2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET) | 979-8-3503-2259-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE-SEET58685.2023.00030

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-

SEET)

Improving Grading Outcomes in Software
Engineering Projects Through Automated
Contributions Summaries

Kai Presler-Marshall
Department of Computer Science
Bowdoin College
Brunswick, ME, US
Email: k.preslermarshall @bowdoin.edu

Abstract—Teaming is a key aspect of most professional software
engineering positions, and consequently, team-based learning
(TBL) features heavily in many undergraduate computer science
(CS) and software engineering programs. However, while TBL
offers many pedagogical benefits, it is not without challenges. One
such challenge is assessment, as the course teaching staff must
be able to accurately identify individual students’ contributions
to both encourage and reward participation. In this paper, we
study improvements to grading practises in the context of a
CS1.5 introductory software engineering course, where assessing
individual students’ contributions to weekly lab assignments is
done manually by teaching assistants (TAs). We explore the impact
of presenting TAs with automated summaries of individual student
contributions to their team’s GitHub repository. To do so, we
propose a novel algorithm, and implement a tool based off of
it, AutoVCS. We measure the impact on grading metrics in
terms of grading speed, grading consistency, and TA satisfaction.
We evaluate our algorithm, as implemented in AutoVCS, in a
controlled experimental study on Java-based lab assignments
from a recent offering of NC State University’s CS1.5 course. We
find our automated summaries help TAs grade more consistently
and provides students with more actionable feedback. Although
TAs grade no faster using automated summaries, they nonetheless
strongly prefer grading with the support of them than without.
We conclude with recommendations for future work to explore
improving consistency in contribution grading for student software
engineering teams.

Index Terms—grading consistency, program analysis, software
engineering teams

[. INTRODUCTION

Professional software engineering is, almost without excep-
tion, a team-based activity, drawing together multiple develop-
ers with disparate skills to solve complicated problems [1]. To
help prepare students for this reality, most computer science
(CS) and software engineering programs include some form
of collaborative learning. Many programs explicitly use team-
based learning (TBL) to give students a realistic collaborative
experience and teach teaming skills [2], [3], [4].

TBL means that students must learn effective collaboration.
One common challenge is encouraging students to participate
equitably in their team’s efforts, rather than freeriding off
of the contributions of their teammates [5] or dominating

979-8-3503-2259-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEET58685.2023.00030

Sarah Heckman
Department of Computer Science
North Carolina State University
Raleigh, NC, US
Email: sarah_heckman@ncsu.edu

259

Kathryn T. Stolee
Department of Computer Science
North Carolina State University
Raleigh, NC, US
Email: ktstolee@ncsu.edu

the effort and thus preventing others from contributing [6].
Ensuring equitable contributions generally requires individual
contribution grades for each student [7], which is often done
by TAs.

Unfortunately, TAs may struggle to provide students with
consistent and actionable feedback that recognises individual
contributions. While providing a grade deduction can serve as
a motivator to do better for freeriders, the most effective way
for students to learn is by providing formative feedback with
specific comments on how to improve [8], [9]. For students to
improve, they must receive consistent feedback [10]. However,
TAs may provide inconsistent grades and feedback [11], [12]
that impedes learning.

Prior efforts to improve grading consistency have considered
the use of rubrics [13], [14] and having multiple TAs or
instructors grade each assignment [15], [14]. However, even
with rubrics, grading individual contributions is subjective and
difficult to do consistently [13]; replicating grading efforts can
help resolve this, but is a drain on teaching staff resources.
In this study, we consider if automation can take the place
of multiple graders and offer similar benefits to grading
consistency.

We frame our work around the following research questions:

o RQ1: Can automated summaries of student contributions
enable faster grading by TAs?

e RQ2: Can automated summaries of student contributions
enable more consistent grading by TAs?

o RQ3: Can automated summaries of student contributions
enable less frustrating grading from the perspective of
TAs?

o RQ4: How do automated summaries of student contribu-
tions enable better feedback?

To answer these questions, we designed an algorithm to
summarise individual students’ code contributions to team
assignments, and built a reference implementation, AutoVCS,
for Java projects tracked through GitHub. To attribute contri-
butions to individual students, our algorithm uses Git commit
history and abstract syntax tree (AST)-based differencing [16],
and thus presents richer insights than tallying lines of code

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

(LOC) [17], [18]. We conduct a controlled experimental study
with 13 current or former TAs to understand how they grade
assignments when using automated summaries. Our results
show that automated summaries can help TAs grade more
consistently and provide more nuanced and actionable feedback,
compared to grading without summaries from the algorithm
and tool.
The contributions of this paper are as follows:

o an algorithm for summarising what individual developers
have contributed to collaborative software assignments,

« an implementation of our algorithm as a tool, AutoVCS,
which works on Java projects,

« a demonstration that our algorithm, implemented in Au-
toVCS, helps TAs grade lab assignments more consistently
and provide students with more useful feedback, and

o a demonstration that TAs prefer grading with summaries
from our algorithm.

II. RELATED WORK

Here, we discuss teaming in computer science and software
engineering education (Section II-A), formative assessment
(Section II-B), data mining in software engineering (Sec-
tion II-C), and measuring individual developers’ team con-
tributions (Section II-D).

A. Teaming in Computer Science and Software Engineering

Professional software engineering is a team-based activity [1],
[19] and consequently teaming is a core outcome assessed
by accreditation agencies [20]. To prepare students for this,
teaming is a core component of many CS programs [21], [18],
[22]. Teaming is used in many different contexts, ranging from
algorithms courses [23] to introductory courses [24] to final
capstones [21], [2]. Teaming is particularly common in software
engineering programs or courses [3], [21], [18], [25], [2].

Prior work has demonstrated that not all teams of soft-
ware engineering students work effectively together. Research
suggests that students lack the time management and project
management skills necessary to run a team [26], [4], resulting
in general disorganisation or interpersonal conflicts [4], [27],
[25]. Tacob and Faily [4] report that dysfunction is a risk in
student software engineering teams, where low engagement
or poor communication can hamper individual and team
outcomes. They identify that there may be team dysfunction,
but do not study its causes. Marques [27] proposes having a
“monitor” conduct weekly meetings with teams of software
engineering students, observing them work and providing
feedback on the overall team function and contributions of
each member. Presler-Marshall et al. [25] demonstrate that
these struggling teams can be proactively identified with a
collaboration reflection survey. Other prior work has indicated
social loafing, or freeriding, as the dominant challenge in
undergraduate engineering projects [5], [28]. Borrego et al. [28]
argue that freeriding is particularly common in introductory
courses and those with academically unbalanced teams [29],
as these students struggle the most at identifying how each
member can participate equitably. In this work, we aim to help

260

instructors identify when students’ contributions are insufficient
and help them provide the students with more actionable
feedback on what effective teamwork looks like.

