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This paper proposes a transfer learning approach using graph neural networks (GNN) for predicting the forming force during
double-sided incremental forming (DSIF) processes. In order to address the geometry complexity of DSIF parts, a GNN-based
model was proposed to aggregate surface geometric information of DSIF parts and toolpaths. Furthermore, a transfer learning
method was adopted to improve the prediction. The model was pre- trained on a dataset of previously formed DSIF parts with
varying geometries. To address material and machine variations, the model was further trained on the initial few layers of the

observed part for calibration and subsequently predicted the forming force in the vertical direction relative to the part’s
coordinate system for the rest of the layers of the observed part. The performance of our proposed approach was evaluated
using experimental datasets from two different machines and different input materials, demonstrating the generality and
effectiveness of the approach in forming force prediction.

1. Introduction

The ability of Incremental Sheet Forming (ISF) to manufacture components
with asymmetric geometries while reducing tooling costs and development
cycle time has made it particularly desirable for prototype development and
small-scale production. Double Sided Incremental Forming (DSIF) progressively
deforms sheet metal with a tool on both sides to achieve the desired shape
[1,2]. Like many flexible manufacturing processes, the ability to achieve
dimensional accuracy at the first run is highly desirable and challenging due to
the complex process mechanics involved in DSIF. A significant factor affecting
dimensional accuracy is springback. To mitigate springback, Ren et al. [3]
proposed an in-situ springback compensation method using a model- based
feedback control, which can achieve an averaged dimensional accuracy of
about 1 mm, compared to more than 3 mm if no control was implemented.
One critical element in achieving such an improvement is the ability to predict
instant forming force, which is influenced by several factors, such as tool
dimensions [4], sheet metal thickness [5], material types [6], wall angles of
target parts [7], lubrication [4], and processing conditions including vertical
incremental depth [8], position arrangement between the two tools in DSIF
[9], spindle revolution speed [10], and feed rate [11].

Conventional finite element simulations have been widely employed to
predict the necessary forming force in incremental forming [12,13]. However,
these models have limitations due to large computation resource
requirements (from days to weeks) or simplified assumptions such as material
linearity and idealized boundary conditions. Thus, data-driven approaches
have gained interest for efficient and accurate prediction of forming forces in
incremental forming, taking into account the complex interplay of factors
within the process. For example, Oraon et al. [14] proposed an artificial neural
network (ANN) model to predict the deformation force in incremental sheet

forming (ISF) by using AA3003 alloy. The model considered process
parameters, sheet thickness, part wall angle, and lubrication conditions.
Alsamhan et al. [15] developed a force predictive model for single-point
incremental forming (SPIF) using an adaptive neuro-fuzzy inference system
(ANFIS), an ANN, and a regression model. The study aimed to determine how
the process parameters, tool diameter, and sheet thickness affected the
maximal forming force. Liu and Li [16] proposed a backpropagation neural
networks (BPNN) model for forming force prediction in the SPIF. To address the
limitations of little experimental data, they developed a particle swarm
optimization algorithm—based virtual data production strategy in accordance
with the mega trend diffusion function. Note that all the above referenced
works were for single point incremental forming, which is relatively simpler in
mechanics and the complexity of formable geometry compared to DSIF.
Graph neural networks (GNN) have proven effective in modeling complex
relationships in structured data, such as graphs, and have been applied in
various fields, including material property prediction [17], network-based
optimization problems [18], and so on. For example, in the manufacturing
field, Mozaffar et al. [19] developed a GNN model to predict thermal responses
in the Directed Energy Deposition (DED) process. In their study, the thermal
histories of DED for different part geometries were successfully predicted,
achieving a geometry-agnostic prediction. In order to reduce computational
costs and enhance the training accuracy of neural networks, transfer learning
serves as a valuable approach to enable the utilization of pre-trained models
in a particular domain to enhance performance in related but distinct domains
without requiring a massive amount of data for training. For example,
Chattopadhyay et al. [20] developed a transfer learning framework for fatigue
stage detection using experimental bio-signals. In their study, the proposed
framework significantly improved the fatigue stage classification accuracy.
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This paper proposes a GNN-based transfer learning method for forming
force prediction in DSIF. The method considers relationships among datapoints
in toolpath sequence to take into account more complicated local geometries,
as opposed to focusing on individual or non-combined parameters. In this
method, a graph structure is applied to the DSIF part and utilizes the structural
information contained with surface geometries and toolpath sequences to
predict the forming forces measured during the process. Specifically, the
model consists of three components: a graph encoder, a graph decoder, and a
transfer learning module. The graph encoder converts the geometries of the
parts into graph structures, and the graph decoder predicts the target forming
force based on the encoded graph structure. Furthermore, the transfer
learning module replicates some of the weights from the GNN module and
fine-tunes the rest weights to predict the vertical component of forming force
based on the learned graph representation. Fig. 1 provides an overview of the
proposed model’s workflow: The GNN-based force prediction model is pre-
trained using a dataset of previously manufactured DSIF parts with varying
geometries. Then the initial several layers of the target part are used for
further training the model which then predicts the forming force of the
remaining layers. The concept of “layer” is derived from the process of forming
a cone-shaped part, for example, where the forming tools start by deforming
the outermost circle of the cone and progressively move inward, deforming
concentric circles with incremental depths. Each of these concentric circles is
considered a “layer” of the formed part.

