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Abstract

We compute the multiplicity of the irreducible representations in the decomposition
of the tensor product of an arbitrary number n of fundamental representations of
SU(N), and we identify a duality in the representation content of this decomposition.
Our method utilizes the mapping of the representations of SU(N) to the states of free
fermions on the circle, and can be viewed as a random walk on a multidimensional
lattice. We also derive the large-n limit and the response of the system to an external
non-abelian magnetic field. These results can be used to study the phase properties of
non-abelian ferromagnets and to take various scaling limits.
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1 Introduction

Symmetries in physics and in mathematics are often encoded in unitary groups. In
quantum mechanics, in particular, many physical systems realize representations of
unitary groups. The canonical example is spin, an irreducible representation of the
group SU(2) (a double cover of the group of spatial rotations SO(3)), with isospin
(also SU(2)) and elementary particle "flavor" symmetry (SU(3)) constituting more ex-
otic examples. Systems consisting of several components, each carrying an irreducible

representation of a symmetry group, transform under the same symmetry, in the di-



rect sum of the representations of the components. The decomposition of the states of
the full system into irreducible representations of the symmetry group becomes, then,

a problem of physical relevance.

The group theoretical techniques of decomposing a direct sum of two irreducible
representations (irreps) are well established [1]. In particular, the irrep content of the
decomposition of the tensor product of irreps of SU(N) has been studied in the math-
ematics literature [2,3]. The result for the tensor product of fundamental irreps, in
particular, can be derived from Schur-Weyl duality [4].! The existing derivations,
however, use a rather heavily mathematical language and the results are in a some-
what implicit form. A derivation in a physically motivated language and in a way
accessible to physicists was desirable. In [5] we undertook this task for the simplest
case of SU(2). Specifically, we computed the multiplicity of spin j irreps arising from
composing n spins s (related results were also derived in [6, 8] and used in [7], and
were further elaborated in [9]). We also derived explicit expressions for the multiplic-
ities arising from spins corresponding to indistinguishable particles by distilling the
totally symmetric (for bosons) or antisymmetric (for fermions) parts of the decomposi-
tion. We could recast the composition problem as random walks on a one-dimensional
lattice, or equivalently generalized Dyck or Lukasiewicz paths [10] with appropriate
boundary conditions. Even for the SU(2) case the results are interesting, exhibiting
nontrivial scaling properties in the large-n and large-s limits, especially for bosonic or
fermionic spins. In [5] we provided the asymptotic expressions in these limits, and
explored phase transitions occuring in a system of interacting spins, possibly coupled

to an external magnetic field.

An interesting question is whether the general SU(N) case manifests similar phe-
nomena and if it has qualitatively different properties. Investigating it requires hav-
ing explicit expressions for the multiplicities in the decomposition of the direct sum of
an arbitrary number of SU(N) irreps. Since representations of SU(N) are in general
labeled by N — 1 nonnegative integers (the Young tableau row lengths), the corre-
sponding general formulas for the multiplicities are in general more complicated and
implicit. In the present work we simplify somewhat the problem by restricting to the
direct sum of n fundamental representations of SU(N). As we shall see, this problem

still has a rich structure.

!We thank Jules Lamers for pointing out this connection.



Our motivation for carrying out this analysis is manifold. Firstly, we wished to
present a complete and explicit solution to the problem. Moreover, we wanted to
present an intuitive and pedagogical approach, building on physics connections and
intuition. In this vein, we used the fact that this problem can be related to a sys-
tem of N free quantum mechanical fermions on a circle. Finally, systems of many
SU(N) degrees of freedom arise in condensed matter and ultracold systems [11,12],
spin chains [13, 14], particle physics [15,16], matrix models [17], etc., and we wanted
to pave the road for possible physical applications.

In this paper we present a full solution to the problem of decomposing the direct
sum of an arbitrary number of SU(N) irreps and apply it to the case of fundamental
irreps, deriving explicit formulae for the representation content of the decomposition.
The example of SU(3) is analyzed in some detail. We point out a random walk con-
nection, this time on a N — 1-dimensional lattice, and identify a duality relation in the
distribution of irreps. We also consider the limit of a large number n of fundamentals,
as a prelude to more general and intricate limiting cases. Finally, we calculate the re-
sponse of the system to coupling it with a nonabelian magnetic field, which is relevant
in the study of the thermodynamics of interacting SU(N) systems. The structure and
phase transitions of the thermodynamic limit of such systems are treated in [20], and
nontrivial scaling limits involving both N and n taken large will be investigated in

forthcoming publications.

We present our results in the upcoming sections, hinting at additional physical

applications and possible extensions of our analysis in the conclusions.

2 Fermion representation of SU(N) group theory

We review here the description of irreducible representations (irreps) of SU(N) as N-
fermion energy eigenstates on the circle [18] and the corresponding composition rules
in the fermion picture. This representation affords a conceptual standpoint that is
well-suited to our considerations and will be useful throughout the rest of the paper.

