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ABSTRACT

Given a K-vertex simplex in a d-dimensional space, suppose we measure n points
on the simplex with noise (hence, some of the observed points fall outside the sim-
plex). Vertex hunting is the problem of estimating the K vertices of the simplex. A
popular vertex hunting algorithm is successive projection algorithm (SPA). How-
ever, SPA is observed to perform unsatisfactorily under strong noise or outliers.
We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise
step to generate pseudo-points and feed them into SPA for vertex hunting. We
derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly)
high-dimensional random vectors. The results suggest that pp-SPA has faster rates
and better numerical performances than SPA. Our analysis includes an improved
non-asymptotic bound for the original SPA, which is of independent interest.
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1 INTRODUCTION

Fix d > 1 and suppose we observe n vectors X7, Xo,..., X, in R?, where
jid

Xi=ri+e, 6~ N00°I). (1)
The Gaussian assumption is for technical simplicity and can be relaxed. For an integer 1 < K <
d + 1, we assume that there is a simplex with K vertices Sy on the hyperplane Hg such that each r;
falls within the simplex (note that a simplex with K vertices always falls on a (K — 1)-dimensional
hyperplane of R?). In other words, let vy, vs,...,vx € R? be the vertices of the simplex and let
V = [v1,v2,...,vk]. We assume that for each 1 < i < n, there is a K-dimensional weight vector
m; (a weight vector is vector where all entries are non-negative with a unit sum) such that

K
T, = Z’ﬂ'i(k)’l}k = V’]Ti. (2)
k=1

Here, 7;’s are unknown but are of major interest, and to estimate 7;, the key is vertex hunting (i.e.,
estimating the K vertices of the simplex Sp). In fact, once the vertices are estimated, we can estimate
T, Mo, ..., Ty, by the relationship of X; ~ r; = Vr,;. Motivated by these, the primary interest of
this paper is vertex hunting (VH). The problem may arise in many application areas. (1) Hyper-
spectral unmixing: Hyperspectral unmixing (Bioucas-Dias et al., 2012) is the problem of separating
the pixel spectra from a hyperspectral image into a collection of constituent spectra. X; contains
the spectral measurements of pixel ¢ at d different channels, vy, ..., vy are the constituent spectra
(called endmembers), and m; contains the fractional abundances of endmembers at pixel ¢. It is
of great interest to identify the endmembers and estimate the abundances. (2) Archetypal analysis.
Archytypal analysis (Cutler & Breiman, 1994) is a useful tool for representation learning. Take its
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application in genetics for example (Satija et al., 2015). Each X is the gene expression of cell ¢, and
each vy, is an archetypal expression pattern. Identifying these archetypal expression patterns is useful
for inferring a transcriptome-wide map of spatial patterning. (3) Network membership estimation.
Let A € R™" be the adjacency matrix of an undirected network with n nodes and X' communities.

Let (\g, k) be the k-th eigenpair of A, and write Z = [€1,€5, ..., Ek]. Under certain network
models (e.g., Huang et al. (2023); Airoldi et al. (2008); Zhang et al. (2020); Ke & Jin (2023); Rubin-
Delanchy et al. (2022)), there is a K -vertex simplex in R such that for each 1 < i < n, the i-th

row of = falls (up to noise corruption) inside the simplex, and vertex hunting is an important step in
community analysis. (4) Topic modeling. Let D € R™P? be the frequency of word counts of n text
documents, where p is the dictionary size. If D follows the Hoffman’s model with K topics, then
there is also simplex in the spectral domain (Ke & Wang, 2022)), so vertex hunting is useful.

Existing vertex hunting approaches can be roughly divided into two lines: constrained optimizations
and stepwise algorithms. In the first line, one proposes an objective function and estimates the ver-
tices by solving an optimization problem. The minimum volume transform (MVT) (Craig, 1994),
archetypal analysis (AA) (Cutler & Breiman, 1994; Javadi & Montanari, 2020), and N-FINDER
(Winter, 1999) are approaches of this line. In the second line, one uses a stepwise algorithm which
iteratively identifies one vertex of the simplex at a time. This includes the popular successive projec-
tion algorithm (SPA) (Aradjo et al., 2001). SPA is a stepwise greedy algorithm. It does not require an
objective function (how to select the objective function may be a bit subjective), is computationally
efficient, and has a theoretical guarantee. This makes SPA especially interesting.

Our contributions. Our primary interest is to improve SPA. Despite many good properties afore-
mentioned, SPA is a greedy algorithm, which is vulnerable to noise and outliers, and may be signif-
icantly inaccurate. Below, we list two reasons why SPA may underperform. First, typically in the
literature (e.g., Aradjo et al. (2001)), one apply the SPA directly to the d-dimensional data points
X1, X5, ..., X,, regardless of what (K, d) are. However, since the true vertices vy, . .., vk lie on a
(K — 1)-dimensional hyperplane, if we directly apply SPA to X1, Xo, ..., X, the resultant hyper-
plane formed by the estimated simplex vertices is likely to deviate from the true hyperplane, due to
noise corruption. This will cause inefficiency of SPA. Second, since the SPA is a greedy algorithm,
it tends to be biased outward bound. When we apply SPA, it is frequently found that most of the
estimated vertices fall outside of true simplex (and some of them are faraway from the true simplex).

For illustration, Figure 1 presents an example, where
X1, Xs,..., X, are generated from Model (1) with W T
(n,K,d,o) (1000, 3,2,1), and r; are uniform . 3\ TUeEELe
samples over T' (T is the triangle with vertices (1, 1), = ¥

(2,4), and (5, 2)). In this example, the true vertices
(large black points) form a triangle (dashed black

lines) on a 2-dimensional hyperplane. The green and
cyan-colored triangles are estimated by SPA and pp-
SPA (our main algorithm to be introduced; since d is
equal to K —1, the hyperplane projection is skipped),
respectively. In this example, the estimated simplex
by SPA is significantly biased outward bound, sug-

" Tesey

. -@- SPA
' pp-SPA

g sample data
o Loy s —@= true simplex

T T T

6

gesting a large room for improvement. Such outward
bound bias of SPA is related to the design of the al-
gorithm and is frequently observed (Gillis, 2019).

Figure 1: A numerical example (d=2, K=3).

To fix the issues, we propose pseudo-point SPA (pp-SPA) as a new approach to vertex hunting. It
contains two novel ideas as follows. First, since the simplex Sy is on the hyperplane #, we first use
all data X1, ..., X, to estimate the hyperplane, and then project all these points to the hyperplane.
Second, since SPA is vulnerable to noise and outliers, a reasonable idea is to add a denoise step
before we apply SPA. We propose a pseudo-point (pp) approach for denoising, where for each data
point, we replace it by a pseudo point, computed as the average of all of its neighbors within a radius
of A. Utilizing information in the nearest neighborhood is a known idea in classification (Hastie
et al., 2009), and the well-known k-nearest neighborhood (KNN) algorithm is such an approach.
However, KNN or similar ideas were never used as a denoise step for vertex hunting. Compared
with KNN, the idea of pseudo-point approach is motivated by the underlying geometry and is for a
different purpose. For these reasons, the idea is new at least to some extent.
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We have two theoretical contributions. First, Gillis & Vavasis (2013) derived a non-asymptotic error
bound for SPA, but the bound is not always tight. Using a very different proof, we derive a sharper
non-asymptotic bound for SPA. The improvement is substantial in the following case. Recall that
V = [v1,v2,...,vk] and let s (V') be the k-th largest singular value of V. The bound in Gillis
& Vavasis (2013) is proportional to 1/s%-(V'), while our our bound is proportional to 1/s% (V).
Since all vertices lie on a (K — 1)-dimensional hyperplane, sx_1(V') is bounded away from 0, as
long as the volume of true simplex is lower bounded. However, sk (V') may be 0 or nearly 0; in this
case, the bound in Gillis & Vavasis (2013) is too conservative, but our bound is still valid. Second,
we use our new non-asymptotic bound to derive the rate for pp-SPA, and show that the rate is much
faster than the rate of SPA, especially when d > K. Even when d = O(K), the bound we get for
pp-SPA is still sharper than the bound of the original SPA. The main reason is that, for those points
far away outside the true simplex, the corresponding pseudo-points we generate are much closer to
the true simplex. This greatly reduces the outward bound biases of SPA (see Figure 1).

Related literature. It was observed that SPA is susceptible to outliers, motivating several variants of
SPA (Gillis & Vavasis, 2015; Mizutani & Tanaka, 2018; Gillis, 2019). For example, Bhattacharyya
& Kannan (2020); Bakshi et al. (2021); Nadisic et al. (2023) modified SPA by incorporating smooth-
ing at each iteration. In contrast, our approach involves generating all pseudo points through neigh-
borhood averaging before executing all successive projection steps. Additionally, we exploit the fact
that the simplex resides in a low-dimensional hyperplane and apply a hyperplane projection step
prior to the denoising and successive projection steps. Our theoretical results surpass those existing
works for several reasons: (a) we propose a new variant of SPA; (b) our analyses build upon a better
version of the non-asymptotic bound than the commonly-used one in Gillis & Vavasis (2013); and
(c) we incorporate delicate random matrix and extreme value theory in our analysis.

2 A NEW VERTEX HUNTING ALGORITHM

The successive projection algorithm (SPA) (Aratjo et al., 2001) is a popular vertex hunting method.
This is an iterative algorithm that estimates one vertex at a time. At each iteration, it first projects all
points to the orthogonal complement of those previously found vertices and then takes the point with
the largest Euclidean norm as the next estimated vertex. See Algorithm 1 for a detailed description.

Algorithm 1 The (orthodox) Successive Projection Algorithm (SPA)

Input: X7, Xo,..., X,,,and K.
Initialize u = 0p and y; = X, for1 <i<n.Fork=1,2,... K,

« Update y; to (I — uu)y;. Obtain i), = argmax, <;<,, ||ys||. Update u = [|y;, ||~ ys,.
Output: 9, = X;,,for1 <k < K.

We propose pp-SPA as an improved version of the (orthodox) SPA, containing two main ideas: a hy-
perplane projection step and a pseudo-point denoise step. We now discuss the two steps separately.

Consider the hyperplane projection step first. In our model (2), the noiseless points 1, . .., ry, live in
a (K — 1)-dimensional hyperplane. However, with noise corruption, the observed data X1, ..., X,
are not exactly contained in a hyperplane. Our proposal is to first use data to find a ‘best-fit’ hyper-
plane and then project all data points to this hyperplane. Fix d > K > 2. Given a point g € R?
and a projection matrix H € R%*? with rank K — 1, the (K — 1)-dimensional hyperplane associated
with (2o, H)isH = {z € R?: (I — H)(x — x9) = 0}. For any = € R%, the Euclidean distance
between x and the hyperplane is equal to ||(I; — H)(z — x¢)||. Given X1, Xs,..., X, we aim to
find a hyperplane to minimize the sum of square distances:

(‘TO’H)

min {S(xo, H)}, where S(zo, H) = ||(Iq — H)(X; — z0)||*. 3)
=1

Let Z = [Zy,...,Zy,), where Z; = X; — X and X = % i, X;. For each k, let uy, € R be the
kth left singular vector of Z. Write U = [ug, ..., ux_1]. The next lemma is proved in the appendix.

Lemma 1. S(xg, H) is minimized by xo = X and H = UU’.
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For each 1 < i < n, we first project each X to Xi and then transform X’i to Y;, where
X, =X+ HX, - X), Y; == U'X;: note that H = UU’ and Y; € RE-1.  (4)

These steps reduce noise. To see this, we note that the true simplex lives in a hyperplane with a
projection matrix Hy = UyUy). It can be shown that U ~ Uy (up to a rotation) and Y; ~ r; + Uje;,
with ¥ = U/ X + Ujr;. These points r still live in a simplex (in dimension (K — 1)). Comparing
this with the original model X; = r; + ¢;, we see that Uje; are iid samples from N (0,025 _1),
and ¢; are iid samples from N(0,021;). Since K — 1 < d in may applications, the projection may
significantly reduce the dimension of the noise variable. Later in Section 4, we see that this implies
a significant improvement in the convergence rate.

Next, consider the neighborhood denoise step. Fix an A > 0 and an integer N > 1. Define the A-
neighborhood of Y; by BA(Y;) = {z € RE~1: ||z — Y;|| < A}. When there fewer than N points
in Ba(Y;) (including Y; itself), remove Y; for the vertex hunting step next. Otherwise, replace Y; by
the average of all points in Ba (Y;) (denoted by Y;*). The main effect of the denoise effect is on the
points that are far outside the simplex. For these points, we either delete them for the vertex hunting
step (see below), or replace it by a point closer to the simplex. This way, we pull all these points
“towards” the simplex, and thus reduce the estimation error in the subsequent vertex hunting step.

