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Abstract Highlights

The ecosystem services and immense biodiversity of * Beta regression models at 5 spatial scales show that
Amazon rainforests are threatened by deforestation and Poaceae grass phytoliths are a reliable predictor of

forest degradation. A key goal of modern archaeology o .

and paleoecology in Amazonia is to establish the extent forest cover within 200 meters of Amazonian lakes
and duration of past forest disturbance by humans. e Phytoliths reflect local scale forest cover whereas
Fossil phytoliths are an established proxy to identify . . .

the duration of disturbance in lake sedimentary and pollen reflects bloggograph|cal gradients and forest
soil archives. What is not known, is the spatial scale of cover at larger spatial scales

such forest disturbances when identified by phytoliths. . .
Here we use phytolith assemblages to detect local-scale ¢ Our modern calibration dataset c'an be usgd 2
forest openings, provide an estimate of extent, and quantify past forest cover changes in Amazonia (to
consider long-term forest recovery. We use modern research long-term forest recovery)

phytolith assemblages of 50 Amazonian lakes to i) assess

how phytolith assemblages vary across forest cover at

5 spatial scales (100 m, 200 m, 500 m, 1 km, 2 km), ii)

model which phytolith morphotypes can accurately

predict forest cover at 5 spatial scales, and iii) compare

phytoliths with pollen to quantify their relative ability

to detect forest cover changes. DCA results show

phytolith assemblages could be used to differentiate

low, intermediate, and high forest cover values, but

not to distinguish between biogeographical gradients

across Amazonia. Beta regression models show Poaceae

phytoliths can accurately predict forest cover within 200

m of Amazonian lakes. This modern calibration dataset

can be used to make quantitative reconstructions of

forest cover changes in Amazonia, to generate novel

insights into long-term forest recovery. Combining

phytoliths and pollen provides a unique opportunity

to make qualitative and quantitative reconstructions

of past vegetation changes, to better understand how

human activities, environmental and climatic changes

have shaped modern Amazonian forests.
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Introduction

Amazonia supports the largest remaining rainforest in
the world and therefore plays animportant role in global
terrestrial carbon uptake and harbors a rich biodiversity
(Hubau et al. 2020, Myers et al. 2000, Phillips and Brienen
2017, Santoro et al. 2020). High deforestation rates,
however, threaten Amazonian rainforests (Gatti et al.
2021, Mitchard, 2018). While forest recovery will
be crucial for mitigating global climate change and
preserving ecosystem functions, the best practices for
forest restoration remain uncertain (da Cruz et al. 2021).
An understanding of past disturbances informs present
day management decisions and frames current scientific
discourse. Palaeoecology provides insight into long-term
(>100 years) forest recovery, while taking life-history into
account (Akesson et al. 2023, 2021, Bush and Colinvaux
1988, Cole et al. 2014, Loughlin et al. 2018), and therefore
offers unique insights that supplement those of modern
ecological studies (Poorter et al. 2021, 2016).

Palaeoecological studies are increasingly performed
with phytoliths, which are inorganic silica structures
inside the vegetative and reproductive tissues of plants
that can be preserved in soils and sediments after
plants decay (Piperno, 2006). Phytoliths are a useful
proxy to detect human disturbances in forested settings
(Akesson et al. 2021, Piperno, 1990, Piperno et al.
2021, Watling et al. 2023). In Amazonia, phytolith
research (Akesson et al. 2021) reflects that successional
trajectories can be similar in the short-term (20 years),
but different species compositions may establish after
50-100 years of recovery, depending on the type, intensity,
or frequency of the disturbance (Fernandes Neto et al.
2019, Moran et al. 2000, Uhl et al. 1988). Repeated
disturbances may result in persistent vegetation changes
(Chazdon, 2003, Fernandes Neto et al. 2019, McMichael,
2021, McMichael et al. 2022, Rappaport et al. 2018).
Several Amazonian forests still bear the marks of human
activities from the pre-contact period (prior to 1492 CE)
because the vegetation is enriched with useful plant
species (Bodin et al. 2020, Maezumi et al. 2018).