It also leads naturally to a duality relation between groups and representations.



21 Quantum mechanics on the U(N) manifold

The correspondence of irreps of SU(N) and N-fermion energy eigenstates can be
most naturally established by considering the action of a particle moving freely on

the group manifold U(N) [19]. The Lagrangian is the kinetic energy of the particle
2
L=-1Tr (u*u) , 2.1)

where overdot signifies time derivative. This is essentially a unitary matrix model.

One approach to find the energy eigenstates of the corresponding Hamiltonian is
to note that, upon defining momenta and quantizing, the Hermitian matrix operators
L =iUU!'and R = —iU'U = —U 'LU satisfy the U(N) algebra and mutually

commute

[Lij, Ly] = iLydkj —iLlyjdi,  [Rij, Rua] = iRjdkj —iRydy, [Lijy Ryl =0.  (2.2)

Left and right multiplications of U by unitary matrices are generated by L and R, re-
spectively, which conforms with their commutation relations. L and R have equal and
opposite U(1) parts Y i Lix = — Yk Rix and share a common quadratic Casimir. They
are both constants of motion, and the Hamiltonian is their second Casimir. Energy
eigenstates are matrix elements of U in arbitrary U(N) irreps r: ., (U), a,b =1, ..., d,,
transforming in the r ® 7 representation under L ® R, with energy eigenvalue C,(r)

and degeneracy d2.

Now impose the additional first-class constraint L + R = 0, which commutes with
the Hamiltonian. It amounts to choosing states that are invariant under the combined
left and right unitary rotations U — VUV ! generated by L + R, that is, under uni-
tary conjugations. Energy eigenstates become the conjugation-invariant linear combi-
nations Y, 7,,(U) = Tr,(U) = x,(U), the latter being the character of the irrep. We
recover the same spectrum, with states corresponding to irreps r of SU(N), but now

with degeneracy one due to the trace.
The condition L 4+ R = 0, or, classically, the vanishing of the matrix commutator
[U,U] = 0, implies (using the equation of motion for U) that U(t) and U(0) com-

mute as matrices. Hence, U(t) can be diagonalized by a time-independent unitary



conjugation. Implementing this at the level of the Lagrangian by writing
U(t) = Vdiag{z;} Vi, zj = e, Xj ~ xj+27, (2.3)

we see that (2.1) becomes the Lagrangian of N free particles on the unit circle with
coordinates x;. Since exchanging the eigenvalues is a special case of unitary conju-
gation, states ¢(x1,...,xy) are invariant under exchange of the x; and are, in princi-
ple, bosonic. However, the change of variables from U to X; introduces the standard
measure, equal to the square of the Vandermonde determinant A2. In terms of the
exponential variables z (boldfaced z stands for the full set of variable z;, ..., zy, and

similarly for other sets of N quantities), A(z) is given by

zi\lfl Z{V*z ooz 1
N-1 _N-2 N
N-1 | Z z ceeozp 1 COXi— X
A(z) = (z1---2N) 2 2 2 =11 2sin——2 . (24)
: L4 2
. i>j=1
z%il 2%72 zny 1

¥(z) = Az) 9(2), (2.5)

the Hamiltonian becomes the standard free N-particle Hamiltonian on the x; (com-
pare with the transformation u(r) = r¢(r) in the Schrédinger equation in spherical
coordinates). Because of the prefactor A(z) the states ¢(z) are antisymmetric upon in-
terchanging any two of the x;. This establishes the correspondence between the singlet
sector of the model (2.1) and free fermions on the circle, and thus of irreps of SU(N)
and free fermion energy eigenstates. In particular, the fermion energy eigenstate cor-

responding to an irrep r and energy E = Cy(r) is

¥r(z) = Az) x:(2) (2.6)

with x;(z) = Trr(U) the character of irrep r in terms of the eigenvalues z; of U.

2.2 Correspondence with Young tableaux

It will be useful to establish the correspondence of fermion states and Young tableaux

of SU(N). The single-particle spectrum on the circle consists of discrete momentum



eigenstates with eigenvalue k = 0,41,42,... and energy E; = k?>/2. An N-fermion
energy eigenstate corresponds to filling n of the single-particle states with fermions.

Call k; > ky > - - - > ky the momenta of these states in decreasing order (see figure 1):

@ @ @ *—©@ @
k6 k5 k4 k3 k2 kl

Figure 1: The state represents an SU(6) irrep with {; = 10, {, = {3 = 6, {4 = 3, {5 = 1. The
corresponding Young tableau has five lines with 10, 6, 6,3 and 1 box, respectively.