Finally, we apply the (orthodox) successive projection algorithm (SPA) to Y7*, Y5", -+, Y and let
01,02, ..., Uk be the estimated vertices. Let V' = [01,0g, ..., 0k]. See Algorithm 2.

Algorithm 2 Pseudo-Point Successive Projection Algorithm (pp-SPA)

Input: X, Xo,...,X, € R% the number of vertices K, and tuning parameters (I, A).
Step 1 (Projection). Obtain X = 23" | X;and Z = X — X1/,. LetU = [uy, ..., ux—1] contain
the first (K — 1) singular vectors of Z. For 1 <i < n,letY; = U’'X; € RK-1,
Step 2 (Denoise). Let BA(Y;) = {x € RE~1: ||z — Y;|| < A} denote the A-neighborhood of Y;.
o If there are fewer than N points (including Y; itself) in Ba(Y;), delete this point.
* Otherwise, replace Y; by Y;*, which is the average of all points in Ba (Y;).
Step 3 (VH). Let J C {1,...,n} be the set of retained points in Step 2. Apply Algorithm 1 to
{Y*}ies to get 05,95, ...,0% € RE“L Let oy, = (I — H)X + Ut} € R4, 1 <k < K.

Output: The estimated vertices 91, . .., V.

Remark 1: The complexity of the orthodox SPA is O(ndK ). Regarding the complexity of pp-SPA,
it applies SPA on (K — 1)-dimensional pseudo-points, so the complexity is O(nK?). To obtain these
pseudo points, we need a projection step and a denoise step. The projection step extracts the first
(K — 1) singular vectors of a matrix Z(n x d). Performing the whole SVD decomposition would
result in O(min(n2d, nd?)) time complexity. However, faster approach exists such as the truncated
SVD which would decrease this complexity to O(ndK). In the denoise step, we need to find the
A-neighborhoods for all n points Y7, Y5, ..., Y,,. This can be made computationally efficient using
the KD-Tree. The construction of KD-Tree takes O(n logn), and the search of neighbors typically

takes O (n(% 1) 4 nm) where m is the maximum number of points in a neighborhood.

Remark 2: Algorithm 2 has tuning parameters (N, A), where A is the radius of the neighborhood,
and N is used to prune out points far away from the simplex. For N, we typically take N = log(n)
in theory and N = 3 in practice. Concerning A, we use a heuristic choice A = max; ||Y; — Y||/5,
where Y = L 5" Y, It works satisfactorily in simulations.

Remark 3 (P-SPA and D-SPA): We can view pp-SPA as a generic algorithm, where we may either
replace the projection step by a different dimension reduction step, or replace the denoise step by a
different denoise idea, or both. In particular, it is interesting to consider two special cases: (i) P-SPA,
which skips the denoise step and only uses the projection and VH steps; (ii) D-SPA, which skips the
projection step and only uses the denoise and VH steps. We analyze these algorithms, together with
pp-SPA (see Table 1 and Section C of the appendix). In this way, we can better understand the
respective improvements of the projection step and the denoise step.
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3 AN IMPROVED BOUND FOR SPA

Recall that V' = [v1,vg,. .., vk], whose columns are the K vertices of the true simplex Sy. Let
V)= max (el}. o0) =1+805 00 500 = max (el ©)
Y - 1g}€a§XK V|l s g - S%((V)7 - félvaéxn €ills-

Lemma 2 (Gillis & Vavasis (2013), orthodox SPA). Consider d-dimensional vectors X1, ..., Xn,
where X; = r; +¢€;, 1 <1 < nandr; satisfy model (2). For each 1 < k < K there is an i such that

sk (V .
T; = ek. Suppose maxi<i<np |€] < 1+807;I((\£)/)s§<(V) min{ 2\/%’ %} Apply the orthodox SPA
to X1,...,X, and let 01,02, ...,V be the output. Up to a permutation of these K vectors,
2
. (V) }
— <1 il = - .
max {0 — v} < [1+ 80 2y | max el := g(V) - 8

Lemma 2 is among the best known results for SPA, but this bound is still not satisfying. One issue
is that s (V') depends on the location (i.e., center) of Sy, but how well we can do vertex hunting
should not depend on its location. We expect that vertex hunting is difficult only if Sy has a small
volume (so the simplex is nearly flat). To see how these insights connect to singular values of V/, let

1=K Zszl vy, be the center of S, define V = [v; — 4, ..., vk — 0], and let s (V) be the k-th
singular value of V. The next lemma is proved in the appendix:

Lemma 3. Volume(Sy) = (1(7\/—?1)1 H,f;ll sk(V), s_1(V) > sx_1(V), and s (V) < VK ||9].

Lemma 3 yields several observations. First, as we shift the location of Sy so that its center gets close
to the origin, ||7|| ~ 0, and sx (V') = 0. In this case, the bound in Lemma 2 becomes almost useless.
Second, the volume of Sy is determined by the first (K — 1) singular values of V, irrelevant to the
K'th singular value. Finally, if the volume of S is lower bounded, then we immediately get a lower
bound for sx_1 (V). These observations motivate us to modify g(V') in (5) to a new quantity that
depends on s —1(V) instead of sx (V); see (6) below.

Another issue of the bound in Lemma 2 is that 5(X) de-

pends on the maximum of ||¢;||, which is too conserva- Ko
tive. Consider a toy example in Figure 2, where Sy is FLE R Fo @O
the dashed triangle, the red stars represent r;’s and the 2 vk
black points are X;’s. We observe that X5 and X5 are

. . . 4@ * X
deeply in the interior of Sy, and they should not affect the * e

performance of SPA. We hope to modify 5(X) to a new
quantity that does not depend on ||e5|| and ||e5||. One idea
is to modify 3(X) to 8*(X,V) = max; Dist(X;, So), .
where Dist(-, Sp) is the Euclidean distance from a point «*

to the simplex. For any point inside the simplex, this Eu-

clidean distance is exactly zero. Hence, for this toy exam- g gure 2: A toy example to show the dif-
ple, 3*(X, V) < max;¢(1 25 [|€il|. However, we cannot ¢, & - botween B(X) and Boew (X, V),
simply replace 3(X) by 5*(X, V), because ||e; || also af-  ypere B(X) = max;|el, and
fects the performance of SPA and should not be leftout. g (¥ V) < max; 25y lleill-

Note that r; is the only point located at the top vertex.
When X, is far away from 7, no matter whether X is
inside or outside Sy, SPA still makes a large error in estimating this vertex. This inspires us to define
BT(X,V) = max; ming;.., 1 [|l;[|. When 8(X, V') is small, it means for each vy, there exists at
least one X; that is close enough to vy. To this end, let Bpew (X, V) = max{s*(X, V), 31 (X, V)}.
Under this definition, fBnew(X) < max;g o 5y [|€;]|, which is exactly as hoped.

Inspired by the above discussions, we introduce (for a point € RY, Dist(z, Sy) is the Euclidean
distance from x to Sy; this distance is zero if z € Sy)

_ 1 30y, 00
gnew(v) - 1+5K—1(V) {175K—1(V)}7

Bnew(X) = max{lrél%anlst(Xi,So), | max {ii?irik} |X; — v }- (6)
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Theorem 1. Consider d-dimensional vectors X1, ..., X,, where X; =r; +¢;, 1 < i < nandr;
satisfy model (2). For each 1 < k < K there is an i such that w; = ey. Suppose for a properly small

universal constant ¢* > 0, max{1, a;jf‘l/()v) }onew (X, V) < c* SKV‘(%/()V) Apply the orthodox SPA to

Xi,..., X, and let 01,03, ...,V be the output. Up to a permutation of these K vectors,

U — < .
lgiaéXK{Hvk ka} >~ gnew(V)ﬁnew(X> V)

Note that gnew (V) < g(V) and Bpew (X, V) < B(X). The non-asymptotic bound in Theorem 1
is always better than the bound in Lemma 2. We use an example to illustrate that the improvement
can be substantial. Let K = d = 3, v; = (20, 20, 10), v = (20, 30, 10), and v5 = (30, 22, 10).
We put r1, 72, 3 at each of the three vertices, r4, 75, r¢ at the mid-point of each edge, and r7 at the
center of the simplex (which is ¥). We sample €}, €3, ..., €5 i.i.d., from the unit sphere in R?. Let
€; = 0.01e}, for 1 < i < 6, and €7 = 0.05¢;. By straightforward calculations, g(V') = 4.3025 x 10%,
Gnew (V) = 6.577x102, B(X) = 0.05, Bnew(X, V) = 0.03. Therefore, the bound in Lemma 2 gives
maxy, |0 —vg|| < 2151.3, while the improved bound in Theorem 1 gives maxy, ||y —vg|| < 18.7. A
more complicated version of this example can be found in Section D of the supplementary material.

The main reason we can achieve such a significant improvement is that our proof idea is completely
different from the one in Gillis & Vavasis (2013). The proof in Gillis & Vavasis (2013) is driven by
matrix norm inequalities and does not use any geometry. This is why they need to rely on quantities
such as sk (V') and max; ||€;|| to control the norms of various matrices in their analysis. It is very
difficult to modify their proof to obtain Theorem 1, as the quantities in (6) are insufficient to provide
strong matrix norm inequalities. In contrast, our proof is guided by geometric insights. We construct
a simplicial neighborhood near each true vertex and show that the estimate v;, in each step of SPA
must fall into one of these simplicial neighborhoods.

4 THE BOUND FOR PP-SPA AND ITS IMPROVEMENT OVER SPA

We focus on the orthodox SPA in Section 3. In this section, we show that we can further improve
the bound significantly if we use pp-SPA for vertex hunting. Recall that we have also introduced
P-SPA and D-SPA in Section 2 as simplified versions of pp-SPA. We establish error bounds for
P-SPA, D-SPA, and pp-SPA, under the Gaussian noise assumption in (1). A high-level summary
is in Table 1. Recall that P-SPA, D-SPA, and pp-SPA all create pseudo-points and then feed them
into SPA. Different ways of creating pseudo-points only affect the term Syew (X, V') in the bound in
Theorem 1. Assuming that gyew (V) > C, the order of Syew (X, V') fully captures the error bound.
Table 1 lists the sharp orders of Syew (X, V') (including the constant).

Table 1: The sharp orders of Spew (X, V) (settings: K > 3, d satisfies (7), sx—1(V) > C, and m
satisfies the condition in Theorem 3). P-SPA and D-SPA use the projection only and the denoise only,
respectively. The constant ¢y € (0, 1) comes from m, and the constant a; > 2 is as in Lemma 5.

d<log(n) d=aglog(n) log(n) <d<n' %t d>np w1
SPA \/2log(n) Va1 log(n) Vd Vd
P-SPA \/2log(n) V/2log(n) 2log(n) v/21og(n)
D-SPA | \/2¢qlog(n) NA NA NA
pp-SPA | \/2colog(n)  y/2cqlog(n) 2¢g log(n) v/2log(n)

The results suggest that pp-SPA always has a strictly better error bound than SPA. When d >> log(n),
the improvement is a factor of o(1); the larger d, the more improvement. When d = O(log(n)), the
improvement is a constant factor that is strictly smaller than 1. In addition, by comparing P-SPA
and D-SPA with SPA, we have some interesting observations:

e The projection effect. From the first two rows of Table 1, the error bound of P-SPA is never
worse than that of SPA. In many cases, P-SPA leads to a significant improvement. When
d > log(n), the rate is faster by a factor of /log(n)/d (which is a huge improvement for
high-dimensional data). When d < log(n), there is still a constant factor of improvement.
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* The denoise effect. We compare the error bounds for P-SPA and pp-SPA, where the differ-
ence is caused by the denoise step. In three out of the four cases of d in Table 1, pp-SPA
strictly improves P-SPA by a constant factor ¢y < 1.

We note that pp-SPA applies denoise to the projected data in RX~!. We may also apply
denoise to the original data in R, which gives D-SPA. By Table 1, when d < /log(n), D-
SPA improves SPA by a constant factor. However, for d > log(n), we always recommend
applying denoise to the projected data. In such cases, the leading term in the extreme value
of chi-square (see Lemma 5) is d, so the denoise is not effective if applied to original data.

Table 1 and the above discussions are for general settings. In a slightly more restrictive setting (see
Theorem 2 below), both projection and denoise can improve the error bounds by a factor of o(1).

We now present the rigorous statements. Owing to space constraint, we only state the error bounds
of pp-SPA in the main text. The error bounds of P-SPA and D-SPA can be found in the appendix.

