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Scattering of identical particles by a one-dimensional Dirac delta
function barrier potential: The role of statistics
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Scattering of non-interacting, identical bosons or fermions by a one-dimensional Dirac delta
function barrier potential underlines the importance of the role of statistics (that is, whether the
particles obey Fermi—Dirac or Bose—Einstein statistics) in the scattering. We consider an initial
wave function for the system that corresponds to one particle incident from the left and one from
the right of the potential barrier. For bosons, both particles are scattered either to the left or to the
right if the intensity reflection coefficient is 1/2, provided the left and right propagating wave
packets fully overlap in the scattering region. For fermions, the particles “pass through” one
another, provided the left and right propagating wave packets fully overlap in the scattering region,
with zero probability that both particles are scattered to the left or right, consistent with the Pauli
exclusion principle. © 2023 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0089907

I. INTRODUCTION

In an introductory quantum mechanics course, students
often learn about the concepts of spin and statistics.
Specifically, they are told that the wave function for a system
of identical bosons must be symmetric under the interchange
of any two particles, and the wave function for identical fer-
mions must be antisymmetric under the interchange of any
two particles. Feynman e al.' provided an elementary dis-
cussion of how the scattering cross section of two indistin-
guishable particles by one another depends on whether they
are bosons or fermions. For non-interacting particles, exam-
ples are sometimes given in which the energy levels are
calculated for identical bosons or fermions placed in a one-
dimensional, infinite potential well.2 On the other hand,
introductory courses do not usually include examples involv-
ing the scattering of a pair of bosons or fermions by a one-
dimensional potential. This is unfortunate, since the results
clearly demonstrate the importance of the scattering ampli-
tudes on the nature (bosonic or fermionic) of the particles.
Moreover, the resulting physics is qualitatively different
from that encountered in particle—particle scattering.

In this paper, we consider scattering of two non-
interacting identical bosons or fermions by a delta function
barrier potential. Instead of using a time-independent
approach from which the reflection and transmission ampli-
tudes could be obtained, we prefer to use a time-dependent
approach in which an initial wave packet is incident upon
and scattered by the potential. This approach allows us to
explore the dynamics of the scattering. In effect, the delta
function potential acts as a “beam-splitter.” The particles are
incident from opposite sides of the barrier. If the particle
wave packets do not overlap as they are scattered by the bar-
rier, the scattering is the same as it would be had the particles
been distinguishable—there is no difference for bosons and
fermions. In other words, although, in principle, it is
always necessary to symmetrize or anti-symmetrize the
wave functions for identical particles, as long as the wave
packets of the particles never overlap, they can be treated as
distinguishable. On the other hand, the scattering differs
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dramatically for fermions and bosons when the wave packets
of the two particles do overlap in the potential region. For a
50-50 beam splitter and perfect overlap, both bosons are
scattered to either the right or the left, while the fermions are
scattered one to each side of the potential. These results con-
stitute another of the amazing predictions of quantum
mechanics. Even if the particles are separated initially by a
distance much larger than the extent of their wave packets, it
is still necessary to symmetrize or anti-symmetrize the com-
posite wave function if the wave packets are destined to
meet in the scattering region.

The results of this calculation for bosons are fully analo-
gous to those involving Hong—Ou—Mandel (HOM) interfer-
ence’ of photons in an interferometric scheme involving a
beam splitter. In HOM interference, two single-photon
pulses are sent into the two input channels of a 50-50 beam
splitter and overlap at the beam splitter. It is observed that
the photons emerge in one or the other output arms of the
beam splitter—the probability to observe one photon in each
of the output arms is identically equal to zero, an effect
attributed to the bosonic nature of photons. Analogous calcu-
lations for particles, both bosons and fermions, were carried
out by Loudon.* In his calculation, Loudon uses an input-
output theory of the beam-splitter involving creation and
annihilation operators for the various modes, an approach
which is used commonly in the quantum optics community.
In contrast, our calculation is formulated in terms of
quantum-mechanical, one-dimensional scattering by a poten-
tial barrier. As such, it should be accessible to upper-level
undergraduate or beginning graduate students.

