
 

 

Journal of Manufacturing Processes 120 (2024) 867–877 

 

Songlin Duan a, Dominik Kozjek a, Edward Mehr b, Mark Anders b, Jian Cao a,*  

a Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA b 

Machina Labs, Chatsworth, CA 91311, USA    

 

A R T I C L E I N F O   A B S T R A C T   

Keywords:  
Double-sided incremental forming  
Forming force prediction  
Graph neural networks  
Transfer learning  

This paper proposes a transfer learning approach using graph neural networks (GNN) for predicting the forming force during 

double-sided incremental forming (DSIF) processes. In order to address the geometry complexity of DSIF parts, a GNN-based 

model was proposed to aggregate surface geometric information of DSIF parts and toolpaths. Furthermore, a transfer learning 

method was adopted to improve the prediction. The model was pre- trained on a dataset of previously formed DSIF parts with 

varying geometries. To address material and machine variations, the model was further trained on the initial few layers of the 

observed part for calibration and subsequently predicted the forming force in the vertical direction relative to the part ’s 

coordinate system for the rest of the layers of the observed part. The performance of our proposed approach was evaluated 

using experimental datasets from two different machines and different input materials, demonstrating the generality and 

effectiveness of the approach in forming force prediction.    

1. Introduction  

The ability of Incremental Sheet Forming (ISF) to manufacture components 

with asymmetric geometries while reducing tooling costs and development 

cycle time has made it particularly desirable for prototype development and 

small-scale production. Double Sided Incremental Forming (DSIF) progressively 

deforms sheet metal with a tool on both sides to achieve the desired shape 

[1,2]. Like many flexible manufacturing processes, the ability to achieve 

dimensional accuracy at the first run is highly desirable and challenging due to 

the complex process mechanics involved in DSIF. A significant factor affecting 

dimensional accuracy is springback. To mitigate springback, Ren et al. [3] 

proposed an in-situ springback compensation method using a model- based 

feedback control, which can achieve an averaged dimensional accuracy of 

about 1 mm, compared to more than 3 mm if no control was implemented. 

One critical element in achieving such an improvement is the ability to predict 

instant forming force, which is influenced by several factors, such as tool 

dimensions [4], sheet metal thickness [5], material types [6], wall angles of 

target parts [7], lubrication [4], and processing conditions including vertical 

incremental depth [8], position arrangement between the two tools in DSIF 

[9], spindle revolution speed [10], and feed rate [11].  

Conventional finite element simulations have been widely employed to 

predict the necessary forming force in incremental forming [12,13]. However, 

these models have limitations due to large computation resource 

requirements (from days to weeks) or simplified assumptions such as material 

linearity and idealized boundary conditions. Thus, data-driven approaches 

have gained interest for efficient and accurate prediction of forming forces in 

incremental forming, taking into account the complex interplay of factors 

within the process. For example, Oraon et al. [14] proposed an artificial neural 

network (ANN) model to predict the deformation force in incremental sheet 

forming (ISF) by using AA3003 alloy. The model considered process 

parameters, sheet thickness, part wall angle, and lubrication conditions. 

Alsamhan et al. [15] developed a force predictive model for single-point 

incremental forming (SPIF) using an adaptive neuro-fuzzy inference system 

(ANFIS), an ANN, and a regression model. The study aimed to determine how 

the process parameters, tool diameter, and sheet thickness affected the 

maximal forming force. Liu and Li [16] proposed a backpropagation neural 

networks (BPNN) model for forming force prediction in the SPIF. To address the 

limitations of little experimental data, they developed a particle swarm 

optimization algorithm–based virtual data production strategy in accordance 

with the mega trend diffusion function. Note that all the above referenced 

works were for single point incremental forming, which is relatively simpler in 

mechanics and the complexity of formable geometry compared to DSIF.  

Graph neural networks (GNN) have proven effective in modeling complex 

relationships in structured data, such as graphs, and have been applied in 

various fields, including material property prediction [17], network-based 

optimization problems [18], and so on. For example, in the manufacturing 

field, Mozaffar et al. [19] developed a GNN model to predict thermal responses 

in the Directed Energy Deposition (DED) process. In their study, the thermal 

histories of DED for different part geometries were successfully predicted, 

achieving a geometry-agnostic prediction. In order to reduce computational 

costs and enhance the training accuracy of neural networks, transfer learning 

serves as a valuable approach to enable the utilization of pre-trained models 

in a particular domain to enhance performance in related but distinct domains 

without requiring a massive amount of data for training. For example, 

Chattopadhyay et al. [20] developed a transfer learning framework for fatigue 

stage detection using experimental bio-signals. In their study, the proposed 

framework significantly improved the fatigue stage classification accuracy.  
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This paper proposes a GNN-based transfer learning method for forming 

force prediction in DSIF. The method considers relationships among datapoints 

in toolpath sequence to take into account more complicated local geometries, 

as opposed to focusing on individual or non-combined parameters. In this 

method, a graph structure is applied to the DSIF part and utilizes the structural 

information contained with surface geometries and toolpath sequences to 

predict the forming forces measured during the process. Specifically, the 

model consists of three components: a graph encoder, a graph decoder, and a 

transfer learning module. The graph encoder converts the geometries of the 

parts into graph structures, and the graph decoder predicts the target forming 

force based on the encoded graph structure. Furthermore, the transfer 

learning module replicates some of the weights from the GNN module and 

fine-tunes the rest weights to predict the vertical component of forming force 

based on the learned graph representation. Fig. 1 provides an overview of the 

proposed model’s workflow: The GNN-based force prediction model is pre-

trained using a dataset of previously manufactured DSIF parts with varying 

geometries. Then the initial several layers of the target part are used for 

further training the model which then predicts the forming force of the 

remaining layers. The concept of “layer” is derived from the process of forming 

a cone-shaped part, for example, where the forming tools start by deforming 

the outermost circle of the cone and progressively move inward, deforming 

concentric circles with incremental depths. Each of these concentric circles is 

considered a “layer” of the formed part.  