4.1 SOME USEFUL PRELIMINARY RESULTS

Recall that V = [vq,...,vk]and r; = Vm;, 1 < i < n. Let 0, 7, and T be the empirical means of
vg’s, ri’s, and 7;’s, respectively. Introduce V = [v1—7, ..., v —0], R = n=Y2[r =7, ... 7, — 7],
and G = (1/n) Y1, (m — @)(m; — 7)'. Lemma 4 relates singular values of R to those of G and
V and is proved in the appendix (A < B: B — A is positive semi-definite. Also, A\i(G) is the k-th
largest (absolute value) eigenvalue of G, s; (V) is the k-th largest singular value of V'; same below).

Lemma 4. The following statements are true: (a) RR' = VGV', (b) Ax-1(G) - VV < VGV’ <
M(G)-VV' and (c) Ak —1(G) - s% (V) 2 0% _(R) X M (G) - s%_ (V).

To analyze SPA and pp-SPA, we need precise results on the extreme values of chi-square variables.
Lemma 5 is proved in the appendix.

Lemma 5. Let M,, be the maximum of n iid samples from x%(0). Asn — oo, (a) if d < log(n),
then M, /(2log(n)) — 1, (b) if d > log(n), then M, /d — 1, and (c) if d = aglog(n) for a
constant ag > 0, then M, /(a1 log(n)) — 1 where ay > 2 is unique solution of the equation
ay — aplog(a1) = 2+ ag — ag log(ap) (convergence in three cases are convergence in probability).

4.2 REGULARITY CONDITIONS AND MAIN THEOREMS

We assume
K = o(log(n)/loglog(n)),  d=o(Vn). @)

These are mild conditions. In fact, in practice, the dimension of the true simplex is usually relatively
low, so the first condition is mild. Also, when the (low-dimensional) true simplex is embedded in a
high dimensional space, it is not preferable to directly apply vertex hunting. Instead, one would use
tools such as PCA to significantly reduce the dimension first and then perform vertex hunting. For
this reason, the second condition is also mild. Moreover, recall that G = n=* Y7 | (7, —7) (m; —7)’
is the empirical covariance matrix of the (weight vector) m; and v(V) = maxi<p<x{|lvkl/}. We
assume for some constant C' > 0,

k(@) =07 (@) <0, y(V)<C (8)

The first two items are a mild balance condition on 7; and the last one is a natural condition on V.
Finally, in order for the (orthodox) SPA to perform well, we need

o/log(n)/sk_1(V) = 0. 9)

In many applications, vertex hunting is used as a module in the main algorithm, and the data points
fed into VH are from previous steps of some algorithm and satisfy o = o(1) (for example, see Jin
et al. (2023); Ke & Wang (2022)). Hence, this condition is reasonable.

We present the main theorems (which are used to obtain Table 1). In what follows, Theorem 3 is for
a general setting, and Theorem 2 concerns a slightly more restrictive setting. For each setting, we
will specify explicitly the theoretically optimal choices of thresholds (¢, €,,) in pp-SPA.
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For1 < k < K, let J, = {i : 7; = v;} be the set of r; located at vertex vy, and let n; = |Ji|, for
1 <k < K. Let I'() denote the standard Gamma function. Define
K+1 1
m = min{ni,na,...,nkg}, Co :O.5(262)_ﬁ 2/(K—1)[F(T+)} R (10)

Note that as K — oo, ¢3 — 0.5/+/e. We also introduce

\/(j 20
Qp = ———=— U\/my "Zim.
ey (oL, b= 2@ ZRg)

The following theorem is proved in the appendix.

Theorem 2. Suppose X1, Xo,..., X, are generated from model (1)-(2) where m > cin for a
constant ¢ > 0 and conditions (7)-(9) hold. Fix &, such that (K — 1)/log(n) < §, < 1, and

1
lett, = VK —1( log(n) ) =T. We apply pp-SPA to X1, Xs, ..., X, with (N, A) to be determined

nl-on

below. Let V = [01,0a, ..., 0k], where 01,0, ..., 0k are the estimated vertices.

o In the first case, a, < t,,. We take N = log(n) and A = cst,o in pp-SPA, for a constant
cs < ca. Up to a permutation of 01, . .., 0k, maxi<k<i {||0k — Vkl|} < 0gnew (V) -
V/21og(n) + Cay] + by,

o In the second case, t, < a, < 1. We take N = log(n) and A = o, in pp-SPA. Up to a
permutation of U1, . .., U, maxi<p<ri {0k — Vk[|} < 0gnew (V) - (1 +o0p(1))/21log(n).

To interpret Theorem 2, we consider a special case where K = O(1), sx_1 (V') is lower bounded by
a constant, and we set d,, = loglog(n)/log(n). By our assumption (7), d = o(+/n). It follows that

o =< max{d, \/dlog(n) }/v/n. b, =< o+/max{d, log(n)}/n, and t,, < [log(n)]| ©T /n T . We
observe that «v, always dominates b,,/o. Whether «,, dominates t,, is determined by d/n. When
d/n is properly small so that v, < t,,, using the first case in Theorem 2, we get maxy {|| 0k —vi ||} <

C(y/log(log(n)) + max{d, \/dlog(n)}/v/n) = O(y/loglog(n)). When d/n is properly large so
that «v,, > t,,, using the second case in Theorem 2, we get maxy{||0r — v||} = O( 1og(n)). We
then combine these two cases and further plug in the constants in Theorem 2. It yields

ppspa log log(n) if d/n is properly small;
12}2(1({”% Ukll} < ognew (V) - { [2+ 0(1)]log(n) if d/n is properly large. (12)
It is worth comparing the error bound in Theorem 2 with that of the orthodox SPA (where we directly
apply SPA on the original data points X7, X», ..., X,,). Recall that 3(X) is as defined in (6). Note
that B(X) < maxi<i<y |||, where ||¢;||? are i.i.d. variables from x2(0). Combining Lemma 5
and Theorem 1, we immediately obtain that for the (orthodox) SPA estimates 0,7, 657, ... 077,
up to a permutation of these vectors (the constant a; is as in Lemma 5 and satisfies a; > 2):

B |} < 0w (V) - { vmax{d, 2log(n)} ifd < log(n) or d > log(n);

1I§r}ca§XK{Hvk a1 log(n) if d = ag log(n).

(13)
This bound is tight (e.g., when all r; fall into vertices). We compare (13) with Theorem 2. If d >

log(n), the improvement is a factor of 4/log(n)/d, which is huge when d is large. If d = O(log(n)),
the improvement can still be a factor of o(1) sometimes (e.g., in the first case of Theorem 2).

Theorem 2 assumes that there are a constant fraction of r; falling at each vertex. This can be greatly
relaxed. The following theorem is proved in the appendix.

Theorem 3. Fix 0 < ¢y < 1 and a sufficiently small constant 0 < § < ¢q. Suppose X1, Xa, ..., Xn
are generated from model (1)-(2) where m > n'~*% and conditions (7)-(9) hold. Let ty =

a1
VK — 1(M) K=T. We apply pp-SPA to X1, Xoa,..., X, with (N, A) to be determined below.

nl-co
LetV = 01,02, ...,0k|, where ¥y, 02, ..., Uk are the estimated vertices.

* In the first case, a,, < tl. We take N = log(n) and A = cst,o in pp-SPA, for a
constant cz < e/ K=V, Up to a permutation of 01, . . ., U, maxi<g<ri {0k —vkl|} <

T gnew (V) [/Co - /2log(n) + Cay] + by,.
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Figure 3: Performances of SPA, P-SPA, D-SPA, and pp-SPA in Experiment 1-3.

* In the second case, oy, > t). Suppose o, = o(1). We take N = log(n) and A = «, in
pp-SPA. Up to a permutation of 01, . .., Uk, maxi<p<i {||0x — Vk||} < 0gnew(V) - (1 +

05(1)) /2 1og(n).

Comparing Theorem 3 with Theorem 2, the difference is in the first case, where the o(1) factor of
0., 1s replaced by a constant factor of ¢ < 1. Similarly as in (12), we obtain

PP _ 1} < g (V) - { 2¢o log(n) if d/n is properly small; (14)

11Sr}€anK{||vk [24 o(1)]log(n) if d/n is properly large.

In this relaxed setting, we also compare Theorem 3 with (13): (a) When d >> log(n), the improve-

ment is a factor of \/log(n)/d. (b) When d = O(log(n)), the improvement is at the constant order.
It is interesting to further compare these “constants”. Note that gpew (V') is the same for all meth-
ods. It suffices to compare the constants in the bound for Byew (V). In Case (b), the error bound of
pp-SPA is smaller than that of SPA by a factor of ¢y € (0,1). For the practical purpose, even the
improvement of a constant factor can have a huge impact, especially when the data contain strong
noise and potential outliers. Our simulations in Section 5 further confirm this point.

5 NUMERICAL STUDY

We compare SPA, pp-SPA, and two simplified versions P-SPA and D-SPA (for illustration). We also
compared these approaches with robust-SPA (Gillis, 2019) from bit.ly/robustSPA (with de-
fault tuning parameters). For pp-SPA and D-SPA, we need to specify tuning parameters (N, A). We
use the heuristic choice in Remark 2. Fix K = 3 and three points {y1,y2,y3} in R%. Given (n, d, o),
we first draw (n—30) points uniformly from the 2-dimensional simplex whose vertices are y1, y2, y3,
and then put 10 points on each vertex of this simplex. Denote these points by wy, ws, . . ., w, € R2.
Next, we fix a matrix A € R?*2, whose top 2 x 2 block is equal to I; and the remaining en-
tries are zero. Let r; = Aw;, for all 7. Finally, we generate X, Xo, ..., X,, from model (1).
We consider three experiments. In Experiment 1, we fix (n,0) = (1000, 1) and let d range in
{1,2,...,49,50}. In Experiment 2, we fix (n,d) = (1000, 4) and let o range in {0.2,0.3,...,2}.
In Experiment 3, we fix (d,0) = (4, 1) and let n range in {500, 600, ...,1500}. We evaluate the
vertex hunting error maxg{||0x — vi||} (subject to a permutation of ¥y, ..., 0k). For each set of
parameters, we report the average error over 20 repetitions. The results are in Figure 3. They are
consistent with our theoretical insights: The performances of P-SPA and D-SPA are both better than
that of SPA, and the performance of pp-SPA is better than those of P-SPA and D-SPA. It suggests
that both the projection and denoise steps are effective in reducing noise, and it is beneficial to com-
bine them. When d < 10, pp-SPA, P-SPA and D-SPA all outperform robust-SPA; when d > 10,
both pp-SPA and P-SPA outperform robust-SPA, and D-SPA (the simplified version without hyper-
plain projection) underperforms robust-SPA. The code to reproduce these experiments is available
athttps://github.com/Gabriel78110/VertexHunting.

10
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6 DISCUSSION

Vertex hunting is a fundamental problem found in many applications. The Successive Projection al-
gorithm (SPA) is a popular approach, but may behave unsatisfactorily in many settings. We propose
pp-SPA as a new approach to vertex hunting. Compared to SPA, the new algorithm provides much
improved theoretical bounds and encouraging improvements in a wide variety of numerical study.
We also provide a sharper non-asymptotic bound for the orthodox SPA. For technical simplicity, our
model assumes Gaussian noise, but our results are readily extendable to subGaussian noise. Also,
our non-asymptotic bounds do not require any distributional assumption, and are directly applicable
to different settings. For future work, we note that an improved bound on vertex hunting frequently
implies improved bounds for methods that contains vertex hunting as an important step, such as
Mixed-SCORE for network analysis (Jin et al., 2023; Bhattacharya et al., 2023), Topic-SCORE for
text analysis (Ke & Wang, 2022), and state compression of Markov processes (Zhang & Wang,
2019), where vertex hunting plays a key role. Our algorithm and bounds may also be useful for
related problems such as estimation of convex density support (Brunel, 2016).

A PROOF OF PRELIMINARY LEMMAS

A.1 PROOF OF LEMMA 1

This is a quite standard result, which can be found at tutorial materials (e.g., https://people.
math.wisc.edu/~roch/mmids/roch-mmids—11ssvd-6svd.pdf). We include a proof
here only for convenience of readers.

We start by introducing some notation. Let Z; = X; — X and let Z = [Zy,...,Z,] € R™,
Suppose the singular value decomposition of Z is given by Z = UzDzV}. Since H is a rank-
(K — 1) projection matrix, we have H = QQ’, where Q € R%“%~1 is such that Q'Q = Ix_;.
Hence, we rewrite the optimization in (3) as follows:

minimize Z —20) (Ig — QQ")(X; — zg), subjectto Q'Q = Ix_1.