B. Formative Assessment

Formative assessment is a key component of student-centred
learning, where students are provided early, and regular,
feedback on their work [9], [8]. Sadler argues that formative
assessment helps students identify the characteristics of “high
quality work™ by providing them with a “direct authentic
evaluative experience” [30]. This gives students the opportunity
to better engage with material and identify what they have
mastered and where they need to improve. While formative
assessment may take many forms, “specific written comments
are more effective than providing grades” at maximizing
learning [31], [9]. Formative assessment has been demonstrated
to be particularly helpful for lower-achieving students, helping
them perform better and thus narrowing the gap between the
lowest and highest achievers in a class [8].

Formative assessment is commonly used in CS and software
engineering education [32], [33], and may take many different
forms. Common approaches include giving students many, low-
stakes assignments or exams [34], [35], [36] and pre-tests to
assess areas for improvement [37]. Formative assessment may
be used in collaborative learning, giving students a chance to
engage in peer learning [35] or providing feedback that focuses
on working in teams [38]. Peer evaluations can also serve as
formative assessment [39].

C. Data Mining in Software Engineering

Prior work in data mining in software engineering fo-
cuses on version control systems (VCSs) such as GitHub.
Most approaches consider large-scale analysis of open-source
projects [40], [41], [42], [43], and often include machine
learning approaches [44].

Prior work has explored data mining within computer science
and software engineering education to understand how student
teams work. Glassy [45] studies software engineering teams
using SVN data and concludes that intermediate deadlines
can counteract a tendency to procrastinate. Merle et al. [17]
look at process and product features to see which features
correlate with student grades on software engineering projects.
They conclude that none work well, but LOC performs best.
Gitinabard et al. [44] use Git data to create a machine learning
classifier for identify types of commits from commit messages.
Smith [46] presents gitRHIG for visualising information from
assignments that use Git, although they merely demonstrate its
features and provide little formal evaluation.

Evaluating the processes and practises followed by student
teams can be a tedious experience, particularly when teams use
multiple distinct tools (such as GitHub, Jenkins, and Heroku).
To help instructors synthesise information across multiple
sources, Garcia et al. [47] present BlueJay, a customisable tool
that pulls together information from GitHub, Travis, Pivotal
Tracker, and others into a series of dashboards. They report that
these dashboards help instructors evaluate student development

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

processes, and the dashboards reveal that much work remains
in encouraging students to follow better Agile development
processes. By contrast, in our context Agile development
processes are taught more extensively in a followup course,
and thus our contributions summary algorithm, described in
more detail in Section IV, focuses on the code contributions
students make rather than the development processes that they
follow.

To enable drawing richer conclusions, prior research has
considered program analysis techniques. Fluri et al. [48]
use AST analysis with ChangeDistiller, which builds ASTs
representing two revisions of a Java file, and then performs
tree differencing to identify what was changed between the
two versions. Feist et al. [16] also use AST differencing to
understand the evolution of open-source projects. Spirin et
al. [49] present PSIMiner, a tool for producing annotated ASTs
from source code, thus enabling richer analytics from it. Our
algorithm builds on ChangeDistiller to identify changes made
in Java code, and integrates this with Git commit history to
understand how individual students are contributing to their
team’s overall effort.

D. Measuring Developer Contributions

Measuring individual developers’ contributions to software
projects remains an open challenge in industry and education.
Most techniques build off version control systems such as
Git and GitHub, measuring metrics including the number
of commits [17], [18], [40], [50], [51], pull requests [18],
[51], or lines of code [17], [18] made by each developer.
However, all of these approaches are limited. Commits and
pull requests can be large or small, and lines of code may
represent substantive changes or simply reformatting existing
code or committing auto-generated code. Measuring non-code
contributions is particularly challenging and is typically done
manually [19], [40]. In education, individual contributions
are typically assessed manually, usually by TAs [7]. Software
engineering projects in education also often use peer evaluations
to give more feedback on who is contributing and how [52],
[53].

III. BACKGROUND

At NC State University, CS1.5 is a Java-based introductory
software engineering course taken by all CS majors and minors
and is open to non-majors. CS1.5 typically has between 250 and
350 students a semester, and is taught by one PhD professor and
12-18 TAs, giving a student:teaching staff ratio of approximately
20:1. CS1.5 teaches fundamentals in object-oriented design
and development, best practises in software testing, and other
core software engineering processes and practises; additionally
it covers topics such as finite state machines and how to build
and use linear data structures. To apply concepts covered in
lecture, CS1.5 has a companion lab, where students work in
teams of three to implement and test a Java application. Pair
programming is introduced in the first lab session, and students
are encouraged, but not required, to work collaboratively on
lab tasks. Students work together on the same team, and use

261

the same GitHub repository, for three or four weeks, at which
point teams are scrambled for the next set of labs. Students
complete a total of 11 labs with three different teams over
the semester. When students rotate to a new team, they build
off of the best implementation of their new teammates. In
this way, students develop a medium-sized application, writing
approximately 2,500 lines of code over 11 weeks. As described
by Heckman and King [54], Jenkins is used to give students
immediate feedback on their code and automate most grading.

With most grading automated through Jenkins, TAs are
responsible only for grading Javadoc (to ensure it describes
the code) and individual contributions (which are evaluated by
checking commit history on GitHub to ensure each student
is participating equitably). We have observed that grading
individual contributions is a slow task that TAs dislike. Prior
work has shown that even with rubrics, precisely evaluating
contributions requires subjective judgement [13]; thus TAs
are unlikely to draw meaningful single-point distinctions.
Consequently, TAs provide coarse grades and feedback, giving
a 0 (“No contributions”), 5 (“Insufficient contributions’)
or 10 (“Sufficient contributions”), typically with no further
elaboration. However, this level of feedback may be insufficient
for students to identify what a sufficient contribution looks like,
and why their contribution was deemed insufficient. Prior work
argues that students want more feedback on their work [55],
and that providing this feedback can help improve the quality
of their work [9]. In this study, we aim to identify whether
our algorithm can assist TAs in providing students with this
higher-quality feedback.

IV. CONTRIBUTIONS ALGORITHM & AUTOVCS

To identify whether automated contributions summaries can
support grading, we developed an algorithm that uses commit
histories and program analysis to summarise individual students’
code contributions to team-based assignments. We then built
a reference implementation, AutoVCS, which operates on
assignments hosted on GitHub and written in Java. Our
algorithm features three main steps; a full implementation
is available in our GitHub repository [56].

1) Metadata Extraction: Metadata is extracted for each
repository, storing commit hashes, dates and times for each
commit, commit author, and a list of the files changed
on each commit. This step is performed on Line 2 of
Algorithm 1. While this information could be extracted
from Git directly as part of the next step, AutoVCS extracts
this information using the GitHub API and stores it locally
in a database to improve the performance of subsequent
steps and support user deduplication.'