Unlike fossil pollen, the highest taxonomic resolution
in phytoliths is among monocotyledonous taxa.
Phytoliths are produced in abundance by several cultivars
(maize, banana, squash), grasses and palms, making
them a promising tool to detect cultivation practices
and palm enrichment or depletion (Iriarte, 2003,
Morcote-Rios et al. 2016, Piperno, 2009, Piperno et al.
1985). The low taxonomic resolution of dicotyledonous
arboreal phytoliths prevents the reconstruction of forest
composition changes (Watling et al. 2016), but biomass
and tree cover density can be detected using phytolith
analysis (Bremond et al. 2005, Witteveen et al. 2023).

Although phytoliths can be recovered from fossil
teeth (Ciochon et al. 1990), ceramics (Piperno et al.
1985, Saul et al. 2013), and soils (Astudillo, 2018, Crifo
and Stromberg 2020, Hill et al. 2023, Iriarte et al. 2010,
McMichael et al. 2015, Piperno and Becker 1996),
lake sedimentary archives offer the best temporal
resolution, and hence the best opportunity to study
the trajectories of ecological processes (Akesson et al.
2023, Neumann et al. 2009, Paduano et al. 2003).
Lake sediments also allow high temporal resolution

reconstructions using color (Moy et al. 2002), X-Ray
Florescence (SS) (Morlock et al. 2021) and other
biological proxies, e.g., pollen, diatoms and Non-pollen
palynomorphs (Bush and Colinvaux, 1988, Loughlin et al.
2021, Miras et al. 2015) that provide holistic views of
paleoenvironments and landscapes (Akesson et al. 2023,
Carson et al. 2015, Neumann et al. 2009, Raj et al. 2015).

Recently, models have been developed to quantify
past forest cover changes around Amazonian lakes using
the abundance of Poaceae pollen (Blaus et al. 2023,
Whitney et al. 2019). In flooded savannas, Whitney et al.
found long-distance transport of pollen, making spatial
analyses problematic. However, in closed forest setting
Poaceae pollen is seen to be an accurate predictor of
even small-scale forest clearance within one km of
a lake (Blaus et al 2023). Because phytoliths are not
adapted to transportation, and tend to fall close to the
parent plant, i.e. leaf and branch fall (Piperno, 2006,
Strémberg et al. 2018), they often provide an even more
local signal of the vegetation than pollen (Plumpton et al.
2019). Combining pollen and phytoliths in a multiproxy
approach to quantify deforested landscapes in Amazon
would thus provide a new level of detail in vegetation
disturbance reconstructions.

Phytolith transportation and deposition determine
the spatial scale of the relationship between phytolith
assemblages and the surrounding vegetation
(Aleman et al. 2014, Piperno 2006, Plumpton et al.
2019). Phytoliths are transported and deposited
into lake sediments via rivers, runoff, and to a lesser
extent through aerial transport (Aleman et al. 2014).
Vegetation type can also determine the spatial signal,
because open habitats allow the aerial transportation
of (burnt) phytoliths but closed-canopy settings
may hamper it (Aleman et al. 2014). Therefore,
biogeographical gradients in Amazon may affect the
relationship between phytolith assemblages and
forest cover, through different forest types (Oliveira-
Filho et al. 2021, Stropp et al. 2009, Ter Steege et al.
2006). The effect of nearby vegetation on the spatial
signal of phytolith assemblages from lake sediments,
however, has never been studied in Amazonia.

Here we assess if phytolith assemblages vary across
biogeographic gradients within Amazonia and can
detect local-scale forest openings, to begin quantifying
long-term forest recovery. We use modern phytolith
assemblages of 50 Amazonian lakes to i) assess how
phytolith assemblages vary across forest cover at
5 spatial scales (100 m, 200 m, 500 m, 1 km, 2 km), ii)
model which phytolith morphotypes can accurately
predict forest cover at 5 spatial scales, and iii) compare
phytoliths with pollen in their ability to quantify forest
cover changes to assess how a multiproxy approach
can be used to quantify forest recovery through time.

