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Abstract

Let Σ be a smooth Riemannian manifold, Γ ⊂ Σ a smooth closed oriented
submanifold of codimension higher than 2 and T an integral area-minimizing current
in Σ which bounds Γ. We prove that the set of regular points of T at the boundary
is dense in Γ. Prior to our theorem the existence of any regular point was not
known, except for some special choice of Σ and Γ. As a corollary of our theorem

• we answer to a question in Almgren’s Almgren’s big regularity paper from
2000 showing that, if Γ is connected, then T has at least one point p of
multiplicity 1

2 , namely there is a neighborhood of the point p where T is
a classical submanifold with boundary Γ;

• we generalize Almgren’s connectivity theorem showing that the support
of T is always connected if Γ is connected;

• we conclude a structural result on T when Γ consists of more than one
connected component, generalizing a previous theorem proved by Hardt
and Simon in 1979 when Σ = Rm+1 and T is m-dimensional.
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CHAPTER 1

Introduction

Consider a smooth complete Riemannian manifold Σ of dimension m+ n̄ and a
smooth closed oriented submanifold Γ ⊂ Σ of dimension m−1 which is a boundary
in integral homology. Since the work of Federer and Fleming (cf. [24]) we know
that Γ bounds an integer rectiûable current T in Σ which is mass minimizing.

Starting with the pioneering work of De Giorgi (see [9]) and thanks to the efforts
of several mathematicians in the sixties and the seventies (see [4,10,25,37]), it is
known that, if Σ is of class C2,a for some a > 0, in codimension 1 (i.e., when n̄ = 1)
and away from the boundary Γ, T is a smooth submanifold except for a relatively
closed set of Hausdorff dimension at most m − 7. Such set, which from now on
we will call interior singular set, is indeed (m− 7)-rectiûable (cf. [36]) and it has
been recently proved that it must have locally ûnite Hausdorff (m− 7)-dimensional
measure (see [33]).

In higher codimension, namely when n̄ ≥ 2, Almgren proved in a monumental
work (known as Almgren’s Big regularity paper [5]) that, if Σ is of class C5, then the
interior singular set has Hausdorff dimension at most m− 2. Subsequently Chang
proved in [8] that such set is indeed discrete when m = 2. In fact Chang’s paper is
missing one substantial step of the proof, which was completed only recently by the
ûrst author in a series of joint works with Emanuele Spadaro and Luca Spolaor, cf.
[18–21]. The latter papers are based on a revisitation of Almgren’s theory, due to
the ûrst author and Emanuele Spadaro (cf. [13–17]), which simpliûes Almgren’s
proof introducing several new ideas. The latter works are indeed one of the starting
points of this paper.

Both in codimension one and in higher codimension the interior regularity
theory described above is, in terms of dimensional bounds for the singular set,
optimal:

• The celebrated paper by Bombieri, De Giorgi and Giusti [6] (see [22]
for a very short proof) shows that Simons’ cone {x21 + x22 + x23 + x24 =
x25+x

2
6+x

2
7+x

2
8} is an area-minimizing current of dimension 7 in R8 with

an isolated singularity.
• Federer’s calibration theorem shows that any holomorphic subvariety of
a Kähler manifold induces an area-minimizing current: in particular the
holomorphic curve {(z, w) ∈ C2 : z2 = w3} is a 2-dimensional area-
minimizing current in R4 with an isolated singularity.

The main purpose of this paper is to study the regularity of the minimizers at
the boundary. In the rest of the note we will always assume that such boundary
is the integer rectiûable current naturally induced by some oriented submanifold
Γ and we will use the notation �Γ� for it. As it is customary in the literature,
we take advantage of Nash’s isometric embedding theorem and we consider Σ as

1
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2 1. INTRODUCTION

a submanifold of some Euclidean space Rm+n. In particular we can regard any
integer rectiûable current T in Σ as an integer rectiûable current in the Euclidean
space whose support spt(T ) is contained in Σ: hence T minimizes the mass among
all currents S which are supported in Σ and such that ∂S = �Γ�.

Definition 1.1. A point x ∈ Γ is a boundary regular point for T if there exist
a neighborhood U � x and a regular m-dimensional submanifold Ξ ⊂ U ∩ Σ as
in Deûnition 1.1 (without boundary in U) such that spt(T ) ∩ U ⊂ Ξ. The set of
such points will be denoted by Regb(T ) and its complement in Γ will be denoted
by Singb(T ).

Analogously, the set of interior regular points and interior singular points will
be denoted by Regi(T ) and Singi(T ).

We further subdvide Singb(T ) into two categories. We will say that x ∈
Singb(T ) is of crossing type if there is a neighborhood U of x and two currents
T1 and T2 in U with the properties that:

• T1 + T2 = T and ∂T1 = 0;
• x ∈ Regb(T2).

If x ∈ Singb(T ) is not of crossing type, we will then say that x is a genuine boundary
singularity of T .

Remark 1.2. Notice that Singb(T ) is closed in Γ. Moreover, the Constancy
Lemma has the following simple consequence. Let p ∈ Γ be a regular point and Ξ.
Assume the neighborhood U is sufficiently small, so that U ∩ Ξ is diffeomorphic to
an m-dimensional disk. Then the following holds:

• Γ ∩ U is necessarily contained in Ξ and divides it in two disjoint regular
submanifolds Ξ+ and Ξ− of U with boundaries ±Γ;

• there is a positive Q ∈ N such that

T U = Q
�
Ξ+

�
+ (Q− 1)

�
Ξ−�

.

We deûne the density of such points p in Γ ∩ U as Q − 1
2 and we denote it by

Θ(T, p) = Q− 1
2 . Later (in Deûnition 3.1) we will deûne, as customary, the density

at every boundary point p as the limit, as r ↓ 0, of the ratio between the mass of the
current in a ball of radius r (denoted by ‖T‖(Br(p))) and them-dimensional volume
of anm-dimensional disk of radius r (denoted by ωmr

m). The two deûnitions clearly
agree on regular points.

Of particular interest are those regular points where Q = 1: at such points
there is a neighborhood U where the current T is a classical submanifold with
multiplicity 1 and with boundary Γ ∩ U . Such points will be called in the rest of
the note density 1

2 points or one-sided points . In contrast, the regular points where
Q > 1 will be called two-sided . Note that, when p is a one-sided point only Ξ+ ∩U
is determined (and coincides, in fact, with the support of the current in U): Ξ−∩U
can be chosen to be any <smooth continuation= of Ξ+ ∩ U across the boundary
Γ ∩ U . On the other hand when p is two-sided then the whole submanifold Ξ ∩ U
is determined by the current T and coincides with its support in U .

The ûrst boundary regularity result is due to Allard who, in his Ph.D. thesis
(cf. [1]), proved that, if Σ = R

m+n̄ and Γ is lying on the boundary of a uniformly
convex set, then every point p ∈ Γ is regular and has multiplicity 1

2 . In his later
paper [3] Allard developed a more general boundary regularity theory from which
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1. INTRODUCTION 3

he concluded the above result as a simpler corollary. In particular Allard’s theory
establishes, among other things, the following two facts:

(a) if p ∈ Γ is a point where the density Θ(T, p), deûned as limr↓0
‖T‖(Br(p))

ωmrm ,

equals 1
2 , then p belongs to Regb(T );

(b) if there is some wedge W of opening angle smaller than π whose tip
contains p and such that spt(T ) ⊂ W then Θ(T, p) = 1

2 and thus p ∈
Regb(T ).

1

In contrast to (b), a boundary point p ∈ Γ with density Q + 1
2 for some Q ∈

N \ {0} is not necessarily a regular point.

Suitable generalizations of (a) and (b) can be proved in more general ambient
manifolds Σ and they imply full boundary regularity under geometrically inter-
esting assumptions: a simple example is given when Γ lies on the boundary of a
geodesic ball of sufficiently small radius. However, even when Σ = R

m+n̄, Allard’s
theory implies the existence of relatively few boundary regular points for general
submanifolds Γ; in particular (b) above can be guaranteed for an appropriate subset
of those points where Γ coincides with its convex envelope, for the proof see [28].

In the codimension one case Hardt and Simon proved later in [27] that the set of
boundary singular points is empty, hence solving the boundary regularity problem
when n̄ = 1 (although the paper [27] deals only with the case Σ = Rm+n̄, its
extension to a general Riemannian ambient manifold should not cause real issues).
A major problem that Hardt and Simon have to face compared to Allard is that
under their assumption two-sided boundary points may occur, as it is witnessed by
the following example.

Example 1.3. Let Γ be the union of two concentric circles Γ1 and Γ2 contained
in a given 2-dimensional plane π0 ⊂ R2+n̄ and having the same orientation. Then
the area-minimizing current T in R2+n̄ which bounds Γ is unique and it is the sum
of the two disks bounded by Γ1 and Γ2 in π0. In particular T has density 3

2 at
every point p which belongs to the inner circle, see Figure 1.

q

p

1

2

Figure 1.1. p is a two-sided point while q is a one-sided point.

Nonetheless, an outcome of the Hardt-Simon boundary regularity theorem is
that, if Γ contains a two-sided point p, then the connected component Γ′ which
contains p arises from a situation like the one described in Example 1.3. Therefore

1A wedge W ⊂ Rm+n̄ with opening angle ϑ is a set which can be mapped via a suitable rigid
motion to {(x, y) ∈ Rm × Rn̄ : |y| ≤ x1 tan

ϑ

2
}; the tip of W is the set {(x, y) : |y| = x1 = 0}.

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



4 1. INTRODUCTION

the presence of regular two-sided points is very rare: for instance, when Σ = Rm+1,
we can immediately exclude it if we know that no connected component of Γ can
be included in the interior of a real analytic hypersurface.

According to the results described so far, in higher codimension and for a
general ambient manifold Σ we cannot even exclude that the set of boundary regular
points is empty. In particular, in the last remark of the last section of his Big
regularity paper, cf. [5, Section 5.23, p. 835], Almgren states the following open
problem:

Question 1.4 (Almgren). <I do not know if it is possible that the set of density
1
2 points is empty when Γ is connected.=

We will see in the next chapter that such question is equivalent to ask the
existence of at least one regular boundary point.

The interest of Almgren in Question 1.4 is motivated by an important geometric
conclusion: in [5, Section 5.23] he shows that, if there is at least one density 1

2
point and Γ is connected, then spt(T ) is as well connected and the current T has
(therefore) multiplicity 1 almost everywhere, in other words the mass of T coincides
with the Hausdorff m-dimensional measure of its interior regular set.

In this note we ûll the aforementioned gap in the literature, proving the ûrst
general boundary regularity theorem without any restrictions on the codimension,
on the ambient manifold Σ or on the geometry of Γ. Since it will be used repeatedly
throughout the paper, we isolate the assumptions of our main theorem for further
reference.

Assumption 1.5. Let a0 ∈]0, 1]. Consider a C3,a0 complete Riemannian sub-
manifold Σ ⊂ R

m+n with dimension m+n and Γ ⊂ Σ a C3,a0 oriented submanifold
without boundary. Let T be an integral m-dimensional area-minimizing current in
B2 ∩ Σ with boundary ∂T B2 = �Γ ∩B2�, namely such that

(AM) M(T ′) ≥ M(T ) for every integer rectiûable current T ′ with ∂(T−T ′) B2

= 0 and spt(T − T ′) ⊂ Σ ∩B2.

Theorem 1.6. Let T,Σ,Γ be as in 1.5. Then Regb(T ) is dense in Γ ∩B2.

Of course by rescaling and translating, the ball of radius 2 centered at 0 can
be replaced by any ball Br(p).

It can be easily shown that boundary singular points can occur when Γ is a
Ck curve in R

4 for any k, cf. [42]. Such examples are isolated and can be both of
crossing type or genuine boundary singularities. A typical construction of the latter
goes as follows. We identify R4 with C2, we take a holomorphic subvariety with a
singularity, as for instance Λ := {(z, w) ∈ C2 : w3 = z3k+1}, and then we consider
a suitable Ck closed (real) curve Γ lying in Λ and passing through the singularity
of Λ. In the speciûc case {(z, w) ∈ C2 : w3 = z3k+1}, a Γ of interest is deûned so
that:

• its projection on the plane π = {w = 0} contains an open segment σ =
{w = 0, Im z = 0,−r < Re z < r};

• it bounds a disk D ⊂ Λ;
• the intersection of D with the cylinder {|z| < r} covers once the half disk
{w = 0, Im z < 0, |z| < r} and twice the half disk {w = 0, Im > 0, |z| < r}.
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1. INTRODUCTION 5

T := �D� is then the unique area-minimizing current which bounds �Γ�, while 0 is
an isolated genuine boundary singular point.

Below we will show examples where Singb(T ) has the same (Hausdorff) dimen-
sion of the boundary. Nonetheless the theorem above does not seem optimal from
at least two points of view: ûrst of all our example leaves open the possibility that
Singb(T ) has zero (m − 1)-dimensional measure; secondly the singularities of the
example are all of crossing type. Indeed it is tempting to advance the following
conjecture, which in view of the examples known so far seems rather reasonable.

Conjecture 1.7. Let T,Σ,Γ be as in 1.5. The Hausdorff dimension of the set
of genuine singular points is at most m− 2.

When m = 2 we cannot however expect that genuine singular points are iso-
lated.

Theorem 1.8. There are:

(a) A smooth closed simple curve Γ ⊂ R4 and a mass minimizing current T in
R4 such that ∂T = �Γ� and Singb(T ) has a genuine boundary singularity
which is an accumulation point.

(b) A smooth 1-dimensional closed submanifold Γ1 ⊂ R4 (consisting of two
disjoint simple curves) and a mass minimizing current T1 in R4 such that
∂T1 = �Γ1� and Singb(T1) has Hausdorff dimension 1.

Moreover the proof of (a) can be easily modiûed to provide an example of a two
dimensional mass minimizing current for which there exists a sequence of interior
singular points accumulating towards the boundary. This shows that the (interior)
regularity results for two dimensional mass minimizing currents in [8,13–17] are
actually optimal, see Remark 2.3. The proof of (b) is essentially contained in [30].

The example of Theorem 1.8 is related to a previous one of Gulliver2 given in
[26]. In both examples there is a boundary branch point where the surface has
an inûnite order of contact with a plane. In view of Gulliver’s surface, White in
[42] stated that <Proving partial regularity for integral currents at C∞-boundaries
seems to be much harder=. In the case of real analytic curves White proved in [42]
that there is no branching boundary point for any solution of the Douglas-Radó
problem. In view of this he conjectured that the topology of any area minimiz-
ing 2-dimensional integral current is ûnite if its boundary is a real analytic curve:
combined with his result, White’s conjecture would then imply that for real ana-
lytic curves both the boundary singular points and the interior singular points are
isolated and that the boundary singular points can only be of <crossing= type, i.e.
there is no genuine boundary singularity.

Even though at the moment we cannot progress further in a ûner analysis of
the singularities, as a corollary of Theorem 1.6 we can reduce it to the analysis of
one-sided boundaries.

Theorem 1.9. Let Σ and Γ be as in Assumption 1.5. Assume Γ is closed and
T is an area-minimizing integral current in Σ with ∂T = �Γ�. Let Γ′ ⊂ Γ be a
connected component of Γ. If Γ′ ∩ Regb(T ) contains a point p with multiplicity
Θ(T, p) > 1

2 , then

2Gulliver’s example is a minimal immersed disk in the 3-dimensional space. It is obviously
not a minimizer as a current, but it is not known whether it is a solution of the Douglas-Radó
problem.
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6 1. INTRODUCTION

(a) the Hausdorff dimension of Singb(T ) ∩ Γ′ is at most m− 2;
(b) if m = 2, then Singb(T ) ∩ Γ′ consists of finitely many points.

Theorem 1.9 is a consequence of a suitable decomposition of the current T ,
which will be stated in the next chapter (cf. Theorem 2.1). One consequence of the
latter result is that the two-sided components of Γ are, in a suitable sense, <internal
to the current=, as in Example 1.3. So, even if Theorem 1.6 is not a full regularity
statement as the one in [27], it is still powerful enough to yield a similar description
of the current T in a neighborhood of the two-sided connected components of Γ.
Moreover, the decomposition Theorem 2.1 leads easily to a full answer to Question
1.4 and in particular we can show the connectedness of the support of any minimizer
T whose boundary Γ is connected.

Corollary 1.10. Let Σ,Γ and T be as in Theorem 1.9 and assume in addition
that Γ is connected and that both Γ and spt(T ) are compactly contained contained
in B2. Then,

(a) Regb(T ) coincides with the set of density 1
2 points;

(b) the set of interior regular points Regi(T ) is connected;
(c) Θ(T, p) = 1 for all p ∈ Regi(T ) and M(T ) = Hm(Regi(T )) = Hm(spt(T )).

While Theorem 2.1, Theorem 1.9, and Corollary 1.10 are rather straightfor-
ward consequences of Theorem 1.6 and of the interior regularity theory via well-
established techniques in geometric measure theory, the proof of Theorem 1.6 is
very long and will occupy essentially all the rest of the note. In a nutshell we
will develop a suitable counterpart of Almgren’s interior regularity theory at the
boundary in order to prove it. Such task poses many additional difficulties and in
order to overcome them we introduce several new ideas and tools, some of which
might be useful even for the interior regularity theory.

Our work would have not been possible without the new insight provided by
the papers [13–17] and by the Ph.D. thesis of the third author, cf. [29, 30]. In
particular the latter contains two fundamental starting points: a suitable boundary
regularity theory for Dir-minimizing multiple valued map and a fruitful discussion
on how the frequency function estimate of Almgren might fail at the boundary.
Such discussion has been essential to identify the key <estimate= which underlies
the present work.

In Section 2.4 we will give a road map to the proof of Theorem 1.6, we will
discuss the most important ideas which enter into it and we will point out their
relations with Almgren’s big regularity paper [5], with the works [13–17] and
with [29].
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CHAPTER 2

Corollaries, open problems, and plan of the paper

2.1. Indecomposable components of T

We start this chapter by stating and proving our main structure theorem as
corollary of Theorem 1.6.

Theorem 2.1. Let Σ,Γ, T be as in Assumption 1.5 and assume in addition
that Γ and spt(T ) are compactly contained in B2. Let us denote by Γ1, . . . ,ΓN the
connected components of Γ. Then there exist a natural number N ∈ N, integer
multiplicities Qj ∈ N \ {0} and currents Tj such that

(2.1) T =

N∑

j=1

QjTj ,

where:

(a) For every j = 1, . . . , N , Tj is an integral current with ∂Tj =
∑N

i=1 σij �Γi�
and σij ∈ {−1, 0, 1}.

(b) For every j = 1, . . . , N , Tj is an area-minimizing current and Tj =
Hm Λj, where Λ1, . . . ,ΛN are the connected components of spt(T ) \ (Γ∪
Singi(T )) = Regi(T ).

(c) Each Γi is
• either one-sided, which means that there is one index o(i) such that
σio(i) = 1 and σij = 0 ∀j 
= o(i);

• or two-sided, which means that:
– there is one j = p(i) such that σip(i) = 1,
– there is one j = n(i) such that σin(i) = −1,
– all other σij equal 0.

(d) If Γi is one-sided, then Qo(i) = 1 and all points in Γi ∩ Regb T have

multiplicity 1
2 .

(e) If Γi is two-sided, then Qn(i) = Qp(i) − 1, all points in Γi ∩ Regb T have

multiplicity Qp(i) − 1
2 and Tp(i) + Tn(i) is area minimizing.

Proof. Let Λ be a connected component of

spt(T ) \ (Γ ∪ Singi(T )) = Regi(T ) .

Since Λ is smooth and connected, by the Constancy Theorem the multiplicity of T
is a constant Q ∈ N \ {0} on Λ. Let S := Q �Λ ∩Regi(T )�, where we orient Λ so
that S = T in every sufficiently small neighborhood of every point p ∈ Λ. Observe
that spt(∂S) ⊂ Γ∪Singi(T ). Since Hm−1(Singi(T )) = 0, from [23, Theorem 4.1.20]
we then conclude that ∂S = 0 on R

m+n \ Γ. Thus spt(∂S) ⊂ Γ. Let now Γi be
a connected component of Γ and let p be a retraction of a neighborhood U of Γi

onto Γi. Since ∂S is a üat chain supported in Γi, Federer’s üatness theorem, cf.

7
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[23, Section 4.1.15], implies that R := p�(∂S U) = ∂S U . On the other hand,
since ∂(∂S U) = 0, we also have ∂R = 0 and we conclude from the Constancy
theorem, cf. [23, Section 4.1.7], that R = c �Γi� for some c ∈ R. Thus ∂S =
∑N

i=1 ci �Γi�.
From Theorem 1.6 there is at least one point p ∈ Regb(T )∩Γi. In a sufficiently

small neighborhood V of p, the set spt(T ) \ Γi consists of at most two connected
components which are regular submanifolds and which we call Ξ+ and Ξ−, consis-
tently with the notation of Deûnition 1.1 and Remark 1.2. Since Λ is connected,
we have the following three alternatives:

(i) p 
∈ Λ;
(ii) Λ contains only one of the two components Ξ±;
(iii) Λ contains both Ξ+ and Ξ−.

However, by the Constancy Lemma, the density of T on Λ must be constant,
whereas, according to Remark 1.2, it differs on the two surfaces Ξ+ and Ξ−. For
this reason we can exclude the alternative (iii) and in particular,

• either ∂S V = 0,
• or ∂S V = (Θ(p, T ) + 1

2 ) �Γi� V = Q �Γi� V ,

• or ∂S V = −(Θ(T, p)− 1
2 ) �Γi� V = −Q �Γi� V .

If we consider the connected components of Regi(T ) we obtain a decomposition as
in (2.1) with property (a), except that we have not yet shown that the number of
connected components is ûnite (they might be countably inûnite). First observe
that

(2.2) M(T ) =
∑

j≥1

QjM(Tj) ,

and hence we easily see that each Tj must be area-minimizing. Next observe that
each connected component Λj must contain a point at a ûxed positive distance from
Γ (otherwise we could retract Tj on Γ). By the monotonicity formula the mass of
each Tj can be bounded from below with a constant independent of j. Thus from
(2.2) we conclude that the number of Tj ’s must be ûnite.

We now prove (c), (d) and (e): ûx Γi and ûx a regular point p ∈ Regb(T )∩Γi.
If Θ(T, p) = 1

2 , then in a suitable neighborhood V of p the set (spt(T ) \ Γ) ∩ V
coincides with Regi(T )∩V and consists of only one connected component, so there
is one and only one σij 
= 0. Moreover, for that particular j =: o(i), Qo(i) = 1. In
particular, Regb(T ) ∩ Γi ∩ spt(Tj) = ∅ for every j 
= o(i), which proves (d) and the
ûrst part of (c).

Analogously, if Θ(T, p) > 1
2 , then V ∩spt(T )\Γ consists of exactly two connected

components with two different multiplicities in the current T , namely there must be
exactly Λj+ and Λj− from which the two connected components of spt(T )\Γ∩V =
Regi(T )∩V arise. Moreover the difference of the two multiplicities Qj+ −Qj− must
necessarily be 1. As above, since all other σij are equal to 0, at any other point
q ∈ Γi∩Regb(T ) there is a neighborhood V which intersects only Λj+ and Λj− . On
the other hand it must intersect at least one of them (otherwise ∂T V = 0) and
therefore it must intersect both of them (otherwise either ∂T V = Qj+ �Γi ∩ V �
or ∂T V = −Qj− �Γi ∩ V �, which is not possible because Qj+ ≥ 2 and Qj− ≥ 1).
This completes the proof of (c) and shows the ûrst part of (e).
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2.3. PROOF OF THEOREM 1.8 9

In order to complete the proof of (e), consider a Γi which is two-sided. Denote
by S the current Tp(i) + Tn(i). Notice that

M(T ) = Qn(i)M(S) +M(Tp(i)) +
∑

n(i) �=j �=p(i)

QjM(Tj).

From this it follows easily that S must be area-minimizing. �

2.2. Almgren’s question and proof of Theorem 1.9

We can now use Theorem 2.1 to prove Corollary 1.10 and Theorem 1.9.

Proof of Corollary 1.10. When Γ is connected the decomposition in (2.1)
consists necessarily of at most two currents because of Theorem 2.1(c), depending
on whether Γ is one-sided or two-sided. On the other hand, if Γ were two-sided, the
decomposition (2.1) would consist of two currents T1 and T2 with Q1 = Q2+1 ≥ 2.
Thus T1 would have boundary �Γ� and strictly less mass than T , contradicting the
minimality of T . �

Proof of Theorem 1.9. Consider Γ′ and p as in the statement and apply
Theorem 2.1. Without loss of generality assume Γ′ = Γ1. By point (d) of Theorem
2.1, Γ1 is necessarily two-sided, therefore S := Tp(1)+Tn(1) is area-minimizing. Since
all points of Γ1 are interior points of S, we know from the interior regularity theory
that S is regular at p in Γ1, except for a set of points of dimension m − 2 (which
is ûnite if m = 2). At any point p where S is regular, the boundary regularity of
Tp(1) and Tn(1) follows easily from the Constancy Theorem [23, Section 4.1.7]. �

Remark 2.2. It is clear from the proof of Theorem 2.1 and of Corollary 1.10
that the requirement that Γ and spt(T ) are compactly contained in B2 can be
somehow relaxed, and that suitably local versions of these results are true. Since
however the proof will follow the same arguments described above, we leave these
generalizations to the interested reader.

2.3. Proof of Theorem 1.8

First of all consider the complex halfplane H := {z ∈ C : Re z > 0} over which
we ûx the following determination of the complex logarithm:

Log z = log |z|+ i arctan
Im z

Re z
.

(where arctan : R → (−π
2 ,

π
2 ) is the usual inverse trigonometric function on the real

axis). Correspondingly we deûne (again on H) the functions z−α = exp(−αLog z)
for α ∈ (0, 1) and

fk(z) = exp(−z−α) sin

(

Log z +
3− 2k

6
πi

)

for k = 0, 1, 2, 3.

Observe that:

(i) Each fk can be extended smoothly to a C∞ function onH. Indeed, observe
ûrst that there is an holomorphic extension of fk to C \ {z ∈ R : Im z =
0,Re z ≤ 0}, which, with a slight abuse of notation, we keep denoting by
fk. Such extension is thus deûned on H \ {0}. Hence, in order to prove
our claim it suffices to show that any partial derivative (of any order) of
fk can be extended continuously from H \ {0} to the origin. We claim
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in particular that such extension can be achieved by setting it 0 at the
origin. Since ∂zfk = 0 (on H \ {0}), it suffices to show our claim for any
partial derivative ∂�zf . For the latter we easily have the inequality

(2.3) |∂�zfk(z)| ≤ C(α, �)|z|−N(α,�)e−Re z−α ≤ C(α, �)|z|−N(�,α)e−c(α)|z|−α

,

where N(α, �), C(α, �) and c(α) = cos(απ
2 ) are positive constants.

(ii) Since exp(−z−α) does not vanish on H \ {0}, the zero set Zk of fk in
H \ {0} is given by

Zk =

{

z ∈ H : Log z +
3− 2k

6
πi ∈ πZ

}

,

namely by

(2.4) Zk =

{

exp

(

nπ + i
2k − 3

6
π

)

: n ∈ Z

}

.

Consider next the function

g(z) =

3∏

k=0

fk(z) .

We then conclude that g is holomorphic on H, it is C∞ on H and its zero set, which
we denote by Z, is given by

Z = {0} ∪
3⋃

k=0

Zk .

Deûne now the map G : H → C2 by G(z) = (z3, g(z)). We consider a smooth
simple curve γ ⊂ H which contains a nontrivial segment

(2.5) σ = [−τi, τ i]
on the imaginary axis and we let D ⊂ H be the open disk bounded by γ. The
current T := G� �D� is integer rectiûable and

∂T = G�∂ �D� = G� �γ� .
Observe that G(D) is an holomorphic curve of C2, which carries a natural orien-
tation. If �G(D)� denotes the corresponding integer rectiûable current, we then
have T = Θ �G(D)�, where Θ is the integer-valued function which at Hm-a.e. point
p ∈ G(D) counts the number of preimages in D, namely Θ(p) = �{z ∈ D : G(z) =
p} (indeed our argument below will show that Θ equals 1 except for a countable
number of points). It follows from a classical result of Federer (cf. [23]) that T is
an area-minimizing current.

We then claim that

(a) for an appropriate choice of γ, G� �γ� = �G(γ)� and G(γ) ⊂ C
2 = R

4 is a
smooth embedded curve;

(a) σ ∩G(Z) is contained in Singb(T ).

Since

G(Z) = {0} ∪
3⋃

k=0

G(Zk) = {0} ∪ {(±ie3nπ, 0) ∈ C
2 = R

4 : n ∈ Z} ,

we conclude from (b) that Singb(T ) has an accumulation point at the origin. Thus,
because of (a), Γ = G(γ) is a closed curve which satisûes the claims of the theorem.
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2.3. PROOF OF THEOREM 1.8 11

In order to show (a) and (b) consider ûrst that the map G is a local smooth
embedding at every point z ∈ H which is not the origin, because the differential of
z �→ z3 has full rank everywhere except at the origin. We next claim that

(c) There is a discrete subset W ⊂ H \ {0} such that the map G is injective
when restricted onto H \ (W ∪ {0}).

In order to show (c) consider ûrst that, if G(z) = G(w), then z3 = w3. Thus our
claim reduces to showing that the map λ(z) := g(z)− g(e2πi/3z) has a discrete set
of zeros on the domain

Λ :=
{

z 
= 0 : z ∈ H and e2πi/3z ∈ H

}

.

By the holomorphicity of λ and the connectedness of Λ, it suffices to show that
λ does not vanish identically on Λ. On the other hand, if it were λ ≡ 0, then
we could extend g holomorphically to a function g̃ on C2 \ {0} with the property
that g̃(z) = g̃(e2πi/3z) for every z. From the discussion above it follows easily that
such a map g̃ could be extended continuously at the origin and it would thus be
holomorphic on the entire complex plane. On the other hand g̃ has a sequence
of zeros which accumulate to the origin and thus it would be forced to vanish
identically. In particular we would conclude that g vanishes identically and that
one of the fk’s must vanish identically too. By the very deûnition of fk this is
obviously false.

Having proved (c) we now show the existence of γ as in (a). First we show that
γ can be chosen so that G|γ is injective. As a preliminary remark, the only point

of H which G maps to the origin (0, 0) of C2 is the origin 0 of C, so we just need
to show the injectivity of G on γ \ {0}. Observe that, by (c), we can assume that
both G(τi) and G(−τi) have exactly one preimage in H. Since G is an immersion
on H \ {0}, we can choose τ so that there are two neighborhoods U1 and U2 of,
respectively, the endpoints τi and −τi of the segment σ with the property that
G(z) has exactly one counterimage in H for every z ∈ (U1 ∪ U2) ∩ H. Moreover,
a generic γ will avoid the set W , which is discrete, and thus we have shown that
G is injective on γ \ σ. Furthermore, we can ensure that all points z in γ \ σ have
modulus strictly larger than τ . Since G(z) = G(w) implies z3 = w3 and hence
|z| = |w|, such a choice enforces that G(γ \ σ) ∩G(σ) = ∅. It remains to show that
G is injective on σ, but this is easy because, if z, w ∈ σ, then both z and w are
purely imaginary and the equation z3 = w3 implies z = w.

We next wish to show that G(γ) is a smooth curve. As already observed, G is
an immersion when restricted to H \ {0}. Thus we only have to show that G(γ) is
smooth in a neighborhood of (0, 0) = G(0). Observe that, in such a neighborhood
G(γ) is given by the points {(−is3, g(is)) : s ∈] − δ, δ[}, which we can rewrite as

{(−is, g(is 1
3 )) : s ∈]− δ3, δ3[}. We thus have to show that the map

R � s �→ h(s) = g(is
1
3 ) ∈ C

is smooth in a neighborhood of the origin and we will then conclude that G(γ)
is indeed a smooth embedded curve. In fact the map h is certainly smooth on
(−1, 0) ∪ (0, 1). Computing its derivatives we conclude easily that

|h(�)(s)| ≤ C(�)|s|−N(�)
∑

0≤k≤�

|Dkg(is
1
3 )| ≤ C(�, α)|s|−N(�)e−c(α)|s|−α/3

,
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where we have used the estimate (2.3). In particular

lim
s→0

h(�)(s) = 0

for every � ∈ N. This shows the smoothness of g in 0.

We ûnally come to (b). We just have to show that every point p ∈ G(Z)
is singular: since the origin is an accumulation point of G(Z) and Singb(T ) is
closed, the origin will be a singular point as well. Let p be in G(Z) \ {0}, then
p = (±ie3nπ, 0) for some n ∈ Z. Let us assume that p = (ie3nπ, 0) (the other
case being analogous) and note that p has exactly two preimages in H through G,
namely

z1 = exp
(

nπ − i
π

2

)

z2 = exp
(

nπ + i
π

6

)

= e2πi/3z1.

Since, as already observed, dGzi has full rank for i = 1, 2, there are small neighbor-
hoods U1 and U2 of z1 and z2 such that G|U1

and G|U2
are embeddings. Since we

have already shown that the set {z : g(z) = g(e2πi/3z)} is discrete in H \ {0}, up to
making the neighborhoods smaller we have that G(U1)∩G(U2) = {p}. This shows
that around p, G(D) is an immersed surface with boundary and with a <double
point= at p. Thus p belongs to Singb(T ).

Remark 2.3. Note that the curve γ in the above Theorem can be slightly
modiûed in order to have that G(γ) is still a smooth curve and that γ bounds a

smooth connected open disk D̃ with 0 ∈ ∂D̃ and σ = (−τi, τ i) \ {0} ⊂ D̃. In

particular there is a sequence of points in Z which are in the interior of D̃ and
that accumulates towards {0}. G(Z) now consist of interior singular points for

T̃ := G��D̃� which accumulate towards the boundary.

Remark 2.4. It is not difficult to see that, in the example above, at any singular
point p ∈ G(Z) the tangent cone consists of one two-dimensional plane �π(p)� and a
two-dimensional half-plane �π+(p)�, which intersect only at the origin. By slightly
modifying the example, namely by considering the map G(z) = (z3, (g(z))2), we can
easily ensure that the tangent cone at every p ∈ G(Z) is contained in a single two-
dimensional plane π(p). In particular the tangent line to the boundary curve splits
such planes in two halves π−(p) and π+(p): the tangent cone is then 2 �π+(p)� +
�π−(p)�. On the other hand we do not know whether it is possible to have a
sequence of boundary branching singularities which accumulate somewhere.

2.3.1. Proof of Statement (b). We now turn to the proof of statement (b)
in Theorem 1.8. The starting point is the following fact, proved by the third author
in [30], where we keep using the notation

H = {z ∈ C : Re z > 0}
for the complex halfplane.

Lemma 2.5 ([30, Lemma 0.1]). There exists a holomorphic function g : H → C

which extends to a smooth function F ∈ C∞(H) and such that the set

E := {F = 0} ∩ ∂H
is contained in the segment σ := ∂H∩{Im z ∈ [− 1

2 ,
1
2 ]} and has Hausdorff dimension

dimH(E) equal to 1.
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Let now γ be a smooth curve contained in H ∩ {|z| ≤ 1} such that

(a) σ ⊂ γ;
(b) γ ∩ {z ∈ H : g(z) = 0} = ∅.

Note that this is possible since {g = 0} ∩ H is at most countable. We denote by
D+ ⊂ H the disk bounded by γ. We let

G(z) = (z, F (z))

and S = G� �D+�. Note that G(γ) is a smooth curve. Arguing as in the proof of
Statement (a), we get

∂S = G� �γ� = �G(γ)� .
We furthermore let D = {|z| ≤ 1} be the unit disk and R = ι� �D�, ι : C → C

2,
ι(z) = (z, 0). Note that

spt ∂S ∩ spt ∂R = ∅.
Now the current T1 = R+S satisûes the conclusion of the ûrst of the claim. Indeed

∂T1 = �Γ1� with Γ1 = G(γ) ∪ {(z, w) : |z| = 1, w = 0}
and, since the latter union is disjoint, Γ1 is a smooth 1-dimensional manifold.
Furthermore, since both R and S are calibrated by the Kähler form, so is T1,
implying that it is the only mass minimizing current spanned by �Γ1�. Finally

Singb(T1) ⊃ E × {0},
from which we conclude that dimH(Singb(T1)) = 1.

Remark 2.6. In fact it is easy to see that Singb(T1) = E×{0}, therefore, even
though the latter set has Hausdorff dimension 1, it is a H1-null set. Note also that
around points in E, the current S can be represented by a smooth graph, and thus
these are crossing singularities.

Eventually we remark that by the F. and M. Riesz’ Theorem, [34], the conclu-
sion of [30] is optimal, meaning that the set E in Lemma 2.5 cannot have positive
measure. Hence the above construction cannot give an example of a 2-dimensional
mass minimizing current which bounds a smooth submanifold and has a boundary
singular set of positive H1-measure.

2.4. Plan of the proof of Theorem 1.6

In this section we outline the long road which will take us ûnally to the proof
of Theorem 1.6. We ûx therefore Σ,Γ and T as in Assumption 1.5.