2. Methodology
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2(a) [21]. The XYZ coordinates for each datapoint and its corresponding three-
direction components forming force exerted on the forming tool are measured
by a force-torque load cell affixed atop the forming tool when the tooltip
contacts the metal

Fig. 2. Configurations for two machines with human-scale. (a) CNC system DSIF machine
at Northwestern [21] — machine 1; (b) Robotic manufacturing DSIF system at Machina Labs
[22] — machine 2. Coordinates x and y denote the surface plane of metal sheet, while z
denotes axial direction of the forming tools.

sheet, denoted as x, y, z, Fx, Fy, and F.. In this study, F;serves as the target
variable. In each part, x, y in Machine 1 denotes the two- dimension directions
along the sheet metal surface which is perpendicular to the axial direction of
the tool, while z denotes the axial direction of the tool. The sampling rate of
the load cell is set at 20 Hz and the linear speed of the tool is 5 mm/s. Machine
2 employs an automated robotic manufacturing system applying pressure onto
the metal sheet, as shown in Fig. 2(b) [22]. These robots engage in a
simultaneous motion of pushing into the sheet along the z direction while
deforming the sheet in the XY-plane in accordance with a predefined toolpath.
The x, y, z coordinates and F, Fy, and F.are gathered by sensors embedded into

Force predictions for the rest of
the layers of target part
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Fig. 1. A flowchart overview of the proposed model. The GNN model was pre-trained on a dataset containing DSIF parts of different geometries and was further trained on the initial few
layers of the target part (initial 30 % datapoints as training set and subsequent 20 % as validation set) and then predicted the z-component forming force on the last 50 % datapoints of

the target part.

This section describes the methodology used to develop the GNN- based
transfer learning approach for forming force prediction in DSIF. In particular,
this section details the dataset used in the model, the data preprocessing
steps, the model architectures for both GNN and transfer learning methods, as
well as the training procedures.

2.1. Dataset

The research employed a dataset consisting of various samples of DSIF
process data collected from a real-world manufacturing environment. The
datasets are obtained from two different machines and two different
materials. Machine 1 applies Computer Numerical Control (CNC) in a gantry
system to regulate the two tools to move along the designated paths: a
forming tool/upper tool and a supporting tool/ bottom tool, as shown in Fig.

the robots, whose sampling rate is 1 Hz and the tool’s linear speed is ~37 mm/s.
The maximum forming size of collected parts from Machine 1 is from - 55 mm
to 55 mm in the x and y directions and from 0 to - 21 mm in the z direction,
while in Machine 2, the size is from — 400 mm to 400 mm in the x direction,
from - 200 mm to 200 mm in the y direction, and from 0 to - 220 mm in the z
direction.

After capturing the coordinates data, the normal vectors of the part
surfaces are computed, denoted as ny, ny, and n;based on the open3d package
[23] in Python, an open-sourced library designed for handling 3D point cloud
data. Furthermore, the curvatures, including both in- plane and vertical
curvatures, denoted as curvy, and curv;, are calculated based on every three
points with XYZ coordinates. The term “in- plane” refers to curves which run
along the toolpath and approximately oriented parallel to the XYplane.
Conversely, “vertical” denotes the curvatures of curves that are nearly
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perpendicular to the toolpath directions. The curvature calculation is
completed during the pre- processing part. Table 1 lists the parts, and
corresponding machine and input material, where number 1 and 2 denote
parts from Machine 1 and Machine 2, respectively. The parts from Machine 1
are formed using a spiral line toolpath with an incremental depth of 0.2 mm,
while the parts from Machine 2 are formed using a contour line toolpath with
an incremental depth of 0.3 mm. The term “contour” indicates that each
datapoint on a given circle (or “layer”) possesses the same depth, whereas
“spiral” refers to formations where each point exhibits a gradually increasing
depth. Fig. 3 shows the shapes of the parts formed by the two machines,
where (a)—(e) represent parts from machine 1, and (f)—(h) represent parts from
machine 2. To note, parts (f) and (g) appear quite similar in terms of
dimensions (length, width, depth). However, there are differences in the wall
angles along the left wall lines in the YZ plane. These differences, though minor,
significantly impact the forming force, as evidenced by the data we collected
in Fig. 4(d). All the eight parts represent distinct geometries and forming force
exerted on the forming tool, as measured by load cells. Fig. 4 displays the
recorded force curves after a rolling-averaged process. The rolling average will
be illustrated in the subsequent Section 2.2.

