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Abstract

Double white dwarf (WD) binaries are increasingly being discovered at short orbital periods where strong tidal
effects and significant tidal heating signatures may occur. We assume that the tidal potential of the companion
excites outgoing gravity waves within the WD primary, the dissipation of which leads to an increase in the WD’s
surface temperature. We compute the excitation and dissipation of the waves in cooling WD models in evolving
MESA binary simulations. Tidal heating is self-consistently computed and added to the models at every time step.
As a binary inspirals to orbital periods less than ∼20 minutes, the WD’s behavior changes from cooling to heating,
with temperature enhancements that can exceed 10,000 K compared with nontidally heated models. We compare a
grid of tidally heated WD models to observed short-period systems with hot WD primaries. While tidal heating
affects their Teff, it is likely not the dominant luminosity. Instead, these WDs are probably intrinsically young and
hot, implying that the binaries formed at short orbital periods. The binaries are consistent with undergoing common
envelope evolution with a somewhat low efficiency αCE. We delineate the parameter space where the traveling
wave assumption is most valid, noting that it breaks down for WDs that cool sufficiently, where standing waves
may instead be formed.

Unified Astronomy Thesaurus concepts: White dwarf stars (1799); Tidal interaction (1699); Close binary stars
(254); Stellar evolutionary models (2046); Common envelope evolution (2154)

1. Introduction

Double white dwarf (DWD) binaries have increasingly been
found at short orbital periods (e.g., Brown et al. 2011; Burdge
et al. 2020b), with the tightest detached system at an orbital
period of only 6.9 minutes (Burdge et al. 2019). For these
compact systems, tides are expected to be very strong (e.g.,
Iben et al. 1998), but the effects of tides on the WDs and the
resulting observable predictions have remained uncertain.

As DWD binaries inspiral to shorter orbital separations
owing to the emission of gravitational waves (GWs), tidal
effects will become stronger, and tidal heating could become
the dominant source of luminosity (Iben et al. 1998; Burdge
et al. 2020a). Measuring tidal heating is one of the principle
ways to constrain tidal physics (Piro 2019). At very short
periods, tides may affect the premerger conditions of DWD
binaries, such as the synchronization of WD rotation with the
binary orbit. The degree of synchronization premerger is
unclear, with some simulations assuming that the WDs are
tidally locked (e.g., Raskin et al. 2012; Dan et al. 2014),
whereas others have assumed that the WDs are initially
nonrotating (e.g., Yoon et al. 2007; Lorén-Aguilar et al. 2009).
When comparing WD merger simulations with these two
different initial conditions, Dan et al. (2014) found that the
merger timescale and the location of helium detonation were
significantly altered. Therefore, the degree of synchronization
seems to affect the merger product of two WDs, which is a
pathway to Type Ia supernovae (e.g., Shen 2015) and other
exotic phenomena.

While tides are expected to contribute to heating of both
WDs, quantitative predictions of the heating, as well as its

dependence on WD mass and system orbital period, have not
been rigorously performed. Instead, the magnitude of the tidal
heating has only been estimated for a few different WD masses
and orbital periods (Fuller & Lai 2013; Yu et al. 2021), and the
changing WD structure, heating rate, and location of heat
deposition have not been self-consistently modeled. Many
recently discovered short-period DWD binaries have measured
masses and surface temperatures, meaning that precise
predictions of tidal heating can now be directly compared to
observations.
In a compact binary, each component feels a tidal force due

to its companion’s gravitational potential. The equilibrium tidal
response, referring to a body’s overall deformation in quasi-
static equilibrium, is unlikely to be important except when the
binary is close to mass-transferring (Fuller & Lai 2011).
Rather, the wavelike or oscillatory tidal response, known as the
dynamical tide (Zahn 1975, 1977), is likely dominant. The
dynamical tide often involves the excitation of standing-wave
gravity modes (Zahn 2008), or, if there is sufficient dissipation,
a train of traveling gravity waves (Goldreich & Nichol-
son 1989). In stars on the main sequence, waves are excited at
the convective–radiative boundary, and their dissipation can
drive circularization and synchronization of the binary. Gravity
modes are also found in WDs, as demonstrated observationally
by pulsating ZZ Ceti stars (Brickhill 1983). The nature of the
tidal excitation and whether it is in the standing-wave or
traveling-wave regime will help determine the impact of tides
on a WD’s observed properties. Previous works that have
focused on standing waves in WDs include Burkart et al.
(2013) and Yu et al. (2020).
In a series of papers, Fuller & Lai (2011, 2012, 2013)

applied the theory of dynamical tides to a DWD binary. In
particular, Fuller & Lai (2012) and Fuller & Lai (2013) found
that, for both CO- and He-core WDs, excited gravity modes are
likely to damp in the outer envelope and prevent the formation
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of standing waves. Fuller & Lai (2013) modeled tidal heating in
a WD model, but this analysis was limited to a WD model of
fixed mass initialized at fixed temperatures.

In this paper, we investigate tidal effects for WDs of various
masses that undergo evolution in a binary and are allowed to
realistically cool (if tidal heating is unimportant) or be heated
by tides. Only with a grid of models can simulations be
compared to known systems to better interpret observations. In
addition, Fuller & Lai (2013) assumed that the tidal response is
in the strongly dissipated traveling-wave regime, and they
focused on nonlinear wave breaking as the most important
dissipative mechanism. Here we model the contributions of
both nonlinear wave breaking and radiative damping as
dissipative mechanisms, and we estimate where the overall
traveling-wave assumption breaks down.

