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Abstract. This paper studies the sensitivity analysis of mass-action systems against their diffusion approxi-
mations, particularly the dependence on population sizes. As a continuous-time Markov chain, a
mass-action system can be described by an equation driven by finitely many Poisson processes, which
has a diffusion approximation that can be pathwisely matched. The magnitude of noise in mass-
action systems is proportional to the square root of the molecule count/population, which makes a
large class of mass-action systems have quasi-stationary distributions (QSDs) besides invariant prob-
ability measures. In this paper, we modify the coupling-based technique developed in [M. Dobson,
Y. Li, and J. Zhai, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 135--162] to estimate an upper
bound of the 1-Wasserstein distance between two QSDs. Some numerical results of sensitivity with
different population sizes are provided.
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1. Introduction. A mass-action network is a system of finitely many species and reactions
whose update rule satisfies the mass-action law. The term ``mass-action network"" refers to a
large number of the chemical reaction networks, epidemiology models, and population models.
At the molecule level, reactions in the mass-action network are random events that modify
the state of the network according to stoichiometric equations. The time of these random
events satisfies mass-action laws. Therefore, a mass-action network can be mathematically
described by a continuous-time Markov process, which is driven by a finite number of Poisson
processes.

The randomness in updating the network is called demographic noise in population and
epidemiology models. It is well known that demographic noise leads to finite time extinc-
tion in a large class of population models (see, for example, the discussion in section 3.1).
This is because the magnitude of the demographic noise is proportional to the population
size. As a result, when the population is small, in many mass-action systems, noise could be-
come the dominant term and lead to finite time extinction with strictly positive probability.
Therefore, the asymptotic property of the mass-action network with finite time extinction is
usually described by the quasi-stationary distribution (QSD), which is the conditional limiting
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QSD SENSITIVITY 1165

distribution conditioning on not hitting the absorbing set yet. As discussed in [19], when the
extinction rate is low, the QSD can be well approximated by the invariant probability measure
of a modified process that artificially ``pushes"" the trajectory away from the extinction.

For decades, it has been known that when the population size is large, the continuous-
time Markov process converges into the mass-action ordinary differential equations (ODEs).
In addition, by setting up a martingale problem, one can show that the rescaled difference be-
tween the continuous-time Markov process and the mass-action ODE converges to a stochastic
differential equation. Therefore, at any finite time, the continuous-time Markov process of a
mass-action network is approximated by a stochastic differential equation. This is called the
diffusion approximation of a mass-action network. For further details, we refer the reader to
[2, 10]. In general, let V denote the volume of the mass-action system; the finite time error of
the diffusion approximation is O(V  - 1 logV ). However, the finite time error estimation does
not translate to the distance between QSDs immediately. The reason is that the sensitivity
of the invariant probability measure or the QSD depends on both the finite time error and
the rate of contraction of the transition kernel. (See [8] or section 3 of this paper.) However,
as V \rightarrow \infty the noise term in the diffusion approximation vanishes. Giving a uniform bound
of the spectral gap of the Fokker--Planck operator with a vanishing diffusion term is known
to be very challenging. In fact, a uniform bound of the speed of contraction with respect to
growing V may not even exist. For example, when the mass-action system is bi-stable, the
speed of contraction can decrease exponentially quickly \sim exp( - cV ) (c is a positive constant)
as V increases.

The goal of this paper is to study the sensitivity of QSDs against diffusion approximation---
specifically, how the QSDs of the Markov process and its diffusion approximation differ from
each other. The motivation for this study is that simulating at the molecule level can be
computationally expensive, even with optimal implementation of the stochastic simulation
algorithm (SSA) [11, 17, 26]. Moreover, it is even more challenging to numerically compute
the QSD when the number of molecules is large. In contrast, simulating a diffusion process
is much easier, and the technique for computing the invariant probability measure or QSD of
a stochastic differential equation is also well developed [18, 19, 29]. As stated above, because
the noise term in the diffusion approximation vanishes as V increases, it is difficult to give a
rigorous bound of the distance between two QSDs. Even in the simple case when a rigorous
estimate is possible, the pre-factor is also unknown and difficult to estimate. Hence, it is
important to have a computable quantitative upper bound of the difference between the QSD
of a mass-action system and that of its diffusion approximation.

The method of sensitivity analysis is developed from the coupling-based method in [8],
which requires both the finite time truncation error and the rate of contraction of the transition
kernel of the diffusion process. The finite time error is modified from the Koml\'os--Major--
Tusn\'ady (KMT) algorithm in [24]. With the explicit construction of coupled trajectories of
the Poisson process and the diffusion process, we can compute the finite time error up to
fixed time T . The main modification from the original KMT algorithm is the adaption of
regenerations. We need to couple the regeneration of the Poisson process and that of its
diffusion approximation in order to make them stay together after a regeneration. The rate of
contraction is modified from the data-driven method proposed in [18]. We design a suitable
coupling scheme for the modified diffusion process that regenerates from the QSD right after
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1166 YAO LI AND YAPING YUAN

hitting the absorbing set. Because of the coupling inequality, the exponential tail of the
coupling time can be used to estimate the rate of contraction. The sensitivity analysis is
demonstrated by several numerical examples. Generally speaking, the distance between two
processes is much larger for smaller volumes (i.e., molecule count).

The organization of this paper is as follows. Preliminaries of reaction networks, rates for
the law of mass action, the Poisson process, the diffusion process, and coupling times are
provided in section 2. Section 3 introduces the algorithms for computing the finite time error
and the rate of contraction in two different cases. All numerical examples are demonstrated
in section 4. Section 5 is the conclusion. All explicit expressions of the Poisson process and
the diffusion process are shown in the appendix.

2. Preliminaries.

2.1. Stochastic mass reaction networks and Poisson process.

2.1.1. Stochastic mass reaction networks. We consider a mass-action network of K
reactions involving d distinct species, S1, \cdot \cdot \cdot , Sd,

d\sum 
i=1

ckiSi\rightarrow 
d\sum 

i=1

c\prime kiSi, k= 1, \cdot \cdot \cdot ,K,(2.1)

where cki and c\prime ki are nonnegative integers that represent the number of molecules of species
Si consumed and produced by reaction k, respectively. Let V be the volume of the reaction
system. The state of the mass-action system at time t is denoted byX(t) = (x1(t), \cdot \cdot \cdot , xd(t))\in 
\BbbR d, where the ith entry of X(t) indicates the concentration of species Si, i = 1, \cdot \cdot \cdot , d, i.e.,
the number of molecules of Si is given by V xi := Ni. The rate at which the kth reaction
occurs is denoted by \lambda k, which gives the propensity of the kth reaction as a function of the
concentrations of molecules of the chemical species. In other words, \lambda k indicated the likelihood
of the kth reaction occurring based on the current concentrations.

2.1.2. Rates for the law of mass action. The law of mass action states that the rate
of a chemical reaction should be proportional to the product of the concentrations of the
reactants, with each concentration raised to a power equal to the number of molecules of the
corresponding reactant in the balanced chemical equation. More precisely, the rate of reaction
k can be written as

\lambda k = \kappa kV

d\prod 
i=1

\biggl( 
Ni

V

\biggr) cki

:= V fk(X),

where \kappa k is a rate constant, and Ni denotes the number of molecules of the ith species in the
system. Let \Delta t\ll 1 be a very short time period. More precisely, given all information of the
system up to time t, we have

\BbbP [ reaction k occurs in [t, t+\Delta t)] = \lambda k\Delta t+O(\Delta t2) .

2.1.3. Poisson process. We use a Poisson counting process to represent X(t), since it is
a continuous-time Markov chain with discrete states. Let Xi(t) be the ith entry of X(t); then
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QSD SENSITIVITY 1167

Xi(t) =Xi(0) +
1

V

\sum 
k

Rk(t)(c
\prime 
ki  - cki),

where Rk(t) is the number of times the reaction k has occurred by time t and Rk(0) = 0.
Because the number of molecules of species changes with time, Rk(t) is an inhomogeneous
Poisson process that is given by

Rk(t) = Pk

\biggl( 
V

\int t

0
fk(X(s))ds

\biggr) 
,(2.2)

where Pk(\cdot ) is a unit-rate Poisson point process. It is well known that Pk(\cdot ) satisfies the
following three properties: (1) Pk(0) = 0, (2) Pk(\cdot ) has independent increments, and (3)
Pk(s + t)  - Pk(s) is a Poisson random variable with parameter t. And the whole system is
given by

X(t) =X(0) +
\sum 
k

lk
V
Pk

\biggl( 
V

\int t

0
fk(X(s))ds

\biggr) 
,(2.3)

where Pk(t), k= \{ 1, \cdot \cdot \cdot ,K\} , are independent unit-rate Poisson processes, and lk = c\prime k - ck \in \BbbR d

denotes the coefficient change of molecules at reaction k.

2.2. Diffusion process. When V is large, the Poisson process can be approximated by a
diffusion process. The following strong approximation theorem from [15, 16] provides a bound
on the strong approximation error.

Lemma 2.1. A unit Poisson process P (\cdot ) and a Wiener process B(\cdot ) can be constructed so
that \bigm| \bigm| \bigm| \bigm| P (V t) - V t\surd 

V
 - 1\surd 

V
B(V t)

\bigm| \bigm| \bigm| \bigm| \leq log(V t\vee 2)\surd 
V

\Gamma ,

where \Gamma is a random variable such that \BbbE (ec\Gamma )<\infty for some constant c > 0.

Remark 2.2. By the scaling property of the Wiener process, 1\surd 
V
B(V t) is also a standard

Wiener process.

With the lemma above and Ito's formula, we have the diffusion approximation

Pk

\biggl( 
V

\int t

0
fk(X(s))ds

\biggr) 
\approx V

\int t

0
fk(X(s))ds+

\int t

0

\sqrt{} 
V fk(X(s))dB(s)

= V

\int t

0
fk(X(s))ds+Bk

\biggl( 
V

\int t

0
fk(X(s))ds

\biggr) 
.

This gives the diffusion approximation of the mass-action system X(t):

Y (t) = Y (0) +
\sum 
k

lk
V

\biggl[ 
V

\int t

0
fk(Y (s))ds+Bk

\biggl( 
V

\int t

0
fk(X(s))ds

\biggr) \biggr] 
.

In the chemistry literature, Y is known as the Langevin approximation for the continuous-
time Markov chain model. Theoretically, the distance between these two approximations is
bounded according to the theorem in [24].