Materials & Methods

Site description

A total of 50 lakes in the Amazon basin (Eva et al.
2005) were used to calibrate phytolith assemblages
to forest cover changes. Sediment samples were
collected with a Universal corer or Colinvaux-Vohnout
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piston corer (Table S1) (more details can be found in
Blaus et al. 2023, Bush et al. 2021). Sites were divided
into biogeographical regions: northwestern (NW),
southwestern (SW), East, (Gentry 1988, Ter Steege et al.
2013, 2000) and savanna (located in Roraima, Brazil)
(Blaus et al. 2023). Sampling sites included permanent
lakes, floodplains, and oxbow lakes (Table S1) and the
surrounding vegetation included evergreen tropical
rainforests (n=41) and savannas (n=9) (Fig. 1). Mean
annual temperature, mean annual precipitation, and
dry quarter precipitation were derived from CHELSA
(at 30 arc sec, ~1 km resolution), using climatological
data from 1981-2010 (Karger et al. 2017). Digital
elevation models from Shuttle Radar Topography
Mission (SRTM) data were used to generate elevation
data at 1 km resolution (Jarvis et al. 2008). All sites
were in the lowlands (0 to 180 meters above sea level),
with a mean temperature between 25-27 °C. Annual
precipitation ranged between 600 and 2200 mm,
with the highest precipitation ranges in northwestern
(NW) Amazon and the lowest in the savanna sites.
Seasonality was lowest in NW Amazon and highest
in the savanna sites.

Data preparation

From each of the 50 lakes, 0.5 or 1 cm? of sediment
was subsampled from the top (0-1 cm) of the sediment
core and prepared for phytolith analysis. Organic
material was removed by boiling the samples four
times in 33% H,0,. After the third and fourth time,
10% HCland KMnO, were added, respectively. Clay was
removed by decanting the samples. After washing the

85°W BO*W 75°W 70°W

I
85°W BO*W 75°W 70°W

65°W

65°W

samples with ethanol, Bromoform (specific gravity 2.3)
was added to extract the phytoliths from the sediment.
Finally, phytoliths were mounted on slides using
Naphrax. Phytolith slides were counted and identified
at 630x-1000X magnification with a Zeiss Axioscope 5,
using the latest literature and nomenclature (Collura
and Neumann, 2017, Huisman et al. 2018, Morcote-
Rios et al. 2016, Neumann et al. 2019, Piperno 2006,
Piperno and McMichael, 2023, 2020, Witteveen et al.
2022). The phytolith sum varied between 233-744 total
phytoliths and included a minimum of 200 arboreal
phytoliths for forested sites or 200 non-grass phytoliths
for savanna sites.

Forest cover was calculated using the Global
Forest Change v1.8 database that contains pixels
with percentages of forest cover (from 0% to 100%)
(Hansen et al. 2013). In this spatial data product,
pixels were classified as forested, if canopy heigh
exceeded 5 m, based on Landsat satellite imagery
with a spatial resolution of 30 m (Hansen et al. 2013).
Using this database, forest cover was calculated for
5 buffers (100 m, 200 m, 500 m, 1 km, 2 km) around
the perimeter of each of the 50 lakes using Google
Earth Engine (Gorelick et al. 2017). Lake perimeters
were defined using the JRC Global Surface Water
Mapping Layers v1.3 (Pekel et al. 2016), lake water
bodies were delineated, and these pixels were
summed and masked from further analyses. Pixels >
40% water were classified as water/lake pixels. Next,
other pixels in each buffer were classified as forest
or non-forest, with pixels containing > 50% of forest
cover classified as forested. Because the forest cover

60°W 55°W 50°W 45°W

-g°

-15°5
Forest cover %
e 25

@ 50
CYE

Legend

¢ East Amazon
o NW Amazon
o SW Amazon
© Savanna

Amazon basin . 100
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Figure 1. Map of the Amazon basin (Eva et al. 2005) containing the 50 lakes used to calibrate phytolith assemblages with
forest cover. Sites are color-coded by biogeographic region and symbol size reflects the forest cover (%) within 200 m of

each lake. NW = northwestern, SW = southwestern
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dataset is based on 2000 CE, the forest cover loss
from 2000 to 2019 CE was summed and subtracted
from the forest cover dataset to obtain the number
of forested pixels representative of 2019 CE, when
most lakes were sampled for phytoliths. Finally, the
proportion of forest cover was calculated by dividing
the forested pixels by the total number of pixels in
each buffer (excluding the lake water bodies).