In this work, we self-consistently implement tidal effects into
cooling He-core WD models simulated in the MESA stellar
evolutionary code (Paxton et al.
2011, 2013, 2015, 2018, 2019). Section 2 reviews the physics
of the excitation of gravity modes/gravity waves in a DWD
binary. Section 3 describes the implementation of dynamical
tides in a DWD binary MESA simulation, where the WDs
undergo spin-up and heating due to the dissipation of excited
gravity waves. Section 3.2 presents the models where the
traveling-wave response works best and where it breaks down.
Section 4 presents tidal heating predictions for simulations of
differing WD masses and initial orbital periods and compares
these predictions to observed ultra–short-period DWD binaries.
We discuss our results in Section 5 and conclude in Section 6.

2. Basic Tidal Physics

More detailed analysis of tidally excited oscillations in WDs
is found in Fuller & Lai (2012). Here we review the basic
quantities needed for our analysis.

Consider a DWD binary with primary mass M1 and
secondary mass M2 in a circular orbit of separation a and
orbital frequency Ω. The following analysis treats the
secondary as a point mass and only models tidal effects in
the primary M1, which has a radius R. The presence of M2

creates a tidal potential that acts as a forcing term in the fluid
equations describing the primary’s interior. The tidal potential
is predominantly quadrupolar with degree l=m= 2. It varies
sinusoidally in time with tidal frequency

( ) ( )w = W - W2 , 1s

where Ωs is the spin frequency of the WD.
In the outer region of the WD, the tidal potential can excite

either standing g-modes (with a reflective outer boundary
condition) or gravity waves (with an outgoing boundary
condition). In either case, the restoring force for these
oscillations is buoyancy. The Brunt–Väisälä frequency N, or
buoyancy frequency, is therefore very important in determining
where these modes/waves are excited and where they can
propagate.

Because of strong dissipative effects, the wave energy may
be depleted before the wave is reflected. Therefore, in this work
we assume that the response is in the outgoing wave regime
(but see Section 3.2 and figures therein for when this
assumption breaks down). For a He-core WD, the outgoing
wave is excited near the composition gradient at the transition
between the WD’s He core and H envelope (Fuller &
Lai 2013), where there is a spike in N2.

In the Wentzel–Kramers–Brillouin (WKB) limit, gravity
waves satisfy the dispersion relation
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where kr is the radial wavenumber, as is the adiabatic sound
speed, and r is the internal radius of the WD. We leave l
general in our equations, although l= 2 is always assumed in
this paper.
In most of the WD’s interior, the gravity waves satisfy
w Ll

2 2 and ω2= N2. However, there are regions near the
surfaces of our WD models where ω2 becomes comparable to
Ll
2 (see also Section 3.2.1 for how the traveling-wave

approximation can break down in these cases). If applied to
Equation (2), kr

2 would become very small. We therefore
assume a lower limit of kr

2 as ( )H1 4 2 , where H is the pressure
scale height. Therefore, our full expression for the radial
wavenumber is

⎡
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The wave carries both an angular momentum (AM) flux and
energy flux toward the surface of the WD. AM and energy will
therefore be transferred from the binary orbit to the WD,
causing the WD to undergo spin-up and heating.

3. Tidal Effects in MESA Simulations

We create He-core WDs in the MESA stellar evolutionary
code (Paxton et al. 2011, 2013, 2015, 2018, 2019). The WD
models are created by mass stripping of an evolved red giant
branch star when its He core reaches masses of 0.25, 0.30,
0.35, 0.40, and 0.45 Me, giving five WD masses in our grid.
We varied the mass of hydrogen in these WD models from
about 10−5 to 10−3 Me, but we found that our tidal spin-up and
tidal heating results were ultimately not greatly affected, with
parameters like WD mass and age mattering much more (see
Appendix C for further discussion). However, if the hydrogen
envelope was completely stripped, we would not expect a spike
in Brunt–Väisälä frequency where the gravity waves are
excited, and our assumptions would greatly break down.
Therefore, our results likely only apply to DA WDs with a
hydrogen atmosphere.
We simulate tidal interactions with the WD in a binary MESA

simulation with a point-mass companion. The WD is initialized
at a hot surface temperature after mass stripping, meant to
represent a newly formed WD at the top of its cooling track.
We therefore model tidal effects in the younger WD, assuming
that the companion WD already exists. If tidal heating is not
implemented, the WD cools monotonically. The binary system
evolves only as a result of the emission of GWs. The tidal
back-reaction of tides on the orbit is not implemented because
it is subdominant (Fuller & Lai 2012; Burdge et al. 2019). We
initialize the binaries at a range of initial orbital periods, which
represents the birth period of the DWD binary, i.e., when the
younger WD formed. It also corresponds to the post–common
envelope (post-CE) period of the binary, as these DWDs likely
went through CE evolution (e.g., Nelemans & Tout 2005).

2
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3.1. WD Spin-up

We assume that the WD is rigidly rotating and therefore has
a constant Ωs from surface to core (the validity of this
assumption is discussed in Appendix A). Fuller & Lai (2013)
find that the tidal torque Jz can be written as

( ) ( ) w=J T F . 5z 0

Here =T GM R a0 2
2 5 6 and represents how the magnitude of the

tidal forcing scales with the binary system parameters. F(ω)
quantifies the strength of the excited wave and is determined by
solving for the waveform of tidally excited gravity waves at
various frequencies. The numerical solver developed in Fuller
& Lai (2013) calculates the waveform by solving the equations
of stellar oscillation with a tidal forcing term, assuming an
outgoing boundary condition for the wave. For our WD models
of varying mass, we calibrated F(ω) by running the solver on
MESA profiles saved at various ages. We found that F(ω)
approximately scales as