The (unnormalized) wavefunction corresponding to this state is given by the Slater

determinant - . )
1 2 N-1 N
Zl Zl ctt ZI% Zl
21;1 Z’;z co ZeN Z’;z\/
Pl(z)=| 7 T ] (2.7)
Huo Sk kner Ky
N “N N N
The total momentum of the fermions k = ki + --- + k; corresponds to the states

picking up a phase ¢/°* upon the shift xj — xj+¢, thatis, upon U — e“U. Tt thus
represents the U(1) charge of the state. We may shift all momenta by a constant,
changing k and the U(1) charge without affecting the SU(N) part of the states, which
can then be labeled by the N —1 shift-invariant integers ky —kn > kp —ky > -+ >
kn—1 —kn > 0. Alternatively, we can neutralize the U(1) charge by introducing the
prefactor (z1...zyx)” Li%/N in (2.7) . Note that with this prefactor (2.7) maps to (2.4)
for the singlet representation for which k; = N —i,i = 1,...,N. The final step in-

volves expressing k; — ky in terms of new "bosonic” variables ¢; as
li=ki—kn+j—N, W2l >--->20-120. (2.8)

The non-negative, ordered integers ¢; represent the lengh of rows j = 1,2,...,N—1
of the Young tableau of the irrep corresponding to the fermionic state. The condition
fn = 0 is the statement that Young tableau columns of length N give a singlet, con-
tributing at most to the U(1) charge, and are eliminated. Fig. 1 depicts an example
of a fermionic state equivalent to a Young tableau with five rows. As stated, the total
momentum and energy of the fermion state map to the U (1) charge and the quadratic

Casimir of the representation.

The transition from kj to / i is, in fact, bosonization, in the sense that two or more /¢;’s



can be equal. For reference, we also record the different parametrization

m]'zgj—fj_H:kj—k]'_H—l}O, jZl,Z,...,N—l. (2.9)

The non-negative integers m; are unrestricted and thus provide a "field theoretical"
bosonization of the system. They can be thought of as corresponding to excitations in

the first N — 1 positive modes j of a second quantized boson field ¢(x).

3 Composition of representations

We will now present the method of composing irreps and derive explicit expressions
for the case of composition of fundamentals. We will also work out explicitly some

examples of low rank groups.

3.1 General method

The composition of representations, and their decomposition into irreps, becomes par-

ticularly convenient in the fermion picture.

Consider the direct product r; x r, of two (possibly reducible) representations r; and

2. The basic relation
Tr (r1 x r2)(U) = Trry(U) Trra(U) = xr, (U) xr, (U) (3.1)

implies, through (2.5 and 2.6), that their corresponding fermion states are related as

Yo xr, (2) = A(2) X1, (2) X1, (2) = %f)m(z) = Py, (2) xr,(2) = Pr,(2) xr, (2) . (3.2)

The advantage of the fermionic representation is that from the wavefunction (z) we
can simply read off the irreducible components by expanding in monomials zlil e zlf\?’
and mapping them to Young tableaux. This will be demonstrated in detail in the
upcoming sections for the composition of a large number of irreps. We record here the

characters for the fundamental f, doubly symmetric (a single row with two boxes) s,



doubly antisymmetric (two rows with one box each) a, and adjoint ad irreps

N ) N 1/ N 2 1N )
Xs(z) =) zi+ ) zizi=o| Yz) +5) %,
R 2\~ 2 &
i=1 j>i=1 i=1 i=1
N (3.3)

To obtain the above note that the singlet corresponds to k; = N —i,i =1,...,N. For
the fundamental representation we increase k; by one, leaving the other k;’s intact.
For the symmetric representation we change ki by two and for the antisymmetric
representation we change k; as well as k, by unity. Then, from (2.6), (2.7) and (2.4)
we obtain the first three lines above. The conjugate to the fundamental representation
X is just x s with the z; replaced by their inverses. By decomposing xXs = Xat + 1
we obtain )4 as above. These will constitute basic building blocks when we examine

the product of a large number of such irreps.

3.2 Composition of fundamentals

The composition of two irreps r ® f, one of which, specifically f, is the fundamental,
is particularly intuitive in the fermionic picture. It corresponds to exciting one of the
fermions in the state representing the original irrep by one unit of momentum. This
gives, in principle, N resulting states, according to which of the N fermions is excited.
However, excitations that would make two fermions occupy the same momentum

level are impossible.

It is easy to see that this reproduces the usual rules for Young tableau composition,
adding a single box. Adding one unit to k; amounts to increasing ¢; = k; — kn +
i — N by one, except when k; = k;_1 — 1, that is, {; = ¢;_1, in which case this is not
possible. Further, exciting the last fermion ky by 1 (when this is possible) amounts
to subtracting 1 from all ¢;, that is, removing a column of length N from the Young

tableau.