For A € R, consider the Lagrangian objective function

n

S(x0,Q,0) = > (Xi —x0)' (Is — QQ)(X; — m0) + MQ'Q — Irc_1). (A1)
i=1
Setting its gradients w.r.t. g and @ to be 0 yields

n

Vo S(@0, @A) = —2(Is — QQ') D (X — w0) =0, (A2)

=1

VoS(z0,Q,\) = —2Q Z i —20)(X; — o) 4 2)0Q" = 0. (A.3)

Firstly, we deduce from (A.2) that £y = X, which in view of (A.3) implies that Q'(ZZ' — \I4) = 0.
The above equations also implies that the (K — 1) columns of () should be the distinct columns of
Uz. Now, the objective function in (A.1) is given by

S(@0, QN =Y Z{(la — QQ)Zs = tr[(Is — QQ) 2 Z') = tr((14 — QQ")Uz D3 U]

i=1
=tr(Dy)? —tr[Q' U, DZULQ] = tr(D%) — || D2ULQ| 3. (A4)

Note that for each column of U,Q € R%E~1 it has exactly one entry being 1 and its other entries
are all 0. Therefore, taking ) = U maximizes ||DzU/Q||# and hence minimizes the objective
function S in (A.1), that is, H = UU’. The proof is complete.

11
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A.2 PROOF OF LEMMA 3

For the simplex formed by V' € R?*¥  we can always find an orthogonal matrix O € R?*¢ and a
scalar a such that
X1y X2 TK
OVv=|a a ... a |, where z,ecREfork=1,... K.
0O 0 ... 0
Denote # = K~} Zszl zj,. Further we can represent
>  [(T1—T X2—T ... Tk —T
oV = ( 0 0 ... 0 )
We write X := (x1 —T,x9—7T,...,xx — ). Since rotation and location do not change the volume,
Volume(S,) = Volume(S(X)).
where S (X' ) represents the simplex formed by X. By Stein (1966), we have
1 (x;—2x)
det(A . 1 (z2 —z)
Volume(Sy) = (K"e—(l))! , with A= :
1 (zg—17)
We also define
1 (1}1 — 17)/
1 (vg—70) -
A= . . = [1K7 VI]7
1 (vg —0)
Since (A,0) = A <é g) , it follows that AA’ = AA’ and Volume(S;) = % =

4/ de / K ~
%. Note that A’A = (0 f/%’) by the fact that V1gx = 0. Then det(A’A) =

Kdet(VV"). Further notice that rank(VV’) = K — 1. We thus conclude that
\/E K-1 N
Volume(Sy) = ®=1) ;};[1 sp(V).

This proves the first claim.

For the second and last claims, we first notice that V' = V- 171’K. Then VV' = VV' + Koo'
again by V1x = 0. Because both V'V’ and Ko%' are positive semi-definite, by ‘Weyl’s inequality

(see, for example Horn & Johnson (19853)), it follows that sx—1(V) > sx—1(V) and sk (V) =

Vmin(VV') < /K[0]? = VE]|7].

A.3 PROOF OF LEMMA 4
We first prove claim (a). Let I = |7 — 7, ..., 7, — 7] € RE:" Recalling the definitions of G’ and
V, we have G = n~ I’ and R = n~Y2VTI, so that RR' = n~VIII'V' = VGV".

Next, we prove claim (b). Recall that V = V — 1%, so that VV' = (V — 01 )(V — 01} ) =
V'V’ — Kov'. Note that Since m;1x = 7’1 = 1, we have II'l ¢ = 0, which implies that G1x =
n~I(II'1 ) = 0. We deduce from this observation that Ax (G) = 0 and its associated eigenvector
is K~1/21 . Therefore, G — e 1 (G) I + K ' Ak _1(G)1 1) is a positive semi-definite matrix,
so that

VGV’ — /\K_l(G)VV/ =VGQV' — )\K_l(G)VV/ + /\K_l(G)KT}TJ/

= V[G — )\Kfl(G)IK + K_l)\Kfl(Gﬂ_Kl/K]V/ > 0.

12
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In addition, observing that II'1 ;- = 0 due to the fact that ||7;||; = ||7||; = 1, we obtain that
VGV = (V = 01)G(V = 01%) = n~ Y (V — 51T (V — 01y) = VGV'.
Therefore,
M(GVV = VGV = M (G)VV = VGV =V[M(G)Ix — GV >0,
which completes the proof of claim (b).
Finally, for claim (c), we obtain from (a) that 0%, _;(R) = Ax—1(RR’) = Ax—1(VGV'), which by

Weyl’s inequality~(s~ee, for example, Horn & Johnson (1985)) and in view of claim (b) implies that
A —1(G)Ak—1(VV') < 0% (R) < M (G)Ak—1(V V). The proof is therefore complete.

A.4 PROOF OF LEMMA 5

Recall that 21 ~ x2(0). Let b, be the value such that
P(z; > b,) =1/n.
By basic extreme value theory, it is known that

max%sw{z} 1, i probability.
n

We now solve for b,,. It is seen that b,, > d. Recall that the density of X?Z(O) is

1 d/2—1

T —x/2
2072T(d)2) ’

e x> 0.

Note that for any =g > d,

/ g2 T2/ 2 gy = 2363/2716_%/2 + / (d—2)z"?*2e™* dy (A5)
xo

o

where the RHS is no greater than

< 2x3/2_167%/2 + =2 /OO 22 e 24y,

i) o

It follows that for all z¢ > d,

(o)
21.3/2716_%0/2 < / xd/Z—le—w/de <z - ‘%-3/2*16—480/27 (A6)
Zo
where we have used T
0
0 < 2.
o — d+2 "~ xO/

It now follows that there is a term a(x) such that when = > d,
1<a(z) <x/2

and 1
Pz > 2) — 9pd/2-1,—/2
(12 0) =l gam ™
Combining these, b,, is the solution of
1 1
= 9pd/2-lemw/2 — Z A7
‘T C Th o

We now solve the equation in (A.7). Consider the case d is even. The case where d is odd is similar,
so we omit it. When d is even, using

I(d/2) = (d/2 = 1)t = (2/d)(d/2)! = (2/d)9(2%)d/2,

where 0 is the factor in the Stirling’s formula which is < C'y/log(d). Plugging this into the left hand
side of (A.7) and re-arrange, we have
ex

log(d/x) + (d/2) log( 7 ) —xz/2 = —log(n) + o(log(n)). (A.8)

We now consider three cases below separately.

13
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* Case l. d < log(n).
* Case 2. d = aglog(n) for a constant ag > 0.
* Case 3. d > log(n).

Consider Case 1. In this case, it is seen that when
z = O(log(n)),
the LHS of (A.8) is
—z/2 + o(log(n)).
Therefore, the solution of (A.8) is seen to be

bp = (1+0(1)) - 2log(n).

Consider Case 2. In this case, d = aglog(n). Let x = by log(n). Plugging these into (A.8) and
rearranging,
a1 — aglog(ay) = 2 4 ag — aglog(ag) + o(1). (A.9)
Now, consider the equation
a1 — aglog(a1) = 2 + ag — ag log(ap).

It is seen that the equation has a unique solution (denoted by b) that is bigger than 2. Therefore, in
this case,
b, = (14 0(1))bo,

Consider Case 3. In this case, d >> log(n). Consider again the equation
log(d/x) + (d/2) log( 1) — /2 = —log(n) + of(log(n)).

Letting y = x/d and rearranging, it follows that

y —log(y) — 1 =o(1), (A.10)

where for sufficiently large n, o(1) > 0 and o(1) — 0. Note that the function g(y) = y —log(y) — 1
is a convex function with a minimum of 0 reached at y = 1, it follows

y=1+o(1).

Recalling y = x/d, this shows
b, = (1+0(1))d.
This completes the proof of Lemma 5.

B ANALYSIS OF THE SPA ALGORITHM

Fixd > K — 1. Forany V = [v1,va,...,vx] € R*K let 03, (V) denote the kth singular value of
V', and define
y(V) = min, max ok —voll,  dmax(V) = max|lz]

To capture the error bound for SPA, we introduce a useful quantity in the main paper:
B(X,V) = max{lrg%ﬁDlst(Xi,S), 123& lglg)k 1 X; — vk||}. (B.11)

We note that when max; Dist(X;, S) is small, no point is too far away from the simplex; and when
maxy min;.,, —, || X; — vg| is small, there is at least one point near each vertex.

Let’s denote v = ¥(V), dimax = dmax(V), 5 = B(X, V), and 0. = ox_1(V) for brevity. We shall
prove the following theorem, which is a slightly stronger version of Theorem 1 in the main paper.

Theorem B.1. Suppose for each 1 < k < K, there exists 1 < i < n such that m; = eg. Suppose
B(X, V) satisfies that 450d % max{l7 d;]% }B < 02. Let 01,19, ...,0, be the output of SPA. Up
to a permutation of these r vectors,

R 30’}/ dmax
_ < (14 =L 1, —= ) X .
11;1’?%&”% vl _< + o max {1, o, 18X, V)

14
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B.1 SOME PRELIMINARY LEMMAS IN LINEAR ALGEBRA

To establish Theorem B.1, it is necessary to develop a few lemmas in linear algebra. First, we notice
that the vertex matrix V' defines a mapping from the standard probability simplex S* to the target
simplex S. The following lemma gives some properties of the mapping:

Lemma B.1. Let S* C RX be the standard probability simplex consisting of all weight vectors. Let
F : 8 — S be the mapping with F(r) = Vx. For any w and T in 8%,

og-1(V) - |lmr = 7| < [|[F(m) = F(®)[| < v(V) - |7 = 71 (B.12)
Fix1 < s < K — 2. If m and 7 share at least s common entries, then
|F(m) = F(7)|| > o —1-s(V)||m — 7| (B.13)

The first claim of Lemma B.1 is about the case where S is non-degenerate. In this case,
OK—1 (V) > 0.

Hence, we can upper/lower bound the distance between any two points in S by the distance between
their barycentric coordinates. The second claim considers the case where S can be degenerate (i.e.,
ox—1(V) = 01is possible) but
UK—I—S(V) > 0.

We can still use (B.12) to upper bound the distance between two points in S but the lower bound there
is ineffective. Fortunately, if the two points share s common entries in their barycentric coordinates
(which implies that the two points are on the same face or edge), then we can still lower bound the
distance between them.

Second, we study the Euclidean norm of a convex combination of m points. Let wy, ..., w,, be the
convex combination weights. By the triangle inequality,

m
i=1
This explains why max,cs ||z|| is always attained at a vertex. Write
m m
i=1 i=1

Knowing § > 0 is not enough for showing Theorem B.1. We need to have an explicit lower bound
for 6, as given in the following lemma.

m
< willeill < max,Jjowl
=1 - =

Lemma B.2. Fixm > 2and x4, ..., Ty € R Leta = min, 4, ||x; — x| and b = max;z; |||z —
lz;|l|. For any w, ..., wy, > 0suchthaty . w; =1,
m a2 _ b2 m m
HZwixi <L-— 1L Zwi(l —w;), with L:= Zlele (B.14)
=1 =1 =1
By Lemma B.2, the lower bound for ¢ has the expression aibez > wi(1—w;). This lower bound
is large if @ = min,»; ||z; — x;|| is properly large, and b = max;-; |||z;|| — ||z;||| is properly small,

and >, w;(1 — w;) is properly large.

* A large a means that these m points are sufficiently ‘different’ from each other.

* A small b means that the norms of these m points are sufficiently close.

* Alarge >, w;(1 — w;) prevents each of w; from being too close to 1, implying that the
convex combination is sufficiently ‘mixed’.

Later in Section B.2, we will see that Lemma B.2 plays a critical role in the proof of Theorem B.1.

Third, we explore the projection of S into a lower-dimensional space. Let H € R%*? be an arbitrary
projection matrix with rank s. We use (I; — H) to project S into the orthogonal complement of H,
where the projected vertices are the columns of

Vi = (1, - H)V.

Since the projected simplex is not guranteed to be non-degenerate, it is possible that o fc 1 (V) = 0.
However, we have a lower bound for o1 _4( VL), as given in the following lemma:
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Lemma B.3. Fix 1 < s < K — 2. For any projection matrix H € RY% yith rank s,
UKflfs((Id—H)V) 20’[{,1(‘/). (BlS)

Finally, we present a lemma about

dnax = max ||z = max oy
In the analysis of SPA, it is not hard to get a lower bound for d,,,« in the first iteration. However, as
the algorithm successively projects S into lower-dimensional subspaces, we need to keep track of
this quantity for the projected simplex spanned by V. Lemma B.3 shows that the singular values
of V1 can be lower bounded. It motivates us to have a lemma that provides a lower bound of d,,,x
in terms of the singular values of V.