2. Methodology  

This section describes the methodology used to develop the GNN- based 

transfer learning approach for forming force prediction in DSIF. In particular, 

this section details the dataset used in the model, the data preprocessing 

steps, the model architectures for both GNN and transfer learning methods, as 

well as the training procedures.  

2.1. Dataset  

The research employed a dataset consisting of various samples of DSIF 

process data collected from a real-world manufacturing environment. The 

datasets are obtained from two different machines and two different 

materials. Machine 1 applies Computer Numerical Control (CNC) in a gantry 

system to regulate the two tools to move along the designated paths: a 

forming tool/upper tool and a supporting tool/ bottom tool, as shown in Fig. 

2(a) [21]. The XYZ coordinates for each datapoint and its corresponding three-

direction components forming force exerted on the forming tool are measured 

by a force-torque load cell affixed atop the forming tool when the tooltip 

contacts the metal  

 

Fig. 2. Configurations for two machines with human-scale. (a) CNC system DSIF machine 

at Northwestern [21] – machine 1; (b) Robotic manufacturing DSIF system at Machina Labs 

[22] – machine 2. Coordinates x and y denote the surface plane of metal sheet, while z 

denotes axial direction of the forming tools.  

sheet, denoted as x, y, z, Fx, Fy, and Fz. In this study, Fz serves as the target 

variable. In each part, x, y in Machine 1 denotes the two- dimension directions 

along the sheet metal surface which is perpendicular to the axial direction of 

the tool, while z denotes the axial direction of the tool. The sampling rate of 

the load cell is set at 20 Hz and the linear speed of the tool is 5 mm/s. Machine 

2 employs an automated robotic manufacturing system applying pressure onto 

the metal sheet, as shown in Fig. 2(b) [22]. These robots engage in a 

simultaneous motion of pushing into the sheet along the z direction while 

deforming the sheet in the XY-plane in accordance with a predefined toolpath. 

The x, y, z coordinates and Fx, Fy, and Fz are gathered by sensors embedded into 

the robots, whose sampling rate is 1 Hz and the tool’s linear speed is ~37 mm/s. 

The maximum forming size of collected parts from Machine 1 is from − 55 mm 

to 55 mm in the x and y directions and from 0 to − 21 mm in the z direction, 

while in Machine 2, the size is from − 400 mm to 400 mm in the x direction, 

from − 200 mm to 200 mm in the y direction, and from 0 to − 220 mm in the z 

direction.  

After capturing the coordinates data, the normal vectors of the part 

surfaces are computed, denoted as nx, ny, and nz based on the open3d package 

[23] in Python, an open-sourced library designed for handling 3D point cloud 

data. Furthermore, the curvatures, including both in- plane and vertical 

curvatures, denoted as curvxy, and curvz, are calculated based on every three 

points with XYZ coordinates. The term “in- plane” refers to curves which run 

along the toolpath and approximately oriented parallel to the XYplane. 

Conversely, “vertical” denotes the curvatures of curves that are nearly 

 

Fig. 1. A flowchart overview of the proposed model. The GNN model was pre-trained on a dataset containing DSIF parts of different geometries and was further trained on the initial few 

layers of the target part (initial 30 % datapoints as training set and subsequent 20 % as validation set) and then predicted the z-component forming force on the last 50 % datapoints of 

the target part.  
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perpendicular to the toolpath directions. The curvature calculation is 

completed during the pre- processing part. Table 1 lists the parts, and 

corresponding machine and input material, where number 1 and 2 denote 

parts from Machine 1 and Machine 2, respectively. The parts from Machine 1 

are formed using a spiral line toolpath with an incremental depth of 0.2 mm, 

while the parts from Machine 2 are formed using a contour line toolpath with 

an incremental depth of 0.3 mm. The term “contour” indicates that each 

datapoint on a given circle (or “layer”) possesses the same depth, whereas 

“spiral” refers to formations where each point exhibits a gradually increasing 

depth. Fig. 3 shows the shapes of the parts formed by the two machines, 

where (a)–(e) represent parts from machine 1, and (f)–(h) represent parts from 

machine 2. To note, parts (f) and (g) appear quite similar in terms of 

dimensions (length, width, depth). However, there are differences in the wall 

angles along the left wall lines in the YZ plane. These differences, though minor, 

significantly impact the forming force, as evidenced by the data we collected 

in Fig. 4(d). All the eight parts represent distinct geometries and forming force 

exerted on the forming tool, as measured by load cells. Fig. 4 displays the 

recorded force curves after a rolling-averaged process. The rolling average will 

be illustrated in the subsequent Section 2.2.  