( ) ˆ ˆ ( )w w=F f , 67

where ŵ is ω in units of GM R3 and f̂ is a function of WD
mass and age. This power-law scaling is slightly steeper than
that found in Fuller & Lai (2013), where ( ) ˆ ˆw w=F f 6.
However, the values of f̂ are similar and increase as the WD
ages. We implement an interpolation of f̂ into MESA,
interpolating as a function of WD mass and age. As a rough
estimate, ˆ ˆ»f f t0 age

0.4, where tage is the age of the WD up to

≈1 Gyr and ˆ = ´ -f 3 100
6 for a 0.35 Me WD. f̂0 is larger

(smaller) by a factor of ≈3 for a 0.45 (0.25) Me WD.
Given the tidal torque, the spin-up rate of Ωs is

ˆ ˆ ( )  w
W = =

J

I

T f

I
, 7s

z 0
7

where I is the moment of inertia of the WD. Equations (1) and
(7) are coupled and can be numerically solved for Ωs and ω

during the MESA simulation. We assume that the WD starts
with Ωs= 0 at some orbital frequency Ω and then allow the
system to evolve. The WD cools, and the binary inspirals to
closer separations/higher orbital frequencies owing to the
emission of GWs.

The tidal spin-up is shown in Figure 1 for a WD of 0.35 Me

starting at orbital periods of 20, 50, and 90 minutes. The WD’s
spin becomes synchronized with the orbit at short orbital
periods (Ωs/Ω→ 1). By the time the binaries are at periods
30 minutes, the binaries starting at 50 and 90 minutes are in
the synchronizing regime where  W » Ws . The WD starting in a
binary at 20 minutes spins up very rapidly at first because the
tidal torque is strong and it is in the short-period regime where
synchronization would be expected. However, the young WD’s
radius also contracts rapidly, leading temporarily to a decreased
torque and a dip in the value of Ωs/Ω, before continuing to
approach synchronization at shorter periods.

We find similar behavior for He-core WDs of masses
0.25–0.45 Me, where the spin becomes increasingly synchro-
nized with the orbit at orbital periods 30 minutes.

3.2. WD Heating

With the evolution of spin frequency Ωs and tidal frequency
ω known, the tidal heating can also be estimated. There are two
basic steps to the process: (1) Calculate the magnitude of the
power carried by the outgoing gravity wave, Ltide. (2) Calculate
the energy dissipated as heat (therefore lost from the wave) at
each mass coordinate m within the WD, between the location of
wave excitation and the upper boundary of the wave
propagation cavity. The heat is then injected into the WD
model via the MESA control s% extra_heat (with
dimension energy/time/mass). The power Ltide carried by the
wave in the corotating frame of the WD (for the dominant
m= 2 component of the tidal response) is

( ) ˆ ˆ ( ) w w
w

w
w= =L J T F T f

2 2 2
. 8ztide 0 0
7

The next step is to calculate the energy dissipated as heat in
each cell of the model as the traveling wave propagates
outward. In practice, the gravity wave never reaches the surface
of the WD because either its energy is dissipated as heat or the
wave reaches the end of its propagation cavity, where either
w > Ll
2 2 or ω2> N2. Moving outward from the excitation

location, energy is removed from the wave via two dissipative
mechanisms: nonlinear wave breaking and damping due to
radiative diffusion. The decrease in Ltide over a cell of mass dm,
dLtide/dm, is the power per unit mass deposited in a cell, and
thus the necessary value for s% extra_heat.
If radiative damping alone is included,

( )= -
dL

dm

L

m
, 9tide tide

damp

where mdamp is the characteristic mass scale for damping. This
is related to the wave damping length scale hdamp by

( )pr=m r h4 , 10damp
2

damp

and the length scale for thermal diffusion is

( ) ( )=h v k K , 11g rdamp
2

where vg≈ ω/kr is the group velocity of the wave, ρ is the mass
density, and K is the thermal diffusivity (e.g., Fuller 2017). K is

Figure 1. Evolution of the spin frequency Ωs in units of the orbital frequency Ω
as a function of the orbital period, due to tidal synchronization. The WDs start
with Ωs = 0. The WD mass is fixed at 0.35Me, and WD models start evolution
at the same temperature, but in a binary with different initial orbital period. The
companion mass is fixed at 0.3Me.
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given by

( )s
r k

=K
T

c

16

3
, 12

p

SB
3

2

where σSB is the Stefan–Boltzmann constant, T is internal
temperature, κ is the effective opacity (which includes thermal
conduction), and cp is specific heat at constant pressure.

We assume that radiative damping always operates. In
contrast, nonlinear wave breaking is assumed to only occur
when the wave reaches a large enough radial displacement ξr
such that |ξr||kr|� 1. See Appendix B for the calculation of ξr.
We find that wave breaking only occurs in simulations at
orbital periods 15 minutes, with radiative damping providing
all the dissipation at longer periods. Similarly, we define mbreak

as the characteristic mass scale for breaking, related to
characteristic length scale hbreak by

( )pr=m r h4 , 13break
2

break

with hbreak estimated to be one pressure scale height. Therefore,
our full expression for the power deposited per unit mass is

(∣ ∣∣ ∣ ) ( )x= - - Q -
dL

dm

L

m

L

m
k 1 , 14r r

tide tide

damp

tide

break

where Θ is simply a Heaviside step function such that wave
breaking only contributes when |ξr||kr|� 1.
Figure 2 shows a radial profile for the heat deposited in the

outer region of a WD model at a short orbital period. The
outgoing wave is assumed to originate at the bump in N2, so
heating only exists exterior to this point. For this snapshot,
dissipation is only due to radiative damping. The heating per
unit mass reaches a maximum close to the surface of the WD,
where N2 is large and the density is low. This behavior is
typical for our simulations.