Change Extraction: Similar to work done by Feist et
al. [16], this step extracts changes made on each commit.
It does so by traversing Git history to identify changed

2)

I'We have observed, similarly to Feist at al. [16], that many students
will commit their work under multiple aliases, which otherwise impedes
gaining a full picture of their contributions. Deduplicating aliases allows us to
combine contributions made across aliases, and using a local database allows
deduplicating these aliases much more efficiently than rewriting Git history.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Contribution Summary Algorithm

Algorithm 2 Summarise Changes By User Algorithm

1:

»

N AW

10:
11:
12:
13:
14:
15:

19:
20:
21:

22:
23:

24:
25:

procedure SUMMARISECONTRIBUTIONS(repo,[. ..]) > Computes
a contributions summary for a Git repository, optionally within a
time window, showing the contributions of each user
RepoM etadata +—initRepository (repo)
metadata, and optionally deduplicate users manually
R1 < clone (repo)
R2 < clone (repo)
ContribsByCommit < {}
for commit C in RepoMetadata do
if C.parent is null or C.isMergeCommit or
C.1isOutOfTimeWindow then
continue
end if

> Extract

ContribsForCommit < {}

Check out R1 to C

Check out R2 to C.parent

for ChangedFile in C.ChangedFiles do

AstNew < buildAST (R1.ChangedFile) ©
Build an AST representing the new version of the file
AstOld < buildAST (R2.ChangedFile) >

Build an AST representing the old version of the file
ContribsForFile <+ diff (AstNew, Ast0ld)
> Compute an edit script between ASTs to identify contributions
ContribsForCommit.insert (
ContribsForFile)
end for

ContribsByCommit.insert (C,
ContribsForCommit) ©> Map each commit to the changes
made as part of it

end for

ByUser < summarise (ContribsByCommit) >
Summarise changes per-user, to show changes across files and
commits

return ContribsByUser
end procedure

3)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

files, and then building ASTs from adjacent file revisions
and computing an edit script between them. This step is
shown in Algorithm 1 from lines 6 to 22. AutoVCS uses
our improved version of ChangeDistiller [48] to build and
difference ASTs for each file.

Contributions Summaries: Detailed edit scripts for each
file on each commit are aggregated to present higher-level
summaries for each user; this is shown in Algorithm 1
on line 23, with more details shown in Algorithm 2.
The resulting summaries are shown in Figure 1. Sum-
maries are computed with three levels of granularity: (I) a
weighted [57] sum of all contributions; @) a summary of
changes made across all files; and @ a summary of changes
made to each file. Additionally, to allow for grading non-
code contributions, a full list of commits can be shown
(). For the Java code supported by AutoVCS, @ and
(M use a condensed version of the change types proposed
by Gall et al. [57]; (D is a weighted combination of these
changes. Option (D) also uses the weighted contribution
scores to compute a percentage contribution for each
member. Individual code changes are summarised into four

262

1:

11:
12:

13:

15:
16:

18:
19:
20:

21:
22:
23:
24:

: ContribsByCommit do

procedure SUMMARISEBYUSER(ContribsByCommit) ©>
For a group of commits and associated fine-grained
changes, presents a summary per user and a contribution
score per user
ContribsPerUser < {}
for (Commit, Contribs)
> For each user, combine

in

contributions
if Commit .author notin ContribsPerUser
then
ContribsPerUser.insert (

Commit.author, {})
end if
ContribsPerUser.insert (
Commit.author, Contribs) > Add contributions
from this commit to the running tally of contributions for
this user
end for

SummarisedContribs < {}
for User, Contribs in ContribsPerUser
do > Summarise and weight contributions for each user
UserContribScore <— 0
UserContribSummary < {}
for Contrib in Contribs do
UserContribSummary.insert (
label (Contrib.type), existingCount+1)
> Summarises detailed edit operations into higher-level
contribution type
UserContribScore +=
weight (Contrib.type) > Computes weighted score
for user based on type of contribution
end for

SummarisedContribs.insert (User,
{UserContribScore, UserContribSummary})
end for

return SummarisedContribs
end procedure

categories: 1) changes to classes, 2) changes to methods, 3)
changes to documentation, and 4) all other changes. These
are shown in (@) in Figure 1.

Prior work has shown that LOC represents the best, although
still not particularly good, predictor for team grades [17].
We hypothesise that part of the problem is that not all LOC
changes are equal: languages such as Java contain substantial
“boilerplate” code that is often auto-generated and thus does not
represent a meaningful contribution. To address this, AutoVCS
recognises four common boilerplate methods [58], [59] in
Java code: hashCode (), equals (), getters, and setters.

@ D)

Display one
contributions score
for each user?

®

[Display commits
for each user?

Display summaries
for each user?

[Display details for
each user?

Contributions Data

A (A@XXXXXXXX.edu) |-- Contribution Score: 4672

Move OTHER -- 4 time(s)

Insert CLASS -- 8 time(s)

Insert OTHER -- 671 time(s)

Update DOCUMENTATION -- 2 time(s)
Update OTHER -- 9 time(s)

Insert DOCUMENTATION -- 38 time(s)
Insert METHOD -- 68 time(s)

B (B@XXXXXXXX.edu)|-- Contribution Score: 2492
Percentage contribution to team: 22.38%

Fig. 1: A trimmed contributions summary produced by AutoVCS. All
four types of summaries can be toggled on and off independently; two
are enabled. For brevity, details for student B and all contributions
for student C are not shown.

Changes to these methods are skipped so that contributions
are not artificially increased by autogenerated code. In our
course context, GUI files are provided by the teaching staff, so
AutoVCS has a toggleable option to skip them. We hypothesise
that these options, combined with that AST differencing
implicitly ignores formatting changes, may offer better insights
than just changed LOC or number of commits.

AutoVCS is a web application, and can be run in interactive
mode and batch mode. In interactive mode, the user selects a
single repository and time window and summaries are computed
live and displayed. Batch mode instead runs from a JSON
configuration file, and produces an HTML summary page for
each repository specified. In this mode, the summary pages are
self contained and do not depend upon AutoVCS’ application
server, and thus can be used externally (for example, hosted on
GitHub Pages). On a Xeon E5-2670 with 16GB RAM and an
SSD, analysis takes about two minutes for a repository with
100 commits. Batch mode also supports creating summaries
for multiple repositories in parallel to improve performance;
details are in our GitHub repository [56].

V. STUDY

To answer our research questions, we designed and con-
ducted a two-part controlled experimental study with 13
participants to evaluate whether our algorithm, as implemented
in AutoVCS, can help TAs grade more effectively (RQ1 &
RQ2), make grading less frustrating (RQ3), or provide better
feedback (RQ4). The study outline and research questions
answered in each part of the study are shown in Figure 2.
We recruited participants from two groups: a) 44 students
who have served as TAs for two team-based undergraduate
software engineering courses (CS1.5 and a third-year advanced
software engineering course) within the past two years, and b)
all CS PhD students at NC State University with TA experience.
Nine students from group a) and four students from group b)

263

Part 1: Grading
(~90min)
RQ1,RQ2, RQ4

Reflection
(~5m)
RG3

Part 2: Evaluating Feedback
(~10min)
RQ4

Introduction
(~10min)

Fig. 2: Study Outline, showing the parts of the study, the approximate
time spent on each part, and what RQs were answered by each.

participated. The participants had an average of 6.6 years
of experience with Java (median: 6) and 4 semesters of TA
experience (median: 4). Four participants identified as female,
and five as members of a minority racial group.