Reduction to collapsed points. We start in Chapter 3 by recalling Allard’s
monotonicity formula at the boundary. First of all, combining it with a suitable
variant of Almgren’s stratiûcation theorem, we conclude that, except for a set of
Hausdorff dimension at most m − 2, at any boundary point p there is a tangent
cone which is <üat=, namely which is contained in an m-dimensional plane π ⊃
T0Γ. Secondly, using a classical upper semicontinuity argument, we will focus our
attention on <collapsed points=, cf. Deûnition 3.7: additionally to the existence
of a üat tangent cone, at such points p we know that there is a sufficiently small
neighborhood U where Θ(T, q) ≥ Θ(T, p) for all q ∈ Γ ∩ U . In particular we will
reduce the proof of Theorem 1.6 to proving that any collapsed point is regular, cf.
Theorem 3.8 and Theorem 3.9.
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The “linear” theory. Assume next that 0 ∈ Γ is a collapsed point and let
Q− 1

2 be its density. Note that by Allard’s regularity theory we know a priori that
0 is a regular point if Q = 1 and thus we can assume, without loss of generality,
that Q ≥ 2. Fix a üat tangent cone S to T at 0 and assume, up to rotations,
that it is supported in the plane π0 = Rm × {0} and that T0Γ = {x1 = 0} ∩ π0.
Denote by π±

0 the two half-planes π±
0 := {±x1 > 0}∩π0, with the assumption that

S = (Q − 1)
�
π−
0

�
+ Q

�
π+
0

�
. It is reasonable to expect that, at suitably chosen

small scales, the current T is formed by Q sheets over π+
0 and Q−1 sheets over π−

0 ,
respectively. Taken all together such sheets form the current T and have boundary
�Γ�. Moreover, by a simple linearization argument such sheets can be expected to
be almost harmonic.

Having this picture in mind, it is natural to develop a theory of
(
Q− 1

2

)
-valued

functions minimizing the Dirichlet energy. Their domain of deûnition is an open
subset Ω of Rm which is divided into two halves Ω± by some smooth (m − 1)-
dimensional surface γ ⊂ Ω. A

(
Q− 1

2

)
-valued map consists then of a pair (f+, f−)

where f− is a (Q− 1)-valued map over Ω− (in the sense of Almgren, cf. [13]) and
f+ is a Q-valued map over Ω+. Such pairs are required to satisfy an additional
assumption: the trace of f+ over γ is obtained from that of f− by adding a classical
single valued map ϕ, which is called the <interface=, cf. Deûnition 4.1 for the precise
statement. The relevant problem is then that of minimizing the sum of the Dirichlet
energies of the two maps subject to the constraint that their boundary values on ∂Ω
and the interface ϕ are both kept ûxed. In Chapter 4 we develop a suitable existence
theory for such objects, cf. Theorem 4.2. Concerning their interior structure, we
can apply all the conclusions of Almgren’s theory (indeed in this paper we will take
advantage of the point of view developed in [13]).

The correct counterpart of the collapsed situation in Theorem 3.9 must assume,
however, that all the 2Q− 1 sheets meet at the interface ϕ; under such assumption
we say that the

(
Q− 1

2

)
Dir-minimizer collapses at the interface, cf. Deûnition 4.3.

The core of Chapter 4 is a suitable regularity theory for minimizers which collapse
at the interface. First of all their Hölder continuity follows directly from the Ph.D.
thesis of the third author, cf. [29]. Secondly, the most important conclusion of our
analysis is that a minimizer collapses at the interface only if it consists of a single
harmonic sheet <passing through= the interface, counted therefore with multiplicity
Q on one side and with multiplicity Q− 1 on the other side, cf. Theorem 4.5.

Theorem 4.5 is ultimately the deus ex machina of the entire argument leading
to Theorem 1.6. The underlying reason for its validity is that a monotonicity
formula for a suitable variant of Almgren’s frequency function holds, cf. Theorem
4.15. Given the discussion of [30], such monotonicity can only be hoped in the
collapsed situation and, remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed interface
is üat. When we have a curved boundary a subtle yet important point becomes
crucial: we cannot hope in general for the exact ûrst variation identities which
led Almgren to his monotonicity formula, but we can replace them with suitable
inequalities. However the latter can be achieved only if we adapt the frequency
function by integrating a suitable weight, cf. Deûnition 4.13. The idea of <smooth-
ing= Almgren’s frequency function with a suitable weight is indeed already present
in [17] and in this paper we need to push it much further, distorting substantially
the geometry of the domain.
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2.4. PLAN OF THE PROOF OF THEOREM 1.6 15

First Lipschitz approximation. In Chapter 5 we use the linear theory for
approximating the current with the graph of a Lipschitz

(
Q− 1

2

)
-valued map and

we then show that such approximation is close to be Dir-minimizing, cf. Theorem
5.5 and Theorem 5.6. The approximation algorithm is a suitable adaptation of the
one developed in [14] for interior points. In particular, after adding an <artiûcial
sheet=, we can directly use the Jerrard-Soner modiûed BV estimates of [14] to
give a rather accurate Lipschitz approximation: the subtle point is to engineer the
approximation so that it collapses at the interface.

Height bound and excess decay. In Chapter 6 we use the Lipschitz approx-
imation of Chapter 5 together with the regularity theory of Chapter 4 to establish
a power-law decay of the excess à la De Giorgi in a neighborhood of a collapsed
point, cf. Theorem 6.3. The effect of such theorem is that the tangent cone is üat
and unique at every point p ∈ Γ in a suitable neighborhood of a collapsed point
0 ∈ Γ. Correspondingly, the plane π(p) which contains such tangent cone is Hölder
continuous in the variable p ∈ Γ and the current is contained in a suitable horned
neighborhood of the union of such π(p), cf. Corollary 6.4.

An important ingredient of our argument is an accurate height bound in a
neighborhood of any collapsed point in terms of the spherical excess, cf. Theorem
6.5. The argument follows an important idea of Hardt and Simon in [27] and takes
advantage of an appropriate variant of Moser’s iteration on varifolds, due to Allard,
combined with a crucial use of the remainder in the monotonicity formula. The
same argument has been also used by Spolaor in a similar context in [39], where he
combines it with the decay of the energy for Dir-minimizers, cf. [39, Proposition
5.1 & Lemma 5.2].

Second Lipschitz approximation. The decay of the excess proved in Chap-
ter 6 is used in Chapter 7 to improve the accuracy of the Lipschitz approximation
of Theorem 5.6, cf. Theorem 7.4. In particular, by suitably decomposing the do-
main of the approximating map in a Whitney-type cubical decomposition which
reûnes towards the boundary, we can take advantage of the interior approximation
theorem of [14] on each cube and then patch the corresponding graphs together.

As in the case of the interior regularity, this new Lipschitz approximation is of
key importance since it coincides with the current up to an error which is superlinear
in the excess.

Left and right center manifolds. In Chapter 8 we use the approximation
Theorem 7.4 and a careful smoothing and patching argument to construct a <left=
and a <right= center manifold M+ and M−, cf. Theorem 8.13. The M± are C3,κ

submanifolds of Σ with boundary Γ and they provide a good approximation of the
<average of the sheets= on both sides of Γ in a neighborhood of the collapsed point
0 ∈ Γ. They can be glued together to form a C1,1 submanifold M which <passes
through Γ=: each portion has C3,κ estimates up to the boundary, but we only know
that the tangent spaces at the boundary coincide, whereas we have a priori no
information on the higher derivatives (it must be noted though that, at the end of
the argument for Theorem 1.6, we will conclude that the center manifolds and the
current coincide and that the latter is regular: a posteriori we will then conclude
that M is indeed C3,κ). The construction algorithm follows closely that of [16] for
the interior, but some estimates must be carefully adapted in order to ensure the
needed boundary regularity.
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16 2. COROLLARIES, OPEN PROBLEMS, AND PLAN OF THE PAPER

The center manifolds are coupled with two suitable approximating maps N±,
cf. Theorem 8.19. The latter take values on the normal bundles of M± and provide
an accurate approximation of the current T . Their construction is a minor variant
of the one in [16].

Monotonicity of the frequency function. In Chapter 9 we use a suitable
Taylor expansion of the area functional to show that the monotonicity of the fre-
quency function holds for the approximating maps N± as well, cf. Theorem 9.3.
In particular we use the ûrst variations of the current along suitably chosen vector
ûelds in order to derive the same inequalities which allow to prove Theorem 4.15.
Such inequalities contain however several additional error terms which must be esti-
mated with high accuracy: our proof follows crucially some ideas of [17]. Moreover,
the <adapted= frequency function introduced in Chapter 4 plays a central role in
the estimate of Theorem 9.3.

Final blow-up argument. In Chapter 10 we then complete the proof of
Theorem 1.6: in particular we show that, if 0 were a singular collapsed point,
suitable rescalings of the approximating maps N± would produce, in the limit, a
(
Q− 1

2

)
Dir-minimizer violating the regularity Theorem 4.5. On the one hand the

estimate on the frequency function of Chapter 3 plays a primary role in showing
that the limiting map is nontrivial. On the other hand the properties of the center
manifolds M± enter in a fundamental way in showing that the average of the sheets
of the limiting

(
Q− 1

2

)
map is zero on both sides.

2.5. Open problems

Clearly, since the size of the boundary singular set in all known examples is
much smaller than what proved in Theorem 1.6, the most central open question is
whether one can improve the <generic boundary regularity= proved in this paper.
As already mentioned in the introduction, the most daring conjecture compatible
with the examples known so far is the following:

Conjecture 2.7. Let T,Σ,Γ be as in Assumption 1.5. The Hausdorff dimen-
sion of the set of genuine boundary singularities is at most m− 2.

A somewhat milder statement, which would still give a substantial improvement
of Theorem 1.6 is instead

Conjecture 2.8. Let T,Σ,Γ be as in Assumption 1.5. Then Hm−1(Singb(T ))
= 0.

The <linearized problem= discussed in Chapter 4 enjoys a regularity theorem
which is analogous to Theorem 1.6.

Definition 2.9. Let (g+, g−) be a
(
Q− 1

2

)
-valued function with interface

(γ, ϕ) as deûned in Chapter 4. A point p ∈ γ is regular if there are a ball Br(p),
Q − 1 functions u2, . . . , uQ : Br(p) → R

n and a function u1 : B+
r (p) → R

n such
that

(i) g+ =
∑Q

i=1 �ui� on B+
r (p) and g

− =
∑Q

i=2 �ui� on B−
r (p);

(ii) For any pair i, j ≥ 2 either the graphs of ui and uj are disjoint or they
coincide;

(iii) For any i ≥ 2 either the graphs of u1 and ui are disjoint or the graph of
u1 is contained in that of ui.
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2.5. OPEN PROBLEMS 17

The complement of the regular points in γ is called the set of boundary singular
points. If at a boundary singular point there are maps uj ’s which satisfy (i) and
(ii) (but not (iii)), then the singular point will be called of crossing type. Singular
points which are not of crossing type will be called genuine boundary singularities.

A point p ∈ Ω \ γ is regular if it is an interior regular point for either the Q-
valued map f+ or the (Q− 1)-valued map f− (cf. the introduction of [13] for the
precise deûnition). The complement, in Ω \ γ, is the set of interior singular points.
The union of interior singular points and boundary singular points will be called
the singular set.

Theorem 2.10. Let (g+, g−) be a
(
Q− 1

2

)
-valued function with C3 interface

(γ, ϕ) defined over a domain Ω and assume that it minimizes the Dirichlet energy
in Ω ⊂ Rm. Then the set of boundary singular points is meager.

We do not give a proof of Theorem 2.10: using the tools developed in Chapter
4, the argument is a simple adaptation of the interior regularity theory for Q-valued
maps, cf. [13]. The conjectures corresponding to 2.7 and 2.8 are then open in the
linearized case as well:

Conjecture 2.11. Let (g+, g−) be as in Theorem 2.10. The Hausdorff dimen-
sion of the set of genuine singularities is then at most m− 2.

Conjecture 2.12. Let (g+, g−) be as in Theorem 2.10. The boundary singular
set is then a Hm−1-null set.

Recently, in [32] the ûrst author, together with Z. Zhao, proved that for m =
2 and real analytic boundary data, the set of boundary singularities is discrete
even though there is one example of genuine boundary singularity. Note that the
examples (a) and (b) of Theorem 1.8, combined with a routine adjustment of the
arguments given in [38], see also [30, Corollary 3.5], to the

(
Q− 1

2

)
-valued setting,

gives a ϕ which is not real analytic for which the above conclusions are indeed false.

Theorem 2.13. There is a real analytic1 γ ⊂ B1 ⊂ R2 passing through the
origin, a C∞ function ϕ : γ → R

2 and a 3
2 -map (g+, g−) with interface (γ, ϕ)

which is Dir-minimizing on B1 and whose singular set has Hausdorff dimension 1.

Conjecture 2.7 is widely open also for real analytic boundary data. As we
already mentioned, the <linear= 2-dimensional case of the conjecture is addressed
in [32]. On the other hand, the 2-dimensional <fully non-linear= counterpart of [32]
is a well-known conjecture of White, cf. [42]:

Conjecture 2.14. Let T,Σ,Γ be as in 1.5, let m = 2 and assume Σ and Γ
are real analytic. Then the union of the boundary and of the interior singular sets
is discrete.

Again such conjecture is widely open and in [11] the ûrst three authors have
shown that the conclusion of the conjecture is false when Σ and Γ are just C∞. A
ûrst step in the positive direction is given in the paper [31] where the third author
and Marini prove the uniqueness of tangent cones at any point p ∈ Γ when the
latter is merely C1,α.

Coming back to the case of C∞ boundaries Γ, the example (a) in Theorem
1.8 shows that Conjecture 2.7 must be taken with a grain of salt. One reason why

1In fact γ is a segment, in our example.
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18 2. COROLLARIES, OPEN PROBLEMS, AND PLAN OF THE PAPER

Conjecture 2.7 might still be correct is that, while the accumulation singular point
in the example of Theorem 1.8(b) is a boundary branch point, the singularities
accumulating to it are of <crossing type=, namely points where the minimizer is in
fact an immersed surface. If it were possible to produce an example with an accu-
mulating sequence of branch points, one could conceive to modify the construction
to produce a Cantor-like set of genuine boundary singularities, possibly disproving
Conjecture 2.7. The following question seems thus a very relevant one:

Question 2.15. Is it possible to produce an example as in Theorem 1.8 with
a boundary singular point which is an accumulation of boundary branch points?
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CHAPTER 3

Stratification and reduction to collapsed points

3.1. First variation and monotonicity formula

Here and in the sequel we will denote by AΣ and AΓ the second fundamental
forms of Σ and Γ and we will assume that T is as in Assumption 1.5.

As usual, given a vector ûeld X ∈ C1
c (B2) we let B2 × R � (x, t) → Φt(x)

be the üow generated by X, namely each curve ηx(t) := Φt(x) satisûes the ODE
η̇x(t) = X(ηx(t)) subject to the initial condition ηx(0) = x. We then deûne the
ûrst variation of T along X as

δT (X) :=
d

dt

∣
∣
∣
∣
0

M((Φt)�T ) .

If the vector ûeld X is tangent to spt(∂T ) = Γ and is tangent to the manifold Σ,
we then know that δT (X) = 0. Moreover, it is well known that if X vanishes on
spt(∂T ) but it is not tangent to Σ, then

δT (X) = −
∫

B2

X · �HT (x) d‖T‖(x)

where the mean curvature vector �HT can be explicitly computed from the second

fundamental form AΣ. More precisely, if �T (x) = v1∧. . .∧vm and vi are orthonormal,
then

(3.1) �HT (x) =
m∑

i=1

AΣ(vi, vi)

(see for instance [35]). In this section we derive a similar formula for variations
along general vector ûelds X, namely not necessarily vanishing on the boundary.
As a consequence we also get Allard’s monotonicity formula at the boundary, with
precise error terms. We summarize all these conclusions in the next theorem. These
are in fact classical facts, under our assumption. Since however it is not easy to
pin-point precise references for our statements in the literature, we include a short
derivation from similar (more general) statements proved in other articles.

Definition 3.1. For every point p ∈ B2, the density of T at p is deûned as

Θ(T, p) := lim
r↓0

‖T‖(Br(p))

ωmrm
,

whenever the latter limit exists.

19
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20 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

We then consider the functions

Θi(T, p, r) := exp (C0‖AΣ‖0r)
‖T‖(Br(p))

ωmrm
,(3.2)

Θb(T, p, r) := exp (C0(‖AΣ‖0 + ‖AΓ‖0)r)
‖T‖(Br(p))

ωmrm
,(3.3)

where C0 = C0(m,n, n̄) is a suitably large constant.

Theorem 3.2. Let T be as in Assumption 1.5.

(a) If p ∈ B2 \ Γ, then r �→ Θi(T, p, r) is monotone on the interval

(0,min{dist(p,Γ), 2− |p|});
(b) if p ∈ B2 ∩ Γ, then r �→ Θb(T, p, r) is monotone on (0, 2− |p|).

Thus the density exists at every point. Moreover, the restrictions of the map p �→
Θ(T, p) to Γ ∩B2 and to B2 \ Γ are both upper semicontinuous.

If X ∈ C1
c (B2,R

n), then we have

(3.4) δT (X) = −
∫

B2

X · �HT (x) d‖T‖(x) +
∫

Γ

X · �n(x) dHm−1(x)

where �HT is the vector field in (3.1) and �n is a Borel unit vector field orthogonal
to Γ.

Moreover, if p ∈ Γ and 0 < s < r < 2− |p|, we then have the following precise
monotonicity identity

r−m‖T‖(Br(p))− s−m‖T‖(Bs(p))−
∫

Br(p)\Bs(p)

|(x− p)⊥|2
|x− p|m+2

d‖T‖(x)

=

∫ r

s

ρ−m−1

[
∫

Bρ(p)

(x− p)⊥ · �HT (x)d‖T‖(x)

+

∫

Γ∩Bρ(p)

(x− p) · �n(x) dHm−1(x)

]

dρ ,(3.5)

where Y ⊥(x) denotes the component of the vector Y (x) orthogonal to the tangent

plane of T at x (which is oriented by �T (x)).

In this chapter we in fact only need (a) and (b), which are proved in [2] and [3],
and some consequences of the monotonicity formula for which less precise versions
are sufficient: in particular many of the statements needed can be easily derived
from [3] and for this reason we postpone the proof of Theorem 3.2 to the last
section.

Note that at any p ∈ Regb(T ) the density equals Q − 1
2 , where the positive

integer Q is as in Remark 1.2. Moreover we recall the following

Theorem 3.3 (cf. [3, Theorem 3.5 (2)]). Θ(T, p) ≥ 1
2 for every p ∈ Γ.

Definition 3.4. Fix a point p ∈ spt(T ) and deûne

ιp,r(q) :=
q − p

r
∀ r > 0 .

We denote by Tp,r the currents

Tp,r := (ιp,r)�T ∀ r > 0 .
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3.1. FIRST VARIATION AND MONOTONICITY FORMULA 21

We recall the following consequence of the Allard’s monotonicity formula, cf.
[3]. From now on, given any smooth oriented submanifold of Rm+n like Γ and Σ,
we will use the notation TpΓ and TpΣ for the tangent space to the manifold at the
point p (which will be always identiûed with a linear oriented subspace of Rm+n).

Theorem 3.5. Take p ∈ spt(T ) and any sequence rk ↓ 0. Up to subsequences
Tp,rk is converging locally to an area-minimizing integral current T0 supported in
TpΣ such that

(a) T0 is a cone with vertex 0 and ‖T‖(B1(0)) = ωmΘ(T, p);
(b) if p ∈ spt (T ) \ Γ, then ∂T0 = 0;
(c) if p ∈ Γ, then ∂T0 = �TpΓ�.

Moreover ‖Tp,rk‖ converges, in the sense of measures, to ‖T0‖.
Definition 3.6. Any cone T0 as in Theorem 3.5 will be called a tangent cone

to T at p. A tangent cone T0 will be called flat if spt(T0) is contained in an
m-dimensional plane.

Note that a üat tangent cone at a point p ∈ spt(T ) \ Γ is necessarily a positive
integer multiple of �π� for some m-dimensional plane π contained in TpΣ: this is a
consequence of the Constancy Theorem and of (b) above. For p ∈ Γ a üat tangent
cone has instead the form Q �π+� + (Q − 1) �π−�, where Q ≥ 1 is an integer,
π = π+ ∪ π− is an m-dimensional plane contained in TpΣ and ∂ �π+� = �TpΓ� =
−∂ �π−�. The latter is again a consequence of the Constancy Theorem taking into
account that, by (b), ∂T0 = �TpΓ�.

Definition 3.7. A point p ∈ Γ will be called a collapsed point if

(i) there exists a üat tangent cone to T at p;
(ii) there exists a neighborhood U of p such that Θ(T, q) ≥ Θ(T, p) at every

q ∈ Γ ∩ U .

The ûrst main point of this chapter is to show how standard regularity theory
implies that

Theorem 3.8. If Regb(T ) is not dense in Γ then there exists a collapsed sin-
gular point.

The proof of Theorem 1.6 will then be reduced to the following statement:

Theorem 3.9. A collapsed point is always a regular point.

All the remaining chapters will in fact be devoted to prove it.

Observe that at collapsed points the density Θ(T, p) equals Q − 1
2 for some

positive integer Q. The case Q = 1 of the above theorem is indeed a consequence of
Allard’s boundary regularity theorem for varifolds. Moreover, if p is a point where
Θ(T, p) = 1

2 , then by Theorem 3.3 assumption (ii) in Deûnition 3.7 is automati-
cally satisûed and in fact the theory of [3] shows that even (i) holds necessarily.
Therefore, multiplicity 1

2 points are always regular:

Theorem 3.10 (Allard’s boundary regularity theorem). All points p ∈ Γ with
Θ(T, p) = 1

2 are regular points.

Finally, it is worth noticing the following two consequences of our analysis,
which we will also prove in the last section of this chapter:
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22 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

Corollary 3.11. For every α > 0 at Hm−2+α-a.e. p ∈ Γ there is a flat
tangent cone, and hence Q = Θ(T, p)+ 1

2 is a positive integer. At Hm−1-a.e. p ∈ Γ
any flat tangent cone takes the form Q �π+� + (Q − 1) �π−�, where the plane π is
the unique plane containing TpΓ and the vector �n(x) appearing in (3.4) (with the
natural orientation).

Finally, by the very same arguments of [35, Theorem 35.3 (1)] and a simple
analysis of two dimensional tangent cones at the boundary, one of the conclusions
of the above corollary can be strengthened as follows.

Corollary 3.12. For every α > 0 and Hm−3+α-a.a. p ∈ Γ, Θ(T, p) + 1
2 is a

positive integer.

3.2. Stratification

Definition 3.13. Let p ∈ Γ and T0 be a tangent cone at p. The spine Spine(T0)
is the set of vectors v ∈ TpΓ such that (τv)�T0 = T0, where τv(q) := q + v.

We recall that the following conclusions are simple consequences of the mono-
tonicity formula, cf. for instance [43, Sections 3 & 5].

Lemma 3.14. Spine(T0) is a vector space and we have the following character-
izations:

(a) v ∈ Spine(T0) if and only if Θ(T0, 0) = Θ(T0, v);
(b) v ∈ Spine(T0) if and only if (ιv,r)�T0 = T0 for every r > 0.

Definition 3.15. Given a point p ∈ Γ, an area-minimizing current T with
boundary ∂T = Γ and a tangent cone T0 of T at p, the building dimension Bdim(T0)
is the dimension of Spine(T0). We stratify the boundary Γ according to the maxi-
mum of the building dimension of the tangent cones at the given point:

Sj(T,Γ) := {p ∈ Γ : Bdim(T0) ≤ j for every tangent cone T0 at p} .
The following stratiûcation result holds, cf. [43, Theorem 5] (note that by

deûnition Spine(T0) ⊂ TpΓ).

Theorem 3.16. S0(T,Γ) is at most countable, the Hausdorff dimension of
each stratum Sj(T,Γ) is at most j and

S0(T,Γ) ⊂ S1(T,Γ) ⊂ . . . ⊂ Sm−1(T,Γ) = Γ .

We close this section proving the following elementary but useful lemma.

Lemma 3.17. If Bdim(T0) = m− 1 then T0 is flat.

Proof. Fix a tangent cone T0 to T at p of maximal building dimension m− 1
and observe that Spine(T0) = TpΓ. By a well-known result of Federer (cf. [23,
Section 5.4.8]) there exists a one-dimensional area-minimizing current S in (TpΓ)

⊥

such that T0 = �TpΓ� × S. Note in particular that ∂S = �0� and there exist

�+1 , . . . , �
+
Q−1, �

+
Q and �−1 , . . . , �

−
Q−1 oriented half lines with endpoint at 0 such that

∂
�
�±j

�
= ± �0� ,

(3.6) S =

Q
∑

i=1

�
�+i

�
+

Q−1
∑

j=1

�
�−j

�
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3.3. PROOF OF THEOREM 3.8 23

and

(3.7) ‖S‖ =

Q
∑

i=1

∥
∥
�
�+i

�∥
∥+

Q−1
∑

j=1

∥
∥
�
�−j

�∥
∥ ,

cf. Figure 3.2.

�+3

�+4

�+1 = �+2

�−1 = �−2 �−3

Figure 3.1. An example of current S and oriented lines �±j when
Q = 4: the arrows represent the oriented tangent to the lines.
Note that pairs of lines �+j , �

+
k and �−j , �

+
j might coincide: in the

example we have �+1 = �+2 and �−1 = �−2 . However the support of
any line �+j can intersect the support of any line �−k only at the

origin, otherwise (3.7) would be violated.

In particular
�
�+i

�
+

�
�−j

�
is an area-minimizing current without boundary for

every i, j. But then we conclude the existence of a single one-dimensional vector
space �ij such that spt(

�
�+i

�
+

�
�−j

�
) = �ij . Since this has to be valid for any choice

of (i, j), we then also conclude that the �ij coincide all with a single line �. Hence
spt(T0) ⊂ TpΓ + �, which shows the üatness of T0. �

3.3. Proof of Theorem 3.8

Fix an area minimizing current T with boundary ∂T = �Γ� and assume that
Singb(T ) has nonempty interior, which we denote by G. Deûne

Ci :=
{
p ∈ Γ: Θ(T, p) ≥ i− 1

2

}
∩G .

Recall that, by upper semicontinuity of the density, Ci is relatively closed in G. Let
Di be the interior of Ci and Ei := Di \ Ci+1. If p is not in

⋃

i≥1Ei, then ûx the
natural number i ≥ 1 such that

i− 1
2 ≤ Θ(T, p) < i+ 1

2

and observe that therefore p ∈ Ci \ Di. The latter is a relatively closed meager
subset of G and thus we conclude that G \ ⋃

iEi is the union of countably many
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closed meager subsets of G. By the Baire Category Theorem
⋃

i≥1Ei cannot be
empty.

This means that at least one Ei is not empty and, being relatively open in Γ,
by the stratiûcation Theorem 3.16 we conclude that Ei contains a point p /∈ Sm−2.
By the Lemma 3.17 there is at least one üat tangent cone T0 at p, which in turn
implies the existence of a positive integer Q such that Θ(T0, p) = Q − 1

2 . Observe
that p ∈ Ei ⊂ Ci \ Ci+1 and, hence, Q = i. Being Ei relatively open in Γ, there is
a neighborhood U of p such that U ∩Γ ⊂ Ei ⊂ Ci. Therefore Θ(T, q) ≥ Θ(T, p) for
every q ∈ U ∩ Γ. Thus p is a collapsed point. On the other hand p ∈ G, namely it
is a singular point. �

3.4. Proofs of Theorem 3.2 and Corollaries 3.11 and 3.12

Statement (a) is the classical monotonicity formula, which in fact holds in
a much more general situation, see for instance [2, Theorem 5.1(1)]. Statement
(b) follows from Allard’s monotonicity formula at the boundary for varifolds, see
[3, Theorem 3.4(2)].1 The upper semicontinuity of the restriction of the density
on the two sets Γ and B2 \ Γ is then a standard consequence, see for instance
[35, Corollary 17.8].

Since T is stationary with respect to variations which vanish on Γ and are
tangential to Σ, we have the usual identity

δT (X) = −
∫

B2

X · �HT (x) d‖T‖(x) for all X ∈ C1
c (B2 \ Γ),

cf. for instance [35, Lemma 9.6]. Thus we can apply [3, Lemma 3.1] to the integer

rectiûable varifold naturally induced by T to conclude δT = �HT ‖T‖ + δTs where
δTs is a singular Radon measure supported in Γ. By the Radon-Nikodým decom-
position, if we denote by ‖δTs‖ the total variation of δTs we conclude the existence
of a unit Borel vector ûeld �n such that

(3.8) δT (X) = −
∫

B2

X · �HT (x) d‖T‖(x) +
∫

Γ

X · �n(x) d‖δTs‖(x)

for all X ∈ C1
c (B2). Note next that, by the explicit formula for �HT in (3.1), �HT (x)

is orthogonal to TxΣ and in particular it is orthogonal to the tangent plane to T
at x. Thus in the ûrst integral of the right hand side of (3.8) we can certainly
substitute X with X⊥.

Moreover, according to [3, Section 3.1], ‖δTs‖ satisûes the following upper
bound for any positive ψ ∈ Cc(B2):

∫

Γ

ψ d‖δTs‖ ≤ lim
h→0

1

h

∫

{x:dist(x,Γ)<h}
ψ(x)d‖T‖(x).

Hence it follows easily from the existence and boundedness of the density Θb(T, p)
that ‖δTs‖ = θHm−1 Γ for a locally bounded Borel function θ with 0 ≤ θ(p) ≤
C(m)Θb(T, p)

Now, we know from the previous sections that at Hm−1-a.e. p there exists a
üat tangent cone Sp = Q �π+�+ (Q− 1) �π−�, where π contains TpΓ. On the other
hand we know from the convergence of the currents together with the convergence
of the respective total variations that the varifolds induced by (ιp,r)�T converge to

1For an alternative approach, similar to the one used for proving Theorem 4.15 we refer the
reader to [12, Section 4].
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the varifold induced by Sp. Thus, by continuity of the ûrst variation, we conclude
that

δSp(X) = lim
r↓0

δ(ιp,r)�T (X) .

On the one hand simple computations lead to the identity

δSp(X) =

∫

TpΓ

ν ·X dHm−1 ,

where ν is the unique unit vector contained in π which is orthogonal to TpΓ and
is compatible with the orientations of π and TpΓ. On the other hand, by a simple
rescaling argument

(3.9) lim
r→0

δ(ιp,r)�T (X) =

∫

TpΓ

θ(p)�n(p) ·XdHm−1

at Hm−1-a.e. p. We thus conclude �n(p) = ν, and θ = 1. This argument proves the
identity (3.4), but it shows as well the validity of the last conclusion of Corollary
3.11: if we ûx a point p where (3.9) holds, we have actually shown that, for any üat
tangent cone Q �π+�+(Q−1) �π−� at that point, the vector �n(p) must belong to π−,
which uniquely determines the pair (π+, π−). Since Q is uniquely determined as
Θ(T, p)+ 1

2 , we conclude that any üat tangent cone at p is determined by �n(p). The
identity of (3.5) is then a consequence of [7, Eq. (31)]. Finally, the ûrst assertion
of Corollary 3.11 is a consequence of Theorem 3.16 and of Lemma 3.17.

To prove Corollary 3.12, by Theorem 3.16 it suffices to show that the density
is a half integer at every point p ∈ Sm−2(T,Γ): the latter claim follows if we can
show that every boundary area-minimizing cone T0 with building dimension m− 2
satisûes the property that Θ(T0, 0) is a half-integer. The latter property is in effect
of the following characterization.

Lemma 3.18 (Characterization of 2 dimensional area minimizing cones with
boundary). Let T0 be an integral 2-dimensional locally area-minimizing current in
R2+k with (ι0,r)�T0 = T0 for every r > 0 and ∂T0 = �Γ0�, where Γ0 = {(x, y) ∈
R2 × Rk : x1 = |y| = 0}, Then

T0 =
�
π+

�
+

N∑

i=1

θi �πi�

where

(a) π+ is a closed oriented half-plane;
(b) the πi’s are all oriented 2-dimensional planes which can only meet at the

origin;
(c) the coefficients θi’s are all natural numbers;
(d) if π+ ∩ πi 
= {0}, then π+ ⊂ πi and they have the same orientation.

Proof. Let | · | : R2+k → R+ be the Lipschitz map (x, y) �→ |(x, y)| and
consider the 1-dimensional integral current S := 〈T0, | · |, 1〉. Recall that, since T0
is a cone,

T0 B1 = S � �0� ,
T0 = lim

r↑∞
(ι0,r)� (S � �0�) ,
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Note moreover that, by the usual formula on the boundary of slices,

(3.10) ∂S = 〈∂T0, | · |, 1〉 = �e1� − �−e1� ,
where e1 = (1, 0, . . . , 0). By [23, 4.2.25] we have

S =

N∑

j=0

θj �γj� ,

where γj is a simple Lipschitz curve, θj ∈ N and γj 
= γi for i 
= j and

(3.11) M(S) =

N∑

j=0

θjM(�γj�), M(∂S) =

N∑

j=0

θjM(∂ �γj�) .

From the second identity in (3.11) and from (3.10) we conclude that there is pre-
cisely one i for which ±∂ �γi� = �e1� − �−e1�, whereas all the other curves γj ’s are
closed. Without loss of generality we assume that such i is 0 and note that θ0 = 1,
so that we can write

(3.12) S = �γ0� +
N∑

j=1

θj �γj� .

Consider now the currents Zj = limr↑∞(ι0,r)�(θj �γj�� �0�) and observe that:

T0 = Z0 +

N∑

i=1

Zi, M(T0 BR)

= M(Z0 BR) +
N∑

i=1

M(Zi BR) ∀R > 0 .(3.13)

In addition Singi(T0) must be empty, otherwise it would have dimension at least 1.
Thus all the γj ’s are disjoint great circles for j = 1, . . . , N and γ0 is half of a great
circle. This gives (a), (b) and (c), where we let π+ be the half-plane containing γ0
and πj be the plane containing γj . Note next that if π+ ∩ πj contains one point p
besides the origin, then

• If p 
∈ Γ0, then π+ must be a subset of πj because otherwise p would be
an interior singular point of T0;

• If p ∈ Γ0, then S0 +Sj is, by (3.11), an area minimizing 2-dim. cone with
boundary �Γ0� and it has building dimension 1; thus by Lemma 3.17 we
have again π+ ⊂ πj .

We thus conclude that π+ ⊂ πi. The fact that both have the same orientation
follows ûnally from the second identity in (3.13). �

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



CHAPTER 4

Regularity for
(
Q− 1

2

)
Dir-minimizers

As explained in the introduction the second important step in the proof of
Theorem 1.6 is the understanding of its <linearized= version. This requires the
study of the boundary regularity of Dir-minimizers Q-valued map subject to a
particular type of boundary condition, see Deûnition 4.1 and Remark 4.33 below.

We assume the reader to be familiar with the theory of Q valued maps as it
is presented in [13, 15, 29]. We just recall here that a Q-valued map is a map
u : Ω ⊂ R

m → AQ(R
n) where

AQ(R
n) :=

{
Q
∑

i=1

�Pi� : Pi ∈ R
n, ∀ i = 1, . . . , Q

}

can be thought as the set of Q-tuples of unordered points in Rn. AQ(R
n) can

be easily given the structure of a metric space via the following deûnition: given
F1, F2 ∈ AQ(R

n) with F1 =
∑

i �Pi� and F2 =
∑

i �Si� we deûne their distance as

G(F1, F2) := min
σ∈PQ

√
√
√
√

Q
∑

i=1

∣
∣Pi − Sσ(i)

∣
∣
2
,

where PQ denotes the group of permutations of Q items.
Throughout all the chapter we will consider an open set Ω ⊂ Rm together with

a hypersurface γ dividing Ω in two disjoint open sets Ω+ and Ω−.

Definition 4.1. Let ϕ ∈ H
1
2 (γ,Rn) be given. A (Q− 1

2 )-valued function with
interface (γ, ϕ) consists of a pair (f+, f−) with the following properties:

(i) f+ ∈W 1,2(Ω+,AQ(R
n)) and f− ∈W 1,2(Ω−,AQ−1(R

n));
(ii) f+|γ = f−|γ + �ϕ�.

Its Dirichlet energy is deûned to be the sum of the Dirichlet energies of f+ and f−.
Such a pair will be called Dir-minimizing if any other

(
Q− 1

2

)
-valued function

with interface (γ, ϕ) which agrees with (f+, f−) outside of a compact set K ⊂ Ω
has bigger or equal Dirichlet energy.

Although the deûnition makes sense also for Q = 1, notice that, in that case,
the pair (f+, f−) consists of a single-valued function f+ and its Dir-minimality is
equivalent to the harmonicity of f+. In this chapter we will focus on the nontrivial
case Q ≥ 2.

The ûrst result of this chapter is a <soft= existence theorem for
(
Q− 1

2

)
-valued

Dir-minimizers.

Theorem 4.2. Given a
(
Q− 1

2

)
-valued function (g+, g−) with interface (γ, ϕ)

on a bounded Lipschitz domain Ω, there exists a
(
Q− 1

2

)
Dir-minimizer (f+, f−)

with interface (γ, ϕ) such that f+ = g+ on ∂Ω+ \ γ and f− = g− on ∂Ω− \ γ.
27
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Ω
γ

ϕ f+
2

f+
1

f−
1

Ω
−

Ω
+

Figure 4.1. A 3
2 -valued function with interface (γ, ϕ): the func-

tion f+ is the 2-valued map
�
f+
1

�
+

�
f+
2

�
and f− coincides with

the (classical) single-valued f−
1 .

A particular class of
(
Q− 1

2

)
-valued functions with interface (γ, ϕ) are the ones

with collapsed interface.

Definition 4.3. A
(
Q− 1

2

)
-valued function with interface (γ, ϕ) is said to

collapse at the interface if f+|γ = Q �ϕ�.
Remark 4.4. Observe that (f+, f−) collapses at the interface if and only if

f−|γ = (Q− 1) �ϕ�.

ϕ f+
2

Ω
γ

f+
1

f−
1

Figure 4.2. A 3
2 -valued function which collapses at the interface (γ, ϕ).