2.2. Preprocessing  

Prior to training the model, several preprocessing steps were performed to 

ensure the data is suitable for training. First, the outlier points were removed 

from the dataset by roughly visualizing the data. The outlier points in the 

dataset were the points when the tools remained stationary. The outliers 

originated during the period when the tools did  

Table 1  

Dataset.   
Part name  DSIF machine  Input material  

Cone1_AMPL   1  1 mm AA5754-O  

Cone2_AMPL   1  1 mm AA5754-O  
Cone3_AMPL   1  1 mm AA5754-O  
Pyramid_AMPL   1  1 mm AA5754-O  
Fish Fin_AMPL   1  1 mm AA5754-O  
Part1_ML   2  0.9 mm 304 L  
Part2_ML   2  0.9 mm 304 L  
Part3_ML   2  0.9 mm 304 L   

 

Fig. 3. DSIF parts used in the analysis. (a) Cone1_AMPL, (b) Cone2_AMPL, (c) 

Cone3_AMPL, (d) Pyramid_AMPL, (e) Fin_AMPL, (f) Part1_ML, (g) Part2_ML, and (h) 

Part3_ML. (a)–(e) represent parts from machine 1, while (f)–(h) represent parts from 

machine 2.  

not initiate movement, yet the load cell continued to record data points. 

Subsequently, due to the substantial part size difference and variance in 

sampling rate between parts from Machine 1 and Machine 2, a re- sampling 

process was undertaken aiming to ensure a uniform and consistent distance 

between adjacent data points for all parts. The distance must be selected to 

capture important trends/variations in forming force and geometry in the 

data. Meanwhile, the re-sampling rate should not be too high to avoid having 

too many data points. The latter could lead to more complicated data 

management and slower learning without improvements in the prediction 

performance. Based on expert knowledge of the DSIF process specifics, an 

 

Fig. 4. Force curve illustrations. (a) Force curves of cones from Machine 1, (b) Force curve of pyramid from Machine 1, (c) Force curve of fin from Machine 1 (d) Force curves of parts from 

Machine 2. Datapoint number means sequential number of a datapoint collected for a part during DSIF forming process.  
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estimation and decision were made to set the re-sampling adjacent-point 

distance at approximately 40 mm for parts from both Machine 1 and Machine 

2 which worked well as later demonstrated by the results. This process serves 

to mitigate the impact of variations in part size and sampling rates. The total 

number of data points for all parts before/after re-sampling is 101,000 and 

71,750, respectively. Then, the XYZ coordinate data were standardized so that 

the various coordinate features had a reference center with zero means. This 

step considered the effects of forming symmetries and machine biases, 

preventing the model from over- emphasizing those effects. Following this, a 

rolling average was computed by averaging the forming force for a window of 

30 data points based on the original/non-resampling data. A window of thirty 

points is enough to eliminate possibly existing position-dependent 

measurement errors, and at the same time, it is not too large and still allows 

within- one-layer predictions. This step aims to prevent learning the 

measurement uncertainties. However, the downside of applying the rolling 

average is eliminating the ability to learn and predict local variations in the 

forming, and therefore, the prediction may not attain an absolute level of local 

accuracy in this regard. Besides, given that the other parameters, like material 

properties, process parameters, and metal sheet thickness, of the parts 

produced by the same machine are similar, the assignment of binary labels, 

namely 0 and 1, is utilized to differentiate between parts originating from 

Machine 1 and Machine 2, respectively. The labeled feature is denoted as 

process parameters shown in Fig. 5.  

The curvature of every data point is also needed to provide additional 

location information when the curvatures are calculated based on the original 

and non-resampled toolpath points. The calculation logic of curvature is as 

follows:  

Assuming that the three consecutive points (A, B, and C, where B is the 

middle one) with known XYZ coordinates lie on the same curve line, to 

determine the approximated curvature at the central point B, it is imperative 

to first obtain the inner circle of the three points. Subsequently, the target 

curvature value can be obtained by calculating the reciprocal of the radius of 

the circle. Also, to calculate the coordinates of the inner circle, the basic plane 

equation forms of three planes, whose intersection point is the circle center, 

should be calculated first. The three planes are: plane 1 passes through all the 

three points, while planes 2 and 3 are perpendicular to AB and BC, respectively, 

and also pass  

 

Fig. 5. Input features: coordinates, normal vectors, curvatures, and process parameter.  

through the midpoints of AB and BC, respectively. To calculate their basic 

equation forms, the three planes’ normal vectors are needed to calculate first. 