This study was conducted in four, two-hour lab sessions,
held physically in a computer lab. We provided snacks, but
participants were not otherwise compensated. All sessions
followed the same procedures, and participants attended only
one session. An outline of the study is shown in Figure 2.
A brief introduction was provided to all participants before
Part 1, explaining both parts of the study, the format of the
tasks, and how to use the automated contributions summaries.
In Part 1 (Section V-B), participants graded lab assignments
from a recent offering of our CS1.5 course. Some assignments
were graded without automated assistance (the control group)
and some with summaries from our algorithm and AutoVCS
(the experimental group). In Part 2 (Section V-C), participants
evaluated feedback from other participants in the study. Finally,
at the end of the study, participants completed a brief reflection
(Section V-D).

A. Terminology

We refer to the individual students whose assignments were
graded as subjects. We refer to the 13 TAs who participated in
our study as participants or raters, depending on context. We
refer to the grades assigned by raters to subjects as ratings. We
refer to rating subjects when referring to individual students, or
grading assignments when referring to the entire three-person
team.

B. Part 1: Grading

In Part 1, participants were tasked with grading 17 lab
assignments from a recent offering of our CS1.5 course. We
provided each participant a Google Sheets spreadsheet, where
each assignment to grade was on a separate row (Figure 3).
A random subset of nine assignments had summaries from
AutoVCS (the experimental group); the other eight had no
summaries available (the control group). For each assignment,
the spreadsheet contained a) a link to the GitHub repository
with the code, b) a reminder of the time interval to grade, and
c) where applicable, a link to the contributions summary from
AutoVCS. The order of the 17 tasks was randomised for each
participant. For each subject on each team, raters provided a) a
contribution score (0, 5, or 10, as discussed in Section III), b)
if the score was not a 10, a comment to the subject explaining
what to do differently to receive more points, and ¢) a comment,
not shared with the subject, giving the rationale for the score.
We instrumented the spreadsheet to reveal tasks one at a time
and capture start times and end times for each task. An excerpt

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

Click here when
you're ready to Grade Contributions

Task Number startthisteam After thistimestamp: Automated Summaries Repo
http: -~

Grac

oryA

965

Example 9/14/2021 10:20 AM https //page JGrad 8e7:

httpe

1 11/16/2021 10:20 AM _ https //page JGrad adin

hitps

adin

2 10/25/2021 7:10 PM No automated summary available B/tre

hitpe

adin

3 9/21/2021 10:20 AM No automated summary available %

https

adiny

4 10/19/2021 2:40 PM _ hitps //page JGrag Sltre

If you gave ‘A’ less than full
credit, provide feedback on
what they should do differently
next week. If you give full

Q

Student ‘A" credit, you can still provide Why did you give "A’
Grade feedback! the grade you did?
du/
23 You've written some good tests this They tested some valid
b2 week, but please make sure that and invalid scenarios,
ada you're more involved with tasks but didn't do as much as
5 ~ next week their teammates
wGr They seemed to make
itory 10 ~ reasonable contribution
wer reasonable contribution
ftory on both implementation
foof 10 ~ + testing
£Ge reasonable contribution
% on both implementation
=== 10 - + testing
o We would like to see better team
m contribution next lab, please work
%dj 0 ~ for your team to split the tasks. no contribution.

Fig. 3: Excerpt from the spreadsheet used for Part 1, showing grades (D)), comments (@), and rationale ({I}). Feedback for students B and

C is not shown.

from the spreadsheet used, showing grades and comments for
several students, is shown in Figure 3.

The assignments to grade were prepared by anonymising
18 weekly lab assignments from a recent offering of our
CS1.5 course, replacing authors in Git commits and code with
pseudonyms.? These anonymised assignments were hosted on
GitHub Enterprise to mirror normal grading practises. One
assignment was used as an example to demonstrate the tasks
and the contributions summaries; the other 17 were used as
tasks for the study.

C. Part 2: Evaluating Feedback

In Part 2, participants were asked to put themselves in
the mindset of a student receiving feedback and evaluate its
actionability. We provided participants with ten pairs of grades
and comments from other participants in the study and asked
them to choose which comment from each pair is “more helpful
in letting you know what to improve upon”, or Either (no
difference) as appropriate. One grade and comment in each
pair came from an assignment from the control group, and
one came from the experimental group. This label was not
shown, and the order of the two comments was randomised.
An example of the spreadsheet used is shown in Figure 4.

D. Reflection Survey

Finally, we asked participants to complete a brief reflection
on the grading experience. The reflection asked participants
how they used the automated summaries; how helpful they
found each of the main features (shown in Figure 1); how
they would improve the summaries; and whether they would
choose to use them again. We also collected basic demographic
information.

2Rewriting files in Git while keeping the history (commit author and
timestamps) is not officially supported, and could not be performed on
repositories where students introduced merge conflicts. Eighteen assignments
could be completely anonymised.

264

Grade 1 Comment 1 Grade2 Comment 2 1 would choose...

Good job on fixing code and adding
tests! Next time see if you can
contribute more on the

5 implementation side of things

Try to contribute more by coordinating
with your teammates and asking what
0 help is needed
good job in FSM and code
10 contribution.

Either (0
difference) -
Either (no

difference) -

Great wark both on implementation
10 and testing
There is some implementation and
testing along with the javadocs. But it
would be better if you did some more
10 implementation.
you need to wiite more tests and
implementations rather than fixing
5 typos and generating javadocs

Good job in implementation and

10 testing Comment 2 -

fixing checkstyle is not enough

0 contribution Comment 2 -

Fig. 4: Excerpt from the spreadsheet used for Part 2, showing several
pairs of comments alongside corresponding votes.

E. Data Description

1) Survey Responses: We converted the text Likert scale to
numbers, and treat them as interval-scaled data [60], where 1
maps to the lowest score (e.g., “Not at all helpful” and “Never”),
and 5 maps to the highest score (e.g., “Extremely helpful” and
“Always”). We qualitatively analysed the open-ended questions.
All 13 participants completed the reflection survey.

2) Data Details: In Part 1, we tasked 13 participants with
grading 17 assignments. Some participants graded more slowly
than others, and consequently not all participants finished
grading all assignments. The 13 participants in our study graded
a total of 204 assignments, providing 610 ratings for individual
students.>

In Part 2, we provided each participant with ten pairs of
grades and comments and asked them to choose which comment
from each pair was more actionable. The 13 participants chose
comments from the experimental group 60 times, comments
from the control group 43 times, and expressed no preference
27 times.

3) Analysis: To answer RQ1 we compared grading times
for assignments from the control and experimental groups. The

3Note this is not an exact multiple of 3, as two participants each missed
rating one subject. If all participants had graded all assignments, there would
have been 663 ratings (13 participants * 17 assignments * 3 students per
assignment = 663 ratings).

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Grading time, in minutes, for assignments that
were graded manually (Control) or with automated summaries
(Experimental). Times are split into the first eight assignments
(first half) and second nine assignments (second half) graded
by each participant.