We remove energy from the wave and deposit it as heat by
applying Equation (14) until either Ltide is zero from losses or
the end of the gravity wave propagation cavity is reached. In
the first case, the energy injected into the WD Lheat is equal to

Ltide. In the second case, Lheat/Ltide will be less than unity,
meaning that not all the wave’s energy is deposited inside our
model. If this fraction is significantly less than unity, the wave
carries a significant amount of energy when it reaches the edge
of the propagation cavity and likely reflects. In this case, the
assumption that the tidal response is in the traveling-wave
regime breaks down. Instead, standing-wave g-modes of
discrete frequencies will likely be excited (Fuller &
Lai 2011; Yu et al. 2021).

3.2.1. Traveling-wave Regime: Validity

We do not model the standing-wave regime, but instead
estimate for which models our traveling-wave assumption
breaks down. For three different WD masses, Figures 3, 4, and
5 show a color map of Lheat/Ltide versus the parameter space of
initial period and orbital period. A given simulation has a fixed
initial period but decreases in period, starting on the red line
and moving horizontally right to left. A brighter color
corresponds to Lheat/Ltide being closer to unity and the
traveling-wave assumption being justified. When Lheat/Ltide is
close to zero, with a darker shading, our model likely breaks
down. As a model moves from right to left on the plot, the

Figure 2. Gravity wave excitation in the outer region of a 0.35Me WD, plotted
vs. the radius r. The outgoing wave is assumed to originate at the bump in the
Brunt–Väisälä frequency squared N2 (blue curve) corresponding to the core-
envelope composition gradient. Heating due to wave dissipation (green curve)
only takes place at exterior locations to the composition gradient. This snapshot
is shown for an orbital period of 14.3 minutes and a companion mass of
0.3 Me.

Figure 3. The fraction of the wave energy Ltide that is deposited as heat Lheat
(color shading) within evolving WD models of 0.25 Me (with a 0.3 Me
companion). A given simulation starts on the red line and moves from right to
left horizontally, toward shorter orbital periods as inspiral occurs. If Lheat/Ltide
is less than unity, the wave is encountering the upper edge of the propagation
cavity, where the wave frequency rises above either the Lamb frequency
(unhatched region) or the Brunt–Väisälä frequency (hatched region). The
traveling-wave approximation is good in the yellow regions of this diagram.

Figure 4. Same as Figure 3, but for a 0.35 Me WD model in a binary.
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simulation may encounter regions where the traveling-wave
regime is more or less appropriate. The most self-consistent
simulations occur for horizontal slices that are completely
yellow in color, where all the wave power is always deposited.
When Lheat/Ltide< 1, the wave is encountering the edge of the
cavity due to either ω2 rising above Ll

2 (unhatched; “Lamb
cavity”) or ω2 rising above N2 (hatched; “Brunt cavity”).
There are several trends evident in Figures 3, 4, and 5. The

hatched “Brunt cavity” region occurs for cool WDs in binaries
initialized at long orbital periods, because WDs with
Teff 10,000 K develop a deep surface convective zone with
N2< 0. Less massive He-core WDs cool faster and have slower
orbital decay, meaning that the hatched region is pushed to
lower initial periods for lower-mass WDs.

The darkest unhatched “Lamb cavity” regions tend to occur
for orbital periods of ≈15–30 minutes, where the tidal
frequency ω is largest, which moves the cavity’s outer
boundary inward and also increases the length scale for
damping (Equation (11)). However, at shorter periods, two
effects can occur: First, the WD temperature begins to increase
as a result of tidal heating, meaning that radiative damping
becomes stronger, which in turn makes more heat dissipate out
of the wave before it reaches the cavity’s edge. Second, the
increasing power carried by the wave means that wave
breaking is more likely to occur and dissipate more energy
within the cavity. These effects are responsible for the yellow
region at short orbital periods, where models are nominally
again in a traveling-wave regime, despite our traveling-wave
model potentially failing at earlier periods in their evolution. At
a given period, WDs are cooler for a longer initial orbital
period, and radiative damping will be weaker, explaining why,
in general, colors are darker moving vertically upward within
the unhatched “Lamb cavity” region.

In general, we find that there is still a fairly large parameter
space where the traveling-wave regime is valid. WDs in
binaries with shorter initial orbital periods are more likely to be
in this regime. Higher-mass WDs have a wider range of initial
orbital periods where the traveling-wave approximation is
valid. Previous work has demonstrated that most DWDs are
likely born from the CE channel at orbital periods shorter than
2 hr (Brown et al. 2016), and many at less than 1 hr (Scherbak
& Fuller 2023). Therefore, the traveling-wave regime is likely a
good approximation for the evolutionary histories of some
systems. In the remainder of this work, we run models by
implementing the traveling-wave response and only depositing

energy within the propagation cavity, but we discuss which
models are most valid.

4. Tidal Heating: Simulations and Observed Systems

Figure 6 demonstrates the effect of tidal heating on a WD’s
surface temperature as the DWD binary evolves from
50 minutes to shorter orbital periods. Note from Figure 3 that
this simulation (WD mass 0.25 Me, initial period 50 minutes)
is likely always in the traveling-wave regime. The magnitude
of the heating increases with decreasing orbital period because
the tidal potential driving the wave is stronger. The temperature
of the primary WD is predicted to be much higher at very short
periods (a difference of >10,000 K at an orbital period of
5 minutes) compared to the case where tidal heating is
neglected. We find that there is a negligible increase in the
radii of our tidally heated models. Significant heating begins at
periods 15 minutes, corresponding to a GW inspiral time
2Myr for the component masses. Thus, the heating generally
occurs over a short timescale compared to the WD’s age. In the
following, we present similar results for a grid of WD models.
Figure 7 shows tidal heating for a grid of WDs of different

masses initialized in binaries of different initial orbital periods.
For simplicity, we show initial orbital periods of

Figure 5. Same as Figure 3, but for a 0.45 Me WD model in a binary. Figure 6. The effective temperature for a 0.25 Me WD, with and without tidal
heating, as a function of orbital period. The model moves from right to left
toward shorter orbital periods as the binary inspirals. The companion mass is
fixed at 0.3 Me.