2.2. Preprocessing

Prior to training the model, several preprocessing steps were performed to
ensure the data is suitable for training. First, the outlier points were removed
from the dataset by roughly visualizing the data. The outlier points in the
dataset were the points when the tools remained stationary. The outliers
originated during the period when the tools did

Table 1

Dataset.
Part name DSIF machine Input material
Conel_AMPL 1 1 mm AA5754-0
Cone2_AMPL 1 1 mm AA5754-0
Cone3_AMPL 1 1 mm AA5754-0
Pyramid_AMPL 1 1 mm AA5754-0
Fish Fin_AMPL 1 1 mm AA5754-0
Partl_ML 2 0.9 mm 304 L
Part2_ML 2 0.9mm 304 L
Part3_ML 2 0.9mm 304 L
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Fig. 3. DSIF parts used in the analysis. (a) Conel AMPL, (b) Cone2_AMPL, (c)
Cone3_AMPL, (d) Pyramid_AMPL, (e) Fin_AMPL, (f) Partl_ML, (g) Part2_ML, and (h)
Part3_ML. (a)—(e) represent parts from machine 1, while (f)—(h) represent parts from
machine 2.

not initiate movement, yet the load cell continued to record data points.
Subsequently, due to the substantial part size difference and variance in
sampling rate between parts from Machine 1 and Machine 2, a re- sampling
process was undertaken aiming to ensure a uniform and consistent distance
between adjacent data points for all parts. The distance must be selected to
capture important trends/variations in forming force and geometry in the
data. Meanwhile, the re-sampling rate should not be too high to avoid having
too many data points. The latter could lead to more complicated data
management and slower learning without improvements in the prediction
performance. Based on expert knowledge of the DSIF process specifics, an
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Fig. 4. Force curve illustrations. (a) Force curves of cones from Machine 1, (b) Force curve of pyramid from Machine 1, (c) Force curve of fin from Machine 1 (d) Force curves of parts from
Machine 2. Datapoint number means sequential number of a datapoint collected for a part during DSIF forming process.
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estimation and decision were made to set the re-sampling adjacent-point
distance at approximately 40 mm for parts from both Machine 1 and Machine
2 which worked well as later demonstrated by the results. This process serves
to mitigate the impact of variations in part size and sampling rates. The total
number of data points for all parts before/after re-sampling is 101,000 and
71,750, respectively. Then, the XYZ coordinate data were standardized so that
the various coordinate features had a reference center with zero means. This
step considered the effects of forming symmetries and machine biases,
preventing the model from over- emphasizing those effects. Following this, a
rolling average was computed by averaging the forming force for a window of
30 data points based on the original/non-resampling data. A window of thirty
points is enough to eliminate possibly existing position-dependent
measurement errors, and at the same time, it is not too large and still allows
within- one-layer predictions. This step aims to prevent learning the
measurement uncertainties. However, the downside of applying the rolling
average is eliminating the ability to learn and predict local variations in the
forming, and therefore, the prediction may not attain an absolute level of local
accuracy in this regard. Besides, given that the other parameters, like material
properties, process parameters, and metal sheet thickness, of the parts
produced by the same machine are similar, the assignment of binary labels,
namely 0 and 1, is utilized to differentiate between parts originating from
Machine 1 and Machine 2, respectively. The labeled feature is denoted as
process parameters shown in Fig. 5.

The curvature of every data point is also needed to provide additional
location information when the curvatures are calculated based on the original
and non-resampled toolpath points. The calculation logic of curvature is as
follows:

Assuming that the three consecutive points (A, B, and C, where B is the
middle one) with known XYZ coordinates lie on the same curve line, to
determine the approximated curvature at the central point B, it is imperative
to first obtain the inner circle of the three points. Subsequently, the target
curvature value can be obtained by calculating the reciprocal of the radius of
the circle. Also, to calculate the coordinates of the inner circle, the basic plane
equation forms of three planes, whose intersection point is the circle center,
should be calculated first. The three planes are: plane 1 passes through all the
three points, while planes 2 and 3 are perpendicular to AB and B€, respectively,
and also pass

~ Coordinates y

z
X-component
y-component
z-component

In-plane curvature
Curvature _
Vertical curvature

Normal vectors
Input —

— Process parameters (“0” or “1”, to distinguish
parts with different machine and material
settings )

Fig. 5. Input features: coordinates, normal vectors, curvatures, and process parameter.

through the midpoints of AB and B€, respectively. To calculate their basic

equation forms, the three planes’ normal vectors are needed to calculate first.
Following the above produces, the calculations of curvature is as follows:

* The coordinates of the three points are presented below, where B is the
middle point:

A(x1,y1,21),B(x2,y2,22),C(x3,y3,23) (1)

Journal of Manufacturing Processes 120 (2024) 867-877

e Calculate the vectors AB and B€ by subtracting the XYZ coordinates of A
from B and the XYZ coordinates of B from C, respectively:

AB = (x2 - x1,y2 - y1,22 - 71) (2)