First Half Second Half Overall
Mean Median | Mean Median | Mean Median
Control 7.57 7.13 4.36 4.02 5.85 5.31
Experimental 7.88 6.79 4.66 4.10 6.35 5.44

distribution of the elapsed times is skewed right; consequently,
we chose a Mann-Whitney U test, a non-parametric test.

To answer RQ2, we computed inter-rated reliability (IRR)
for the control and experimental groups. Raters provided three
grades for each assignment (one for each of the three students
on the team); thus each student is a unique subject rated by up
to 13 raters. We use Krippendorff’s Alpha [61] for computing
IRR, as it handles a different number of ratings per subject.
As suggested by Zapf et al. [62] we calculated confidence
intervals for both groups and identified the g-value where they
are disjoint.

To answer RQ3, we read through responses to the reflection
to understand how participants used the summaries and whether
they would choose to use them again.

We answered RQ4 with two different metrics. To identify if
automated summaries help participants provide better feedback
we performed Fisher’s Exact Test on the preferences from
Part 2. To understand if automated summaries help TAs see
nuance and discern between partial and full contributions, we
performed a test of two proportions on the rates of partial
credit for each of the two groups.

VI. RESULTS

In this section we present results for whether automated
contributions summaries can enable faster (Section VI-A) or
more consistent (Section VI-B) grading. We also consider
impacts on the grading experience (Section VI-C) and feedback
to students (Section VI-D).

A. RQI: Grading Speed

We find no significant difference in grading speed from
automated summaries. As shown in Table I, participants graded
assignments in the control group in an average of 5.85 minutes.
Participants graded assignments in the experimental group in
an average of 6.35 minutes. A Mann-Whitney U Test confirmed
that the difference was not significant (p = .677).

We observe a learning curve as participants get more com-
fortable with, and consequently faster at, grading assignments.
To evaluate a learning curve, we compared times taken to
grade the first half and second half of the assignments within
the control and experimental groups using Mann-Whitney U
tests. We observed learning effects in both groups, showing
that regardless of how participants graded assignments, they
got faster over time (p < .001 for both groups).

We observe that grading may feel faster when using auto-
mated summaries. One participant reflected “it definitely felt

265

faster to grade” with the automated summaries. While the
numbers do not back this up, if the process feels faster, TAs
may consider it less of a burden.

’RQI: Automated summaries do not impact grading speed.

B. RQ2: Grading Consistency

We find that automated summaries can help TAs grade more
consistently. We calculated Krippendorff’s Alpha («) separately
for the control and experimental groups to identify how
consistently the raters of each subject agreed with each other.
We find o = 0.286 for the control group, and o = 0.609 for
the experimental group. At ¢ = .021*, the confidence intervals
are disjoint, showing that automated summaries significantly
improve grading consistency.

We note, however, that even though automated summaries
help TAs grade more consistently, « = 0.609 still indicates a
relatively low level of agreement. Krippendorft argues that “it
is customary to require o > .800” [65], which participants in
our study did not meet. We discuss possible causes of this and
implications in Section VII-B.

RQ2: TAs grade assignments more consistently using
automated summaries than without them.

C. RQ3: Grading Preferences

We find that TAs have a strong preference for grading with
automated summaries. All 13 participants said that they would
prefer to use automated summaries for grading in the future,
with 11 participants saying they would strongly prefer them.
Participants gave the automated summaries an average rating of
4.85 out of 5. One participant said “I think the tool was a huge
help” and rated it 5 out of 5. Another participant, who rated
the summaries 4 out of 5, said they were “very straightforward
to use”.

As shown in Figure 5, participants find all of the features
of the contributions summaries to be useful. As discussed
in Section V-E1, we calculated the average score given to
each feature. Participants found the List of commits for each
user ({¥ in Figure 1) to be the most useful feature, rating it
4.46/5 (halfway between Very Helpful and Extremely Helpful).
Percentage Contribution to Team (part of (I) in Figure 1)
was rated as the second most useful, with a score of 3.92/5
(corresponding to Very Helpful). All features received a rating
of 5 from at least one participant, and received an average rating
of at least 3.4/5, approximately halfway between Moderately
Helpful and Very Helpful. Our results thus show that both
summaries of commit history and more advanced program
analysis can assist with grading.

RQ3: TAs strongly prefer grading with summaries from
AutoVCS and find all of the features helpful.

4Krippendorff’s o uses g-values as opposed to p-values as they provide
improved resilience when performing multiple comparisons. g-values are
interpreted the same way as p-values [63], [64].

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

List of commits for each member 3%
Contribution percentage for each member 2%
Contributions summaries for each member 15%
Contribution score for each member 8%
Highlighting of dateftime of last commit for each 549
member
100

Response

2%
|
2%
25%
62%
46%.
|
50 0 50 100
Percentage
Did notuse Slightly Helpful Wery Helpful
Notatall Helpil Moderately Helpful [l Extremely Helprul

Fig. 5: Ratings from the participants in our study for each of the main features of our contributions summaries algorithm and

AutoVCS.

D. RQ4: Feedback Quality

TAs consider feedback from assignments graded with
automated summaries to be more actionable than assignments
graded manually. As described in Section V-C, we asked
participants to choose between pairs of comments from other
participants in the study to choose which one makes it clearer
“what to improve upon”. A Fisher Exact Test confirmed
(p = .0311) a preference for comments from the experimental
group, thus showing that TAs consider feedback from their
peers more useful when it came from assignments graded with
automated summaries.

We also observe that the quantity of feedback is impacted by
automated summaries. We compared the rate at which partial
credit was assigned in both groups, and find TAs award partial
credit to 17.1% of subjects in the control group, and 24.9% of
subjects in the experimental group. A test of two proportions
shows that this difference is significant (p = .018). TAs are
expected to provide feedback on where to improve alongside
partial credit, but are not required to do so for full credit. By
giving more partial credit, this may help TAs provide students
with more feedback and thus improve learning outcomes [31],
[9].

One participant reflected that “I was terrified at how much
[the automated summaries] made me reconsider some of
my initial grading thoughts”. We thus see evidence that our
contributions summary algorithm may be able to help TAs
grade more carefully, and thus provide better feedback and

266

improved learning outcomes [31], [9]. We expand further on
this in Section VII-A.

RQ4: TAs consider feedback from assignments graded with
automated summaries to be more helpful than feedback from
assignments graded without them, and automated summaries
help TAs see nuance and provide partial credit more often.

VII. DiscussioN

In this section, we consider how TAs used the automated
summaries when grading (Section VII-A), probe grading
inconsistencies (Section VII-B), discuss threats to validity
(Section VII-C) and explore future work (Section VII-D).