Figure 7. The evolution of effective temperature vs. orbital period for a grid of
WD models undergoing tidal heating. Models of same color are of the same
mass. The models begin evolution in a binary at orbital periods of 15, 20, 40,
and 50 minutes. The companion mass is fixed at 0.3 Me.
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15–50 minutes, although our full grid ranges from 15 to
200 minutes. For the 0.35 and 0.45 Me models initialized at
50 minutes, the traveling-wave regime starts to break down
(this is the source of the kink for the bottom-most 0.45 Me
curve at about 13 minutes, where, from Figure 5, there is a
change from a small fraction of Ltide being deposited to a larger
fraction being deposited). However, the traveling-wave regime
is likely a good approximation for the other models in this plot.

The power carried by the wave, Ltide, scales with WD mass
approximately as M1

17 6 (Fuller & Lai 2013), so more massive
WDs experience greater heating at short periods and have
higher temperatures, regardless of their initial orbital period. In
addition, more massive WDs have smaller radii, and therefore
the effect of tidal heating on Teff will be more pronounced.

We also compare our quantitative predictions for Teff to
observed ultra–short-period DWD systems. The properties of
these systems are summarized in Table 1. Note also that these
are the five detached shortest-period LISA verification binary
systems discussed in Kupfer et al. (2023). In this work, we only
simulate tidal heating in the younger, more recently formed
WD, treating the other as a point mass. If only one WD has a
mass consistent with a He-core WD, we assume that is the
younger because its progenitor star likely evolved second
(although this may not always be true). If there are two He-core
WDs, we assume that the hotter one is the younger. In Table 1,
we define M1 as the WD we assume is younger and for which
we are modeling tidal heating.

Figures 8–11 show a comparison of our WD models, with
and without tidal heating turned on, to the observed Teff of
systems in Table 1. We do not seek to exactly find the best set
of models that match to the observed characteristics, but we
compare relevant models with and without tidal heating and
quantify the difference between them.

In Figure 8, showing the 8.8-minute system ZTF J2243, the
models that best match the observed Teff of the WD primary
correspond to 0.35 Me WDs. Both simulations with and
without tidal heating can match the data—for instance, the two
0.35 Me models starting at a 15-minute period are consistent
with the error bar. Models starting at 30 minutes or greater are
not hot enough to match the data, even with tidal heating turned
on. Therefore, a WD that cools sufficiently is unable to be
heated by tides to the observed hot temperature (≈26,000 K).
Comparing the hottest two pairs of 0.35 Me models (the top
two pairs of orange curves), the increase in luminosity is about
20% with tidal heating implemented. Thus, tidal heating is a
relatively small fraction of the WD primary’s energy output.

Figures 9 and 10 show similar results for the 12.8-minute
system SDSS J0651 and the 14.4-minute system ZTF J0538. In
both cases, the difference between pairs of models with and
without tidal heating at the observed orbital period is relatively
small, with the change in Teff <1000 K and the change in
luminosity between 5% and 10%. For J0651, models starting at
20 minutes match well, but models starting at 15 minutes are

Table 1
Properties of the WD Binaries We Model

Name Porb (minutes) M1 (Me) M2( Me) Teff,1 (K) Teff,2 (K) Pbirth (minutes)
(1) (2) (3) (4) (5) (6) (7)

ZTF J1539+5027 (1) 6.91 -
+0.21 0.015
0.014

-
+0.61 0.022
0.017 <10, 000 48,900 ± 900 not modeled

ZTF J2243+5242 (2) 8.80 -
+0.323 0.047
0.065 (LC) -

+0.335 0.054
0.052 (LC) -

+26, 300 900
1700 (SED) -

+19, 200 900
1500 (SED) 10–26

-
+0.317 0.074
0.074 (Spect) -

+0.274 0.047
0.047 (Spect) -

+26, 520 130
130 (Spect) -

+19, 670 100
100 (Spect)

SDSS J0651+2844 (3, 4, 7) 12.75 -
+0.247 0.015
0.015

-
+0.49 0.02
0.02 16,530 ± 200 8700 ± 500 20–30

ZTF J0538+1953 (5) 14.44 -
+0.45 0.05
0.05

-
+0.32 0.03
0.03 26,450 ± 725 12,800 ± 200 36–44

SDSS J0935+4411 (6, 7) 19.80 -
+0.312 0.019
0.019

-
+0.75 0.23
0.24 21,660 ± 380 n/a 22–41

Note. Parameters for all the systems we model, including the orbital period, Porb, the masses of the two components, M1 and M2, and the effective surface temperature
of the components, Teff,1 and Teff,2. Measured parameters are from (1) Burdge et al. (2019), (2) Burdge et al. (2020a), (3) Brown et al. (2011), (4) Hermes et al. (2012),
(5) Burdge et al. (2020b), (6) Kilic et al. (2014), and (7) Brown et al. (2016). The last column is our estimate of the birth period, the post-CE orbital period when the
younger WD formed (see text for the analysis).