The main theorem of this chapter is the following:

Theorem 4.5. Let ϕ : γ → R
n be of class C1,α, γ be of class C3, Q ≥ 2

and (f+, f−) be a
(
Q− 1

2

)
-valued Dir-minimizer with interface (γ, ϕ). If (f+, f−)

collapses at the interface, then there is a single-valued harmonic function h : Ω →
Rn such that f+ = Q �h|Ω+� and f− = (Q− 1) �h|Ω−�.

Note that the above theorem is the <linearized= version of Theorem 3.9. Note
also that we are requiring C3 regularity of γ, this seems to be due to our method of
proof more then to a serious technical obstruction, see Section 4.2.5 below. However
Theorem 4.5 is enough for our purposes because the boundary data Γ is assumed
to be of class C3,a0 in Assumption 1.5.
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4.1. Preliminaries and proof of Theorem 4.2

In this Section we prove existence of Dir-minimizing (Q− 1
2 )-valued functions.

Proof of Theorem 4.2. Take a minimizing sequence (f+
k , f

−
k ) with interface

(γ, ϕ) and f±
k = g± on ∂Ω± \ γ. It is simple to see that f±

k enjoy a uniform bound
in L2(Ω±). For instance, consider the bi-Lipschitz embeddings

ξQ : AQ(R
n) → R

N(Q,n), ξQ−1 : AQ−1(R
n) → R

N(Q−1,n)

of [13, Theorem 2.1]. Then it suffices to bound the L2 norm of ξQ ◦ f+
k , ξQ−1 ◦ f−

k

and the latter bounds are a simple consequence of the classical Poincaré inequality
using the uniform H

1
2 -bound for the restriction of ξ ◦ f±

k to ∂Ω± \ γ.
By [13, Proposition 2.11] we can extract a subsequence (not relabeled) such

that f+
k and f−

k converge strongly in L2 to W 1,2 functions f+ and f−, respectively.
By continuity of the trace operator (cf. [13, Proposition 2.10]) the pair (f+, f−)
has interface (γ, ϕ) and coincides with (g+, g−) on the boundary of Ω. By lower
semicontinuity of the Dirichlet energy (cf. [13, Section 2.3.2]),

Dir(f+,Ω+) + Dir(f−,Ω−) ≤ lim inf
k→+∞

(
Dir(f+

k ,Ω
+) + Dir(f−

k ,Ω
−)

)
.

This obviously implies that (f+, f−) is one of the sought minimizers. �

Next we record the following continuity property for
(
Q− 1

2

)
Dir-minimizers

which collapse at the interface. The property is a direct consequence of the main
result in [29]. Note that, from now on, for every metric space (X, d) and any map
f : Ω → X we will use the notation [f ]β,K for the Hölder seminorm of the restriction
of f to the subset K ⊂ Ω, more precisely

[f ]β,K := sup
x,y∈K,x�=y

d(f(x), f(y))

|x− y|β .

Theorem 4.6. If γ is of class C1 and ϕ of class C0,β, with β > 1
2 , then there ex-

ist a positive constant C = C(m,n, γ,Q) and a positive constant α = α(m,n,Q, β)
with the following property. Consider a

(
Q− 1

2

)
Dir-minimizer which collapses

at the interface (γ, ϕ). Then the following estimates hold for every x ∈ Ω+ ∪ γ,
respectively x ∈ Ω− ∪ γ, and every 0 < 2ρ < dist(x, ∂Ω):

[f±]α,Bρ(x)∩Ω± ≤ Cρ1−
n
2 −α

(
Dir(f±, B2ρ(x) ∩ Ω±)

) 1
2 + Cρβ−α[ϕ]β,γ∩B2ρ(x) .

An outcome of the proof of Theorem 4.6 in [29] is the following compactness
statement:

Lemma 4.7. Let (f+
k , f

−
k ) be a sequence of

(
Q− 1

2

)
Dir-minimizers in Ω which

collapse at the interfaces (γk, ϕk) and satisfy the following assumptions:

(i) lim supk→+∞
(
Dir(f+

k ) + Dir(f−
k )

)
<∞;

(ii) γk is converging in C1 to a hyperplane γ;
(iii) ϕk is converging1 in C0,β to a constant function ϕ for some β > 1

2 .

Then there exists a subsequence (not relabeled) and a
(
Q− 1

2

)
-valued function

(f+, f−) with interface (γ, ϕ) such that

(a) f±
k → f± in L2(K) for every compact set K ⊂ Ω±.

1By this we mean that for every k there is a C0,β extension ϕ̃k of ϕk

∣

∣

γk
to the whole Rm

such that the sequence {ϕ̃k} converges to a constant function.
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(b) Dir(f±,Ω± ∩ Ω′) = limk Dir(f±
k ,Ω

±
k ∩ Ω′) for every Ω′ ⊂⊂ Ω, where Ω±

k

denote the two open domains in which Ω is subdivided by γk;
(c) f+ is Dir-minimizing in Ω+ and f− is Dir-minimizing in Ω−.

In turn we can take advantage of a standard blow-up argument to upgrade
Lemma 4.7 to the following more general statement, where the convergence in
(c) is to a general hypersurface γ and we conclude additionally that the limiting
(f+, f−) is Dir-minimizing as a

(
Q− 1

2

)
map.

Theorem 4.8. Let Ω be bounded and let (f+
k , f

−
k ) be a sequence of

(
Q− 1

2

)
Dir-

minimizers in Ω which collapse at the interfaces (γk, ϕk) and satisfy the following
assumptions:

(i) lim supk→+∞
(
Dir(f+

k ) + Dir(f−
k )

)
<∞;

(ii) γk is converging in C1 to a hypersurface γ;
(iii) ϕk is converging in C0,β to a function ϕ for some β > 1

2 .

Then there exist a subsequence (not relabeled) and a
(
Q− 1

2

)
-valued function

(f+, f−) with interface (γ, ϕ) such that the conclusions (a) and (b) of Lemma 4.7
apply. Moreover (f+, f−) is a

(
Q− 1

2

)
Dir-minimizer which collapses at the inter-

face.

Before coming to the proof of the latter theorem we need two important tech-
nical ingredients.

4.1.1. Interpolation lemma. The following technical lemma allows to <glue=
together two different functions and will be instrumental to several proofs:

Lemma 4.9 (Interpolation). Let U ⊂ Rm be a domain with smooth boundary
∂U and let γ ⊂ Rm be a smooth interface that intersects ∂U transversally and
divides U into two subdomains U±. Then for every compact subset K ⊂ U there
exist constants C, λ0 > 0 depending on

• m,Q, K,
• the C2 regularity of U and γ,
• and min{|Tx∂U − Txγ| : x ∈ γ ∩ ∂U},

such that the following holds.
Let (f+, f−), (g+, g−) be two

(
Q− 1

2

)
-valued maps in U with interface (γ, ϕ|γ)

for some ϕ ∈ W 1,2(U). Additionally we assume that (f+, f−) collapses at the
interface. Then for every 0 < λ < λ0 there exist open sets K ⊂ Vλ ⊂ Wλ ⊂ U and
a
(
Q− 1

2

)
-valued map (ζ+, ζ−) in Wλ \ Vλ with the following properties:

(a) ζ±(x) =

{

f±(x), if x ∈ ∂W±
λ

g±(x), if x ∈ ∂V ±
λ

;

(b) ζ has interface (γ, ϕ|γ);
(c) the following estimate holds

∫

W±

λ \Vλ

|Dζ±|2 ≤ Cλ

∫

U±\K

(
|Df±|2 + |Dg±|2 +Q|Dϕ|2

)

+
C

λ

∫

U±\K
G(f±, g±)2.(4.1)
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If in addition f and g are Lipschitz then ζ can be chosen to satisfy

(4.2) Lip(ζ±) ≤ C

(

Lip(f±) + Lip(g±) +
1

λ
sup

x∈U\K
G(f±, g±)(x)

)

.

Remark 4.10. If U = B1 ⊂ R
m, we can take any λ0 ≤ 1

4 and we may assume
that Vλ = Bs−λ and Wλ = Bs for some s ∈]1 − λ0, 1[, while the constant C in
the estimates depends only on m,n,Q. Furthermore, with an obvious scaling and
translation argument, we can get a corresponding statement for U = Br(x).

Proof. We divide the proof in some steps:

Step 1: Choice of “cylindrical” coordinates around ∂U : We may assume that
there is a smooth function d such that:

• U = {d > 0};
• 0 is a regular value of d.

In particular there is η > 0 such that

(4.3) |∇d(x)| > η in a neighborhood of U ′ of ∂U .

As it will be customary in the sequel, we will use the symbol pπ to denote the
orthogonal projection onto a plane π. By assumption γ intersects ∂U transversally:
hence, possibly choosing η > 0 and U ′ smaller, we can also assume

(4.4) |pTxγ(∇d(x))| ≥ η ∀x ∈ γ ∩ U ′ .

In order to simplify our notation from now on we will set (∇d(x))T = pTxγ(∇d(x)).
The inequalities above imply that we can deûne a smooth vectorûeld X in a

neighborhood V of ∂U with the following properties:

(A) |X| = 1 and 〈∇d(x), X(x)〉 > η
2 for all x ∈ V ;

(B) X = (∇d(x))T

|(∇d(x))T | for all x ∈ V ∩ γ.
Let ψ : V × [−t0, t0] → Rm be the üow generated by X. Hence the map

(y, t) ∈ ∂U × [−t0, t0] �→ ψ(y, t)

gives a parametrization of a neighborhood V ′ of ∂U with the additional property
that

(4.5) ψ(y, t) ∈ γ for all (y, t) ∈ γ ∩ ∂U × [0, t0].

Possibly decreasing t0, we may assume that ψ(∂U×]0, t0[) ⊂ U \K.

Step 2: Reduction to ϕ = 0. Instead of considering f, g directly, we look ûrst
at the two functions

f̃± :=
∑

i

�
f±
i − ϕ

�
, g̃± :=

∑

i

�
g±i − ϕ

�
.

Note that they satisfy the same assumptions of f and g but with interface (γ, 0).
Furthermore, one readily checks that

(4.6) |Df̃±|2(x) ≤ 2|Df±|2(x) + 2Q|Dϕ|2(x)
and similarly for g̃. Additionally we have that

G(f̃±, g̃±) = G(f±, g±).
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Step 3: Choice of Vλ ⊂Wλ and definition of ζ̃ for f̃ , g̃. Deûne next

f̄±(y, t) := f̃±(ψ(y, t))

ḡ±(y, t) := g̃±(ψ(y, t)) and

ϕ̄(y, t) := ϕ(ψ(y, t) .

Set now λ0 := t0, let λ be a positive number smaller than λ0 and select the natural
number N such that Nλ ≤ t0 < (N + 1)λ. For our purposes, by making t0 slightly
smaller, from now on we can assume λ = t0

N . Consider the disjoint intervals Ij :=

[(j−1) t0N , j
t0
N [ for j = 1, . . . , N . Then there must be at least one j ∈ {1, . . . , N −1}

such that
∫

(∂U)±×Ij

|Df̄±|2 + |Dḡ±|2 ≤ 8λ

∫

(∂U)±×[0,t0]

|Df̄±|2 + |Dḡ±|2
∫

(∂U)±×Ij

G(f̄±, ḡ±)2 ≤ 8λ

∫

(∂U)±×[0,t0]

G(f̄±, ḡ±)2 .

If ϕ 
= 0 we require additionally that

(4.7)

∫

(∂U)±×Ij

|Dϕ̄|2 ≤ 8λ

∫

(∂U)±×[0,t0]

|Dϕ̄|2 .

Fix such a j and deûne

Vλ := U \ ψ
(

∂U × [0, jt0/N ]
)

Wλ := U \ ψ
(

∂U × [0, (j − 1)t0/N ]
)

,

so that

Wλ \ Vλ = ψ
(

∂U×](j − 1)t0/N, jt0/N ]
)

.

We consider the Almgren embedding ξQ : AQ(R
n) → RN(Q,n) (resp. ξQ−1 :

AQ−1(R
n) → RN(Q−1,n)) and the retraction ρQ : RN(Q,n) → ξQ(AQ(R

n)) (resp.
ρQ−1) as in [13, Theorem 2.1]. We then deûne the functions ζ̄+ as

ζ̄+(y, t) = ξ−1
Q ◦ ρQ

(
jλ− t

λ
ξQ(f̄

+(y, t)) +
t− (j − 1)λ

λ
ξQ(ḡ

+(y, t))

)

.

and analogously for ζ̄−. Finally, we set ζ̃(x) := ζ(ψ−1(x)). The estimates (4.1) and
(4.2) are then routine calculations for the case ϕ = 0. Hence, it remains to check

that (ζ̃+, ζ̃−) has interface (γ, 0) , namely that

ζ̄+(y, t) = ζ̄−(y, t) + �0� whenever x = ψ(y, t) ∈ γ.

Fix thus (y, t) ∈ ∂U×](j − 1)λ, jλ] such that x = ψ(y, t) ∈ γ and observe that,

since f̄+(y, t) = f̃+(x) = Q �0�, f̄−(y, t) = f̃−(x) = (Q−1) �0�, and ξQ(Q �0�) = 0,
we have

ζ̄+(y, t) = ξ−1
Q ◦ ρQ

(
t− (j − 1)λ

λ
ξ(ḡ+(y, t))

)

.

and the same for ζ̄−. Note next that ξQ(AQ(R
n)) is a cone and in fact

ξQ

(
∑

i

�λTi�
)

= λξQ

(∑

�Ti�
)

.

We therefore conclude

ζ̄+(y, t) =
∑

i

�
t− (j − 1)λ

λ
(ḡ+)i(y, t)

�
.
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and the same for ζ̄−(y, t). Since ḡ+(y, t) = ḡ−(y, t) + �0� we conclude as well that
ζ̄+(y, t) = ζ̄−(y, t) + �0�.

Step 4: The general case. To conclude the proof we ûnally deûne

ζ±(x) :=
∑

i

�
ζ̃±i (x) + ϕ(x)

	
.

One readily checks that ζ satisûes the claimed boundary values and has interface
(γ, ϕ). Using once again (4.6) for ζ and exploiting also (4.7), we obtain the estimates
(4.1) and (4.2). �

4.1.2. A simple measure theoretical lemma. The second technical ingre-
dient is the following simple measure theoretic fact.

Lemma 4.11. Let μ be a Radon measure supported in a C1 k-dimensional sub-
manifold M of some Euclidean space. Set

A :=

{

x ∈ spt(μ) : lim inf
r→0

μ(Br(x))

rk
> 0

}

and

B :=

{

x ∈ spt(μ) : lim sup
r→0

μ(Br(x))

μ(B2r(x))
≥ 2−k

}

.

Then μ(M \A) = 0 = μ(M \B).

Proof. Since the statements can be easily localized and a C1 change of vari-
able would not affect them, we can assume w.l.o.g. that M = R

k. By Radon-
Nikodým Theorem we can decompose μ as

μa + μs = fdx+ μs

where dx is the k-dimensional Lebesgue measure, f is a nonnegative L1 function
and μs is a singular measure with respect to Lebesgue. Moreover, for μs-a.e. x we
have

lim
r→0

μ(Br(x))

ωkrk
= ∞

and for μa-a.e. x we have

lim
r→0

μ(Br(x))

ωkrk
= f(x) > 0 .

Combining the above facts one immediately gets that μ(Ac) = 0.
To prove the second claim assume by contradiction that there exists ε0 > 0

such that the set

Bε0 =

{

x ∈ spt(μ) : lim sup
r→0

μ(Br(x))

μ(B2r(x))
≤ 2−k(1− 2ε0)

}

has positive measure. Since for all x0 ∈ Bε0 there exists r0 such that

μ(Br(x0)) ≤ 2−k(1− ε0)μ(B2r(x0)) for all r ∈ (0, r0],

one easily get that, for all j ≥ 1

μ(B2−jr0(x0))

2−kjrk0
≤ (1− ε0)

lμ(Br0(x0))

rk0
.

Hence, letting j → ∞, Bε0 ⊂ A, a contradiction with μ(Bε0) > 0. �
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Remark 4.12. Note that, as a consequence of the above Lemma, for μ-a.e. x
there exists a vanishing sequence {rj} such that

lim
j→∞

μ(Brj (x))

μ(B2rj (x))
≥ 2−k.

Recall moreover that μ(∂Bs(y)) 
= 0 for only countably many radii s. Since

lim
s↑r

μ(Bs(x)) = μ(Br(x)) ,

we can choose sj < rj so close to rl to ensure

lim
j→∞

μ(Bsj (x))

μ(B2sj (x))
= lim

j→∞
μ(Brj (x))

μ(B2rj (x))
≥ 2−k.

and at the same time enforce the additional property μ(∂B2sj (x))=0=μ(∂Bsj (x)).

4.1.3. Proof of Theorem 4.8: Compactness. : Let (f+
k , f

−
k ) be a sequence

of
(
Q− 1

2

)
- Dir-minimizers satisfying the assumption of the theorem. As in the

proof of Theorem 4.2, we can extract a subsequence such that f±
k converges strongly

in L2 to a W 1,2 function f± with Dir(f±,Ω±) ≤ lim infk Dir(f±
k ,Ω

±
k ). It remains

to prove that, when Ω′ ⊂ Ω we actually have

Dir(f±,Ω± ∩ Ω′) = lim
k→∞

Dir(f±
k ,Ω

±
k ∩ Ω′) .

The argument is the same for f+ and f− and for simplicity we focus on f+.
Possibly passing to a further subsequence, we may assume that the sequence

of Radon measures μk deûned by μk(A) := Dir(f+
k , A ∩ Ω+

k ) converges, weakly
� in

the sense of measures, to some μ. By lower semicontinuity of the Dirichlet energy
there is then a nonnegative <defect measure ν= such that

μ(A) = Dir(f+, A ∩ Ω+) + ν(A) for all Borel A ⊂⊂ Ω.

The goal is to show that ν = 0 and we therefore assume, by contradiction, that
ν > 0. Observe that ν must be supported in γ, because in the interior of Ω+ we can
appeal to [13, Proposition 3.20]. We can then apply Lemma 4.11 (with M = γ)
and the Remark 4.12 to ûnd that at ν-a.e. point x0 ∈ spt(ν) there is a sequence
rj ↓ 0 such that:

(4.8)

lim inf
l→∞

ν(Brj (x0))

ωm−1r
m−1
l

≥ α > 0

ν(Brj (x0)) ≤ (2m−1 + o(1))ν(Brj/2(x0)),

ν(∂Brj (x0)) = 0 = ν(∂Brj/2(x0)).

Moreover, since ν is singular with respect to the Lebesgue measure, we also have

μ(Brj (x0))

ν(Brj(x0))
= 1 + o(1)

for ν-a.e. x0.

We thus ûx an x0 and a sequence rj with the properties above and also as-
sume, after applying a suitable rotation, that the blow up ιx0,rj (γ) converges to the
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hyperplane γ0 = {xm = 0}. We next consider the sequences2

gj(x) =
f+(x0 + rjx)

(
rm−2
j ν(Brj (x0)

) 1
2

and hj(x) =
f+
k(j)(x0 + rjx)

(
rm−2
j ν(Brj (x0)

) 1
2

,

where we have chosen k(j) sufficient large such that

max{|μk(j)(Br(x0))− μ(Br(x0))| : r = rj , rj/2} ≤ 2−lrm−2
j ν(Brj (x0)) ;

∫

Brj
(x0)∩Ω+

k(j)
∩Ω+

G(f+
k(l), f

+)2 ≤ 2−lrm−2
j ν(Brj (x0)) .

Furthermore the choice of k(j) ensures that

Dir(hj ,Ω
+
k(j) ∩B1) =

μk(l)(Brj (x0))

ν(Brj (x0))
= 1 + o(1)

and ∫

B1∩{xm>0}
G(gj , hj)2 ≤ 2−j .

Note that hj and gj are
(
Q− 1

2

)
Dir minimizers which collapse at their interfaces

(γ̃j , ϕ̃j) and (γ̂j , ϕ̂j), respectively, where γ̃j := ιx0,rj (γ), γ̂j := ιx0,rj (γk(l)) and

ϕ̃j(x) =
ϕ(x0 + rjx)

(
rm−2
j ν(Brj (x0)

) 1
2

and ϕ̂j(x) =
ϕk(l)(x0 + rjx)

(
rm−2
j ν(Brj (x0)

) 1
2

.

Note that, as l → ∞, γ̃j , γ̂j → γ0 in C1. Moreover ϕ̃j , ϕ̂j → ϕ(x0) in Cβ, since,
thanks to (4.8),

[ϕ̂j ]β,γ̂j∩B1
=
rβj [ϕk(l)]β,γk(l)∩Brj

(x0)

(
rm−2
j ν(Brj (x0))

) 1
2

≤
rβj

αr
1
2

j

[ϕk(l)]β,γk(l)∩Brj
(x0)

and β > 1
2 (and similarly for ϕ̃).

We are therefore in the situation of Lemma 4.7 and thus we can ûnd functions
h and g such that, passing to a subsequence, hj → h and gj → g. Furthermore, by
condition (B) above, h = g.

Let us show that this is a contradiction and thus conclude the proof. Indeed,
on the one hand,

Dir(g,B1 ∩ {xm > 0}) ≤ lim inf
l→∞

Dir(f+, Brj (x0))

ν(Brj (x0))
= 0

and, on the other hand, due to the conclusions of Lemma 4.7,

Dir(h,B 1
2
∩ {xm > 0}) = lim

j
Dir(hj , B 1

2
∩ ιx0,rj (Ω

+
k(j)))

= lim
j→∞

μk(j)(Brj/2(x0))

ν(Brj (x0))

= lim
j→∞

μ(Brj/2(x0))

ν(Brj (x0))
≥ 2−(m−1) .

2In order to simplify our formulas, we will use the following abuse of notation: if f =
∑

i �fi�
is a multivalued map and λ is a classical real valued function, we will denote by λf the map
x �→

∑

i �λfi(x)�.
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4.1.4. Proof of Theorem 4.8: Minimality. We now come to the second
part of the theorem, namely to the claim that (f+, f−) is a

(
Q− 1

2

)
Dir-minimizer.

This requires a suitable modiûcation of the same argument given in [13, Proposition
3.20]. We assume by contradiction that (f+, f−) is not a minimizer and let (g+, g−)
be a suitable competitor, which coincides with (f+, f−) outside of a compact set
K. First of all we notice that we may assume that, by Sard Lemma, we can ûnd
an open set U ⊂ Ω that contains K and intersects γ transversally.

Thus we have that (g+, g−) = (f+, f−) on ∂U , that g+|γ = �ϕ� + g−|γ and
that

Dir(g+) + Dir(g−) ≤ Dir(f+) + Dir(f−)− 4c

for some positive c. For each k we let Φk be a diffeomorphism which maps U onto
itself and γk ∩ U onto γ ∩ U . Clearly this can be done so that ‖Φk − Φ‖C1 → 0,
where Φ is the identity map. Thus, from the convergence in energy of (f+

k , f
−
k ) to

(f+, f−) we conclude that, for a sufficiently large k,

Dir(g+ ◦ Φk) + Dir(g− ◦ Φk) ≤ Dir(f+
k ) + Dir(f−

k )− 3c .

Observe that each pair (g+ ◦Φk, g
− ◦Φk) has interface (γk, ϕ◦Φk), where ‖ϕ◦Φk−

ϕk‖C0,β → 0.
In particular, since β > 1

2 , we can ûx ûrst ϕ̃ ∈ W 1,2(U) such that ϕ̃|γ = ϕ.

Furthermore, since ‖ϕ ◦Φk −ϕk‖H1/2(γk) → 0, there is a sequence of classical W 1,2

functions κk on U such that

• κk = ϕ ◦ Φk − ϕk on γk;
• ‖κk‖W 1,2 → 0.

This implies that
∫

U
|D(ϕ̃◦Φk−κk)|2 is uniformly bounded. We consider the maps

h±k :=
∑

i

�
g±i ◦ Φk − κk

�
.

Observe that (h+k , h
−
k ) have interfaces (γk, ϕk), that G(f±

k , h
±
k ) → 0 strongly in

L2(U± \K) and that, for k large enough,

Dir(h+k ) + Dir(h−k ) ≤ Dir(f+
k ) + Dir(f−

k )− 2c .

We apply the interpolation Lemma 4.9 to the maps (f+
k , f

−
k ), (h+k , h

−
k ) and the

set K ⊂ U . We obtain, for each λ > 0, interpolation maps (ζ+k , ζ
−
k ) deûned on

K ⊂ V k
λ ⊂ W k

λ ⊂ U . We can now deûne competitors to (f+
k , f

−
k ) on W k

λ by

u±k :=

{

ζ±k on (W k
λ )

+ \ V k
λ

h±k on (V k
λ )

+.

Using (4.1) one readily checks that, for k sufficiently large and λ > 0 sufficiently
small,

Dir(u+k ) + Dir(u−k ) ≤ Dir(h+k ) + Dir(h−k ) + Dir(ζ+k ) + Dir(ζ−k )

≤ Dir(f+
k ) + Dir(f−

k )− 2c+Dir(ζ+k ) + Dir(ζ−k )

≤ Dir(f+
k ) + Dir(f−

k )− c.

This contradicts the minimality of (f+
k , f

−
k ).
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4.2. The main frequency function estimate

We start this section by introducing the frequency function and deriving the
main analytical estimate of the entire chapter.

Definition 4.13. Consider f ∈ W 1,2
loc (Ω,AQ(R

n)) and ûx any cut-off φ :
[0,∞[→ [0,∞[ which equals 1 in a neighborhood of 0, it is non increasing and
equals 0 on [1,∞[. We next ûx a function d : R

m → R
+ which is C2 on the

punctured space Rm \ {0} and satisûes the following properties:

(i) d(x) = |x|+O(|x|2);
(ii) ∇d(x) = x

|x| +O(|x|);
(iii) D2d = |x|−1(Id− |x|−2x⊗ x) +O(1).

We deûne the following quantities:

Dφ,d(f, r) :=

∫

Ω

φ

(
d(x)

r

)

|Df |2(x) dx

Hφ,d(f, r) := −
∫

Ω

φ′
(
d(x)

r

)

|∇d(x)|2 |f(x)|
2

d(x)
dx .

The frequency function is then the ratio

Iφ,d(f, r) :=
rDφ,d(f, r)

Hφ,d(f, r)
.

H obviously makes sense when φ is Lipschitz. When φ′ is just a measure we
understand H as an integral with respect to the measure φ′ in the variable d(x)/r
and this also makes sense because the integrand is bounded and continuous on the
support of φ′. Of particular interest is the case when φ is the indicator function of
[0, 1[ and d(x) = |x|: thenD(r) is the Dirichlet energy on Br(0), H(r) is the integral
∫

∂Br
|f |2 and I is the usual frequency function deûned by Almgren. In the sequel,

if we do not specify φ and d, we then drop the subscripts and understand that the
claims hold for all cut-off functions φ and all d as in Deûnition 4.13. If instead we
require some more assumptions on φ or d (for instance a certain regularity) we then
leave the cut-off φ or the function d in the subscripts.

Remark 4.14. Note that if a function d satisûes (i), (ii) and (iii) in Deûnition
4.13 with certain implicit constants, than the function dr(x) = d(rx)/r satisûes the
same assumptions with the same constants (actually smaller). Moreover dr(x) →
|x| in C2

loc(R
m \ {0}) ∩ C0

loc(R
m).

Theorem 4.15. Let Ω ⊂ Rm be an open set of class C3, with 0 ∈ ∂Ω. Then
there is a function d satisfying the requirements of Definition 4.13 such that the
following holds for every φ as in the same definition.

If f ∈W 1,2(Ω ∩B1,AQ(R
n)) satisfies

(i) f |∂Ω∩B1
≡ Q �0�;

(ii) Dir(f) ≤ Dir(g) for every g ∈W 1,2(Ω∩B1,AQ(R
n)) such that g|∂(Ω∩B1) =

f |∂(Ω∩B1);

then, either f ≡ Q �0� in a neighborhood of 0, or the limit

lim
r↓0

Iφ,d(f, r

exists and it is a positive finite number.

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



38 4. REGULARITY FOR
(

Q − 1
2

)

Dir-MINIMIZERS

∂Ω

0

Ω

Figure 4.3. The domain Ω. f in Theorem 4.15 collapses to Q �0�
on ∂Ω.

Remark 4.16. In fact the conclusion of Theorem 4.15 holds for every d which,
additionally to the requirements of Deûnition 4.13, has the property that ∇d is
tangent to ∂Ω. The existence of such a d is then guaranteed by a simple geometric
lemma, cf. Lemma 4.25.

Remark 4.17. Note that if (f+, f−) is a
(
Q− 1

2

)
-function which collapses at

its interface (∂Ω ∩B1, 0), then f
+ satisûes the assumptions of Theorem 4.15.

4.2.1. H ′ and D′. In this section we compute H ′ and D′. Since there is no
possibility of misunderstanding, we omit to specify the dependence of D,H, I on f .

Proposition 4.18. Let φ and d be as in Definition 4.13, assume in addition
that φ is Lipschitz and let Ω be as in Theorem 4.15. If f ∈W 1,2(Ω ∩B1,AQ(R

n))
satisfies condition (i) of Theorem 4.15, then the following identities hold for every
r ∈]0, 1[:

(4.9) D′(r) = −
∫

φ′
( |d(x)|

r

) |d(x)|
r2

|Df |2 dx ;

(4.10) H ′(r) =

(
m− 1

r
+O(1)

)

H(r) + 2E(r) ,

where

(4.11) E(r) := −1

r

∫

φ′
(
d(x)

r

)
∑

i

fi(x) · (Dfi(x) · ∇d(x)) dx

and the constant O(1) appearing in (4.10) depends on the function d but not on φ.

Remark 4.19. It is possible to make sense of the identities above even when φ
is not Lipschitz. In that case, using the coarea formula appropriately, it is possible
to see that the right hand sides of the two identities (4.9) and (4.10) are in fact
well-deûned for a.e. r and that both D and H are absolutely continuous. Hence, if
formulated appropriately, the proposition is valid for every d and φ as in Deûnition
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4.13, without any additional regularity requirement on φ. This will, however, not
be needed in the sequel.

Proof. The identity (4.9) is an obvious computation. In order to compute H ′

we ûrst use the coarea formula to write

H(r) = −
∫ ∞

0

∫

{d=ρ}
ρ−1φ′

(ρ

r

)

|∇d(x)||f |2(x) dHm−1(x) dρ

= −
∫ ∞

0

φ′(σ)
σ

∫

{d=rσ}
|∇d(x)||f |2(x) dHm−1(x)

︸ ︷︷ ︸

=:h(rσ)

dσ .(4.12)

In order to compute h′(t) we note that ν(x) = ∇d(x)
|∇d(x)| is orthogonal to the level sets

of d and we use the divergence theorem to obtain

h(t+ ε)− h(t) =

∫

{d=t+ε}
|f |2∇d · νdHm−1 −

∫

{d=t}
|f |2∇d · νdHm−1

=

∫

{t<d<t+ε}
div(|f |2∇d(x)) dx(4.13)

=

∫

{t<d<t+ε}
2
∑

i

fi(x) · (Dfi(x) · ∇d(x)) dx

+

∫

{t<d<t+ε}
|f |2Δd(x) dx

Dividing by ε, taking the limit (and using again the coarea formula) we conclude

(4.14) h′(t) =
∫

{d=t}
|∇d|−1

(

2
∑

i

fi · (Dfi · ∇d) + |f |2Δd
)

dHm−1 .

By the properties of d, we have that

Δd =
m− 1

d(x)
+O(1).

Differentiating (4.12) in r, inserting (4.14) and using that if φ(d/r) 
= 0 then d =
O(r) we conclude

H ′(r)

= −
∫ ∞

0

φ′(σ)
∫

{d=σr}

1

|∇d|
(

2
∑

i

fi · (Dfi · ∇d) + |f |2Δd
)

dHm−1 dσ

= 2E(r)− 1

r

∫

φ′
(
d(x)

r

)

|f |2Δd(x) dx

= 2E(r)− 1

r

∫

φ′
(
d(x)

r

)

|f |2
(
(m− 1) +O(r)

d(x)

)

dx

(4.15)

= 2E(r) +

(
m− 1

r
+O(1)

)

H(r) . �
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Remark 4.20. Observe that the assumption f = Q �0� on ∂Ω has been used
only in deriving (4.13): without that condition we would have the additional term

−
∫

∂Ω∩{t<d<t+ε}
|f |2∇d · n

where n is the outward unit normal to ∂Ω. Note in particular that we could drop
the assumption f = Q �0� and add instead the requirement that ∇d is tangent to
∂Ω.

4.2.2. Lower bound on H.

Lemma 4.21. Assume φ is identically 1 on some interval [0, ρ[. Under the
assumption of Theorem 4.15 there exist constants C0 and r0, depending only on the
C1-regularity of Ω, on ρ and on d (but not on φ), such that

(4.16) H(r) ≤ C0rD(r) for all r ≤ r0.

Proof. If we introduce the usual scaling

fr(x) := f(rx) and dr(x) = r−1d(rx) ,

then

Hφ,dr
(fr, 1) = rm−1Hφ,d(f, r) and Dφ,dr

(fr, 1) = rm−2Dφ,d(f, r) .

Observe also that for r ≤ 1 the C1 regularity of the boundary of Ωr := {x/r : x ∈ Ω}
improves compared to that of Ω and dr satisûes the same properties of d with bet-
ter bounds on the errors, see Remark 4.14. By taking r0 sufficiently small we can
assume that

(4.17) B�r/2 ⊂ {dr < �} ⊂ B2�r for all r ≤ r0 and � ≤ 1.

Let us assume without loss of generality that r0 = 1. If we deûne the <distorted
balls=

B∗
ρ := {x : d(x) < ρ},

the inclusions above imply that they are comparable to the Euclidean ones up and
thus we can transfer most estimates of the last sections to these new balls. Let us
now extend f to be identically 0 outside on Ω \ B∗

1 so that we can consider the
integrals in the deûnitions of H(1) and D(1) as taken over the whole B∗

1 .
By a standard approximation procedure we can assume that φ is smooth. Let

0 < ρ̄ < 1
4 be such that φ is identically 1 on [0, ρ̄]. Then, as a particular case of

Theorem 4.6 we have

[f ]α,B∗
ρ̄∩Ω ≤ CDir(f,B+

4ρ̄ ∩ Ω)
1
2 ≤ CD(1)

1
2 ,

where α = α(m,n,Q) and C = C(m,n,Q, ρ̄) and in the last inequality we have
also used (4.17). Of course the same estimate extends trivially to Bρ̄ \Ω, where the
function vanishes identically. Thus

(4.18)

∫

∂B∗
ρ̄

|∇d(x)||f |2(x) dx =

∫

∂B∗
ρ̄

|∇d(x)|G(f(x), f(0))2 ≤ CD(1) .

On the other hand, using the coarea formula

(4.19) H(1) = −
∫ 1

ρ̄

φ′(r)
r

∫

{d=r}
|∇d(x)||f |2(x′) dx′ dr = −

∫ 1

ρ̄

φ′(r)
r

h(r) dr ,
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where h ≥ 0 is as in (4.12). Integrating by parts we get

H(1) ≤ C

∫

∂B∗
ρ̄

|f |2 +
∫ 1

ρ̄

φ(r)(r−1h′(r)− r−2h(r))

≤ CD(1) +

∫ 1

ρ̄

φ(r)
h′(r)
r

dr

(4.14)
= CD(1) + C

∫

B∗
1\B∗

ρ̄

φ(d(x))

d(x)

(
|Df |2 + |f |2

)

≤ CD(1) + C

∫

B∗
1\B∗

ρ̄

φ(d(x))|f |2(x) dx .(4.20)

where the constants depend only on ρ̄ and d, but not on φ. The proof will be
concluded if we can show that

(4.21)

∫

B∗
1\B∗

ρ̄

φ(d(x))|f |2(x) ≤ CD(1)

To this end note that for ρ̄ ≤ r ≤ 1 the function |f |2 vanishes on a non trivial part
of B∗

r (namely B∗
r \ Ω). Hence by the (m− 1)-dimensional Poincaré inequality on

∂B∗
r ∫

∂B∗
r

|f |2 ≤ C

∫

∂B∗
r

|D|f |2| ≤ C

∫

∂B∗
r

|f ||Df |.

Hence, the function h′ deûned in (4.14) satisûes:

|h′(r)| ≤ C

∫

∂B∗
r

|f ||Df |

Since φ(t) ≥ φ(r) for ρ̄ ≤ t ≤ r ≤ 1, using again the coarea formula we can now
estimate

φ(r)h(r) ≤ φ(r)h(ρ̄) + φ(r)

∫ r

ρ̄

|h′(t)| dt

≤ CD(1) +

∫ r

ρ̄

φ(t)|h′(t)| dt

≤ CD(1) + C

∫

B∗
1\B∗

ρ̄

φ(d(x))|f ||Df |(x) dx .

Integrating in r and using Young’s inequality we obtain
∫

B∗
1\B∗

ρ̄

φ(d(x))|f |2(x) dx

≤ CD(1) + C

∫

B∗
1\B∗

ρ̄

φ(d(x))|f ||Df |(x) dx

≤ CD(1) +
C

ε
D(1) + Cε

∫

B∗
1\B∗

ρ̄

φ(d(x))|f |2(x) dx .

Choosing ε appropriately we get (4.21) and thus we conclude the proof. �

Corollary 4.22. Assume φ is identically 1 on some interval [0, ρ[. Unless
f ≡ Q �0� in a neighborhood of 0, the following lower bound for the frequency
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function holds:

lim inf
r↓0

I(r) ≥ C0 > 0 ,

where C0 depends only on the C1 regularity of Ω, on ρ and on d.