Theorem 2.3. Let X(t) be a Poisson process represented by (2.3), and let Y (t) be a diffu-
sion process with initial condition satisfying X(0) = Y (0) and solving the following stochastic
differential equation:

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1168 YAO LI AND YAPING YUAN

Y (t) = Y (0) +
\sum 
k

lk
V

\biggl[ 
V

\int t

0
fk(Y (s))ds+Bk

\biggl( 
V

\int t

0
fk(Y (s))ds

\biggr) \biggr] 
,(2.4)

where the Bk(\cdot ) are independent standard Wiener processes. Let U be an open connected set
that contains the deterministic trajectory

y(t) = y(0) +
\sum 
k

lk

\int t

0
fk(y(s))ds

for all 0 \leq t \leq T . Assume all fk are Lipschitz continuous on U . Let \tau V = inf\{ t | X(t) /\in 
U or Y (t) /\in U\} . For any sufficiently large V large, we have

sup
0\leq t\leq \tau V \wedge T

| X(t) - Y (t)| =O

\biggl( 
logV

V

\biggr) 
(2.5)

for any fixed time horizon T .

Note that the probability that \tau V > T approaches 1 as V \rightarrow \infty . Hence, for sufficiently
large V , the error of diffusion approximation is proportional to \mathrm{l}\mathrm{o}\mathrm{g}V

V , which converges to 0
as V \rightarrow \infty . In macroscopic chemical reaction systems, V is at the magnitude of Avogadro's
number. Therefore, the entire diffusion term can be safely ignored. However, in many ecologic
systems or cellular chemical reaction systems, the effective volume cannot be simply treated as
infinity. This motivates us to investigate the sensitivity of the quasi-stationary distributions
(QSDs) against the diffusion approximation. For any finite capacity V , the finite time error
of the diffusion approximation can be explicitly simulated. In [24], a constructive procedure
is presented for generating discretized trajectories of the two processes X(t) and Y (t) on the
same probability space, such that they stay close to each other trajectory by trajectory with
probability one. We apply the algorithm to compute the finite time error in section 3.

2.3. Coupling times. In this paper, we use the coupling argument to relate finite time
error with the distance between QSDs. Let \mu and \nu be two probability measures on a mea-
surable space (\scrX ,\scrB (\scrX )). A coupling between \mu and \nu is a probability measure \gamma on the
product space (\scrX \times \scrX ,\scrB (\scrX )\times \scrB (\scrX )) such that two marginal distributions of \gamma are \mu and \nu ,
respectively.

Definition 2.4 (Wasserstein distance). Let d be a metric on the state space \scrX . For probability
measures \mu and \nu on \scrX , the Wasserstein distance between \mu and \nu for d is given by

dw(\mu ,\nu ) = inf\{ \BbbE \gamma [d(x, y)] : \gamma is a coupling of \mu and \nu \} 

= inf

\biggl\{ \int 
d(x, y)\gamma (dx,dy) : \gamma is a coupling of \mu and \nu 

\biggr\} 
.

(2.6)

In this paper, without further specification, we assume that \scrX is equipped with the norm
\| \cdot \| and the 1-Wasserstein distance is induced by d(x, y) =min\{ 1,\| x - y\| \} .

Let Z
(1)
t and Z

(2)
t be two stochastic processes on the same state space, where t\in \BbbT , \BbbT =\BbbR +

or \BbbT =\BbbZ +. A coupling between Z
(1)
t and Z

(2)
t can be defined in the same way on the space of

paths. The first time when Z
(1)
t meets Z

(2)
t is called the coupling time.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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QSD SENSITIVITY 1169

Definition 2.5 (coupling time). The coupling time \tau c of a coupling (Z
(1)
t ,Z

(2)
t ) is a random

variable in \BbbT such that

\tau c
\mathrm{d}\mathrm{e}\mathrm{f}
= inf

\Bigl\{ 
t\geq 0 | Z(1)

t+s =Z
(2)
t+s for all s\geq 0

\Bigr\} 
.(2.7)

Throughout this paper, we assume Z
(1)
t+s =Z

(2)
t+s for all s > 0 if Z

(1)
t =Z

(2)
t . In other words,

Z
(1)
t and Z

(2)
t stay together after their first meet. Note that all coupled Markov processes

satisfy this assumption.

Definition 2.6 (successful coupling). A coupling (Z
(1)
t ,Z

(2)
t ) of processes Z(1) and Z(2) is

said to be successful if

\BbbP (\tau c <\infty ) = 1.(2.8)

We use the following reflection coupling to couple two diffusion processes when they are
far away from each other.

Definition 2.7 (reflection coupling). Let Z
(1)
t and Z

(2)
t be two solutions of a stochastic

differential equation

dZt = f(Zt)dt+ \sigma (Zt)dBt

when starting from different initial distributions. A reflection coupling of Z
(1)
t and Z

(2)
t is

made by reflecting the noise term about the orthogonal hyperplane at the midpoint between

Z
(1)
t and Z

(2)
t :

dZ
(1)
t = f

\Bigl( 
Z

(1)
t

\Bigr) 
dt+ \sigma 

\Bigl( 
Z

(1)
t

\Bigr) 
dBt,

dZ
(2)
t = f

\Bigl( 
Z

(2)
t

\Bigr) 
dt+ \sigma 

\Bigl( 
Z

(2)
t

\Bigr) \bigl( 
I  - 2\bfe \bfe T

\bigr) 
dBt,

(2.9)

where B is a standard Wiener process, and

\bfe =
1

\| \sigma  - 1
\Bigl( 
Z

(1)
t  - Z

(2)
t

\Bigr) 
\| 
\sigma  - 1

\Bigl( 
Z

(1)
t  - Z

(2)
t

\Bigr) 
is a unit vector.

We remark that the reflection coupling requires \sigma (Zt) in (2.9) to be an invertible matrix.
This is often not satisfied in the diffusion approximation (2.4) because the number of Wiener
processes in (2.4) may not match the number of relations, making \sigma (Zt) not invertible. Hence,
it is necessary to find an equivalent diffusion process with an invertible \sigma . See numerical
examples for additional details.

The following maximal coupling is used to couple two processes that are close to each
other.

Definition 2.8 (maximal coupling). A maximal coupling between two probability distributions
\mu and \nu on the state space \scrX is a pair of random variables (Z(1),Z(2)) that maximizes \BbbP [Z(1) =
Z(2)], subject to the constraint that the law of (Z(1),Z(2)) is a coupling of \mu and \nu .

In the context of couplings of Markov processes, the maximal coupling looks for the maxi-

mal coupling probability for the next step of Z
(1)
t and Z

(2)
t . Assume Z

(1)
t - 1 and Z

(2)
t - 1 are known

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1170 YAO LI AND YAPING YUAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfone Maximal coupling

\bfI \bfn \bfp \bfu \bft : Z
(1)
t - 1 and Z

(2)
t - 1

\bfO \bfu \bft \bfp \bfu \bft : Z
(1)
t and Z

(2)
t , and \tau c if coupled

Compute probability density functions p(1)(z) and p(2)(z)

Sample Z
(1)
t and calculate r= \scrU p(1)(Z(1)

t ), where \scrU is uniformly distributed on [0,1]

\bfi \bff r < p(2)(Z
(1)
t ) \bft \bfh \bfe \bfn 

Z
(2)
t =Z

(1)
t , \tau c = t

\bfe \bfl \bfs \bfe 

Sample Z
(2)
t and calculate r\prime = \scrV p(2)(Z(2)

t ), where \scrV is uniformly distributed on [0,1]

\bfw \bfh \bfi \bfl \bfe r\prime < p(1)(Z
(2)
t ) \bfd \bfo 

Resample Z
(2)
t and \scrV . Recalculate r\prime = \scrV p(2)(Z(2)

t )
\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
\tau c is still undetermined

\bfe \bfn \bfd \bfi \bff 

and the probability density function of Z
(1)
t and Z

(2)
t is easy to compute. Following [13, 14],

the update of Z
(1)
t and Z

(2)
t in Algorithm 1 maximizes the probability of coupling.

2.4. Paired trajectories of Poisson process and of the diffusion process. Recall that
according to Lemma 2.1 a unit-rate Poisson process has a strong diffusion approximation.
Hence (2.3) also has a strong approximation given by (2.4). As the processes Pk(\cdot ) and Bk(\cdot )
are continuous time processes, we apply the \tau -leaping approximation for (2.3) with the same
step size h. This gives

\^Xn+1 = \^Xn +
\sum 
k

lk
V

\Biggl[ 
Pk

\Biggl( 
V h

n\sum 
m=0

fk( \^Xm)

\Biggr) 
 - Pk

\Biggl( 
V h

n - 1\sum 
m=0

fk( \^Xm)

\Biggr) \Biggr] 
(2.10)

with \^X0 = X0. Similarly, the discretized approximation of (2.4) using the Euler--Maruyama
method reads

\^Yn+1 = \^Yn +
\sum 
k

lk
V
(V hfk( \^Yn))

+
\sum 
k

lk
V

\Biggl[ 
Bk

\Biggl( 
V h

n\sum 
m=0

fk( \^Ym)

\Biggr) 
 - Bk

\Biggl( 
V h

n - 1\sum 
m=0

fk( \^Ym)

\Biggr) \Biggr] (2.11)

with initial condition \^Y0 = Y0.
The paired trajectories of Pk(t) and Bk(t) can be numerically generated by applying

the KMT algorithm. The KMT algorithm generates a sequence of standard Poisson random
variables \{ Pn\} and a sequence of standard normal random variables \{ Wn\} , such that

\sum N
n=1Pn

is approximated by N+
\sum N

n=1Wn for each finite N . Then after a rescaling, one obtains a pair
of discretized trajectories of Pk(t) and Bk(t), respectively. We refer the reader to [24] for a
detailed review of the KMT algorithm.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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QSD SENSITIVITY 1171

3. Sensitivity of QSD for diffusion approximations.

3.1. Quasi-stationary distribution. Let \bfX = \{ X(t)\} and \^\bfX = \{ \^Xn\} (resp., \bfY = \{ Y (t)\} 
and \^\bfY = \{ \^Yn\} ) be the stochastic process given by (2.3) (resp., (2.4)) and a numerical ap-
proximation with step size h, respectively. Needless to say, a diffusion process is much easier
to study than a Poisson process with jumps. One natural question here is how much the
long-time dynamics of \bfX are preserved by its diffusion approximation. This problem is more
complicated than it looks because both \bfX and \bfY have natural domain \BbbR d

+. When the number
of molecules of one species reaches 0, the process exits from its domain due to extinction. It is
common for (2.3) or (2.4) to have finite time extinction. To see this, consider the 1D version
of (2.4):

dY (t) = f(Y (t))dt+
1\surd 
V

\sqrt{} 
f(Y (t))dBt .(3.1)

Let H(x) = x - 1 be a test function. Applying Ito's formula and then taking the expectation,
we have

\BbbE [dH(Y (t))] =\BbbE 
\biggl[ 
 - 1

Y (t)2
f(Y (t))dt+

1

V

\sqrt{} 
f(Y (t))dBt +

f(Y (t))

2V

2

Y (t)3
dt

\biggr] 
= f(Y (t))

\biggl( 
1

V Y (t)3
 - 1

Y (t)2

\biggr) 
dt .