Following the above produces, the calculations of curvature is as follows:   

• The coordinates of the three points are presented below, where B is the 

middle point:  

A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3) (1)     

• Calculate the vectors AB and BC by subtracting the XYZ coordinates of A 

from B and the XYZ coordinates of B from C, respectively:  

AB = (x2 − x1,y2 − y1,z2 − z1) (2)   

BC = (x3 − x2,y3 − y2,z3 − z2) (3)     

• Calculate the normal vectors n1, n2, and n3 of the three planes, where n1 

is the normal vector of the plane passes through all the three points, while 

n2 and n3 are normal vectors of planes which are perpendicular to AB and 

BC, respectively. The two planes perpendicular to AB and BC, respectively, 

also pass through the midpoints of AB and BC, respectively:  

n1 = AB × BC (4)   

(5)   

n3 = BC (6)     

• Calculate the above three planes’ constant quantities, d1, d2, and d3, 

respectively, based on the basic plane equation:  

ni • ri + di = 0,i = 1,2,3 (7)  where:  

ni = ith plane’s normal vector. ri = ith plane’s 

passing point coordinates.  

di = ith plane’s constant quantity  

• Calculate the intersection point of the above three planes. The 

intersection point is the circle center of three-point inner circle:  

ni • r0 + di = 0,i = 1,2,3#(8) 

where:  

[ r0 = coordinates of circle center of three-point inner circle, ] r0 = x0
,
y0

,
z0 

• Once obtaining the coordinates of the circle center, the radius of the circle 

can also be obtained by calculating the Euclidean distance from circle 

center to any of the three points, A, B, and C. The curvature can be 

subsequently derived by the equation:  

1 

Curv =  (9)   

R0 

where:  

Curv = Curvature of the middle point.  

R0 = Radius of the three-point inner circle.  

Both in-plane and vertical curvatures for each point are calculated based 

on the above calculation process. In-plane curvature is calculated by selecting 

the previous, current, and subsequent point along the toolpath, while vertical 

curvature is calculated by selecting closest points from previous and 

subsequent layer/contour.  

Fig. 5 outlines the features for approximating the part geometries and 

other properties. The part geometries are depicted as point clouds, with each 

point on the cloud representing a point on the surface of the geometry and 

along the toolpath.  
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2.3. Graph representations  

To incorporate the inherent connections in part geometries and toolpath 

sequences, a graph representation consisting of nodes and edges was 

employed to model the point clouds of part geometries and toolpath 

sequences. In particular, each point in the clouds was treated as a node in 

the graph, and edges of two distinct types were established between the 

nodes: Along-Path edges and Space-Layer edges. The Along- Path edges 

denote that nodes are connected based on the toolpath sequence, while the 

Space-Layer edges indicate that each node is linked to its k-nearest 

neighbors, the nodes from previous layers/contours. The purpose of Along-

Path edges is to encode information about the toolpath sequence while the 

purpose of the Space-Layer edges is to encode information about the local 

geometrical features. Here, the parameter k determines the number of the 

closest neighbors considered, and k was set to 4 in this study. Various 

configurations of parameter k are tested, and their performances of both 

calculation time and prediction accuracy are assessed in the subsequent 

Section 3.4 dedicated to specific target prediction. The Space-Layer edges can 

solely connect the nodes that are in different layers. Both edges are directed, 

with the arrow directions from previous nodes towards subsequent ones, 

which means that the connections are from previous points/nodes. The 

directed edges ensure that the node is never connected to nodes from 

subsequent layers, which is expected to consider sequence effect as a 

hypothesis: when in forming, the in-situ forming force is mostly affected by 

the formed parts.  

Upon constructing the nodes and edges, the weight matrix of neighboring 

nodes was calculated by GNN, and the aggregated features for each node 

were updated during training by referring to the features of its neighboring 

nodes connected through edges. The entire calculation process for weight 

matrix and aggregated features are depicted from Eqs. (10)–(15). The 

rationale behind this approach is to encode information about the 

surrounding geometry and toolpath of each node. Fig. 6 provides an 

illustrative example of the aggregated calculation.  

During the actual forming process, the tool moves along the toolpath 

direction, from one layer to the next. As shown in Fig. 6, the observed  

 

Fig. 6. Detail of the GNN structure. Observed node (black), previous node along the 

toolpath (purple), and nodes from previous layer (red). Arrows indicate passing the 

information between the nodes. “layer” refers to each concentric circle formed at 

increasing depths during forming process. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)  

node (black node) considers not only its own features but also the features of 

Node1, Node2, and Node3, as it has an Along-Path edge from Node1 represented 

as purple arrow in Fig. 6, and Space-Layer edges from Node2 and Node3 

represented as red arrows in Fig. 6. The aggregation calculation can be 

expressed as follows:   

• To calculate the aggregated feature vector at Node0:  

X′
0  (10) where: X′

i = Aggregated feature vector of Nodei. 

Mi = Weight matrix of Nodei calculated in GNN Xi = 

Feature vector of Nodei   

• To represent the feature vector associated with each node:  

Prediction results for all three modes.  

 [ ] 

X0 = x0,y0,z0,vx0,vy0,vz0,curvxy0,curvz0,p0 

(11)   

 [ ] 

X1 = x1,y1,z1,vx1,vy1,vz1,curvxy1,curvz1,p1 

(12)   

 [ ] 

X2 = x2,y2,z2,vx2,vy2,vz2,curvxy2,curvz2,p2 

(13)   

 [ ] 

X3 = x3,y3,z3,vx3,vy3,vz3,curvxy3,curvz3,p3 (14)   

where: xi,yi,zi = XYZ coordinates of Nodei vxi,vyi,vzi = XYZ 

coordinates normal vectors of Nodei curvxyi = In-plane 

curvature of Nodei curvzi = Vertical curvature of Nodei pi = 

Process parameter of Nodei   

• After updating the aggregated feature vectors for each node after training, 

the prediction function of the forming force can be accomplished using the 

following equation:  

 ( ) 

Fzi = f x′i,y′i,z′i,v′xi,v′yi,v′zi,curv′xyi,curv′zi,p′i (15)  where:  

Fzi = z-component force at Nodei x′
i,y′

i,z′
i = Aggregated coordinates of Nodei 

v′
xi,v′

yi,v′
zi = Aggregated normal vectors of Nodei curv′

xyi,curv′
zi = Aggregated 

in-plane or vertical curvature of Nodei p′
i = Aggregated process parameter 

of Nodei f() = Relation function between aggregated feature vector and 

pre- 

dicted force  

The model described above is referred to as the Full-Layer Graph Neural 

Network, as depicted in Fig. 7.  