4.2.3. Outer variations. We now derive the ûrst interesting identity relating
D and E, which is proved variationally using a perturbation of the map in the target.

Lemma 4.23 (Outer variation). Let Ω be open and f ∈W 1,2(Ω∩B1,AQ(R
n))

be as in Theorem 4.15. Then D(r) = E(r) for every 0 < r < 1, where E(r) is
defined in (4.11).

Proof. We ûrst assume φ to be Lipschitz. Consider the family

gε(x) :=
∑

i

�
fi(x) + εφ

(
d(x)
r

)

fi(x)
	

and observe that on ∂Ω we have f(x) = Q �0� and so gε(x) = Q �0�. Therefore each
gε is a competitor and we conclude

d

dε

∣
∣
∣
ε=0

∫

Ω∩B1

|Dgε|2 = 0 .

Hence

0 =

∫

φ

(
d(x)

r

)

|Df(x)|2 dx

+
1

r

∫

φ′
(
d(x)

r

)
∑

i

(Dfi(x) : ∇d(x)⊗ fi(x)) dx

= D(r)− E(r) .

For a general φ it suffices to use a standard approximation argument. �

4.2.4. Inner variations. We now derive the second key identity, which uses
perturbations of the domain. To this end consider a compactly supported vector
ûeld Y which is tangent to ∂Ω (i.e. such that such that Y (x)·ν(x) = 0 for all x ∈ ∂Ω,
where ν denotes the outward unit normal to ∂Ω). Let Φt the one-parameter family
of diffeomorphisms generated by Y , namely Φt(x) = Φ(x, t) where

{

∂tΦ(x, t) = Y (Φ(x, t))

Φ(x, 0) = x .

Obviously Φt maps Ω into itself and, more importantly, maps ∂Ω into itself. In
particular we have the following lemma.

Lemma 4.24 (Inner variation). Consider a modified distance function d as in
Definition 4.13 such that ∇d(x) · ν(x) = 0 for every x ∈ ∂Ω ∩B1, where ν denotes
the outward unit normal to Ω and fix a Lipschitz φ as in the same same definition.
Let

Y (x) = φ

(
d(x)

r

)
d(x)∇d(x)
|∇d(x)|2 .

and let Φt be the flow generated by Y . Then

(4.22) InV :=
d

dt

∣
∣
∣
∣
t=0

∫

|D(f(Φt(x))|2 = 0 .
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In particular, if we define

G(r) := −1

r

∫

φ′
(
d(x)

r

)
d(x)

r|∇d(x)|2
∑

i

|Dfi(x) · ∇d(x)|2 dx ,

we conclude

(4.23) D′(r)−
(
m− 2

r
−O(1)

)

D(r)− 2G(r) =
InV

r
= 0 ,

where the constant O(1) depends on d and Ω but not on φ. In particular the latter
identity holds even for a general φ as in Definition 4.13.

Proof. (4.22) is obvious by the minimality of f , because Φt(∂Ω) = ∂Ω. We
thus just need to prove the identity between the left hand side of (4.23) and InV
in (4.22). Note that, by standard computations (cf. [13])

(4.24) InV = 2

∫
∑

i

Dfi : DfiDY −
∫

|Df |2 div Y .

Hence, by the properties of d, we compute

DY = φ′
(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)

D
(
|∇d|−2d∇d

)

= φ′
(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)

(Id +O(d))

= φ′
(
d

r

)
d

r
|∇d|−2∇d⊗∇d+ φ

(
d

r

)

(Id +O(r)) ,

and

div Y = φ′
(
d

r

)
d

r
+ φ

(
d

r

)

(m+O(r)) .

Plugging the latter identities in (4.24) and recalling the formula (4.9) for D′, we
conclude the proof. �

4.2.5. A good function d. In this section, relying on the C3 regularity of
∂Ω we construct a modiûed distance function whose gradient is tangent to ∂Ω. We
believe that the same result can be achieved with less regularity of ∂Ω, namely C2,
however since we will not need this in the sequel, we stick to C3 regularity, where
the proof is rather straightforward.

Lemma 4.25. Let Ω be a C3 domain such that 0 ∈ Ω and T0∂Ω = {xm = 0}.
Then there is a continuous function d : Ω → R+ which belongs to C2(Ω \ {0}) and
such that

(a) ∂Jd(x) = ∂J |x|+O(|x|2−|J|) for every multiindex J with |J | ≤ 2;
(b) ∇d is tangent to ∂Ω.

Proof. Consider normal coordinates on a sufficiently small tubular neighbor-
hood Uδ of ∂Ω and construct a diffeomorphism between Uδ and a tubular neigh-
borhood Vδ of a suitable subset of Rm−1 × {0} with the properties that:

• Φ ∈ C2, Φ(0) = 0 and DΦ|0 = Id;
• Φ(∂Ω) ⊂ R

m−1 × {0};
• For every p ∈ ∂Ω and every vector ν normal to ∂Ω at p, DΦ|p(ν) is normal
to Rm−1 × {0}.
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The existence of such diffeomorphism follows easily from our assumptions. Deûne
then d(x) := |Φ(x)|. It is obvious that d(x) = |x| + O(|x|2). Computing the ûrst
and second derivatives we get, using Einstein’s summation convention,

∂id =
Φk∂iΦ

k

|Φ| =
xi
|x| +O(|x|)(4.25)

∂2ijd =
∂jΦ

k∂iΦ
k

|Φ| +
Φk∂ijΦ

k

|Φ| − Φk∂iΦ
kΦl∂jΦ

l

|Φ|3
= |x|−1δij − |x|−3xixj +O(1) .(4.26)

In particular (a) follows easily.
Next, consider a vector v orthogonal to ∂Ω at p 
= 0, let z = Φ(p). Let 〈·, ·〉 be

the standard Euclidean scalar product and observe that, from the ûrst equality in
(4.25), we get

〈∇d(p), v〉 = |z|−1〈z,DΦ|p(v)〉 .(4.27)

On the other hand, since z = Φ(p) ∈ Rm−1 × {0} and DΦ|p(v) ∈ (Rm−1 × {0})⊥
by the assumptions on Φ above, we clearly have

〈∇d(p), v〉 = 0 .

We conclude that ∇d is orthogonal to any vector ûeld normal to ∂Ω and thus it
must be tangent to ∂Ω. �

4.2.6. Proof of Theorem 4.15. Assume that φ and d have the properties of
Deûnition 4.13. As a consequence of Lemma 4.25 we may assume that ∇d · ν = 0
on Br0(0). This implies that the conditions of Proposition 4.18, Lemma 4.23, 4.24
are satisûed. Hence,

− d

dr
ln(I(r)) =

H ′(r)
H(r)

− D′(r)
D(r)

− 1

r

(4.10),(4.9)
=

2E(r)

H(r)
− 2G(r)

D(r)
+ O(1)

Furthermore due to (4.23) we have

H(r)E(r)

(
E(r)

H(r)
− G(r)

D(r)

)

=
(
E(r)2 −H(r)G(r)

)

=

(

1

r

∫

φ′
(
d

r

)
∑

i

fi · (Dfi · ∇d)
)2

−
(∫

φ′
(
d

r

) |∇d|2
d

|f |2
)(

1

r

∫

φ′
(
d

r

)
d

r

1

|∇d|2
∑

i

(Dfi · ∇d)2
)

≤ 0,

due to the Cauchy–Schwarz inequality. Moreover the equality holds if and only if
there is a function αr such that

(4.28) fi = αr
d

|∇d|2 (Dfi · ∇d)

Finally we deduce, that

(4.29) − d

dr
ln(I(r)) ≤ O(1)
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and therefore we deduce that, for r < r0,

r �→ eCrI(r)

is monotone. This directly implies that limr↘0 e
CrI(r) = I0 exists. Moreover, by

Corollary 4.22, we have I0 ≥ C0 > 0.

4.3. Further consequences of the frequency estimate

As a further consequence of the almost monotonicity of the frequency we obtain
the following result, compare [13, Corollary 3.16].

Corollary 4.26. Under the assumptions of Theorem 4.15 there exists a con-
stant C such that setting I(0) = I0 > 0 for every λ > 1 there exists r1 ≤ r0 for
which the following estimates hold true

(a) λ−1I0 ≤ I(r) ≤ λI0 for all r < r1;
(b) for all 0 ≤ s ≤ t ≤ r1

(4.30) e−C(t−s)

(
t

s

)m−1+2λ−1I0

≤ H(t)

H(s)
≤ eC(t−s)

(
t

s

)m−1+2λI0

;

(c) for all 0 ≤ s ≤ t ≤ r1

(4.31) λ−2e−C(t−s)

(
t

s

)m−2+2λ−1I0

≤ D(t)

D(s)
≤ λ2eC(t−s)

(
t

s

)m−2+2λI0

.

Proof. Point (a) is an immediate consequence of the almost monotonicity of
the frequency, (4.29)

Concerning point (b), using (4.10) and Lemma 4.23, we compute

d

dr
ln

(
H(r)

rm−1

)

=
H ′(r)
H(r)

− m− 1

r
=

2

r
I(r) +O(1) .

Integrating the above identity between 0 ≤ s ≤ t ≤ r1 and using point (a), we
obtain the estimate 4.30.

To prove (c), we have only to note that

D(t)

D(s)
=
I(t)

I(s)

(
t

s

)−1
H(t)

H(s)

and appeal to points (a) and (b). �

Corollary 4.27. Under the assumptions of Theorem 4.15 with I0 = I(0),
there are constants λ > 1 (depending only on φ), C̄ > 1 (depending on φ, d and I0)
and r1 > 0 such that the following estimate holds for all 0 < λ2s < t < r1:

(4.32) C̄−1

(
t

s

)m−2+2λ−1I0

≤
∫

Ω∩Bt
|Df |2

∫

Ω∩Bs
|Df |2 ≤ C̄

(
t

s

)m−2+2λI0

.

When φ = 1[0,1], we can choose both λ and C̄ arbitrarily close to 1, provided r1 is
small enough.

Proof. Recall that φ ≡ 1 on some interval [0, ρ̄[. By the assumptions on d,
for any λ > ρ̄−1 there is then a positive r1 such that

1Bλ−1r
(x) ≤ φ

(
d(x)

r

)

≤ 1Bλr
(x) ∀r < r1, ∀x ∈ R

m .
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Hence we deduce that

D(λ−1r) ≤
∫

Br∩Ω

|Df |2 ≤ D(λr),

and we conclude the proof from (4.31). When φ = 1[0,1] we can choose any λ > 1.

Note moreover that the constant C̄ in (4.32) can be taken to be eCr1λτ where the
exponent τ depends only on I0 and m. The last claim of the corollary is thus
obvious. �

Lemma 4.28. Let Ω ⊂ Rm be an open set of class C3 with 0 ∈ ∂Ω. Furthermore
assume f ∈W 1,2(Ω∩B1,AQ(R

n)) satisfies the assumption of Theorem 4.15. Then,
for any rk ↓ 0, there is a subsequence, not relabeled, such that3

(a) f̂k(x) :=
(

r2−m
k

∫

Brk
∩Ω

|Df |2
)− 1

2

f(rkx) converges to a map

g ∈W 1,2(H,AQ(R
n))

such that g = Q �0� on ∂H, where H is some halfspace containing the
origin.

(b) g is Dirichlet minimizing, in the sense that

Dir(g,BR ∩H) ≤ Dir(h)

for every R > 0 and for every h ∈ W 1,2(H ∩ BR,AQ(R
n)) such that

g|∂(H∩BR) = h|∂(H∩BR).

(c) g(x) = |x|I0g( x
|x| ), where

I0 = lim
r↓0

Id,φ(0)

(which exists thanks to Theorem 4.15).

Proof. Let d, φ be a distance function and cut-off function that are admis-
sible in the sense of Theorem 4.15. As before we introduce the usual scaling
fr(x) = f(rx), dr(x) = r−1d(rx) and Ωr := {x/r : x ∈ Ω}. Observe that Ωr con-
verges locally in C2 to a halfspace H, which up to a rotation we may assume to be
{x : xm > 0}. Furthermore, by Remark 4.14 dr(x) → |x| in C2

loc(R
m \ {0}). More-

over, by direct computation, Hφ,dr
(fr, R) = rm−1Hφ,d(f, rR) and Dφ,dr

(fr, R) =
rm−2Dφ,d(f, rR), for any R > 0.

Let us pick λ and r1 > 0 such that the conclusions of Corollary 4.27 apply.
Then, for every R > 1, the following estimate holds provided r is sufficiently small:

∫

BR∩Dom(f̂±
r )

|Df̂r|2 ≤ C(I0,m)Rm−2+2I±

0

∫

B1∩Dom(f̂±
r )

|Df̂r|2 ,

where Dom(f̂±) denote the domains of the rescaled functions f̂±. Appealing to
[29, Theorem 3.6] we deduce the existence of g satisfying (a) and (b).

It remains to prove (c). Observe that (a), (b) together with dr → |·| in C2

imply, for R > 0,

Id,φ(0) = lim
k→∞

RrkDd,φ(f, rkR)

Hd,φ(f, rkR)
= lim

k→∞

RDdrk
,φ(f̂rk , R)

Hdrk
,φ(f̂rk , R)

=
RD|·|,φ(g,R)

H|·|,φ(g,R)
.

3Here again we are using the following abuse of notation: if λ is a scalar and P =
∑

i �Pi�

an element in AQ(Rn), then λP =
∑

i �λPi�.
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Now (iii) follows by straightforward adaption of the proof of [13, Corollary 3.16]
using (4.28). �

4.4. Blowup: Proof of Theorem 4.5 with ϕ ≡ 0

The proof is based on the monotonicity of the frequency function and the fact
that it ensures two things: nontriviality of the blow-ups and radial homogeneity.

More precisely, we have the following:

Lemma 4.29. Let (f+, f−) be a
(
Q− 1

2

)
Dir-minimizer which collapses at the

interface (γ, 0), where γ is C3. Fix p ∈ γ and, unless (f+, f−) is identically
(Q �0� , (Q− 1) �0�) in some ball Br(0), for every r define

f̂±
p,r(x) :=

1

Δp,r
f±(p+ rx) .

The normalizing factor Δp,r is chosen to fulfill

Δ2
p,r = r2−m

∫

B+
r (p)

|Df+|2 + r2−m

∫

B−
r (p)

|Df−|2,

so that

Dir(f̂+
p,r, B1) + Dir(f̂−

p,r, B1) = 1.

If we set π = Tpγ, then, up to subsequences, the pair of sequences (f+
p,r, f

−
p,r) con-

verges to a
(
Q− 1

2

)
Dir-minimizer (g+, g−) which collapses at the interface (π, 0)

satisfying the following properties:

(a) The convergence is as in Theorem 4.8.
(b) Dir(g+) + Dir(g−) = 1.
(c) (g+, g−) is radially homogeneous, namely g±(rx) = rI0g±(x), where, if

we fix φ = 1[0,1] in Definition 4.13, then

(4.33) I0 = lim
r↓0

r (D(f+, r) +D(f−, r))
H(f+, r) +H(f−, r)

Proof. After a translation we may assume that p = 0. Observe that both
x �→ f+(x) and x �→ f−(x) satisfy the assumptions of Theorem 4.15. Let us deûne
the single normalization factors

(Δ±
r )

2 := r2−m

∫

B±
r

|Df±|2,

so that Δ2
r = (Δ+

r )
2 + (Δ−

r )
2. Thanks to Lemma 4.28, given any sequence rk → 0

there is a subsequence (not relabeled) such that f̃±
k (x) := 1

∆±
rk

f±(rkx) converge to

some g̃±(x), which are homogeneous with exponent I±0 . Since

(

f̂+
r (x), f̂−

r (x)
)

=

(
Δ+

r

Δr
f̃+
r (x),

Δ−
r

Δr
f̃−
r (x)

)

,

it is sufficient to understand the possible limits of α±
k :=

∆±
rk

∆rk
∈ [0, 1]. Up to

subsequences, we may assume that their limits exist and are α± ≥ 0. Due to the
properties of Δ±

r and Δr, we have

(α+)2 + (α−)2 = 1.
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Point (a) agrees with the statement of Theorem 4.8 since
(

f̂+
rk
(x), f̂−

rk
(x)

)

→ (α+g̃+, α−g̃−) = (g+, g−).

We now distinguish three cases depending on the values of

I± = lim
r→0

rD(f±, r)
H(r)

Case I+0 = I−0 : In this case the tangent function (g+, g−) is I+0 = I−0 homogeneous
and satisûes (b). Point (c) follows from the simple observation that

r (D(f+, r) +D(f−, r))
H(f+, r) +H(f−, r)

=

(
∆+

r

∆r

)2

D(f̃+
r , 1) +

(
∆−

r

∆r

)2

D(f̃−
r , 1)

(
∆+

r

∆r

)2

H(f̃+
r , 1) +

(
∆−

r

∆r

)2

H(f̃−
r , 1)

.

Case I+0 > I−0 : We claim that in this case α+ = 0, so that (g+, g−) = (Q �0� , g̃−) is
I0 = I−0 - homogeneous. Pick λ > 1 such that λI−0 < λ−1I+0 . For r1 > 0 sufficiently
small, such that Corollary 4.27 applies for f+ and f−, we may choose r < r1. Using
(4.32), for some ûxed t < r1 and for any s < t, we have that

∫

B+
s
|Df+|2

∫

B−
s
|Df−|2 ≤ λ2m+2λI−

0

(s

t

)λ−1I+
0 −λI−

0

∫

B+
t
|Df+|2

∫

B−

t
|Df−|2 .

By our choice of λ this converges to 0 as s→ 0.
Case I+0 < I−0 : We argue as in the previous case swapping + and − and conclude
that α− = 0. �

Definition 4.30. A (g+, g−) as above will be called, from now on, a tangent
function to (f+, f−) at p.

Remark 4.31. Let (g+, g−) be a tangent function to some (f+, f−) at some
point p. Let q ∈ Tpγ \{0} and let us consider a further tangent function (g+1 , g

−
1 ) to

(g+, g−) at q. Then, by [13, Lemma 12.3], (g+1 , g
−
1 ) is invariant along the direction

q, namely g±1 (x+ λq) = g±(x) for every λ ∈ R.

As a simple corollary we then conclude the following:

Lemma 4.32. Let (f+, f−) and p ∈ γ be as in Lemma 4.29. Consider a tangent
function (g+, g−) to (f+, f−) at p. Moreover fix a base e1, . . . , em−1 of π = Tpγ, and
define inductively (g+1 , g

−
1 ) to be a tangent function to (g+, g−) at e1 and (g+j , g

−
j )

to be a tangent function to (g+j−1, g
−
j−1) at ej. Then (h+, h−) = (g+m−1, g

−
m−1) is

given by (Q �L� , (Q− 1) �L�), where L is a nonzero linear function which vanishes
on π.

Proof. Assume π = {x : xm = 0}. Applying the remark above m times we
infer the existence of a map (h+, h−) with the following properties:

• (h+, h−) is a
(
Q− 1

2

)
Dir-minimizer which collapses at the interface (π, 0);

• (h+, h−) depends only on xm, namely there exist Q-valued function α+ :
R+ → AQ(R

n) and a (Q− 1)-valued function α− : R− → AQ−1(R
n) such

that h±(x) = α±(xm);
• (h+, h−) is an I-homogeneous function for some I > 0, namely there
is a Q-point P and a (Q − 1)-point P ′ such that α+(xm) = xImP and
α−(xm) = (−xm)IP ′.
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• Dir(h+, B1) + Dir(h−, B1) = 1.

Since (h+, h−) is a Dir-minimizer both h+ and h− are classical harmonic functions
and, since they depend only upon one variable, we necessarily have that I = 1. So
there are coefficients β+

1 , . . . , β
+
Q and β−

1 , . . . , β
−
Q−1 such that

h+(x) =

Q
∑

i=1

�
β+
i xm

�

h−(x) =
Q−1
∑

i=1

�
β−
i xm

�
.

If Q = 1, then there is nothing to prove. If Q > 1, then necessarily for every choice
of i and j the function

k(x) =

§

¨

©

β+
j xm if xm ≥ 0

β−
i xm if xm < 0

must be harmonic and hence linear. This implies that all β−
i and β+

j coincide. The
claim of the lemma follows. �

Remark 4.33. The above result is the key step to establish Theorem 4.5. Note
that in proving that the only 1 homogeneous 1 dimensional

(
Q− 1

2

)
Dir-minimizer

which collapses at the interfaces (π, 0) we have used in an essential way that only
one sheet has to take care of the interface, while the values of the others can be
modiûed even over γ. In other words the above result is easily seen to be false if
we would have required to be minimizers only with respect to variations that keep
the pair f+ and f− completely ûxed over γ.

As a simple corollary of the above Lemma we have:

Corollary 4.34. Assume (f+, f−) is a
(
Q− 1

2

)
Dir-minimizer with collapsed

interface (γ, 0), where γ is C3. If η ◦ f− = η ◦ f+ = 0, then f+ = Q �0� and
f− = (Q− 1) �0�.

Proof. If (f+, f−) is identically (Q �0� , (Q − 1) �0�) in a neighborhood U of
a point p ∈ γ, then, by the interior regularity theory of Dir-minimizer, (f+, f−)
is identically (Q �0� , (Q − 1) �0�) in the connected component of the domain of
(f+, f−) which contains p. Thus, if the corollary were false, then there would be a
point p such that Dir(f+, Br(p)) + Dir(f−, Br(p)) > 0 for every r > 0.

If we consider (h+, h−) as in Lemma 4.32, we conclude that η◦h+ = η◦h− = 0,
since such property is inherited by each tangent map. But then the nonzero linear
function L of the conclusion of Lemma 4.32 should equal η ◦ h+ on {xm > 0}
and η ◦ h− on {xm ≤ 0}. Hence L should vanish identically, contradicting Lemma
4.32. �

Corollary 4.35. Theorem 4.5 holds when ϕ = 0.

Proof. We start noticing that by classical elliptic regularity, the functions
η ◦ f± belong to C1(Ω± ∪ γ). Let ν be the unit normal to γ. We claim that

(4.34) ∂ν(η ◦ f+)(p) = ∂ν(η ◦ f−)(p) for all p ∈ γ ∩ Ω.
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(

Q − 1
2

)

Dir-MINIMIZERS

The claim will be proved below, whereas we ûrst show that it is enough to conclude.
Indeed it implies that the function

(4.35) ζ =

§

¨

©

η ◦ f+ on Ω+

η ◦ f− on Ω−

is a harmonic function. Now let us subtract it from (f+, f−), namely let us deûne
the functions

f̃+ =
∑

i

�
f+
i − ζ

�
(4.36)

f̃− =
∑

i

�
f−
i − ζ

�
.(4.37)

We conclude that (f̃+, f̃−) is a
(
Q− 1

2

)
Dir-minimizer which collapses at the in-

terface (γ, 0) and that η ◦ f̃+ = η ◦ f̃− = 0. Thus we apply Corollary 4.34 and

conclude that f̃+ = Q �0� and f̃− = (Q− 1) �0�, which complete the proof.
To prove claim (4.34) assume by contradiction that, at some point p ∈ γ ∩ Ω,

we have ∂ν(η ◦ f+)(p) 
= ∂ν(η ◦ f−)(p) and consider a tangent function (g+, g−) to
(f+, f−) at p, which is the limit of some (f+

p,ρk
, f−

p,ρk
). Observe that, since at least

one among ∂ν(η ◦ f+)(p) and ∂ν(η ◦ f−)(p) differs from 0, we necessarily have

Dir(f+, Bρk
(p)) + Dir(f−, Bρk

(p)) ≥ c0ρ
m
k

for some constant c0. We then have just two possibilities:

(A) lim supk(ρk)
−m(Dir(f+, Bρk

(p))+Dir(f−, Bρk
(p))) = ∞. In this case the

tangent function (g+, g−) has zero average, i.e.

η ◦ g+ = η ◦ g− = 0 .

By Corollary 4.35, (g+, g−) should be trivial. But this is not possible
because Dir(g+, B1) + Dir(g−, B1) = 1.

(B) lim supk(ρk)
−m(Dir(f+, Bρk

(p)) + Dir(f−, Bρk
(p))) <∞. In this case we

have that η ◦ g+ and η ◦ g− are also nontrivial and linear. Moreover they
are two distinct linear functions.

We can apply this argument to the tangent functions of (g+, g−) and since the case
(A) is always excluded, after applying it m− 1 times, we reach a pair (h+, h−) as
in Lemma 4.32, with the property that η ◦ h+ and η ◦ h− are two distinct linear
functions. However this contradicts the conclusion of Lemma 4.32. �

4.5. Proof of Theorem 4.5: General case

Proof. Let ν be the unit normal to γ. As above, we claim that

∂ν(η ◦ f+) = ∂ν(η ◦ f−) .

With this claim, proceeding as in the proof of Corollary 4.35, we can deûne ζ as in
(4.35) and conclude that it is a harmonic function. We then deûne (f̃+, f̃−) as in
(4.36) and (4.37). To this pair we can apply Corollary 4.34 and conclude.

To prove the claim, assume by contradiction that, for some p ∈ γ, we have
that ∂ν(η ◦ f+)(p) 
= ∂ν(η ◦ f−)(p). Without loss of generality we can assume that
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p = 0, ϕ(0) = 0 and Dϕ(0) = 0. Since at least one among Df±(0) does not vanish,
we must have

(4.38) Dir(f+, Bρ) + Dir(f−, Bρ) ≥ c0ρ
m

for some positive constant c0. It also means that there exist a constant η > 0 and
a sequence ρk ↓ 0 such that

Dir(f+, Bρk
) + Dir(f−, Bρk

) ≥ η(Dir(f+, B2ρk
) + Dir(f−, B2ρk

)) ,

otherwise we would contradict the lower bound (4.38). If we now deûne the blow-up
functions

f±
ρk
(x) :=

f±(ρkx)
Dir(f+, Bρk

) + Dir(f−, Bρk
)
.

we see that they have ûnite energy on B2 and thus there is strong convergence of
a subsequence to a

(
Q− 1

2

)
Dir-minimizer (g+, g−) with interface (Tpγ, 0). The

latter must then have Dirichlet energy 1 on B1. We then have two possibilities:

(A) lim supk(ρk)
−m(Dir(f+, Bρk

) + Dir(f−, Bρk
)) = ∞. Arguing as in the

proof of Corollary 4.34, this gives that η ◦ g+ = η ◦ g− = 0. Thus,
applying Corollary 4.34 we conclude that (g+, g−) is trivial, which is a
contradiction.

(B) lim supk(ρk)
−m(Dir(f+, Bρk

) + Dir(f−, Bρk
)) < ∞. Assuming in this

case that T0γ = {xm = 0}, we conclude that (g+, g−) is a
(
Q− 1

2

)

Dir-minimizer with üat interface (T0γ, 0), but also that η ◦ g±(x) =
c̄∂ν(η ◦ f±)(0)xm for some positive constant c̄. By Corollary 4.35, we
then conclude that ∂ν(η ◦ f+)(0) = ∂ν(η ◦ f−)(0).

�
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CHAPTER 5

First Lipschitz approximation and harmonic

blow-up

In this chapter we assume that π0 = Rm × {0} and we use the notation p and
p⊥ for the orthogonal projections onto π0 and π⊥

0 respectively., whereas pπ and
p⊥
π will denote, respectively, the orthogonal projections onto the plane π and its

orthogonal complement π⊥. We also introduce the notation Br(p, π) for the disks
Br(p) ∩ (p+ π) and Cr(p, π) for the cylinders Br(p, π) + π⊥. If π is omitted, then
we assume π = π0.

Definition 5.1. For a current T in a cylinder Cr(p, π) we deûne the cylindrical
excess E and the excess measure eT of a set F ⊂ B4r(pπ(p), π) as

E(T,Cr(p, π)) :=
1

2ωmrm

∫

Cr(p,π)

|�T − �π|2 d‖T‖

eT (F ) :=
1

2

∫

F+π⊥

|�T − �π|2 d‖T‖ .

The height in a set G ⊂ Rm+n with respect to a plane π is deûned as

(5.1) h(T,G, π) := sup{|p⊥
π (q − p)| : q, p ∈ spt(T ) ∩G} .

The aim of this chapter is to produce a Lipschitz
(
Q− 1

2

)
-valued approximation

for area-minimizing currents in a neighborhood of boundary points where the latter
are sufficiently üat. For this reason we will introduce a set of assumptions: in this
chapter we will work under these assumptions and only later we will show when
we will in fact fall under them. In what follows, in order to simplify our notation,
we will assume that (x, 0) ∈ π0 and we will abuse the notation by identifying Rm

with π0 = Rm × {0}: in particular we will use Cr(x) for the cylinder Cr(x, π0)
and we will use the same symbol F for subsets F ⊂ R

m and for the corresponding
F × {0} ⊂ π0. Similarly we will write F × Rn for the set F × {0}+ π⊥

0 .

Assumption 5.2. Γ ⊂ Σ is a C2 submanifold of dimensionm−1 and Σ ⊂ Rm+n

is a C2 submanifold of dimension m + n̄ = m + n − l containing Γ. We assume
moreover that both Σ and Γ are graphs of entire functions Ψ : Rm+n̄ → R

l and
ψ : Rm−1 → Rn̄+1+l satisfying the bounds

(5.2) ‖Dψ‖0 + ‖DΨ‖0 ≤ c0 and A := ‖AΓ‖0 + ‖AΣ‖0 ≤ c0

where c0 is a positive (small) dimensional constant.
T is an integral current of dim. m with ∂T C4r(x) = �Γ� C4r(x) and

spt(T ) ⊂ Σ. Moreover we assume that

(i) p = (x, 0) ∈ Γ and TpΓ = Rm−1 × {0} ⊂ π0;
(ii) γ = p(Γ) divides B4r(x) in two disjoint open sets Ω+ and Ω−;

53
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54 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

(iii) for some integer Q

(5.3) p#T = Q
�
Ω+

�
+ (Q− 1)

�
Ω−�

;

(iv) T is area minimizing in Σ ∩C4r(x);
(v) Q− 1

2 ≤ Θ(T, q) for every q ∈ Γ ∩C4r(x).

Observe that thanks to (5.3) we have the identities

E(T,C4r(x)) =
1

ωmrm
(
‖T‖(C4r(x))− (Q|Ω+|+ (Q− 1)|Ω−|)

)
(5.4)

eT (F ) = ‖T‖(F × R
n)− (Q|Ω+ ∩ F |+ (Q− 1)|Ω− ∩ F |) .(5.5)

Definition 5.3. Given a current T in a cylinder C4r(p, π) we introduce the
non-centered maximal function of eT as

meT (y) := sup
y∈Bs(z,π)⊂B4r(p,π)

eT (Bs(y, π))

ωmsm
.

Again abusing the notation, under Assumption 5.2 we regard meT has a func-
tion on B4r(x) ⊂ R

m.
In what follows, given a Q-valued function u, we denote by Gr(u) and Gu

respectively the set theoretic graph of u and the integer rectiûable current naturally
induced by it. For the precise deûnition we refer to [15]. We next rotate the
coordinates keeping π0 ûxed and achieving suitable estimates for DΨ: the argument
is the same as in [14, Remark 2.5].

Remark 5.4 (Estimates on Ψ in good Cartesian coordinates). Assume that T
is as in Assumption 5.2 in the cylinder C4r(x). If E := E(T,C4r(x)) is smaller than
a geometric constant, we can assume, without loss of generality, that the function
Ψ : Rm+n̄ → Rl parameterizing Σ satisûes Ψ(x) = 0, ‖DΨ‖0 ≤ C E

1/2 + CAr and
‖D2Ψ‖0 ≤ CA. Indeed observe that

E = E(T,C4r(x)) =
1

2ωm (4r)m

∫

C4r(x)

|�T (y)− �π0|2 d‖T‖(y) .

Thus, we can ûx a point p ∈ spt(T ) ∩ C4r(x) such that |�T (p) − �π0| ≤ C E
1/2.

Then, we can ûnd an associated rotation R ∈ O(m+ n,R) such that R�
�T (p) = �π0

and |R − Id| ≤ C E
1/2. It follows that π := R(TpΣ) is a (m + n̄)-dimensional

plane such that π0 ⊂ π and ‖π − TpΣ‖ ≤ CE
1/2. We choose new coordinates so

that π0 remains equal to Rm × {0} but Rm+n̄ × {0} equals π. Since the excess
E is assumed to be sufficiently small, we can write Σ as the graph of a function
Ψ : π → π⊥. If (z,Ψ(z)) = p, then |DΨ(z)| ≤ C‖TpΣ − R

m+n̄ × {0}‖ ≤ CE
1/2.

However, ‖D2Ψ‖0 ≤ CA and so ‖DΨ‖0 ≤ CE
1/2 + CAr. Moreover, Ψ(x) = 0 is

achieved translating the system of reference by a vector orthogonal to R
m+n̄ × {0}

and, hence, belonging to {0} × Rl.

We introduce the notation Lip(u) for the Lipschitz constant of a Q-valued map
u =

∑

i ui and oscu for its oscillation, which is deûned as in [14] by

osc(u) = sup
z,y,i,j

|ui(z)− uj(y)| ,

and let ψ′ : γ → Rn be the function1 whose graph coincides with Γ.

1If ψ1 is the first of component of the map ψ, then

γ = {(x′, ψ1(x
′), 0) : x′ ∈ R

m−1} .
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5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP 55

Theorem 5.5. There are positive geometric constants C and c0 with the fol-
lowing properties. Assume T satisfies Assumption 5.2, E := E(T,C4r(x)) ≤ c0
and ‖DΨ‖0 ≤ C(E

1/2 + Ar). Then, for any δ∗ ∈ (0, 1), there are a closed set
K ⊂ B3r(x) and a

(
Q− 1

2

)
-valued function (u+, u−) on B3r(x) which collapses at

the interface (γ, ψ′) satisfying the following properties:

Lip(u±) ≤ C(δ
1/2
∗ + r

1
2A

1
2 )(5.6)

osc(u±) ≤ Ch(T,C4r(x), π0) + CrE
1/2 + Cr2A(5.7)

Gr(u±) ⊂ Σ(5.8)

K ⊂ B3r(x) ∩ {meT ≤ δ∗}(5.9)

Gu± [(K ∩ Ω±)× R
n] = T [(K ∩ Ω±)× R

n](5.10)

|Bs(x) \K| ≤ C

δ∗
eT ({meT > δ∗} ∩Bs+r1r(x)) ∀s ≤ (3− r1)r(5.11)

‖T −Gu+ −Gu−‖(C3r(x))

rm
≤ C(m,n,Q)

δ∗
E(5.12)

where r1 = c m

√
E
δ∗
.

From now on the approximation of Theorem 5.5 is called the δ
1
2∗ -approximation

of T in C3r(x). Actually in the sequel we will choose δ
1
2∗ to be Eβ for a suitable

chosen small β.
In a second step we will prove that, if E is chosen sufficiently small and T is

area minimizing, then u is close to a
(
Q− 1

2

)
Dir-minimizer which which collapses

at its interface and thus, by Theorem 4.5, consists of a single harmonic sheet.

Theorem 5.6. For every η∗ > 0 and every β ∈ (0, 1
4m ) there exist constants

ε > 0 and C > 0 with the following property. Let T be as in Theorem 5.5 and
mass-minimizing in Σ, let (u+, u−) be the Eβ-approximation of T in B3r(x) and

let K be the set satisfying all the properties (5.6)–(5.12). If E ≤ ε and rA ≤ εE
1
2 ,

then

(5.13) eT (B5r/2 \K)) ≤ η∗E ,

and

(5.14) Dir(u+,Ω+ ∩B2r(x) \K) + Dir(u−,Ω− ∩B2r(x) \K) ≤ Cη∗E .

In particular ψ′ can be regarded as a function of x′ and in particular we have ψ(x′) =
(ψ1(x′), ψ′(x′)). In the remaining part of the section we will adopt the latter convention.
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56 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

Moreover, there exists a (single) harmonic function h : B2r(x) → Rn such that
h|xm=0 ≡ 0 and the function κ(y) := (h(y),Ψ(y, h(y))) satisfies the following in-
equalities:

r−2

∫

B2r(x)∩Ω+

G(u+, Q �κ�)2

+

∫

B2r(x)∩Ω+

(

|Du+| −
√

Q|Dκ|
)2

≤ η∗Er
m(5.15)

r−2

∫

B2r(x)∩Ω−

G(u−, (Q− 1) �κ�)2

+

∫

B2r(x)∩Ω−

(

|Du−| −
√

Q− 1|Dκ|
)2

≤ η∗Er
m(5.16)

∫

B2r(x)∩Ω±

|D(η ◦ u±)−Dκ|2 ≤ η∗Er
m .(5.17)

Remark 5.7. Observe that from the Schwarz reüection principle and the
unique continuation for harmonic functions, it follows immediately that the h of
the previous theorem is in fact odd in the variable xm.

5.1. Proof of Theorem 5.5

5.1.1. Artificial sheet and “bad set”. Since the statement is invariant
under translations and dilations, without loss of generality we assume x = 0 and
r = 1. We add to the current T an artiûcial sheet , constructed by translating the
boundary Γ in the <negative direction= −em over the negative domain Ω−. Clearly,
if the current T were area minimizing, the addition would (in general) destroy
such property. On the other hand we do not assume that T is area minimizing
in Theorem 5.5 and the <augmented current= has no boundary in the cylinder,
while it still has small excess. This will allow us to apply the ûrst part of the
approximation theory in the interior developed in [14, Section 3], where the area
minimizing assumption is not relevant.

Let therefore ψ(x′) = (ψ1(x
′), ψ′(x′)) be the map introduced in Assumption

5.2, whose graph gives Γ, and let (x′, xm) = x be the coordinates of Rm. We
introduce further the map Gψ′ : π0 = R

m → R
m+n̄+l given by Gψ′(x′, xm) :=

(x′, xm, ψ′(x′)): the image of Gψ′ is just the translation of Γ in the direction em =
(0, . . . , 0, 1, 0, . . . , 0). Consider then the current Z := Gψ′

# �Ω−�, cf. Figure 5.1.1.

Using the Taylor expansion of the mass, e.g. [14, Remark 5.4], we can estimate,
for any Borel set F ⊂ Rm.