II. QUALITATIVE PICTURE OF THE ROLE
OF STATISTICS ON THE SCATTERING

Before launching into a formal calculation of scattering by
a delta function potential barrier, we consider first the scatter-
ing of two distinguishable particles (1 and 2) by a localized
potential barrier centered at the origin whose intensity reflec-
tion and transmission coefficients are equal (50-50 beam
splitter). This will allow us to understand the role of statistics
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(that is, whether the particles obey Fermi-Dirac or Bose—
Einstein statistics) in the scattering process. In this section,
we take the initial wave function for our two particles as

Yo, x50 = 0) = ef (1 +x0) x e f (xs — x0),

ey

with f(x) being a real, symmetric envelope function centered
at x=0, xp > 0, and propagation constant ky > 0. One com-
ponent of the initial wave function is localized to the left of
the potential barrier, centered at x; = —xyp and moves
towards the barrier with average speed vy = hikg/m, while
the other component is localized to the right of the potential,
centered at x, = x¢ and moves towards the barrier with the
same average speed. The function f{x) has been taken to be
an even function of x to ensure that the two components of
the wave packet would fully overlap at time 7 = xo/vy if the
barrier were not present. We assume that each wave packet
component has a width that is much smaller than the initial
distance to the potential barrier and neglect wave packet
spreading (see Fig. 1 for the geometry). None of these
restrictions are critical to the calculations, but they simplify
the discussion in this section.

We will show formally in Sec. III that, apart from an over-
all phase factor and neglecting any time delays, the wave
function ¥ (x;,x;¢) following the scattering (that is, for
times 1 = 2x(/vp) is

Input

e

Output: Fermions

VOA ' M
Output: Bosons

Vo f Vo

Fig. 1. Schematic representation of the scattering of two identical fermions or
bosons by a localized, symmetric potential barrier having |7]* = [R|* = 1/2.
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Wt (g, x051) = [e‘il‘o""R(ko)f —X1 + Xo — Vot)

+ eik“X‘T(ko)f(xl + X0 — vol)]

X [eiikosz(ko)f(Xz — X0 + U()l)

+ MR (ko)f (—x2 — x0 + vot)], )
where R (k) and 7 (k) are, respectively, the amplitude reflec-
tion and transmission coefficients for a particle of mass m
having energy E; = h?k?/2m. Since f(x) = f(—x), this can
be rewritten as

Ut (g, x051) = [e’iko“"‘R(ko)f(xl — X0 + vot)

+ eik“""T(ko)f(xl + xg — vot)]

X [eiikosz(ko)f()Q — X0 + Uot)

+ "R (ko )f (x2 + X0 — vot)]. (3)

For a 50-50 beam splitter, it follows from probability con-
servation that

1T (k)] = [R(K)| = 1/V2, (4a)
R(K) = =T (k), (4b)

and, therefore,

1 .

Y (g, x030) = 3 [ie_’k‘”“f(xl — Xo + vot)

+ eikonf(xl +x0 — UOZ>]

x [e7 "% f (xy — x0 + vot)

+ ie™ f (xz + xo — vot) ], 5)
where, for the sake of definiteness, we have chosen the plus
sign in Eq. (4b).

If we expand the above equation and take into account
that = 2x /vy, we obtain four terms, one that corresponds to
both particles to the right of the potential barrie—RR, one
that corresponds to both particles to the left of the barrier—
LL, one that corresponds to particle 1 to the right and particle

2 to the left—RL and one that corresponds to particle 2 to the
right and particle 1 to the left—LR. Explicitly,

W (x1, x5 1) = Y (X1, 25 1) + W (X1, x23 0)
+ Y (01,25 8) + Ypp(xr, x5 1),
with

e (x1,3238) = (i/2)e™CT2)f (x) + x0 — vot)

X f(x2 + x0 — vot), (6a)
Wi (xn,x058) = (i/2)e "0 H2)f () — xg + vot)

X f(x2 — xo + vot), (6b)
Y (1,223 1) = (1/2)e™0072)f () + xg — vot)

X f(x2 — xo + vot), (6¢)
Ypr(x,x2;t) = *(1/2)37%(&7}(2)](()(1 — Xo + vot)

xf(xz + X0 — l)()l‘). (6d)