BC = (x3 -x2,y3 -y2,23 - 22) (3)

o Calculate the normal vectors a1, A2, and #3 of the three planes, where A%
is the normal vector of the plane passes through all the three points, while
A2 and A3 are normal vectors of planes which are perpendicular to A8 and
BE, respectively. The two planes perpendicular to AB and BE€, respectively,
also pass through the midpoints of AB and B€, respectively:

nl=ABxBC (4)
n2 =AB (5)
n3=BC (6)

e Calculate the above three planes’ constant quantities, di, d>, and ds,
respectively, based on the basic plane equation:

Aier+di=0,i=1,2,3 (7) where:

ai = ith plane’s normal vector. # = jth plane’s
passing point coordinates.
di= ith plane’s constant quantity
e Calculate the intersection point of the above three planes. The
intersection point is the circle center of three-point inner circle:

aiefo+di=0,i=1,2,3#(8)

where:

[ o= coordinates of circle center of three-point inner circle, | o= x0' yo' 20

¢ Once obtaining the coordinates of the circle center, the radius of the circle
can also be obtained by calculating the Euclidean distance from circle
center to any of the three points, A, B, and C. The curvature can be
subsequently derived by the equation:

1

Curv=__ 9)
Ro

where:

Curv = Curvature of the middle point.

Ro= Radius of the three-point inner circle.

Both in-plane and vertical curvatures for each point are calculated based
on the above calculation process. In-plane curvature is calculated by selecting
the previous, current, and subsequent point along the toolpath, while vertical
curvature is calculated by selecting closest points from previous and
subsequent layer/contour.

Fig. 5 outlines the features for approximating the part geometries and
other properties. The part geometries are depicted as point clouds, with each
point on the cloud representing a point on the surface of the geometry and
along the toolpath.
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2.3. Graph representations

To incorporate the inherent connections in part geometries and toolpath
sequences, a graph representation consisting of nodes and edges was
employed to model the point clouds of part geometries and toolpath
sequences. In particular, each point in the clouds was treated as a node in
the graph, and edges of two distinct types were established between the
nodes: Along-Path edges and Space-Layer edges. The Along- Path edges
denote that nodes are connected based on the toolpath sequence, while the
Space-Layer edges indicate that each node is linked to its k-nearest
neighbors, the nodes from previous layers/contours. The purpose of Along-
Path edges is to encode information about the toolpath sequence while the
purpose of the Space-Layer edges is to encode information about the local
geometrical features. Here, the parameter k determines the number of the
closest neighbors considered, and k was set to 4 in this study. Various
configurations of parameter k are tested, and their performances of both
calculation time and prediction accuracy are assessed in the subsequent
Section 3.4 dedicated to specific target prediction. The Space-Layer edges can
solely connect the nodes that are in different layers. Both edges are directed,
with the arrow directions from previous nodes towards subsequent ones,
which means that the connections are from previous points/nodes. The
directed edges ensure that the node is never connected to nodes from
subsequent layers, which is expected to consider sequence effect as a
hypothesis: when in forming, the in-situ forming force is mostly affected by
the formed parts.

Upon constructing the nodes and edges, the weight matrix of neighboring
nodes was calculated by GNN, and the aggregated features for each node
were updated during training by referring to the features of its neighboring
nodes connected through edges. The entire calculation process for weight
matrix and aggregated features are depicted from Egs. (10)—(15). The
rationale behind this approach is to encode information about the
surrounding geometry and toolpath of each node. Fig. 6 provides an
illustrative example of the aggregated calculation.

During the actual forming process, the tool moves along the toolpath
direction, from one layer to the next. As shown in Fig. 6, the observed

Toolpath

e 0 0 0 ¢
Depth ‘ -U 0 -‘ ' @ Layer2
o o o o @

Fig. 6. Detail of the GNN structure. Observed node (black), previous node along the
toolpath (purple), and nodes from previous layer (red). Arrows indicate passing the
information between the nodes. “layer”

Layer 1

Layer 3

refers to each concentric circle formed at
increasing depths during forming process. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

node (black node) considers not only its own features but also the features of
Nodei, Node,, and Nodes, as it has an Along-Path edge from Nodeirepresented
as purple arrow in Fig. 6, and Space-Layer edges from Node, and Nodes
represented as red arrows in Fig. 6. The aggregation calculation can be
expressed as follows:

* To calculate the aggregated feature vector at Nodeo:

3
Xo Z; o(M‘"X") (10) where: X ;= Aggregated feature vector of Node;.

M; = Weight matrix of Node; calculated in GNN X; =
Feature vector of Node;

* To represent the feature vector associated with each node:

Journal of Manufacturing Processes 120 (2024) 867-877

Prediction results for all three modes.
[ ] (11)
Xo= Xo,Y/0,20, Vx0, Vy0, V20, CUI Vxy0, CUI V20, PO
[ ] (12)
X1= X1,Y1,21,Vx1, Vy1,Vz1, CUI Vxy1, CUI V21, P1
[ ] (13)
X2= X2,Y2,22,Vx2,Vy2, V22, CUI Vxy2, CUI V22, P2
[ ]
X3= X3,Y3,23,Vx3, W3, Vz3, CUI Vxy3, CUI V23, P3 (14)
where: x;y;,zi= XYZ coordinates of Node; v, vy, v.i= XYZ
coordinates normal vectors of Node; curvyyi= In-plane
curvature of Node;icurv.i= Vertical curvature of Nodeip;=
Process parameter of Node;

o After updating the aggregated feature vectors for each node after training,
the prediction function of the forming force can be accomplished using the
following equation:

( )

Fzi= f Xi,y'i,2'i, V'xi, V'yi, V'zi, CUI V'xyi, CUr V'z, p'i (15) where:

F.i= z-component force at Nodeix ;y ;z i= Aggregated coordinates of Nodei
Vi, ViV zi= Aggregated normal vectors of Node;curv xy,curv ;= Aggregated
in-plane or vertical curvature of Node;p ;= Aggregated process parameter

of Node;f() = Relation function between aggregated feature vector and
pre-
dicted force
The model described above is referred to as the Full-Layer Graph Neural
Network, as depicted in Fig. 7.

Fig. 7. Example: Full-Layer GNN Model for Cone Structure. Blue nodes are datapoints
collected during forming. The sequential numbers marked on nodes denote sequences of
datapoints in the toolpath. Black arrows denote edges which pass information between
nodes. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

2.4. GNN-based transfer learning

A transfer learning method was implemented based on GNN to establish
the relationship between the graph representation of part geometries and the
corresponding forming forces. The model leverages a GNN architecture with
two graph layers (9 x 16 and 16 x 16) and three fully connected layers (16 x 16,
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16 x 8 and 8 x 1), with Tanh activation function for hidden layers. To note, other
activation functions, such as sigmoid and RelLU, were explored but failed to
outperform the Tanh function in terms of model performance. The Graph
Attention Network (GAT) [24] layers are used as graph layers, which contribute
to considering separate importance to every neighboring node. By taking the
graph representation of part geometries as input, the GNN learns a latent
representation that encodes the structural information of the graph. The
resulting latent representation is then transformed into the corresponding
forming forces by the output layer. The GNN model was implemented by
PyTorch Geometric library [25].

To perform transfer learning, the GNN model was initially pre- trained on
the pre-training set, which consisted of a subset of training parts with
geometries distinct from the target part. Then, the weights of graph layers and
the first fully connected layer were frozen in the GNN model, and the weights
of the remaining layers were fine-tuned on the training set. This strategy
enabled the model to leverage the knowledge learned from the pre-trained
model to enhance the performance of the target part with limited training
data.

2.5. Training procedures

The datasets were split into different sets, including pre-training, pre-
validation, training, validation, and test sets. The pre-trained model uses pre-
training and pre-validation, while the transfer model uses training and
validation. The two models are evaluated on the test set separately after
training or fine-tuning to distinguish the performance difference between
models with or without transfer learning. The specific chosen datasets differ
based on the pre-trained mode selections and predicted targets. The pre-
training set is utilized for pre-training the model, and the pre-validation set
fine-tunes pre-trained model’s hyperparameters (number of epochs). The
training set is used for training on the initial several layers of the target part in
the transfer model, while the validation set selects the best number of epochs
to end the transfer-learning process. Finally, the test set evaluates the model’s
performance and compares the prediction differences between the proposed
model and the benchmark, and models with and without transfer learning. The
split proportions are the random 70 % and the remaining 30 % datapoints of
individual parts, respectively, for pre-training and pre-validation sets in the
pre-trained datasets, and the initial 30 %, the subsequent 20 %, and the
remaining 50 % datapoints of the observed part, respectively, for the training,
validation, and test sets. It means that, for example, partl_ML is the prediction
target in mode 3: pre-training the model with the other 7 parts. After that, the
pre-trained model is further trained on the initial 50 % (30 % for training and
20 % for validation to determine the number of epochs) datapoints/layers of
partl_ML for calibration. Finally, the model predicts on the test set: the
remaining 50 % datapoints/layers of partl_ML.

To provide a benchmark for comparison purposes, a simple ANN model

with five fully connected layers (9 x 16, 16 x 16, 16 x 16, 16 x 8, and 8 x 1) was
trained and evaluated on the same dataset. The ANN model was employed
with the same input features as the GNN model, i.
e., XYZ coordinates, XYZ component normal vectors, curvatures, and process
parameters, but did not incorporate the structural information in the graph
which can be only done by the GNN model through connections between
adjacent nodes. For the purposes of comparability with the proposed GNN
model, the benchmark model was employed a transfer learning approach by
freezing the weights of the first three layers and fine-tuning the last two fully
connected layers.