M(Z (F × R
n)) = |F ∩ Ω−|+

∫

F∩Ω−

|Dψ′|2
2

+

∫

F∩Ω−

R(Dψ′)

where R(Dψ′) = O(|Dψ′|4). By assumption

|Dψ′(x′)| ≤ |x′|
∥
∥D2ψ′∥∥

∞ ≤ c|x′|A
for some dimensional constant c. Hence, assuming that the constant c0 in (5.2)
sufficiently small,

eZ(F ) ≤
∫

F∩Ω−

|Dψ′|2 ≤ cA2|F ∩ Ω−| .
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Z γ

xm

Figure 5.1. The current Z is the graph over Ω− of a function ψ′

which does not depend on xm: ψ′ is chosen so that ∂Z = �Γ�.

By construction we have ∂Z C4 = Gψ′
# �∂Ω− ∩B4� = − �Γ� and p#Z = �Ω−�.

Therefore S := T + Z satisûes

p#S = Q �B4� , ∂S C4 = 0 and

eS(F ) ≤ eT (F ) + eZ(F ) ≤ eT (F ) + cA2|F ∩ Ω−| .(5.18)

We can thus apply the modiûed Jerrard-Soner estimate of [14, Proposition 3.3]
which gives:

(JS) For every ϕ ∈ C∞(Rn) set Φϕ(x) := Sx(ϕ) with

Sx := p⊥
#〈S,p, x〉 ∈ I0(R

n)

(the space of zero-dimensional integral currents in Rn). If ‖Dϕ‖∞ ≤ 1
then Φϕ(x) ∈ BV (B4) and satisûes

(5.19) (|DΦϕ|(F ))2 ≤ 2m2eS(F ) ‖S‖ (F × π⊥
0 ) for every Borel set F ⊂ B4.

Following a classical terminology we deûne noncentered maximal functions for
Radon measures μ and (Lebesgue) integrable functions f : Rk → R+ by setting

m(f)(z) := sup
z∈Bs(y)⊂B4

1

ωmsm

∫

Bs(y)

f

m(μ)(z) := sup
z∈Bs(y)⊂B4

μ(Bs(y))

ωmsm
.

Note that the functions z �→ m(f)(z), z �→ m(μ)(z) and z �→ meZ(z) are lower
semi-continuous. Indeed, since m(f) is obviously the maximal function of the
measure fL m, it suffices to show the claim for m(μ). Next observe that for a
general Radon measure μ the map y �→ μ(Bs(y)) is lower semicontinuous, and thus
the claim follows from the fact that the map z �→ m(μ)(z) is the supremum of lower
semicontinuous functions.

Let us ûx a small constant 0 < λ < 1 and deûne the following <bad= sets, which
are, respectively, the upper level set U of meT

(5.20) U := {x ∈ B4 : meT (x) > δ∗}
and the upper level set of m(1U ):

(5.21) U∗ := {x ∈ B4 : m(1U )(x) > λ} .
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58 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

As proven in [14, Proposition 3.2.] we have a weak L1 estimate for the Lebesgue
measure of U . Indeed, ûx r < 3 and for every point x ∈ U ∩ Br consider a ball
Bx of radius r(x) which contains x and satisûes meT (B

x) ≥ δ∗ωmr(x)
m. Since

meT (B
x) ≤ E we obviously have

r(x) ≤ r0 = m

√

E

ωmδ∗

Now, by the deûnition of the maximal function it follows clearly that Bx ⊂ U ∩
Br+r0 . In turn, by the 5r covering theorem we can select countably many pairwise

disjoint Bxi such that the corresponding concentric balls B̂i with radii 5r(xi) cover
U ∩Br Then we get

|U ∩Br| ≤ 5m
∑

i

ωmr(xi)
m ≤ 5m

δ∗

∑

i

meT (B
xi) ≤ 5m

δ∗
meT (U ∩Br+r0) .

Since U is open we have U ⊂ U∗ and by the classical weak L1 estimate (see e.g.
[40, 1.3 Theorem 1]), we have again

(5.22) |U∗ ∩Br| ≤
5m

λ
|U ∩Br+r1 | ∀r < 3, where r1 = 5 m

√

E

ωmλδ∗
.

5.1.2. Lipschitz estimate. Since δ∗+cA2 < 1, we infer that M(Sx) < Q+1
for a.e. x /∈ U . Indeed recall that ‖S‖ (F × π⊥

0 ) ≥
∫

F
M(Sx) dx for every open set

F (e.g. [35, Lemma 28.5]). Therefore using (5.1.1)

M(Sx) ≤ lim
r→0

‖S‖ (Cr(x))

ωmrm

≤ lim
r→0

‖T‖ (Cr(x))

ωmrm
+ cA2 ≤ meT (x) + cA2 +Q.

There are then Qmeasurable functions i : B4\U → Rn such that Sx =
∑Q

i=1 �gi(x)�
and we deûne g : B4 \ U → AQ(R

n) by

g(x) =

Q
∑

i=1

�gi(x)� .

Since the slicing is a linear operator and Zx = Z(x′,xm) = p⊥
#〈Z,p, x〉 = �ψ′(x′)�

for all x ∈ Ω−, we have that

Sx =

Q−1
∑

i=1

�gi(x)� + �ψ′(x′)� for a.e. x ∈ Ω− \ U .

In conclusion we can deûne a
(
Q− 1

2

)
-valued function (g+, g−) as

g+(x) :=

Q
∑

i=1

�gi(x)� for a.e. x ∈ Ω+ \ U,

g−(x) :=
Q−1
∑

i=1

�gi(x)� for a.e. x ∈ Ω− \ U,

i.e. g(x) = g−(x) + �ψ′(x′)� for all x ∈ Ω− \ U .
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5.1. PROOF OF THEOREM 5.5 59

Combining (5.19) and (5.1.1) we infer

m|DΦϕ|(x)2 ≤ 2m2(meT (x) + cA2)(meT (x) + cA2 +Q)

≤ 2m(Q+ 1)(δ∗ + cA2) .

Therefore, the theory of BV functions gives a dimensional constant C such that,
for any ϕ ∈ C∞(Rn) with ‖Dϕ‖∞ ≤ 1,

|Φϕ(x)−Φϕ(y)| ≤ C
√

2m(Q+ 1)(δ∗ + cA2)|x− y|
≤ L∗|x− y| for x, y ∈ B3 \ U ,

where L∗ := C
√

2m(Q+ 1)(δ
1
2∗ + c

1
2A). As pointed out in the proof of [14, Propo-

sition 3.2] one has

sup{|Φϕ(x)−Φϕ(y)| : |Dϕ|∞ ≤ 1} =W1(g(x), g(y))

where we have set

W1(S1, S2) := sup{(S1 − S2)(ϕ) : ‖Dϕ‖∞ ≤ 1}
= min

σ∈PQ

∑

i

|S1i − S2σ(i)| ≥ G(S1, S2)

for Sk =
∑Q

i=1 �Ski� ∈ AQ(R
n). This implies the Lipschitz continuity of g on B3\U

and of g± on Ω± \ U . For g it follows directly from the above estimate:

(5.23) G(g(x), g(y)) ≤W1(g(x), g(y)) ≤ L∗|x− y| for all x, y ∈ B3 \ U
and similarly for g+ and x, y ∈ Ω+ ∩B3 \ U . In the case of g− we use the triangle
inequality to infer

G(g−(x), g−(y)) ≤W1(g
−(x), g−(y))

≤ W1(g
−(x) + �ψ′(x′)� , g−(y) + �ψ′(y′)�) +W1(�ψ′(x′)� , �ψ′(y′)�)

≤ L∗|x− y|+ |ψ′(x′)− ψ′(y′)| ≤ (L∗ + cA)|x− y|.
We now claim that for some dimensional constant a > c we have

G(g+(y), Q �ψ′(x′)�) ≤ 33
√

Q(L∗ + aA
1
2 )|y − x|

for all y ∈ Ω+ \ U∗, x ∈ γ and

G(g−(y), (Q− 1) �ψ′(x′)�) ≤ 33
√

Q(L∗ + aA
1
2 )|y − x|

for all y ∈ Ω− \U∗, x ∈ γ. The latter estimates are implied by the following claim:

(Cl) for y ∈ B3 \ U∗ with |x− y| = dist(y, γ) we have

|gi(y)− ψ′(x′)| ≤ 33(L∗ + aA
1
2 )|x− y| ∀i

(where we recall that, given a point x ∈ Rm, we write x′ for the vector
x′ ∈ R

m−1 having the ûrst m− 1 coordinates of x.)

We will argue by contradiction. Assume y0 ∈ B3 \ U∗, x0 ∈ γ and i ∈ {1, . . . , Q}
satisfy

|gi(y0)− ψ′(x′0)| ≥ 33(L∗ + aA
1
2 )r,

where r = |y0 − x0| = dist(y0, γ) < 1. Firstly, we note that

(5.24) |ψ′(x′1)− ψ′(x′2)| ≤ cA|x1 − x2| for all x1, x2 ∈ B4.
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Moreover gi(y0) ∈ spt(T )\spt(Z) . Secondly, since y0 /∈ U∗ we have m(1U )(y0) ≤ λ
and so

(5.25) |Br(x0) ∩ U | ≤ λ|Br(x0)|.
Due to (5.23) for all y ∈ Br(x0) \ U there must be a j ∈ {1, . . . , Q} with

|gj(y)− ψ′(x′0)| ≥ |gi(y0)− ψ′(x′0)| − G(g(y), g(x0)) ≥ 32(L∗ + aA
1
2 )r

and, because of (5.24), gj(y) ∈ spt(T ) \ spt(Z).
Choose N ∈ N such that

(5.26)
1

N
≤ (4(L∗ + aA

1
2 ))2 <

1

(N − 1)

and set ri := (1 − i
2N )r for i = 0, . . . , N . This choice ensures that, if (y, z) ∈

Bri((x0, ψ
′(x′0))) and y belongs to the annulus Ai := Bri(x0) \Bri+1

(x0), we must
have

|z − ψ′(x′0)|2 ≤ r2i − r2i+1 ≤ 1

N
rri ≤ (4(L∗ + aA

1
2 ))2r2.

Therefore, if y ∈ Ai \U , the point (y, gj(y)) determined above cannot be contained
in Bri((x0, ψ

′(x′0))). In order to simplify our notation, set p0 := (x0, ψ
′(x′0)). We

then have

Ai \ U ⊂ p
(
sptT ∩Cri(p0) \Bri(p0)

)

and thus

(5.27) ‖T‖
(
Cri(p0) \Bri(p0)

)
≥ |Ai \ U |.

We now claim that there should be i ∈ 1, . . . , N such that |Ai \ U | ≥ 1
2 |Ai|,

indeed otherwise

|Br(x0) ∩ U | ≥
N∑

i=0

|Ai ∩ U | ≥ 1

2

N∑

i=0

|Ai| ≥
1

2
|Br(x0) \B r

2
(x0)|

≥ 1

2

(

1− 1

2m

)

|Br(x0)|

which contradicts (5.25) because λ ≤ 1
4 . Fix an annulus Ai with |Ai \ U | ≥ 1

2 |Ai|
and deûne ρ := ri. Now we can estimate the mass of T in Bρ(p0) from above using
(5.5), in fact

‖T‖ (Bρ(p0) = ‖T‖ (Cρ(p0))− ‖T‖ (Cρ(p0) \Bρ(p0))

(5.27)

≤ ‖T‖ (Cρ(p0))−
1

2
|Ai|

(5.1)

≤ Q|Ω+ ∩Bρ(x0)|+ (Q− 1)|Ω− ∩Bρ(x0)|+meT (Bρ(x0))−
1

2
|Ai|

≤Q|Ω+∩Bρ(x0)|+(Q−1)|Ω−∩Bρ(x0)|+meT (Bρ(x0))−
m

4N
|Bρ(x0)|.(5.28)

Notice that

Q|Ω+ ∩Bρ(x0)|+ (Q− 1)|Ω− ∩Bρ(x0)|

≤
(

Q− 1

2

)

|Bρ(x0)|+ |Bρ(x0) ∩ {ψ1(x
′) ≤ xm < ψ1(x

′
0)}|

≤
(

Q− 1

2

)

|Bρ(x0)|+ cAρ|Bρ(x0)|.(5.29)
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Moreover Bρ(x0) \ U 
= ∅ and meT (Bρ(x0)) ≤ δ∗|Bρ(x0)|. Combining the latter
inequality with (5.28) and (5.29) we have

(5.30) ‖T‖ (Bρ(p0)) ≤ |Bρ(x0)|
((

Q− 1

2

)

+ cAρ+ δ∗ −
1

4N

)

.

On the other hand, by Allard’s monotonicity formula and (v) in Assumption (5.2)
we have

eC0Aρωmρ
−m ‖T‖ (Bρ(p0)) ≥ Θ(T, p0) ≥ Q− 1

2
from which we deduce that

(5.31) ‖T‖ (Bρ(p0)) ≥ (1− C0Aρ)
(

Q− 1

2

)

|Bρ(x0)|

The comparison of (5.30) and (5.31) gives a contradiction, because, for suffi-
ciently large a > 0,

δ∗ + (c+ C0)Aρ−
1

4N
≤ L2

∗ + 4(c+ C0)A− 1

8

1

N − 1
(5.26)

≤ L2
∗ + (c+ C0)A− 4L2

∗ − 4a2A < 0.

This concludes the proof of the claim (Cl).

5.1.3. Conclusion. Having established the Lipschitz bounds, ûrst we restrict
g± to the sets Ω± ∩B3 \ U∗ and then we extend them to γ setting:

g+(x) = Q �ψ′(x′)�
g−(x) = (Q− 1) �ψ′(x′)� .

We deûne the <good= set to be

(5.32) K := (Ω ∩B3 \ U∗) ∪ γ
and (5.22) agrees with the claimed estimate on |Bs \K|.

Next, write g±(y) =
∑

i

�
(h±i (y),Ψ(y, h±i (y)))

�
. Obviously the maps

y �→ h±(y) :=
∑

i

�
h±i (y)

�

are Lipschitz on K± := K ∩ Ω± with Lipschitz constant 33(L∗ + aA
1
2 ). Recalling

[13, Theorem 1.7], we can extend h± to maps ū± ∈ Lip(B3∩Ω±,AQ(R
n̄)) satisfying

Lip(ū±) ≤ C(δ
1/2
∗ + aA

1
2 ) and osc(ū±) ≤ C osc(h±).

Set ûnally u±(x) :=
∑

i

�
(ū±i (x),Ψ(x, ū±i (x)))

�
. We start showing the Lipschitz

bound. Fix x1, x2 ∈ B3∩Ω± and assume, without loss of generality, that G(ū±(x1),
ū±(x2))2 =

∑

i |ū±i (x1)− ū±i (x2)|2. Then
G(u±(x1), u±(x2))2

≤
∑

i

∣
∣(ū±i (x1),Ψ(x1, ū

±
i (x1)))− (ū±i (x2),Ψ(x2, ū

±
i (x2)))

∣
∣
2

≤ 2
∑

i

(

(1 + ‖DyΨ‖20)|ū±i (x1)− ū±i (x2)|2 + ‖DxΨ‖20|x1 − x2|2
)

≤ 2(1 + ‖DΨ‖20)G(ū±(x1), ū±(x2))2 + 2‖DΨ‖20|x1 − x2|2

≤ C(δ∗ + a2A+ ‖DΨ‖20)|x1 − x2|2 .
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62 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

Recalling that ‖DΨ‖0 ≤ C(E
1/2 +A) the Lipschitz bound follows. As for the L∞

bound, recall that osc(u±) = infp supx∈B3
G(u±(x), Q �p�). Proceeding as above we

then conclude

osc(u±)2 ≤ inf
p

sup
x∈B3

G(u±(x), Q �(p,Ψ(0, p))�)2

≤ 2 inf
p

sup
x∈B3

(

(1 + ‖DΨ‖20)G(ū±(x), Q
�
p±

�
)2 + ‖DΨ‖20|x|2

)

≤ 2(1 + ‖DΨ‖20) osc(ū±)2 + 18 ‖DΨ‖20.
The identity Gu± (K± ×R

n) = T (K± ×R
n) is a consequence of u±(x) = Tx for

a.e. x ∈ K±. Indeed, recall that both T and Gu± are rectiûable and observe that2

〈�T , �π0〉 
= 0 ‖T‖-a.e. on K×Rn, because meT < ∞ on K. Similarly, 〈�Gu± , �π0〉 
= 0
‖Gu±‖-a.e. onK±×Rn, by [15, Proposition 1.4]. Thus, (Gu±−T ) K±×Rn = 0 if
and only if (Gu±−T ) dx1∧ . . .∧dxn 1K±×Rn = 0. The latter identity follows from
the slicing formula and the property 〈T,p, x〉 = 〈Gu± ,p, x〉 =

∑

i

�
(x, u±i (x))

�
,

valid for a.e. x ∈ K±. Finally, to prove (5.12) we simply not that by (5.11), (5.10)
and (5.5),

‖T −Gu+ −Gu−‖(Cs(x)) = ‖T −Gu+ −Gu−‖(Cs(x) \ (K × R
n))

≤ ‖T‖(Cs(x) \ (K × R
n)) + C|B3 \K|

≤ E + (C +Q)|B3 \K| ≤ CE.

5.2. Lipschitz approximation of Sobolev maps

Before coming to Theorem 5.6, we need a preliminary lemma, which is a mod-
iûcation of a corresponding statements in [14].

Lemma 5.8. Let (f+, f−) be a
(
Q− 1

2

)
-valued function on Br with interface

(γ, 0) where γ = {xm = 0}. Then for every ε there exists a
(
Q− 1

2

)
-valued function

(f+
ε , f

−
ε ) with interface (γ, 0) such that

(a) f+
ε and f−

ε are Lipschitz continuous;
(b) The following estimate holds:

∫

B±
r

G(f±, f±
ε )2 +

∫

B±
r

(
|Df±| − |Df±

ε |
)2

+

∫

B±
r

|D(η ◦ f±)−D(η ◦ f±
ε )|

)2 ≤ ε.(5.33)

If f |∂B±
r
∈W 1,2(∂B±

r ,AQ), then f±
ε can be chosen to satisfy also

(5.34)

∫

∂B±
r

G(f±, f±
ε )2 +

∫

∂B±
r

(
|Df±| − |Df±

ε |
)2 ≤ ε.

Proof. Firstly we argue that once we have the properties (a) and (b), the ad-
ditional conclusion (5.34) can be easily inferred using the same trick of [14, Lemma
4.5]. Indeed, without loss of generality, assume r = 1 and, using the hypothesis
f |∂B±

1
∈ W 1,2(∂B±

1 ,AQ), extend the maps on B±
2 \ B±

1 as 0-homogeneous: the

extension (f̂+, f̂−) are then still in W 1,2 and they form a
(
Q− 1

2

)
-valued function

2Here we use the notation 〈 �v1, �v2〉 for the standard inner product between m-vectors and
S ω for the restriction of currents S on forms ω.
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with interface (γ, 0) (note that γ is üat). Moreover f̂±((1+ δ)x) = f±(x) for every
δ > 0 and every x ∈ ∂B±

1 .
Assuming that we can prove (a) and (b) for a general r, we infer the existence

of a sequence (u+k , u
−
k ) of Lipschitz

(
Q− 1

2

)
approximations such that

∫

B±

2

G(f̂±, u±k )
2 +

∫

B±

2

(
|Df̂±| − |Du±k |

)2

+

∫

B±

2

|D(η ◦ f̂±)−D(η ◦ u±k )|
)2 → 0 .

By Fubini, there is a sequence δk ↓ 0 such that

∫

∂B±

1+·k

G(f̂±, u±k )
2 +

∫

∂B±

1+·k

(
|Df̂±| − |Du±k |

)2 → 0 .

By a straightforward computation, if we deûne f±
k (x) := u±k (x/(1 + δk)), then we

have at the same time
∫

B±

1

G(f±, f±
k )2 +

∫

B±

1

(
|Df±| − |Df±

k |
)2

+

∫

B±

1

|D(η ◦ f±)−D(η ◦ f±
k )|

)2 → 0,

∫

∂B±

1

G(f±, f±
k )2 +

∫

∂B±

1

(
|Df±| − |Df±

k |
)2 → 0 .

We now come to the main part of the lemma, namely the points (a) and (b).
First of all, without loss of generality, we can assume that r = 1. We next deûne
the auxiliary function h ∈W 1,2(B1,AQ(R

n)) as

h(x) :=

{
f+(x) if xm > 0
f−(x) + �0� if xm < 0.

Observe that |Df+(x)| = |Dh(x)| for every x ∈ B+
1 and |Df−(x)| = |Dh(x)| for

every x ∈ B−
1 . Consider the maximal function m(|Dh|)(x) and let

Kλ := {x : m(|Dh|)(x) ≤ λ}

which is a closed set, since maximal functions are lower semicontinuous. Arguing
as in [13, Proposition 4.4] we conclude that h|Kλ

is Lipschitz with a constant Cλ
(where C depends only upon m). Moreover, by the standard maximal function
estimates, we have

(5.35) λ2|B1 \Kλ| ≤ C

∫

B1\Kλ/2

|Dh|2 .

We next consider the symmetrized set

Ks
λ := {(x′, xm) ∈ Kλ : (x′,−xm) ∈ Kλ}

and observe that

|B1 \Ks
λ| ≤ 2|B1 \Kλ| .
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By an elementary comparison3 we easily see that

G(f−(x), f−(y)) ≤
√
2G(h(x), h(y)) .

Hence the Lipschitz constant of the restriction of f− to Ks
λ ∩ B−

1 is at most 3Cλ
and we can extend it to a function g− on B−

1 with Lipschitz constant at most C ′λ,
for some C ′ depending only upon m,n and Q, cf. [13, Theorem 1.7]. Consider now
the function k : B−

1 ∪ (B+
1 ∩Ks

λ) → AQ(R
n) such that

k(x) :=

{
g−(x) + �0� for x ∈ B−

1

f+(x) for x ∈ B+
1 ∩Ks

λ .

We claim that k is in fact Lipschitz with constant at most Cλ. Fix two points
x, y in the domain of the function: if they are both in B+

1 or both in B−
1 then our

claim is obvious, given the Lipschitz bounds on g− and f+|Ks
λ
, respectively. Fix

otherwise x = (x′, xm) ∈ Ks
λ ∩B+

1 and y ∈ B−
1 . Consider now xs := (x′,−xm) and

observe that xs ∈ Ks
λ. On the other hand

|xs − x| = 2xm ≤ 2|x− y| .
We can therefore estimate

G(k(x), k(y)) ≤ G(k(x), k(xs)) + G(k(xs), k(y))
= G(h(x), h(xs)) + G(k(xs), k(y))
≤ G(h(x), h(xs)) + 3G(g−(xs), g−(y))
≤ Cλ|x− xs|+ Cλ|xs − y| ≤ Cλ|x− y| .

We can now extend k to a Lipschitz map on the whole ball B1 and we deûne g+(x)
equal to such extension for every x ∈ B+

1 . Observe therefore that (g+, g−) is a
(
Q− 1

2

)
-valued function with interface (γ, 0). Moreover the Lipschitz constant is

controlled by Cλ. Note also that g± and f± coincide on Ks
λ ∩B±

1 .
Consider next that the functions

α± := G(f±, g±) ,

3Indeed, fix x and y and assume without loss of generality that hQ(x) = hQ(y) = 0, and

that hi(x) = f−
i (x) and hi(y) = f−

i (y) for every i ≤ Q − 1. Let π be a permutation of the set
{1, . . . , Q} such that

G(h(x), h(y))2 =
∑
i

|hi(x)− hπ(i)(y)|
2 .

We define a permutation σ of {1, . . . , Q−1} in the following way. If π(Q) = Q, then we simply set
σ(j) = π(j) for every j ≤ Q − 1 and we easily that G(h(x), h(y)) ≥ G(f−(x), f−(y)). Otherwise
there is a j0 ≤ Q − 1 such that π(j0) = Q and an i0 ≤ Q − 1 such that π(i0) = Q. We then set
σ(i0) = j0 and σ(k) = π(k) for every k ∈ {1, . . . , Q− 1} \ {i0}. We can therefore compute

G(f−(x), f−(y))2

≤
∑

i≤Q−1

|f−
i (x)− f−

σ(i)
(y)|2 =

∑
i≤Q−1,i�=i0

|hi(x)− hπ(i)(y)|
2 + |hi0 (x)− hj0 (y)|

2

≤
∑

i≤Q−1,i�=i0

|hi(x)− hπ(i)(y)|
2 + 2|hi0 (x)|

2 + 2|hj0 (y)|
2

=
∑

i≤Q−1,i�=i0

|hi(x)− hπ(i)(y)|
2 + 2|hi0 (x)− hπ(i0)(y)|

2 + 2|hQ(x)− hπ(Q)(y)|
2

= G(h(x).h(y)2 + |hi0 (x)− hπ(i0)(y)|
2 + |hQ(x)− hπ(Q)(y)|

2 ≤ 2G(h(x), h(y))2 .
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vanish on Ks
λ. Furthermore by choosing λ sufficiently large we can assume that

|Ks
λ ∩B±

1 | ≥ 1/2|B±
1 |. Thus the Poincaré inequality gives

∫

B±

1

G(f±, g±)2 =

∫

B±

1

(α±)2 ≤ C

∫

B±

1

|Dα±|2 .

Moreover, recalling that |B1 \Ks
λ| ≤ 2|B1 \Kλ| and (5.35)

∫

B±

1

(
|Dα±|2 + (|Df±| − |Dg±|)2 + |D(η ◦ f±)−D(η ◦ g±)|2

)

≤ C

∫

B±

1 \Ks
λ

(
|Df±|2 + |Dg±|2

)
≤ C

∫

B±

1 \Ks
λ

(
|Df±|2 + λ2

)

≤ C

∫

B±

1 \Ks
λ

|Df±|2 + Cλ2|B1 \ λ|

≤C
∫

B±

1 \Ks
λ

|Df±|2 + C

∫

B1\Kλ/2

|Dh|2 → 0 .

Since the latter converges to 0 as λ→ ∞, we conclude the proof. �

5.3. Proof of Theorem 5.6

It is not restrictive to assume that x = 0 and r = 1. Thus Ψ(0) = 0 and
ψ(0) = 0.

5.3.1. Proof of (5.13) and (5.14). Firstly we want to note that (5.14) is a
consequence of (5.13). Indeed, use ûrst (5.9), (5.11) and (5.13) to estimate

|B2 \K| ≤ Cη∗E
1−2β .

Since Lip(u±) ≤ CEβ, (5.14) follows easily.
We ûx β and η∗. Assuming by contradiction that the statement is false we ûnd

a sequence of area-minimizing currents Tk and submanifolds Σk, Γk satisfying the
following properties:

(i) The cylindrical excesses satisfy the estimate

(5.36) Ek := E(Tk,C4(0), π0) =
1

2ωm

∫

C4(0,π0)

| �Tk − �π0|2 d‖Tk‖ ≤ 1

k
.

(ii) Γk are smooth submanifolds of dimension m − 1 and Σk ⊂ Rm+n are
smooth submanifolds of dimension m+ n̄ = m+n− l containing Γk. After
possibly changing coordinates appropriately (cf. Remark 5.4), Σk and Γk

are graphs of entire functions Ψk : Rm+n̄ → Rl and ψk : Rm−1 → Rn̄+1+l

satisfying the bounds

‖Ψk‖C2(B8)
≤ C(E

1/2
k +Ak) ≤ CE

1/2
k(5.37)

‖ψk‖C2(B8)
≤ CAk ≤ C

k
E

1/2
k .(5.38)

(iii) Assumption 5.2 holds for each Tk.
(iv) The estimate (5.13) fails, i.e.,

(5.39) eTk
(B5/2 \Kk) > η∗Ek = 5c2Ek ,

for some positive c2. The pair of
(
Q− 1

2

)
-valued maps (f+

k , f
−
k ) denotes

the Eβ
k -Lipschitz approximations of the current Tk.
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For every s > 5/2, we have

(5.40) eTk
(Kk ∩Bs) ≤ eTk

(Bs)− 5 c2Ek.

In order to simplify our notation, we use B±
k,r for the domains of the functions

f±
k intersected with the ball Br(0) ⊂ π0. Instead B±

r denotes the corresponding
limits, namely the sets B±

r := Br(0) ∩ {±xm ≥ 0}. Using this notation and the
Taylor expansion of the area functional, since Ek ↓ 0, we conclude the following
inequalities for every s ∈ [5/2, 3]:

∫

Kk∩B+
k,s

|Df+
k |2
2

+

∫

Kk∩B−

k,s

|Df−
k |2
2

≤ (1 + C E2β
k ) eTk

(Kk ∩Bs)

≤ (1 + C E2β
k )

(

eTk
(Bs)− 5 c2Ek

)

(5.41)

≤ eTk
(Bs)− 4c2Ek.(5.42)

Our aim is to show that (5.41) contradicts the minimizing property of Tk. To
construct a competitor we write f±

k (x) =
∑

i

�
(f±

k )i(x)
�
and denote by (f±

k )′′i (x)
the ûrst n̄ components of the point (f±

k )i(x). This induces a
(
Q− 1

2

)
valued map

(f±
k )′′ :=

∑

i

�
(f±

k )′′i (x)
�
, namely a pair of maps taking values, respectively, in

AQ(R
n̄) and AQ−1(R

n̄). Observe that, since (f±
k )i(x) are indeed point of the

manifold Σk, then

f±
k (x) =

∑

i

�(
(f±

k )′′i (x),Ψk(x, (f
±
k )′′i (x))

)�
.

Moreover, by (5.41), the fact that Lip(f±
k ) ≤ CEβ

k and |B3 \Kk| ≤ CE1−2β
k gives

(5.43) Dir(f+
k ) + Dir(f−

k ) ≤ CEk .

Let ((ψk)
1(x′), (ψk)

′′(x′)) be the ûrst n̄ + 1 components of the map ψ whose

graph gives Γk. We consider the
(
Q− 1

2

)
valued map (g+k , g

−
k ) with g

±
k :=E

− 1
2

k (f±
k )′′

with interface (γk, ϕk) where

γk = {xm = (ψk)
1(x′)} and ϕk(x

′) = E
− 1

2

k (ψk)
′′(x′).

By assumption (5.38), denote by γ the plane {xm = 0} ⊂ π0, we have that
(γk, ϕk) → (γ, 0) in C1.

For each k we let Φk be a diffeomorphism which maps B3 onto itself and γk∩B3

onto γ ∩ B3. Clearly this can be done so that ‖Φk − Id‖C1 → 0. Moreover, given
the convergence of γk to γ = {xm = 0}, it is not difficult to see that we can require
the property Φk(∂Br) = ∂Br for every r ∈ [2, 3] (provided k is large enough)4

4A simple procedure to define the map on each sphere ∂Br is the following. Consider the
north and south poles P±

r = (0, . . . , 0, r). On each great circle Cr passing through P+
r and P−

r

consider the corresponding half circles connecting P±
r . Each have exactly one intersection with,

respectively, {xm = 0} and γk. We then map both half circles onto themselves by keeping the
map an identity around the poles and moving the intersections with γk to the intersections with
{xm = 0}. If we use polar coordinates on the circle Cr so that the north and south poles are given
by ±π

2
, we then can assume that one half circle is parametrized by [−π

2
, π
2
]: we seek a map which

is the identity around ±π
2

and which maps a small given α in 0. Consider then a bump function

λ which is supported in (−1, 1) and identically 1 on (− 1
2
, 1
2
): an explicit formula for such a map

is

θ �→ θ(1− λ(θ)) + λ(θ)(θ − α) .
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Furthermore we have that
∥
∥ϕk ◦ Φ−1

k

∥
∥
C1(B3)

→ 0 so we can choose κk ∈ C1(B3)

with κk = ϕk ◦ Φ−1
k on γ and ‖κk‖C1(B3)

→ 0. Now deûne the
(
Q− 1

2

)
valued

maps

ĝ±k (x) :=
∑

i

�
(g±k )i ◦ Φ−1

k (x)− κk(x)
�
.

We observe that (ĝ+k , ĝ
−
k ) is a

(
Q− 1

2

)
valued map with interface (γ, 0) and by

straightforward computations

Dir(ĝ±k ,Φ
−1
k (A) ∩B±)

= (1 + o(1))
(
Dir(g+k , A ∩B±

k ) + Dir(g−k )
)
+ o(1)(5.44)

for all measurable A ⊂ B3 where o(1) is independent of the set A. From (5.43)
we conclude that the Dirichlet energy of (ĝ+k , ĝ

−
k ) is uniformly bounded. By the

Poincaré inequality and since the maps collapse at their interfaces, their L2 norms
are uniformly bounded as well. By compactness we can ûnd a subsequence (not
relabeled) and a

(
Q− 1

2

)
valued map (g+, g−) with interface (γ, 0) such that
∥
∥G(ĝ±k ◦ Φ−1

k , g±)
∥
∥
L2(B±

3 )
→ 0

and

Dir(g+) + Dir(g−) ≤ lim inf
k→∞

(Dir(ĝ+k ) + Dir(ĝ−k ))

= lim inf
k→∞

(Dir(g+k ) + Dir(g−k )) .

Up to extracting a subsequence, we can assume that |Dĝ±k |⇀G± weakly in L2(B3).
One can then easily check, see for instance the proof of [14, Proposition 4.3], that

|Dg±| ≤ G±.

In particular, since |B3 \Kk| → 0, we deduce that for every s ∈ (0, 3):

Dir(g±, B±
s ) ≤ lim inf

k→∞

∫

B±
s ∩Φk(Kk)

(G±)2

≤ lim inf
k→∞

Dir(ĝ±k , B
±
s ∩ Φk(Kk)) ≤ lim inf

k→∞
Dir(g±k , B

±
s ∩Kk)

(5.45)

where in the last inequality we have used (5.44).
Let ε > 0 be a small parameter to be chosen later, we apply Lemma 5.8

to (g+, g−)|B3
with ε to produce a Lipschitz functions (g+ε , g

−
ε ) satisfying all the

estimates there.
We would like to use Lemma (4.9) to interpolate between (ĝ+k , ĝ

−
k ) and (g+ε , g

−
ε )

(note that both have interface (γ, 0)). However we would like the functions (ĝ+k , ĝ
−
k )

not to concentrate too much energy in the transition region. To this end let us deûne
the Radon measures

μk(A) =

∫

A∩B+
3

|Dĝ+k |2 +
∫

A∩B−

3

|Dĝ−k |2 A ⊂ B3.

Up to the extraction of a subsequence we can assume that μk
∗
⇀μ for some Radon

measure μ. We now choose r ∈ (5/2, 3) and a subsequence, not relabeled, such that

(A) μ(∂Br) = 0

(B) M(〈Tk − (Gf+
k
+Gf−

k
), |p|, r〉) ≤ CE1−2β

k , where the map |p| is given by

π0 × π⊥
0 � (x, y) → |x|.
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Indeed (A) is true for all but countably many radii while (B) can be obtained
from the estimate (5.12) through the combination of Fatou’s Lemma and Fubini’s
Theorem. In particular, by (A) and the properties of weak convergence of measures,
we have

lim sup
s→r

lim sup
k→∞

∫

B+
r \B+

s

|Dĝ+k |2 +
∫

A∩B−
r \B−

s

|Dĝ−k |2

≤ lim sup
s→r

μ(Br \Bs) = 0.

Hence, given r ∈ (5/2, 3) satisfying (A) and (B) above, we can now choose s ∈
(5/2, 3) such that

(5.46) lim sup
k→∞

∫

B+
r \B+

s

|Dĝ+k |2 +
∫

B−
r \B−

s

|Dĝ−k |2 ≤ c2
3
.

We now apply, for each k, Lemma (4.9) to connect the functions (ĝ+k , ĝ
−
k ) and

(g+ε , g
−
ε ) on the annulus Br \ Bs . This gives sets Bs ⊂ V k

λ,ε ⊂ W k
λ,ε ⊂ Br and a

(
Q− 1

2

)
valued interpolation map (ζ+k,ε, ζ

−
k,ε) with

∫

(Wk
λ,¸)

±\V k
λ,¸

|Dζ±k,ε|2

≤ Cλ

∫

(Wk
λ,¸)

±\V k
λ,¸

|Dĝ±k |2 + |Dg±ε |2 +
C

λ

∫

(Wk
λ,¸)

±\V k
λ,¸

G(ĝ±k , g±ε )2

≤ Cλ

∫

(Wk
λ,¸)

±\V k
λ,¸

|Dĝ±k |2 + |Dg±ε |2

+
C

λ

∫

(Wk
λ,¸)

±\V k
λ,¸

(
G(ĝ±k , g±)2 + G(ĝ±, g±ε )2

)

Hence

lim sup
λ→0

lim sup
ε→0

lim sup
k→∞

∫

(Wk
λ )±\V k

λ

|Dζ±k,ε|2 = 0.

Thus we can ûnd λ, ε > 0 sufficiently small such that

(5.47) lim sup
k→∞

∫

(Wk
λ,¸)

±\V k
λ,¸

|Dζ±k,ε|2 <
c2
3
.

Moreover, up to further reduce ε, we can also assume that

(5.48)

∫

B±
r

|Dg±ε |2 ≤
∫

B±
r

|Dg±|2 + c2
6
.