Data analysis

Phytoliths were grouped according to morphotype
or taxonomic group (Table S2). Detrended
Correspondence Analysis (DCA) was used to assess
the major (dis)similarity between samples, using
phytolith abundances. To assess how environmental
variables were related to the differences between
phytolith assemblages, forest cover, elevation
(Jarvis et al. 2008), mean annual temperature, mean
annual precipitation and the precipitation of the dry
quarter (Karger et al. 2017) were fitted on DCA sites
scores as vectors. Beta regression models (Cribari-
Neto and Zeileis, 2010) were developed to predict
the proportion of forest cover pixels in the landscape,
using phytolith taxa in proportions. We ran models
with a variety of arboreal and palm phytoliths, grass
phytoliths, and a combination of grass phytoliths
and pollen. The performance of each model was
assessed using pseudo-R2-values, p-values of the beta
regression coefficients for the predictor variables, and
AIC values. Furthermore, the ability to predict forest
cover within 200 m of Lake Kumpak?® was assessed
for five beta regression models, using the proportion

100

of forest cover for the years 1983 and 2014 (Fig. S5).
To calculate forest cover at two time points, polygons
were drawn within 200 m of Lake Kumpak?® using
Google Earth, with aerial image overlays that were
collected in 1983 and 2014 (Fig. S5) (Akesson et al.
2021). The age-depth model of Lake Kumpak?®is based
on 7 radiocarbon dates in the last 2415 years and has
a constant deposition, therefore, this sediment record
provides an excellent opportunity to test the beta
regression models. Statistical analyses were performed
in R (R Development Core Team 2017) using the
“rioja” (Juggins and Juggins, 2019), “betareg” (Cribari-
Neto and Zeileis, 2010) and “vegan’ (Oksanen et al.
2013) packages. Figures were plotted using ESRI
ArcGIS Pro Version 3.1.1 software and the “ggplot2”
(Wickham et al. 2016) and “viridisLite” (Garnier, 2018)
packages in R.

Results

Forest cover

Forest cover ranged between 0.02-100% (Fig. 2) and
was positively correlated for each of the buffer sizes
(100 m, 200 m, 500 m, 1 km, 2 km) (Fig. S2). Few sites
had a forest cover between 10-20%, but forest cover
values between 20-100% were well represented.
The sites located in the savanna had the lowest forest
cover (0-10%), whereas sites in the NW Amazon had
the highest percentages of surrounding forest cover
(75% - 99%). Sites in the southwestern (SW) and East
Amazon were more variable in forest cover percentage
and ranged from 24-90%. Because buffer sizes were

-
w

Forest cover % (200 m)
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n
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Figure 2. The percentage of forest cover (based on the amount of forested pixels) within 200 m radius of 50 Amazonian
lakes. Sites are color-coded based on assigned biogeographic regions (Blaus et al. 2023)
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correlated, subsequent analyses are shown for a single
buffer size (200 m) and other buffer sizes are in the
supplementary material.

Phytolith assemblages across a gradient of forest cover

In the 50 lake samples, 85 phytolith morphotypes
were present including 21 arboreal types, 22 palms,
34 grasses, 8 herbs and 4 unknowns. These morphotypes
were merged into 24 groups for further analysis (Fig. S3,
Table S2). Phytoliths of sites with high and intermediate
forest (>20%) generally contained < 30% Poaceae,
whereas sites with low forest cover (<10%) contained 35-
70% of Poaceae phytoliths. Cyperaceae were common
in the savanna sites but virtually absent from the other
(forested) sites. Overall, arboreal phytoliths were more
common in highly forested sites and rare in sites with
low forest cover. Rugose SPHEROID phytoliths were
generally higher in sites with >50% forest cover, and
ornate SPHEROID was highest (>20%) in sites with a
forest cover >75% while this morphotype was absent
from sites with low forest cover (<10%). CONICAL
phytoliths from palms like Iriartea deltoidea, Socratea