A. TA Use of Automated Summaries

Prior work has shown that, paradoxically, improving the
quality of an AI or machine learning algorithm may result
in a net negative overall performance impact, as the humans
responsible for reviewing the output instead choose to defer to
the machine over offering their own judgement [66], [67]. We
were curious to see if the high-level contributions scores, and
corresponding percentage contributions ((D) in Figure 1), would
have a similar impact on our participants: TAs who might see
a high (or low) overall contributions score, and look no further
before deciding what grade to give. Our results suggest that this
did not happen. We observed that TAs spent the same amount
of time grading assignments when they had the automated
contributions summaries to support them as they did grading

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

assignments without the automated summaries. Although we
expected, and observed, a learning curve as TAs learn how to
use the automated summaries and more broadly gain familiarity
with the study tasks, we observed no statistically-significant
difference in the learning effect between groups: grading times
in the control and experimental groups improved at the same
rate. This matches against our results in Section VI-D, namely
by showing that the automated summaries helped TAs see
nuance between different students’ submissions and award
more partial credit rather than less. This confirms that the
improved consistency seen in Section VI-B was not a result of
giving more subjects no credit, or full credit. Thus, our results
suggest that there was not an over-reliance on the automated
summaries, and the TAs used them to guide their grading rather
than serving as a rubber stamp upon the numbers produced by
our algorithm and our tool.

B. Improving Grading Consistency

In Section VI-B, we found that automated summaries
improve grading consistency, but that consistency remains an
issue. To probe this further, we focused on the most extreme
cases: subjects who were given full credit (10) and no credit
(0) by different raters. We found seven of these subjects
within each of the control (manual grading) and experimental
(automated summaries) groups. To understand these ratings,
we read through the comments and rationale from each rater
for these subjects.

We find that while the number of these disagreements does
not differ across both groups, the causes do. In the control
group, four of the seven disagreements came from issues
identifying individual contributions. In two cases, a rater gave
credit even when the subject had made no contributions. In an
additional case, a rater gave credit for work done outside of the
time window (work for a different lab, which used the same
repository) and in a final case, a rater missed contributions that
were made by the subject. By contrast, in the experimental
group, we saw only two issues with identifying contributions. In
one case, the rater gave credit for contributions outside the time
window; in the second, the rater appeared to miss contributions
within the time window>. The remaining cases (3 from the
control group, 5 from the experimental group) were caused by
disagreements over what contributions deserved credit (non-
code contributions, such as system testing and documentation)
and cases of pair programming. The sample size is small,
but these results suggest that automated summaries may help
TAs more accurately identify individual students’ contributions;
work remains to ensure that students are credited equitably for
these contributions.

C. Threats to Validity

Conclusion: To combat any impacts of multiple study
sessions, we used a script to introduce the study procedures and
ensure that the experience was comparable for all participants.

SAs discussed in more detail in Section VII-D, participants appeared to
struggle the most with identifying non-code contributions, such as project
management tasks and system testing.

267

Differences in elapsed times between groups were calculated
with nonparametric tests to handle skewed data. Grading
consistency, or inter-rater reliability, was calculated using
Krippendorff’s Alpha, which handles missing data [61].
Internal: To counter learning effects, the order of tasks for
each participant was randomised.

Participants knew that their behaviour was being studied,
and thus may have graded more carefully than they would
otherwise do. However, this applies to participants in both
the control and experimental groups equally, and a significant
improvement was still observed.

Construct: We measure consistency by calculating inter-rater
reliability, evaluating whether TAs’ ratings agree with each
other. We do not consider whether the ratings agree with an
expert, such as a course instructor. However, our evaluation
matches typical grading practises.

External: We conducted Part 1 of study using Google Sheets,
and participants graded student labs from a recent semester.
Both the study tasks and format emulate the normal grading
experience. However, all assignments came from a single
semester of a single course. We suggest future work to consider
broader course contexts.

All participants in the study were current or former TAs for
team-based computer science courses and have experience with
evaluating individual contributions. However, some but not all
of the TAs have worked on CS1.5 and thus are more familiar
with the specific tasks in this study. Additionally, all participants
volunteered to take part in the study, and thus may be more
interested in evaluating tools that could improve their workflow,
and more inclined to do a careful job, than the average TA.
Busy graduate students who are less enthusiastic about their TA
duties may grade assignments differently, possibly including
relying more heavily on the automated summaries, than we
observed.

As students, the participants are also familiar with interpret-
ing feedback; however, all are graduate students or upper-level
undergraduates, and consequently may do so differently from
CS1.5 students.

D. Future Work

As discussed in Section VI-B, our results show that auto-
mated summaries can help TAs rate subjects significantly more
consistently, but consistency is still relatively poor. Rubrics
have been widely used to improve grading consistency and
fairness [68], [69]; however, to the best of our knowledge, no
prior work has evaluated their impact on assessing individual
contributions. We propose evaluating whether rubrics can be
used to help grade individual contributions more consistently.

We find that participants particularly struggled with grading
pair programming. Pair programming is encouraged, as prior
work has demonstrated its pedagogical benefits [70]; however,
contributions in Git appear only under the name of the
student who committed the code. While we instruct students
to document pair programming via commit messages, it
is not clear how often they do so. Unfortunately, students
regularly forget to add @author tags to their Javadoc, which

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

means we lack a ground truth for a post-hoc analysis of
which contributions resulted from pair programming, and thus
for evaluating how effectively pair work was documented
and assessed. Future work remains in studying how best to
encourage students to document collaborative work, and then
ensure that pair programming is graded fairly.

Much work remains to be done in account for non-code
contributions. We found several participants who missed
students’ project management or system testing contributions,
which are done in text or PDF documents instead of Java
code. Prior work suggests automatically crediting non-code
contributions is an open problem [19], [40]. We propose
future work to support grading with automation in this area,
particularly in semi-structured formats such as GitHub Issues
or Pull Requests.

In Section VI-D we found that TAs consider feedback
from assignments that were graded with automated summaries
to be more actionable than feedback from manually-graded
assignments. We suggest future work to evaluate learning gains
by putting the feedback directly in front of students in the
target course to evaluate whether these benefits transfer to an
undergraduate student population.

In Section VII-A, we observed that TAs use the information
provided in the automated summaries to get a more nuanced
look at the student assignments, giving better feedback and
more partial credit (Section VI-B and Section VI-D) than
the control group. We propose future work to study the TAs’
feedback in more detail, to determine how closely linked the
feedback is to the automated summaries themselves. This work
could inform further improvements to the automated summaries,
to better help the TAs in finding the information they need for
grading assignments, or potentially open up the possibility for
auto-generating some or all of the feedback that is provided
to students on their work.

In this paper, we performed a lab study to evaluate whether
contributions summaries from our algorithm, as implemented
in AutoVCS, can help TAs grade assignments more consis-
tently and provide students with better feedback. While our
results show a statistically significant improvement in grading
consistency, we suggest future work to evaluate whether these
benefits transfer to a larger set of assignments in a full course.

As described in Section V-B, all grading was performed in
Google Sheets spreadsheets. This was done to mimic normal
grading processes for the course. We propose future work to
study how to support different grading workflows, including
integrating contributions summaries into LMS platforms such
as Moodle and Canvas.