Next we deûne Lipschitz-continuous function on Br with interface (γ, 0) by (note
that since λ and ε are ûxed we drop the dependence on those parameters for the
sake of readability)

(5.49) ĥ±k :=

§

⎪̈

⎪©

ĝ±k on Br \ (W k
λ,ε)

±

ζ±k,ε on (W k
λ,ε)

± \ V k
λ

g±ε on (V k
λ,ε)

±.
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Let us then consider the functions h±k :=
∑

i

�
(ĥ±k )i ◦ Φk + κk ◦ Φk

	
, deûned on

B±
k,3. The resulting

(
Q− 1

2

)
valued map (h+k , h

−
k ) has interface (γk, ϕk) and satisûes

lim inf
k→∞

(

Dir(h+k , B
+
k,r) + Dir(h−k , Bk,rr

−)
)

= lim inf
k→∞

(

Dir(ĥ+k , B
+
r ) + Dir(ĥ−k , B

−
r )

)

≤ Dir(g+ε , B
+
r ) + Dir(g−ε , B

−
r )

+ lim sup
k→∞

(

Dir(ζ+k , (W
k
λ,ε)

+ \ V k
λ,ε) + Dir(ζ−k , (W

k
λ,ε)

− \ V k
λ,ε)

)

+ lim sup
k→∞

(

Dir(ĝ+k , B
+
r \Bs) + Dir(ĝ−k , B

−
r \Bs)

)

≤ Dir(g+, B+
r ) + Dir(g−, B−

r ) + c2(5.50)

≤ lim inf
k→∞

(

Dir(ĝ+k , B
+
r ∩Kk) + Dir(ĝ−k , B

−
r ∩Kk)

)

+ c2(5.51)

where in the third inequality we have used (5.47), (5.48), (5.46), and in the fourth
inequality we have used (5.45).

We thus conclude that, for inûnitely many k,

EkDir(h+k , B
+
k,r) + EkDir(h−k , B

−
k,r)

≤ Dir((f+
k )′′, B+

k,r ∩Kk) + Dir((f−
k )′′, B−

k,r ∩Kk) + 2c2Ek .(5.52)

Let us consider the functions

v±k (x) := E
1/2
k h±k (x)

and

w±
k (x) :=

∑

i

�(
v±k (x),Ψk(x, v

±
k (x))

)�
.

Observe that w±
k |∂Br

= f±
k and Lip(w±

k ) ≤ CEβ
k .

We are now ready to construct our competitor currents to test the minimality
of the sequence Tk. First of all, by the isoperimetric inequality, there is a current
Sk supported in Σk such that

∂Sk = 〈Tk − (Gf+
k
+Gf−

k
), |p|, r〉

and M(Sk) ≤ C(E1−2β
k )

m
m−1 = o(Ek) .

where we have used that β < 1
4m . Let Zk = Gw+

k
Cr +Gw−

k
Cr +Sk. We easily

see that the boundary of Zk matches that of Tk Cr and that the support of Zk is
contained in Σk. Thus it is an admissible competitor and we must have

M(Zk) ≥ M(Tk Cr) .

On the other hand, using the Taylor expansion of the mass, the bound on Lip(h±k )
and the bound on M(Sk), we easily conclude that

(5.53) Dir(w+
k , B

+
k,r) + Dir(w−

k , B
−
k,r) ≥ 2eTk

(Br)− o(Ek) .
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We next compute

Dir(w+
k , B

+
k,r)−Dir(f+

k , B
+
k,r ∩Kk)

=

∫

B+
k,r

|Dv+k |2 −
∫

B+
k,r∩Kk

|D(f+
k )′′|2

︸ ︷︷ ︸

I1

+

∫

B+
k,r

|D(Ψk(x, v
+
k ))|2 −

∫

B+
k,r

|D(Ψk(x, (f
+
k )′′))|2

︸ ︷︷ ︸

I2

+

∫

B+
k,r\Kk

|D(Ψk(x, (f
+
k )′′))|2

︸ ︷︷ ︸

I3

.

By (5.52) we already know that I1 ≤ 2c2Ek for inûnitely many k. For what concerns
I2, we proceed as follows. First we write

I2 =
∑

i

∫

B+
k,r

(D(Ψk(x, v
+
k (x))i −D(Ψk(x, (f

+
k )′′(x))i) :

(D(Ψk(x, v
+
k (x))i +D(Ψk(x, (f

+
k )′′(x))i).

Next, recalling the chain rule [13, Proposition 1.12], we get
∣
∣D(Ψk(x, v

+
k (x))i +D(Ψk(x, (f

+
k )′′(x))i

∣
∣

≤ C‖DxΨk‖0 + C‖DuΨk‖0(Lip(vk) + Lip((f+
k )′′)) = CE

1/2
k .

Using the latter inequality and the chain rule again, we obtain

I2 ≤CE1/2
k

∫

B+
k,r

(∑

i

|DxΨk(x, (v
+
k )i(x))−DxΨk(x, ((f

+
k )′′)i(x))|

+ ‖DuΨk‖0
(
|Dv+k |+ |D(f+

k )′′|
) )

≤ C E
1/2
k ‖D2Ψk‖0

∫

B+
k,r

G(v+k , (f+
k )′′) + C Ek

∫

B+
k,r

(
|Dv+k |+ |D(f+

k )′′|
)

≤ C E
3/2
k .(5.54)

Finally,

I3 ≤ C‖DΨk‖2∞|B3 \Kk|+ C‖DuΨk‖2∞
∫

Br

|(Df+
k )′′|2 ≤ CE2−2β

k + CE2
k.

Hence I1 + I2 + I3 ≤ 2c2Ek + o(Ek). Since an analogous estimates holds replacing
+ with −, we conclude that

Dir(w+
k , B

+
k,r) + Dir(w−

k , B
−
k,r)

≤ Dir(f+
k , B

+
k,r ∩Kk) + Dir(f−

k , B
−
k,r ∩Kk) + 4c2Ek + o(Ek) .(5.55)

However, the latter inequality combined with (5.41) implies

(5.56) Dir(w+
k , B

+
k,r) + Dir(w−

k , B
−
k,r) ≤ 2eTk

(Br)− c2Ek + o(Ek) .

Clearly (5.53) and (5.56) are incompatible for k large enough. This completes the
proof of the ûrst part of the theorem.
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5.3.2. Proof of (5.15), (5.16), and (5.17). We again argue by contradiction.
Assume the second part of the theorem is false for some η∗. We then have again
a sequence of area-minimizing currents Tk and submanifolds Σk, Γk satisfying the
properties (i), (ii) and (iii) of the previous step, which we recall here for the reader’s
convenience together with the fourth contradiction assumption. More precisely:

(i) The cylindrical excesses satisfy the estimate

(5.57) Ek := E(Tk,C4(0), π0) =
1

2ωm

∫

Cr(0,π0)

| �Tk − �π0|2 d‖Tk‖ ≤ 1

k
.

(ii) Γk are smooth submanifolds of dimension m − 1 and Σk ⊂ Rm+n are
smooth submanifolds of dimension m+ n̄ = m+ n− l containing Γk. Σk

and Γk are graphs of entire functions Ψk : Rm+n̄ → R
l and ψk : Rm−1 →

Rn̄+1+l satisfying the bounds

‖Ψk‖C2(B8)
≤ C(E

1/2
k +Ak) ≤ CE

1/2
k(5.58)

‖ψk‖C2(B8)
≤ CAk ≤ C

k
E

1/2
k .(5.59)

(iii) Assumption 5.2 holds for each Tk.

(iv) The Eβ
k -Lipschitz approximations (f+

k , f
−
k ) fail to satisfy one among the

estimates (5.15), (5.16) and (5.17) for any choice of the function κ.

As in the previous step we write f±
k (x) =

∑

i

�
(f±

k )i(x)
�
and denote by (f±

k )′′i (x) the
ûrst n̄ components of the point (f±

k )i(x). This induces a
(
Q− 1

2

)
valued function

(f±
k )′′ :=

∑

i

�
(f±

k )′′i (x)
�
with values in AQ(R

n)(Rn̄) and AQ−1(R
n̄). Observe that,

since (f±
k )i(x) are indeed points of the manifold Σk, then

f±
k (x) =

∑

i

�(
(f±

k )′′i (x),Ψk(x, (f
±
k )′′i (x))

)�
.

We keep using the notation of the previous step. In particular we let

((ψk)
1(x′), (ψk)

′′(x′))

be the ûrst n̄+1 components of the graph map of Γk and ϕk = E
− 1

2

k (ψk)
′′(x′). We

consider the
(
Q− 1

2

)
valued map (g+k , g

−
k ) deûned by

g±k := E
− 1

2

k (f±
k )′′ ,

with interface (γk, ϕk). For each k we let Φk be a diffeomorphism which maps B3

onto itself and γk ∩ B3 onto γ ∩ B3. Again this is done in such a way that ‖Φk −
Φ‖C1 → 0, where Φ is the identity map. Furthermore, since

∥
∥ϕk ◦ Φ−1

k

∥
∥
C1(B3)

→ 0,

we can choose κk ∈ C1(B3) with κk = ϕk ◦ Φ−1
k on γ and ‖κk‖W 1,2(B3)

→ 0. Now

deûne the
(
Q− 1

2

)
valued maps

ĝ±k (x) :=
∑

i

�
(g±k )i ◦ Φ−1

k (x)− κk(x)
�
.

As in the previous step we can ûnd a subsequence (not relabeled) and a
(
Q− 1

2

)

valued map (g+, g−) with interface (γ, 0) such that
∥
∥G(ĝ±k , g±)

∥
∥
L2(B±

3 )
→ 0. We

next claim that

(A) The convergence of ĝ±k to g± is strong in W 1,2(B5/2), namely

lim
k→∞

(Dir(ĝ+k , B
+
5/2) + Dir(ĝ−k , B

−
5/2)) = Dir(g+, B+

5/2) + Dir(g−, B−
5/2) .
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(B) g± is a
(
Q− 1

2

)
-minimizer.

Assuming that (A) and (B) are proved, from Theorem 4.5 we would then infer the

existence of a classical harmonic function ĥ which vanishes identically on {xm = 0}
and such that g+ = Q �h� and g− = (Q− 1) �h�. Setting hk := E

1/2
k ĥ and κk(x) :=

(hk(x),Ψk(x, hk(x))) we would then conclude that
∫

B+
k,5/2

G(f+
k , Q �κk�)2 +

∫

B+
k,5/2

(

|Df+
k | −

√

Q|Dκk|
)2

= o(Ek),

∫

B−

k,5/2

G(f−
k , (Q− 1) �κk�)2 +

∫

B−

k,5/2

(

|Df−
k | −

√

(Q− 1)|Dκk|
)2

= o(Ek),

∫

B±

k,5/2

|D(η ◦ f±
k )−Dκk|2 = o(Ek).

But these estimates are incompatible with (iv) above. Hence, at least one between
(A) and (B) needs to fail. As in the previous section we will use this to contradict
the minimality of Tk. Note that in both cases there exists a

(
Q− 1

2

)
valued function

(ḡ+, ḡ−) with interface (γ, 0), γ = {xm = 0}, and a positive constant c3 > 0, such
that

(5.60) Dir(ḡ+, B+
s ) + Dir(ḡ−, B−

s ) ≤ lim inf
k→∞

Dir(ĝ+k , B
+
s ) + Dir(ĝ−k , B

−
s )− 2c3

for all s ∈ (5/2, 3). Indeed this is true with (ḡ+, ḡ−) = (g+, g−) if (A) fails, while
if (B) fails we choose (ḡ+, ḡ−) to be a

(
Q− 1

2

)
-minimizer with boundary data g±

on ∂B5/2 extended to be equal to g± on B3 \ B5/2. We can now argue exactly as

in the previous step to ûnd a radius r ∈ (5/2, 3) and functions ĥ±k such that

M(〈Tk − (Gf+
k
+Gf−

k
), |p|, r〉) ≤ CE1−2β

k

and, arguing as we have done for (5.50),

lim inf
k→∞

Dir(h+, B+
k,r) + Dir(h−, B−

k,r) ≤ Dir(ḡ+, B+
r ) + Dir(ḡ−, B−

r ) + c3(5.61)

≤ lim inf
k→∞

Dir(g+, B+
k,r) + Dir(g−, B−

k,r)− c3.(5.62)

As in the previous section we consider v±k (x) := E
1/2
k h±k (x) and

w±
k (x) :=

∑

i

�(
v±k (x),Ψk(x, v

±
k (x))

)�

and observe that w±
k |∂Br

= f±
k . We then construct the same competitor currents

to test the minimality of Tk. First we consider a current Sk supported in Σk such
that

∂Sk = 〈Tk − (Gf+
k
+Gf−

k
), |p|, r〉 and M(Sk) ≤ C(E1−2β

k )
m

m−1 = o(Ek) ,

Then we deûne, as before, Zk := Gw+
k

Cr + Gw−

k
Cr + Sk, for which we can

verify that

(5.63) M(Zk) ≥ M(Tk Cr) .

By the result of the previous section, we know that

(5.64) 2eTk
(Br) = Dir(f+

k , B
+
k,r) + Dir(f−

k , B
−
k,r) +O(ηkEk) .
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Observe that now we can choose ηk → 0 as k → ∞. On the other hand, using the
bound on M(Sk) and Taylor expansion we infer

(5.65) 2eZk
(Br) = Dir(w+

k , B
+
k,r) + Dir(w−

k , B
−
k,r) + o(Ek) .

Arguing as in the previous section (see (5.54)) and relying on (5.62) we also have
(5.66)
Dir(w+

k , B
+
k,r) + Dir(w−

k , B
−
k,r) ≤ Dir(f+

k , B
+
k,r) + Dir(f−

k , B
−
k,r)− c3Ek + o(Ek) .

Clearly (5.63), (5.64), (5.65) and (5.66) are in contradiction for k large enough,
which completes the proof.
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CHAPTER 6

Decay of the excess and uniqueness of tangent

cones

In this chapter we prove the decay of the excess at totally collapsed points for
area minimizing currents. As a consequence we will conclude that the tangent cone
at each such point is in fact unique.

Definition 6.1. Let T be an integral current of dimension m in R
m+n. We

deûne the excess E(T,Br(p), π) of T in the ball Br(p) with respect to the (oriented)
plane π as

(6.1) E(T,Br(p), π) :=
1

2ωmrm

∫

Br(p)

|�T (x)− �π|2 d‖T‖(x) .

If T is area minimizing in a Riemannian manifold Σ ⊂ Rm+n, we then deûne the
spherical excess of T at any ball Br(p) centered at some point p ∈ spt(T ) ⊂ Σ as

(6.2) E(T,Br(p)) := min{E(T,Br(p), π) : π ⊂ TpΣ} .

We underline that π is constrained to be a subset of TpΣ, so probably a more
appropriate, yet cumbersome, notation would be EΣ(T,Br(p)). Moreover we let
h(T,Br(p)) be the minimum of h(T,Br(p), π) while π ⊂ TpΣ runs among those
planes which optimize the right hand side of (6.2).

Before stating the main theorem of this chapter we need to introduce a modiûed
excess function for boundary points, where we constrain the <minimal= reference
planes to contain TpΓ.

Definition 6.2. Let T , Σ and Γ be as in Assumption 1.5 and assume that
p ∈ Γ. We deûne the modified excess in Br(p) as

(6.3) E�(T,Br(p)) := min {E(T,Br(p), π) : TpΓ ⊂ π ⊂ TpΣ} .

With this notation, the main result of this chapter is the following:

Theorem 6.3. Let Γ be a C2 (m−1)-dimensional submanifold of a C2 (m+n̄)-
dimensional submanifold Σ ⊂ Rm+n and consider an area minimizing current T
in Σ with the property that ∂T U = �Γ� for some open set U . If p ∈ Γ ∩ U is a
collapsed point with density Θ(T, p) = Q− 1

2 , then there exists r > 0 such that:

(a) Each q ∈ Γ ∩Br(p) is a collapsed point for T with density Q− 1
2 ;

(b) At each q ∈ Γ ∩ Br(p) there is a unique flat tangent cone Q �π(q)+� +
(Q − 1) �π(q)−�, where π(q) ⊂ TqΣ is an oriented m-dimensional plane
containing TqΓ;

75
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76 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

(c) For each ε > 0 there is a constant C = C(ε) with the property that

E�(T,Bρ(q)) ≤ E(T,Bρ(q), π(q))

≤ C
(ρ

r

)2−2ε

E�(T,B2r(p)) + Cρ2−2εr2εA2(6.4)

for all q ∈ Γ ∩Br(p) and for all ρ ∈]0, r[;
(d) For each ε > 0 there is a constant C = C(ε) such that

(6.5) |π(q)− π(q′)| ≤ C(rε−1E�(T,B2r(p))
1/2 +Arε)|q′ − q|1−ε

∀q, q′ ∈ Γ ∩Br(p);
(e) There is a constant C such that

(6.6) h(T,Bρ(q), π(q)) ≤ C(r−1E�(T,B2r(p)) +A)
1/2ρ

3/2

for all q ∈ Γ ∩Br(p) and for all ρ ∈]0, r2 [.
Before coming to the proof we state an important corollary of the theorem

which will be used often in the remaining chapters (for a geometric illustration of
the conclusions we refer to Figure 6.1).

Corollary 6.4. Let Γ,Σ, T and p be as in Theorem 6.3, assume r = 2σ is
a radius for which all the conclusions of Theorem 6.3 hold, set E = E�(T,Br(p)).
Furthermore let π be an optimal plane for the right hand side of (6.3) and π(q)
be the tangent plane to T in q as in conclusion (b) of Theorem 6.3. If we denote
by p,p⊥,pq and p⊥

q respectively the orthogonal projections onto π, π⊥, π(q) and

π(q)⊥, then

|π(q)− π| ≤ C(E +Ar),(6.7)

spt(T ) ∩Bσ(q) ⊂ {x : |p⊥(x− q)| ≤ C(E +Ar)
1/2|x− q|}(6.8)

for all q ∈ Γ ∩Bσ(p) and

spt(T ) ∩Bσ(q) ⊂ {x : |p⊥
q (x− q)| ≤ C(r−1E +A)

1/2|x− q| 32 }(6.9)

for all q ∈ Γ ∩Bσ(p).

π(q)

π

Figure 6.1. The region delimited by the thick curved lines is the
right hand side of (6.9), whereas the cone delimited by the thick
dashed straight lines is the right hand side of (6.8).
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6.1. HARDT–SIMON HEIGHT BOUND 77

6.1. Hardt–Simon height bound

In this section we show the validity, at the boundary, of the classical interior
height bound, under Assumption 5.2. The argument follows an important idea of
Hardt and Simon in [27] and takes advantage of an appropriate variant of Moser’s
iteration on varifolds, due to Allard, combined with a crucial use of the remainder
in the monotonicity formula.

Theorem 6.5. There are positive constants ε = ε(Q,m, n̄, n) and

C0 = C0(Q,m, n̄, n)

with the following property. Let T , C4r(x), Σ, Γ and π0 := Rm × {0} be as in
Assumption 5.2 and set

E := E(T,C4r(x)) , a := ‖AΓ‖0 and ā := ‖AΣ‖0 .
If E + a+ ā ≤ ε, then

h(T,C2r(x), π0) ≤ C0(E
1/2 + a

1/2r
1/2 + ār)r .

We will split the proof of the theorem in the following two lemmas, where again
the corresponding geometric constants C0 depend only upon m, n̄, n and Q.

Lemma 6.6. Under the assumptions of Theorem 6.5 there is a constant C0 such
that

sup
z∈spt(T )∩C2r(x)

|p⊥
π0
(z − x)|2 ≤ C0r

−m

∫

C3r(x)

|p⊥
π0
(z − x)|2 d‖T‖(z)

+ C0(a
2 + ā2)r4 .(6.10)

Lemma 6.7. Under the assumptions of Theorem 6.5 there is a constant C0 such
that

(6.11) r−m

∫

C3r(x)

|p⊥
π0
(z − x)|2 d‖T‖(z) ≤ C0Er

2 + C0ā
2r4 + C0ar

3 .

After rescaling and translating we can assume in all our statements that r = 1
and x = 0 . Moreover, we use p and p⊥ in place of pπ0

and p⊥
π0
.

6.1.1. Proof of Lemma 6.6. The estimate is a classical one in Allard’s inte-
rior regularity theory. The proof in our setting follows from a minor modiûcation
of the arguments, which we however report for the reader’s convenience.

We ûx a system of coordinates so that π0 = {y : ym+1 = . . . = ym+n = 0} and
ûx i ∈ {m + 1, . . . ,m + n}. We ûx a constant C0, to be chosen in a moment, and
consider the function

f(x) := max{xi − C0a+ C0ā|x|2, 0} .
We wish to show the estimate

(6.12) sup
z∈spt(T )∩C2

f2(z) ≤ C1

∫

C3

f2(z) d‖T‖(z) ,

from which we will get (6.10) simply summing up all the corresponding inequalities
when taking i ∈ {m+ 1, . . . ,m+ n} and −yi in place of yi.

In fact we let r+,δ be a suitable convex smoothing of the function R � t �→
r+(t) := max{t, 0}, with the additional properties that r+,δ vanishes on the negative
half line and equals the identity for t > δ: then we will show the inequality (6.12)
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78 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

for the function f(x) := r+,δ(xi − C0a + C0ā|x|2). Since the constant C1 will not
depend on δ, we will achieve the correct inequality by simply letting δ ↓ 0. For the
rest of this proof f denotes such a ûxed smoothing of max{xi −C0a+C0ā|x|2, 0}.

Observe that, by choosing C0 sufficiently large we achieve that f vanishes on Γ
and, according to [2, Section 7.5], that f is subharmonic1 on the varifold induced
by T .

We next show that (6.12) holds under these two assumptions. Note that Allard
in [2, Section 7.5] proves precisely this statement, but we cannot use [2, Theorem
7.5(6)] directly because the constant in the inequality depends upon the distance
of the support of f and the boundary Γ: the purpose of the following argument is
to show that in fact such dependence is absent in our case.

We denote byCk the decreasing sequence of cylindersC2+2−k . We then observe
that the (short) paragraph proving [2, Lemma 7.5(5)] applies to our situation and
implies the inequality

(6.13)

∫

Ck+1

|∇Th|2d‖T‖ ≤ 22k+2

∫

Ck

h2d‖T‖

for any subharmonic function h which vanishes on a neighborhood of Γ. We next
use the Sobolev inequality on stationary varifolds, namely from [2, Theorem 7.3]
we know that, for ā smaller than a positive geometric constant,

(6.14)

(∫

Ck

(hϕ)
m

m−1 d‖T‖
)m−1

m

≤ C0

∫

Ck

|∇T (hϕ)|

whenever ϕ is a smooth function compactly supported in Ck (remember that h
vanishes in a neighborhood of Γ).

Following the classical scheme of Moser’s iteration, cf. [2, Theorem 7.5(6)], we
introduce β := m

m−1 and

I(k) :=

(∫

C2k

f2βk

)1/βk

.

Next we ûx a cutoff ϕk identically equal to 1 on C2k+2, compactly supported in

C2k+1 and with |∇ϕk| ≤ C02
2k. Substituting h = f2βk

and ϕ = ϕk inside (6.14)
we then conclude

(6.15) I(k + 1)β
k ≤ C0

∫

C2k+1

|∇T (f
2βk

)|d‖T‖+ C02
2k

∫

C2k+1

f2βk

d‖T‖ .

Next we compute
∫

C2k+1

|∇T (f
2βk

)|d‖T‖ ≤ 2

∫

C2k+1

|∇T (f
βk

)|fβk |d‖T‖

≤ 2

(∫

C2k+1

|∇T (f
βk

)|2d‖T‖
)1/2 (∫

C2k+1

f2βk

d‖T‖
)1/2

.

1We recall that a function h is said to be subharmonic on the varifold induced by T if∫
∇Th · ∇Tϕd‖T‖ ≤ 0 ∀ϕ ∈ C1

c with ϕ ≥ 0,

where ∇Th is the orthogonal projection of ∇h on the tangent space to T (i.e., if v1, . . . , vm is an

orthonormal frame such that �T (x) = v1 ∧ . . . ∧ vm, then ∇Th =
∑

i
∂h
∂vi

vi).
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Now, since R+ � t �→ tβ
k

is C2, convex, and increasing, the function h := fβk

is
subharmonic (cf. [2, Lemma 7.5(4)]). Moreover it vanishes in a neighborhood of Γ.
From (6.13), we then conclude

(6.16)

∫

C2k+1

|∇T (f
2βk

)|d‖T‖ ≤ 22k+2

∫

C2k

f2βk

d‖T‖ .

Putting together (6.15) and (6.16), we then easily conclude

I(k + 1) ≤ Ck/βk

I(k) .

The estimate (6.12) follows from

sup
z∈spt(T )∩C2

f2(z) ≤ lim sup
k→∞

I(k) ≤ CI(0) .

6.1.2. Proof of Lemma 6.7. We follow here the proof of [39, Lemma 1.8]
(note that essentially the same idea was used in [27]). First of all, we let r = 4 and
s go to 0 in (3.5) to achieve

∫

B4

|x⊥|2
|x|m+2

d‖T‖(x) ≤ 4−m‖T‖(B4)− ωmΘ(T, 0) + Err1 + Err2 ,(6.17)

where

Err1 :=

∫ 4

0

ρ−m−1

∫

Bρ

|x⊥ · �HT (x)|d‖T‖(x) dρ

Err2 :=

∫ 4

0

ρ−m−1

∫

Bρ∩Γ

|x · �n(x)| dHm−1(x) dρ .

Straightforward computations2 show that |x · �n(x)| ≤ C0a|x|2 for x ∈ Γ and |x⊥ ·
�HT (x)| ≤ 1

8ρ |x⊥|2 + 2m2ρā2. Thus we can bound

Err2 ≤C0a

∫ 4

0

ρ1−mHm−1(Bρ ∩ Γ) dρ ≤ C0a

and

Err1 ≤1

8

∫ 4

0

1

ρm+2

∫

Bρ

|x⊥|2 d‖T‖(x) dρ+ 2m2ā2
∫ 4

0

‖T‖(Bρ)

ρm
dρ

≤1

2

∫

B4

|x⊥|2
|x|m+2

d‖T‖(x) + 2C0ā
2‖T‖(B4)

where in the last inequality we have used the monotonicity of ρ �→ eCρρ−m‖T‖(Bρ).
Plugging these two estimates in (6.17) and recalling that Θ(T, 0) ≥ Q− 1

2 we then
conclude

(6.18)

∫

B4

|x⊥|2
|x|m+2

d‖T‖(x) ≤ 4−m‖T‖(B4)− (Q− 1
2 )ωm + C0a+ C0ā

2‖T‖(B4) .

Next, by (5.4) and computations as in (5.29), we infer

(6.19) 4−m‖T‖(B4)−(Q− 1
2 )ωm = ωm

(
‖T‖(C4)
ωm4m − (Q− 1

2 )
)

≤ ωmE(T,C4)+C0a.

2Observe that |x⊥ · �HT (x)| ≤ 1
8ρ

|x⊥|2 + 2ρ| �HT (x)|2, while | �HT (x)| ≤ m‖AΣ‖0 ≤ ma by

(3.1).
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80 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

Hence we easily conclude from (6.18) that

(6.20)

∫

B4

|x⊥|2d‖T‖(x) ≤ C0(E + a+ ā2) .

Next, a straightforward computation gives

|z⊥|2 ≥ 1

2
|p⊥(z)|2 − |z|2|�T (z)− π0|2

for every z ∈ spt(T ). Integrating the latter inequality and inserting in (6.20) we
then conclude

(6.21)

∫

B4

|p⊥(z)|2d‖T‖(z) ≤ C0(E + a+ ā2) .

In order to complete the proof we need to show that spt(T ) ∩ C3 ⊂ B4, if
the parameter ε in Theorem 6.5 is chosen sufficiently small. Arguing by contra-
diction, if this were not the case there would be a sequence of currents Tk in C4

and submanifolds Γk, Σk satisfying all the requirements of Assumption 5.2 with
E(Tk,C4)+ ‖AΓk

‖0 + ‖AΣk
‖0 → 0 but with the additional property that there is a

point pk ∈ spt(Tk)∩C3 with |pk| ≥ 4. Note however that, under these assumptions,
the mass of Tk in C4 converges to (Q − 1

2 )4
mωm and Tk converges, up to subse-

quences, to a current T∞ of the form Q
�
C4 ∩ π+

0

�
+ (Q − 1)

�
C4 ∩ π−

0

�
. On the

other hand this means that, for some geometric constant r > 0, Br(pk) has positive
distance from the plane π0 and is contained in C4. Let U be an open set which
contains the closure of C4 ∩ π0 and has empty intersection with Br(pk). Then

M(Tk) ≥ ‖Tk‖(U) + ‖Tk‖(Br(pk)) .

Letting k → ∞ and using the semicontinuity of the mass we conclude
(

Q− 1

2

)

4mωm ≥ ‖T∞‖(U) + lim sup
k→∞

‖Tk‖(Br(pk)) .

On the other hand ‖T∞‖(U) = (Q− 1
2 )4

mωm and so

lim
k→∞

‖Tk‖(Br(pk)) = 0 .

Since pk ∈ spt(Tk) and Br(pk) ⊂ C4 \ Γ, for k large enough we contradict the
interior monotonicity formula.

6.2. Excess decay

The core of Theorem 6.3 is in fact the decay estimate (6.4), which we prove in
this section for the modiûed excess function introduced in Deûnition 6.2, under a
suitable smallness assumption.

Theorem 6.8. For any ε > 0 there is an ε0 = ε0(ε,Q,m, n) > 0 and a M0 =
M0(ε,Q,m, n) with the following property. Let T , Σ and Γ be as in Assumption
1.5 and assume that

(i) A2σ2 + E = (‖AΣ‖+ ‖AΓ‖)2σ2 +E�(T,B4σ(q)) < ε0;
(ii) Θ(T, x) ≥ Q− 1

2 for all x ∈ Γ ∩B4σ(q);

(iii) q ∈ Γ and ‖T‖(B4σ(q)) ≤ (Q− 1
4 )ωm(4σ)m.

Then, if we set e(t) := max{E�(T,Bt(q)),M0A
2t2} we have

(6.22) e(σ) ≤ max{2−4+4εe(4σ), 2−2+2εe(2σ)} .
The rest of this section is devoted to the proof of Theorem 6.8.
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6.2.1. Preliminary considerations. Without loss of generality by scaling,
translating and rotating, we can assume σ = 1, q = 0, E�(T,B2) = E(T,B2, π0),
where π0 = R

m × {0} ⊂ T0Σ = R
m × R

n × {0}, and T0Γ = R
m−1 × {0}. We also

recall that, if we do not specify the center of a ball or a cylinder, we implicitly
assume that such center is the origin.

We start by observing that, without loss of generality, we can assume

(6.23) E�(T,B2) ≥ 2−mM0A
2,

and

(6.24) E�(T,B2) ≥ 2−4−mE�(T,B4).

Indeed, note that

e(1) = max{M0A
2,E�(T,B1)} ≤ max{M0A

2, 2mE�(T,B2)} .
So, if (6.23) fails, then

e(1) ≤ M0A
2 = 2−2(22M0A

2) ≤ 2−2e(2) ,

whereas, if (6.24) fails, then

e(1) ≤ max{M0A
2, 2−4E�(T,B4)} = 2−4e(4) .

Hence in both cases the conclusion would hold trivially.
Summarizing, under assumptions (6.23) and (6.24), we need to show the decay

estimate:

(6.25) E�(T,B1) ≤ 22ε−2E�(T,B2) .

Let us now ûx a positive η < 1, to be chosen sufficiently small later, and
consider the cylinder U := B4−η(0, π0) + Bn√

η(0, π
⊥
0 ), which by abuse of notation

we denote by B4−η ×Bn√
η. If ε0 is sufficiently small, we claim that

spt(T ) ∩ ∂U ⊂ ∂B4−η ×Bn√
η,(6.26)

B4−η ∩ spt(T ) ⊂ U .(6.27)

Otherwise, arguing by contradiction, we would have a sequence of currents Tk
satisfying the assumptions of the theorem with ε0 = 1

k , but violating either (6.26)
or (6.27). Then Tk would converge, in the sense of currents, to

T∞ := Q′ �B+
4

�
+ (Q′ − 1)

�
B−

4

�
,

where B±
4 = B4(0, π0) ∩ {±xm > 0} and Q′ is a positive integer. By the area-

minimizing property, this implies that the supports of Tk converge to either B4 (if

Q′ > 1) or B
+

4 (if Q′ = 1) in the Hausdorff sense in every compact subset of B4.

This would be a contradiction because both B4−η \ U and ∂U \ (∂B4−η ×Bn√
η) are

compact subsets of B4 with positive distance from B4. We have therefore proved
(6.26) and (6.27).

We remark further that we must necessarily have ‖T∞‖(B4) ≤ (Q − 1
4 )ωm4m

by assumption (iii). Hence, by the monotonicity formula Q′ − 1
2 = Θ(T∞, 0) ≤

Q− 1
4 . On the other hand, by assumption (ii) and the upper semicontinuity of the

density of area-minimizing currents under convergence of the latter, we must have
Θ(T∞, 0) ≥ Q− 1

2 . Since Q
′ is an integer we conclude Q′ = Q. Observe also that,

by the area-minimizing property, ‖Tk‖(A) → ‖T∞‖(A) for every compact subset A
of B4. Thus, for ε0 is sufficiently small, we have that:
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(A) the mass of T in the ball Br is, for any radius 1 ≤ r ≤ 4− η
2 and up to a

small error,
(
Q− 1

2

)
ωmr

m .

Next, let us deûne T0 := T U . Observe that (6.26) and (6.27) imply:

(B) ∂T0 C4−η = �Γ ∩C4−η�;
(C) T B4−η = T0 B4−η.

Choose a plane π ⊂ T0Σ which contains T0Γ and such that

E(T,B4, π) = E�(T,B4) .

Let us observe that (since π0 is the optimal plane for E�(T,B2)):

|π − π0|2‖T‖(B2) =

∫

B2

|π − π0|2 d‖T‖

≤ 2

∫

B2

|�T − π0|2 d‖T‖+ 2

∫

B2

|�T − π|2 d‖T‖

≤ 2 · 2mωmE�(T,B2) + 2 · 4mωmE�(T,B4)

≤ CE�(T,B4) .

Moreover

E(T0,C4−η) ≤ E(T,B4− η
2
, π0)

≤ 2E�(T,B4− η
2
) + 2

ωm4m |π − π0|2‖T‖(B4− η
2
)

≤ 2E�(T,B4− η
2
) + C|π − π0|2‖T‖(B2) ≤ CE�(T,B4) ,(6.28)

where in the third inequality we have used (A), namely that the mass of T in a ball
of radius r ≤ 4− η

2 is comparable to
(
Q− 1

2

)
ωmr

m. Thus

(D) E(T0,C4−η) ≤ CE�(T,B4).

Moreover, recalling that p : Rm+n → π0 is the orthogonal projection, by the
Constancy Theorem

(E) p�T0 = Q∗ �Ω+� + (Q∗ − 1) �Ω−�, where Q∗ is a suitable positive natu-
ral number and Ω± are the regions in which B4 is divided by p(Γ); in
particular

∂
�
Ω+

�
C4−η = −∂

�
Ω−�

C4−η = p� �Γ� C4−η .

Since T0 = T U and U ⊂ B4−η/2, clearly ‖T0‖(C4−η) ≤ ‖T‖(B4−η/2). On the
other hand, by (D) and (E),

‖T0‖(C4−η) ≥ Q∗|Ω+|+ (Q∗ − 1)|Ω−| .
Assuming that the constant ε0 in the assumption (i) of the theorem is sufficiently
small, we conclude that p� �Γ� C4−η is close to an m−1-dimensional plane passing
through the origin. In particular Q∗|Ω+|+(Q∗− 1)|Ω−| is close to (Q∗− 1

2 )ωm(4−
η)m. Thus, if ε0 is smaller than a geometric constant, we infer

‖T0‖(C4−η) ≥ (Q∗ − 3

4
)ωm(4− η)m .

However, by (A), a sufficiently small ε0 would imply ‖T‖(B4−η/2) ≤ (Q− 1
4 )ωm(4−

η
2 )

m and hence we achieve Q∗ ≤ Q provided η is chosen smaller than a geometric
constant.
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On the other hand,

‖T0‖(C4−η) ≤ Q∗|Ω+|+ (Q∗ − 1)|Ω−|+E(T0,C4−η) .

Using (D) and the argument above, if ε0 is sufficiently small we get ‖T0‖(C4−η) ≤
(Q∗ − 1

4 )ωm(4− η)m. Recall that we have shown that T B4−η = T0 B4−η. Thus

‖T‖(B4−η) ≤ ‖T0‖(C4−η) and, using (A), we also have ‖T‖(B4−η) ≥ (Q− 3
4 )(4−

η)m. Thus necessarily Q∗ ≥ Q.
Next, since T B2 = T0 B2, then

A2
(6.23)

≤ 2m+2M−1
0 E�(T,B2) ≤ 2m+2

(
2

4− η

)m

M−1
0 E(T0,C4−η)

(6.28)

≤ CM−1
0 E�(T,B4) .

Thus we can apply Theorem 5.6 with β = 1
5m and a sufficiently small parameter η∗

to be chosen later, provided ε0 is sufficiently small and M0 is sufficiently large.

6.2.2. Reduction to excess decay for graphs. From now on we let
(u+, u−), h and κ be as in Theorem 5.6. In particular, recall that (u+, u−) is
the Eβ-approximation of Theorem 5.5 (and therefore it satisûes the estimate (5.6)–
(5.9)) and h is the single harmonic function which <supports= the collapsed

(
Q− 1

2

)

Dir-minimizer κ. Moreover, denote by E the excess E(T0,C4−η) and record the
estimates:

A2 ≤ C0M
−1
0 E(6.29)

E ≤ C0E
�(T,B2) ,(6.30)

where C0 is a geometric constant and the second inequality follows by combining
(6.28) and (6.24). Next, deûne π to be the plane given by the graph of the linear
function x �→ (Dh(0)x, 0). Since, by Remark 5.7, h(x′, 0) = 0 we have that

π ⊃ T0Γ = R
m−1 × {0}.