Lemma B4. Fix 0 < s < K — 2. Suppose there are at least s indices, {ki,...,ks} C

{1,2,..., K}, such that ||v|| < 8. Ifo2 | (V) > 2(K — 2)62, then

K—-s5-1 1
>y _° - > = . )
12¥§§(Hvkﬂ NI ox-1-s(V) > 201<_1_s(¥’) (B.16)

B.2 THE SIMPLICIAL NEIGHBORHOODS AND A KEY LEMMA

We fix a simplex S C R? whose vertices are vy, v, ..., vk. Write V = [v1,ve, ..., v] € RIXK,
Let S* denote the standard probability simplex, and let F' : $* — S be the mapping in Lemma B.1.
We introduce a local neighborhood for each vertex that has a “simplex shape”:

Definition B.1. Given e € (0,1), for each 1 < k < K, the e-simplicial-neighborhood of vy, inside
the simplex S is defined by

Vi(e) :={F(n):meS*, n(k) >1—¢}.
These simplicial neighborhoods are highlighted in blue in Figure 4.

Vi

7" (€p)

Origin 3

- S ’L; -hg

= “max

V2

7 7 5(eo)
3(€o

Y (€g, hy) = ¥ (€g) U 7'5(€0) T

Figure 4: An illustration of the simplicial neighborhoods and V(eg, ho).

First, we verify that each Vj(¢) is indeed a “neighborhood” in the sense each 2 € V() is sufficiently
close to vy,. Note that v, = F(ey,), where ey, is the kth standard basis vector of R¥. For any 7 € S*,

Im —exll = 2[1 — 7 (k)].

By Definition B.1, for any 2 € Vj(e), its barycentric coordinate 7 satisfies 1 — w(k) < e. It follows
by Lemma B.1 that

ma; T — vl = ma; F — F(e < 2v9(V)e. B.17
wevkﬁ)\l k| ﬂeS*:ﬂ(k>)<§1_€|\ (m) = Feg)|| < 2v(V)e (B.17)

Hence, Vi (€) is within a ball centered at v, with a radius of 2v(V")e. However, we opt to utilize these
simplex-shaped neighborhoods instead of standard balls, as this choice greatly simplifies proofs.
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Next, we show that as long as € < 1/2, the K neighborhoods V; (¢), . . ., Vi (€) are non-overlapping.
By Lemma B.1,

[lvg — vell = ox—1(V)|lex — eell > \/ioK_l(V), forl <k#/(<K. (B.18)

When z € Vi (€), the kth entry of 7 := F~!(z) is at least 1 — ¢ > 1/2. Since each 7 € S* cannot
have two entries larger than 1/2, these neighborhoods are disjoint:

Vie(€) N Ve(e) = 0, forany 1 <k #/{ < K. (B.19)

An intuitive explanation of our proof ideas for Theorem B.1: We outline our proof strategy using
the example in Figure 4. The first step of SPA finds

i1 = argmax; <;<,, || X/|-

The population counterpart of X;, is denoted by r;,. We will explore the region of the simplex that
4, falls into. In the noiseless case, X; = r; for all 1 < 7 < n. Since the maximum Euclidean norm
over a simplex can only be attained at vertex, r;, must equal to one of the vertices. In Figure 4, the
vertex vs has the largest Euclidean norm, hence, r;, = v3 in the noiseless case. In the noisy case, the
index 4 that maximizes || X;|| may not maximize ||r;||; i.e., 7;, may not have the largest Euclidean
norm among r;’s. Noticing that ||vs|| > [Jua|| > |Ju1]|, we expect to see two possible cases:

* Possibility 1: 7;, is in the e-simplicial-neighborhood of v3, for a small € > 0.

* Possibility 2 (when ||vz|| is close to ||vs||): 4, is in the e-simplicial-neighborhood of .

The focus of our proof will be showing that r;, falls into V2 (e) U V3(€). No matter r; € Va(e) holds
or r; € Vs(€) holds, the corresponding ¢; = X, is close to one of the vertices.
Formalization of the above insights, and a key lemma: Introduce the notation
K* = {k : ||Jvk|l = dmax}, where  dpax := mangH = max lvg]l- (B.20)
T€

Given any hy > 0 and ¢y € (0,1/2), let Vi (€p) be the same as in Definition B.1, and we define an
index set K(hg) and a region V(eg, ho) C S as follows:

K(ho) = {k : [|vk|l = dmax — ho}, V(€0, ho) = Urek(no) Vi (€0)s (B.21)
For the example in Figure 4, K* = {3}, K(ho) = {2, 3}, and V(eg, ho) = Va(eg) U V3(eq).

In the proof of Theorem B.1, we will repeatedly use the following key lemma, which states that the
Euclidean norm of any point in S \ V(eq, ho) is strictly smaller than d,,,x by a certain amount:

Lemma B.5. Fix a simplex S C R with vertices v1,va, . .., vr. Write dpax = maxi<p<x ||vk|-
Suppose there exists o, > 0 such that

max > 04/2, d i — vl > V20,. B.22
0./ an 1§km;2?§K||vk vel| > V20 ( )

Let K(ho) and V(eo, ho) be as defined in (B.21). Given any t > 0 such that max{1, dpax/0x}t <
30, if we set (ho, €9) such that

ho = 0./3, and  1/2 > ¢y > 60, max{l, dmax /04, (B.23)

then
lz|| < dmax — ¢, SJorall x € S\ V(eo, ho). (B.24)

Lemma B.5 will be proved in Section B.4.5, where we invoke Lemma B.2 to prove the claim here.

B.3 PROOF OF THEOREM B.1 (THEOREM 1 IN THE MAIN PAPER)

The proof consists of three steps. In Step 1, we study the first iteration of SPA and show that v, falls
in the neighborhood of a true vertex. In Steps 2-3, we recursively study the remaining iterations and
show that, if 0y, ..., 05— fall into the neighborhoods of (s — 1) true vertices, one per each, then
¥y, will also fall into the neighborhood of another true vertex. For clarity, we first study the second
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iteration in Step 2 (for which the notations are simpler), and then study the sth iteration for a general
sin Step 3.

Let’s denote for brevity:
7:7(‘/)’ dmax :dmax(v>7 (o™ :O'K—l(v)a /B:/B(va)
Write J, = {1 <i <n:m(k) =1}, for1 <k < K. From the definition of 8(X, V),

Dist(X;,S) < in || X; — v < 8. B.2
nax ist(X;, S) < B, 12@(%};” i— vl < B (B.25)

Step 1: Analysis of the first iteration of SPA.

Applying Lemma B.4 with s = 0, we have dy,ax > 0./2. We then apply Lemma B.5. Let V(eo, ho)
be as in (B.21), with

ho = 0./3, and €y = 15max{o., 0, 2dmax } - (B.26)

Our assumptions yield eg < 1/2. Additionally, when t = 73/3, ¢ > 60, max{1, dmax/0* },
which satisfies (B.23). We apply Lemma B.5 with ¢t = 73/3. It yields

ma; z|| < dmax — 76/3. B.27
esiax =] < B/ (B.27)

At the same time, let IC* be the same as in (B.20). For any k& € IC*, it follows by (B.25) that
there exists at least one i* € Jj, such that || X;» — vg| < 8.

Note that ||vg|| = dmax for k € IC*. It follows by the triangle inequality that
[ Xi= [l = llvell = 8 = dmax — B

Since || X;, || = max; | X;]|, we immediately have:
1 Xe, [| > | X« || > dimax — 8- (B.28)
Combining (B.27) and (B.28), we conclude that X;, ¢ S\ V(eq, hg); in other words,
X, can only be inside V(eg, ho) or outside S. (B.29)

Suppose X, is outside S. Let projs(X;,) € RY be the point in the simplex that is closest to X;, . In
other words, || X;, — projg(X;,)|| = minges [| X;, — z|| = Dist(X,,,S). Using the first inequality
in (B.25), we have

HXil - prOjS(Xil)” <g. (B.30)

It follows by the triangle inequality and (B.28) that
”projS(Xil)” 2 ”Xll H - ﬁ > dmax — 2ﬁ

Combining it with (B.27), we conclude that projs(X;, ) cannot be in S \ V(eo, ho). So far, we have
shown that one of the following cases must happen:

Case 1: X;, € V(eo, ho),

Case2: X;, ¢ S, and projg(X;,) € V(eo, ho). (B.31)

In Case 1, since V1 (o), - - ., Vi (€o) are disjoint, there exists only one k1 € KC(hg) such that X;, €
Vi, (€0). It follows by (B.17) that

1 X, — vie, || < 27yeo, in Case 1. (B.32)

In Case 2, similarly, there is only one k1 € K(hg) such that projg(X;,) € Vi, (). It follows by
(B.17) again that

[projs(Xi,) — vk, | < 2veo.
Combining it with (B.30) gives
[ X5, = vk, || < [1Xi, — projs (X, )| + [[projs(Xi,) — vk, ||
< 2ve9 + B, in Case 2. (B.33)
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We put (B.32) and (B.33) together and plug in the value of ¢, in (B.26). It yields:
”Xll — Uk, ” < 6 + 2760

dll]ax
(1 + 3 ax{1, )B, for some k. (B.34)
O«

O

Step 2: Analysis of the second iteration of SPA.
Let H) = I; — HX T
the data points X1, ..., X, € R%. Write

X; X’ and X} = H, X, for 1 <1 < n. The second iteration operates on

Fi=Hr,  &=He,  Op=Huv, V=[b,0,...,0k]
It follows that ~ ~
X;=Vm+6&, 1<i<n. (B.35)
Let S C R denote the projected simplex, whose vertices are 01, . .., U . Let F denote the mapping

from the standard probability simplex S* to the projected simplex .S (note that F' is not necessarily
a one-to-one mapping). We consider the neighborhoods of S using Definition B.1

Vi(e) = {F(r):m e S*, m(k) >1—¢} C R, 1<k<K. (B.36)

Let k1 be as in (B.34). Let dmax (= max g |l]]. The maximum distance chaX is attained at one or

multiple vertices. Same as before, let K* be the index set of k at which |7 || = dmax. We similarly
define
K(ho) = {k : [0kl = dmax — ho}, V€0, ho) = Uy ) Vi(€0)- (B.37)

At the same time, let 5 = ﬁ()?, 17) It is easy to see that for any points x and y, ||Hix — Hyy|| <
|z — y||. Hence, 8 < S. It follows that

< - < .
1121’?<XnDISt(X“S) B, 1I<I}€E%<XKZII€1}IH||X okl < B. (B.38)

Additionally, we have the following lemma:

Lemma B.6. Under the conditions of Theorem B.1, for o, = ox_1(V), the following claims are
true:

dmax > 0./2,  min  ||og — O¢l| > V20., and ky ¢ K(ho). (B.39)
(k,0):k#£k1,
O£k kAL

Given (B.35)-(B.39), we now apply Lemma B.5 to study the projected simplex S. Similarly as how
we obtain (B.27), by choosing

ho = 0./3, and €1 = 15 max{o., a;zcimax},

we get MaxX, . & $(c, ho) ||| < drnax — 75/3. Note that €; < €, and the set §\ ‘7(6, ho) becomes
smaller as € increases. We immediately have

max 2| < dmax — 75/3. (B.40)
z€S8\V(eo,ho)

At the same time, by (B.38) and (B.39), it is easy to get (similar to how we obtained (B.28))
X, | > dinax — B.
We can mimic the analysis between (B.28) and (B.31) to show that one of the two cases happens:
Case 1: )~(,»2 € g(eo,ho)
Case 2: XLQ ¢ S, and prOJS( ,) € V(eo, ho). (B.41)

Consider Case 1. Since H; is a linear projector, X, € Vk(eo) if and only if X; € Vi (ep). Hence,

Xi, € (Ukelz(ho)v’“(eo))'
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There exists a unique ky € K(ho) such that X;, € Vy, (). It follows by (B.17) that
[ X, — v || < 2760, in Case 1.
Consider Case 2. Write & = projS(Xw) for short, and let M = {x € S : Hyz = Z}. For any k,

I € Vi(eo) implies that = € V(o) for every # € M. Additionally, X; € S if and only if X; € S.
Hence, it holds in Case 2 that

X, ¢S, andz € (U o) Vi(€0)), for every z € M.

keK(h

We pick one 2 € M. There exists a unique ky € K(ho) such that = € Vy, (¢o). By mimicking the
derivation of (B.33), we obtain that

| X5, — iy || < 27v€0 + B, in Case 2.
Combining the two cases and using the value of eo in (B.26), we have the conclusion as

1 X, — vk, || < (1 + 3— max{1, dmax })B, for some ko # k. (B.42)

Step 3: Analysis of the remaining iterations of SPA.