To go over into scattering by identical bosons or fermions,
we must symmetrize or anti-symmetrize the wave function.
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For scattering corresponding to one particle incident from
the left and one from the right, this implies that the total scat-
tered wave functions are

lrb];rosons(xl’xz;l‘) = (1/\/5) [lfr(xlax%t) + ler(xZ;xl;t)}
(7a)

= V20 (1, x25 1) + Y (31, x25 1),
(7b)

l#Itermions(xl7x2;t) = (1/\/5) [lﬂ+(X1,X2;l) —lﬁJr(Xz,Xl%f)]
(7¢)

= V2 (1,225 8) 4+ Yy (1,225 1))
(7d)

To arrive at this result, we used the fact that, for our specific
choice of initial wave packet and for f(x) = f(—x), the com-
bination /;; (x1,x2;1) + Ygp(x1,x2;¢) is symmetric under
particle exchange (x| <> xp), whereas g, (x1,x2;1)
+ Y p(x2,x1; ) is anti-symmetric. This means that for bosons
only the LL + RR term survives when we symmetrize the
wave function, and the particles “bunch” on each side of the
potential after scattering. For fermions, on the other hand,
the particles exclude themselves as a result of the anti-
symmetrization and are scattered one to each side of the
potential. The results are represented schematically in Fig. 1.

We now carry out a specific calculation for a delta-
function potential barrier. We do not limit the calculation to
times ¢ = 2x(/vp, enabling us to map out the time evolution
of the scattering process.

III. SINGLE-PARTICLE SCATTERING

Although the calculation can be carried out for arbitrary
1D localized potential barriers, we restrict our discussion to
a 1D delta function barrier at the origin,

V(x) = Gd(x), 8)
where G > 0 is a constant that has units of energy x length.

The use of a delta function barrier simplifies the calculation
while still illustrating the relevant physics.

A. Eigenfunctions

For a particle having mass m and energy E(k) = h*k?/2m
with & > 0, the two degenerate eigenfunctions can be taken

as’
[1 [ " +R(k)e ™ x <0,
k,x) =\/— ) 9
Yk, x) 27r{ T (k)e*, x >0, ®
x < 0,

1 T(k)e ™,
Valkx) = \/;_;{ e L R(k)e*, x>0, (10

where
o
R(k) = — 11
Q k + i (11a)
T(k) = k (11b)
T
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and

mG
o= 2 (12)
For k = o, |T (k)| = |R(k)| = 1/+/2, and the barrier acts as
a 50-50 beam splitter; moreover, in this limit, R(k)
= —i7 (k), consistent with Eq. (4b).

For potentials that are invariant under reflection such as
the delta function potential centered at the origin considered
in this work, the reflection and transmission coefficients
satisfy®

1T (0)]* +RK) =1, (13a)

T (K)R* (k) + R(K)T*(k) = 0. (13b)
If we write

R(K) = [RE)e*W; T(K) = [TKY,  (14)
then

R =i [T ==, (I50)

dr(k) = tan™" (’;) ¢7(k) = —tan™! (;‘) (15b)

such that
dr(k) — p7(k) = /2. (16)

At a given energy, the delta function barrier acts as a beam-
splitter, with the characteristic phase difference of /2
between the reflection and amplitude coefficients.

In some sense, Y, (k,x) corresponds to a wave incident
from the left and g (k,x) corresponds to a wave incident
from the right. If a convergence factor of ¢“/? is introduced
into the wave functions for x < 0 and ¢~ /2 for x > 0, with
€ > 0, one can show that the wave functions are both orthog-
onal and (delta-function) normalized; that is,

io l//L(kvx) [lﬂL(k/,x)} *dx = Jic WR(kax) [wR (klvx)} *dx
= 5k — K); (17a)
io Wy (k,x) [p (K, x)]"dx = 0. (17b)

B. Scattering

One-dimensional scattering of wave packets is a topic
covered in some introductory quantum mechanics texts.”’
Here, we review the basic features of the problem. We take
as our initial condition

ikox

e'ro -2 /92

—(x+xL)” /20 18
—
=T : (18)

where ky > 0 is a propagation constant. The initial probabil-
ity distribution |i/(x,0)]* is a Gaussian centered at x
= —xz < 0 and has full-width at half maximum 1.670 < x;.