If f(Y (t)) = cY (t) for a constant c, we have

d

dt
\BbbE [H(Y (t))]\geq c

V
(\BbbE [H(Y (t))])2 ,

which blows up to \infty in finite time. Hence Y (t) has a strictly positive extinction probability
in finite time. The calculation above fits the setting of many mass-action systems.

To prevent finite-time extinction, a constant influx of each species is usually needed,
such as the artificial influx proposed by [28]. This is why it is often necessary to study the
QSD instead of the invariant probability distribution. Below, we introduce the QSD and its
sampling method only for \bfX , as the case for \bfY is analogous.

Let \partial \scrX =\BbbR d\setminus \BbbR d
+ be the absorbing set of \bfX . The QSD is an invariant probability measure

conditioning on \bfX that has not hit the absorbing set yet. We further define

\tau X = inf\{ t > 0 :X(t)\in \partial \scrX \} 

as the first passage time to \partial \scrX .
Definition 3.1. A probability measure \mu on \BbbR d

+ is called a quasi-stationary distribution
(QSD) of the Markov process \bfX with an absorbing set \partial \scrX if for every measurable set C \subset \BbbR d

+

\BbbP \mu [X(t)\in C| \tau X > t] = \mu (C), t\geq 0.(3.2)

Definition 3.2. A probability measure \mu is called a quasi-limiting distribution (QLD) if

lim
t\rightarrow \infty 

\BbbP x[X(t)\in C| \tau X > t] = \mu (C) \forall x\in \BbbR d
+.(3.3)
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1172 YAO LI AND YAPING YUAN

Remark 3.3. The limiting probability measure given by (3.3), or the QLD, is also called
the Yaglom limit. A QLD must be a QSD. Under some mild assumptions about ergodicity, a
QSD is also a QLD [5].

If the first passage time of \bfitX to \partial \scrX is \infty with probability one, \{ \tau X > t\} is the full
probability space. As a result, the QSD in (3.2) becomes the invariant probability measure,
and the QLD in (3.3) becomes the limiting probability measure (which is also invariant).
Therefore, when the mass-action system admits an invariant probability measure instead of a
QSD, all our arguments and algorithms still apply.

When we define the numerical processes (2.10) and (2.11), we need to specify the re-
generation rule such that they both sample from QSDs as the time approaches infinity. To
sample from QSD, we need to regenerate a sample once it hits the absorbing set. Therefore,
in addition to \^Xn, we also need to update a temporal occupation measure

\mu n =
1

n

n - 1\sum 
k=0

\delta \^Xk
.

If the numerical scheme yields \^Xn+1 \in \partial \scrX , we immediately regenerate \^Xn+1 from \mu n. Specif-
ically, we use \^Q to represent the transition kernel of the numerical scheme of \^Xn (without
resampling), which has an absorbing set \partial \scrX with \^Q(\partial \scrX , \partial \scrX ) = 1. The transition kernel of
\^Xn is the sum of \^Q and the regeneration measure such that

\BbbP [ \^Xn+1 \in A | \^Xn = x] = \^Q(x,A) + \^Q(x,\partial \scrX )\mu n(A) .

The following convergence result follows from [3].

Proposition 3.4 (Theorem 2.5 in [3]). Let \^\pi X be the QSD of the numerical process \^Xn.
Under suitable assumptions about \^Xn, the occupation measure \mu n converges to the QSD \^\pi X
as n\rightarrow \infty .

To study the sensitivity of diffusion approximation, we also need a theoretical process
\~\bfX = \{ \~Xn\} that regenerates directly from the QSD \^\pi X once it exits to the boundary. Recall
that \^Q is the transition kernel of \^Xn (without resampling). The transition kernel of \~\bfX is

\~P (x, \cdot ) = \^Q(x, \cdot ) + \^Q(x,\partial \scrX )\^\pi X(\cdot )

for all x \in \BbbR d
+. Note that \^Xn is not a Markov process (but ( \^Xn, \mu n) is a Markov process).

But \~\bfX is a homogeneous Markov process with an invariant probability measure \^\pi X . The
case of Y (t) is analogous. We denote the numerical process that resamples from a temporal
occupation measure by \^\bfY = \{ \^Yn\} , and the Markov process that directly resamples from QSD
by \~\bfY = \{ \~Yn\} . The QSD of \^\bfY , as well as the invariant probability measure of \~\bfY , is denoted
by \^\pi Y .

3.2. Decomposition of error terms. Let PX and \^PX be the transition kernels of X(t)
and \^Xn, respectively. Let PY and \^PY be that of Y (t) and \^Yn, respectively. Denote the QSDs
of X(t), \^Xn, Y (t), and \^Yn by \pi X , \^\pi X , \pi Y , and \^\pi Y , respectively. The quantity that we are
interested in is dw(\pi X , \pi Y ). But only the distance between numerical QSDs, i.e., dw(\^\pi X , \^\pi Y ),
is computable.
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QSD SENSITIVITY 1173

The following decomposition follows easily by the triangle inequality.

dw(\pi X , \pi Y )\leq dw(\pi X , \^\pi X) + dw(\^\pi X , \^\pi Y ) + dw(\^\pi Y , \pi Y ) .(3.4)

The sensitivity of invariant probability against time discretization has been addressed by
[21] decades ago. A computable upper bound is given by [8]. In general, assuming some ergodic
conditions, when the at time step size of h the discretization is sufficiently small, the invariant
probability measure of a stochastic differential equation, denoted by \nu , is approximated by
the numerical invariant probability measure, denoted by \nu h, with an error O(h). The case of
QSD is analogous. The third term dw(\pi Y , \^\pi Y ) is proportional to step size h under suitable
ergodicity and regularity conditions.

For a mass-action system on finite state space, the estimation of the first term dw(\pi X , \^\pi X)
can be obtained by some linear algebraic calculations.

Theorem 3.5. Let X(t) be a continuous-time Markov chain on finite state space and \^X
be its tau-leaping approximation with step size h. Suppose that \pi and \^\pi are the true QSD
and the numerical approximation of the QSD, respectively. If the generating matrix of X(t)
is irreducible, then

\| \pi  - \^\pi \| =O(h)

for 0<h\ll 1.

Proof. This proof follows the standard argument of the eigenvector perturbation result.
The case of stationary distribution is proved in [22]. Here we follow the argument in [6] to
prove a similar result for QSDs. Let Q be the generating matrix of X(t). Because \pi is true
QSD and \^\pi is the numerical approximation of QSD, we have

\pi T ehQ = \lambda \pi T , \^\pi T (I + hQ) = \^\lambda \^\pi T ,

where \lambda and \^\lambda are simple eigenvalues. Define a function

A(t)
\mathrm{d}\mathrm{e}\mathrm{f}
= I + hQ+ tR(h),

where R(h) is an O(1) matrix given by the Taylor expansion ehQ = I+hQ+h2R(h). Then we
have A(0) = I +hQ and A(h2) = ehQ. Note that A(0) is irreducible for all sufficiently small h
because Q is also irreducible. Let \pi (t) be the first eigenvector of A(t) normalized to 1 in l1
norm. Then the sensitivity of \pi is reduced to the derivative of A(t).

Since \pi is normalized to 1 in l1 norm, it follows from [6, section 3] that

\pi \prime (0) = S\sharp A\prime (0)\pi (0) ,

where S = \lambda I  - A(0), and S\sharp is the group inverse of S. (We refer the reader to [6] for further
discussion of the group inverse and derivative of the Perron vector.)

When h is small, we have 1  - \lambda = O(h). Hence S = I  - O(h)  - I  - hQ is an O(h)
small matrix. This means S\sharp = O(h - 1). In addition A\prime (0) = R = O(1) by definition. Hence
\pi \prime (0) =O(h - 1). Since \^\pi = \pi (h2), we have

\| \pi  - \^\pi \| =O(h - 1)\times O(h2) =O(h).

This completes the proof.
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1174 YAO LI AND YAPING YUAN

Since the focus of this paper is on the sensitivity of QSDs against the diffusion approxima-
tion, throughout this paper, we assume that dw(\pi X , \^\pi X) =O(h) and dw(\pi Y , \^\pi Y ) =O(h). The
time step h is assumed to be small such that the sensitivity against the time discretization
does not play a leading role. In other words, the sensitivity of QSDs against the diffusion
approximation is assumed to be well approximated by the distance between the QSD of the
\tau -leaping process of a mass-action system and the QSD of the Euler--Maruyama process of its
diffusion approximation.

Let T > 0 be a fixed constant. Note that QSDs \^\pi X and \^\pi Y are also the invariant probability
measures of regenerating processes \~\bfX and \~\bfY , respectively. Therefore, we can decompose
dw(\^\pi X , \^\pi Y ) via the following inequality:

dw(\^\pi X , \^\pi Y )\leq dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
+ dw

\Bigl( 
\^\pi X \~P T

Y , \^\pi Y \~P T
Y

\Bigr) 
.(3.5)

The term dw(\^\pi X \~P T
X , \^\pi X \~P T

Y ) is the finite time error and the term dw(\^\pi X \~P T
Y , \^\pi Y \~P T

Y ) can be
bounded by coupling methods.

There are two different ways to think about the distance dw(\^\pi X , \^\pi Y ). One method is
considering \^\pi X and \^\pi Y as conditional distributions on set \BbbR d

+/\partial \scrX , i.e., \^\pi X(A) = \BbbP [\{ \^X \in A| t <
\tau X\} ] and \^\pi Y (A) = \BbbP \{ \^Y \in A| t < \tau Y \} , where \tau X and \tau Y are the killing times for processes \^\bfX 
and \^\bfY , respectively. The other way is to use the \~\bfX and \~\bfY that regenerates from QSDs. No
conditioning is needed as \^\mu X and \^\mu Y are now the invariant probability measures of \~\bfX and \~\bfY ,
respectively. There are some fundamental difficulties when computing the conditional finite
time error because it is hard to couple \^Xn and \^Yn when one regenerates while the other does
not. Hence we choose to use \~\bfX and \~\bfY instead.

3.3. Finite time error. We consider the coupled modified processes \~\bfX and \~\bfY , which
are regenerated from the corresponding QSDs when they hit the boundary. Let \^\pi X and \^\pi Y
be the invariant measures of \~\bfX and \~\bfY . Let \~P T

X \circ \~P T
Y denote the transition kernel of the

coupled process in the product space \scrX \times \scrX . Denote \^\pi 2
X by the coupled measure of \^\pi X on

the ``diagonal"" of \BbbR d\times \BbbR d that is supported by the hyperplane \{ (x, y)\in \BbbR 2d| y= x\} such that
\^\pi 2
X(\{ (x,x)| x \in A\} ) = \^\pi X(A). Then the pushforward measure \^\pi 2

X( \~P T
X \circ \~P T

Y ) is still a coupling
of \^\pi X \~P T

X and \^\pi X \~P T
Y . Hence the following proposition follows easily.