Additionally, to contrast the performance of the pre-trained models trained
on different datasets, we conducted three pre-training modes. Mode 1
involved pre-training the model solely on parts from Machine 1 and
subsequently making predictions for parts from Machine 2. Mode 2 utilized a
pre-trained model consisting of only parts from Machine 2, while Mode 3’s
pre-trained model includes parts both from Machine 1 and Machine 2. The
selected pre-training modes are presented in Table 2. In each mode, a
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comparison was conducted between the performance with and without
transfer learning to evaluate the importance of transfer learning. In all three
modes (Mode 1, Mode 2, and Mode 3), the trained forming force prediction
model is tested on the same data. This enables fair prediction performance
comparison between the three modes.

To train the GNN-based model, the mean squared error (MSE) loss function
was employed, and the Adam optimizer [26] and learning rate of 0.001 was
used, while the learning rate was set to 0.0001 when fine- tuning the not-
frozen layers in transfer model. To mitigate overfitting in Mode 1 and Mode 2,
an early stopping strategy was implemented with a patience of 10 epochs, and
the best training epoch number was selected based on the performance on
the validation set. Additionally, in order to avoid stopping at a local minimum
in Mode 2, a preliminary training is conducted to estimate the loss changes
before confirming the epoch number.

Moreover, the performance between the proposed model and the
benchmark was evaluated, as well as between the models with or without
transfer learning, and between diverse pre-training mode selections, using the
following metrics on the test set:

e Mean Squared Error (MSE): measures the average squared difference
between the predicted and actual forming force values and sets as loss
function to evaluate the model’s training capability.

¢ Coefficient of determination (R? score): compares matching of two
sequences of numeric values and measures the proportion of variance in
the forming force that is explained by the model. The score range is no
more than 1: when the score equals 1, it indicates a perfect match of the
two sequences of values; an R?score of 0 means
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Table 2
Pre-training mode selection.

Mode 1 Mode 2 Mode 3
Pre-train Train & test’ Pre-train Train & test” Pre-train Train & test”
Conel_AMPL Partl_ML Part2_ML Partl_ML Conel_AMPL Part2_ML Partl_ML
Cone2_AMPL Cone2_AMPL
Cone3_AMPL Cone3_AMPL
Pyramid _AMPL Fin_AMPL

Part3_ML Part3_ML

Pyramid _AMPL Fin_AMPL
Conel_AMPL Part2_ML Partl_ML Part2_ML Conel_AMPL Partl_ML Part2_ML
Cone2_AMPL Cone2_AMPL
Cone3_AMPL Part3_ML Part3_ML
Pyramid _AMPL Cone3_AMPL
Fin_AMPL Pyramid _AMPL Fin_AMPL
Conel_AMPL Part3_ML Partl_ML Part3_ML Conel_AMPL Partl_ML Part3_ML
Cone2_AMPL

Cone2_AMPL Cone3_AMPL
Cone3_AMPL Pyramid _AMPL
Pyramid _AMPL Fin_AMPL

Part2_ML Fin_AMPL Part2_ML

3The model is further trained on the first few layers of the target part and then tested by making forming force predictions for the rest of the layers of the target part.

Not the same data are used for training and testing the model.

that the model’s prediction is no better than simply using the average value
of the target values (baseline model); and when the prediction is less
accurate than the baseline, the R?score is negative.

e Mean prediction error: calculates the average error between predicted and
actual forming force values.

e Max prediction error: identifies the highest error between predicted and
actual forming force values.

3. Results
3.1. GNN-based transfer learning

Table 3 presents the performance comparison between the GNN- based
transfer learning model using Mode 3 and the simple ANN benchmark model.
The models are evaluated based on their averaged R?scores, averaged mean
prediction errors, and averaged max prediction errors for all target predictions.
The outcomes demonstrate that the GNN-based transfer learning model using
Mode 3 surpasses the simple ANN benchmark model in terms of its overall
performance.

3.2. Pre-training mode selection comparison

Table 4 presents the prediction results for all three pre-training modes. In
Table 4, “Without TL” denotes the model after pre-training directly predicts on
the test set (the final 50 % datapoints of target part), while “With TL” denotes
the pre-trained model predicts on the test set after training on training set
(initial 30 % datapoints of target part) and validating on validation set (middle
20 % datapoints). It has been demonstrated that pre-training on a dataset that
includes both Machine 1 and 2 achieves the best performance based on R?
scores, mean prediction error, and max prediction error. Additionally, the
number of epochs of pre-training for Mode 3 is considerably lower than that
of Mode 2, as indicated by Fig. 8. In particular, the loss of Mode 2

Table 3

frequently reaches a local minimum, which requires training iterations to
achieve the optimal minimum. Furthermore, in Mode 2, the predicted R?score
could not be improved significantly by transfer learning approach due to its
tendency to overfit. However, the R? score could be considerably enhanced
when the dataset contains parts from multiple sources in Mode 3.