'//(xv 0) =

P. R. Berman and A. G. Rojo 807
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This wave packet is localized to the left of the potential and
moves towards the barrier with average speed

Vy = hko/m (19)

At any time 7> 0, the wave function (x, ) can be expanded
in terms of the eigenfunctions as

o8]

Y(x,1) :L dk (O (k)W (k, x) + O (k) (k, x)]e~ K1/,
(20)

where @, (k) and @k (k) are expansion coefficients. The inte-
gral is restricted to positive values of & since the eigenfunc-
tions V; p(k,x) given in Egs. (9) and (10) are so restricted.
Since the incident wave packet is localized to the left of the
origin and moving to the right, ®g(k) ~ 0. Moreover, the
e~ component of v, (k, x) does not contribute significantly
to the expansion at time ¢ = 0 since it corresponds to a particle
moving to the left. As a consequence, it is a good approxima-
tion to expand the initial wave packet in terms of free-particle
plane wave eigenfunctions,

o.¢]

W(x,0) ~ L ke Dy (k) (k, %) ~ \/%_EJ,

(o.¢]

dk @ (k)e'™.
2D

The integral has been extended to —oo based on the assump-
tion that @y (k) ~ 0 for k< 0. From Egs. (18) and (21), it
then follows that

i(k—ko)o
)~ VP e (22)
T

has a Gaussian envelope that is peaked at k = kg, corre-
sponding to energy

Eo = h*kg/2m. (23)

At any time, the wave function /(x, ¢) can be calculated using

{o.¢]

Y(x, 1) ~ J ‘dk (DL(k)WL(k,x)e*"hkz’/zm

0

I .
— _ dk @, (k —ilk*t/2m
27 JO L( )e

A |R(k)\ei¢R(k>e_ik", x <0,

(24)
|T (k)| e'r® gk, x > 0.
Although it is not difficult to evaluate the integral in
Eq. (24) numerically, the wave packet evolution simplifies
considerably if we are able to neglect wave packet spreading
and take the initial packet to be quasi-monoenergetic (condi-
tions that are compatible, as we will see below). We are
interested in times of order #; = 2x; /v, for which the scatter-
ing is complete and there is a component of the wave packet
to the left of the potential moving to the left and a compo-
nent of the wave packet to the right of the potential moving
to the right. On this time scale, spreading of the wave packet
can be neglected if

808 Am. J. Phys., Vol. 91, No. 10, October 2023

hAkz - h 2)CL_ hXL
2m  2mo? vy muyo?

< 1 (25)

that is, if 6> > JZypx;, where Zg3 = /i/mvo. Note this condi-
tion can be written as

XL 1 Xr,
= "<« 26
koo? koo o <5 (26)
implying that
koo > L 1 27)

that is, our calculation is valid only in this limit.® Since
Ak = 6 /+/2, inequality (27) implies that Ak/(v/2ko) < 1;
the wave packet is quasi-monoenergetic.

In the limit that inequalities (25) and (27) are valid,
|R(k)| ~ |R(ko)|, |7 (k)| = |7 (ko)|, while the phases ¢g (k)
and ¢ (k) can be expanded in a Taylor series about k = k.
Using these expansions and setting the e~/2" factor in
Eq. (24) equal to unity (neglect of spreading), we obtain

o—ilk3t/2m
Yxt) ~——r
(n02)1 /4
eiknxef()chfovof)z/Za2 + R(k())€7ik0x
X { e lrts—nl—mw)P/20 x <0,
T(ko)eikn.’(ef[.’H’XL*U(]([*‘CT)]Z/ZGZ’ x>0,
(28)
where the time delays are given by
_ ldgg(k)  1ldr(ko) 1 w
TR=——"—"=1T7 =— =——0—.
vy dky vy dky Vo kO —+ o
(29)

Equation (28) is intuitively satisfying. The first term corre-
sponds to the incident packet and will vanish approximately
once the scattering is complete, that is for times
t=xp /vy + 30. The second term is the reflected packet and
the third the transmitted packet, both of which are nonvan-
ishing only for t = x; /vy — 30, that is, only after the incident
packet has reached the barrier. Following the scattering,
there are reflected and transmitted components of the wave
function, each of which has the same envelope as the inci-
dent packet (because spreading has been neglected).