The fermion wavefunction of the state corresponding to r ® f is, using (3.2) and (3.3),

simply
N
Vraf(z) = r(2)xs(2) = ¥r(2) ) zi - (3.4)
i=1

This can be used to obtain the fermionic state corresponding to the composition of
several (1 in number) fundamental irreps f. The original, singlet state is simply A(z)

and an iteration of the above formula yields

N

nn(z) = A(z) ( Zzi)n : (3.5)

i=1

The irreducible components of the resulting representation can be "read off" from the
terms of Yy, (z) expanded as a polnomial in z;: the coefficient of the terms zlil e zlf\?’
such that k; >k, > - -- > ky, represents the multiplicity of the irrep corresponding to
Young tableau lengths ¢; = k; — kny + j — N, according to (2.8). The remaining terms,

making ¢y , properly fermionic, can be ignored.

3.3 Elementary example: Fundamental SU(2) irreps

As a simple example, we can apply the above method to the case of SU(2) and make

contact with previous results. In this case (3.5) becomes simply

Pon(z1,22) = (21 — 22) (21 + 22)" . (3.6)

Terms zlilzlzc2 with k; > ky can be isolated by writing z; = zx, zz = zx~!, which

k

gives 2711.2:'2C2 = Zhtkyki—k S0 powers of z count total U(1) charge, and focusing on

terms x* for k > 0 gives k; — ko = k. Clearly the single Young tableau row length is
¢ =ki —ky —1=k—1=2j, with j being the spin of the irrep. We obtain

Yo = 21 <x _ x—l) (x n x—1)”

n
_ o+l n 2k—n+1 . 2k—n—1
— ,;0 (k) (x X ) (3.7)

n/2 [(2j+1) -
_ il ” ] . ( 2+l
IRV e ey

7



with the sum running in integer decrements from n/2. The coefficient of the term
xk — x€+1 — x2]'+l fOI'j >0
n!(2j+1)

dyj= T (3.8)
N CESHCESESI]

is the multiplicity of spin j in the decomposition, thus reproducing the result of [5].2

A direct interpretation of (3.7) is obtained by focusing on the factor (x + x~1)". Its
expansion in x¥ produces the number of states D,, x at spin S, = k/2. Irreps with total
spin j > k/2 contribute one state at S, = k/2, so we can isolate the number of irreps
at j = k/2 by subtracting the contribution from j > k/2 + 1, that is, D,, 1. Given that
¢ = 2j, we have

dng = Dyy—Dypia . (3.9)

which is precisely what the prefactor x — x ! is achieving, upon identifying k = ¢ + 1.

The large-n, large-j limit is interesting, and it is instructive to compute it in two alter-

native ways. For n > 1 and j up to O(+/n), Stirling’s formula

n! ~ \2me s n>1. (3.10)
applied to (3.8) yields
2" 4N\3/2 .o
 ~ = j~/n
dyj =~ m(ﬂ) je , (3.11)

which coincides, for j > 1, with the result of [8,5]. Note that the distribution (3.11),

for fixed n, has a maximum at j = \/n/2 with a value of order O (2” / n).

An alternative method is based on random walks, leading to a "diffusion process,"
which does not rely on the exact formula for d,, ; and is generalizable to higher groups.
We focus on the factor (x + x~1)" in (3.7) leading to D,, k. Each additional composition
with a spin } shifts the value of k by either +1 or —1 and similarly the corresponding
values for £. Explicitly,

Dui1x = Dygy1+ Dyt - (3.12)

In our case D, = ( ) which indeed satisfies (3.12).

n
n/2+k/2
We will view (3.12) as a discrete evolution process and, for large n and k, we will

n/2
?One may readily check thatindeed ) (2j+ 1)d,,; = 2", where jmin equals 0 or 1/2 depending on
J=Jmin

whether or not 7 is even or odd.

10



take the continuum limit. To do this, we set D, x to a continuous function D(n, k)
end extract an explicit scaling factor 2" to account for the doubling of states per extra

added spin
D(n,k) = 2'F(n k), Y F(n k) = / dKE(n, k) = 1. (3.13)
k — 00

Then, a Taylor expansion of F(n, k) in (3.12) to leading orders in 1, k implies that this
obeys the heat equation
29,F = &F . (3.14)

Note that the extra factor 2" in (3.13) ensures that there is a smooth continuum limit
of (3.12), and F(n, k) becomes a continuous distribution. The solution of the above

equation satisfying the initial condition Dy = dy, thatis, F(0,k) = d(k), is given by

F(n, k) = %mze—kz/ @n) (3.15)

forn > 0and k € (—o0,00), and thus

D(n, k) = i—mekz/ (2n) (3.16)

Then (3.9) becomes in this limit

+1
2" L e/am)

V2nnn

Finally, changing variable to j = ¢/2 and taking into account that in the continuum

limit d,, ; becomes a distribution, so that d(n, j)dj = d(n, £)d¢ = 2d(n, { = 2j)dj, giving

d(n,0) ~ —29,D(n, 1) = (3.17)

an extra factor of 2, we reproduce (3.11). This implies the proper normalization

/dj(2j+1)d(n,j)f:/ dj2j d(n,j) = 2" (3.18)
0 0

where now the integration is over physical (positive) values of j, with the multiplicity

2j +1 ~ 2j (valid for large j) included.