Moreover, by elliptic estimates,

(6.31) |π| ≤ |Dh(0)| ≤ (CDir(h,B 5
2 (4−η)))

1
2 ≤ CE

1
2 .

Fix η to be chosen later; in the next steps we show that

(6.32) E(Gu+ +Gu− ,C1, π) ≤ (2− η)−(2−ε)E(Gu+ +Gu− ,C2−η) + ηE .

From this we easily conclude (6.25) as follows. First of all, by the Taylor expansion
of the mass of a Lipschitz graph and the Lipschitz bounds on u±, we conclude

E(Gu+ +Gu− ,C2−η) ≤ E(T0,C2−η) + C

∫

Ω+\K
|Du+|2 + C

∫

Ω−\K
|Du−|2 .

Secondly,

E(T,B1, π) ≤ E(T0,C1, π)

≤ E(Gu+ +Gu− ,C1, π) + 2eT (B1 \K) + 2|π|2|B1 \K| .
From (5.13), (5.14), and (6.31) we infer

E(Gu+ +Gu− ,C2−η) ≤ E(T0,C2−η) + Cη∗E,

E(T,B1, π) ≤ E(Gu+ +Gu− ,C1, π) + Cη∗E.
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Combining these two last inequalities with (6.32), we conclude

(6.33) E(T,B1, π) ≤ (2− η)2−εE(T0,C2−η) + Cη∗E + ηE .

Using the height bound in Theorem 6.5, we infer

spt(T ) ∩C2−η ⊂ B2 .

Since T0 B2 = T B2, (6.33) gives us that

E�(T,B1) ≤ E(T,B1, π)

≤ (2− η)−(2−ε)

(
2

2− η

)m

E(T,B2, π0) + Cη∗E + ηE

= (2− η)−(2−ε)

(
2

2− η

)m

E�(T,B2) + Cη∗E + ηE .

Hence, since the constant C in the last inequality is independent of the parameters
η∗, η, choosing the latter sufficiently small and recalling (6.30), we conclude (6.25).

6.2.3. Reduction to L2-decay. In this section we want to replace the ex-
cesses in (6.32) with suitable L2 quantities. In particular the Taylor expansion of
the area functional and the estimate Lip(u±) ≤ Eβ give

∣
∣
∣
∣
∣
2ωm(2−η)mE(Gu++Gu− ,C2−η)−

∫

B2−η∩Ω+

|Du+|2+
∫

B2−η∩Ω−

|Du−|2
∣
∣
∣
∣
∣

≤ CE2β

(
∫

B2−η∩Ω+

|Du+|2 +
∫

B2−η∩Ω−

|Du−|2
)

≤ η

3
E ,(6.34)

provided ε0 is sufficiently small. Let us deûne the linear map x �→Ax :=(Dh(0)x, 0).
We now claim that

2ωmE(Gu+ +Gu− ,C1, π) ≤
∫

B1∩Ω+

G(Du+, Q �A�)2

+

∫

B1∩Ω−

G(Du−, (Q− 1) �A�)2 + η

3
E .(6.35)

If we introduce the notation �τ for the unit simple m-vector orienting π, then the
latter inequality is implied by

(6.36)

∫

Ω+∩B1×Rn

∣
∣
∣�Gu+ − �τ

∣
∣
∣

2

d‖Gu+‖ ≤
∫

G(Du+, Q �A�)2 + η

3
E

and the analogous inequality for u−. In fact, since the argument is entirely similar,
we only show (6.36). The argument follows the one of [15, Theorem 3.5]. Arguing
as in [15], thanks to [15, Lemma 1.1], we can write u+ =

∑

i

�
u+i

�
and process

local computations (when needed) as if each u+i were Lipschitz. Moreover, we have
that

�τ = ξ
|ξ| with ξ = (e1 +Ae1) ∧ . . . ∧ (em +Aem).

Here and for the rest of this proof, we identify Rm and Rn with the subspaces
Rm × {0} and {0} ×Rn of Rm+n, respectively: this justiûes the notation ej +Aej
for ej ∈ Rm and Aej ∈ Rn. Next, we recall that

|ξ| =
√

〈ξ, ξ〉 =
√

det(δij + 〈Aei, A ej〉) = 1 + 1
2 |A|2 +O(|A|4).
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By [15, Corollary 1.11]

Etilt :=

∫

(Ω+∩B1)×Rn

∣
∣
∣�Gu+ − �τ

∣
∣
∣

2

d‖Gu+‖(6.37)

=2M(Gu+)− 2

∫

(Ω+∩B1)×Rn

〈�Gu+ , �τ 〉 d‖Gu+‖

= 2Q |Ω+ ∩B1|+
∫

Ω+∩B1

(|Du+|2 +O(|Du+|4))

− 2

∫

Ω+∩B1

∑

i

〈(e1 +Du+i e1) ∧ . . . ∧ (em +Du+i em), �τ 〉.

On the other hand 〈Aej , ek〉 = 0 = 〈Du+i ej , ek〉. Therefore,
〈(e1 +Du+i e1) ∧ . . . ∧ (em +Du+i em), �τ 〉

= |ξ|−1 det(δjk + 〈Du+i ej , A ek〉)

=

(

1 +
|A|2
2

+O(|A|4)
)−1

(
1 +Du+i : A+O(|Du+|2|A|2)

)
.

By the mean value property of harmonic functions

(6.38) |A| =
∣
∣
∣
∣�

B1

Dh

∣
∣
∣
∣
≤ CE

1
2

and the Lipschitz bound Lip(u+) ≤ Eβ, we conclude

Etilt =

∫

B1∩Ω+

|Du+|2 +Q |Ω+ ∩B1| |A|2

− 2

∫

B1∩Ω+

∑

i

Du+i : A+O
(
E1+2β

)

=

∫

Ω+∩B1

∑

i

|Du+i −A|2 +O
(
E1+2β

)

=

∫

Ω+∩B1

G(Du+, Q �A�)2 +O(E1+2β) .

The claim (6.35) follows from the latter identity for ε0 small enough.
Combining (6.34) and (6.35), (6.32) is reduced to

∫

Ω+∩B1

G(Du+, Q �A�)2 +
∫

Ω+∩B1

G(Du−, (Q− 1) �A�)2

< (2− η)−m−2+ε

(
∫

Ω+∩B2−η

|Du+|2 +
∫

Ω−∩B2−η

|Du−|2
)

+
η

3
E .(6.39)

6.2.4. Reduction to L2-decay for harmonic functions. As a ûrst step,
we substitute u+ and u− in the inequality (6.39) with Q �κ� and (Q− 1) �κ�, where
κ is as in Theorem 5.6. In fact, from (5.15) and (5.16)

∫

Ω+∩B2−η

|Du+|2 +
∫

Ω−∩B2−η

|Du−|2

≥ Q

∫

Ω+∩B2−η

|Dκ|2 + (Q− 1)

∫

Ω−∩B2−η

||Dκ|2 − 4
√
η∗E .
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Moreover, using again (5.15), (5.16), and (5.17), the identity
∫

Ω+∩B1

G(Du+, �A�)2 =

∫

Ω+∩B1

(
|Du+|2 − 2Q(D(η ◦ u+) : A) +Q|A|2

)
,

and (6.38), we also conclude
∫

Ω+∩B1

G(Du+, �A�)2 +
∫

Ω−∩B1

G(Du−, (Q− 1) �A�)2

≤ Q

∫

Ω+∩B1

|Dκ−A|2 + (Q− 1)

∫

Ω−∩B1

|Dκ−A|2 + Cη
1/2
∗ E .

Next, notice that
∣
∣
∣Ω+ \B+

2−η

∣
∣
∣+

∣
∣
∣B+

2−η \ Ω+
∣
∣
∣ ≤ C‖AΓ‖ ≤ CA ≤ CM

−1/2
0 E

1/2

and compute

|Dκ| ≤|Dh|+ |DxΨ(x, h)|+ |DuΨ(x, h)||Dh|

≤ C

η̄m
E

1
2 for x ∈ B2−η.

In the latter estimate we are using that the harmonic function h is deûned on B2− η
2

and that
∫
|Dh|2 ≤ CE, together with the usual interior estimates for harmonic

functions. Note that, in particular, we have the better bound |Dκ| ≤ CE
1
2 on the

smaller ball B1.
Thus

Q

∫

Ω+∩B1

|Dκ−A|2 + (Q− 1)

∫

Ω−∩B1

|Dκ−A|2

≤ Q

∫

B+
1

|Dκ−A|2 + (Q− 1)

∫

B−

1

|Dκ−A|2 + CE
3
2

and

Q

∫

Ω+∩B2−η

|Du+|2 + (Q− 1)

∫

Ω+∩B2−η

|Du−|2

≥ Q

∫

B+
2−η

|Dκ|2 + (Q− 1)

∫

B−

2−η

|Dκ|2 − C

η̄m
E

3
2 .

In conclusion, if ε0 is sufficiently small (depending on η̄) (6.39) is reduced to

Q

∫

B+
1

|Dκ−A|2 + (Q− 1)

∫

B−

1

|Dκ−A|2

≤ (2− η)−m−2+ε

(

Q

∫

B+
2−η

|Dκ|2 + (Q− 1)

∫

B−

2−η

|Dκ|2
)

+
η

8
E .(6.40)

Now we will substitute κ with the harmonic function h in (6.40). To this regard,
recall that A = (Dh(0), 0) and

Dκ = (Dh,DxΨ+DuΨ(x, h)Dh) ,

where

|DxΨ|+ |DuΨ| ≤ CA ≤ C

M
1
2
0

E
1
2 .
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Therefore

|Dκ− A|2 ≤ |Dh−Dh(0)|2 + C

M0
E,

|Dκ|2 ≥ |Dh|2.

Hence, assuming M0 sufficiently large, the proof of (6.40) will be completed in the
next paragraph, where we show that

Q

∫

B+
1

|Dh−Dh(0)|2 + (Q− 1)

∫

B−

1

|Dh−Dh(0)|2

≤ (2− η)−m−2

(

Q

∫

B+
2−η

|Dh|2 + (Q− 1)

∫

B−

2−η

|Dh|2
)

.(6.41)

Recall that h vanishes on {xm = 0}, hence by the Schwarz reüection principle
and unique continuation for harmonic functions, h(x′, xm) = −h(x′,−xm) (see
Remark 5.7). This implies that the left hand side of (6.41) equals

(
Q− 1

2

) ∫

B1
|Dh−

Dh(0)|2, whereas the right hand side equals (2−η)−m−2
(
Q− 1

2

) ∫

B2−η
|Dh|2. Thus

(6.41) is equivalent to

(6.42)

∫

B1

|Dh−Dh(0)|2 ≤ (2− η)−m−2

∫

B2−η

|Dh|2 ,

which is a classical inequality for harmonic functions. In order to show (6.42) it
suffices to decompose Dh in series of homogeneous harmonic polynomials Dh(x) =
∑∞

i=0 Pi(x), where i is the degree. In particular the restriction of this decom-
position on any sphere S := ∂Bρ gives the decomposition of Dh|S in spherical
harmonics, see [41, Chapter 5, Section 2]. It turns out, therefore, that the Pi are
L2(Bρ)-orthogonal. Since the constant polynomial P0 is Dh(0) and

∫

B1
|Pi|2 =

(2− η)−m−2i
∫

B2−η
|Pi|2, (6.42) follows at once.

6.3. Proof of Theorem 6.3

We ûrst notice that, by deûnition of collapsed point, for every δ > 0 there exists
ρ̄ = ρ̄(δ) small such that

(i) E�(T,B2σ(p)) + 4Aσ2 ≤ δ for every σ ≤ ρ̄;
(ii) Θ(T, q) ≥ Θ(T, p) = Q− 1

2 for all q ∈ Γ ∩B2ρ̄(p).

Next, since Θ(T, p) = Q− 1
2 , if the radius ρ̄ is chosen small enough we can assume

that

‖T‖(B4ρ̄(p)) ≤ ωm

(

Q− 3

8

)

(4ρ̄)m .

By a simple comparison, for η sufficiently small, if q ∈ Bη(p) ∩ Γ and ρ̄′ = ρ̄ − η,
then

‖T‖(B4ρ̄′(q)) ≤ ‖T‖(B4ρ̄(p)) ≤ ωm

(

Q− 3

8

)

(4ρ̄)m

≤ ωm

(

Q− 5

16

)

(4ρ̄′)m .
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Next, by the monotonicity formula

σ−m‖T‖(Bσ(q)) ≤ eA(4ρ̄′−σ)(4ρ̄′)−m‖T‖(B4ρ̄′(q))

≤ eA(4ρ̄′−σ)ωm

(

Q− 5

16

)

≤ e4Aρ̄ωm

(

Q− 5

16

)

for all σ ≤ 4ρ̄′. In particular, if ρ̄ is chosen sufficiently small, we then conclude

(6.43) ‖T‖(Bσ(q)) ≤ ωm

(

Q− 1

4

)

σm ∀q ∈ Bη(p) ∩ Γ and ∀σ ≤ 4ρ̄′ .

Set now r := min{η, ρ̄′}. For all points q in Br ∩ Γ we claim that

(6.44) E�(q,Br) ≤ 2mE�(p,B2r) + CA2r2 ≤ Cδ.

Indeed let π be a plane for which E�(p,B2r(p)) = E(p,B2r(p), π). By the regularity
of Γ and Σ we ûnd a plane π(q) such that |π−π(q)| ≤ CrA and TqΓ ⊂ π(q) ⊂ TqΣ.
Then we can estimate

E�(T,Br(q)) ≤ E(T,Br(q), π̃(q)) ≤ 2mE(T,B2r(p), π(q))

≤ 2mE�(T,B2r(p)) + Cr2A2 ≤ Cδ .

We will now show that the conclusions of the theorem hold for this particular
radius r. First, without loss of generality we translate p in 0 and rescale r to 1.
Summarizing our discussion above, for every q ∈ B1∩Γ we have the following three
properties

(A) E�(T,B1(q)) +A2 ≤ 2mE�(T,B2) + CA2 ≤ Cδ;
(B) Θ(T, x) ≥ Q− 1

2 for every x ∈ B1(q) ∩ Γ;

(C) ‖T‖(Bs(q)) ≤ (Q− 1
4 )ωms

m for every s ≤ 1.

We now ûx any point q ∈ Γ ∩B1 and deûne e(s) := E�(T,Bs(q)). We claim that

(6.45) e(2−k−1) ≤ max{2−2(1−ε)ke( 14 ), 2
−2(1−ε)k+2e( 12 )} for all k ∈ N.

We prove it by induction on k: notice that the inequality is trivially true for k = 0, 1.
If the inequality is true for k = k0 ≥ 1, we want to show it for k = k0 + 1. We set
σ = 2−k−2 and notice that, by inductive assumption

e(4σ) ≤ max{e( 14 ), e( 12 )} ≤ Ce(1)
(A)

≤ Cδ.

Hence, provided we choose δ = δ(m,Q) (and thus r) sufficiently small, we are in
the position of applying Theorem 6.8: note that the induction assumption covers
hypothesis (i) of Theorem 6.8, whereas (B) and (C) imply the hypotheses (ii) and
(iii). We thus deduce that

e(2−k−2) = e(σ) ≤ max{2−2+2εe(2σ), 2−4+4εe(4σ)}
≤ max{2−2(1−ε)ke( 14 ), 2

−2(1−ε)k+2e( 12 )} .
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From (6.45) we easily conclude that for all such points q and for ρ ∈]0, 12 [

E(T,Bρ(q)) ≤ E�(T,Bρ(q)) ≤ Cρ2−2εe( 12 )(6.46)

≤ Cρ2−2εE�(T,B1(q)) + Cρ2−2εA2

≤ Cρ2−2εE�(T,B1(q)) + Cρ2−2εA2

(A)

≤ Cρ2−2εE�(T,B2) + Cρ2−2εA2 .(6.47)

In addition, the estimate is trivial for 1
2 ≤ ρ ≤ 1. Next, given 0 < t < s < 1, if

π(q, s) and π(q, t) are the optimal planes for E(q, t) and E�(q, s), (6.47) implies

|π(q, s)− π(q, t)|2 ≤ 1

‖T‖(Bs(q))

∫

Bs(q)

|π(q, t)− π(q, s)|2

≤ CE(T,Bs(q), π(q, s)) + CE(T,Bt(q)), π(t))

≤ Cs2−2εE�(T,B1) + Cs2−2εA2 .

We thus conclude the existence of a unique limit π(q) such that

(6.48) |π(q)− π(q, s)|2 ≤ Cs2−2εE�(T,B1) + Cs2−2εA2 ∀ s ≤ 1 .

From the latter inequality and (6.47), we conclude (6.4), namely statement (c) of
the theorem, for all q ∈ B1 ∩ Γ.

Next, notice that, at every such q ∈ B1 ∩ Γ, TqΓ ⊂ π(q) ⊂ TqΣ and that, from
(6.4), the tangent cone is unique and takes the form

Q∗ �
π(q)+

�
+ (Q∗ − 1)

�
π(q)−

�
.

for some Q∗ ∈ N (since the tangent cone is an integral current). By (ii) Q∗ − 1
2 =

Θ(T, q) ≥ Q − 1
2 . Furthermore, by (C) Q < Q + 1 and thus Q∗ = Q. Therefore

Θ(T, q) = Q− 1
2 and this proves statements (a) and (b) of the theorem.

We next turn to (e): arguing as in Section 6.2.1, we let

T0 = T
(
Bρ(q, π(q))×Bn

ρ (0, π(q)
⊥)

)

and we note that it satisûes (5.2) in the cylinder Cρ(q, π(q)). In addition we have

E(T0,Cρ(q, π(q))) ≤ CE(T,Bρ(q), π(q))

and T Bρ(q) = T0 Bρ(q). Thus, we can apply Theorem 6.5 to get

h(T,Bρ(q), π(q)) ≤ h(T0,Cρ(q, π(q)), π(q))

≤ C(E(T,Bρ(q), π(q))
1
2 +A

1
2 ρ

1
2 )ρ .

The estimate (6.6) follows at once from the latter inequality and (6.4).
We conclude by proving (d) of Theorem 6.3. First of all, observe that it suffices

to show (6.5) when ρ := |q − q′| ≤ 1/2. Recall the estimate (6.48):

max{|π(q)− π(q, ρ)|, |π(q′)− π(q′, ρ)|} ≤ C(E�(T,B1)
1
2 +A)ρ1−ε .
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Hence to complete the proof of (6.5), we notice that

|π(q, ρ)− π(q′, ρ)|2 ≤ �
Bρ(q)∩Bρ(q′)

|π(q, ρ)− π(q′, ρ)|2

≤ C

ωmρm

∫

Bρ(q)

|�T − π(q, ρ)|2 + C

ωmρm

∫

Bρ(q′)

|�T − π(q′, ρ)|2

= C(E�(T,Bρ(q)) +E�(T,Bρ(q
′)))

≤ C(E�(T,B1) +A2)ρ2−2ε ,

where we have also used that ‖T‖(Bρ(p) ≥ cρm, a simple consequence of the mono-
tonicity formula in Theorem 3.2.

6.4. Proof of Corollary 6.4

The inclusion (6.9) follows immediately from (6.6) applied to some ρ with
2|x − q| > ρ > |x − q|, where x ∈ spt(T ) ∩ Bσ(q). Next we observe that (6.9) is
in fact stronger than (6.8), because, by (6.7), we can control the tilt |π(q)− π(p)|.
Indeed,

|p⊥ − p⊥
q |2 = |p− pq|2 ≤ m|π − π(q)|2

(6.48)

≤ CE.

Using Theorem 6.3(d) with q′ = p and ε = 1
2 we conclude the crude estimate

|π(q)− π(p)| ≤ C(E
1/2 +Ar). In particular

|p⊥
q − p⊥|2 = |pq − p|2 ≤ m|π(q)− π|2 ≤ C(E +A2r2) .

Fix therefore a point x ∈ Bσ(q) ∩ spt(T ). Then

|p⊥(x− q)| ≤|x− q||p⊥ − p⊥
q |+ |p⊥

q (x− q)|
≤C(E

1/2 +Ar)|x− q|+ C(r−1E +A)
1/2|x− q| 32

≤C(E +Ar)
1/2|x− q| ,

which proves (6.8).
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CHAPTER 7

Second Lipschitz approximation

Recalling Theorem 3.8, our main task is to show that, under Assumption 1.5,
any collapsed point q ∈ Γ is regular. By the usual scaling and translation argument,
we can moreover assume that:

(i) 0 ∈ Γ is a collapsed point with multiplicity Θ(T, 0) = Q− 1
2 ;

(ii) at any point q ∈ Γ ∩ B1 the conclusions of Theorem 6.3 apply for every
radius r ≤ 1;

(iii) A and E�(T,B2) are small, namely

(7.1) A2 +E�(T,B2) < ε0 ,

where ε0 is a sufficiently small constant whose choice will be speciûed in
the remaining proofs.

Let π0 be a plane which minimizes the expression deûning E�(T,B1). By
Corollary 6.4, we know that

(7.2) spt(T ) ∩B1 ⊂ {x : |p⊥
0 (x)| ≤ Cε

1/2
0 |x|} ,

where p⊥
0 is the orthogonal projection on π⊥

0 . Since we can restrict the current T
to B1 and further scale by a factor 2, we can assume, without loss of generality,
that

(iv) There is a plane π0 such that E�(T,B2) = E(T,B2, π0), T0Γ ⊂ π0 ⊂ T0Σ
and

(7.3) spt(T ) ∩B2 ⊂ {x : |p⊥
0 (x)| ≤ Cε

1/2
0 |x|} .

From now on we will work under the above assumptions, which we summarize
together in the following

Assumption 7.1. T , Σ and Γ are as in Assumption 1.5 and they satisfy addi-
tionally the conditions (i), (ii), (iii), and (iv) above.

In particular, Theorem 3.8 is implied by the following milder version:

Theorem 7.2. If T,Σ and Γ are as in Assumption 7.1, then 0 is a regular
boundary point of T .

In this framework we can then reûne our Lipschitz approximation in cylinders
with small excess. We ûrst note the following corollary of Theorem 6.3 and of the
cone condition in Assumption 7.1(iv).

Proposition 7.3. Let T,Σ and Γ be as in Assumption 7.1 with ε0 sufficiently
small (depending only upon m,n, n̄ and Q). Then there are positive constants C =
C(m,n, n̄, Q) and ε̄ = ε̄(m,n, n̄, Q) with the following properties. Assume that
q ∈ Γ ∩B1, r <

1
8 and π is an m-dimensional plane such that TqΓ ⊂ π ⊂ TqΣ and

(7.4) E = E(T,C4r(q, π)) < ε̄ .

91
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92 7. SECOND LIPSCHITZ APPROXIMATION

Then
spt(∂(T C4r(q, π))) ⊂ ∂C4r(q, π) ∪ Γ

and

(7.5) h(T,C2r(q, π), π) ≤ Cr(E +Ar)
1/2 .

We are then ready to state our improved approximation theorem:

Theorem 7.4. Let T , Σ, Γ, q, r and π be as in Proposition 7.3. Consider
the orthogonal projection γ of Γ ∩C4r(q, π) onto the plane q + π and observe that,
since ε0 is sufficiently small, Γ ∩C4r(q, π) is the graph over γ of a C3,a0 function
ψ. Then there are a closed set K ⊂ Br(q) = Br(q, π) and a

(
Q− 1

2

)
-valued map

(u+, u−) on Br(p) which collapses at the interface (γ, ψ) satisfying the following
estimates:

Lip(u±) ≤ C(E +A2r2)σ(7.6)

osc(u±) ≤ C(E +Ar)
1/2r(7.7)

Gu± [(K ∩ Ω±)× π⊥] = T [(K ∩ Ω±)× R
n](7.8)

Gr(u±) ⊂ Σ(7.9)

|Br(q) \K| ≤ C(E +A2r2)1+σrm(7.10)

eT (Br(q) \K) ≤ C(E +A2r2)1+σrm(7.11)
∫

Br(q)\K
|Du|2 ≤ C(E +A2r2)1+σrm(7.12)

∣
∣
∣
∣
eT (F )− 1

2

∫

F

|Du±|2
∣
∣
∣
∣
≤ C(E +A2r2)1+σrm ∀F ⊂ Ω± measurable,(7.13)

where Ω± are the two regions in which Br(q) is divided by γ, whereas C ≥ 1 and
σ ∈]0, 14 [ are two positive constants which depend on m,n, n̄ and Q.

7.1. Preliminary observations

We start recalling [14, Theorem 2.4] in our context.

Theorem 7.5 (Almgren’s strong approximation). There exist constants C, σ,
ε̄ > 0 (depending on m,n, n̄, Q) with the following property. Let T , Σ and Γ be as
in Assumption 7.1, π, q and r as in Proposition 7.3 and let x ∈ B1 such that

(i) the cylinder C := C4ρ(x, π) does not intersect Γ and is contained in
C4r(q, π);

(ii) A2ρ2 + Ē = A2 +E(T,C4 ρ(x, π)) < ε̄.

Then, there is a map f : Bρ(x, π) → AQ(π
⊥), or a map f : Bρ(x, π) → AQ−1(π

⊥),
with spt(f(z)) ⊂ Σ for every z ∈ Bρ(x, π), and a closed set K̄ ⊂ Bρ(x, π) such that

(7.14) Lip(f) ≤ C(Ē +A2ρ2)σ

Gf (K̄ × R
n) = T (K̄ × R

n)

and |Bρ(x, π) \ K̄| ≤ C
(
Ē +A2ρ2

)1+σ
ρm,(7.15)

∣
∣
∣
∣
∣
‖T‖(Csρ(x))−Qωm (sρ)m − 1

2

∫

Bsρ(x,π)

|Df |2
∣
∣
∣
∣
∣

(7.16)

≤ C
(
Ē +A2ρ2

)1+σ
ρm ∀ 0 < s ≤ 1(7.17)
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and

(7.18) osc(f) ≤ Ch(T,C, π) + C(Ē
1/2 +Aρ) ρ .

From now on, in order to simplify our notation, we assume that π = π0 =
Rm × {0} and use the shorthand notation Bt(x) for Bt(x, π).

In addition to the conclusions of the theorem above, we observe that they imply
the following further estimates

eT (Bρ(x) \ K̄) ≤C(Ē + ρ2A2)1+σρm(7.19)
∫

Bρ(x)\K̄
|Df |2 ≤C(Ē + ρ2A2)1+σρm(7.20)

∣
∣
∣
∣
eT (F )− 1

2

∫

F

|Df |2
∣
∣
∣
∣
≤C (̄Ē + ρ2A2)1+σρm ∀F ⊂ Bρ(x) measurable.(7.21)

This can be seen as follows. First of all (7.14) and (7.15) give

∫

F\K̄
|Df |2 ≤ C(Ē +A2ρ2)2σ|Bρ(x) \ K̄| ≤ C(Ē +A2ρ2)1+σρm

for every F ⊂ Bρ(x) measurable. In particular we achieve (7.20) setting F = Bρ(x).
Next recall that ‖T‖(Bρ(x)) − Qωmρ

m = eT (Bρ(x)) and hence (7.17) can be
reformulated, for s = 1, as

∣
∣
∣
∣
∣
eT (Bρ(x))− 1

2

∫

Bρ(x)

|Df |2
∣
∣
∣
∣
∣
≤ C(Ē +A2ρ2)1+σρm .

In particular

1

2

∫

Bρ(x)

|Df |2 ≤
(
Ē + C(Ē +A2ρ2)1+σ

)
ρm ≤ C

(
Ē +A2ρ2

)
ρm .

Secondly, the Taylor expansion of the area functional and (7.14) give

∣
∣
∣
∣
eGf

(F )− 1
2

∫

F

|Df |2
∣
∣
∣
∣
≤ C Lip(f)2

∫

F

|Df |2 ≤ C(Ē +A2ρ2)1+2σρm

for every F ⊂ Bρ(x) measurable.
Combining the inequalities just obtained we achieve

eT (Bρ(x) \ K̄) = eT (Bρ(x))− eGf
(Bρ(x) ∩ K̄)

≤
∣
∣
∣
∣
∣
eT (Bρ(x))−

1

2

∫

Bρ(x)

|Df |2
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

2

∫

Bρ(x)∩K̄

|Df |2 − eGf
(Bρ(x) ∩ K̄)

∣
∣
∣
∣
∣
+

∫

Bρ(x)\K̄
|Df |2

≤ C(Ē +A2ρ2)1+σρm ,

which implies (7.19).
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Finally, for every F ⊂ Bρ(x) measurable we have
∣
∣
∣
∣
eT (F )− 1

2

∫

F

|Df |2
∣
∣
∣
∣
≤

∣
∣
∣
∣
eGf

(F ∩K)− 1

2

∫

F∩K

|Df |2
∣
∣
∣
∣

+ eT (F \K) +
1

2

∫

F\K
|Df |2

≤ C(Ē +A2ρ2)1+σρm .

7.2. Proof of Theorem 7.4

Without loss of generality we assume that TqΓ = Rm−1 × {0}, π = Rm × {0}
and TqΣ = Rm+n̄×{0}. We then use Cs(q) in place of Cs(q, π), and Bs(q) in place
of Bs(q, π). Note that

∂T C4r(q) = �Γ ∩C4r(q)�
and p�(∂T C4r(q)) = �γ ∩B4r(p(q))� .(7.22)

As in the previous sections, denote by Ω+ and Ω− the two connected components
of B4r(q) \ γ, chosen so that

p�T C4r(q) = Q
�
Ω+

�
+ (Q− 1)

�
Ω−�

.

Let L0 be the cube q + [−r, r]m and, for any natural number k, let Qk be the
collection of cubes L of the form

L = q + r2−kx+ [−2−kr, 2−kr]m

for x ∈ Z
m, which are contained in L0 and intersect Br(q). We ûx a number

N ∈ N such that the 16
√
m2−Nr-neighborhood of ∪L∈QN

L is contained in C4r(q)
and construct a Whitney decomposition of

Ω̃ =
⋃

L∈QN

L \ γ

in the following way. We set RN = QN . If L ∈ RN has diam(L) ≤ 1
16 sep(L, γ),

then we assign L to the class WN . Here and in what follows we set

sep(L, γ) = min{|x− y| : x ∈ γ, y ∈ L} .
Otherwise we subdivide it in 2m subcubes of side 2−Nr and assign them to RN+1.
We then inductively deûne Wk and Rk+1 for every k ≥ N . The Whitney decom-
position W = ∪k≥NWk is then a collection of closed dyadic cubes whose interiors
are pairwise disjoint, which cover Ω+ ∪ Ω− and such that

(7.23) min

{
1

32
sep(L, γ),

√
m2−N+1

}

≤ diam(L) ≤ 1

16
sep(L, γ).

We denote with cL the center of the cube L ∈ W and set rL := 3 diam(L) so that
L ⊂ B 1

4 rL
(cL).

We claim that for each cube L the current T restricted to the cylinder C4rL(cL)
satisûes the assumptions of Theorem 7.5.

First note that, by the construction of the Whitney decomposition, we have
C4rL(cL) ∩ Γ = ∅ and B6rL(cL) ⊂ B4r(q) and thus ∂T C4rL(cL) = 0. Moreover,
either B4rL(cL) ⊂ Ω+ or B4rL(cL) ⊂ Ω− and thus p�T C4rL(cL) equals either
Q �B4rL(cL)� or (Q− 1) �B4rL(cL)�.
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....

....

....

....

....

cL

L

γ

Figure 7.1. The Whitney decomposition W in Ω−.

To check the second assumption of Theorem 7.5 we distinguish the two cases
rL = 2−Nr and rL < 2−Nr. If rL = 2−Nr we simply have

E(T,C4rL(cL)) ≤ 2NmE(T,C4r(q)) = 2NmE.

For each L ∈ W with rL < 2−Nr let xL be the point of γ closest to cL and let
qL ∈ Γ be the point (xL, ψ(xL)). From the ûrst inequality of (7.23) we deduce
that C4rL(cL) ⊂ C13rL(qL). In particular notice that by the cone condition (7.5),
spt(T ) ∩ C14rL(qL) ⊂ B16rL(qL) and by our choice of N we have C14rL(qL) ⊂
B16rL(qL) ⊂ C4r(q).

Next, observe that

E(T,C4rL(cL)) ≤ 4mE(T,B16rL(qL), π)

≤ CE(T,B16rL , π(qL)) + C|π − π(qL)|2

According to Theorem (6.3) we then conclude

(7.24) E(T,C4rL(cL)) ≤ C(E +A2r2) .

So, provided ε0 is chosen sufficiently small, we can apply Theorem 7.5 in every
cylinder C4rL(cL) and obtain:

- aQ-valued (or (Q−1)-valued) map fL on each ball BrL(cL) with spt(fL(x))
∈ Σ for every x ∈ BrL(cL)

- a closed sets KL ⊂ BrL(cL)
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such that

Lip(fL) ≤ C(E +A2r2L)
σ(7.25)

GfL (KL × R
n) = T (KL × R

n)(7.26)

|BrL(cL) \KL| ≤ C(E +A2r2L)
1+σrmL(7.27)

eT (BrL(cL) \KL) ≤ C(E +A2r2L)
1+σrmL(7.28)

∫

BrL
(cL)\KL

|DfL|2 ≤ C(E +A2r2L)
1+σrmL(7.29)

∣
∣
∣
∣
eT (F )− 1

2

∫

F

|DfL|2
∣
∣
∣
∣
≤ C(E +A2r2L)

1+σrmL

∀F ⊂ BrL(cL) measurable(7.30)

whereupon (7.29), (7.30) follow as explained in (7.19), (7.21).
Next, for each L we let N+(L) be the neighboring cubes in W with larger or

equal radius, i.e.

N+(L) = {H ∈ W : H ∩ L 
= ∅, rH ≥ rL}.
Note that by the construction of the Whitney decomposition we ensured that if
H ∈ N+(L), then L ⊂ BrH (cH). We deûne

K ′
L = KL ∩

⋂

H∈N+(L)

KH

K+ =
⋃

L∈W,L⊂Ω+

K ′
L ∩ L

K− =
⋃

L∈W,L⊂Ω−

K ′
L ∩ L

and further

ũ+(x) := fL(x) if x ∈ L ∩K+ and ũ−(x) := fL(x) if x ∈ L ∩K−.

Since the cardinality of N+(L) is bounded by a geometric constant C(m), we
conclude from from (7.27) that

(7.31) |L \K ′
L| ≤ C(E +A2r2)1+σrmL .

In particular, if ε0 is sufficiently small, we conclude that L ∩ K ′
L 
= ∅. We next

claim that

Lip(ũ±) ≤ C(E +A2r2)σ(7.32)

Gũ± (K± × R
n) = T (K± × R

n)(7.33)

eT (L \K ′
L) ≤ C(E +A2r2)1+σrmL(7.34)

∫

L\K′
L

|Dũ±|2 ≤ C(E +A2r2)1+σrmL .(7.35)

Inequalities (7.33), (7.34), and (7.35) follows easily by the fact that L \ K ′
L ⊂

BrL(cL) \KL and ũ± coincides with fL on K ′
L. To show the the Lipschitz (7.32)

we let H,L ∈ W be any two cubes and we assume that diam(H) ≥ diam(L) and
x ∈ H, y ∈ L.
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If H ∩ L 
= ∅ (and in particular if H = L) by construction ũ± = fH on
K±∩BrH (cH) ⊂ KH , hence the inequality G(ũ±(x), ũ±(y)) ≤ C(E+A2r2)σ|x−y|
follows from the Lipschitz bound for fH .

If H ∩ L = ∅ we have
1

2
√
m
rH ≤ |x− y|.

In case rH = 2−Nr then the Lipschitz estimate follows from the hight bound (7.5):
G(ũ+(x), ũ+(x′)) ≤ 2Cr(E +Ar)

1/2 ≤ C(E +Ar)
1/2|x− x′|.

If rH < 2−Nr consider for the points x, y ∈ γ which are the closest to x′, y′

respectively We claim that

G(ũ±(x), Q �ψ(x′)�) ≤C|x− x′|(E +Ar)
1/2(7.36)

G(ũ±(y), Q �ψ(y′)�) ≤C|y − y′|(E +Ar)
1/2 .(7.37)

Indeed, both inequalities are due to the fact that dist (x, γ) is comparable to rL
and that, in the cylinder CC16rL(x

′), we have the height bound (7.5) (recall that
the points (x′, ψ(x′)) and (x, ũi(x)) are all in the support of the current T ). Note
also that, by the regularity of Γ,

|ψ(x′)− ψ(y′)| ≤ C(E +Ar)
1/2|x′ − y′| .

In particular we can estimate

G(ũ±(x), ũ±(y))
≤ G(ũ±(x), Q �ψ(x′)�) +Q

1/2|ψ(x′)− ψ(y′)|+ G(ũ±(y), Q �ψ(y′)�)
≤ C(E +Ar)

1/2(|x− x′|+ |x′ − y′|+ |y′ − y|)
≤ C(E +Ar)

1/2(2|x− x′|+ |x− y|+ 2|y′ − y|)
≤ C(E +A2r2)σ|x− y|

where we have used that σ ≤ 1
4 and that

|x− x′|+ |y′ − y| = dist(x, γ) + dist(y, γ) ≤ C(rL + rH) ≤ CrH ≤ C|x− y|.
Note in particular that we have also proved that ũ+ (resp. ũ−) has a unique
Lipschitz extension to (K+∪γ)∩Br(q) (resp. (K

−∪γ)∩Br(q)) which on γ∩Br(q)
coincides with Q �ψ� (resp. (Q− 1) �ψ�).