Fig. 9 depicts the performance evaluation of the best predictive model
using Mode 3 by comparing the predicted values with the actual values for
Partl_ML, Part2_ML, and Part3_ML, respectively. The obtained R?scores for
the three target parts are 0.882, 0.883, and 0.809, respectively, indicating an
acceptable level of prediction accuracy. Additionally, Fig. 10 displays the
prediction results using Mode 3 for the entire window size including training,
validation, and testing set, which shows a comprehensive prediction
performance of the model, while Fig. 9 shows the prediction performance only
in test set which can be seen as a local window size. The results suggest that
the predictive model can predict vertical forming force on a layer level.

Moreover, it is essential to investigate the reasons why pre-training solely
on one machine may reach a local minimum and require longer training times
to find the optimal minimum. A possible explanation is that using a more
diverse dataset, incorporating various machine settings and part designs, could
help to avoid overfitting to the specific characteristics of one machine and
enhance the model’s generalization capability.

3.3. With and without transfer learning comparison

In Fig. 11, the comparison results for prediction accuracy, as measured by
R?scores, mean prediction errors, and max prediction errors, are displayed for
the GNN models with and without transfer learning via Mode 3. The results
indicate that the GNN model with transfer learning outperforms the one
without, as evidenced by an improvement in R? scores. Also, there is a
noticeable decrease in both
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Prediction results for the GNN-based transfer learning model using mode 3 and the ANN benchmark model. The R2 scores, mean prediction errors, and max prediction errors for each
model are averaged based on prediction results for all three targets in mode 3.

Models Averaged R? Scores Averaged mean prediction error (N) Averaged max prediction error (N)
GNN-based model 0.858 35.92 146.70
ANN-based benchmark 0.713 51.74 264.58

A bold number indicates a better performance between the two models.
Table 4
Prediction results for all three modes.

Target Criteria Mode 1 Mode 2 Mode 3 (BEST)
Without TL With TL Without TL With TL Without TL With TL
Partl_ML R?score -303.47 -3.18 0.871 0.874 0.786 0.882
Training Time Cost (s) 195 1.253 459 0.078 118 3.431
Mean prediction error (N) 2178.32 199.26 37.50 37.09 61.16 32.01
Max prediction error (N) R? 2459.03 648.32 120.87 119.99 259.44 121.51
Part2_ML score -222.17 -10.63 0.876 0.877 0.843 0.883
Training Time Cost (s) 196 1.893 555 0.047 253 3.014
Mean prediction error (N) 2189.15 354.85 37.73 37.57 53.43 37.54
Max prediction error (N) R? 2463.42 1820.57 - 149.39 149.82 123.84 151.34
Part3_ML score -342.28 9.81 0.499 0.500 0.129 0.809
Training Time Cost (s) 198 5.872 671.06 0.055 161.83 12.028
Mean prediction error (N) 2051.19 284.88 66.90 66.84 90.77 38.20
Max prediction error (N) 2330.87 999.31 164.95 165.35 252.44 167.26

A bold number indicates the best performance of the quantity among all 6 models.

Loss History Loss History Loss History
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Fig. 8. Training and validation loss history plots for Mode 2 and Mode 3. (a) Part1_ML for Mode 3 (b) Part2_ML for Mode 3 (c) Part3_ML for Mode 3 (d) Partl_ML for Mode 2 (e) Part2_ML
for Mode 2 (f) Part3_ML for Mode 2.
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Table 5

Partl_ML Prediction results for all parameter k selections.
Criteria k_2 k_4 k_#6 k_8 k _ 10

Without TL With TL Without TL With TL Without TL With TL Without TL With TL Without TL With TL

R?scores 0.661 0.771 0.786 0.882 0.916 0.920 0.794 0.873 0.878 0.895
Training Time cost (s) 103 3.226 118 3.431 202 1.150 264 4.244 285 1.501
Mean prediction error (N) 60.10 199.26 61.16 32.01 28.82 28.37 46.31 33.71 34.84 32.57
Max prediction error (N) 189.79 648.32 259.44 121.51 130.52 136.73 182.61 192.81 143.42 126.93

A bold number indicates the best performance among all the models examined in that row.
Partl_ML prediction with pre-training data consisting of parts from both
Machine 1 and Machine 2. Table 5 presents the performance trends associated
with various k values, ranging from 2 to 10. To note, as k increases from 2 to 6,
there is observable enhancement in performance, evidenced by improved R?
scores and reductions in both mean prediction error and max prediction error,
even with longer training time cost; however, when k is further increased from
6 to 8, the performance gains become marginal, and the prediction accuracy
decreases compared to when k is set at 6. One possible explanation for this
phenomenon may be that for this certain task, the Space-Layer edges tend to
capture more features as k increases and reach their peak performance when
k equals 6. Beyond this point, where k exceeds 6, the collected features by

Space- Layer edges, might introduce disruptive information into the prediction
process, leading to a decrease in prediction accuracy.

