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Scattering of non-interacting, identical bosons or fermions by a one-dimensional Dirac delta

function barrier potential underlines the importance of the role of statistics (that is, whether the

particles obey Fermi–Dirac or Bose–Einstein statistics) in the scattering. We consider an initial

wave function for the system that corresponds to one particle incident from the left and one from

the right of the potential barrier. For bosons, both particles are scattered either to the left or to the

right if the intensity reflection coefficient is 1/2, provided the left and right propagating wave

packets fully overlap in the scattering region. For fermions, the particles “pass through” one

another, provided the left and right propagating wave packets fully overlap in the scattering region,

with zero probability that both particles are scattered to the left or right, consistent with the Pauli

exclusion principle. # 2023 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0089907

I. INTRODUCTION

In an introductory quantum mechanics course, students
often learn about the concepts of spin and statistics.
Specifically, they are told that the wave function for a system
of identical bosons must be symmetric under the interchange
of any two particles, and the wave function for identical fer-
mions must be antisymmetric under the interchange of any
two particles. Feynman et al.1 provided an elementary dis-
cussion of how the scattering cross section of two indistin-
guishable particles by one another depends on whether they
are bosons or fermions. For non-interacting particles, exam-
ples are sometimes given in which the energy levels are
calculated for identical bosons or fermions placed in a one-
dimensional, infinite potential well.2 On the other hand,
introductory courses do not usually include examples involv-
ing the scattering of a pair of bosons or fermions by a one-
dimensional potential. This is unfortunate, since the results
clearly demonstrate the importance of the scattering ampli-
tudes on the nature (bosonic or fermionic) of the particles.
Moreover, the resulting physics is qualitatively different
from that encountered in particle–particle scattering.

In this paper, we consider scattering of two non-
interacting identical bosons or fermions by a delta function
barrier potential. Instead of using a time-independent
approach from which the reflection and transmission ampli-
tudes could be obtained, we prefer to use a time-dependent
approach in which an initial wave packet is incident upon
and scattered by the potential. This approach allows us to
explore the dynamics of the scattering. In effect, the delta
function potential acts as a “beam-splitter.” The particles are
incident from opposite sides of the barrier. If the particle
wave packets do not overlap as they are scattered by the bar-
rier, the scattering is the same as it would be had the particles
been distinguishable—there is no difference for bosons and
fermions. In other words, although, in principle, it is
always necessary to symmetrize or anti-symmetrize the
wave functions for identical particles, as long as the wave
packets of the particles never overlap, they can be treated as
distinguishable. On the other hand, the scattering differs

dramatically for fermions and bosons when the wave packets
of the two particles do overlap in the potential region. For a
50–50 beam splitter and perfect overlap, both bosons are
scattered to either the right or the left, while the fermions are
scattered one to each side of the potential. These results con-
stitute another of the amazing predictions of quantum
mechanics. Even if the particles are separated initially by a
distance much larger than the extent of their wave packets, it
is still necessary to symmetrize or anti-symmetrize the com-
posite wave function if the wave packets are destined to
meet in the scattering region.

The results of this calculation for bosons are fully analo-
gous to those involving Hong–Ou–Mandel (HOM) interfer-
ence3 of photons in an interferometric scheme involving a
beam splitter. In HOM interference, two single-photon
pulses are sent into the two input channels of a 50–50 beam
splitter and overlap at the beam splitter. It is observed that
the photons emerge in one or the other output arms of the
beam splitter—the probability to observe one photon in each
of the output arms is identically equal to zero, an effect
attributed to the bosonic nature of photons. Analogous calcu-
lations for particles, both bosons and fermions, were carried
out by Loudon.4 In his calculation, Loudon uses an input-
output theory of the beam-splitter involving creation and
annihilation operators for the various modes, an approach
which is used commonly in the quantum optics community.
In contrast, our calculation is formulated in terms of
quantum-mechanical, one-dimensional scattering by a poten-
tial barrier. As such, it should be accessible to upper-level
undergraduate or beginning graduate students.