 

Fig. 7. Example: Full-Layer GNN Model for Cone Structure. Blue nodes are datapoints 

collected during forming. The sequential numbers marked on nodes denote sequences of 

datapoints in the toolpath. Black arrows denote edges which pass information between 

nodes. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)  

2.4. GNN-based transfer learning  

A transfer learning method was implemented based on GNN to establish 

the relationship between the graph representation of part geometries and the 

corresponding forming forces. The model leverages a GNN architecture with 

two graph layers (9 × 16 and 16 × 16) and three fully connected layers (16 × 16, 
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16 × 8 and 8 × 1), with Tanh activation function for hidden layers. To note, other 

activation functions, such as sigmoid and ReLU, were explored but failed to 

outperform the Tanh function in terms of model performance. The Graph 

Attention Network (GAT) [24] layers are used as graph layers, which contribute 

to considering separate importance to every neighboring node. By taking the 

graph representation of part geometries as input, the GNN learns a latent 

representation that encodes the structural information of the graph. The 

resulting latent representation is then transformed into the corresponding 

forming forces by the output layer. The GNN model was implemented by 

PyTorch Geometric library [25].  

To perform transfer learning, the GNN model was initially pre- trained on 

the pre-training set, which consisted of a subset of training parts with 

geometries distinct from the target part. Then, the weights of graph layers and 

the first fully connected layer were frozen in the GNN model, and the weights 

of the remaining layers were fine-tuned on the training set. This strategy 

enabled the model to leverage the knowledge learned from the pre-trained 

model to enhance the performance of the target part with limited training 

data.  

2.5. Training procedures  

The datasets were split into different sets, including pre-training, pre- 

validation, training, validation, and test sets. The pre-trained model uses pre-

training and pre-validation, while the transfer model uses training and 

validation. The two models are evaluated on the test set separately after 

training or fine-tuning to distinguish the performance difference between 

models with or without transfer learning. The specific chosen datasets differ 

based on the pre-trained mode selections and predicted targets. The pre-

training set is utilized for pre-training the model, and the pre-validation set 

fine-tunes pre-trained model’s hyperparameters (number of epochs). The 

training set is used for training on the initial several layers of the target part in 

the transfer model, while the validation set selects the best number of epochs 

to end the transfer-learning process. Finally, the test set evaluates the model’s 

performance and compares the prediction differences between the proposed 

model and the benchmark, and models with and without transfer learning. The 

split proportions are the random 70 % and the remaining 30 % datapoints of 

individual parts, respectively, for pre-training and pre-validation sets in the 

pre-trained datasets, and the initial 30 %, the subsequent 20 %, and the 

remaining 50 % datapoints of the observed part, respectively, for the training, 

validation, and test sets. It means that, for example, part1_ML is the prediction 

target in mode 3: pre-training the model with the other 7 parts. After that, the 

pre-trained model is further trained on the initial 50 % (30 % for training and 

20 % for validation to determine the number of epochs) datapoints/layers of 

part1_ML for calibration. Finally, the model predicts on the test set: the 

remaining 50 % datapoints/layers of part1_ML.  

To provide a benchmark for comparison purposes, a simple ANN model 

with five fully connected layers (9 × 16, 16 × 16, 16 × 16, 16 × 8, and 8 × 1) was 

trained and evaluated on the same dataset. The ANN model was employed 

with the same input features as the GNN model, i.  

e., XYZ coordinates, XYZ component normal vectors, curvatures, and process 

parameters, but did not incorporate the structural information in the graph 

which can be only done by the GNN model through connections between 

adjacent nodes. For the purposes of comparability with the proposed GNN 

model, the benchmark model was employed a transfer learning approach by 

freezing the weights of the first three layers and fine-tuning the last two fully 

connected layers.  

Additionally, to contrast the performance of the pre-trained models trained 

on different datasets, we conducted three pre-training modes. Mode 1 

involved pre-training the model solely on parts from Machine 1 and 

subsequently making predictions for parts from Machine 2. Mode 2 utilized a 

pre-trained model consisting of only parts from Machine 2, while Mode 3’s 

pre-trained model includes parts both from Machine 1 and Machine 2. The 

selected pre-training modes are presented in Table 2. In each mode, a 

comparison was conducted between the performance with and without 

transfer learning to evaluate the importance of transfer learning. In all three 

modes (Mode 1, Mode 2, and Mode 3), the trained forming force prediction 

model is tested on the same data. This enables fair prediction performance 

comparison between the three modes.  