Figure 8. Effective temperature vs. orbital period for a grid of WD simulations,
compared to the observed temperature (black error bar) of ZTF J2243ʼs hotter
component (mass ≈0.32 Me). The models vary in WD mass (differing colors)
and initial orbital period of the system, whereas companion mass is fixed at
0.3Me. Dashed lines are models with the same parameters, but with tidal
heating turned off.

Figure 9. Similar to Figure 8, but for SDSS J0651. The mass of the hotter
component, which we fit to, is ≈0.25 Me. The companion mass is fixed at
0.5 Me.
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too hot and models starting at 30 minutes are too cool. For
J0538, models starting at 30 minutes match well, but models
starting at 20 minutes are too hot and models starting at
40 minutes are too cool. Accounting for tides, therefore, does
not appear to greatly alter the parameter space of initial periods
that can replicate these systems.

Finally, Figure 11 shows the 19.8-minute system SDSS
J0935, the longest-period binary we compare to, and
demonstrates that there is little difference between tidally
heated and nontidally heated models at orbital periods near
20 minutes.

Note that the models in Figures 8–11 have short initial
periods and are therefore mostly in the traveling-wave regime.
An exception is the higher-mass, longer initial period
(50 minutes) models in Figure 10, for which our treatment
may start to break down. Models born at longer orbital periods
than plotted are likely in the standing-wave regime and are
unlikely to undergo significantly more heating compared to
those in the traveling-wave regime. Therefore, since some
traveling-wave models already fall below the observed Teff, the
standing-wave models are unlikely to further the space of
models that can match the observed Teff of these four hot WD
primaries.

We do not show a plot for the 7-minute binary ZTF J1539,
for which the He WD component has a Teff of <10,000 K. The

history of this system is uncertain, with mass transfer from the
He WD to its companion potentially playing a role (Burdge
et al. 2019). It may have also formed via the stable mass
transfer channel rather than the CE channel (Li et al. 2019;
Chen et al. 2022). Our models tend to predict significantly
higher Teff than 10,000 K, regardless of initial orbital period,
meaning that our traveling-wave models are incompatible with
the low observed temperature. However, we note that if a WD
were to cool to <10,000 K, the tidal response is likely in the
standing-wave regime, which we do not attempt to model but
will involve resonances with g-modes. In our traveling-wave
models, the tidal power is deposited near the surface of the
WD. In the standing-wave regime, the tidal heating power
could be smaller, and the location of heat deposition could
potentially be deeper inside the WD. This could allow for much
cooler WDs.

5. Discussion

5.1. Implications for Common Envelope Efficiency

Our analysis shows that, for the systems in Table 1, tides are
not transforming a cool WD into a hot one, but instead are only
slightly heating already-hot WDs. Tidal heating does not
significantly alter estimates of the initial orbital period of these
ultra–short-period DWD binaries. To better understand the
formation history of these systems, it is reasonable to use a grid
of nontidally heated models, with varying mass and H envelope
mass, to estimate the post-CE periods of these binaries. We
performed similar analysis for several DWD systems in
Scherbak & Fuller (2023). We follow the same procedure
and only briefly outline it here.
We fit a grid of MESA models to the observed radii and Teff

of the WD primary to estimate the birth period. As this is also
the post-CE period, we thereby obtain the post-CE orbital
energy Eorb, f. We estimate the pre-CE orbital energy Eorb, i and
the envelope binding energy Ebind using a grid of red giant
progenitor models whose core mass matches the observed He
WD mass. We then combine these to estimate the CE efficiency
αCE, defined by

( )a =
-

E

E E
. 15

f i
CE

bind

orb, orb,

Our estimates of the birth period are shown in the rightmost
column of Table 1. The birth periods are quite short,
significantly less than 1 hr, in agreement with the conclusion
of Brown et al. (2016) that most low-mass DWD binaries are
born at short orbital periods. It also means that the DWD
binaries we model are young.
Figure 12 shows the range of αCE for 10 WD binaries

modeled in Scherbak & Fuller (2023) and the four binaries
discussed in Figures 8–11. The previously modeled WD
binaries are at longer orbital periods >20 minutes. The best-fit
range for αCE using these previous 10 systems is from about
0.15 to 0.5 and overlaps well with three of the four new
systems. For the most part, we find that these ultra–short-period
binaries, which we previously did not model because of the
uncertainty of the role of tidal heating, are consistent with a low
CE efficiency.
An exception is ZTF J0538, which has an even lower

associated range of αCE owing to its short post-CE orbital
period and higher-mass WD, which means that the progenitor
was more evolved up the red giant branch with a lower Ebind.

Figure 10. Similar to Figure 8, but for ZTF J0538. The mass of the hotter
component, which we fit to, is ≈0.45 Me. The companion mass is fixed at
0.3 Me.

Figure 11. Similar to Figure 8, but for SDSS J0935. The mass of the hotter
component, which we fit to, is ≈0.31 Me. The companion mass is fixed at
0.75 Me.
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However, the mass of the WD primary ( -
+ M0.45 0.05
0.05 ) is quite

large for a He WD, and it could instead correspond to a low-
mass CO-core WD. This requires a significantly different
evolutionary history, likely involving a He-burning sdB phase
following the CE (Han et al. 2003; Xiong et al. 2017). This
would entail a much longer evolution time following the CE
event, and hence a longer post-CE orbital period than that listed
in Table 1 and a larger value of αCE than that shown in
Figure 12.

5.2. Application to CO WDs

This work has focused on tidal heating in He-core WDs,
where the companion is either a He or CO WD. A discovery of
a short-period binary where both WDs have CO cores would
motivate modeling of tidal heating in a CO WD as well. The
excitation of outgoing gravity waves in a CO WD (Fuller &
Lai 2012) is similar to the He WD case (Fuller & Lai 2013),
although the primary location of the gravity wave excitation is
instead at the carbon–helium composition gradient. Therefore,
most of our modeling can be directly extended to MESA
simulations of CO WDs.