II. QUALITATIVE PICTURE OF THE ROLE

OF STATISTICS ON THE SCATTERING

Before launching into a formal calculation of scattering by
a delta function potential barrier, we consider first the scatter-
ing of two distinguishable particles (1 and 2) by a localized
potential barrier centered at the origin whose intensity reflec-
tion and transmission coefficients are equal (50–50 beam
splitter). This will allow us to understand the role of statistics
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(that is, whether the particles obey Fermi–Dirac or Bose–
Einstein statistics) in the scattering process. In this section,
we take the initial wave function for our two particles as

wðx1; x2; t ¼ 0Þ ¼ eik0x1 f ðx1 þ x0Þ � e�ik0x2 f ðx2 � x0Þ;
(1)

with f(x) being a real, symmetric envelope function centered
at x¼ 0, x0 > 0, and propagation constant k0 > 0. One com-
ponent of the initial wave function is localized to the left of
the potential barrier, centered at x1 ¼ �x0 and moves
towards the barrier with average speed v0 ¼ �hk0=m, while
the other component is localized to the right of the potential,
centered at x2 ¼ x0 and moves towards the barrier with the
same average speed. The function f(x) has been taken to be
an even function of x to ensure that the two components of
the wave packet would fully overlap at time t ¼ x0=v0 if the
barrier were not present. We assume that each wave packet
component has a width that is much smaller than the initial
distance to the potential barrier and neglect wave packet
spreading (see Fig. 1 for the geometry). None of these
restrictions are critical to the calculations, but they simplify
the discussion in this section.

We will show formally in Sec. III that, apart from an over-
all phase factor and neglecting any time delays, the wave
function wþðx1; x2; tÞ following the scattering (that is, for
times t� 2x0=v0) is

wþðx1; x2; tÞ ¼
�
e�ik0x1R k0ð Þf ð�x1 þ x0 � v0tÞ

þ eik0x1T k0ð Þf ðx1 þ x0 � v0tÞ
�

�
�
e�ik0x2T k0ð Þf ðx2 � x0 þ v0tÞ

þ eik0x2R k0ð Þf ð�x2 � x0 þ v0tÞ
�
; (2)

where RðkÞ and T ðkÞ are, respectively, the amplitude reflec-
tion and transmission coefficients for a particle of mass m
having energy Ek ¼ �h2k2=2m. Since f ðxÞ ¼ f ð�xÞ, this can
be rewritten as

wþðx1; x2; tÞ ¼
�
e�ik0x1R k0ð Þf ðx1 � x0 þ v0tÞ

þ eik0x1T k0ð Þf ðx1 þ x0 � v0tÞ
�

�
�
e�ik0x2T k0ð Þf ðx2 � x0 þ v0tÞ

þ eik0x2R k0ð Þf ðx2 þ x0 � v0tÞ
�
: (3)

For a 50–50 beam splitter, it follows from probability con-
servation that

jT ðkÞj ¼ jRðkÞj ¼ 1=
ffiffiffi
2

p
; (4a)

RðkÞ ¼ 6iT ðkÞ; (4b)

and, therefore,

wþðx1; x2; tÞ ¼
1

2

�
ie�ik0x1 f ðx1 � x0 þ v0tÞ

þ eik0x1 f ðx1 þ x0 � v0tÞ
�

�
�
e�ik0x2 f ðx2 � x0 þ v0tÞ

þ ieik0x2 f ðx2 þ x0 � v0tÞ
�
; (5)

where, for the sake of definiteness, we have chosen the plus
sign in Eq. (4b).

If we expand the above equation and take into account
that t� 2x0=v0, we obtain four terms, one that corresponds to
both particles to the right of the potential barrier—RR, one
that corresponds to both particles to the left of the barrier—
LL, one that corresponds to particle 1 to the right and particle
2 to the left—RL and one that corresponds to particle 2 to the
right and particle 1 to the left—LR. Explicitly,

wþðx1; x2; tÞ ¼ wRRðx1; x2; tÞ þ wLLðx1; x2; tÞ
þ wRLðx1; x2; tÞ þ wLRðx1; x2; tÞ;

with

wRRðx1; x2; tÞ ¼ i=2ð Þeik0ðx1þx2Þf ðx1 þ x0 � v0tÞ
� f ðx2 þ x0 � v0tÞ; (6a)

wLLðx1; x2; tÞ ¼ i=2ð Þe�ik0ðx1þx2Þf ðx1 � x0 þ v0tÞ
� f ðx2 � x0 þ v0tÞ; (6b)

wRLðx1; x2; tÞ ¼ 1=2ð Þeik0ðx1�x2Þf ðx1 þ x0 � v0tÞ
� f ðx2 � x0 þ v0tÞ; (6c)

wLRðx1;x2; tÞ ¼ � 1=2ð Þe�ik0ðx1�x2Þf ðx1 � x0 þ v0tÞ
� f ðx2 þ x0 � v0tÞ: (6d)

To go over into scattering by identical bosons or fermions,
we must symmetrize or anti-symmetrize the wave function.