11



3.4 Fundamental SU(3) irreps

A more nontrivial case is that of the composition of n fundamental SU(3) irreps. For

SU(3), the fermion state (3.5) becomes

P30 = (21 — 22)(z1 — z3)(22 — z3)(z1 + 22 + 23)" . (3.19)
To isolate terms zlfl z§2 z§3 with k; > ko > k3 = 0 we adopt the parametrization
Z1=2X, Zp =2 23 = = (3.20)
1— 7 2 — y/ 3 = xy 7 .

from which

Z’Il ZIEZ ZléS — xk1—k3 ykz—kg Zk1+k2+k3 — x€1+2 y€2+1 Zkl-‘rkz-‘rkg (321)
and focus on terms in the wavefunction with positive, ordered powers of x and y.
Clearly z counts the U(1) charge, so we can put z = 1. We also divide the wave-
function by x%y to make its terms proportional to x‘1 y*2. The reduced form of the

wavefunction becomes

1 1 1\
_ 2,1 _ _ L
Y, =x"y " (x—y) (x xy> (y xy> (x +y+ xy) : (3.22)
The generating function for the irrep content of the product of n fundamentals of

SU(3) can then be expressed as

, (3.23)
+

_ 0ot =y @y -1 (xy* 1) 13"
Cn(x,y) élgéz s, 0, XY Ay X+y+o

with d,.¢, ¢, the multiplicity of the irrep {1, {5} in the product, and | denoting that

4y

only positive, ordered powers x/1 4 are kept. As a demonstration, we list the nonva-

nishing d,., ¢, for the first few values of n

Go=1 do,00 = 1
1=x dy;10 =1
lr = x>+ xy dopo =do11 =1
03 =1+ x3+2x%y da0 = dzgzo =1, dzp1 =2

§4 = 3x + X4 + 3x3y + 2x2y2 d4;10 = d4;31 = 3, d4;22 = 2, d4;40 =1 , (324)

12



which reproduce the correct decomposition of (2 f)". The coefficients d,;.¢, ¢, for gen-
eral n can be calculated explicitly, but we defer their derivation to the general SU(N)

case, where we will present a complete treatment.

4 Composition of many fundamental SU(N) irreps

The fermion method described in the previous sections can be used to derive explicit
combinatorial expressions for the components of the decomposition of an arbitrary
number 1 of fundamental U(N) irreps. We will work directly with the fermion mo-

menta k;, leaving the transition to Young tableau row lengths /; in (2.8) for the end.

4.1 Combinatorial expressions

The fermion state for the product of n SU(N) irreps is given by (3.5) and gives the
generating function of irreps in the momentum parametrization k (recall that we use

boldfaced letters for sets of N quantities such as ky, ..., ky)

N j N
pnn(z) = @) (Lz) =Y dux [ @1
i=1 k i=1

The ¢y ,, is antisymmetric in the z;, and as a consequence the d,,x appearing above
are fully antisymmetric in the k;. When the k; are in decreasing order, d,, gives the

multiplicity of the irrep labeled by k1 > - - - > ky.

To derive an explicit combinatorial expression for the multiplicity we first focus on the

coefficients produced by the term (z1 + - - - + zn)", denoted by D, . We have

N " N " N
<l_zl Zi) = kl,"z.,kN Dn;kEZi = Z (5k1+..-+kN,n (klzkzl- . -,kN) Ezi , (42)

ki,

that is,
n!

TN, kit

where we used the standard expression for the multinomial coefficient. The Van-

Dn;k = 5k1+--~+kN,n ki=0, (4.3)

dermonde prefactor in (4.1) contains N! terms, each augmenting the powers of z; in

each term in the expansion. This corresponds to shifting the indices kj, ..., ky in the

13



Dyx,,...ky Summation by the opposite of the corresponding powers; that is,
N
dux = [ (Si—S;)Dux (4.4)
j>i=1

with S; being discrete shift operators acting as
SiF(ki,... ki,...,kn) = F(k1,....ki—1,...,kn) . (4.5)

Substituting (4.3) yields

N
1
dn;k = 5k1+...+kN’n+N(N_1)/2 n! H (SZ — S])N—kl . (46)
j>i=1 Hrzl re
Observing that
iP(kl,...,kN) _ kPl ki) @)

k! TN, k!
we see that for any polynomial function P(ky, ..., ky) the Vandermonde of shift oper-
ators [];-;(S; — S;) acting on the last term in (4.6) will produce a polynomial of degree
N(N —1)/2 in the numerator with leading coefficient 1. Since it must also be fully an-

tisymmetric in the k;, the only such polynomial is the Vandermonde of k;. We obtain

N
[T (ki—kp) N

i>i=1 )
dpx = n!]l—, with Zki =n+

N
[Tk i=1
i=1

N(N —1)

> (4.8)