To train the GNN-based model, the mean squared error (MSE) loss function 

was employed, and the Adam optimizer [26] and learning rate of 0.001 was 

used, while the learning rate was set to 0.0001 when fine- tuning the not-

frozen layers in transfer model. To mitigate overfitting in Mode 1 and Mode 2, 

an early stopping strategy was implemented with a patience of 10 epochs, and 

the best training epoch number was selected based on the performance on 

the validation set. Additionally, in order to avoid stopping at a local minimum 

in Mode 2, a preliminary training is conducted to estimate the loss changes 

before confirming the epoch number.  

Moreover, the performance between the proposed model and the 

benchmark was evaluated, as well as between the models with or without 

transfer learning, and between diverse pre-training mode selections, using the 

following metrics on the test set:   

• Mean Squared Error (MSE): measures the average squared difference 

between the predicted and actual forming force values and sets as loss 

function to evaluate the model’s training capability.   

• Coefficient of determination (R2 score): compares matching of two 

sequences of numeric values and measures the proportion of variance in 

the forming force that is explained by the model. The score range is no 

more than 1: when the score equals 1, it indicates a perfect match of the 

two sequences of values; an R2 score of 0 means  
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Not the same data are used for training and testing the model.  

that the model’s prediction is no better than simply using the average value 

of the target values (baseline model); and when the prediction is less 

accurate than the baseline, the R2 score is negative.  

• Mean prediction error: calculates the average error between predicted and 

actual forming force values.   

• Max prediction error: identifies the highest error between predicted and 

actual forming force values.  

3. Results  

3.1. GNN-based transfer learning  

Table 3 presents the performance comparison between the GNN- based 

transfer learning model using Mode 3 and the simple ANN benchmark model. 

The models are evaluated based on their averaged R2 scores, averaged mean 

prediction errors, and averaged max prediction errors for all target predictions. 

The outcomes demonstrate that the GNN-based transfer learning model using 

Mode 3 surpasses the simple ANN benchmark model in terms of its overall 

performance.  

3.2. Pre-training mode selection comparison  

Table 4 presents the prediction results for all three pre-training modes. In 

Table 4, “Without TL” denotes the model after pre-training directly predicts on 

the test set (the final 50 % datapoints of target part), while “With TL” denotes 

the pre-trained model predicts on the test set after training on training set 

(initial 30 % datapoints of target part) and validating on validation set (middle 

20 % datapoints). It has been demonstrated that pre-training on a dataset that 

includes both Machine 1 and 2 achieves the best performance based on R2 

scores, mean prediction error, and max prediction error. Additionally, the 

number of epochs of pre-training for Mode 3 is considerably lower than that 

of Mode 2, as indicated by Fig. 8. In particular, the loss of Mode 2  

Table 3  

frequently reaches a local minimum, which requires training iterations to 

achieve the optimal minimum. Furthermore, in Mode 2, the predicted R2 score 

could not be improved significantly by transfer learning approach due to its 

tendency to overfit. However, the R2 score could be considerably enhanced 

when the dataset contains parts from multiple sources in Mode 3.  

Fig. 9 depicts the performance evaluation of the best predictive model 

using Mode 3 by comparing the predicted values with the actual values for 

Part1_ML, Part2_ML, and Part3_ML, respectively. The obtained R2 scores for 

the three target parts are 0.882, 0.883, and 0.809, respectively, indicating an 

acceptable level of prediction accuracy. Additionally, Fig. 10 displays the 

prediction results using Mode 3 for the entire window size including training, 

validation, and testing set, which shows a comprehensive prediction 

performance of the model, while Fig. 9 shows the prediction performance only 

in test set which can be seen as a local window size. The results suggest that 

the predictive model can predict vertical forming force on a layer level.  

Moreover, it is essential to investigate the reasons why pre-training solely 

on one machine may reach a local minimum and require longer training times 

to find the optimal minimum. A possible explanation is that using a more 

diverse dataset, incorporating various machine settings and part designs, could 

help to avoid overfitting to the specific characteristics of one machine and 

enhance the model’s generalization capability.  

3.3. With and without transfer learning comparison  

In Fig. 11, the comparison results for prediction accuracy, as measured by 

R2 scores, mean prediction errors, and max prediction errors, are displayed for 

the GNN models with and without transfer learning via Mode 3. The results 

indicate that the GNN model with transfer learning outperforms the one 

without, as evidenced by an improvement in R2 scores. Also, there is a 

noticeable decrease in both  

Table 2  
Pre-training mode selection.   

 
Pre-train  Train & testa  Pre-train  Train & testa  Pre-train   Train & testa  

Cone1_AMPL  Part1_ML  Part2_ML  Part1_ML  Cone1_AMPL  Part2_ML  Part1_ML  

Cone2_AMPL     Cone2_AMPL    

Cone3_AMPL     Cone3_AMPL    

Pyramid _AMPL Fin_AMPL   
Part3_ML  

 

Pyramid _AMPL Fin_AMPL  
Part3_ML  

 

Cone1_AMPL  Part2_ML  Part1_ML  Part2_ML  Cone1_AMPL  Part1_ML  Part2_ML  
Cone2_AMPL     Cone2_AMPL    

Cone3_AMPL   Part3_ML    Part3_ML   

Pyramid _AMPL     Cone3_AMPL    

Fin_AMPL     Pyramid _AMPL Fin_AMPL    

Cone1_AMPL  Part3_ML  Part1_ML  Part3_ML  Cone1_AMPL  
Cone2_AMPL  

Part1_ML  Part3_ML  

Cone2_AMPL     Cone3_AMPL    

Cone3_AMPL     Pyramid _AMPL    

Pyramid _AMPL Fin_AMPL   
Part2_ML  

 
Fin_AMPL  Part2_ML   

 

a The model is further trained on the first few layers of the target part and then tested by making forming force predictions for the rest of the layers of the target part.  
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Prediction results for the GNN-based transfer learning model using mode 3 and the ANN benchmark model. The R2 scores, mean prediction errors, and max prediction errors for each 

model are averaged based on prediction results for all three targets in mode 3.   