The most significant difference would likely be the
parameterization of the tidal torque through F(ω)
(Equations (5) and (6)), which we could determine by running
the numerical waveform solver on CO WD models. In this
work, we found smaller values of F(ω) compared to those in
Fuller & Lai (2013), which used older He WD models. If this
trend holds true for CO WDs as well, the results of Fuller & Lai
(2012) will be changed somewhat. In particular, the critical
period when spin synchronization begins may be shorter, and
the magnitude of tidal heating may be higher, than presented in
Fuller & Lai (2012). Overall, we expect similar qualitative
behavior for CO WD models, with tidal heating becoming
significant at periods 10–20 minutes and becoming the
dominant source of luminosity premerger.

5.3. Potential Future Observations

The discovery of more ultra–short-period DWD binaries
would be invaluable to add to our comparison sample. The
enhancement in temperature due to tidal heating increases for
shorter orbital periods, so systems with orbital periods
<10 minutes are better for distinguishing tidally heated and
nontidally heated models. Specifically, values of Teff tend to

converge for a given WD mass (Figure 7) at the shortest orbital
periods before mass transfer, which would be a testable
prediction. In addition, discovering more systems at similar
periods to the 7-minute binary ZTF J1539 would shed light on
whether ZTF J1539ʼs cool component is an outlier, perhaps
due to its low mass, or whether there are additional cool WDs
for which the tidal heating may be more complicated than
modeled here.
In this work, we have only compared to measured values of

Teff. Measured spin values would be another way to test our
models, which predict spin synchronization as a function of
orbital period. In some cases, the projected rotation speed,
v isin , could potentially be measured. For complete synchro-
nization, we expect

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

( )
´

-
-

v i
R P

sin 200 km s
2 10 cm 10 minutes

161 WD
9

orb
1

for an edge-on system. This could possibly be measured from
high-resolution spectra resolving the non-LTE line cores of DA
WDs, or helium lines of DB or DAB WDs.

6. Conclusion

In this paper, we have modeled tidal heating in DWD binary
MESA simulations, where the dynamical tidal excitation occurs
within helium-core WDs and the companion is a point mass.
We approximate the tidal response as traveling gravity waves
that are damped in the outer layers of the WD. We run a grid of
models varying (1) the mass of the He-core WD M1, (2) the
mass of the companion M2, and (3) the post-CE orbital period
of the WD binary when the second WD formed.
In our simulations, the binary inspirals to shorter periods

owing to the emission of GWs. At every time step, we calculate
the AM and energy flux carried by the tidally excited waves,
which leads to spin-up and heating of the WD. For our grid of
WD models, we calibrate the strength of the tidal response
using the numerical solver of Fuller & Lai (2013).
The WDs’ spins become increasingly synchronized with the

orbit at orbital periods 30 minutes. We model heat deposition
in the outer layers of the WD, accounting for damping due to
radiative diffusion and nonlinear wave breaking. We self-
consistently compute the changing WD structure, heating rate,
and heating location. The inner edge of wave propagation is the
transition between the He core and H envelope, and the outer
edge is where the wave becomes evanescent. We determine the
fraction of the wave’s energy that has been deposited before it
reaches the cavity’s outer edge. If the fraction is low, our
traveling-wave approximation breaks down and the response
will instead likely be a standing wave. Figures 3–5 demonstrate
where the traveling-wave response is appropriate. In general,
hot and young WDs, corresponding to binaries with short
initial orbital periods 2 hr, are more likely to be in the
traveling-wave regime. The traveling-wave regime extends to
longer initial periods for higher-mass WDs (∼0.45 Me)
compared to lower-mass WDs (∼0.25 Me).
At orbital periods 20 minutes, the WDs follow a cooling

track and tidal heating is negligible. However, at shorter orbital
periods, the energy flux carried by the tidally excited gravity
waves becomes large enough to cause substantial heating.
Compared with a nontidally heated model, the enhancement in
Teff can exceed 10,000 K at periods of 5–10 minutes. When
tidal heating dominates, WDs of the same mass tend to

Figure 12. Values of αCE using a grid of He WDs to model the WD primary
and assuming that the progenitor is a red giant star from 0.9 to 2.0 Me. The
horizontal line and shaded region denote a least-squares fit to the ensemble of
systems, excluding the rightmost four (the binaries discussed in this work). The
other 10 systems used for the fit are longer-period WD binaries modeled in
Scherbak & Fuller (2023). The inferred values of αCE for the short-period
binaries in this work are consistent with expectations, apart from J0538 (see
text for explanation).
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converge to similar values of Teff, despite differences in their
previous cooling history.

We compare our tidal heating models to the five shortest-
period DWD systems known, with orbital periods ranging from
8 to 20 minutes. Our tidally heated models that match well to
the measurements are likely in the traveling-wave regime, but
they only cause a mild temperature increase. Both tidally
heated and nontidally heated models are capable of reproducing
the measured surface temperatures, but only when starting at a
similar range of orbital periods. Therefore, uncertainty in tidal
heating does not lead to a large uncertainty in the binary’s
initial period. Since tidal heating is a small fraction of these
WDs’ luminosities, they are intrinsically hot and young, and
they were born at periods 45 minutes. The exception to these
findings is ZTF J1539ʼs primary, which is cooler than our tidal
heating models would predict but has caveats involving mass
transfer, its formation history, and the role of standing waves at
its cool temperature.