The above is written in the parametrization with a fixed total momentum. To restore

invariance under total momentum shifts k; — k; + ¢, we re-express the k; as

o o N
ki—>ki+n k+N 1, kZZZk,', 4.9)
N 2 c]

1

which reduce to k; when the constraint k = n + N(N — 1) /2 is satisfied, but otherwise

are invariant under the common shift k; — k; + ¢, and thus k — k 4+ ¢N. We obtain

N
d . = j>1=1 . 410
N ek N1y, (10
[T(k+5+=5)"

14



The transcription in terms of Young tableau row lengths ¢; = k; — kyy + i — N is imme-

diate. Using ) _ ¢; = k — Nky — N(N — 1) /2 we obtain
i=1

N-1 N—
[TW—¢—i+j) [TWi+N=1i)
i>is1 i=1 N

, =Y . (4.11)

wﬁ(f en-ge A

Formulae (4.10) and (4.11) hold whenever the N-ality condition ¢{ = n (mod N), or
k=n+ N(N—1)/2 (mod N), is satisfied.

>_x

dn;g =n! =
<n

The above multiplicities reproduce, as they should, the total number of states as

N*= Y dim(k)d,x, (4.12)
k1>"'>kN

where dim(k) is the dimension of irrep {ky, ..., k,}, given by

dim(k) = f\l[ iz ki _ A (4.13)

s S TG s
To show this, we act on both sides of (4.1) with the Vandermonde of derivative op-
erators A(d) = [];~i(9; — 9;), where 0; = 9/0z;, and then set all z; = 1. On the
left hand side, A(9) acts only on A(z) (the action of any single d; — d; on the sym-
metric part gives zero). The term 9! --- 01N in A(9d), with ny,...,ny a permutation

of 0,1,...,N—1, gives a nonzero result only upon acting on the corresponding term

zi' -z in A(z), equal to 0! 1! - - - (N — 1)!. Accounting for all N! such terms we have
N-1 N
A@)A(z) =N! ] st=]]s! (4.14)
s=1 s=1
and thus
A@)YNu(Z)],—g = N" Hs' (4.15)

On the right hand side, we can antisymmetrize []; z; % into the full Slater determinant
(2.7), taking advantage of the antisymmetry of d,,, ., and restrict the summation to
k1>--->ky. Acting with A(d) produces a symmetric polynomial in z; with coefficients
polynomials in k;, and upon setting z; = 1 it gives an antisymmetric polynomial in k;

of degree N(N—1)/2, which is necessarily proportional to the Vandermonde A(k).
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By acting on the ground state k; = N — i, in which case the Slater state is simply the
Vandermonde A(z), and using (4.15), the overall coefficient is found to be N!, for a

result of N! A(k). Equating left and right hand side results we obtain

N
N'TTst= Y. dug, i N'AK), (4.16)
s=1

k> >ky
which, upon using (4.13), reproduces (4.12).

We conclude by pointing out that the above procedure can be interpreted as a random
walk on the (N—1)-dimensional lattice spanned by x; = k; —kj4q1,i =1,...,N -1
with starting point x; =--- = xy_1 =1. Each additional term in (4.2) increasing n to
n + 1 can be interpreted as one of N possible steps on the lattice taking x; 1 — x;_1 —
1,xi—x;+1,i=1,...,N (xo = xy := 0), and steps violating the boundary condition
x; = 1 forbidden. Imposing the boundary condition can be achieved by leaving the
walk unrestricted and summing over the N! images of the starting point obtained
by permuting the initial k;, each with a sign equal to the parity of the permutation.
Formula (4.4) is implementing this image method: the term D, , k, corresponds
to unrestricted walks starting from x; = --- = xy = 0, and the N! terms in the
expansion of the product of shift operators generates the images. This is a useful
picture, especially in the large-n limit where the random walk essentially becomes a
Brownian motion obeying a n anisotropic diffusion equation, but we will not elaborate

it further here.

4.2 Momentum density and a group duality

We conclude by giving a "second quantized" expression for the d,, i, x, thatis useful
in the large-N, n limit. Thinking of the k; as a distribution of fermions on the positive
momentum lattice s = 0,1, ..., we define the discrete momentum density of fermions
ps equal to 1 on points s of the momentum lattice where there is a fermion and zero

elsewhere; that is,
N
Ps =Y bk, - (4.17)
i=1

Clearly ps satisfies

M M N(N -1
ZPSZN/ ZSPs=k=n+%. (4.18)
s=0 s=0
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In the above, M is a cutoff momentum that can be chosen arbitrarily as long as it is
bigger than all the k;. Then (4.8) can be written as
M
A,y = 1 [T (E=s)070er, (4.19)

t>s=0

The integer M could in principle be taken to infinity. However, keeping it finite serves

to demonstrate an interesting particle-hole duality of the formulae. Define
ﬁszl_pM—S/ S:O/1/--'/M- (420)

Clearly p; is the density of holes on the lattice [0, M] with the momentum reversed.