Proposition 3.6. Let ( \~Xn, \~Yn) be a coupling of \~Xn and \~Yn with transition kernel \~P T
X \circ \~P T

Y ;
then

dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
\leq \BbbE \^\pi X

\Bigl[ 
d
\Bigl( 
\~XT , \~YT

\Bigr) \Bigr] 
.

Proof. Since \^\pi 2
X( \~P T

X \circ \~P T
Y ) is a coupling of \^\pi X \~P T

X and \^\pi X \~P T
Y , by the definition of Wasser-

stein distance

dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
\leq 
\int 
\BbbR d\times \BbbR d

d(x, y)\^\pi 2
X

\Bigl( 
\~P T
X \circ \~P T

Y

\Bigr) 
(dx,dy)

=

\int 
\BbbR d

\BbbE (x,x)d
\Bigl( 
\~XT , \~YT

\Bigr) 
\^\pi X(dx) =\BbbE \^\pi X

\Bigl[ 
d
\Bigl( 
\~XT , \~YT

\Bigr) \Bigr] 
.

The key to estimating the finite time error effectively is to create a good coupled process
( \~Xn, \~Yn). That is why we need to use the KMT algorithm to generate a pair of matched
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QSD SENSITIVITY 1175

Wiener processes and Poisson processes. Here it remains to define how \~Xn and \~Yn couple
when they regenerate from the QSDs. Since we do not have QSD a priori, we will use \^Xn

and \^Yn to approximate \~Xn and \~Yn. In other words, we regenerate samples from the temporal
occupation measure. If the regenerations of \~Xn and \~Yn are not coordinated, we will lose
control of the error after one regeneration. Because even if the distance between \~Xn and
\~Y n is small, when they both hit the boundary and regenerate either simultaneously or a few
steps apart, the regenerated processes can be far away from each other if they are regenerated
independently. If the process regenerates frequently, the finite time error will quickly get out
of control.

To minimize error during sample regeneration, we must couple the sample regenerations
of \~Xn and \~Yn as well. Here we define the coupled processes ( \^Xn, \mu 

X
n ) and ( \^Yn, \mu 

Y
n ), such

that \^Xn and \^Yn follow (2.10) and (2.11), respectively, by using paired processes Bk(t) and
Pk(t) for each k, and \mu X

n , \mu Y
n are two occupation measures. S = (Z1, \cdot \cdot \cdot ,ZN ) (N is large

enough) is a finite sequence of uniform random variables on (0,1). Let NX and NY be the
total number of regenerations up to time n. In other words when \~Xn+1 enters \partial \scrX at step
n and needs regeneration, we increment NX by one and choose the NXth element of S, i.e.,
ZNX

, to regenerate \~Xn+1 by letting \~Xn+1 = \~X\lfloor ZNX
n\rfloor . Then it is easy to see that ( \^Xn, \mu 

X
n ) and

( \^Yn, \mu 
Y
n ) is a Markov coupling and the marginal processes ( \^Xn, \^Yn) are a coupling of (2.10) and

(2.11). Nontechnically, this coupled regeneration algorithm samples the kth regeneration of
\~Xn and \~Yn from the same relative position of the occupation measure. This is one of the key
algorithms developed in this paper. It can ``glue"" two coupled numerical trajectories together
even after several regenerations.

Details of the computation are shown in Algorithm 2. When N is large, initial values
\^X1
1 , \cdot \cdot \cdot , \^XM

1 in Algorithm 2 are from a trajectory of the time-T skeleton of \^XT . Hence
\^X1
1 ,

\^X2
1 , \cdot \cdot \cdot , \^XM

1 are approximately sampled from \^\pi X . The error term d( \^Xm
T , \^Y m

T ) evolved
from the initial value pair \^Xm

1 = \^Y m
1 = \^Xm - 1

T is recorded. Therefore,

1

M

M\sum 
m=1

d
\Bigl( 
\^Xm
T , \^Y m

T

\Bigr) 
(3.6)

is an estimator of

\BbbE \^\pi X

\Bigl[ 
d
\Bigl( 
\~XT , \~YT

\Bigr) \Bigr] 
,(3.7)

which is an upper bound of dw(\^\pi 
T
X
\~P T
X , \^\pi T

X
\~P T
Y ).

3.4. Coupling inequality and contraction rate. Similar to the coupling inequality of the
total variation norm, the distance dw we use in this paper also satisfies the coupling inequality.

Let (Z
(1)
t ,Z

(2)
t ) be a coupling of two stochastic processes and let \tau c be the coupling time. The

following lemma follows easily.

Proposition 3.7. For a Markov coupling (Z
(1)
t ,Z

(2)
t ), we have

dw

\Bigl( 
law

\Bigl( 
Z

(1)
T

\Bigr) 
, law

\Bigl( 
Z

(2)
T

\Bigr) \Bigr) 
\leq \BbbP 

\Bigl( 
Z

(1)
T \not =Z

(2)
T

\Bigr) 
= \BbbP (\tau c >T ).
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1176 YAO LI AND YAPING YUAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo Estimate finite time error

\bfI \bfn \bfp \bfu \bft : Initial value \^X0

\bfO \bfu \bft \bfp \bfu \bft : An estimator of dw(\^\pi 
T
X
\~P T
X , \^\pi T

Y
\~P T
Y )

Set initial value \^X1
1 =

\^Y 1
1

Generate a sequence of uniformly distributed random variables S
\bff \bfo \bfr m= 1 to M \bfd \bfo 
Using the KMT algorithm to generate paired trajectories \{ Pk\} and \{ Bk\} 
If m \not = 1, reset initial value \^Xm

1 = \^Y m
1 = \^Xm - 1

T

Let NX =NY = 0
\bff \bfo \bfr n= 1 to T \bfd \bfo 

Update \^Xm
n+1 and \^Y m

n+1 using equations (2.10) and (2.11) respectively

\bfi \bff \^Xm
n+1 \in \partial \scrX \bft \bfh \bfe \bfn 

NX =NX + 1

Let \^Xm
n+1 =

\^Xm
\lfloor ZNX

n\rfloor 
\bfe \bfn \bfd \bfi \bff 

\bfi \bff \^Y m
n+1 \in \partial \scrX \bft \bfh \bfe \bfn 

NY =NY + 1

Let \^Y m
n+1 =

\^Y m
\lfloor ZNY

n\rfloor 
\bfe \bfn \bfd \bfi \bff 

\bfe \bfn \bfd \bff \bfo \bfr 

Let d( \^Xm
T , \^Y m

T ) =min(1,\| \^Xm
T  - \^Y m

T \| )
\bfe \bfn \bfd \bff \bfo \bfr 

\bfr \bfe \bft \bfu \bfr \bfn 1
M

\sum M
m=1 d(

\^Xm
T , \^Y m

T )

Proof. By the definition of the Wasserstein distance,

dw

\Bigl( 
law

\Bigl( 
Z

(1)
T

\Bigr) 
, law

\Bigl( 
Z

(2)
T

\Bigr) \Bigr) 
\leq 
\int 

d(\xi , \eta )\BbbP 
\Bigl( \Bigl( 

Z
(1)
T ,Z

(2)
T

\Bigr) 
\in (d\xi , d\eta )

\Bigr) 
=

\int 
\xi \not =\eta 

d(\xi , \eta )\BbbP 
\Bigl( \Bigl( 

Z
(1)
T ,Z

(2)
T

\Bigr) 
\in (d\xi , d\eta )

\Bigr) 
\leq 
\int 
\xi \not =\eta 

\BbbP 
\Bigl( \Bigl( 

Z
(1)
T ,Z

(2)
T

\Bigr) 
\in (d\xi , d\eta )

\Bigr) 
= \BbbP 

\Bigl( 
Z

(1)
T \not =Z

(2)
T

\Bigr) 
.

Proposition 3.8. Assume that dw(\pi X , \^\pi X) and dw(\pi Y , \^\pi Y ) are in order O(h); then the error

dw(\pi X , \pi Y )\leq 
dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
1 - \alpha 

+O(h),

where \alpha < 1 is the contraction rate of the transition kernel \~P T
Y in the space of probability

measures equipped with metric dw, and dw(\^\pi X \~P T
X , \^\pi X \~P T

Y ) is the finite time error.
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QSD SENSITIVITY 1177

Proof. By the triangle inequality,

dw(\pi X , \pi Y )\leq dw(\pi X , \^\pi X) + dw(\^\pi X , \^\pi Y ) + dw(\^\pi Y , \pi Y ).

Because both dw(\pi X , \^\pi X) and dw(\pi Y , \^\pi Y ) are O(h), we only need to estimate the second term
dw(\^\pi X , \^\pi Y ). By the triangle inequality again, we have

dw(\^\pi X , \^\pi Y )\leq dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
+ dw

\Bigl( 
\^\pi X \~P T

Y , \^\pi Y \~P T
Y

\Bigr) 
.

If the transition kernel \~P T
Y has enough contraction such that

dw

\Bigl( 
\^\pi X \~P T

Y , \^\pi Y \~P T
Y

\Bigr) 
\leq \alpha dw(\^\pi X , \^\pi Y )

for some \alpha < 1, then we have

dw(\^\pi X , \^\pi Y )\leq 
dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
1 - \alpha 

.(3.8)

Therefore,

dw(\pi X , \pi Y )\leq 
dw

\Bigl( 
\^\pi X \~P T

X , \^\pi X \~P T
Y

\Bigr) 
1 - \alpha 

+O(h).

Therefore, to estimate dw(\pi X , \pi Y ), we need to find suitable numerical estimators for the
finite time error and the speed of contraction of \~P T

Y . The finite time error can be easily
estimated by Algorithm 2. The speed of contraction \alpha comes from the geometric ergodicity
of the Markov process \~\bfY , which is approximated by that of \^\bfY due to the convergence result
in Proposition 3.4. If our numerical estimation yields

dw

\Bigl( 
\^\pi X \~P T

Y , \^\pi Y \~P T
Y

\Bigr) 
\approx dw

\Bigl( 
\^\pi X \^P T

Y , \^\pi Y \^P T
Y

\Bigr) 
\leq Ce - \gamma T ,

we can then set \alpha = e - \gamma T . Motivated by [8], we use the following coupling method to estimate
the contraction rate \alpha . Let \^Z = (\^Y (1), \^Y (2)) be a Markov process in \BbbR 2d such that \^Y (1) and
\^Y (2) are two copies of \^Y . Let the first passage time to the ``diagonal"" hyperplane \{ (\bfx ,\bfy ) \in 
\BbbR 2d| \bfy = \bfx \} be the coupling time. Then by Proposition 3.7

dw

\Bigl( 
\^\pi X \^P T

Y , \^\pi Y \^P T
Y

\Bigr) 
\leq \BbbP (\tau c >T ).