VIII. CONCLUSION

In this work, we developed an algorithm for summarising
individual students’ code contributions to team assignments
using Git commit history and AST analysis. We built a tool,
AutoVCS, that implements our algorithm, and evaluated it
with a controlled, A/B experimental study with 13 TAs, who
graded some assignments with automated summaries and
some assignments without them. We found that automated

268

summaries help TAs grade assignments more consistently and
provide students with feedback that is possibly more actionable.
Additionally, although the contributions summaries do not
help TAs grade assignments more rapidly, TAs nonetheless
strongly prefer to grade assignments using them and would
choose to use them again. Finally, we reflect on ways to
further improve grading consistency with the use of rubrics,
and suggest future work to explore the use language-agnostic
contributions analysis and automated support for evaluating
non-code contributions.

ACKNOWLEDGMENTS

This work was supported in part by NSF SHF grants
#1749936 and #1525173. We would like to thank the students
of NC State University’s Software Development Fundamentals
course for allowing us to use their data for analysis, and the
teaching assistants who volunteered their time and participated
in our study. Finally, we would like to thank Dr. Dan Harris
for providing his statistical expertise.

DATA AVAILABILITY

AutoVCS is open-source and is available with documentation
and setup instructions on GitHub [56].

REFERENCES

[1] 1. Richardson, V. Casey, F. McCaffery, J. Burton, and S. Beecham, “A
process framework for global software engineering teams,” Information
and Software Technology, vol. 54, no. 11, pp. 1175 — 1191, 2012.

R. Bates, J. Hardwick, G. Salivia, and L. Chase, “A project-based
curriculum for computer science situated to serve underrepresented
populations,” in Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education, ser. SIGCSE 2022. ACM, 2022, p.
585-591.

J. E. Sims-Knight, R. L. Upchurch, T. A. Powers, S. Haden, and R. Topciu,
“Teams in software engineering education,” in 32nd Frontiers in Edu.,
vol. 3, 2002.

C. Tacob and S. Faily, “The impact of undergraduate mentorship on
student satisfaction and engagement, teamwork performance, and team
dysfunction in a software engineering group project,” in Proceedings of
the 51st ACM SIGCSE, ser. SIGCSE "20. ACM, 2020, p. 128-134.
D. Hall and S. Buzwell, “The problem of free-riding in group projects:
Looking beyond social loafing as reason for non-contribution,” Active
Learning in Higher Education, vol. 14, no. 1, pp. 3749, 2013.

K. Presler-Marshall, S. Heckman, and K. T. Stolee, “What makes team([s]
work? a study of team characteristics in software engineering projects,”
in Proceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 1, ser. ICER *22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 177-188.

A. Tafliovich, A. Petersen, and J. Campbell, “On the evaluation of student
team software development projects,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’15.
ACM, 2015, p. 494-499.

P. Black and D. Wiliam, “Inside the black box raising standards through
classroom assessment,” vol. 80, 09 2010.

B. Wisniewski, K. Zierer, and J. Hattie, “The power of feedback
revisited: A meta-analysis of educational feedback research,” Frontiers
in Psychology, vol. 10, 2020.

D. L. Butler and P. H. Winne, “Feedback and self-regulated learning: A
theoretical synthesis,” Review of Educational Research, vol. 65, no. 3,
pp. 245-281, 1995.

N. Glazer, “Formative plus summative assessment in large undergraduate
courses: Why both?” The International Journal of Teaching & Learning
in Higher Education, vol. 2014, pp. 276-286, 03 2015.

J. Hayes, T. Lethbridge, and D. Port, “Evaluating individual contribution
toward group software engineering projects,” in 25th International
Conference on Software Engineering, 2003. Proceedings., 2003, pp.
622-627.

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

A. Jonsson and G. Svingby, “The use of scoring rubrics: Reliability,
validity and educational consequences,” Educational Research Review,
vol. 2, no. 2, pp. 130-144, 2007.

I. Albluwi, “A closer look at the differences between graders in
introductory computer science exams,” IEEE Transactions on Education,
vol. 61, no. 3, pp. 253-260, 2018.

K. Raman and T. Joachims, “Methods for ordinal peer grading,” in
Proceedings of the 20th ACM SIGKDD, ser. KDD ’14, 2014, p.
1037-1046.

M. D. Feist, E. A. Santos, I. Watts, and A. Hindle, “Visualizing project
evolution through abstract syntax tree analysis,” in 2016 IEEE Working
Conference on Software Visualization (VISSOFT), 2016, pp. 11-20.

K. Mierle, K. Laven, S. Roweis, and G. Wilson, “Mining student cvs
repositories for performance indicators,” in Proceedings of the 2005
International Workshop on Mining Software Repositories, ser. MSR ’05.
ACM, 2005, p. 1-5.

R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’
contributions in software engineering projects using git-driven technology,”
in 2018 IEEE Frontiers in Education (FiE), 2018, pp. 1-5.

F. Ramin, C. Matthies, and R. Teusner, “More than code: Contributions
in scrum software engineering teams,” in Proceedings of the IEEE/ACM
42nd International. Conference on Software Engineering Workshops, ser.
ICSEW’20. ACM, 2020, p. 137-140.

“Criteria for accrediting engineering
2021 2022, Oct 2020. [Online].
https://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-computing-programs-2021-2022/
J. Khakurel and J. Porras, “The effect of real-world capstone project in
an acquisition of soft skills among software engineering students,” in
2020 IEEE 32nd Conference on Software Engineering Education and
Training (CSEE&T), 2020, pp. 1-9.

C. Hundhausen, A. Carter, P. Conrad, A. Tariq, and O. Adesope, “Eval-
uating commit, issue and product quality in team software development
projects,” in Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. ACM, 2021, p. 108-114.

X. Lin, J. Connors, C. Lim, and J. Hott, How Do Students Collaborate?
Analyzing Group Choice in a Collaborative Learning Environment. ACM,
2021, p. 212-218.

J. E. Burge, G. Gannod, M. Carter, A. Howard, B. Schultz, M. Vouk,
D. Wright, and P. Anderson, “Developing cs/se students’ communication
abilities through a program-wide framework,” in Proceedings of the
45th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’14. ACM, 2014, p. 579-584.

K. Presler-Marshall, S. Heckman, and K. Stolee, “Identifying struggling
teams in software engineering courses through weekly surveys,” Pro-
ceedings of the 53rd ACM Technical Symposium on Computer Science
Education, 2022.

B. Oakley, R. Brent, R. Felder, and I. Elhajj, “Turning student groups
into effective teams,” Journal of Student Centered Learning, vol. 2, 01
2004.

M. R. Marques, “Monitoring: An intervention to improve team results
in software engineering education,” in Proceedings of the 47th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’16.
ACM, 2016, p. 724.

M. Borrego, J. Karlin, L. D. McNair, and K. Beddoes, “Team effec-
tiveness theory from industrial and organizational psychology applied
to engineering student project teams: A research review,” Journal of
Engineering Education, vol. 102, no. 4, pp. 472-512, 2013.

V. Pieterse and L. Thompson, “Academic alignment to reduce the presence
of ‘social loafers’ and ‘diligent isolates’ in student teams,” Teaching in
Higher Education, vol. 15, no. 4, pp. 355-367, 2010.