Moreover, ps satisfies

M M M—-N+1)(M~-N
ZﬁS:M—N—{—l, Zsﬁszn—i—( +2)( ) (4.21)
s=0 s=0

Therefore, ps represents an irrep of SU(M — N + 1) with the same excitation 7 (total
number of boxes) but with the rows in the Young tableau of the SU(N) irrep turned
into columns for SU(M — N + 1), which defines the dual irrep. One can check that

M

Doy, gy =10 [ (£— )P Dt (4.22)
t>s=0

That is, in the decomposition of the tensor product of n fundamentals of SU(N), the
multiplicity of any given irrep is the same as the one for its dual irrep in the product
of n fundamentals of SU(M — N + 1). Note that this relation holds for any M such
that M > ky > ko > --- > ky.

This duality between SU(N) and SU(M — N + 1) can be turned into a self-duality if
we choose M = 2N — 1, which is possible if k; < 2N — 1. This will be guaranteed,
e.g., in the case n < N. Then (4.22) states that dual irreps in the decomposition come

with equal multiplicities.

The above group duality manifests as a particle-hole duality in the fermion density
picture, but it can also be understood in terms of Young tableau composition rules:
when adding one additional box, the rules are symmetric with respect to rows or
columns, the only difference arising when a column of length N is formed, which is

then eliminated. Therefore, starting with the singlet and adding single boxes (funda-
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mentals), the obtained set of irreps will be symmetric under row-column exchange as
long as n < N. This also shows that a similar duality will emerge in the composition

of any number of self-dual irreps, such as, e.g., {1 = 2,0, = 1.

4.3 Large-n limit

The limit n > 1 is similar to the large-n limit in the SU(2) cases. We can use either
a Stirling approximation in the combinatorial formula for d,..p, . , or dy, k., OF
a random walk approach as in the SU(2) case. Either method leads to the desired
result, and we omit the details of the derivation. We obtain, in the k; parametrization,

a continuous distribution d(n; k)

Nn+N2/2 N N N
dim;k) =6(k—n ki — kj) ex — (ki—k/N) 4.23
(nik) = o )\/zanfln(NZ—l)/z jgl( p[ 2”1; ] (4.23)

where we used Jy , n(N—1)/2 == O(k — 1).3 The result can be expressed in terms of the

dimension and quadratic Casimir of each irrep r = (kq, ..., ky), given by

dim(r) = ]N[ Lok (%kz k2> w. (4.25)

jSiz1 T
Asaresult, d(n;ky,...,ky) := d(N,n;r) rewrites as

N-1 N?/2, NA(N2-1)
Nn+ m
d(N,m;r) =] s = -

s=1 V21T (N2 1)/2

dim(r) e~ 12" . (4.26)

We see that in the large-n limit the distribution of row lengths becomes Gaussian, with
a polynomial prefactor, and the typical row lengths of the obtained representations

scale as /1, so that the exponent in the Gaussian factor be of order 1.

N N-1
3We have also used [T G—1i) =]] s that N < n, and that k; is at most of order /2. In addition,
i<j=1 s=1

the limit
ﬁl ) m+ f7z

r%l—rgon ( \/ﬁ m = exp (i ( i — + ,31>) , (4.24)

i=1

N
for some «;, B; and vy;, provided Z a; = 0, is useful.
i=1
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5 Coupling to magnetic fields

As a physical application of the results of this paper, we examine the partition func-
tion of a system of many fundamental SU(N) "spins" (or better, flavors) coupled to
an external nonabelian magnetic field. This will require the evaluation of traces of

exponentials of the total flavor operators in arbitrary irreps.

Consider n flavor multiplets, each transforming under the same irrep R of SU(N),
with generators [s4,, s = 1,...,n,a = 1,..., N2 — 1, in the presence of an external
nonabelian magnetic field B, j = 1,... N — 1 that couples to the Cartan generators of

the flavors Hg j according to the Hamiltonian

n N—1 N-1
Hpn,=—Y_, ) BjH,j=— ) BjH;, (5.1)
s=1 j=1 =1
where
n N-1
]u = Z ]s,a ’ H] = Z Hs,j ’ (5-2)
s=1 j=1

are the total SU(N) operators and the corresponding Cartan components. This is
the SU(N) analog of SU(2) spins coupling to an external magnetic field through the
unique Cartan generator of the total spin H = J3. Note that this is the most general
SU(N) invariant coupling: any linear combination of the form Y, B,J, can be brought
tothe form) ;, B ]’ H; by an appropriate SU(N) conjugation (chance of basis in the flavor
space), and if B, are common to all 7 flavors this can be achieved with a global SU(N)

rotation.