Finally, we reconstruct the values of the CE efficiency
parameter αCE that can replicate these systems. Since tidal
heating does not significantly impact estimates of the initial
(post-CE) period of these ultra–short-period binaries, we
perform the same analysis as Scherbak & Fuller (2023), which
modeled longer-period WD binaries. For reasonable assump-
tions of the progenitor star mass, we find that a fairly low value
of αCE, in the range 0.1–0.5, is necessary to form the ultra–
short-period systems. These low values of αCE are consistent
with those found in Scherbak & Fuller (2023).
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Appendix A
AM Transport

This work has assumed that the WD is rigidly rotating. This
requires AM transport between the location where AM is
deposited by the outgoing gravity waves and the rest of the
WD’s interior. We have not performed detailed modeling of
AM transport in MESA. Rather, we have estimated the coupling
timescale for AM to be transported by a magnetic dynamo and
compared that to the spin-up timescale of the WD’s interior.
For coupling from the WD surface at radius R to a location with
internal radius r, we define the AM coupling timescale tcoup(r)
as

( ) ( )
( )

( )ò n
= ¢

- ¢
¢

t r dr
R r

r
, A1

r

R

coup

where ν is the AM diffusivity found in Fuller et al. (2019),
which details a modification to the Tayler–Spruit dynamo
(Spruit 2002). It is given by

⎜ ⎟
⎛
⎝

⎞
⎠

( )n a= W
W

r
N

. A2s
s3 2

eff

2

We use α≈ 0.25 (Fuller & Lu 2022). In calculating ν, we
assume that Neff is the full Brunt–Väisälä frequency, as that
provides a lower limit on ν and an upper limit on tcoup(r).
Because our assumption of rigid rotation breaks down for
relatively long coupling times, this makes our calculation more
conservative.
We define the spin-up timescale tspinup(r) as the timescale to

synchronously spin up the layers exterior to r with moment of
inertia I(> r). With Jz as the full tidal torque as calculated in
Equation (5),

( ) ( ) ( )=
W >

t r
I r

J
. A3

z
spinup

We have found that the coupling timescale is generally less
than the spin-up timescale, supporting the assumption of rigid
rotation. This assumption is better for lower-mass He-core
WDs. The assumption of rigid rotation can break down at
longer orbital periods 30 minutes, mainly because the spin
rate is smaller and hence the AM diffusivity ν is smaller.
However, at longer orbital periods, tidal effects are weaker and
deviation from rigid rotation will likely not matter, especially
for tidal heating. We find that at short orbital periods the
coupling timescale is shorter than the spin-up timescale at most
internal radii r, and therefore the WD tends to be rigidly
rotating when it is rotating closest to synchronization and
undergoing the strongest tidal heating.

Appendix B
Calculation of Wave Breaking

We calculate the radial displacement ξr associated with
outgoing gravity waves in order to determine when nonlinear
wave breaking is likely to occur. Because the power in the
wave Ltide decreases as the wave moves outward
(Equation (14)), Ltide is a function of internal radius r. Ltide(r)
can be related to ξ⊥, the perpendicular displacement, with

( ) ( )
∣ ∣

( )
w r x

= + ^L r l l
r

N
2 1 , B1tide

4 3 2

and ξ⊥ and ξr are related in the WKB approximation via

∣ ∣ ∣ ∣ ( ) ( )x x
w

= +^ l l
N

1 . B2r /

These formulae will break down if the wave nears the edge of
the propagation cavity where ω2 becomes comparable to Ll

2 (
i.e., if the traveling-wave approximation breaks down;
Section 3.2.1).

Appendix C
Effect of Hydrogen Envelope Mass on Tidal Heating

He-core WDs can vary in the masses of their H envelopes.
We modeled tidal heating for models with a fixed total mass,
but varying the mass of the He core and H envelope. Figure 13
demonstrates the evolution of effective temperature for three
models of varying H mass, initialized in a binary with the same
initial orbital period. Early in the evolution, tidal heating is
unimportant, but the models exhibit different cooling behavior
based on how thick the H envelope is. When tidal heating
dominates at short orbital periods, we find that models with a
lower mass of H reach higher values of Teff, which is a
consistent trend over all our WD models. This trend is not
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necessarily true when tidal heating is turned off and models
continue to cool.

The main cause for this behavior is the changing radius of
the WD, as models with more H have a larger radius (for the
models in Figure 13, the radius changes by a factor of ≈10%).
The radius affects the tidal heating power Ltide, which scales
with the radius R, the moment of inertia I, and the tidal torque
scaling parameter f̂ as (see Equation (6) and Fuller & Lai 2013
for a derivation)

ˆ
( )µ

-

-
L

I f

R
. C1tide

8 7 1 7

31 14

The values of I and f̂ can depend on R, but in our models a
changing radius barely changes I and moderately changes f̂ ,
which hardly affects Ltide. At short periods, when tidal heating
dominates the luminosity, and neglecting the changes in I and
f̂ ,

( )µ µ µ
-

-T
L

R

R

R
R . C2eff

4 tide
2

31 14

2
59 14

In summary, we find that models with a lower mass of H
have smaller radii and reach higher Teff when tidal heating is
strong at very short orbital periods. However, the variance in
Teff due to varying H mass is 10% over a wide range of
orbital periods. For the systems that we model, the uncertainties
in the total WD mass and initial orbital period of the binary
lead to greater uncertainties in Teff (see, e.g., Figure 7). Thus,
we do not vary the mass of H in our models for our main
analysis. Testing our predictions of the effect of H envelope
mass on tidal heating would be difficult, due to both its

relatively small influence on Teff and the fact that most WDs do
not have measured constraints on their H envelope mass.
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