As discussed in [18], a hybrid coupling scheme is necessary to ensure that two numerical
trajectories couple. This is achieved by implementing coupling methods such as reflection
coupling or synchronous coupling in the first phase, under the condition that the trajecto-
ries have not become extinct yet. Next, when the distance between coupled trajectories is
small enough, we compare the probability density function for the next step and couple these
two numerical trajectories with the maximal possible probability, using maximal coupling.
After repeating this process many times, we obtain multiple samples of \tau c, denoted by \bfittau c.
To estimate the contraction rate \alpha , we use the exponential tail of \BbbP [\tau c > t] and look for a
constant \gamma > 0 such that

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

2/
24

 to
 2

09
.6

.1
14

.5
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1178 YAO LI AND YAPING YUAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree Estimation of contraction rate \alpha 

\bfI \bfn \bfp \bfu \bft : Initial values x, y \in \scrX \setminus \partial \scrX 
\bfO \bfu \bft \bfp \bfu \bft : An estimation of contraction rate \alpha 

Choose threshold d> 0
\bff \bfo \bfr m= 1 to M \bfd \bfo 

\tau mc = 0, t= 0, ( \^Y
(1)
0 , \^Y

(2)
0 ) = (x, y)

Flag=0
\bfw \bfh \bfi \bfl \bfe Flag=0 \bfd \bfo 

\bfi \bff \^Y
(1)
t and \^Y

(2)
t \in \scrX /\partial \scrX \bft \bfh \bfe \bfn 

\bfi \bff | \^Y (1)
t  - \^Y

(2)
t | >d \bft \bfh \bfe \bfn 

Compute ( \^Y
(1)
t+1,

\^Y
(2)
t+1) using reflection coupling or independent coupling t\leftarrow t+ 1

\bfe \bfl \bfs \bfe 

Compute ( \^Y
(1)
t+1,

\^Y
(2)
t+1) using maximal coupling

\bfi \bff coupled successfully \bft \bfh \bfe \bfn 
Flag=1
\tau mc = t

\bfe \bfl \bfs \bfe 
t\leftarrow t+ 1

\bfe \bfn \bfd \bfi \bff 
\bfe \bfn \bfd \bfi \bff 

\bfe \bfn \bfd \bfi \bff 
\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

\bfe \bfn \bfd \bff \bfo \bfr 
Use \tau 1c , . . . , \tau 

M
c to compute \BbbP (\tau c > t| t <min(\tau Y (1) , \tau Y (2)))

Fit the tail of log\BbbP (\tau c > t| t <min(\tau Y (1) , \tau Y (2))) versus t by linear regression. Compute the
slope \gamma .

 - \gamma = lim
t\rightarrow \infty 

1

t
log(\BbbP [\tau c > t])

if the limit exists. See Algorithm 3 for the details of the implementation of coupling. Note
that we cannot simply compute the contraction rate starting from t = 0 because only the
tail of coupling time can be considered exponentially distributed. In addition, \^Y is a good
approximation of \~Y only if t is large. Our approach is to check the exponential tail in a
log-linear plot. After having \bfittau c, it is easy to choose a sequence of times t0, t1, \cdot \cdot \cdot , tn and
calculate ni = | \{ \tau mc > ti| 0\leq m\leq M\} | for each i= 0, \cdot \cdot \cdot , n. Then pi = ni/M is an estimator of
\BbbP \^\pi Y

[\tau c > ti]. Now let pui (resp., pli) be the upper (resp., lower) bound of the confidence interval
of pi such that

pui = \~p+ z

\sqrt{} 
\~p

\~ni
(1 - \~p)

\Biggl( 
resp., pli = \~p - z

\sqrt{} 
\~p

\~ni
(1 - \~p)

\Biggr) 
,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

2/
24

 to
 2

09
.6

.1
14

.5
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



QSD SENSITIVITY 1179

where z = 1.96, \~ni = ni + z2, and \~p= 1
\~n(ni +

z2

2 ) [1]. If pli \leq e - \gamma ti \leq pui for each 0\leq i\leq n, we
say that the exponential tail starts at t= ti0 . We accept the exponential tail with rate e - \gamma T

if the confidence interval pui0  - pli0 is sufficient small. Otherwise, we need to run Algorithm 3
for a longer time to eliminate the initial bias in \tau c.

4. Numerical examples.

4.1. SIR model. Consider an epidemic model in which the entire population is divided
into three distinct classes: S (susceptible), I (infected), and R (recovered). After nondimen-
sionalization, the ODE version of a SIR model is given by

dS

dt
= (\alpha  - \beta SI  - \mu S),

dI

dt
= (\beta SI  - (\mu + \rho + \gamma )I),

dR

dt
= (\gamma I  - \mu R),

(4.1)

where \alpha is the birth rate, \mu is the disease-free death rate, \rho is the excess death rate for the
infected class, \gamma is the recovery rate for the infected population, and \beta is the effective contact
rate between the susceptible class and infected class [7]. Note that R completely depends on
S and I. So we just consider the evolutions of S and I.

Now we let V be the total population and consider the corresponding stochastic mass-
action network. There are four reactions involved in this network. The stochastic mass-action
network can be defined by a Poisson process Xn = (Sn, In).

\emptyset \alpha \Rightarrow S, S + I
\beta \Rightarrow 2I,

S
\mu \Rightarrow \emptyset , I \mu +\rho +\gamma \Rightarrow \emptyset .

(4.2)

Applying the numerical representation in (2.10), we have the approximate rate functions
of Poisson process \^Xn:

q1,n =

n - 1\sum 
m=0

V h\alpha , q2,n =

n - 1\sum 
m=0

V h\beta SmIm,

q3,n =

n - 1\sum 
m=0

V h\mu Sm, q4,n =

n - 1\sum 
m=0

V h(\mu + \rho + \gamma )Im.

Let Pi, i= 1,2,3,4, be independent unit rate Poisson processes. Then \^Xn is driven by the
discrete approximation of \{ Pi\} 4i=1. The rule of update of the numerical approximation \^Xn

follows

\^Xn+1 =

\biggl( 
Sn+1

In+1

\biggr) 
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitf 1(P1, \cdot \cdot \cdot , P4, q1,n, \cdot \cdot \cdot , q4,n)
\bfitf 2(P1, \cdot \cdot \cdot , P4, q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
,(4.3)

where \bfitf 1 and \bfitf 2 come from discrete approximation in (2.10). To improve the readability of
the present paper, we move detailed expressions of \bfitf 1 and \bfitf 2 to the appendix.
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1180 YAO LI AND YAPING YUAN

As described in section 2.1, each Poisson process Pi, i = 1,2,3,4, is pathwisely approx-
imated by a Wiener process Bi, i = 1,2,3,4. Further, the discrete approximation \^Xn is
pathwisely approximated by an Euler--Maruyama scheme \^Yn that reads

\^Yn+1 =

\biggl( 
Sn+1

In+1

\biggr) 
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitg 1(q1,n, \cdot \cdot \cdot , q4,n)
\bfitg 2(q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
+

1

V

\biggl( 
\bfitsigma 1(B1, \cdot \cdot \cdot ,B4, q1,n, \cdot \cdot \cdot , q4,n)
\bfitsigma 2(B1, \cdot \cdot \cdot ,B4, q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
,

(4.4)

where functions \bfitg 1,\bfitg 2,\bfitsigma 1, and \bfitsigma 2 follow the expression in (2.11). We refer the reader to the
appendix for the detailed form of these functions.

By the stationary increments property of the standard Wiener process, we know that every
finite difference of Bi is normally distributed. In addition Wiener processes Bi, i = 1,2,3,4,
are independent. Therefore, (4.4) can be simplified to

\^Yn+1 =

\biggl( 
Sn+1

In+1

\biggr) 
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitg 1(q1,n, \cdot \cdot \cdot , q4,n)
\bfitg 2(q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
+

1

V
M

\left(    
W1

W2

W3

W4

\right)    ,(4.5)

where Wi, i= 1, \cdot \cdot \cdot ,4, are independent standard normal random variables, and M is a matrix
that depends only on Sn and In. We refer readers to the appendix for the full expression
of M .

In order to estimate the distance between two QSDs, we need to find the contraction rate
\alpha for diffusion process \^Y above. However, the diffusion matrix M in \^Y is not square, which
makes a reflection coupling difficult. Here we define an equivalent diffusion process that is
driven by a 2D Wiener process but has the same law as \^Y . In our simulation, we compute
the 2 by 2 covariance matrix N =MMT and set the square root of N to be the new diffusion
matrix. Then \^Y can be rewritten as

\^Yn+1 =

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitg 1(q1,n, \cdot \cdot \cdot , q4,n)
\bfitg 2(q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
+

1\sqrt{} 
tr(N) + 2

\sqrt{} 
det(N)

(N +det(N)Id)

\biggl( 
W1

W2

\biggr) 
,

(4.6)

where tr(N) is the trace of N and det(N) is the determinant of N , and Id is the identity
matrix. It is easy to see that the diffusion process \^Y in (4.5) and (4.6) are equivalent. Hence
we do not change its notation here. The modification of \^Y allows us to run Algorithm 3 to
compute the coupling time distribution.

It remains to compute the finite time error. Let \partial \scrX be the union of the x -axis and y-
axis. The model parameters are set as \alpha = 7, \beta = 3, \mu = 1, \rho = 1, \gamma = 2. Processes \^X and \^Y
admit QSDs \^\pi X and \^\pi Y , respectively. Long trajectories P (i\Delta ) and B(i\Delta ) for i= \{ 1, \cdot \cdot \cdot ,220\} 
and \Delta = 0.01 are constructed when we consider the trajectory-by-trajectory behavior of two
processes. The time step size is h= 0.001 and the fixed time is set as T = 0.5.

The result for V = 1000 is demonstrated in Figure 1. The bottom left of Figure 1 shows
the QSD of diffusion process \^Y . The QSD of the Poisson process is shown on the top right of
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QSD SENSITIVITY 1181

Figure 1. (Case V = 1000) Upper panel: (Left) \BbbP (\tau c > t| \tau < t) versus t. (Right) QSD of Poisson process.
Lower panel: (Left) QSD of diffusion process. (Right) Total variation of two QSDs.

Figure 1. The difference between these two QSDs is shown at the bottom of Figure 1. We can
see that the total variation distance between two QSDs is 0.0901, which is considered to be
small. This is reasonable because, with high probability, the trajectories of both the Poisson
process and the diffusion process move far away from the absorbing set \partial \scrX .