If the full Hamiltonian is the one described by (5.1), the flavors are not interacting and

the full partition function is the nth power of the single-flavor partition function
Z, =20, Z; =Trge PHB1 = Trg ofBii | (5.3)

So we would need to calculate the trace in (5.3) only for the single irrep R. In general,
however, the flavors could couple. We will consider interactions that preserve the
global SU(N) symmetry and, in fact, depend only on the total SU(N) operators. For
instance, there could be an additional ferromagnetic-type interaction between the fla-

vors, similar to the ferromagnetic interaction of the SU(2) spin case, for a full Hamil-
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tonian of the form
NZ2-1 N—-1
H=-C Y J;-Y BH, (5.4)
a=1 j=1

with C a constant. This extra ferromagnetic-type term is proportional to the quadratic
Casimir C; of the total SU(N). A more general interaction of this type would be any
function F({C,}) of the full set of Casimirs C;, a = 2,..., N, of the total SU(N)

N-1
H=F({C})— ) BH;. (5.5)
j=1

In the presence of such an interaction the partition function does not factorize. De-
composing the full flavor space into irreps r of the total SU(N), the partition function

becomes

Z=Tee P =Y dyr, e P Tr exp (B Y BiH, ) (5.6)
G j

with Tr the trace in the full n-flavor Hilbert space, F(r) the value of F({C,}) for the
irrep r, Tr, the trace in the irrep 7, and d,,.g , the multiplicity of r in the tensor product
(®R)™. An evaluation of this partition function requires, apart from the multiplicity

dy;R,r, the calculation of the trace Tr, exp(Y; bjH;), where b; = BB;.

The calculation of the trace Tr,exp()Y; bjH;) for any SU(N) group and any irrep r
can be deduced from the matrix model analysis of section 2. As stated there, energy

eigenstates ¢, are labeled by irreps r and have the form
Xr(u) — Trr u . (5.7)

The matrix U can be written as
N
U = exp(i Y 0a)a) = Vexp (i y x]-Hj> v1, (5.8)
a j=1

where 0, are group parameters, V is a diagonalizing matrix, and H; are the Cartan

generators, including the U(1) part, in the diagonal basis with matrix elemens

(Hj)ik = 0ij Ok - (5.9)
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Therefore, the energy eigenstates provide the traces (characters)

N
xr(U) = Try exp (i )3 x;Hj) : (5.10)
j=1

On the other hand, as explained in section 2, the energy eigenstates are given as

¥r(z) ixj
xr(z) = Az) ' G e, (5.11)
with A(z) the Vandermonde determinant (2.4) and ¢,(z) a fermionic wavefunction
given by the Slater determinant (2.7). Upon setting ix; = b; = BB; we finally have
N
_ ¥(2) _ ,BB;
Tr, exp <,B];1 BjH]') = Az) zj = ePBi . (5.12)
The irrep r with Young tableau lengths /; maps to the fermionic momenta k; as ex-

pressed in (2.8).

Note that, (5.12) contains one extra magnetic variable, since there is also a term cou-
pling to the U(1) charge of U (the identity matrix). This can easily be eliminated
by shifting all k; by a constant such that ky + --- + ky = 0 which neutralizes the
U(1) charge. Alternatively, we can simply choose magnetic parameters B; such that
By + -+ Bj = 0, ensuring that the coupling to the U(1) part vanishes. Further, the
magnetic variables B; appearing in the trace (5.12) couple to H; in the specific base
(5.9). Moving to any other base, and in particular to one where the H; are traceless,

would simply amount to replacing B; by appropriate linear combinations.

The above traces constitute the basic components needed to determine the statistical
mechanics of any collection of flavors with Hamiltonian of the type considered in this

section.

6 Concluding remarks

The SU(N) decomposition problem is solvable in explicit form, at least for the direct
product of many "flavors" (fundamental irreps). The results in this paper open the

road to various applications and generalizations.

Perhaps the most physically relevant question is the thermodynamics and phase tran-

21



sitions of a large collection of SU(N) flavors in the presence of an external nonabelian
magnetic field. This is in principle accessible from the results of the present work. For
interactions of ferromagnetic type, the system can be shown to exhibit ferromagnetic-
like phase transition, but its phase structure and properties turn out to be quite com-
plicated and nontrivial, exhibiting qualitatively different behavior compared to the

standard SU(2) ferromagnet. This system is treated in the follow-up paper [20].

Another interesting issue, relevant to various theoretical physics contexts, is the scal-
ing properties of the system as the number of flavors n and the size of the group N
both go to infinity. The simplifications and special properties of the limit of large N
are known, and have been extensively used in particle physics [15-17]. In our case,
the existence of the additional parameter n enriches the structure, and it turns out
that different limits can be reached according to the relation between n and N as they
both go to infinity. Again, in these limits phase transitions appear depending on the

relation of the two parameters. This will also be investigated in a future publication.

Finally, the decomposition of the direct product of irreps other than the fundamental
can be considered. The relevant formulae quickly grow complicated and unwieldy
(see (3.3)), but the thermodynamic properties and the various large-n, N limits could

still be analytically accessible, and are topics for future investigation.
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