Fix 3 < s < K — 1. We now study the sth iteration. Let i1, ..., ik denote the sequentially selected
indices in SPA. We aim to show that there exist distinct k&, k27 ..., ks €{1,2,..., K} such that

1Xi, — vk, || < <1+7 {1 (max ) (B.43)

Let’s denote M_; := {k, ..., ks—1} for brevity. Suppose we have already shown (B.43) for every
index 1,2, ...,s— 1. Our goal is showing that (B.43) continues to hold for s and some ks ¢ M _1.

Let X i(l) = X, and H; be the same as in Step 1 of this proof. We define X Z»(S) and H, recursively to
describe the iterations in SPA:
X(S—l) L
S s o He= e i) o, XU =HxTV. B4d

1s—1

It is seen that H,_; = Hm_:1(ld — Um.,)- Note that each ¢, is orthogonal to 1, ..., Jm—1. Asa
result, H;_; is a projection matrix with rank (s — 1). We apply Lemma B.3 to obtain that

ok—s(Hs—1V) > ox-1(V) > 0., for3<s< K —1. (B.45)

Write V=D = H, Vand V) = H,V. Using the notations in (B.44), we have
X = (L= gu)XT VO = (L= ) v,
Here, T's := I; — 59, is a projection matrix. We observe:

The relationship between (X* ™", V(=) and (X{*), V() is similar to the one

ploglh pio B.46
between (X;, V') and (X;, V) in Step 2, except that H; is replaced with T's. (B.46)

We aim to show that (B.35)-(B.38) still hold when those quantities are defined through (X Z-(S) , V(S)).
Recall that the proofs in Step 2 are inductive, where we actually showed that if (B.35)-(B.38) hold
for the corresponding quantities defined through (X;, V'), then they also hold for the same quantities

defined through (X;, V). Given (B.46), the same is true here.

It remains to develop a counterpart of Lemma B.6. The following lemma will be in Section B.4.7.
It is also an inductive proof, relying on that (B.43) already holds for 1,2,...,s — 1. .

Lemma B.6. Under the conditions of Theorem B.1, write 0, = ox_1(V). Let ¥ = Ve,
dmax = maxy, |0, and K(ho) = {k : ||Uk|| > dmax — ho}. The following claims are true:

CZmax Z 0'*/27 ko) H/%/l[n ||’Uk — ’Ug” > \fa*, and Ms—l N kv:(ho) = @ (B47)
#e 1=

In Step 2, we have carefully shown how to use (B.35)-(B.39) to get (B.42). Using similar analyses,

we can use the counterparts of (B.35)-(B.38), which are defined through (Xi(s)7 V(s)), and the claim
of Lemma B.6, to obtain (B.43). This completes the proof.
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B.4 PROOF OF THE SUPPLEMENTARY LEMMAS
B.4.1 PROOF OF LEMMA B.1

By definition, F'(7) = Zle m(k)vg. Since 22{21 7(k) = 1, for any vy € R?, we can re-express
F(m)as F(m) = v + Zk],(:l m(k)(vg — vo). It follows immediately that

K

> [m(k) — 7 (k)](vx — o)

k=1

|F(m) — F(#)]| = < llm = 7l - masx ok — ol

At the same time, since 1% (7 — 7) = 0, the vector 7 — 7 is an (K — 1)-dimensional linear subspace.
It follows by basic properties of singular values that

[1F(m) = F(@)| = V(7 =) 2 ox—1(V) - [|[7 — 7.
Combining the above gives (B.12).

Suppose there are 1 < k1 < kp < ... < ks < K such that w(k;) = 7(k;), for 1 < j < s. Then, the
vector 0 = m — 7 satisfies (s + 1) constraints: 1%.0 = 0, 6(k;) = 0, for 1 < j < s. In other words,
d livesin a (K — 1 — s)-dimensional linear space. It follows by properties of singular values that

[F(m) = F@)|| = [V(r = %) 2 ok —1-5(V) - || — 7.
This proves (B.13).
B.4.2 PROOF OF LEMMA B.2
Write for short 2 = >/" | mz; € R4 and L = Y| w;||2;]|. By the triangle inequality,
el < L.

In this lemma, we would like to get a lower bound for L — ||z||. By definition,

llz||? = szQHl’zHQ + szw]x;xj (B.48)
i i#]
For any vectors u, v € R, we have a universal equality: 2u'v = 2||ul|||v||+(|Ju||—|[v])? = |Ju—v|>.
By our assumption, ||z; — ;|| > a and (||z;]| — ||z;]|)? < b?, for all i # j. It follows that
gy < iyl — (@® = b*)/2, 1<i#j<m. (B.49)

We plug (B.49) into (B.48) to get
1
2] < Y willzill* + ) wiwylli |25 — S(a* =) > wiw;
i i#£] i£j
1
- §(a2 — b)) ww;. (B.50)
i#]
Note that } 3, wiw;j = 32, >4 w; = >, wi(1 — w;). Combining it with (B.50) gives
1
l2lf* < 2% = S(a® = %) > w1 —wy). (B.51)

At the same time, L + ||z|| < 2L. It follows that

L2 —lz|? L% —|z]* _ a® P
L — = > > i (1 — w;). B.52

This proves the claim.
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B.4.3 PROOF OF LEMMA B.3

Since H is a projection matrix, there exists Q; € R® and Qo € R?* such that Q = [Q1, Q2] is an
orthogonal matrix, H = Q1Q, and I; — H = Q2Qy. It follows that

(Io = H)VV'(Ia — H) = Q2(Q5VV'Q2) Q5.

Since Q) has orthonormal columns, for any symmetric matrix M/ € R(4=5)%(4=5) AT and Qo M Q)
have the same set of nonzero eigenvalues. Hence,

0k—1-s((La = H)V) = Ag_1-5(Q5VV' Q).
We note that Q,VV'Q, € R(4=9)%(d=5) ig a principal submatrix of Q'VV’'Q € R%*<. Using the
eigenvalue interlacing theorem (Horn & Johnson, 1985, Theorem 4.3.28),
Ak—1-s(Q5VV'Q2) > Ak _1(Q'VV'Q).
The claim follows immediately by noting that Ax _1(Q'VV'Q) = Ax_1(VV') = 0% _ (V).

B.4.4 PROOF OF LEMMA B.4

Write {yax = maxi<k<i ||Uk||. We target to show

K—s—1
2> Ws_s)af, with o, == og_1_s(V). (B.53)

The right hand side of (B.53) is minimized at s = K — 2, at which £2

2« > 02/4. We now show
(B.53). When s = 0, it is seen that

Koo 2> log]|? = trace(V'V) > (K — ok (V).
k

Therefore, ¢2,,, > £=152, which implies (B.16) for s = 0. When 1 < s < K — 2, since |jvg|| < §

> Ymax —

for at least s of the vertlces,

6% + (K = 8)0ha > > |lvg]|® = trace(V'V) > (K — 1= s)og_,_ (V).

k

As aresult, for o, = o _1-5(V),
K —s—1)0% - s5?
e >t : . B.54

max = K—3 ( )
Note that =—%— is a monotone 1ncreasmg function of s. Hence, 7—%— < K — 2. The assumption
of 2(K —2)6% < o2 implies that 22— 6% < 02, or equivalently, 552 < E=5=152. We plug it into
(B.54) to get £2, > 5((1{5 §02. ThlS proves (B.16) for 1 < s < K — 2.

B.4.5 PROOF OF LEMMA B.5
Write IC = KC(ho), Vi = Vi(€0), and V = V(eq, ho) for short. By definition of £,

dmax — ho < ||vg]] € dmax, fork € K, ||vg|| < dmax — ho, fork ¢ K. (B.55)
We shall fix a point € S\ V and derive an upper bound for ||z||.

First, we need some preparation, let F' be the mapping in Lemma B.1. It follows that 7 = F~!(z)
is the barycentric coordinate of x in the simplex. By definition of V,

max (k) <1— e, whenever z := F(7)isin S\ V. (B.56)
€
The K vertices are naturally divided into two groups: those in IC and those not in /. Define

—1 .
pi=d k), = {p e (B.57)

04, otherwise.
kex
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Here, p is the total weight 7 puts on those vertices in &, and we can re-write x as
x=pn+ Z m(k)vg.
kgkK
By the triangle inequality,

lall = |[on+ > w(kyor| < pllnll + D= 7 (k) ljen
k¢ k¢K

< plinll + (1 = p)(dmax — ho). (B.58)

Next, we proceed with showing the claim. We consider two cases:
1—p>e€p/2 (Casel), and 1—p<ep/2 (Case2).

In Case 1, the total weight that 7; puts on those vertices not in KC is at least € /2. Since each vertex
satisfies that ||vg || < dmax — ho (see (B.56)) and ||7]] < dmax. it follows from (B.58) that

]| < dmax — (1 — p)ho < dmax — ? in Case 1. (B.59)
In Case 2, if K = {k*} is a singleton, then p = 7(k*). By (B.56), w(k*) < 1 — €g, which leads to
1—p=1—m(k*) > €. This yields a contradiction to 1 — p < ¢y/2. Hence, it must hold that

K| > 2. (B.60)

Now, 7 is a convex combination of more than one point in {vy, : k£ € K}, for which we hope to apply
Lemma B.2. By (B.55), for each k € KC, ||vg]| is in the interval [dmax — ho, dmax]- Hence, we can
take b = hg in Lemma B.2. In addition, from the assumption (B.22), ||v — v¢| > v/20. for any

k # £. Hence, we set a = V20, in Lemma B.2. We apply this lemma to the vector n in (B.57). It
yields

(207 — h) = m(k)[p — (k)] , _ N\ (k)
[l <L - 1L Z 7 ) with L := Z THU}C”' (B.61)
kek kek
Since L < dpay, it follows from (B.61) that
202 — h}

||77H < dmax — Z W(k)[]- - pil (k)]

keK

Additionally, noticing that 7(k) < 1 — ¢, for each k € K, we have the following inequality:
L—pta(k) =p 'L =7(k)] = p (1= p) = p~Heo — (1 = p)].

Combining these arguments and using the fact that ) ©, - (k) = p, we have

7] < iy — P20 = (=) 5y

4pd max

2
4p*dmax pord
202 — h3)[eo — (1 —
pdmax
202—h2

Since 1 — p < ¢y/2, we immediately have ||n|| < dmax — . We plug it into (B.58) to get

8pdmax

202 — h2
< dmax - *70> 1 - dmax - h
I < p(dmax = 52 ) + (1= ) o)
202 — h2
< dmax - *7()) 1- dmax
o p( 8deIlaX + ( p)
2 2 _ h2
<y — 20RO cren, (B.63)
8dIIlaX

We now combine (B.59) for Case 1 and (B.63) for Case 2. By setting hy = 0. /3, we have a unified
expression:

] < duma — min{ %, ﬂ}eo.
a 6 9dmax
Consequently, a sufficient condition for ||z|| < dpax — ¢ to hold is
. (0« 02 6 dmax
mm{g, m}ﬁogt < 602 ;max{l, T*}t

This proves the claim.
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B.4.6 PROOF OF LEMMA B.6
Without loss of generality, we assume k; = 1.

By definition, V=H 1V, where H; is a rank-1 projection matrix. It follows by Lemma B.3 that
ok—2(V)> ok 1(V) =0, (B.64)

Note that dpax > maxy ||| and ||71]| = 0. We apply Lemma B.4 with s = 1 and § = 0 to get

~ 1 ~ 1
dmax > io—K—Q(V) = 50—*

This proves the first claim in (B.39). Note that 03, = ‘~/ek, where e, € R¥ is a standard basis vector.
Forany 2 < k # ¢ < K, e and e, both have a zero at the first coordinate; and we apply Lemma B.1
with s = 1 to get

ok = vell > ox—2(V)lex — el > V20
This proves the second claim in (B.39).
Finally, we show the third claim. Note that
Uan X _ Xz(l (Xi1 - ’Ul)vl . 'UiXil
12X, 12 [1Xi, 112 X, 112
Here, |[v1]| < dmax, and by (B.28), | X;, || > dmax — 3. Since | X; (Xi, —v1)| < | X, ||| X, —v1 s
we have )
X406, ol ol
1, 12 ~ X

0y = Hyvp =01 — (X;, —v1). (B.65)

dmax
v < mHXil — w1,

HXH -
and

v Xi, _ ol e

[ X 12 7 (1 Xl ™~ dmax — 8
Plugging these inequalities into (B.65) and applying (B.34), we obtain:

~ Qdmax
o] < m“Xil = iy |
2dmax 30'7 dmax
< Z0max 1, ) B.66
o dmax - /8 (ﬁ TN aX{ (o™ }ﬁ ( )
By our assumption, 30‘1"‘“‘ max{l dm" } B < 0. /15. Moreover, we have shown dyax > (imax >
o4 /2. It further unphes 6 < ﬁ § 225 . < ﬁdmax. As aresult,
200 Oy 3 = ~ 7
— —d < dmax — —Ox. B.67
HUIH = 99 (B"’ 15) 10 a 200' ( )
At the same time, hy = 0. /3. Hence,
(51 < dmax — ho — 1¢ K(ho).