The total variation distance between two QSDs is consistent with the prediction developed
in this paper. We first use Algorithm 3 to compute the distribution of the coupling time, which
is shown at the top left of Figure 1. Then we use Algorithm 2 to compute the finite time
error. The finite time error is 0.0026 for V = 1000. As a result, the upper bound given in
(3.8) is 0.0054 for V = 1000, which is smaller than the empirical total variation error 0.0901
in this case.

Then we carry out similar computations for V = 10 on a coarse mesh. The result is
shown in Figure 2. To compare with the case for V = 1000 on the same mesh, we rescaled
the probability density function obtained from the Monte Carlo simulation. The probability
density in one bin in the coarse mesh is evenly distributed into many bins in the refined mesh.
The difference between the two QSDs is shown at the bottom of Figure 2. It is not hard
to see that the total variation distance becomes significantly larger when the volume gets
smaller. Similarly to above, we use Algorithm 3 to compute the distribution of the coupling
time distribution (Figure 2, top left) and use Algorithm 2 to compute the finite time error.
The finite time error is 0.1748 for V = 10. As a result, the upper bound given in (3.8) is 0.3639
for V = 10. This is consistent with the numerical finding shown in Figure 2, bottom right.

As we consider the effect of the capacity volume, the finite time error and the contraction
rate for different volumes are compared in Table 1. The last column dw(\^\pi X , \^\pi Y ) is computed
using (3.8). Being consistent with Theorem 2.3, the 1-Wasserstein distance between two QSDs
is smaller as V gets larger.
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1182 YAO LI AND YAPING YUAN

Figure 2. (Case V = 10) Upper panel: (Left) \BbbP (\tau c > t| \tau < t) versus t. (Right) QSD of Poisson process.
Lower panel: (Left) QSD of diffusion process. (Right) Total variation of two QSDs.

Table 1
SIR model. Numerical results for different volumes.

Volume V Finite time error Contraction rate \gamma dw(\^\pi X , \^\pi Y )

1000 0.0026 1.2853 0.0054
400 0.0079 1.2418 0.0170
100 0.0279 1.1613 0.0634
10 0.1748 1.0912 0.3639

4.2. Oregonator system. In this example, we consider a well-known example of a chemical
oscillator called the Belousov--Zhabotinsky (BZ) reaction model or ``Oregonator"" [4, 9, 12].
The ODE version of an Oregonator system is given by

dS1

dt
= S1S2  - C2S1S2 +C3S1  - 2C4S

2
1 ,

dS2

dt
= - C1S2  - C2S1S2 +C5hS3,

dS3

dt
= 2C3S1  - C5S3.

We refer to Figure 3, top left for sample trajectories of the Oregonator on \BbbR 3
+. The parameter

values are chosen as C1 = 2560,C2 = 800000,C3 = 16000,C4 = 2000,C5 = 9000, \delta = 0.4.
Let V be the volume. Six reactions in this process are shown as follows.

S2
C1\Rightarrow S1, S1 + S2

C2\Rightarrow \emptyset , S1
C3\Rightarrow 2S1 + 2S3,

2S1
C4\Rightarrow \emptyset , S3

C5\delta \Rightarrow S2, S3
C5(1 - \delta )\Rightarrow \emptyset .

Applying the numerical representation in (2.10), we have the approximate rate functions of
Poisson process \^Xn = (S1,n, S2,n, S3,n):
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QSD SENSITIVITY 1183

Figure 3. (Case V = 1000) Upper panel: (Left) ODE trajectories. (Right) Trajectories of Poisson process.
Lower panel: (Left) Trajectories of diffusion process. (Right) \BbbP (\tau c > t| \tau < t) vs.t.

q1,n =

n - 1\sum 
m=0

V hC1S2,m, q2,n =

n - 1\sum 
m=0

V hC2S1,mS2,m, q3,n =

n - 1\sum 
m=0

V hC3S1,m,

q4,n =

n - 1\sum 
m=0

V hC4S
2
1,m, q5,n =

n - 1\sum 
m=0

V hC5\delta S3,m, q6,n =

n - 1\sum 
m=0

V hC5(1 - \delta )S3,m.

We remark that term S1,m is the numerical value of species S1 at time step m, and cases of
other terms are analogous. Hence the Poisson process \^X of the Oregonator model can be
written as

\^Xn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  =

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitf \bfone (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitf \bftwo (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitf \bfthree (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)

\right)  ,

where Pi, i = \{ 1, \cdot \cdot \cdot ,6\} , are independent unit rate Poisson processes. \bfitf \bfone , \bfitf \bftwo , and \bfitf \bfthree come
from discrete approximation in (2.10). To improve the readability of the present paper, we
move detailed expressions of \bfitf \bfone , \bfitf \bftwo , and \bfitf \bfthree to the appendix.

The diffusion approximation \^Y can be written as

\^Yn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  =

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitg \bfone (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bftwo (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bfthree (q1,n, \cdot \cdot \cdot , q6,n)

\right)  +
1

V

\left(  \bfitsigma \bfone (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitsigma \bftwo (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitsigma \bfthree (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)

\right)  ,

(4.7)

where Bi, i = \{ 1, \cdot \cdot \cdot ,6\} , are independent standard Wiener processes, and functions \bfitg \bfone , \bfitg \bftwo ,
\bfitg \bfthree , \bfitsigma \bfone , \bfitsigma \bftwo , and \bfitsigma \bfthree follow the expression in (2.11). We refer the reader to the appendix for
the detailed form of these functions.
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1184 YAO LI AND YAPING YUAN

By the stationary increments property and independence of Wiener processes Bi, i =
\{ 1, \cdot \cdot \cdot ,6\} , equation (4.7) can be simplified to

\^Yn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  =

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitg \bfone (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bftwo (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bfthree (q1,n, \cdot \cdot \cdot , q6,n)

\right)  +
1

V
M

\left(        

W1

W2

W3

W4

W5

W6

\right)        ,(4.8)

where Wi, i= 1, \cdot \cdot \cdot ,6, are independent standard normal random variables, and M is a matrix
that depends only on Sn and In. We refer readers to the appendix for the full expression
of M .

Let \partial \scrX be the union of the x -axis, y-axis, and z -axis. Processes \^X and \^Y admit QSDs \^\pi X
and \^\pi Y , respectively. Long trajectories P (i\Delta ) and B(i\Delta ) for i = \{ 1, \cdot \cdot \cdot ,229\} and \Delta = 0.001
are constructed when we consider the trajectory-by-trajectory behavior of two processes. The
time step size is h = 10 - 8 and the fixed time is set as T = 0.0002. Large rate coefficients Ci

make the numerical results easily go beyond the length of long trajectory B(i\Delta ), so we pick
small time step size h and the fixed finite time T .

Figure 3 top left shows the solution of the ODE. For any initial point, the trajectory
eventually converges to the limit cycle. In terms of thermodynamics, the oscillation is induced
through the dissipation of energy and is often called a self-sustained oscillator [23]. The
trajectories of the Poisson process and the diffusion process up to fixed time T = 0.0002 are
shown at the top right and bottom left. It looks like the trajectories are close, and this is
reasonable because, with high probability, the trajectories of both the Poisson process and the
diffusion process move far away from the absorbing set \partial \scrX . There are only a few regeneration
events (the lines crossing the limit cycle). We compute the distribution of the coupling time.
The coupling time distribution and its exponential tail are shown in Figure 3, top left. Then
we use Algorithm 2 to compute the finite time error. The finite time error is 0.0057 for
V = 1000. As a result, the upper bound given in (3.8) is 0.0116 for V = 1000. For V = 10, the
finite time error is 0.4531 and the upper bound given in (3.8) is 0.4531.

To compare different scenarios for volume V = 1000 and V = 10, we plot the trajectories
of each species for both processes. The trajectories for V = 1000 are shown in the upper row
of Figure 4, and the lower row shows the case for V = 10. It is evident that the Poisson
process is quite close to the diffusion process when V = 1000. However, when the volume is
too small, not many Poisson jumps can be observed in the Poisson process, while significant
noise can be seen in the diffusion approximation. As a result, the finite time error for V = 10
is 0.0563, which is around ten times larger than that for V = 1000. Similarly, we compute the
contraction rate \gamma of the coupling time distribution to be 2.0927\times 105. This is due to the large
magnitude of noise in the diffusion approximation. Therefore, the upper bound given in (3.8)
is 0.4531 for V = 10. We conclude that the diffusion approximation does not approximate the
QSD well when the volume is not large enough.

As we consider the effect of the capacity volume, we compare the finite time error and the
contraction rate for different volumes in Table 2. The last column, dw(\^\pi X , \^\pi Y ), is computed
via (3.8). It is clear that the upper bound of dw(\^\pi X , \^\pi Y ) is significantly larger when V = 10.
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QSD SENSITIVITY 1185

Figure 4. (V = 1000 versus V = 10) Upper panel: (Left) Trajectories of Poisson process for V = 1000.
(Right) Trajectories of diffusion process for V = 1000 . Lower panel: (Left) Trajectories of Poisson process for
V = 10. (Right) Trajectories of diffusion process for V = 10.

Table 2
Oregonator model: Numerical results for different volumes.

Volume V Finite time error Contraction rate \gamma dw(\^\pi X , \^\pi Y )

1000 0.0057 3.3616*103 0.0116
400 0.0088 2.0599*104 0.0157
100 0.0099 6.0150*104 0.0195
10 0.0563 2.0927*105 0.1646

This is consistent with Theorem 2.3, which states that the supreme distance between two
processes will be smaller as V increases.

4.3. 4D Lotka--Volterra competitive dynamics. Originally derived by Volterra in 1926 to
describe the interaction between a predator species and a prey species [20] and independently
by Lotka to describe a chemical reaction [27], the general Lotka--Volterra model is widely used
in ecology, biology, chemistry, physics, etc. [25]. In this example, we consider here a chaotic
system in which 4 species with a whole population V compete for a finite set of resources.
The ODE version of the system is as follows:

dSi

dt
= riSi

\left(  1 - 
4\sum 

j=1

aijSj

\right)  , i= 1,2,3,4.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

2/
24

 to
 2

09
.6

.1
14

.5
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1186 YAO LI AND YAPING YUAN

Here ri represents the growth rate of species i and aij represents the extent to which species
j competes for resources used by species i. The parameter values are

r= (ri)
4
i=1 =

\left(    
1

0.72
1.53
1.27

\right)    , A= (aij)
4
i,j=1 =

\left(    
1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

\right)    .

For i= 1, \cdot \cdot \cdot ,4, all reactions in this system are shown as follows:

Si
ri\Rightarrow 2Si, S1 + Si

ai1ri\Rightarrow S1, S2 + Si
ai2ri\Rightarrow S2, S3 + Si

ai3ri\Rightarrow S3, S4 + Si
ai4ri\Rightarrow S4.