Fig. 1. Schematic representation of the scattering of two identical fermions or

bosons by a localized, symmetric potential barrier having jT j2 ¼ jRj2 ¼ 1=2.
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For scattering corresponding to one particle incident from
the left and one from the right, this implies that the total scat-
tered wave functions are

wþ
Bosonsðx1; x2; tÞ ¼ 1=

ffiffiffi
2

p� �
wþðx1; x2; tÞ þ wþðx2; x1; tÞ
� �

(7a)

¼
ffiffiffi
2

p
wLLðx1; x2; tÞ þ wRRðx1; x2; tÞ½ �;

(7b)

wþ
Fermionsðx1;x2; tÞ¼ 1=

ffiffiffi
2

p� �
wþðx1;x2; tÞ�wþðx2;x1; tÞ
� �

(7c)

¼
ffiffiffi
2

p
wLRðx1; x2; tÞ þ wRLðx1; x2; tÞ½ �:

(7d)

To arrive at this result, we used the fact that, for our specific
choice of initial wave packet and for f ðxÞ ¼ f ð�xÞ, the com-
bination wLLðx1; x2; tÞ þ wRRðx1; x2; tÞ is symmetric under
particle exchange (x1 $ x2), whereas wRLðx1; x2; tÞ
þwLRðx2; x1; tÞ is anti-symmetric. This means that for bosons
only the LL þ RR term survives when we symmetrize the
wave function, and the particles “bunch” on each side of the
potential after scattering. For fermions, on the other hand,
the particles exclude themselves as a result of the anti-
symmetrization and are scattered one to each side of the
potential. The results are represented schematically in Fig. 1.

We now carry out a specific calculation for a delta-
function potential barrier. We do not limit the calculation to
times t� 2x0=v0, enabling us to map out the time evolution
of the scattering process.

III. SINGLE-PARTICLE SCATTERING

Although the calculation can be carried out for arbitrary
1D localized potential barriers, we restrict our discussion to
a 1D delta function barrier at the origin,

V xð Þ ¼ Gd xð Þ; (8)

where G> 0 is a constant that has units of energy � length.
The use of a delta function barrier simplifies the calculation
while still illustrating the relevant physics.

A. Eigenfunctions

For a particle having mass m and energy EðkÞ ¼ �h2k2=2m
with k > 0, the two degenerate eigenfunctions can be taken
as5

wL k; xð Þ ¼
ffiffiffiffiffiffi
1

2p

r
eikx þRðkÞe�ikx; x < 0;

T ðkÞeikx; x > 0;

(
(9)

wR k; xð Þ ¼
ffiffiffiffiffiffi
1

2p

r
T ðkÞe�ikx; x < 0;

e�ikx þRðkÞeikx; x > 0;

(
(10)

where

RðkÞ ¼ �i
a

k þ ia
; (11a)

T ðkÞ ¼ k

k þ ia
; (11b)

and

a ¼ mG

�h2
: (12)

For k ¼ a; jT ðkÞj ¼ jRðkÞj ¼ 1=
ffiffiffi
2

p
, and the barrier acts as

a 50–50 beam splitter; moreover, in this limit, RðkÞ
¼ �iT ðkÞ, consistent with Eq. (4b).

For potentials that are invariant under reflection such as
the delta function potential centered at the origin considered
in this work, the reflection and transmission coefficients
satisfy6

jT ðkÞj2 þ jRðkÞj2 ¼ 1; (13a)

T ðkÞR�ðkÞ þ RðkÞT �ðkÞ ¼ 0: (13b)

If we write

RðkÞ ¼ jRðkÞjei/R kð Þ; T ðkÞ ¼ jT ðkÞjei/T kð Þ; (14)

then

jRðkÞj ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p ; jT ðkÞj ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þa2

p ; (15a)

/R kð Þ ¼ tan�1 k

a

� �
; /T kð Þ ¼ �tan�1 a

k

� �
; (15b)

such that

/R kð Þ � /T kð Þ ¼ p=2: (16)

At a given energy, the delta function barrier acts as a beam-
splitter, with the characteristic phase difference of p=2
between the reflection and amplitude coefficients.