On time scales ¢ > #,/2 = 2x;, /vy, the time delay

®” 1 o 1 o
t/2 7 xkg 02 x\KE+ o2k + o2

1 1
— K — 1. 30
< k()XL < k()G < ( )

As a consequence of this inequality and the fact that the time
delay is the same for reflection and transmission, we will set
the time delay equal to zero in all that follows.

A MATHEMATICA notebook and MATHEMATICA cdf file (which
can be viewed even if you don’t have access to
MATHEMATICA) showing wave packet propagation is provided
in the supplementary material.” At the barrier, there are inter-
ference fringes between the incident and reflected
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components of the wave function. In the simulation and in
all graphs to follow, all quantities are converted to dimen-
sionless variables in units of g, e.g., ¥ =x/a, kg = koo,
& = og,  — vot/o, and Yy = Y\/a. In terms of these varia-
bles and with the time delays neglected,

kot p— (F+5L—1)°/2 +R( ko o) o—iko
Y
Xe*(*X‘l’«\L f) /2’

T(lgoa)e”g“fe’(’”'h’#ﬂ,

6—5190?

(ﬂf)“(n)—w

<=

=

=
[AYARRVAN

0,
0.
€1V}
We can also calculate the probabilities Py (f) and Pg(7)

that the particle is found to the left or to the right of the bar-
rier, given by

0
PL(P) = J (%, 1) dx, (32a)
Pr(f) = J:o (%, )[dx. (32b)

Analytic expressions for these quantities, obtained in terms
of error functions, are included in the MATHEMATICA note-
books provided in the supplementary material. For times
‘ > t~s = ZXL’

Pr~|R(ko)[; Pr ~ |T (ko)|- 33)

A plot of P, and Py as a function of 7 is shown in Fig. 2 for
lgo = o = 40 and x;, = 4. As can be seen, the particle is first
localized to the left of the barrier, but eventually is scattered
by the barrier, leading to reflected and transmitted compo-
nents. Since we have taken lgo > 1, any interference effects
between the incident and scattered waves are washed out
when integrating over position. As a result, the probabilities
undergo smooth transitions from their initial to final values.
The MATHEMATICA files enable you to vary a.

IV. SCATTERING OF TWO IDENTICAL BOSONS
OR FERMIONS

We now extend the calculation to the scattering of two
non-interacting identical bosons or fermions, with one

PL1PR
1.0

0.8}

0.6}

04 [ B

0.2f o

2 4 6 8 10

Fig. 2. Single-particle scattering. For a Gaussian particle wave packet inci-
dent from the left side of the delta-function barrier, the probability to find
the particle to the left of the barrier (P;) and to the right of the barrrier (Pg)
are plotted as a function of dimensionless time 7 for ko =& =40 and
Xz, = 4. The full width at half maximum of the incident packet is equal to
1.67 in dimensionless units.
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particle incident from the left and one from the right. By
“identical,” we mean the two particles have the same spin
and z—component of spin. We take as our initial wave
packet

1

Y (x1, x5 = 0) =5

[ (x1,0)5 (x2,0)

iWL(xLO)WR(xlvO)L (34)
with
0) — eikox —(x+xL)2/202 35
Y (x,0) = Wge ) (35a)
71’/{0,‘(
Ui, 0) =~ (/2 (35b)

G

The + subscript is for bosons, and the — subscript is for fer-
mions. We have allowed for the distance from the origin of
the peaks of the initial left and right probability distributions
to differ, that is |y, (x,0)|%, is peaked at x = —x; while
W (x,0)|* is peaked at x = xz. One particle is localized to
the left of the potential and one to the right, but the compos-
ite wave function is symmetric or antisymmetric on
exchange of the particles. To simplify matters, we have
assumed that the central velocities of the two components
are equal in magnitude but opposite in direction and that the
envelope functions of the two components are the same.
These restrictions can be relaxed without changing any of
the general results that are to be derived, but the resulting
calculations are somewhat more complicated.