exorrhiza, Bactris and Geonoma were common in high
forested sites, which were all located in NW Amazon.
SPHEROID palm phytoliths were highest in sites where
the vegetation was (i) a ‘palm swamp’ (Igarapé, Buritizal
Prainha) or (ii) palms were an abundant component
of the landscape (Ypaiuna, Urumao, Anangucocha),
which was generally in sites with intermediate forest
cover (20-60%). SPHEROID palm phytoliths occurred
5-40% in sites with forest cover >75% but were below
<10% abundance in sites with low forest cover <10%
(except Igarapé).

Several phytolith morphotypes were more common
in specific regions: CONICAL palm phytoliths were
most common in NW Amazon, SPHEROID palm
phytoliths were more common in East Amazon,
granulate SPHEROID in Para (Brazil), Bambusoideae
grasses were more common in Acre, and Pooideae
in Rondonia (Fig. S3).

Drivers behind different phytolith assemblages

DCA results indicates that phytolith assemblages
correspond to changes in forest cover (Fig. 4a), but
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Figure 3. Phytolith diagram showing the relative abundance (in %) of Cyperaceae and Poaceae (orange), palms (blue)
and arboreal morphotypes (green). Sites are sorted by the percentage of forest cover within 200 m of each lake, from

high (top) to low (bottom).
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a) DCA, with envfit taxa (p.max = 0.05)

b) Forest cover (200 m)
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Figure 4. DCA of the phytolith assemblages from 50 Amazonian lakes showing a) significant site-taxa relationships and b)
(dis)similarity across forest cover within 200 m. Sites are color-coded by assigned biogeographic region and sizes reflect

forest cover within 200 m.

not linearly to environmental gradients (Fig. S4).
DCA1 shows the main variation in phytolith assemblages
is between sites with low forest cover (<10%) and
other sites, whereas DCA2 separated sites with high
palm abundances and intermediate forest cover
(25%-75%) from other sites. Correspondingly, sites
with low forest cover were common in Poaceae and
Cyperaceae, sites with intermediate forest cover were
abundant in SPHEROID palm phytoliths and sites with
high forest cover were abundant in arboreal phytoliths
(and CONICAL palms). Savanna sites were low in forest
cover, most sites in East Amazon had intermediate
forest cover and high forest cover was mostly in sites
in NW Amazon. 18 phytolith groups were able to
significantly separate sites with high, intermediate,
and low forest cover (Fig. 4b).

Calibrating phytolith assemblages to forest cover
changes

The beta regressions indicated that phytolith
proportions were able to predict forest cover, based
on AIC values, p-values and pseudo-R2 values of
the model predictors (Table S2 and S3). Arboreal
and palm phytoliths were able to predict forest
cover as one group (arboreal, palms) and two
groups (SPHEROID, CONICAL morphotypes) at five
buffer sizes (100 m, 200 m, 500 m, 1 km, 2 km).
Models with higher R2 values had lower AIC values
(Table S2 and S3). Generally, models performed
better with increasing buffer sizes (Table S3). Models
with the best R2 values included two arboreal and
two palm phytolith groups, and models with the
lowest AIC values included ‘rugose SPHEROID’ and
‘ornate SPHEROID’ arboreal phytoliths. The model
‘palms + arboreal’, ‘Poaceae’ and ‘Poaceae +

Cyperaceae’ had intermediate AIC and R2 values.
Rugose SPHEROID and SPHEROID palms were not
significant in models 3 and 4 (Table 1).

Predicting forest cover changes through time

To test the performance of our models, we
applied 5 beta regression models to predict forest
cover changes near Lake Kumpak?® and compared our
results to pollen estimates (Blaus et al. 2023). Within
200 m around the lake, aerial images reveal 78% forest
cover in 1983 and 88% forest cover in 2014 (Fig. S5).
The ‘Poaceae model’ accurately predicts ca. 80% forest
cover around this period and predicts an increase in
forest cover from 1983 to 2014 (Fig. 6). In comparison,
models containing arboreal and palm phytoliths predict
a higher proportion of forest pixels within 200 m of the
lake. Also, the increase in forest cover from 1983 to
2014 is not predicted by models containing arboreal
and palm phytoliths (Fig. 6b).