This proves the third claim in (B.39).

B.4.7 PROOF OF LEMMA B.6

Suppose we have already obtained (B.47) and (B.43) for each 1 < 7 < s — 1, and we would like to
show (B.47) for s.

First, consider the second claim in (B.47). For each k ¢ M_1, ithas (s — 1) zeros in its barycentric
coordinate (corresponding to those indices in M _1). We apply Lemma B.1 to obtain:

|5k — Dell > V20k—s(V) > V20.,  forallk #Cin{l,... . K}\ M,_1,

where the first inequality is from (B.13) and the second inequality is from (B.45).
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Next, consider the third claim in (B.47). Note that My = {ky, ko,...,ks_1}. Foreach1 < j <
s — 1, by definition, o, = [[1,,,>;(la — Gmr,)]| - (Ia — §;9;) Hj— 10, It follows that
HJ 1X1

B.68
le] H ( )

10w, | < [[(La = §595)Hj—1vx, ||, where g5 = TH, 2 X, ]
Here, || H;_1 X, || is the maximum Euclidean distance attained in the (j — 1)th iteration. Since we
have already established (B.47) for j, we immediately have
||Hj71Xij|| ZO'*/27 fOI‘lS]SS—l

In addition, we have shown (B.42) for 1 < 5 < s — 1, which implies that

|Hj—1Xi, — Hj_qoy, || < (1+7 ax{1, & dmax )

Using the above ineqaulities, we can mimic the proof of (B.66) to show that

A A 30 dmax
|a = 93) Hy—ron, | < (1+ =2 max{1, 22}) 5. (B.69)

Write I'; = Iy — ¢;4. It is seen that

S
o0l = || T Toti-v,

f=j+1

j1vk, | < (Ta — 959;) Hj— 1ok, |-

Therefore, for 1 < j <s—1,

ol < (1+ Sfi max{1, e ). (B.70)

O«
We further mimic the argument in (B.67) to obtain:
[0k, ] < Bumax — 704/20 < B —hg,  forall1 <j<s—1.
This implies that

ki ¢ K(ho) for1 <j<s—1 = M 1NK(ho)=0. (B.71)

Last, consider the first claim in (B.47). Let A denote the right hand side of (B.70) for brevity.
We have shown ||y || < A, for all & € M;_;. By our assumption, we can easily conclude that
02 > 2(K — 2)A. We then apply Lemma B.4 with s — 1 and § = A to get

~ 1 ~
dmax 2 §UK73(V> Z U*/27 (B72)

where the last inequality is from (B.45).

C PROOF OF THE MAIN THEOREMS

We recall our pp-SPA procedure. On the hyperplane, we obtained the projected points

X' —H(X X)+X:(Id—H)X+HTZ+H€Z

after rotation by U, they become Y; = U'X; =U'r; +U'¢ = U'X; € RE-L Denote Y; =
UlX; = Ulr; + Ule; € RE=L In particular, Uje; ~ N(0,0%Ix_1). Then, without loss of
generality, the vertex hunting analysis on Y; is equivalent to that of X; = r; + ¢; € RP, where
€i ~ N(0,021,) with p = K — 1. We provide the following theorems for the rate by applying
D-SPA on the aforementioned low dimension p = K — 1 space. The proof of these two theorems
are postponed to Section C.2.
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Theorem C.1. Consider X; = r; + ¢; € RP, where ¢; ~ N(0,0%L,) for 1 < i < n. Suppose
m > cin for a constant ¢; > 0 and p < log(n)/loglog(n). Let p/log(n) < 6, < 1. Let
¢y = 0.9(2¢2)71/P\/(2/p)(T(p/2 + 1))}/P. Then, c; — 0.9¢=/? as p — oco. . We apply D-SPA
to X1,Xs,..., X, and output X{,--- , X where some X may be NA owing to the pruning. If we
choose N = log(n) and

log(n)

/p
) for a constant c3 < c3,

= 03U\f(

Then,

ﬁnew < \/> "V 210g(n>

If the last inequality of (8 ) and (9 ) hold, then up to a permutation in the columns,

max ”U}C - UkH < gnew ) VvV Op -0 - 210g(n).

1<k<K

The second theorem discuss the case there a fewer pure nodes.

Theorem C.2. Consider X; = r; + ¢; € RP, where ¢; ~ N(0,0%I,) for 1 < i < n. Fix
0 < co < 1 and assume that m > n'=%%9 for a sufficiently small constant 0 < & < co. Suppose
p < log(n)/loglog(n). Let ¢ = 0.9(2¢2=%0)~Y/P/(2/p)(T(p/2 + 1))/P. Then ¢ — 0.9¢ /2
as p — oo. Suppose we apply D-SPA to X1, X, ..., X,, and output X5 ,--- , X" where some X
may be NA owing to the pruning. If we choose N = log(n) and

1 1/p
= ¢30 \[( 0?((3) for a constant c3 < c.

Then,

5new(X*) § \/%’O" \/m

If the last inequality of (8 ) and (9 ) hold, then up to a permutation in the columns,

max HU/C - Uk” < Gnew( ) . \/% -0 210g(n).

1<k<K

for any arbitrary small constant § < 0.

Based on the above two theorem, we have the results on {ﬁ}’ s. However, what we really care
about is on {Y;}’s which differ from {Y;}’s by the rotation matrix. To bridge the gap, we need the

following Lemma.
Lemma C.7. Suppose that s%._,(R) > max{\/02d/n,c%d/n} and o = O(1). Then, with prob-
ability 1 — o(1),

U = Ul < ||H — Hyl| < max{\/ 2d/n,o%d/n} (C.73)

Kl(

C.1 PROOF OF THEOREMS 2 AND 3

With the help of Theorems C.1, C.2 and Lemma C.7, we now prove Theorems 2 and 3. We will
present the detailed proof for Theorem 3. The proof of Theorem 2 is nearly identical to that of
Theorem 3 with the only difference in employing Theorem C.1, and we refrain ourselves from
repeated details.

Proof of Theorem 3. Recall thatY; = U'X; = U'r; + U'e; and )7 Ur; + Uje;. Theorem C.2
indicates that applying D-SPA on Y; improves the rate to o(140(1))+/2co log(n). Note that ||r;|| <
1. Also, by Lemma 5, |l¢;|| < (1 + o(1))o(y/max{d,2log(n )}) s1mu1taneously for all ¢, with
high probability. Under the assumption a,, = o(1) for both cases and s% _,(R) =< s%_,(V) by
Lemma 4, the first condition in Lemma C.7 is valid. By the last inequality in (8 ), we have the norm
of r; should be upper bounded for all 1 < 7 < n and therefore sK_l(V) < Cmaxg ||0g — O] <
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C'. Further with the condition (9 ), we obtain that o = O(1). Therefore, the conditions in Lemma C.7
are both valid. Then by employing Lemma C.7, we can derive that

~ g\/&
IIY; = Yi|l = Op (w(l + ov/max{d, 2log(n)} )> = Op(oay,)

where the last step is due to Lemma 4 under the condition (8 ).

Consider the first case that o, < . We choose A = c3t}o. It is seen that o, < A. We will
prove by contradiction that applying pp-SPA with (A, log(n)) on {Y;}, the denoise step can remove

outlying points whose distance to the underlying simplex larger than o[/2¢glog(n) + Cay,] for
some C' > 0.

First, suppose that with probability c for a small constant ¢ > 0, there is one point Y;, away from the
underlying simplex by a distance larger than o[\/2¢g log(n) + Ca,] and it is not pruned out. Since
oo, < A, we see that 171-0 is faraway to the simplex with distance o +/2c¢q log(n) for certain large
C' and it cannot be pruned out by (1.5A,log(n)). Otherwise if it can be pruned out, B(Y;,, A) C

B(Y;,,1.5A) and hence N(B(Y;,,A)) > log(n), which means that we can prune out Y;, with
(A, log(n)). This is a contradiction. However, by employing Theorem C.2 on {Y;} with p = K — 1

and noticing c¢5 = 1.8¢ with ¢ defined in the manuscript, we should be able to prune out Y;, with
high proability. This leads to a contradiction.

Second, suppose that with probability ¢ for a small constant ¢ > 0, all outliers can be removed but
a vertex v is also removed (which means all points near it are removed). Then, N (B(v1,A)) <
log(n). For the corresponding vertex for {Y;}, denoted by @, it holds that N'(B(%;, A/2)) < log(n)
which means the vertex v; for {YZ} is also pruned. However, again by Theorem C.2, this can only
happen with probability o(1). This leads to another contradiction.

Let us denote by S(Y™*, U} V') the maximal distance of points in Y* to the simplex formed by U}V
By the above two contradictions, we conclude that with high probability,

BY*,U)V) < a[v/2colog(n) + Cav).

where U}V is the underlying simplex of {¥;}. It is worth noting that cv,, = o(1). Then, under the
assumptions of the theorem, we can apply Theorem B.1 (Theorem 1 in the manuscript). It gives that

max |05 — Ugvg|l < 0gnew(V)[v/2c0log(n) + Ca,]

1<k<K

where we use (07, -+ , 0} ) to denote the output vertices by applying SP on {Y;}. Eventually, we
output each vertex 9y = (Ix — UU’)X + U®;. It follows that up to a permutation of the K vectors,

— < - I, -UU’ I;— 7
max [0 — vel) < max U vl + [|(a — VU)X ~ (s = UoU)7|

< max 195 - Ugvell + 10 = Usll + [[(Za = UU)X = (Ia = UoUg) 7|

Further we can derive
I(Ia = UU)X — (Ia = UgUg)7|| < [|H — Hol| + || X — 7|
< ocay, + €|

20v/max{d,2log(n)}
\/ﬁ

<oa, +

this together with Lemma C.7, give rise to

20v/max{d,2log(n)}
1I<I}€aéx [0k — vkll < 0gnew (V) [/ 2¢0 log(n) + Can] + N )

Consider the second case that o, > t;, where we choose A = oay,. By Lemma 5, it is observed
that with high probability, max;<;<,, d(Y;,S) < (1 + o(1))a+/2log(n). Notice that |Y; — Y;|| <
Coa, with high probability. For Y, if its distance to the underlymg s1mplex is larger than o[(1 +
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1))v/21og(n) + Ci ] for a sufficiently large Cy > 3C+1, then d(Y;,8) > d(Y;,S) — Coay, >
o[(1 + o(1))\/2log(n) + (2C + 1)an] Hence B(Y;, (2C 4 1)A)) is away from the simplex

by a distance larger than (1 + o(1))+/21log(n). It follows that N (B(Y;, A)) < N(B(Y;, (2C +
1)A)) < log(n). This is equlvalent to say that we prune out the points there. Consequently, with
high probability,

BY*,ULV) < ol(1+4 op(1))v/2log(n) + Cra]

and further by Theorem B.1 (Theorem 1 in the manuscript),

max |05 — Ujvk|l < 0gnew(V)[v/2log(n) + Cray)]

1<k<K
Next, replicate the proof for max; <<k |0 — vi|| in the former case, we can conclude that
20v/max{d,2log(n)}
— < 1 21
ax |0k — vkl < Tgnew(V)[(1 + 0op(1))y/2log(n) + Cro,] + N
= 0gnew (V) (1 + op(1))/21og(n).

This concludes our proof.

C.2 PROOF OF THEOREMS C.1 AND C.2.

In the subsection, we provide the proofs of Theorems C.1 and C.2. We show the proof of The-
orem C.2 in detail and briefly present the proof of Theorems C.1 as it is similar to that of Theo-
rem C.2.