The corresponding rate functions are

qni,1 =

n - 1\sum 
m=0

V hriSi,m,

qni,2 =

n - 1\sum 
m=0

V hriai1S1,mSi,m,

qni,3 =

n - 1\sum 
m=0

V hriai2S2,mSi,m,

qni,4 =

n - 1\sum 
m=0

V hriai3S3,mSi,m,

qni,5 =

n - 1\sum 
m=0

V hriai4S4,mSi,m.

As three zeros appear in coefficient matrix A, this system actually includes 17 reactions.
Therefore, the Poisson process \^Xn = (S1,n, S2,n, S3,n, S4,n) can be written as

\^Xn+1 =

\left(    
S1,n+1

S2,n+1

S3,n+1

S4,n+1

\right)    =

\left(    
S1,n

S2,n

S3,n

S4,n

\right)    +
1

V

\left(    
\bfitf \bfone (P1, \cdot \cdot \cdot , P17, q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bftwo (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bfthree (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bffour (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\right)    ,

where i = 1, \cdot \cdot \cdot ,4, Pj , j = \{ 1, \cdot \cdot \cdot ,17\} , are independent unit rate Poisson processes, and \bfitf \bfone ,
\bfitf \bftwo , \bfitf \bfthree , and \bfitf \bffour come from discrete approximation in (2.10). To improve the readability of the
present paper, we move detailed expressions of \bfitf \bfone --\bfitf \bffour to the appendix.

The diffusion approximation \^Y can be written as

\^Yn+1 =

\left(    
S1,n+1

S2,n+1

S3,n+1

S4,n+1

\right)    =

\left(    
S1,n

S2,n

S3,n

S4,n

\right)    +
1

V

\left(    
\bfitg \bfone (q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bftwo (q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bfthree (q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bffour (q
n
i,1, \cdot \cdot \cdot , qni,5)

\right)    +
1

V

\left(    
\bfitsigma \bfone (B1, \cdot \cdot \cdot ,B17, q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bftwo (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bfthree (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bffour (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\right)    ,

(4.9)
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QSD SENSITIVITY 1187

Figure 5. (Case V = 1000) Upper panel: (Left) ODE trajectories. (Right) Poisson process. Lower panel:
(Left) Diffusion process. (Right) \BbbP (\tau c > t| \tau < t) versus t.

where i = 1, \cdot \cdot \cdot ,4, Bj , j = \{ 1, \cdot \cdot \cdot ,17\} , are independent standard Wiener process, and func-
tions \bfitg \bfone , \bfitg \bftwo , \bfitg \bfthree , \bfitg \bffour , \bfitsigma \bfone , \bfitsigma \bftwo , \bfitsigma \bfthree , and \bfitsigma \bffour follow the expression in (2.11). We refer the reader
to the appendix for the detailed form of these functions.

By the stationary increments property and independence of Wiener processes Bi, i =
\{ 1, \cdot \cdot \cdot ,6\} , equation (4.9) can be simplified to

\^Yn+1 =

\left(    
S1,n+1

S2,n+1

S3,n+1

S4,n+1

\right)    =

\left(    
S1,n

S2,n

S3,n

S4,n

\right)    +
1

V

\biggl( 
\bfitg 1(q1, \cdot \cdot \cdot , q4)
\bfitg 2(q1, \cdot \cdot \cdot , q4)

\biggr) 
+

1

V
M

\left(       
W1

W2

...
W16

W17

\right)       ,(4.10)

where Wi, i= 1, \cdot \cdot \cdot ,17, are independent standard normal random variables, and M is a matrix
that depends only on Sn and In. We refer readers to the appendix for the full expression of
M .

Let \partial \scrX be the union of 4 axes. Processes \^X and \^Y admit QSDs \^\pi X and \^\pi Y , respectively.
Long trajectories P (i\Delta ) and B(i\Delta ) for i= \{ 1, \cdot \cdot \cdot ,222\} and \Delta = 0.01 are constructed when we
consider the trajectory-by-trajectory behavior of two processes. The time step size is h= 0.001
and the fixed time is set as T = 1.

Figure 5 top left shows the solution of the ODE projected onto x1x2x3 space. The trajec-
tories of the Poisson process and the diffusion process are shown at the top right and bottom
left, respectively. It appears that the trajectories are close, which is reasonable because, with
high probability, the trajectories of both the Poisson process and the diffusion process move
far away from the absorbing set \partial \scrX . We then compute the distribution of the coupling time.
The coupling time distribution and its exponential tail are shown in Figure 5 top left, which
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1188 YAO LI AND YAPING YUAN

Figure 6. (Case V = 1000) Poisson trajectories and diffusion trajectories for 4 species.

Figure 7. (Case V = 10) Poisson trajectories and diffusion trajectories for 4 species.

gives the contraction rate \gamma = 0.0849. Next, we apply Algorithm 1 to compute the finite time
error, and the result is 0.0030 for V = 1000. As a result, the upper bound given in (3.8) is
0.0375 for V = 1000.

To compare the different scenarios for volume V = 1000 and V = 10, we plot trajectories
of each species for V = 1000 in Figure 6, and the case for V = 10 is shown in Figure 7. It
is apparent that the behavior of the trajectories between the Poisson process and diffusion
process is notably different when V = 1000 as compared to the case when V = 10. Therefore,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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QSD SENSITIVITY 1189

Table 3
4D Lotka--Volterra model: Numerical results for different volumes.

Volume V Finite time error Contraction rate \gamma dw(\^\pi X , \^\pi Y )

1000 0.0030 0.0849 0.0375
400 0.0110 0.1831 0.0659
100 0.0502 0.3110 0.1878
10 0.1286 1.7905 0.1543

it is not surprising that the finite time error for V = 10 is 0.1286, which is approximately
40 times greater than the case for V = 1000. In this case, the trajectories of the Poisson
process have a high probability of moving along the boundary. As mentioned before, we have
computed the contraction rate \gamma of the coupling time distribution to be 1.7905. Consequently,
the upper bound given in (3.8) is 0.1543 for V = 10.

As we consider the effect of the capacity volume, the finite time error and the contraction
rate for different volumes are compared in Table 3. The last column dw(\^\pi X , \^\pi Y ) is computed
via (3.8). It is not hard to see that the upper bound of dw(\^\pi X , \^\pi Y ) is quite larger when
V = 10. This is consistent with Theorem 2.3; the supreme distance between two processes
will be smaller as V gets larger.

5. Conclusion. In this paper, we propose a coupling-based approach to estimate the dis-
tance between the QSD of a stochastic mass-action process and its diffusion approximation.
The study investigates how the QSDs depend on the volume of the mass-action system. To
tackle the QSDs, the paper adopts the idea of regeneration from QSDs after exiting to con-
struct a process with the stationary distribution. This approach differs from the previous
work by the authors [8, 18]. The coupling algorithm and the pathwise matching of a stochas-
tic mass-action system and its diffusion approximation need to be adapted to the regeneration
from QSDs. The paper compares the finite time error and the rate of contraction for different
population volumes V , and the results show that the distance between two QSDs is smaller
for a larger population. Overall, the study emphasizes the need to address demographic noise
when the population is small.

The study of pathwise approximation of stochastic mass-action systems by diffusion pro-
cesses and the coupling of diffusion processes motivates a very interesting question. All our
existing work relies on the reflection coupling of diffusion processes, which is known to be
highly effective. Then how can one effectively couple two continuous-time Markov processes
on a lattice? Successful coupling of two trajectories of a mass-action system will extend our
framework of sensitivity analysis to many more applications. We believe it is very difficult
to couple the exact stochastic mass-action system because of the difficulty of letting jumps
of coupled processes occur simultaneously. However, there may be some way of building a
``discrete reflection"" and coupling two tau-leaping trajectories, i.e., two trajectories of (2.10),
effectively. This will be addressed in our future work.

Appendix A. Expressions of mass-action systems and their diffusion approximations.
In this section, we provide the explicit formulas of the Poisson approximation and the diffusion
approximation for each model to improve readability.
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1190 YAO LI AND YAPING YUAN

A.1. SIR model. There are four reactions involved in the SIR system, so there are 4 pairs
of Poisson process Pi and Wiener process Bi that appear in the evolution of each class. The
rule of updating the numerical approximation \^Xn is as follows:

\^Xn+1 =

\biggl( 
Sn+1

In+1

\biggr) 

=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
[P1(q1,n+1) - P1(q1,n)] - [P2(q2,n+1) - P2(q2,n] - [P3(q3,n+1  - P3(q3,n)]

[P2(q2,n+1) - P2(q2,n)] - [P4(q4,n+1) - P4(q4,n)]

\biggr) 

:=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitf 1(P1, \cdot \cdot \cdot , P4, q1,n, \cdot \cdot \cdot , q4,n)
\bfitf 2(P1, \cdot \cdot \cdot , P4, q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
,

where Pi, i= \{ 1,2,3,4\} , are independent unit rate Poisson processes.
And the rule of updating the numerical approximation \^Yn is as follows:

\^Yn+1 =

\biggl( 
Sn+1

In+1

\biggr) 
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
[q1,n+1  - q1,n] - [q2,n+1  - q2,n] - [q3,n+1  - q3,n]

[q2,n+1  - q2,n] - [q4,n+1  - q4,n]

\biggr) 

+
1

V

\biggl( 
[B1(q1,n+1) - B1(q1,n)] - [B2(q2,n+1) - B2(q2,n)] - [B3(q3,n+1  - B3(q3,n]

[B2(q2,n+1) - B2(q2,n)] - [B4(q4,n+1) - B4(q4,n)]

\biggr) 

:=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitg 1(q1,n, \cdot \cdot \cdot , q4,n)
\bfitg 2(q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
+

1

V

\biggl( 
\bfitsigma 1(B1, \cdot \cdot \cdot ,B4, q1,n, \cdot \cdot \cdot , q4,n)
\bfitsigma 2(B1, \cdot \cdot \cdot ,B4, q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
,

where Bi, i= \{ 1,2,3,4\} , are independent standard Wiener processes.
As two classes Sn and In and four reactions are considered in this SIR model, the corre-

sponding diffusion matrix M should be a 2\times 4 matrix. Specifically, the diffusion matrix M
reads as follows:

\^Yn+1 =

\biggl( 
Sn+1

In+1

\biggr) 
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
[q1,n+1  - q1,n] - [q2,n+1  - q2,n] - [q3,n+1  - q3,n]

[q2,n+1  - q2,n] - [q4,n+1  - q4,n]

\biggr) 

