. This enables the model to acquire insights into the 

inherent stability behaviors and patterns linked to different 

combinations of materials and machining parameters. Given 

that the model is trained across a range of distinct cutting 

 

The performance of the EGAN and ensemble transfer learning approaches on actual experiments in Setup 4, using Case 1, Case 2, and 

Case 3. The figure shows the predictions of the models compared to the experimental results and nominal stability map 
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forces, it exhibits an inherent adaptability that may extend 

to different work materials within the bounds of its training 

data. However, it is worth noting that to ensure the seamless 

adaptation of the EGAN approach to new materials, 

retraining the model using stability maps generated from the 

dynamic characteristics of the new material is a prudent 

recommendation. This ensures that the model captures the 

material-specific behavior required for accurate stability 

predictions. 

In this study, Encoder GAN (EGAN) is introduced for 

predictingstabilitymapsusingsimulatedandexperimentaldata

. The proposed approach is based on Generative Adversarial 

Networks (GANs) and consists of the generator, encoder, 

and discriminator subnetworks. The simulated data 

generatedusingaphysics-

basedanalyticalstabilitymodelareused as training dataset for 

EGAN. The generator learns to mimic the physics-based 

model’s behavior by outputting a plausible stability map. 

The encoder learns to project stability maps back into the 

corresponding latent space parameter, while the 

discriminator distinguishes generated/fake stability maps 

from sample maps in the input dataset. The EGAN approach 

is designed to generate plausible and distinctive stability 

maps for each latent space parameter set, while 

simultaneously enabling the encoder to identify the unique 

set of latent parameters associated with each stability map. 

This is achieved through a rigorous training process that 

involves regularization of the latent space, ensuring that 

similar stability maps are assigned to nearby points in the 

latent space. These properties allow the EGAN to accurately 

reconstruct 

partialstabilityinformationandeffectivelyidentifytheactual 

stability map. To obtain partial information about the target 

stabilitymap,alimitednumberofcuttingtestsareinputintoa 

non-physics-based Bayesian heuristics approach. Once 

partial information is obtained, the trained EGAN is utilized 

to predict the actual stability map. 

The novelty of the approach lies in the use of EGAN and 

the regularization property of the latent space to predict 

stability maps with limited information, which has the 

potential to reduce the number of cutting tests needed to 

predict stability maps accurately. The study demonstrates 

the effectiveness of the proposed EGAN approach through 

extensivenumericalsimulationsandreal-worldexperiments, 

with a comprehensive comparison against state-of-the-art 

approaches. 

Several promising directions for future research are 

suggested. For instance, the proposed approach could be 

evaluatedusingothervariationsofGANs,suchasvariationalG

AN, cycle GAN, DRAGAN, and others, to reduce mode 

collapse and instability of training problems. These methods 

may further enhance the accuracy and robustness of the 

proposed approach. Moreover, future studies can explore 

alternative approaches to the grid search method proposed 

in this study, 

whichcouldprovideadditionalinformationtotheEGANand 

potentially accelerate the identification of the target stability 

map. Such investigations may improve the efficiency and 

effectiveness of the proposed approach and contribute to its 

broader applicability. Furthermore, the effectiveness of the 

proposedapproachcanbeevaluatedforothermachiningproces

ses, such as turning. Investigating the applicability of the 

proposed method to other machining processes would 

provide valuable insights into its generalizability and 

potential for wider adoption across various industrial 

applications. 
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 (a) Test cuts (b) EGAN without K-Means (c) EGAN with K-Means 

The performance of the EGAN with and without applying K-Means to balance the training dataset generated under Case 3 in Setup 4 

https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
https://github.com/srezaei90/GANs-to-predict-stability-maps-in-milling-machining.git
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