Proof of Theorem C.2. We first claim the limit of ¢ = 0.9(2e2~)~1/P /(2/p)(T'(p/2 + 1))'/7.
Note that '(p/2 + 1) = (p/2)!if pisevenand I'(p/2 + 1) = /7w (p+ 1)1/ (2PF1(EEL)) if p is odd.
Using Stirling’s approximation, it is elementary to deduce that

¢ = eO/p)=(1=log(p+1))(p+1)/2p—log(p)/2 _ o—1/2,

1/p
Define the radius A = A,, = c30,/p ( log ”)) for a constant c3 < cy. In the sequel, we will prove

TLI co
that applying D-SPA to X1, --- , X, with (A, N), we can prune out the points whose distance to
the underlying true simplex are larger than the rate in the theorem, while the points around vertices
are captured.

Denote d(z, S), the distance of x to the simplex S. Let

Ry :={x € R? : d(z,S) > 20+/log(n) }

We first claim that the number of points in R s, denoted by N(R[), is bounded with probability
1 — o(1). By definition, we deduce

n

n
N(’Rf)zz (x; € Ry) < Zl llei|l = 204/logn)
i=1

i=1
The mean on the RHS is given by nP(||e;|| > 20+/Iogn) = nP(x2 > 4logn) < ne'518(n) =

n~1/2. By similar computations, the order of the variance is again n~'/2. By Chebyshev’s inequal-
ity, we conclude that N(R ) = op(1).

In the sequel, we use the notation B(z, ) to represent a ball centered at = with radius r and denote
N(B(x,r)) the number of points falling into this ball. And we also denote S the true underlying
simplex.

Based on these notation, we introduce

P :=P(3 X; satisfying o1/2¢g log(n) < d(X;,S) < 20+/log(n) cannot be pruned out )
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We aim to show that P = o(1). To see this, we first derive

P <;)N B(X1, - Xn € BX1,A) st oy/2eg Tog(n) < d(X1,S) < 20/log(n))

< <n>N / le(J?)P(X27~ -, XN E B(l‘,A))dl‘
N an <d(z,8)<b,
n N
< N~/ fx,(x P(X; € B(z,A))dx
<N) an<d(z,8)<by, xl )tzl_‘g (e ( )

where a,, := 0+/2¢glog(n) and b,, := 20+/log(n) for simplicity. We can compute that for any
2<t<N,

P(X, € B(z,A)) = (2r0%)"F /| Lty 2oy
(A/o) (o =l - A)?
= 202 (p/2 + 1) eXp{ N 202 }
Xr —T¢ 2
< (AJo)PC, exp{ - M} (C.74)

where 7, := CA/o+/2colog(n) for a large C' > 0;and we write C), := 2'7P/2/T'(p/2 + 1). Here
to obtain the last inequality, we used the definition of A and the derivation

A A

<
lz =7l = o+/2¢0 log(n)

(1= Afllz =r)* < (1 +7)7"
by choosing appropriate C' in the definition of 7,,. Further, under the condition that p <
log(n)/loglog(n), one can verify that

T < 1/1og(n) = o(1).

< Cr, < Cy/plog(n))/P=1/2 jpl=eo)/p — 4(1)

so that

(C.74), together with
Fxi (@) = (270%) 72 exp{—|l& — r1[*/(20°)} < (270®) "% exp{—||lz — r1|*/(2(1 + 7)0?)},
leads to

P< (;>NC;V1(A/U)MM> /

an<d(z,S8)<b,

N
_ Sim = ? }dx

2mo?) "% {
(2m0™) ™% exp 2(1 + 7p,)0?

Also, notice that S ||z — (|2 > Nz — 7||> where 7 = N2 S 7. Then,

n _ _
r= (N)NC’]’V (@foy 1)'/a
Nz — 7|2 }
dx

n P
< N N—IA p(N—l)/ 2 2\—2 _
_(N) Gy (Ao o @) e { - o

< (;)NCév_l(A/U)P(N—l)N_P/Q(l + 7 )P/ .}P’(Xz > 2Nc¢glogn/(1+4 7,))

where we used the fact that |z — 7|| > d(x,S) in the second step and we did change of variables so
that the integral reduces to the tail probability of XZ distribution. By Mills ratio, the tail probability

of X2 is given by

N _ =12
LAY

2702)~ % {—7
(2mo®)” 2 exp 20+ r)o?

n<d(z,8)<bn

IP’(XIQ, >2N¢ologn/(1+1,)) < Cn~Neo/(47n) (QNCO logn/(1+ Tn))p/271’

we obtain

P< C’(;) NCév_l(A/U)p(N_l)N_p/zn_Nco/(HT”)(2Nco logn)P/?~1.
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Using the approximation (}) < C(en/k)*, we deduce that

L=co/(1+70) (A [ )P(1=1/N) N
N

p<cC [6(2]\[00 log ) (P~2/ M) GL-1/N N (=p/2)/N

i=eo/(147a) (A [ )P =1/N) } N

::C{A(n,p,N)- N

nl—co

0.9(2627<0)=1/2 /(2/p)(T(p/2 + 1))1/P = 0.9¢~ 2=<0)/pC, P /. /5 with €, = 212/ /T (p/2 +
1). It is straightforward to compute that

1/p
Now we plug in N = log(n) and A = 030\/ﬁ(log(”)> for a constant c3 < ¢y where ¢y =

nl=co/(+7n) (A /g )P(1—1/N)
N

< el (@=co)(1=1/log(m) 9 3ty (¢ ]og(n))#nfn)(O.Q)P(l—l/log("))nTnCO/(1+Tvz)(

A(n,p,N) -

nl—co > 1/ log(n)
log(n)
<e’M(0.9)P <1.01-09< 1
under the condition that p < log(n)/loglog(n), which also give rise to 7,, log(n) = o(1). This
implies P < C(0.909)°8(") = o(1).
In the mean time, for each vertex vy, recall that J, = {i : r; = v},
N(Bor, A/2)) = 3 1(as € B, /2)) = 3 1(|lel] < A/2) > mpa — C+/mpa log log(n).

i€Jy i€Jy
with probability 1 — o(1), and
e—(8/0)?/89—p

pa =Rl < A/2) = PG <47 (A/0)") 2 o e oy

Ajo)P

Recall the condition that m > ndnl=< It follows that
e—(8/0)?/89—p
" WRT(p/2 4 1)

2
oA > nlicO(A/J)p _ . e—(A/0)°/8 clog(n)

" wPTprT1) G,
> en®2 (e /ex) log(n) > log(n)

27"(c3/c)?

where ¢ > 0 is some small constant. The last step is due to the fact that n°27P(c3/co)? =
edlog(n)=plog(2c2/es) 5 1 as 2¢y/c3 > 2 is a constant and p < log(n)/loglog(n). Thus, with
probability 1 —o(1), N (B(vg, A/2)) > log(n). Under this event, for any point X;, € B(vi, A/2),
immediately B(vi, A/2) C B(X,,,A) and further N (B(X;,,A)) > log(n). Combining this, with
P = 0(1) and N(R) = op(1), we conclude that we can prune out all points with a distance to the
simplex larger than o+/2¢q log(n) while preserve those points near vertices, with high probability.
Thus we finish the claim for ;¢ (X ™).

The last claim follows directly from Theorem B.1 (Theorem 1 in the manuscript) under condition
(9). We therefore conclude the proof.

O
We briefly present the proof of Theorem C.1 below.

Proof. The proof strategy is roughly the same as that of Theorem C.2 When m > cin, we take

nl—"on

that N (B(v, A/2)) > clog(n)n®ra? = clog(n)edno8(m)—plog(l/a) 5 log(n) where ¢ > 0 is
a small constant and 0 < a < 1. This gives rise to the conclusion that with high probability,

1/p
A = 030\/]3(1°g(")) where p/log(n) < §, < 1 and ¢35 < c¢a, then similarly we can derive
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N(B(X;,,A)) > log(n) for any X;, € N(B(vi,A/2)).Moreover, in the same manner to the
above derivations, replacing ¢y by d,,, we can claim again that N(R ) = op(1) and

pl=0n/(1+70) (A /g)P(1=1/ log(n)) log(n)
P<C|A(n,p,l : =o(1).
< ¢ (Atn.p.1os(o) o P
Consequently, all the claims follow from the same reasoning as the proof of Theorem C.2. We
therefore omit the details and conclude the proof . [
C.3 PROOF OF LEMMA C.7
Recall that R = n='/2[r; —7,...,r, — 7). Let R = UyDyV; be its singular value decomposition
and let Hy = UpU}. Denote € = [e1, . . ., €,] € R:™. We start by analyzing the convergence rate of
|ZZ" — nRR' — no*1,|. Recall that X = 7 + & where e =n~' Y 1" | ¢;. We obtain
Z=X;—X=ri+¢—T—¢ Z =+/nR+e—¢el,. (C.75)

Observing the fact that R1,, = 0, we deduce
77" —nRR —no’l; = (VnR+e—ell)(vVnR+e—¢el) —nRR —no’l,
= n(e—ell)R' + vnR(e — 1,&) + (e — é1},) (e — €1,)) — na’Iy

= VneR + nRe + (e — no?l,) — nee. (C.76)
The above equation implies that
|ZZ" —nRR' —no*ly| < 2vn|eR|| + |lee’ — no* L4 + n|€|*. (C.77)

We proceed to bound the three terms |[eR’||, ||e’ — no?1,4|| and n||€||? respectively. First, notice
that e R’ € R?*¢ is a Gaussian random matrix with independent rows which follow N (0, RR’). By
Theorem 5.39 and Remark 5.40 in Vershynin (2010), we can deduce that with probability 1 — o(1),

n||Re'eR’|| < Cndo*s?(R).
This, together with the fact that s1(R) < ¢ gives that

VnleR + Ré|| < Covnd. (C.78)
Second, by Bai-Yin law (Bai & Yin (2008)), we can estimate the bound of ||EE’ —no?1,]| as follows.
lee’ — no?I,|| < no?(2\/d/n +d/n) < o*(2Vnd + d), (C.79)

with probability 1 — o(1). Third, observe that € ~ N(0,0%/nl;). We therefore obtain that with

probability 1 — o(1),

n||é|* < o*[d + C+/dlog(n)].
By applying the condition that o = O(1), combining the above equation with (C.77), (C.78) and
(C.79) yields that, with probability at least 1 — o(1),

122" — nRR' —no?I,|| < 20Vnd + o?[d + C\/dlog(n)] + o*(2V'nd + d)
< C(oVnd + o2d). (C.80)
Now, we compute the bound for || H — Hy||. Let UL, Ut € R%4=5+1 quch that their columns are
the last (d — K + 1) columns of U and Uy, respectively. It follows from direct calculations that

1 = Holl = |UoUs — UU'|| < |[Ug-(Ug")' (UoUg — UU") || + [UaUs (UoUg — UT")|
= 1Ug (Ug)'UU'|| + [UUUH(U)'| < (U ) Ul + |UgU || = 2| sin ©(Uo, V).

Notably, U, U~ is also the eigen-space of ZZ' — no?I;. By Weyl’s inequality (see, for example,
Horn & Johnson (1985)),

max |A(ZZ' — no®ly) — Ni(nRR')| < C||ZZ' — no®1s — nRR/|

1<i<d
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Under the condition that s2, | (R) > max{\/02d/n, c%d/n}, by Davis-Kahan Theorem (Davis &
Kahan (1970)), we deduce that, with probability at least 1 — o(1),

21ZZ" — nRR' — no?1,||
)\K,1 (nRR’)

2
< Omax{@,a d/”} (C.81)
sk _1(R)

| H — Hy|| < 2||sin®(Up, U)| <

The proof is complete.

D NUMERICAL SIMULATION FOR THEOREM 1

In this short section, we want to provide a better sense of our bound derived in Theorem 1 and how it
compares with the one from the orthodox SPA. To make it easier for the reader to see the difference
between the two bounds, we consider toy example where we fix (K, d) = (3,3) and

V= {(20,20,0), (20, 30,0), (30,20,0)}

while we let _
V=V+a-(0,0,1).

We consider 50 different values for a ranging from 10 to 1000. It is not surprising to see that when
a is close to 0 the bound of the orthodox SPA goes to infinity whereas as the simplex is bounded far
away from the origin, the K*" singular value will be bounded away from 0. However, our bound
still outperforms the traditional SPA bound even for very large values of a. Looking at two specific
values of a we have the following. For a = 10,

Brew = 0.03, B(V) =0.05
Moreover, as a changes, the Figure 5 below illustrate how much the ratio of
our whole bound
Gillis bound

changes as the parameter a changes. For example, when a = 10.

gnew(v)

—0.015,
g(V)

and so
our whole bound

Gillis bound
so we reduce the bound by 111 . Similarly, when a = 1000,

= 0.009

gnew(V) _ 19 Our whole bound
g(v)y — Gillis bound

so we have reduced the bound by 9.5.

=0.105,
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