A bold number indicates a better performance between the two models.  
Table 4  

Prediction results for all three modes.   

 
  Without TL  With TL  Without TL  With TL  Without TL  With TL  

Part1_ML  R2 score   − 303.47   − 3.18   0.871   0.874   0.786   0.882  

 Training Time Cost (s)   195   1.253   459   0.078   118   3.431  

 Mean prediction error (N)   2178.32   199.26   37.50   37.09   61.16   32.01  

Part2_ML  
Max prediction error (N)  R2 

score   
2459.03   
− 222.17   

648.32   
− 10.63   

120.87   
0.876   

119.99   
0.877   

259.44   
0.843   

121.51  
0.883  

 Training Time Cost (s)   196   1.893   555   0.047   253   3.014  

 Mean prediction error (N)   2189.15   354.85   37.73   37.57   53.43   37.54  

Part3_ML  
Max prediction error (N)  R2 

score   
2463.42   
− 342.28   

1820.57  − 

9.81   
149.39   

0.499   
149.82   

0.500   
123.84   

0.129   
151.34  

0.809  

 Training Time Cost (s)   198   5.872   671.06   0.055   161.83   12.028  

 Mean prediction error (N)   2051.19   284.88   66.90   66.84   90.77   38.20  

 Max prediction error (N)   2330.87   999.31   164.95   165.35   252.44   167.26  

A bold number indicates the best performance of the quantity among all 6 models.  

 

Fig. 8. Training and validation loss history plots for Mode 2 and Mode 3. (a) Part1_ML for Mode 3 (b) Part2_ML for Mode 3 (c) Part3_ML for Mode 3 (d) Part1_ML for Mode 2 (e) Part2_ML 

for Mode 2 (f) Part3_ML for Mode 2.  

Models  Averaged R2 Scores  Averaged mean prediction error (N)  Averaged max prediction error (N)  

GNN-based model   0.858   35.92   146.70  

ANN-based benchmark   0.713   51.74   264.58  
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Fig. 9. Prediction results for parts from Machina Labs. (a) Part1_ML (b) Part2_ML (c) Part3_ML. Mode 3 model is used to generate the forming force predictions shown in the figure. 

mean prediction error and max prediction error, except for Part2_ML 3.4. Parameter k selection for nearest neighbors where the max prediction error of the model 

with transfer learning is  

slightly lower than that of the model without transfer learning. To determine the optimal parameter k in k-nearest neighbors within the graph representation, an 

array of k values was evaluated for  

 

Fig. 10. Actual and predicted forming forces via Mode 3 for target parts. (a) Part1_ML (b) Part2_ML (c) Part3_ML. Green blocks denote the first 30 % datapoints of target parts as training 

set. Blue blocks denote the subsequent 20 % datapoints of target parts as validation sets. Red blocks denote the last 50 % datapoints of target parts as test set. The models are pre-

trained on the pre-training sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  

 

Fig. 11. Comparison results for prediction accuracy with and without transfer learning method. (a) R2 Scores comparison (b) Mean prediction error comparison (c) Max prediction error 

comparison. The abbreviation TL denotes transfer learning.  

Table 5  

Part1_ML Prediction results for all parameter k selections.   

 
 Without TL  With TL  Without TL  With TL  Without TL  With TL  Without TL  With TL  Without TL  With TL  

R2 scores   0.661   0.771   0.786   0.882   0.916   0.920   0.794   0.873   0.878   0.895  

Training Time cost (s)   103   3.226   118   3.431   202   1.150   264   4.244   285   1.501  
Mean prediction error (N)   60.10   199.26   61.16   32.01   28.82   28.37   46.31   33.71   34.84   32.57  
Max prediction error (N)   189.79   648.32   259.44   121.51   130.52   136.73   182.61   192.81   143.42   126.93  

A bold number indicates the best performance among all the models examined in that row.  

Part1_ML prediction with pre-training data consisting of parts from both 

Machine 1 and Machine 2. Table 5 presents the performance trends associated 

with various k values, ranging from 2 to 10. To note, as k increases from 2 to 6, 

there is observable enhancement in performance, evidenced by improved R2 

scores and reductions in both mean prediction error and max prediction error, 

even with longer training time cost; however, when k is further increased from 

6 to 8, the performance gains become marginal, and the prediction accuracy 

decreases compared to when k is set at 6. One possible explanation for this 

phenomenon may be that for this certain task, the Space-Layer edges tend to 

capture more features as k increases and reach their peak performance when 

k equals 6. Beyond this point, where k exceeds 6, the collected features by 

Space- Layer edges, might introduce disruptive information into the prediction 

process, leading to a decrease in prediction accuracy.  