The calculation then proceeds as in the single particle
case, and we find

Ve (51, 250) =% [ (s )W (2, 20, (0, ) 1, )],

(36)
where
ikox ,— (x+x.—vot)? 2 ikox
o ihEt/2m effoxg=(rx—w)/20° 4 R (kg)e~ ko
!//L(x7 t) ~ W Xe_(_x"'»\'L—UUf)Z/ZJZ’ X< O,
7 T(ko)eikoxef(x*XL*”O’)z/z‘Tz’ x>0
(37)
and
efihk%t/zm efikoxef(xka+vo;)2/2gﬁv + R(ko)eikox
l//R (X, f) ~ W Xef(fxkaijot)z/Zo’z, > 0’
(na ) T(ko)e—iko)(e—(X—XR+L‘0f)2/2O‘27 x<0.
(38)

We have neglected the time delays in these expressions.
To analyze the scattering, we want to calculate the proba-
bility Py, (1) that both particles are on the right,

Pig(2) =J0 dx, L dxal iy (xi,x2; 1), (39)

the probability P;; (¢) that both particles are on the left,

P. R. Berman and A. G. Rojo 809
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0 0
PE(1) = J dxlj ol (1,533 ), (40)

and the probability P, (¢) that one particle is on the right
and one on the left,

0 00 00 0
Py (1) = J dle dxz—i—J dle dx,

0 0
|lp (X],)Cz, )|2
:2J dle dxz|lﬁ:(x1,xQ;t)|2, 41)
—00 0

the last line following since |\ (x1,x2; )|* = [V (x2,x1: 7)| %

When Egs. (36)—(38) are substituted into Egs. (39)-(41),
the resulting integrals for Py (), P}, (t), and Py, (f) can be
evaluated analytically. Explicit expressions for these (rather
lengthy) quantities are given in the MATHEMATICA notebooks
provided in the supplementary material. In the limit that
koo > 1 and for ¢ > 2(xg 4 x.) /vy, the leading terms in Egs.
(37) and (38) no longer contribute and the expressions take
on relatively simple forms. For bosons, we find

Pl = Pl ~ |[TRIP[1 4 e te0)?/207] (42a)
Ply ~ |T|* +[RJ* = 2e~ (% 27 | R TP, (42b)

and, for fermions,
Py = Pag ~ [TRP[1 — ¢~ tu507/27] (43a)
L~ T + R + 20 (w27 RT (43b)

where 7 = 7 (ko) and R = |R(ko)|. The exponential factor
corresponds to the overlap of the envelopes of the reflected
and transmitted wave packets on a given side of the barrier.

The results are very interesting. In the limit that x; = xg
and |R|=|T|,P}, =0,P/, =Pha=1/2,Ps, =1, and P},
= Py =0. In other Words, for a symmetric beam splitter, the
bosons are scattered either to the left or the right as in HOM
interference, while fermions are scattered one particle to the
left and one to the right. These results depend on the symme-
try of the total wave function and the fact that there is a /2
difference between the phases of the amplitude reflection
and transmission coefficients. Note that Py, (1) #0 and
Py, (t) =Pgp(t) #0, in general, for times of order x/vg
=xgr/vo, when the wave packets are localized near the
origin.

We plot Py, P;;, and Py, as a function of 7 for several
values of ¥ for kg = & = 40 and ¥, = 4. In Figs. 3 and 4,
we show the results for bosons and fermions when x; = xg.
As can be seen Py (7) #0 and Py, (f) = Prg(f) # 0 for
times of order 7 = 4. However, following the scattering, Py,
=0 and P;; = Pz = 0. The provided maTHEMATICA files
allow you to plot these probabilities for different o, Xz as a
function of 7.

We now consider the changes that occur when xg # xi.
Clearly, if xz > 2x;, the wave packets from the left and right
reach the barrier at different times so the scattering is that of
individual particles—statistics play no role. In this limit, the
exponentials in Egs. (42) and (43) go to zero and
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Fig. 3. Scattering of two bosons. For an initial, symmetrized wave packet
that is a superposition of Gaussian components incident from both the left
and right sides of the delta-function barrier and centered at equal distances
from the barrier, the probability to find both bosons to the right of the barrier
(Pjg), to find both bosons to the left of the barrier (P];), and to find one
boson to the left and one to the right (Pj) as a function of dimensionless
time 7 with kg = & = 40, %, = 4, and ¥ = 4.