In some sense, wLðk; xÞ corresponds to a wave incident
from the left and wRðk; xÞ corresponds to a wave incident
from the right. If a convergence factor of e�x=2 is introduced
into the wave functions for x< 0 and e��x=2 for x > 0, with
� > 0, one can show that the wave functions are both orthog-
onal and (delta-function) normalized; that is,ð1

�1
wL k; xð Þ wL k0; xð Þ

� ��
dx ¼

ð1
�1

wR k; xð Þ wR k0; xð Þ
� ��

dx

¼ d k � k0ð Þ; (17a)

ð1
�1

wL k; xð Þ wR k0; xð Þ
� ��

dx ¼ 0: (17b)

B. Scattering

One-dimensional scattering of wave packets is a topic
covered in some introductory quantum mechanics texts.5,7

Here, we review the basic features of the problem. We take
as our initial condition

w x; 0ð Þ ¼ eik0x

p1=4
ffiffiffi
r

p e� xþxLð Þ2=2r2

; (18)

where k0 > 0 is a propagation constant. The initial probabil-
ity distribution jwðx; 0Þj2 is a Gaussian centered at x
¼ �xL < 0 and has full-width at half maximum 1:67r � xL.
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This wave packet is localized to the left of the potential and
moves towards the barrier with average speed

v0 ¼ �hk0=m: (19)

At any time t> 0, the wave function wðx; tÞ can be expanded
in terms of the eigenfunctions as

wðx; tÞ¼
ð1

0

dk ULðkÞwLðk; xÞ þ URðkÞwRðk; xÞ½ �e�i�hk2t=2m;

(20)

where ULðkÞ and URðkÞ are expansion coefficients. The inte-
gral is restricted to positive values of k since the eigenfunc-
tions wL;Rðk; xÞ given in Eqs. (9) and (10) are so restricted.
Since the incident wave packet is localized to the left of the
origin and moving to the right, URðkÞ � 0: Moreover, the
e�ikx component of wLðk; xÞ does not contribute significantly
to the expansion at time t¼ 0 since it corresponds to a particle
moving to the left. As a consequence, it is a good approxima-
tion to expand the initial wave packet in terms of free-particle
plane wave eigenfunctions,

wðx; 0Þ �
ð1

0

dkULðkÞwL k; xð Þ � 1ffiffiffiffiffiffi
2p

p
ð1
�1

dkULðkÞeikx:

(21)

The integral has been extended to �1 based on the assump-
tion that ULðkÞ � 0 for k< 0. From Eqs. (18) and (21), it
then follows that

ULðkÞ �
ffiffiffi
r

p
ei k�k0ð Þr

p1=4
e� k�k0ð Þ2r2=2 (22)

has a Gaussian envelope that is peaked at k ¼ k0, corre-
sponding to energy

E0 ¼ �h2k2
0=2m: (23)

At any time, the wave function wðx; tÞ can be calculated using

wðx; tÞ �
ð1

0

dkULðkÞwLðk; xÞe�i�hk2t=2m

¼
ffiffiffiffiffiffi
1

2p

r ð1
0

dkULðkÞe�i�hk2t=2m

�
eikx þ jRðkÞjei/R kð Þe�ikx; x < 0;

jT ðkÞjei/T kð Þeikx; x > 0:

8<
: (24)

Although it is not difficult to evaluate the integral in
Eq. (24) numerically, the wave packet evolution simplifies
considerably if we are able to neglect wave packet spreading
and take the initial packet to be quasi-monoenergetic (condi-
tions that are compatible, as we will see below). We are
interested in times of order ts ¼ 2xL=v0 for which the scatter-
ing is complete and there is a component of the wave packet
to the left of the potential moving to the left and a compo-
nent of the wave packet to the right of the potential moving
to the right. On this time scale, spreading of the wave packet
can be neglected if