4. Summary and discussions

In this work, a transfer learning approach based on Graph Neural Network
(GNN) for prediction of vertical component of forming force to consider part
geometries and the toolpath sequence in the Double-Sided Incremental
Forming (DSIF) process is proposed. The study employs a dataset consisting of
various experimental samples of DSIF data collected from two different
machines and using two different input materials. The results show that the
GNN-based transfer learning approach exhibits superior performance
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compared to the simple Artificial Neural Network (ANN) benchmark model and
the GNN model that does not incorporate transfer learning, as evidenced by
the R?scores, mean prediction errors, and max prediction errors. Furthermore,
the utilization of transfer learning, where the model is trained on a larger
dataset and then fine-tuned on a smaller dataset specific to the problem at
hand, may also improve the prediction model’s performance. Additionally, the
results demonstrate that training mode, which involves pre-training with parts
from both machines and of different materials, outperforms the other modes
in terms of prediction accuracy and pre- training efficiency.

One major achievement of this work is that even with limited dataset (two
machines, two material types, and 8 geometries), we have demonstrated
noticeable successes in the capability of force prediction. One essential part of
this success in data-driven approach is to use forces from initial few layers to
calibrate the model. This approach is rooted in the solid understanding of the
physics in the DSIF process, as the forming force is a collection of material type,
material thickness, machine stiffnesses, etc.

The proposed approach can be material/machine agnostic since we used
the initial layers of the target part for training. Any change in material type,
material thickness, machine settings, and process parameters will affect the
forming force at the initial part of the forming force, therefore, these changes
are implicitly incorporated. However, when the dataset is expanded to include
more materials, machine settings, and process parameters, the presented
approach can be modified by explicitly incorporating some key parameters as
separate input features, such as yield strength, material thickness, tool
diameter, and tool alignment between the two tools with respect to the sheet
surface. This additional information would probably enhance the robustness
of the model. Additionally, the effect of the clamping system on forming force
has two contributions, locally and globally. Locally, it depends on how effective
the clamp system is in terms of controlling metal draw-in. If both clamp
systems have the same effect, such as fully preventing sheet metal from
slipping under the clamp, then there should not be any effect on forming force.
Globally, sheet metal acts as a spring or beam between the clamping system
and the forming tool. Therefore, the distance between a forming tool and the
clamp edge will influence the forming force. This bias caused by clamp systems
in different machines can be captured by the proposed GNN model during
training on the initial several layers of the target parts. However, one can also
add an extra input feature to the presented model here by considering
distances from the tool’s contact points on the metal sheet to the four clamps
secured at the sheet’s four edges during forming. This feature would probably
further improve the model’s robustness.

Another future research direction can involve the optimization and
improvement of the hyperparameters of the model and alternative neural
network structures, i.e., time-series algorithms. Furthermore, it is worthwhile
to note that the prediction performance for mode 1 with TL is significantly
lower, as compared to modes 2 and 3 in Table 4. This may stem from the
model’s lack of prior knowledge of material or machine characteristics, which
are usually learned during the pre-training process. However, based on mode
3 where the prediction results are the best among all three modes and similar
materials, shapes, and machine settings are considered in the pre-training
dataset, the expectation would be that, by including features of material
properties, part shapes, and machine settings similar to the target part in the
pre-training dataset, the model could capture the range of
material/shape/machine bias in target parts and successfully predict their rest
layers with TL. Based on the results, it is recommended to employ a wider
range of parts fabricated using various machine settings in the pre-training
process. Besides, it could be beneficial to consider not only the z-component
of the forming force but also the forces in the xy-plane, as both dimensions of
force could undergo significant changes in scenarios where wall angles are
either sufficiently high or experience abrupt alterations. Additionally, the
target output currently predicted through averaging to mitigate measurement
uncertainties may exhibit slight deviations from the actual vertical component
forming forces. Moreover, it is essential to consider a tradeoff between re-
sampling rate/time required for training and maintaining the integrity of
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feature resolution. The present prediction model, although provides
satisfactory results at the layer level, due to re- sampling and rolling average
to mitigate the training time and systematic errors, cannot predict very
localized variations. The current selection of distance between points along
the toolpath may not necessarily be the optimal one, and to enhance
optimization, it is imperative to take into account factors such as tool moving
speed, or normalized local features with respect to part size. Also, data
imbalance, i.e., the difference in the numbers of datapoints of smaller and
larger parts in the training datasets may cause a model to focus too much on
large parts. In future work and when using the proposed method, we suggest
paying attention to potential data imbalance issues, especially if in a training
dataset are data from parts with significantly different sizes. Techniques such
as under- or oversampling might need to be utilized to avoid the negative
effects of the data imbalance.

Finally, the training time using the transfer learning model (Table 4)
demonstrates a great potential for implementing the predictive model for in-
situ springback control to achieve the goal of forming the first part right, and
therefore, make this process truly autonomous and can be adopted for point-
of-need manufacturing or distributed manufacturing.
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