4. Summary and discussions  

In this work, a transfer learning approach based on Graph Neural Network 

(GNN) for prediction of vertical component of forming force to consider part 

geometries and the toolpath sequence in the Double-Sided Incremental 

Forming (DSIF) process is proposed. The study employs a dataset consisting of 

various experimental samples of DSIF data collected from two different 

machines and using two different input materials. The results show that the 

GNN-based transfer learning approach exhibits superior performance 
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compared to the simple Artificial Neural Network (ANN) benchmark model and 

the GNN model that does not incorporate transfer learning, as evidenced by 

the R2 scores, mean prediction errors, and max prediction errors. Furthermore, 

the utilization of transfer learning, where the model is trained on a larger 

dataset and then fine-tuned on a smaller dataset specific to the problem at 

hand, may also improve the prediction model’s performance. Additionally, the 

results demonstrate that training mode, which involves pre-training with parts 

from both machines and of different materials, outperforms the other modes 

in terms of prediction accuracy and pre- training efficiency.  

One major achievement of this work is that even with limited dataset (two 

machines, two material types, and 8 geometries), we have demonstrated 

noticeable successes in the capability of force prediction. One essential part of 

this success in data-driven approach is to use forces from initial few layers to 

calibrate the model. This approach is rooted in the solid understanding of the 

physics in the DSIF process, as the forming force is a collection of material type, 

material thickness, machine stiffnesses, etc.  

The proposed approach can be material/machine agnostic since we used 

the initial layers of the target part for training. Any change in material type, 

material thickness, machine settings, and process parameters will affect the 

forming force at the initial part of the forming force, therefore, these changes 

are implicitly incorporated. However, when the dataset is expanded to include 

more materials, machine settings, and process parameters, the presented 

approach can be modified by explicitly incorporating some key parameters as 

separate input features, such as yield strength, material thickness, tool 

diameter, and tool alignment between the two tools with respect to the sheet 

surface. This additional information would probably enhance the robustness 

of the model. Additionally, the effect of the clamping system on forming force 

has two contributions, locally and globally. Locally, it depends on how effective 

the clamp system is in terms of controlling metal draw-in. If both clamp 

systems have the same effect, such as fully preventing sheet metal from 

slipping under the clamp, then there should not be any effect on forming force. 

Globally, sheet metal acts as a spring or beam between the clamping system 

and the forming tool. Therefore, the distance between a forming tool and the 

clamp edge will influence the forming force. This bias caused by clamp systems 

in different machines can be captured by the proposed GNN model during 

training on the initial several layers of the target parts. However, one can also 

add an extra input feature to the presented model here by considering 

distances from the tool’s contact points on the metal sheet to the four clamps 

secured at the sheet’s four edges during forming. This feature would probably 

further improve the model’s robustness.  

Another future research direction can involve the optimization and 

improvement of the hyperparameters of the model and alternative neural 

network structures, i.e., time-series algorithms. Furthermore, it is worthwhile 

to note that the prediction performance for mode 1 with TL is significantly 

lower, as compared to modes 2 and 3 in Table 4. This may stem from the 

model’s lack of prior knowledge of material or machine characteristics, which 

are usually learned during the pre-training process. However, based on mode 

3 where the prediction results are the best among all three modes and similar 

materials, shapes, and machine settings are considered in the pre-training 

dataset, the expectation would be that, by including features of material 

properties, part shapes, and machine settings similar to the target part in the 

pre-training dataset, the model could capture the range of 

material/shape/machine bias in target parts and successfully predict their rest 

layers with TL. Based on the results, it is recommended to employ a wider 

range of parts fabricated using various machine settings in the pre-training 

process. Besides, it could be beneficial to consider not only the z-component 

of the forming force but also the forces in the xy-plane, as both dimensions of 

force could undergo significant changes in scenarios where wall angles are 

either sufficiently high or experience abrupt alterations. Additionally, the 

target output currently predicted through averaging to mitigate measurement 

uncertainties may exhibit slight deviations from the actual vertical component 

forming forces. Moreover, it is essential to consider a tradeoff between re-

sampling rate/time required for training and maintaining the integrity of 

feature resolution. The present prediction model, although provides 

satisfactory results at the layer level, due to re- sampling and rolling average 

to mitigate the training time and systematic errors, cannot predict very 

localized variations. The current selection of distance between points along 

the toolpath may not necessarily be the optimal one, and to enhance 

optimization, it is imperative to take into account factors such as tool moving 

speed, or normalized local features with respect to part size. Also, data 

imbalance, i.e., the difference in the numbers of datapoints of smaller and 

larger parts in the training datasets may cause a model to focus too much on 

large parts. In future work and when using the proposed method, we suggest 

paying attention to potential data imbalance issues, especially if in a training 

dataset are data from parts with significantly different sizes. Techniques such 

as under- or oversampling might need to be utilized to avoid the negative 

effects of the data imbalance.  

Finally, the training time using the transfer learning model (Table 4) 

demonstrates a great potential for implementing the predictive model for in-

situ springback control to achieve the goal of forming the first part right, and 

therefore, make this process truly autonomous and can be adopted for point-

of-need manufacturing or distributed manufacturing.  
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