�hDk2

2m
t � �h

2mr2

2xL
v0

¼ �hxL
mv0r2

� 1; (25)

that is, if r2 � k�dBxL, where k�dB ¼ �h=mv0. Note this condi-
tion can be written as

xL
k0r2

¼ 1

k0r
xL
r
� 1; (26)

implying that

k0r � xL
r
� 1; (27)

that is, our calculation is valid only in this limit.8 Since
Dk ¼ r=

ffiffiffi
2

p
, inequality (27) implies that Dk=

ffiffiffi
2

p
k0

	 

� 1;

the wave packet is quasi-monoenergetic.
In the limit that inequalities (25) and (27) are valid,

jRðkÞj � jRðk0Þj; jT ðkÞj � jT ðk0Þj, while the phases /RðkÞ
and /TðkÞ can be expanded in a Taylor series about k ¼ k0.
Using these expansions and setting the e�i�hk2t=2m factor in
Eq. (24) equal to unity (neglect of spreading), we obtain

wðx; tÞ � e�i�hk2
0
t=2m

pr2ð Þ1=4

�
eik0xe� xþxL�v0tð Þ2=2r2 þRðk0Þe�ik0x

�e� �xþxL�v0 t�sRð Þ½ �2=2r2

; x < 0;

T ðk0Þeik0xe� xþxL�v0 t�sTð Þ½ �2=2r2

; x 	 0;

8>><
>>:

(28)

where the time delays are given by

sR ¼ 1

v0

d/R k0ð Þ
dk0

¼ sT ¼ 1

v0

d/T k0ð Þ
dk0

¼ 1

v0

a
k2

0 þ a2
:

(29)

Equation (28) is intuitively satisfying. The first term corre-
sponds to the incident packet and will vanish approximately
once the scattering is complete, that is for times
t� xL=v0 þ 3r. The second term is the reflected packet and
the third the transmitted packet, both of which are nonvan-
ishing only for t� xL=v0 � 3r, that is, only after the incident
packet has reached the barrier. Following the scattering,
there are reflected and transmitted components of the wave
function, each of which has the same envelope as the inci-
dent packet (because spreading has been neglected).

On time scales t 	 ts=2 ¼ 2xL=v0, the time delay

sR
ts=2


 1

xL

a

k2
0 þ a2

¼ 1

xL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 þ a2
p affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 þ a2

p
<

1

k0xL
� 1

k0r
� 1: (30)

As a consequence of this inequality and the fact that the time
delay is the same for reflection and transmission, we will set
the time delay equal to zero in all that follows.

A MATHEMATICA notebook and MATHEMATICA cdf file (which
can be viewed even if you don’t have access to
MATHEMATICA) showing wave packet propagation is provided
in the supplementary material.9 At the barrier, there are inter-
ference fringes between the incident and reflected
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components of the wave function. In the simulation and in
all graphs to follow, all quantities are converted to dimen-
sionless variables in units of r, e.g., ~x ¼ x=r; ~k0 ¼ k0r;
~a ¼ ar; ~t ! v0t=r; and ~w ¼ w

ffiffiffi
r

p
. In terms of these varia-

bles and with the time delays neglected,

~wð~x;~tÞ � e�i~k0~t

pð Þ1=4

ei
~k0~xe� ~xþ~xL�~tð Þ2

=2 þRð~k0rÞe�i~k0~x

�e� �~xþ~xL�~tð Þ2
=2; ~x < 0;

T ð~k0rÞei~k0~xe� ~xþ~xL�~tð Þ2
=2; ~x 	 0:

8>><
>>:

(31)

We can also calculate the probabilities PLð~tÞ and PRð~tÞ
that the particle is found to the left or to the right of the bar-
rier, given by

PLð~tÞ ¼
ð0

�1
jwð~x;~tÞj2dx; (32a)

PRð~tÞ ¼
ð1

0

jwð~x;~tÞj2dx: (32b)

Analytic expressions for these quantities, obtained in terms
of error functions, are included in the MATHEMATICA note-
books provided in the supplementary material. For times
~t 	 ~ts ¼ 2~xL,

PL � jRðk0Þj2; PR � jT ðk0Þj2: (33)

A plot of PL and PR as a function of ~t is shown in Fig. 2 for
~k0 ¼ ~a ¼ 40 and ~xL ¼ 4. As can be seen, the particle is first
localized to the left of the barrier, but eventually is scattered
by the barrier, leading to reflected and transmitted compo-

nents. Since we have taken ~k0 � 1, any interference effects
between the incident and scattered waves are washed out
when integrating over position. As a result, the probabilities
undergo smooth transitions from their initial to final values.
The MATHEMATICA files enable you to vary ~a:

IV. SCATTERING OF TWO IDENTICAL BOSONS

OR FERMIONS

We now extend the calculation to the scattering of two
non-interacting identical bosons or fermions, with one

particle incident from the left and one from the right. By
“identical,” we mean the two particles have the same spin
and z�component of spin. We take as our initial wave
packet

w6 x1; x2; t ¼ 0ð Þ ¼ 1ffiffiffi
2

p wL x1; 0ð ÞwR x2; 0ð Þ½

6wL x2; 0ð ÞwR x1; 0ð Þ�; (34)

with

wL x; 0ð Þ ¼ eik0x

p1=4
ffiffiffi
r

p e� xþxLð Þ2=2r2

; (35a)

wR x; 0ð Þ ¼ e�ik0x

p1=4
ffiffiffi
r

p e� x�xRð Þ2=2r2

: (35b)

The þ subscript is for bosons, and the – subscript is for fer-
mions. We have allowed for the distance from the origin of
the peaks of the initial left and right probability distributions
to differ, that is jwLðx; 0Þj

2
, is peaked at x ¼ �xL while

jwRðx; 0Þj
2

is peaked at x ¼ xR. One particle is localized to
the left of the potential and one to the right, but the compos-
ite wave function is symmetric or antisymmetric on
exchange of the particles. To simplify matters, we have
assumed that the central velocities of the two components
are equal in magnitude but opposite in direction and that the
envelope functions of the two components are the same.
These restrictions can be relaxed without changing any of
the general results that are to be derived, but the resulting
calculations are somewhat more complicated.

The calculation then proceeds as in the single particle
case, and we find

w6 x1;x2; tð Þ¼
1ffiffiffi
2

p wL x1; tð ÞwR x2; tð Þ6wL x2; tð ÞwR x1; tð Þ
� �

;

(36)

where

wLðx; tÞ �
e�i�hk2

0
t=2m

pr2ð Þ1=4

eik0xe� xþxL�v0tð Þ2=2r2 þRðk0Þe�ik0x

�e� �xþxL�v0tð Þ2=2r2

; x < 0;

T ðk0Þeik0xe� xþxL�v0tð Þ2=2r2

; x 	 0

8>><
>>:

(37)

and

wRðx; tÞ �
e�i�hk2

0
t=2m

pr2ð Þ1=4

e�ik0xe� x�xRþv0tð Þ2=2r2;þRðk0Þeik0x

�e� �x�xRþv0tð Þ2=2r2

; x> 0;

T ðk0Þe�ik0xe� x�xRþv0tð Þ2=2r2

; x
 0:

8>><
>>:

(38)

We have neglected the time delays in these expressions.
To analyze the scattering, we want to calculate the proba-

bility P6
RRðtÞ that both particles are on the right,

P6
RR tð Þ ¼

ð1
0

dx1

ð1
0

dx2jw6 x1; x2; tð Þj2; (39)

the probability P6
LLðtÞ that both particles are on the left,

Fig. 2. Single-particle scattering. For a Gaussian particle wave packet inci-

dent from the left side of the delta-function barrier, the probability to find

the particle to the left of the barrier (PL) and to the right of the barrrier (PR)

are plotted as a function of dimensionless time ~t for ~k0 ¼ ~a ¼ 40 and

~xL ¼ 4. The full width at half maximum of the incident packet is equal to

1.67 in dimensionless units.
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P6
LL tð Þ ¼

ð0

�1
dx1

ð0

�1
dx2jw6 x1; x2; tð Þj2; (40)

and the probability P6
RLðtÞ that one particle is on the right

and one on the left,

P6
RL tð Þ ¼

ð0

�1
dx1

ð1
0

dx2 þ
ð1

0

dx1

ð0

�1
dx2

" #

� jw6 x1; x2; tð Þj2

¼ 2

ð0

�1
dx1

ð1
0

dx2jw6 x1; x2; tð Þj2; (41)

the last line following since jw6ðx1; x2; tÞj2 ¼ jw6ðx2; x1; tÞj2.
When Eqs. (36)–(38) are substituted into Eqs. (39)–(41),

the resulting integrals for P6
RRðtÞ; P6

LLðtÞ, and P6
RLðtÞ can be

evaluated analytically. Explicit expressions for these (rather
lengthy) quantities are given in the MATHEMATICA notebooks
provided in the supplementary material. In the limit that
k0r � 1 and for t > 2ðxR þ xLÞ=v0, the leading terms in Eqs.
(37) and (38) no longer contribute and the expressions take
on relatively simple forms. For bosons, we find