Discussion

In this study, we showed that phytolith assemblages
from 50 Amazonian lakes can be used to predict forest
cover. Previously, phytoliths from terrestrial soils have
been shown to differentiate rainforests from savanna
(Dickau et al. 2013). Our results indicate similar
capacities for phytoliths from lake sediments. Also,
we demonstrate that phytolith assemblages from lake
sediments reflect forest cover changes and differentiate
deforested landscapes from highly forested sites.
This modern calibration dataset can be used to make
guantitative reconstructions of forest cover changes
in Amazonia, and generate novel insights into long-
term forest recovery.
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Table 1. Pseudo-R? values, model coefficients and AIC values for six beta regressions used to predict forest cover values
(the proportion of forest pixels) within 200 m of 50 Amazonian lakes. P-values are given for significant predictor variables.

MODEL MORPHOTYPES DF AIC PSEUDO-R2  COEFF
1 Poaceae (P < 0.001) 3 -80.829909 0.3520617 0.9311196
2 Arboreal (P < 0.001) + palms (p= 0.00171) 4  -77.6631 0.330868  -2.54171
3 CONICAL (P < 0.001) + SPHEROID palms 4 -81.028842 0.3109237 -1.3174533
(p=0.275)
4 Rugose SPHEROID (p= 0.20844) + Ornate 4  -68.925295  0.2009910 -1.5212419
SPHEROID (p= 0.00314)
5 Arboreal (P < 0.001) 3 -69.0147 0.176061  -1.5491
6 Rugose SPHEROID (p= 7.19e-05) + Ornate 6 -111.420252 0.5471110 -3.9841141

SPHEROID (P < 0.001) + CONICAL
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Figure 5. Six beta regression models were used to predict forest cover values (the proportion of forest pixels) within 200
m of 50 Amazonian lakes, using different phytolith groups/types. Sites are color-coded by assigned biogeographic region.

Pseudo-R? values, model coefficients and p-values are shown.

We aimed to assess the spatial scale at which
phytolith assemblages (can) predict forest cover
changes across five buffer sizes (100 m, 200 m,
500 m, 1 km, 2 km, Fig. S2). We found that forest
cover was highly correlated (>0.8) between these
buffers. Comparisons of phytolith assemblages with
satellite imagery and photographs showed the local
vegetation growing within 200 m of each lake was

well represented for most sites. For example, the palm
swamp vegetation at sites Igarapé and Buritizal Prainha
and the deforested landscape at Limdo (Fig. S6),
were appropriately reflected in the lake samples.
The combination of grass (<30%), palm and arboreal
phytoliths in the intermediate and high forested sites
likely indicated that the lakeshore vegetation and a
small fraction of the forest beyond it was captured
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Figure 6. a) The predicted proportion of forest cover within 200 m of Lake Kumpak?® based on Poaceae (orange), palms
(blue) and arboreal (green) phytoliths (Akesson et al. 2021). Median (dark green), 0.25 and 0.75 quantiles (grey) are shown
for each model. Models 3 and 6 refers to Table 1. The red arrow indicates the year 1983, which is shown in detail in b)
where the calculated forest cover for 1983 and 2014 CE (based on aerial images, Fig. S5) are compared to the predicted

forest cover for the period 1983 to 2014.

(Fig. 2). Therefore, a spatial scale of 200 m was chosen
for the beta regression models.