D. R. Sadler, “Formative assessment and the design of instructional
systems,” Instructional science, vol. 18, no. 2, pp. 119-144, 1989.

J. Hattie and H. Timperley, “The power of feedback,” Review of
educational research, vol. 77, no. 1, pp. 81-112, 2007.

M. Marchisio, T. Margaria, and M. Sacchet, “Automatic formative
assessment in computer science: Guidance to model-driven design,”
in 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC), 2020, pp. 201-206.

L. Benotti, M. C. Martnez, and F. Schapachnik, “A tool for introducing
computer science with automatic formative assessment,” IEEE Transac-
tions on Learning Technology, vol. 11, no. 2, pp. 179-192, 2018.

programs,
Available:

269

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

P. Belleville, S. A. Wolfman, S. Bradley, and C. Heeren, Inverted Two-
Stage Exams for Prospective Learning: Using an Initial Group Stage to
Incentivize Anticipation of Transfer. ACM, 2020, p. 720-738.

S. MacNeil, C. Latulipe, and A. Yadav, “Learning in distributed low-
stakes teams,” in Proceedings of the Eleventh Annual International
Conference on International Computing Education Research, ser. ICER
’15. ACM, 2015, p. 227-236.

H. Erdogmus, S. Gadgil, and C. Péraire, “Introducing low-stakes just-in-
time assessments to a flipped software engineering course,” 01 2019.
M. C. Parker and Y. S. Kao, “How do you know if they don’t know?
the design of pre-tests in computing education research,” in Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education,
ser. SIGCSE 2022. ACM, 2022, p. 1147.

S. Reckinger and B. Hughes, Strategies for Implementing In-Class,
Active, Programming Assessments: A Multi-Level Model. ACM, 2020,
p. 454-460.

H.-J. Lee and C. Lim, “Peer evaluation in blended team project-based
learning: What do students find important?” Educational Techology and
Society, 2012.

J.-G. Young, A. Casari, K. McLaughlin, M. Z. Trujillo, L. Hébert-
Dufresne, and J. P. Bagrow, “Which contributions count? analysis of
attribution in open source,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021, pp. 242-253.
I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE ToSE, vol. 37, no. 3, pp. 307-324, 2011.

A. Mauczka, F. Brosch, C. Schanes, and T. Grechenig, “Dataset of
developer-labeled commit messages,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp. 490-493.

D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Software Engineering, vol. 11, no. 3, p. 369-393, sep
2006.

N. Gitinabard, R. Okoilu, Y. Xu, S. Heckman, T. Barnes, and C. F.
Lynch, “Student teamwork on programming projects. what can github
logs show us?” in Proceedings of the 13th International Conference on
Educational Data Mining, EDM 2020. International Educational Data
Mining Society, 2020.

L. Glassy, “Using version control to observe student software development
processes,” Journal of Computing Sciences in Colleges, vol. 21, no. 3, p.
99-106, feb 2006.

C. M. Smith, “A toolset for mining github repositories in educational
software projects,” Ph.D. dissertation, 2018.

C. Garcia, A. Guerrero, J. Zeitsoff, S. Korlakunta, P. Fernandez, A. Fox,
and A. Ruiz-Cortés, “Bluejay: A cross-tooling audit framework for agile
software teams,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education and Training
(ICSE-SEET), 2021, pp. 283-288.

B. Fluri, M. Wiirsch, M. Pinzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725-743,
2007.

E. Spirin, E. Bogomolov, V. Kovalenko, and T. Bryksin, “Psiminer: A
tool for mining rich abstract syntax trees from code,” in 202/ IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
2021, pp. 13-17.

N. Sviridov, M. Evtikhiev, and V. Kovalenko, “Tnm: A tool for mining
of socio-technical data from git repositories,” in 2021 18th ACM MSR,
2021.

M. V. Bertoncello, G. Pinto, I. S. Wiese, and I. Steinmacher, “Pull
requests or commits? which method should we use to study contributors’
behavior?” in 2020 IEEE 27th SANER, 2020, pp. 592-601.

B. Pérez and A. L. Rubio, “A project-based learning approach for
enhancing learning skills and motivation in software engineering,” in
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’20, 2020, p. 309-315.

S. Brutus and M. B. L. Donia, “Improving the effectiveness of students
in groups with a centralized peer evaluation system,” Academy of
Management Learning & Education, vol. 9, no. 4, pp. 652-662, 2010.
S. Heckman and J. King, “Developing software engineering skills using
real tools for automated grading,” in Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE *18.
New York, NY, USA: ACM, 2018, p. 794-799.

J. Li and R. D. Luca, “Review of assessment feedback,” Studies in
Higher Education, vol. 39, no. 2, pp. 378-393, 2014.

[56] K. Presler-Marshall, “Autovcs.” [Online]. Available: https://github.com/
AutoVCS/AutoVCS

[57] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, pp. 26-33, 2009.

[58] A. Kamalizade, “How to reduce java boilerplate code with lombok.”

[59] Changyi, “Java programming skills - boilerplate
code.” [Online]. Available: https://www.alibabacloud.com/blog/
java-programming-skills-boilerplate-code_598058

[60] S. E. Harpe, “How to analyze likert and other rating scale data,” Currents
in Pharmacy Teaching and Learning, vol. 7, no. 6, pp. 836-850, 2015.

[61] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011.

[62] A. Zapf, S. Castell, L. Morawietz, and A. Karch, “Measuring inter-rater
reliability for nominal data — which coefficients and confidence intervals
are appropriate?” BMC Medical Research Methodology, vol. 16, no. 1,
p. 93, Aug 2016.

[63] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 57, no. 1, pp.
289-300, 1995.

[64] J. D. Storey, “The positive false discovery rate: a Bayesian interpretation
and the g-value,” The Annals of Statistics, vol. 31, no. 6, pp. 2013 —
2035, 2003.

[65] K. Krippendortf, Content analysis: An introduction to its methodology.
SAGE, 2004.

[66] Z. Buginca, M. B. Malaya, and K. Z. Gajos, “To trust or to think:
Cognitive forcing functions can reduce overreliance on ai in ai-assisted
decision-making,” Proceedings of the ACM on Human-Computer Inter-
action, vol. 5, no. CSCW1, apr 2021.

[67] V. Lai and C. Tan, “On human predictions with explanations and predic-
tions of machine learning models,” in Proceedings of the Conference on
Fairness, Accountability, and Transparency. ACM, jan 2019.

[68] J. Feldman, Grading for Equity: What It Is, Why It Matters, and How It
Can Transform Schools and Classrooms. SAGE Publications, 2018.

[69] K. Ragupathi and A. Lee, “Beyond fairness and consistency in grading:
The role of rubrics in higher education,” in Diversity and inclusion in
global higher education. Palgrave Macmillan, Singapore, 2020, pp.
73-95.

[70] L. A. Williams and R. R. Kessler, “Experiments with industry’s “pair-
programming” model in the computer science classroom,” Computer
Science Education, vol. 11, no. 1, pp. 7-20, 2001.

270

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 13,2024 at 17:17:19 UTC from IEEE Xplore. Restrictions apply.