Pþ
LL ¼ Pþ

RR � jT Rj2 1 þ e� xL�xRð Þ2=2r2
� �

; (42a)

Pþ
RL � jT j4 þ jRj4 � 2e� xL�xRð Þ2=2r2 jRT j2; (42b)

and, for fermions,

P�
LL ¼ P�

RR � jT Rj2 1 � e� xL�xRð Þ2=2r2
� �

; (43a)

P�
RL � jT j4 þ jRj4 þ 2e� xL�xRð Þ2=2r2 jRT j2; (43b)

where T ¼ T ðk0Þ and R ¼ jRðk0Þj. The exponential factor
corresponds to the overlap of the envelopes of the reflected
and transmitted wave packets on a given side of the barrier.

The results are very interesting. In the limit that xL¼ xR
and jRj ¼ jT j; Pþ

RL ¼ 0; Pþ
LL ¼ Pþ

RR ¼ 1=2; P�
RL ¼ 1; and P�

LL
¼ P�

RR ¼ 0: In other words, for a symmetric beam splitter, the
bosons are scattered either to the left or the right as in HOM
interference, while fermions are scattered one particle to the
left and one to the right. These results depend on the symme-
try of the total wave function and the fact that there is a p=2
difference between the phases of the amplitude reflection
and transmission coefficients. Note that Pþ

RLðtÞ 6¼ 0 and
P�
LLðtÞ ¼ P�

RRðtÞ 6¼ 0, in general, for times of order xL=v0

¼ xR=v0, when the wave packets are localized near the
origin.

We plot P6
RR; P6

LL, and P6
RL as a function of ~t for several

values of ~xR for ~k0 ¼ ~a ¼ 40 and ~xL ¼ 4: In Figs. 3 and 4,
we show the results for bosons and fermions when xL¼ xR.
As can be seen Pþ

RLð~tÞ 6¼ 0 and P�
LLð~tÞ ¼ P�

RRð~tÞ 6¼ 0 for

times of order ~t ¼ 4. However, following the scattering, Pþ
RL

¼ 0 and P�
LL ¼ P�

RR ¼ 0. The provided MATHEMATICA files
allow you to plot these probabilities for different ~a; ~xR as a
function of ~t.

We now consider the changes that occur when xR 6¼ xL.
Clearly, if xR > 2xL, the wave packets from the left and right
reach the barrier at different times so the scattering is that of
individual particles—statistics play no role. In this limit, the
exponentials in Eqs. (42) and (43) go to zero and

Pþ
LL ¼ Pþ

RR ¼ P�
LL ¼ P�

RR � jT Rj2;
Pþ
RL ¼ P�

RL ¼ jT j4 þ jRj4: (44)

These are precisely the results that would have been obtained
if we had assumed the particles were distinguishable and had
taken the wave function as

w x1; x2; tð Þ ¼ wL x1; tð ÞwR x2; tð Þ: (45)

In Fig. 5, we illustrate this situation by taking ~xR ¼ 12. The
results are the same for bosons and fermions. For times
5�~t� 10; P6

RRðtÞ is non-zero owing to the transmitted wave

from the left. As such, the total probability P6
RRðtÞ is equal to

the probability that this component has traversed the barrier

which is equal to jT j2 ¼ 1=2, while P6
LLðtÞ ¼ 0; since the

wave from the right has not yet reached the barrier. For lon-
ger times, P6

RRðtÞ is equal to the probability that the wave
from the left was transmitted times the probability that the

wave from the right was reflected, P6
RR � jT Rj2 ¼ 1=4. A

similar argument gives P6
LL � jT Rj2 ¼ 1=4. On the other

hand, P6
RL has two contributions, one from the joint probabil-

ity that both particles were transmitted, equal to jT j4 and one
from the joint probability that both particles were reflected,

equal to jRj4 (recall that the transmitted and reflected

Fig. 3. Scattering of two bosons. For an initial, symmetrized wave packet

that is a superposition of Gaussian components incident from both the left

and right sides of the delta-function barrier and centered at equal distances

from the barrier, the probability to find both bosons to the right of the barrier

(Pþ
RR), to find both bosons to the left of the barrier (Pþ

LL), and to find one

boson to the left and one to the right (Pþ
RR) as a function of dimensionless

time ~t with ~k0 ¼ ~a ¼ 40; ~xL ¼ 4, and ~xR ¼ 4.