Pollen assemblages reflect biogeographical
gradients in Amazonia (Bush et al. 2021), and
likewise, Bambusoideae and Pooideae phytoliths are
mostly found in SW Amazon (Carvalho et al. 2013,
Watling et al. 2020), Fig S3). We also hypothesize
that the high abundance of CONICAL (and CON_FEW)
phytoliths in NW Amazon reflects the local abundances
of Iriartea deltoidea (Henderson et al. 2019, Ter
Steege et al. 2013). Unlike pollen, the taxonomic
resolution of phytoliths, however, does not allow
biogeographical gradients and Amazon forest types to
be distinguished. Instead, phytoliths seem well-suited
to detect local disturbances (Akesson et al. 2021,
Astudillo, 2018, Heijink et al. 2023, McMichael et al.
2015, 2022, Piperno, 2006, Piperno et al. 2021,
Witteveen et al. 2023) and forest cover (Bremond et al.
2005, Witteveen et al. 2023). In support, our DCA
results show that phytolith assemblages from highly
forested sites (like Samauma and Cocha Cachu) are
more similar to each other than sites in the same
biogeographical region (Fig. 3). Also, palm swamp
sites are grouped regardless of their location (Fig. 3).
Thus, phytolith assemblages can differentiate low,

intermediate, and high forest cover, which seems
a stronger driver of phytolith assemblages than
biogeographical gradients.

In line with our hypothesis, several phytolith
morphotypes were able to accurately model forest
cover changes (Figs. 5). Previous studies showed that
arboreal and palm phytoliths could predict tree cover
in tropical African forests (at mid or low elevations)
(Barboni et al. 2007). In contrast, our beta regression
models showed Poaceae phytoliths were most
accurate in predicting forest cover surrounding Lake
Kumpak?® (Fig. 6). Prior research indicated Poaceae
phytoliths are most sensitive to detect deforestation
and gradients of land-use (Watling et al. 2023,
Witteveen et al. 2023). The model with two types
of arboreal (rugose and ornate SPHEROID) and two
palm (CONICAL and SPHEROID) phytoliths showed
the highest pseudo-R? values (at 200 m and 1 km),
but likely resulted in an overfitted model, because
CONICAL palm phytoliths were associated with highly
forested sites in this dataset, and SPHEROID palm
phytoliths with sites containing intermediate forest
cover estimates (25%-75%).

The performance of our beta regression models is
likely affected by palm abundances. Palms can be a part
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of the forested landscape but are also known to grow
well in disturbed or deforested areas (Henderson et al.
2019, Muscarella et al. 2020, Salm, 2005, Smith,
2014). When applying the beta regression models
to paleo settings, the increase in a few palm trees
may disproportionally lead to high palm phytolith
abundances, which could lead to a decrease in other
arboreal phytoliths although forest cover is not
impacted/lowered. This balance likely explains why
model ‘Arboreal’ predicts a large decrease in forest
cover after 1005 CE and around ca. 150 BCE, when
palm phytoliths increase (Akesson et al. 2021) (Fig. 6).

Several Amazonian lakes had lower arboreal or
Poaceae phytolith abundances than expected based
on their estimated forest cover, possibly caused by
local flooding conditions influencing sedimentary
deposition or local vegetation. First, high abundances
of arboreal phytoliths were found at low forested sites
Santarem1, Santarem2 and Alter do Chao. However,
these arboreal phytoliths were mostly granulate
SPHEROID that probably corresponded to local flood
forest vegetation (Figs. S3, S7). Second, the high
abundance of Poaceae at Das Dores is likely because
this site was a floodplain with extensive Poaceae
vegetation on the lakeshore (Fig. S7).

Pollen and phytolith models showed similar trends
in their predicted forest cover for the last 2200 years
around Lake Kumpak?® (Fig. 7). Episodes of reduced
forest cover aligned with evidence of past cultivations
and burning events, which gave us confidence in
the ability of phytoliths to predict forest cover. Both
models predicted that most of the lake catchment
was forested (>80%) in the late-Holocene, and that