+
1

V

\biggl( \surd 
q1,n+1  - q1,n  - \surd q2,n+1  - q2,n  - \surd q3,n+1  - q3,n 0

0
\surd 
q2,n+1  - q2,n 0  - \surd q4,n+1  - q4,n

\biggr) \left(    
W1

W2

W3

W4

\right)    
=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
V h\alpha  - V h\beta SnIn  - V h\mu Sn

V h\beta SnIn  - V h(\mu + \rho + \gamma )In

\biggr) 

+
1

V

\biggl( \surd 
V h\alpha  - 

\surd 
V h\beta SnIn  - 

\surd 
V h\mu Sn 0

0
\surd 
V h\beta SnIn 0  - 

\sqrt{} 
V h(\mu + \rho + \gamma )In

\biggr) \left(    
W1

W2

W3

W4

\right)    

:=

\biggl( 
Sn

In

\biggr) 
+

1

V

\biggl( 
\bfitg 1(q1,n, \cdot \cdot \cdot , q4,n)
\bfitg 2(q1,n, \cdot \cdot \cdot , q4,n)

\biggr) 
+

1

V
M

\left(    
W1

W2

W3

W4

\right)    ,

where Wi, i= \{ 1,2,3,4\} , are independent standard normal distributed random variables.
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QSD SENSITIVITY 1191

A.2. Oregonator model. For the Oregonator model, there are six reactions involved. So
we have 6 pairs of Poisson processes Pi and Bi in the approximations. The rule of updating
the numerical approximation \^Xn follows:

\^Xn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  =

\left(  S1,n

S2,n

S3,n

\right)  :=

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitf \bfone (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitf \bftwo (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitf \bfthree (P1, \cdot \cdot \cdot , P6, q1,n, \cdot \cdot \cdot , q6,n)

\right)  ,

where

\bfitf \bfone =P1(q1,n+1) - P1(q1,n)] - [P2(q2,n+1) - P2(q2,n)] + [P3(q3,n+1) - P3(q3,n)]

 - 2[P4(q4,n+1) - P4(q4,n)]

\bfitf \bftwo = - [P1(q1,n+1) - P1(q1,n)] - [P2(q2,n+1) - P2(q2,n)] + [P5(q5,n+1) - P5(q5,n)]

\bfitf \bfthree =2[P3(q3,n+1) - P3(q3,n)] - [P5(q5,n+1) - P5(q5,n)] - [P6(q6,n+1) - P6(q6,n)] ,

where Pi, i= \{ 1, \cdot \cdot \cdot ,6\} , are independent unit rate Poisson processes.
The diffusion approximation \^Y can be written as

\^Yn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  :=

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitg \bfone (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bftwo (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bfthree (q1,n, \cdot \cdot \cdot , q6,n)

\right)  
+

1

V

\left(  \bfitsigma \bfone (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitsigma \bftwo (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)
\bfitsigma \bfthree (B1, \cdot \cdot \cdot ,B6, q1,n, \cdot \cdot \cdot , q6,n)

\right)  ,

where

\bfitg \bfone =[q1,n+1  - q1,n] - [q2,n+1  - q2,n] + [q3,n+1  - q3,n] - 2[q4,n+1  - q4,n]

\bfitg \bftwo = - [q1,n+1  - q1,n] - [q2,n+1  - q2,n] + [q5,n+1  - q5,n]

\bfitg \bfthree =2[q3,n+1  - q3,n] - [q5,n+1  - q5,n] - [q6,n+1  - q6,n]

\bfitsigma \bfone =[B1(q1,n+1) - B1(q1,n)] - [B2(q2,n+1) - B2(q2,n)] + [B3(q3,n+1) - B3(q3,n)]

 - 2[B4(q4,n+1) - B4(q4,n)]

\bfitsigma \bftwo = - [B1(q1,n+1) - B1(q1,n)] - [B2(q2,n+1) - B2(q2,n)] + [B5(q5,n+1) - B5(q5,n)]

\bfitsigma \bfthree =2[B3(q3,n+1) - B3(q3,n)] - [B5(q5,n+1) - B5(q5,n)] - [B6(q6,n+1) - B6(q6,n)] ,

where Bi,\{ i= 1, \cdot \cdot \cdot ,6\} , are independent Wiener processes.
As we focus on three classes S1,n, S2,n, S3,n and six reactions, we can confirm that the

diffusion matrix M is a 3 \times 6 matrix. Specifically, the diffusion matrix M is defined as
follows:

\^Yn+1 =

\left(  S1,n+1

S2,n+1

S3,n+1

\right)  :=

\left(  S1,n

S2,n

S3,n

\right)  +
1

V

\left(  \bfitg \bfone (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bftwo (q1,n, \cdot \cdot \cdot , q6,n)
\bfitg \bfthree (q1,n, \cdot \cdot \cdot , q6,n)

\right)  +
1

V
M

\left(        

W1

W2

W3

W4

W5

W6

\right)        ,
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1192 YAO LI AND YAPING YUAN

where the 3\times 6 matrix M has expression

M =

\left[  \surd q1,n+1  - q1,n  - \surd q2,n+1  - q2,n
\surd 
q3,n+1  - q3,n  - 

\sqrt{} 
2[q4,n+1  - q4,n]

 - \surd q1,n+1  - q1,n  - \surd q2,n+1  - q2,n 0 0

0 0
\sqrt{} 

2[q3,n+1  - q3,n] 0

0 0\surd 
q5,n+1  - q5,n 0

 - \surd q5,n+1  - q5,n  - \surd q6,n+1  - q6,n

\right]  
=

\left[   
\sqrt{} 

V hC1S2,n  - 
\sqrt{} 

V hC2S1,nS2,n

\sqrt{} 
V hC3S1,n 2

\sqrt{} 
V hC4S2

1,n

 - 
\sqrt{} 

V hC1S2,n  - 
\sqrt{} 

V hC2S1,nS2,n 0 0

0 0 2
\sqrt{} 

V hC3S1,n 0

0 0\sqrt{} 
V hC5\delta S3,n 0

 - 
\sqrt{} 

V hC5\delta S3,n  - 
\sqrt{} 

V hC5(1 - \delta )S3,n

\right]  ,

where Wi,\{ i= 1, \cdot \cdot \cdot ,6\} , are independent standard normal distributed random variables.

A.3. 4D Lotka--Volterra model. For the 4D Lotka--Volterra system, there are 17 reactions
involved, so we have 17 pairs of Poisson process Pi andWiener processBi. The rule of updating
the numerical approximation \^Xn follows:

\^Xn+1 =

\left(    
S1,n+1

S2,n+1

S3,n+1

S4,n+1

\right)    :=

\left(    
S1,n

S2,n

S3,n

S4,n

\right)    +
1

V

\left(    
\bfitf \bfone (P1, \cdot \cdot \cdot , P17, q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bftwo (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bfthree (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitf \bffour (P1, \cdot \cdot \cdot , P17, q
n
i,1, \cdot \cdot \cdot , qni,5) ,

\right)    ,

where

\bfitf \bfone =[P1(q1,n+1) - P1(q1,n)] - [P2(q2,n+1) - P2(q2,n)] - [P3(q1,n+1) - P3(q1,n)]

 - [P4(q4,n+1) - P4(q4,n)]

\bfitf \bftwo =[P5(q5,n+1) - P5(q5,n)] - [P6(q6,n+1) - P6(q6,n)] - [P7(q7,n+1) - P7(q7,n)]

 - [P8(q8,n+1) - P8(q8,n)]

\bfitf \bfthree =[P9(q9,n+1) - P9(q9,n)] - [P10(q10,n+1) - P10(q10,n)]

 - [P11(q11,n+1) - P11(q11,n)] - [P12(q12,n+1) - P12(q12,n)]

\bfitf \bffour =[P13(q13,n+1) - P13(q13,n)] - [P14(q14,n+1) - P14(q14,n)]

 - [P15(q15,n+1) - P15(q15,n)] - [P16(q16,n+1) - P16(q16,n)]

 - [P17(q17,n+1) - P17(q17,n)] ,

where i = 1, \cdot \cdot \cdot ,4 and Pj ,\{ j = 1, \cdot \cdot \cdot ,17\} are independent unit rate Poisson processes. The
diffusion approximation \^Y can be written as

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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QSD SENSITIVITY 1193

\^Yn+1 =

\left(    
S1,n+1

S2,n+1

S3,n+1

S4,n+1

\right)    :=

\left(    
S1,n

S2,n

S3,n

S4,n

\right)    +
1

V

\left(    
\bfitg \bfone (q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bftwo (q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bfthree (q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitg \bffour (q
n
i,1, \cdot \cdot \cdot , qni,5)

\right)    

+
1

V

\left(    
\bfitsigma \bfone (B1, \cdot \cdot \cdot ,B17, q

n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bftwo (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bfthree (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\bfitsigma \bffour (B1, \cdot \cdot \cdot ,B17, q
n
i,1, \cdot \cdot \cdot , qni,5)

\right)    ,

where

\bfitg \bfone =[q1,n+1  - q1,n] - [q2,n+1  - q2,n] - [q3,n+1  - q3,n] - [q4,n+1  - q4,n]

\bfitg \bftwo =[q5,n+1  - q5,n] - [q6,n+1  - q6,n] - [q7,n+1  - q7,n] - [q8,n+1  - q8,n]

\bfitg \bfthree =[q9,n+1  - q9,n] - [q10,n+1  - q10,n] - [q11,n+1  - q11,n] - [q12,n+1  - q12,n]

\bfitg \bffour =[q13,n+1  - q13,n] - [q14,n+1  - q14,n] - [q15,n+1  - q15,n] - [q16,n+1  - q16,n]

 - [q17,n+1  - q17,n]

\bfitsigma \bfone =[B1(q1,n+1) - B1(q1,n)] - [B2(q2,n+1) - B2(q2,n)] - [B3(q3,n+1) - B3(q3,n)]

 - [B4(q4,n+1) - B4(q4,n)]

\bfitsigma \bftwo =[B5(q5,n+1) - B5(q5,n)] - [B6(q6,n+1) - B6(q6,n)] - [B7(q7,n+1) - B7(q7,n)]

 - [B8(q8,n+1) - B8(q8,n)]

\bfitsigma \bfthree =[B9(q9,n+1) - B9(q9,n)] - [B10(q10,n+1) - B10(q10,n)]

 - [B11(q11,n+1) - B11(q11,n)] - [B12(q12,n+1) - B12(q12,n)]

\bfitsigma \bffour =[B13(q13,n+1) - B13(q13,n)] - [B14(q14,n+1) - B14(q14,n)]

 - [B15(q15,n+1) - B15(q15,n)] - [B16(q16,n+1) - B16(q16,n)]

 - [B17(q17,n+1) - B17(q17,n)] ,

where i= 1, \cdot \cdot \cdot ,4, Bj ,\{ j = 1, \cdot \cdot \cdot ,17\} , are independent Wiener processes.
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