_ _ 2
PZL:P;R:PLL:PRRN |TR| s
P =P = T[' +IR|" (44)

These are precisely the results that would have been obtained
if we had assumed the particles were distinguishable and had
taken the wave function as

l//()(f],)(fz, ) I,DL(Xl, )l//R(xb ) (45)

In Fig. 5, we illustrate this situation by taking Xz = 12. The
results are the same for bosons and fermions. For times
5=<1=<10, Px(t) is non-zero owing to the transmitted wave
from the left. As such, the total probability Pgg(7) is equal to
the probability that this component has traversed the barrier
which is equal to |7]* = 1/2, while P}, (1) = 0, since the
wave from the right has not yet reached the barrier. For lon-
ger times, P, () is equal to the probability that the wave
from the left was transmitted times the probability that the
wave from the right was reflected, Py, ~ [TR|* = 1/4. A
similar argument gives P}, ~ |TR|* = 1/4. On the other
hand, P,?L has two contributions, one from the joint probabil-
ity that both particles were transmitted, equal to |’T|4 and one
from the joint probability that both particles were reflected,
equal to |R|* (recall that the transmitted and reflected
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Fig. 4. Scattering of two fermions. For an initial, anti-symmetrized wave
packet that is a superposition of Gaussian components incident from both
the left and right sides of the delta-function barrier and centered at equal dis-
tances from the barrier, the probability to find both fermions to the right of
the barrier (Pgy), to find both fermions to the left of the barrier (P, ), and to
find one fermion to the left and one to the right (P) as a function of dimen-
sionless time 7 with kg = & = 40,5, = 4, and ig = 4.
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Fig. 5. Scattering of two bosons or two fermions when X, # Xg. For an ini-
tial, symmetrized or anti-symmetrized wave packet that is a superposition of
Gaussian components incident from both the left and right sides of the delta-
function barrier and centered at different distances from the barrier, the
probability to find both particles to the right of the barrier (Pjy), to find both
particles to the left of the barrier (PLiL), and to find one particle to the left
and one to the right (Pk;) as a function of dimensionless time 7 with
/EO =0 =40,x, =4, and Xg = 12. In this case, the incident wave packets
do not overlap in the scattering region so the scattering is the same for
bosons and fermions.

packets do not overlap so the total probability is just the sum
of the two individual probabilities), giving a total probability
P =|T*"+R[*=1/2.

The more interesting case is when 0 < |¥x — x| <1. In
Figs. 6 and 7, we plot the probabilities as a function of 7 for
Xg = 5 and X, = 4. If either xg # x;, or kg # o, the symmetry
of the scattering process is broken and, following the scatter-
ing, P}, # 0 and P;;, = Py # 0.

V. CONCLUSION

We have illustrated the importance of particle statistics
on the scattering of two identical bosons or fermions by a
one-dimensional potential barrier. If the particles are des-
tined to meet and overlap in the potential region, the overall
wave function must be symmetrized or anti-symmetrized to
properly describe the scattering. Aside from the pedagogi-
cal value of the calculation, it should be noted that the pre-
dictions of the theory for bosons are consistent with
experiments that have been carried out using single-photon
pulses® or a source of atom pairs.'® In both cases, it is
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Fig. 6. Scattering of two bosons when x; # Xg. For an initial, symmetrized
wave packet that is a superposition of Gaussian components incident from
both the left and right sides of the delta-function barrier and centered at dif-
ferent distances from the barrier, the probability to find both bosons to the
right of the barrier (P},), to find both particles to the left of the barrier (P}, ),
and to find one fermion to the left and one to the right (Pj;) as a function of
dimensionless time 7 with kg = & = 40,x; = 4, and Xg = 5. In this case, the
incident wave packets partially overlap in the scattering region.
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Fig. 7. Scattering of two fermions when X, # Xg. For an initial, anti-
symmetrized wave packet that is a superposition of Gaussian components
incident from both the left and right sides of the delta-function barrier and
centered at different distances from the barrier, the probability to find both
fermions to the right of the barrier (Pjy), to find both fermions to the left of
the barrier (PZL), and to find one fermion to the left and one to the right
(P;tp) as a function of dimensionless time 7 with kg = & = 40, %, = 4, and
Xr = 5. In this case, the incident wave packets partially overlap in the scat-
tering region.

necessary that the radiation pulses or atomic wave packets
that are incident on the beam splitter are indistinguishable.
This was achieved usin% down conversion to produce pairs
of single-photon (Pulses* or a He Bose condensate to pro-
duce atom pairs.'
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