Phytoliths - 200 m buffer
Poaceae % Poaceae %

Pollen - 1 km buffer

deforestation occurred around ca. 1005 CE and
192 CE (Fig. 7). Around 150 BCE, however, phytoliths
predicted a decrease in forest cover within 200 m of
Lake Kumpak? that was not predicted within 1km of
the lake but coincided with increased Cecropia pollen
(Akesson et al. 2021). Combined, we interpreted these
results to represent (three periods of) increasing
human impact through time. Deforestation was small
scale, occurring within 200 m of the shore c. 150 BCE
before expanding to c. 1 km or more c. 190 CE.
Around 1005 CE as much as half of the forest cover
within 1 km of the lake was removed. These results
also supported the interpretation of a mosaic of
deforestation instead of widespread deforestation (and
reforestation) due to past human activities (Bush et al.
2021). Comparing forest cover reconstructions with
the pollen and phytolith assemblages (Akesson et al.
2021) showed that past human activities probably
had a more significant impact on forest composition
than on forest cover near Lake Kumpak?. This example
showed the potential of combining phytolith and
pollen data to reconstruct local vegetation and
environmental changes at different spatial scales,
improving understanding of how past human activities
changed Amazonian forests.

Some limitations in this study that may be
addressed in future research. Firstly, our estimates
of forest cover may be improved. We used a dataset
where the proportion of forest pixels is based on tree
species >5 m in height (Hansen et al. 2013), which
includes forests in various stages of succession but
can also include flooded forests or swamp forests.
We hypothesize that the calibration of arboreal and
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Figure 7. The predicted forest cover within 200 m and 1 km of Lake Kumpak?® based on beta regression models using
Poaceae phytoliths and pollen, respectively, covering the last 2200 years. An impression of the landscape is given for c.
150 BCE and 1005 CE, based on the model predictions (indicated with a star). The presence of charcoal fragments and

maize phytoliths and pollen are shown for comparison.
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palm phytoliths to forest cover estimates will be
improved if flooded, swamp, and early successional
forests are excluded or filtered out. Certainly, the
incorporation of higher resolution satellite imagery,
Light Detection and Ranging (LiDAR) or Unmanned
Aerial Vehicle (UAV) imagery would all offer substantive
improvements in forest cover estimates. Furthermore,
in future studies, phytolith assemblages could be
calibrated with other aspects of forest structure or
vegetation type using remote sensing, LiDAR and UAV
imagery (Witteveen et al. 2023), to better distinguish
forest types (Oliveira-Filho et al. 2021). For example,
we hypothesize that Mauritia flexuosa swamps may
be detected and quantified using palm phytoliths
based on UAV imagery and SPH_SYM morphotypes.
Improving estimates of forest cover to distinguish
between early successional and mature forests would
be an important improvement to understand long-
term forest recovery. Finally, our calibration dataset
may be improved by including more low-forested sites
(10-20%), because our dataset was skewed towards
sites with a high forest cover (Figs. 1, S1).

Phytolith taxonomy is continually improving
(Piperno and McMichael, 2023, 2020, Witteveen et al.
2022) and as more taxa are identified from phytoliths
the potential to capture biogeographical gradients will
improve. To this end, future research should expand
modern reference material from the bark, fruits, and
seeds of tree (and palm) species across Amazonia.
The abundance of various palm and arboreal phytoliths
is highly variable among soil samples from forested
sites (Barboni et al. 1999, Heijink et al. 2023, 2020,
McMichael et al. 2015, 2022, Piperno et al. 2021).
In this study, for example, granulate SPHEROID was
higher in the Para region and sites with intermediate
forest cover, while ornate SPHEROID was highest in
highly forested sites. It is possible that these sites
differ in their habitat (shrub or hardwood trees) and
tree species composition, which may be reflected by
different phytolith assemblages, but it is not known
which tree species produce granulate SPHEROID
phytoliths and the taxonomic resolution of ornate
SPHEROID is low (Piperno and McMichael, 2023, 2020).

Our results show phytolith assemblages from lake
sediments, like terrestrial soils (Dickau et al. 2013), can
distinguish savanna from tropical forests, and reflect
differences in local forest cover. Our dataset can be used
to begin quantifying deforested landscapes in Amazonian
rainforests, using Poaceae phytoliths. Combined with
Poaceae pollen, a multiproxy approach can be used to
reconstruct forest cover within 1 km (Blaus et al. 2023) of
Amazonian lakes. The integration of pollen and phytolith
assemblages can shed light on species compositional and
forest cover changes during long-term forest recovery.
Such insights are necessary to understand successional
trajectories and ecological legacies from pre-contact
and post-colonial human activities (McMichael, 2021).
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