Fig. 4. Scattering of two fermions. For an initial, anti-symmetrized wave

packet that is a superposition of Gaussian components incident from both

the left and right sides of the delta-function barrier and centered at equal dis-

tances from the barrier, the probability to find both fermions to the right of

the barrier (P�
RR), to find both fermions to the left of the barrier (P�

LL), and to

find one fermion to the left and one to the right (P�
RR) as a function of dimen-

sionless time ~t with ~k0 ¼ ~a ¼ 40; ~xL ¼ 4, and ~xR ¼ 4.
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packets do not overlap so the total probability is just the sum
of the two individual probabilities), giving a total probability

P6
RL ¼ jT j4 þ jRj4 ¼ 1=2.
The more interesting case is when 0 
 j~xR � ~xLj� 1. In

Figs. 6 and 7, we plot the probabilities as a function of ~t for
~xR ¼ 5 and ~xL ¼ 4: If either xR 6¼ xL or k0 6¼ a, the symmetry
of the scattering process is broken and, following the scatter-
ing, Pþ

RL 6¼ 0 and P�
LL ¼ P�

RR 6¼ 0.

V. CONCLUSION

We have illustrated the importance of particle statistics
on the scattering of two identical bosons or fermions by a
one-dimensional potential barrier. If the particles are des-
tined to meet and overlap in the potential region, the overall
wave function must be symmetrized or anti-symmetrized to
properly describe the scattering. Aside from the pedagogi-
cal value of the calculation, it should be noted that the pre-
dictions of the theory for bosons are consistent with
experiments that have been carried out using single-photon
pulses3 or a source of atom pairs.10 In both cases, it is

necessary that the radiation pulses or atomic wave packets
that are incident on the beam splitter are indistinguishable.
This was achieved using down conversion to produce pairs
of single-photon pulses3 or a He Bose condensate to pro-
duce atom pairs.10
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Fig. 6. Scattering of two bosons when ~xL 6¼ ~xR. For an initial, symmetrized

wave packet that is a superposition of Gaussian components incident from

both the left and right sides of the delta-function barrier and centered at dif-

ferent distances from the barrier, the probability to find both bosons to the

right of the barrier (Pþ
RR), to find both particles to the left of the barrier (Pþ

LL),

and to find one fermion to the left and one to the right (Pþ
RR) as a function of

dimensionless time ~t with ~k0 ¼ ~a ¼ 40; ~xL ¼ 4, and ~xR ¼ 5. In this case, the

incident wave packets partially overlap in the scattering region.

Fig. 7. Scattering of two fermions when ~xL 6¼ ~xR. For an initial, anti-

symmetrized wave packet that is a superposition of Gaussian components

incident from both the left and right sides of the delta-function barrier and

centered at different distances from the barrier, the probability to find both

fermions to the right of the barrier (Pþ
RR), to find both fermions to the left of

the barrier (Pþ
LL), and to find one fermion to the left and one to the right

(Pþ
RR) as a function of dimensionless time ~t with ~k0 ¼ ~a ¼ 40; ~xL ¼ 4, and

~xR ¼ 5. In this case, the incident wave packets partially overlap in the scat-

tering region.

Fig. 5. Scattering of two bosons or two fermions when ~xL 6¼ ~xR. For an ini-

tial, symmetrized or anti-symmetrized wave packet that is a superposition of

Gaussian components incident from both the left and right sides of the delta-

function barrier and centered at different distances from the barrier, the

probability to find both particles to the right of the barrier (P6
RR), to find both

particles to the left of the barrier (P6
LL), and to find one particle to the left

and one to the right (P6
RR) as a function of dimensionless time ~t with

~k0 ¼ ~a ¼ 40; ~xL ¼ 4, and ~xR ¼ 12. In this case, the incident wave packets

do not overlap in the scattering region so the scattering is the same for

bosons and fermions.
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