We next wish to extend ũ± to the whole Ω± keeping the Lipschitz estimate (up
to a multiplicative geometric constant) and the property that spt(x, ũ±(x)) ⊂ Σ.
This can be easily done observing that Σ ∩ Cr(q) is the graph of a function Ψ :
T0Σ ∩ Br(q) → T0Σ

⊥ = {0} × R
n−n̄ with Lipschitz constant controlled by CAr.

Therefore we can write

ũ±(x) =
∑

i

�
v±i (x),Ψ(x, v±i (x))

�

for an appropriate Lipschitz Q-valued map v+ : K+ → AQ(R
n̄) and an appropriate

Lipschitz (Q−1)-valued map v− : K− → AQ−1(R
n̄) with Lip(v±) ≤ C(E+A2r2)σ.

Extending ûrst v± to Ω± and then composing with Ψ, we achieve the desired
extension u± of ũ± to Ω±. Note moreover that, by the observation above, the pair
(u+, u−) collapses at the interface (γ ∩ Br(q), ψ). Recalling the height estimate
(7.5), we also have that osc(ũ±) ≤ C(E +Ar)

1/2r and the Lipschitz extension can
be constructed so to preserve the oscillation bound as well (up to a geometric factor,
cf. [13, Theorem 1.7]).
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98 7. SECOND LIPSCHITZ APPROXIMATION

Setting K = K+∪K−, we have so far proved the conclusions (7.6), (7.7), (7.8),
and (7.9). For the remaining estimates, observe ûrst that

∑

L∈W
rmL ≤ C(m)rm .

Hence, (7.10), (7.11), and (7.12) follow from summing, respectively, (7.31), (7.34),
and (7.35).

Finally, ûx a measurable set F ⊂ Ω+ and observe that, for any cube L in the
Whitney decomposition of Ω+

∣
∣
∣
∣
eT (F ∩ L)− 1

2

∫

F∩L

|Du+|2
∣
∣
∣
∣

≤
∣
∣
∣
∣
eT (F ∩ L ∩K+)− 1

2

∫

F∩L∩K+

|Du+|2
∣
∣
∣
∣

+ eT (L \K+) + Lip(u+)2|L \K+|

≤
∣
∣
∣
∣
eT (F ∩ L ∩K+)− 1

2

∫

F∩L∩K+

|DfL|2
∣
∣
∣
∣
+ C(E +A2r2)1+σrmL

≤ C(E +A2r2)1+σrmL .

Summing over L we obtain (7.13). The same arguments work for u− and conclude
the proof.
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CHAPTER 8

Center manifolds

As already pointed out in the previous chapter, our task is to prove Theorem
7.2, which for the reader’s convenience we recall here:

Theorem 8.1. If T,Σ and Γ are as in Assumption 7.1, then 0 is a regular
boundary point of T .

We thus work from now on under the assumption that 0, the origin of our
system of coordinates, is a collapsed point and that

T0Γ = R
m−1 × {0},

T0Σ = R
m+n × {0} and

R
n = R

m+n+l .

Therefore, the tangent cone of T at p = 0 is Q
�
π+
0

�
+ (Q− 1)

�
π−
0

�
, where

π±
0 = {x ∈ R

n : ±xm > 0, xm+1 = . . . = xn+m = 0} .
As in the previous chapters, we denote by γ the projection on π0 of Γ and,

given any sufficiently small open set Ω ⊂ π0 which is contractible and contains 0,
we denote by Ω± those portions of Ω lying on the right and left of γ. We are going
to build two separate m-dimensional surfaces M± of class C3 which will be called
(respectively) left and right center manifolds . Both surfaces lie in the manifold Σ.
M+ will be a graph over B+

3/2(0, π0) (which from now on we denote by B+
3/2) of some

function ϕ+ and M− a graph over B−
3/2(0, π0) of some function ϕ− . Both center

manifolds will have Γ ∩C3/2(0, π0) as a boundary, when considered as surfaces in

the cylinder C3/2(0, π0) and will be C3 (in fact C3,κ for a suitable positive κ) up to
the boundary. In addition, at each point p ∈ Γ ∩C3/2(0, π0) the tangent space to
both manifolds will be the same and will coincide with the plane π(q) of Theorem
6.3. In particular M = M+ ∪M− will be a C1,1 submanifold of Σ ∩C3/2(0, π0)
without boundary.

Finally we remark that at this stage we do not have any information about
higher regularity ofM: in particular we do not yet know that the second derivatives
of the two functions ϕ± coincide at γ. At the very end of the proof of Theorem
8.1, which will be accomplished in the ûnal chapter, it will however turn out that
M is indeed C3 and that T C3/2(0, π0) = Q �M+� + (Q− 1) �M−�.

8.1. Construction of the center manifolds

8.1.1. Boundary dyadic cubes and non-boundary dyadic cubes. We
focus on the construction of M+ (the one of M− follows a <specular= algorithm).
We start by describing a procedure which reaches a suitable Whitney-type decom-
position of B+

3/2 with cubes whose sides are parallel to the coordinate axes and

99
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100 8. CENTER MANIFOLDS

have sidelength 2�(L). The center of any such cube L considered in the procedure
will be denoted by c(L) and its sidelength will be denoted by 2�(L). We start by
introducing a family of dyadic cubes L ⊂ π0 in the following way: for j ≥ N0 (an
integer whose choice will be speciûed below), we introduce the families

Cj := {L : L is a dyadic cube of side �(L) = 2−j and B+
3/2 ∩ L 
= ∅} ,

For each L deûne a radius

rL :=M0

√
m�(L) ,

with M0 ≥ 1 to be chosen later. We then subdivide C := ∪jCj into, respectively,
boundary cubes and non-boundary cubes1

C
� := {L ∈ C : dist(c(L), γ) < 64rL},

C
� := {L ∈ C : dist(c(L), γ) ≥ 64rL} .

Likewise we also use the notation C �
j and C

�
j for C �∩Cj and C

�
j = C � ∩Cj . Indeed

in what follows, without mentioning it any further, we will often use the same
convention for several other subfamilies of C .

Definition 8.2. If H,L ∈ C we say that:

• H is a descendant of L (and L is an ancestor of H) if H ⊂ L;
• H is a son of L (and L is the father of H) if H ⊂ L and �(H) = 1

2�(L);

• H and L are neighbors if 1
2�(L) ≤ �(H) ≤ �(L) and H ∩ L 
= ∅.

Note, in particular, the following elementary consequence of the subdivision
of C :

Lemma 8.3. Let H be a boundary cube. Then any ancestor L and any neighbor
L with �(L) = 2�(H) is necessarily a boundary cube. In particular: the descendant
of a non-boundary cube is a non-boundary cube.

Proof. For the case of ancestors it suffices to prove that if L is a father of a
boundary cube H, then L as well is a boundary cube, and since the father of H is
a neighbor of H with �(L) = 2�(H), we only need to show the second part of the
statement of the lemma. The latter is a simple consequence of the following chain
of inequalities:

dist(c(L), γ) ≤ dist(c(H), γ) + |c(H)− c(L)|
= dist(c(H), γ) + 3

√
m�(H)

< 64rH + 3
rH
M0

≤
(
64 + 3M−1

0

) rL
2

≤ 67

2
rL < 64rL . �

Moreover, we set the following:

• If L ∈ C
�
j , then BL is a ball in Rm+n+l with radius 64rL and center some

chosen point pL ∈ spt(T ) such that pπ0
(pL) = c(L) (note that such pL is

a priori not unique: we just make an arbitrary choice) and πL is a plane
which minimizes the excess in BL, namely E(T,BL) = E(T,BL, πL) and
πL ⊂ TpL

Σ.

1Observe that some boundary cubes can be completely contained in B+
3/2

. For this reason

we prefer to use the term “non-boundary” rather than “interior” for the cubes in C 	.
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8.1. CONSTRUCTION OF THE CENTER MANIFOLDS 101

• If L ∈ C �, then B�
L is the ball in Rm+n+l with radius 2764rL and center

p�L ∈ Γ such that |pπ0
(p�L)− c(L)| = dist(c(L), γ). Note that in this case

the point p�L is uniquely determined because Γ is regular and A is assumed
to be sufficiently small. Likewise πL is a plane which minimizes the excess
E�, namely such that E�(T,B�

L) = E(T,B�
L, πL) and Tp	

L
Γ ⊂ πL ⊂ Tp	

L
Σ.

A simple corollary of Theorem 6.3 and Corollary 6.4 is the following lemma.

Lemma 8.4. Let T,Σ and Γ be as in Assumption 7.1. Then there is a positive
dimensional constant C(m,n) such that, if the starting size of the Whitney decom-
position is fine enough, namely if 2N0 ≥ C(m,n)M0, then the balls B�

L and BL are
all contained in B2.

Moreover, there exists ε1 such that, for any choice of M0, αe > 0 and αh <
1
2 ,

if

(8.1) E�(T,B2) + ‖Ψ‖2C3,a0 + ‖ψ‖2C3,a0 < ε1 ,

then for every cube L ∈ C � we have

E�(T,B�
L) ≤ C0ε1r

2−2αe

L ,(8.2)

h(T,B�
L, πL) ≤ C0ε

1/4
1 r1+αh

L ,(8.3)

|πL − π0| ≤ C0ε
1/2
1 ,(8.4)

|πL − π(p�L)| ≤ C0ε
1/2
1 r1−ae

L(8.5)

where, π(p�L) has been defined in (b) of Theorem 6.3 and C0 depends only upon αe,
αh, m and n.

Proof. The ûrst part of the statement is just a direct inspection. Estimate
(8.2) is a direct consequence of (6.4). Consider now π(p�L) as in Theorem 6.3. By
the monotonicity formula we know that

‖T‖(B�
L) ≥ ωm(2764rL)

m

because we know that Θ(T, p�L) = Q− 1
2 ≥ 3

2 . Moreover (6.4) implies

E(T,B�
L, πL) ≤ E(T,B�

L, π(p
�
L)) ≤ C0ε1r

2−2αe

L .

Thus

|π(p�L)− πL|2 ≤ C0

(
E(T,B�

L, πL) +E(T,B�
L, π(p

�
L))

)
≤ C0ε

1/2
1 r2−2αe

L .

which proves (8.5). (8.4) is now a direct consequence of (6.7) and (8.5) while (8.3)
is direct consequence of (6.6). �

8.1.2. Decomposition and stopping conditions. We will now deûned a
suitable reûning procedure of our initial Whitney decomposition. To this end let
Ce, Ch be two positive constants that will be ûxed later, see Assumption 8.6 below.
We take a cube L ∈ CN0

and we do not subdivide it if it belongs to one of the
following sets:

(1) W e
N0

:= {L ∈ C
�
N0

: E(T,BL) > Ceε1�(L)
2−αe};

(2) W h
N0

:= {L ∈ C
�
N0

: h(T,BL, πL) > Chε
1/2m
1 �(L)1+αh}.

We then deûne

SN0
:= CN0

\
(
W

e
N0

∪ W
h
N0

)
.
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102 8. CENTER MANIFOLDS

The cubes in SN0
will be subdivided in their sons. In fact we will ensure that

WN0
:= W e

N0
∪ W h

N0
= ∅ (and therefore CN0

= SN0
) by choosing Ce and Ch large

enough, depending only upon αh, αe,M0 and N0, see Proposition 8.24 below.
We next describe the reûning procedure assuming inductively that for a certain

step j ≥ N0 + 1 we have deûned the families Wj−1 and Sj−1. In particular we
consider all the cubes L in Cj which are contained in some element of Sj−1. Among
them we select and set aside in the classes Wj := W e

j ∪W h
j ∪W n

j those cubes where
the following stopping criteria are met:

(1) W e
j := {L son of K ∈ S

�
j−1 : E(T,BL) > Ceε1�(L)

2−2αe};
(2) W h

j := {L son of K ∈ S
�
j−1 : L 
∈ W e

j and

h(T,BL, πL) > Chε
1/2m
1 �(L)1+αh};

(3) W n
j := {L son of K ∈ Sj−1 : L 
∈ W e

j ∪ W h
j but

∃L′ ∈ Wj−1 with L ∩ L′ 
= ∅}.
Note, in particular, that the reûnement of boundary cubes can never be stopped
because of the conditions (1) and (2). Indeed we could have included analogous
stopping conditions for boundary cubes as well, but Lemma 8.4 would have implied
in any case that these conditions would never stop the reûning of boundary cubes.
In principle a boundary cube might still be stopped because of the third condition,
but we will see in Lemma 8.5 that this possibility can be excluded as well. Thus
boundary cubes always belong to S . Clearly, descendants of boundary cubes might
become non-boundary cubes and so their reûning can be stopped.

We ûnally set Wj := W e
j ∪ W h

j ∪ W n
j and we keep reûning the decomposition

in the set

Sj := {L ∈ Cj son of K ∈ Sj−1} \ Wj .

Observe that it might happen that the son of a cube in Sj−1 does not intersect
B+

3/2: in that case, according to our deûnition, the cube does not belong to Sj

neither to Wj : it is simply discarded.

As already mentioned, we use the notation S �
j and S

�
j respectively for Sj∩C �

and Sj ∩ C �. Furthermore we set

W :=
⋃

j≥N0

Wj

S :=
⋃

j≥N0

Sj

S+ :=
⋂

j≥N0

( ⋃

L∈Sj

L
)

= B+
3/2 \

⋃

H∈W

H .

We emphasize that B+
3/2 includes γ ∩B3/2.

Lemma 8.5. C �
j ∩ W = ∅ for every j ≥ N0 and in particular γ ∩B+

3/2 ⊂ S+.

Proof. Assume there is a boundary cube in W and let L be a boundary cube
in W with largest side length. The latter must then belong to W n

j for some j.

However this would imply the existence of a neighbor L′ ∈ W with �(L′) = 2�(L):
by Lemma 8.3 L′ would be a boundary cube in W , contradicting the maximality
of L. �
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8.1. CONSTRUCTION OF THE CENTER MANIFOLDS 103

8.1.3. Hierarchy of parameters. From now on we specify a set of assump-
tions on the various choices of the constants involved in the construction.

Assumption 8.6. T,Σ and Γ are as in Assumptions 7.1 and we also assume
that

(a) αh is smaller than 1
2m and αe is positive but small, depending only on αh,

(b) M0 is larger than a suitable constant, depending only upon αe,
(c) 2N0 ≥ C(m,n,M0), in particular it satisûes the condition of Lemma 8.4,
(d) Ce is sufficiently large depending upon αe, αh, M0 and N0,
(e) Ch is sufficiently large depending upon αe, αh,M0, N0 and Ce,
(f) (8.1) holds with an ε1 sufficiently small depending upon all the other

parameters.

Finally, there is an exponent αL, which depends only on m,n, n̄ and Q and which
is independent of all the other parameters, in terms of which several important
estimates in Theorem 8.19 will be stated.

Note that the parameters are chosen following a precise hierarchy, in particular
ensuring that there is a nonempty set of parameters satisfying all the requirements.
The hierarchy is consistent with that of [16], in particular the reader can compare
Assumption 8.6 with [16, Assumption 1.9].

8.1.4. Interpolating functions. In this section we deûne the <interpolating
functions= gL for each cube L. In particular, over the set B+

3/2 \ S+, the function

ϕ+ is deûned by patching together the gL’s with a partition of unity subordinate
to the cover W . Since however we need to deûne ϕ+ over S+ as well, we introduce
all the necessary objects for any cube in S ∪ W .

Proposition 8.7. If T,Σ and Γ are as in Assumptions 7.1 and if the various
parameters αe, αh,M0, N0, Ce, Ch, ε1 fulfill the Assumptions 8.6 we have

spt(T ) ∩C36rL(pL, πL) ⊂ BL when L ∈ S
�
j ∪ Wj,

spt(T ) ∩C2736rL(p
�
L, πL) ⊂ B�

L when L ∈ S
�
j ,

and the current T satisfies the assumptions of Theorem 7.5 in the cylinder

C36rL(pL, πL),

resp. the assumptions of Theorem 7.4 in the cylinder C2736rL(p
�
L, πL).

We omit the proof here and in fact a strengthened version of the proposition

is included in Proposition 8.25. In each cube L ∈ S �
j (resp. L ∈ S

�
j ∪ Wj) we

deûne (f−
L , f

+
L ) (resp. fL) to be the Lipschitz approximation of T in the cylinder

C279rL(p
�
L, πL) (resp. C9rL(pL, πL)). Moreover we deûne the multifunctions f̄±

L

(respectively f̄L) by projecting the values of f±
L (resp. fL) on the plane Tp	

L
Σ

(resp. TpL
Σ). More precisely, if we introduce the plane κL := π⊥

L ∩ Tp	
L
Σ (resp.

κL := π⊥
L ∩ TpL

Σ), which is the orthogonal complement of πL in Tp	
L
Σ (resp. in
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104 8. CENTER MANIFOLDS

TpL
Σ), the functions f±

L and fL are deûned by

f̄+
L =

Q
∑

i=1

�
pκL

((f+
L )i)

�
f̄−
L =

Q−1
∑

i=1

�
pκL

((f−
L )i)

�

and f̄L =

Q
∑

i=1

�pκL
((fL)i)� .

We can therefore regard each value (f±
L )i(x) (resp. (fL)i(x)) as an element of the

product space κL × T⊥
p	
L

Σ (resp. κL × T⊥
pL
Σ). Hence, if we let ΨL : Tp	

L
Σ → T⊥

p	
L

Σ

(resp. ΨL : TpL
Σ → T⊥

pL
Σ) be the parametrization of the ambient manifold Σ (in

such a way that locally Σ = Graph(ΨL)), we have the identities

(f±
L )i(x) = ((f̄±

L )i(x),ΨL(x, (f̄
±
L )i(x)))

(fL)i(x) = ((f̄L)i(x),ΨL(x, (f̄L)i(x))) .

Although abusive, in order to make our notation less cumbersome we will then

write f±
L = (f

±
L ,ΨL ◦ f±

L ) (resp. fL = (fL,ΨL ◦ fL) and we will adopt the same
convention for other maps with the same structure.

Definition 8.8. The maps f±
L and fL deûned above will be called πL-approxi-

mations of T in the respective cylinders (indeed f±
L approximates the current on

the <half cylinder= p−1
πL

(B±
279rL

)).

We next let hL be the solution of a suitable elliptic system (coming from the
linearization of the mean curvature condition for minimal surfaces in Σ), subject
to appropriate boundary conditions, which differ depending on whether L is a non-
boundary or a boundary cube. More precisely, for each cube, we introduce the
constant matrix L as

Lik = −
∑

j

ΔxΨ
j
L(pL)∂

2
yixk

Ψj
L(pL) if L ∈ C

�(8.6)

Lik = −
∑

j

ΔxΨ
j
L(p

�
L)∂

2
yixk

Ψj
L(p

�
L) if L ∈ C

�.(8.7)

and we impose that

(8.8)

§

¨

©

ΔhL = L · (x− pπL
(pL))

hL = η ◦ fL on ∂B5rL(pL, πL) ,

when L is a non-boundary cube and that

(8.9)

§

¨

©

ΔhL = L · (x− pπL
(p�L))

hL = η ◦ f+

L on ∂
(
B+

275rL
(p�L, πL)

)
,

when L is a boundary cube.

Definition 8.9. The function

hL := (hL,ΨL ◦ hL)
will be called the tilted L-interpolating function.
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8.1. CONSTRUCTION OF THE CENTER MANIFOLDS 105

We now are ready to deûne the ûnal function, gL, on our <reference coordinate
system= (i.e. the domain of gL is contained in π0 and its values are contained in π⊥

0 )
with the property that its graph coincides with (a suitable portion of) the graph of
hL. For this reason we need the following proposition ((cf. [16, Appendix B]).

Proposition 8.10. Under the assumptions of Proposition 8.7, for every L as
above the function hL is Lipschitz on B+

27·9rL/2(p
�
L, πL) (resp. B9rL/2(pL, πL)) and

we can define a function gL : B+
274rL

(p�L, π0) → π⊥
0 (resp.gL : B4rL(pL, π0) → π⊥

0 )
such that

GgL = GhL
B+

274rL
(p�L, π0)× R

n̄+l

(
resp. GgL = GhL

C4rL(pL, π0)
)
.

Definition 8.11. The function gL is called L-interpolating function.

8.1.5. Glued interpolations and center manifolds. Let us deûne the
Whitney cubes at the step j as

Pj := Sj ∪
j
⋃

i=N0+1

Wi .

Note that Pj is a <Whitney family of dyadic cubes= in the sense that if K,L ∈ Pj

have non empty intersection, then 1
2�(L) ≤ �(K) ≤ 2�(L). Consistently with the

notation introduced in the previous section we let κ0 := π⊥
0 ∩T0Σ be the orthogonal

complement of π0 in T0Σ. Recall then the map Ψ : π0 × κ0 = T0Σ → T0Σ
⊥,

which is the graphical parametrization of Σ with respect to T0Σ. We ûx a function
ϑ ∈ C∞

c ([− 17
16 ,

17
16 ]

m, [0, 1]) which is identically 1 on [−1, 1]m. For each cube L we
deûne further

ϑ̃L(y) := ϑ

(
y − c(L)

�(L)

)

.

We obtain a partition of unity of B+
3/2 by setting

ϑL(y) :=
ϑ̃L(y)

∑

H∈Pj
ϑ̃H(y)

.

Definition 8.12. We set

ϕj :=
∑

L∈Pj

ϑLgL ,

and
ϕj := (ϕj ,Ψ ◦ ϕj) .

The latter map is called the glued interpolation at the step j.

We are now ready to state the main theorem regarding the construction of the
right center manifold.

Theorem 8.13. If T,Σ and Γ are as in Assumptions 7.1 and αe, αh, M0, N0,
Ce, Ch, ε1 fulfill the Assumptions 8.6, then there is a κ > 0, depending only upon
αe and αh, such that

(a) ‖ϕj‖3,κ,B+
3/2

≤ Cε
1/2
1 , for some C = C(αe, αh,M0, Ce, Ch);

(b) If i ≤ j, L ∈ Wi−1 and H is a cube concentric to L with �(H) = 9
8�(L),

then ϕj = ϕi on H;
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106 8. CENTER MANIFOLDS

(c) ϕj converges in C3 to a map ϕ+ : B+
3/2 → Rn, whose graph is a C3,κ

submanifold M+ of Σ, which will be called right center manifold;
(d) ϕ+ = ψ on γ ∩B3/2, namely ∂M+ ∩C3/2 = Γ ∩C3/2;

(e) For any q ∈ ∂M+ ∩ C3/2, the tangent plane TqM+ coincides with the
plane π(q) in Theorem 6.3.

The construction of M+ made in Theorem 8.13 is based on the decomposition
of B+

3/2. Under Assumption 8.6, the same construction can be made for B−
3/2 and

gives a C3,κ map ϕ− : B−
3/2 → R

n which agrees with ψ on γ∩B3/2. The graph of ϕ−

is a C3,κ submanifold M− ⊂ Σ, which will be called left center manifold. Clearly its
boundary in the cylinder C3/2, namely ∂M− ∩C3/2, coincides, in a set-theoretical

sense, with ∂M+ ∩ C1, but it has opposite orientation, and moreover its tangent
plane TqM− coincides with π(q) for every point q ∈ ∂M−∩C3/2. In particular, the

union M := M+ ∪M− of the two submanifolds is a C1,1 submanifold of Σ∩C3/2

without boundary (in C3/2), which will be called center manifold. Moreover, we
will often state properties of the center manifold related to cubes L in one of the
collections Wj described above. Therefore, we will denote by W + the union of all
Wj and by W − the union of the corresponding classes of cubes which lead to the
left center manifold M−.

Remark 8.14. We emphasize again that so far we can only conclude the C1,1

regularity of M, because we do not know that the traces of the second derivatives
of ϕ+ and ϕ− coincide on γ.

Definition 8.15. Let us deûne the graph parametrization map of M+ as
Φ+(x) := (x,ϕ+(x)). We will call right contact set the subset K+ := Φ+(S+). For
every cube L ∈ W + we associate a Whitney region L on M+ as follows:

• L := Φ+(H ∩B1) where H is the cube concentric to L such that �(H) =
17
16�(L).

Analogously we deûne the map Φ−, the contact set K− and the Whitney regions
on the left center manifold M−.

8.2. The approximation on the normal bundle of M
In what follows we assume that Theorem 8.13 may be applied and we ûx a

corresponding center manifold M, subdivided into its left and right portions. For
any Borel set V ⊂ M we denote by |V| its Hausdorff m-dimensional measure and
we write

∫

V f for
∫

V f dHm.

Since the two portions M− and M+ are C3,κ and they join with C1 regularity
along Γ, in a sufficiently small normal neighborhood of M there is a well deûned
orthogonal projection p onto M. The thickness of the neighborhood is inversely
proportional to the size of the second derivatives of ϕ± and hence, for ε1 sufficiently
small, we can assume it is 2. Summarizing, in the rest of the section we make the
following assumptions:

Assumption 8.16. T,Σ and Γ are as in Assumption 7.1 and the various pa-
rameters αe, αh,M0, N0, Ce, Ch, ε1 satisfy Assumption 8.6. In particular Theorem
8.13 applies and we let M be the union of the left and right center manifolds. ε1
is sufficiently small so that, if

(8.10) U := {q ∈ R
m+n : ∃!q′ = p(q) ∈ M s.t. |q − q′| < 1 and q − q′ ⊥ M} ,
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then the map p extends to a Lipschitz map to the closure U which is C2,κ on
U \ p−1(Γ) and

p−1(q′) = q′ +B1(0, (Tq′M)⊥) for all q′ ∈ M.

We then have the following as a consequence of the construction algorithm:

Corollary 8.17. Under Assumption 8.16 the following holds:

(a) spt(∂(T U)) ∩C1 ⊂ Γ ∪ p−1(∂M), spt(T ) ∩C1 ⊂ U and

p�(T U) = (Q− 1)
�
M−�

+Q
�
M+

�
;

(b) spt(〈T,p, x〉) ⊂ {y : |x− y| ≤ Cε
1/2m
1 �(L)1+αh} for a

C = C(αe, αh,M0, N0, Ce, Ch)

and every x ∈ L Whitney region corresponding to L ∈ W + ∪ W −;
(c) 〈T,p, q〉 = Q �q� ∀q ∈ K+ \ Γ and 〈T,p, q〉 = (Q− 1) �q� ∀q ∈ K− \ Γ;
(d) K+ ∩K− = Γ ∩C3/2 and spt(T ∩ p−1(q)) = {q} for every q ∈ Γ ∩C3/2.

8.2.1. Local estimates. The center manifold is coupled with a map on M
taking values in the normal bundle which approximates the current T with very
high accuracy.

Definition 8.18. Given a center manifold M as in Assumption 8.16, an M-
normal approximation of T is given by a triple (K, F+, F−) such that

(A1) F+ : M+ ∩C1 → AQ(U) and F− : M− ∩C1 → AQ−1(U) are Lipschitz
and take the form F±(x) =

∑

i

�
x+N±

i (x)
�
with N±

i (x) ⊥ TxM± and

x+N±
i (x) ∈ Σ for every i and every x ∈ M±;

(A2) K ⊂ M is closed and TF± p−1(K ∩ M±) = T p−1(K ∩ M±), where
TF± := F±

� �M�, see [15] ;

(A3) K+ ∪K− ⊂ K and moreover F+(x) = Q �x� (resp. F−(x) = (Q− 1) �x�)
on K+ (resp. K−).

Observe that the pairs (F+, F−) and (N+, N−) can be regarded as
(
Q− 1

2

)
-

valued maps. The following theorem, which is a consequence of the construction
and of the estimates leading to Theorem 8.13, ensures the existence of an M-normal
approximation which describes the current T with a high degree of accuracy:

Theorem 8.19 (Local estimates for the M-normal approximation). Under
Assumption 8.16 there is a constant αL > 0 (depending only on m,n, n,Q) such
that there is an M-normal approximation (K, (F+, F−)) satisfying the following
estimates on any Whitney region L ⊂ M associated to a cube L ∈ W + ∪ W −

(where to simplify the notation we use N in place of N+ and N−):

Lip(N |L) ≤ CεαL

1 �(L)αL(8.11)

‖NL‖0 ≤ Cε
1/2m
1 �(L)1+αh(8.12)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cε1+αL

1 �(L)m+2+αL(8.13)
∫

L
|DN |2 ≤ Cε1�(L)

m+2−2αe(8.14)

for a constant C = C(αe, αh,M0, N0, Ce, Ch).
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Moreover, for any a > 0 and any Borel V ⊂ L,
∫

V
|η ◦N | ≤ Cε1

(

�(L)m+3+αh/3 + a�(L)2+αL/2|V|
)

+
C

a

∫

V
G(N,Q �η ◦N�)2+αL .(8.15)

8.2.2. Separation and domains of influence. We next analyze suitable
<bounds from below= induced by the stopping conditions in the center manifold
construction. The next proposition shows that the current <separates= suitably on
top of Whitney regions corresponding to cubes in W h.

Proposition 8.20 (Separation). Under the assumptions of Theorem 8.19 (re-
call, in particular, that Ch � Ce), the following conclusions hold for every Whitney
region L corresponding to a cube L ∈ W h ⊂ W +:

(S1) Θ(T, p) ≤ Q− 1
2 for every p ∈ B16rL(pL);

(S2) L ∩H = ∅ for every H ∈ W n with �(H) ≤ 1
2�(L);

(S3) G(N+(x), Q �η ◦N+(x)�) ≥ 1
4Chε

1/2m
1 �(L)1+αh ∀x ∈ M+∩C2

√
m�(L)(pL).

For L ∈ W h ⊂ W − the same conclusions, where in (S1) we replace Q − 1
2 with

Q− 3
2 .

2

A simple corollary of the previous proposition is then the following

Corollary 8.21. Given any H ∈ W n ⊂ W + (resp. ⊂ W −) there is a chain
L = L0, L1, . . . , Lj = H such that:

(a) L0 ∈ W e ⊂ W + (resp. ⊂ W −) and Li ∈ W n ⊂ W + (resp. W −) for all
i > 0;

(b) Li ∩ Li−1 
= ∅ and �(Li) =
1
2�(Li−1) for all i > 0.

In particular, H ⊂ B3
√
m�(L0)(xL0

, π0).

We use this last corollary to partition W n.

Definition 8.22 (Domains of inüuence). We ûrst ûx an ordering of the cubes
in W e ⊂ W + (resp. ⊂ W −) as {Ji}i∈N so that their side lengths do not increase.
Then H ∈ W n belongs to W n(J0) (the domain of inüuence of J0) if there is a
chain as in Corollary 8.21 with L0 = J0. Inductively, W n(Jr) is the set of cubes
H ∈ W n \∪i<rW

n(Ji) for which there is a chain as in Corollary 8.21 with L0 = Jr.

8.2.3. Splitting before tilting. Next we show that even around cubes L ∈
W e the sheets of the current <open up= in a suitable quantitative way. Again we
bundle the estimates for the two maps N± in single statements using the letter N
to denote both of them.

Proposition 8.23 (Splitting). Under the Assumptions of Theorem 8.19 the
following holds. If L ∈ W e ⊂ W + (resp. ⊂ W −), q ∈ π0 with dist(L, q) ≤

2Observe that, when Q = 2, we actually draw the conclusion that no cube L ⊂ W − can
belong to W h: in fact when Q = 2, we could use directly Allard’s regularity theorem to prove that
the “left” side of the current coincides with a single smooth classical graph over B−

3/2
. In order to

make our work shorter we prefer however to treat the case Q = 2 together with the general one
Q > 2.
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4
√
m�(L) and Ω = C�(L)/4(q)∩M, then (with C,C∗ = C(αe, αh,M0, N0, Ce, Ch)):

Ceε1�(L)
m+2−2αe ≤ �(L)mE(T,BL) ≤ C

∫

Ω

|DN |2 ,(8.16)

∫

L
|DN |2 ≤ C�(L)mE(T,BL) ≤ C∗�(L)−2

∫

Ω

|N |2 .(8.17)

8.3. Estimates on tilting and optimal planes

Proposition 8.24 (Tilting and optimal planes). Under the Assumptions 7.1
and 8.6 we have WN0

= ∅. Then the following estimates hold for any couple of
neighbors H,L ∈ S ∪ W and for every H,L ∈ S ∪ W with H descendant of L:

(a) denoting by πH , πL the excess-minimizing planes in BH and BL, respec-
tively,

|πH − πL| ≤ C̄ε
1/2
1 �(L)1−αe |πH − π0| ≤ C̄ε

1/2
1 ;

(b)� h(T,C48rH (pH , π0)) ≤ Cε
1/2m
1 �(H) and

spt(T ) ∩C48rH (pH , π0) ⊂ BH if H ∈ C �;

(b)� h(T,C2748rH (p�H , π0)) ≤ Cε
1/4
1 �(H) and

spt(T ) ∩C2748rH (p�H , π0) ⊂ B�
H if H ∈ C �;

(c)� h(T,C36rL(pL, πH)) ≤ Cε
1/2m
1 �(L)1+αh and

spt(T ) ∩C36rL(pL, πH) ⊂ BL if H,L ∈ C �;

(c)� h(T,C2736rL(p
�
L, πH)) ≤ Cε

1/4
1 �(L)1+αh

and spt(T ) ∩C2736rL(p
�
L, πH)) ⊂ B�

L if L ∈ C �;

where C̄ = C̄(αe, αh,M0, N0, Ce) and C = C(αe, αh,M0, N0, Ce, Ch).

Proof. In this proof, constants denoted by C will be assumed to depend on
m,n,Q and all the parameters αe, αh,M0, N0, Ce, Ch, constants denoted by C̄ will
be assumed to depend on m,n,Q, αe, αh,M0, N0, Ce and constants denoted by C0

will be assumed to depend only upon m,n and Q. Constants depending on other
subsets of the parameters above will be explicitly mentioned. We ûrst show that
WN0

= ∅. We have already proved that W does not contain boundary cubes in

Lemma 8.5. Next, if H ∈ C
�
N0

, BH ⊂ B2 by Lemma 8.4 and thus we can estimate

E(T,BH , π0) ≤ C(M0, N0)E(T,B2, π0) ≤ C(M0, N0)ε1 .(8.18)

Next, let π be the projection of the plane π0 in TpH
Σ. Since π0 ⊂ T0Σ, by the

regularity assumption (8.1) on Σ,

|π0 − π| ≤ C0ε
1/2
1 .

In particular, since by the monotonicity formula we can assume

‖T‖(BH) ≤ C0(64rH)m ,

we conclude

E(T,BH) ≤ E(T,BH , π) ≤ C(M0, N0)ε1 ≤ C(M0, N0)ε1�(H)2−2αe .

By our assumptions on the parameters, since Ce ≥ C(M0, N0), we conclude that
L 
∈ W e.

Next, notice that, since pH ∈ spt(T ), by the monotonicity formula we know

(8.19) ‖T‖(BH) ≥ 1

2
ωm(64rH)m .

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



110 8. CENTER MANIFOLDS

Thus we can estimate

|πH − π0|2 ≤ C0E(T,BH) + C0E(T,BH , π0)

≤ C0ε1 + C(M0, N0)E(T,B2, π0)

≤ C(M0, N0)ε1 .

Hence,

h(T,BH) = h(T,BH , πH)

≤ C0|πH − π0|(rH + h(T,BH , π0)) + h(T,BH , π0)

≤ C(M0, N0)ε
1/2m
1 .

Since Ch is assumed to be large enough compared to M0 and N0, we conclude that
H 
∈ W h.

We next prove (b)�, (c)� and (a) when H ∈ C �. Since the conclusions (b)� and
(c)� are direct consequences of Corollary 6.4 and (a), it will be enough to prove (a)
for H ∈ C �. To this end, note that the second part of the statement is in Lemma
8.4. We start with the ûrst part of (a) in the case of L is a boundary cube. In this
is case the we can use Lemma 8.4 and Theorem 6.3 part (c) to conclude that

|πH − πL|2 ≤ 3
(
|πH − π(p�H)|2 + |πL − π(p�L)|2 + |π(p�H)− π(p�L)|2

)
(8.20)

≤ 3C0ε1�(H)2−2αe + 3C0ε1�(L)
2−2αe + 3C0ε1�(L)

2−2αe .

where we have also used that, by regularity of Γ, |p�H − p�L| ≤ C0|c(H) − c(L)| ≤
C0�(L). Since �(H) ≤ 2�(L) this proves (a) when L ∈ C �.

It remains the case that L is not a boundary cube. Since H is a boundary
cube, Lemma 8.3 implies that 1

2�(H) ≤ �(L) ≤ �(H). In this case from Corollary

6.4, equation (6.8), and the very deûnition of p�H we deduce that
(8.21)

(1−C0ε
1
2
1 )|pL − p�H | ≤ |pπ0

(pL − p�H)| ≤ |c(L)− c(H)|+ |c(H)− pπ0
(p�H)| ≤ 65rH .

Hence we conclude that BL ⊂ B�
H and so arguing as above

|πL − πH |2 ≤ C0E(T,BL) + C0E
�(T,B�

H).

If L /∈ W e we conclude that |πL − πH | ≤ Cε
1
2
1 �(H)1−αe . Otherwise let π be the

projection of πH onto TpL
Σ. By the regularity assumptions on Σ and the estimate

(8.21) we have |π − πH | ≤ C0ε
1
2
1 �(H) and so

E(T,BL) ≤E(T,BL, π) ≤ C0E
�(T,B�

H) + C0|π − πH |2

≤C0ε
1
2
1 �(H)2−2αe .

Hence we conclude as well if L ∈ W |πL−πH | ≤ Cε
1
2
1 �(H)1−αe , since �(H) ≤ 2�(L),

this concludes the proof of (a) if H is a boundary cube.

Now we now turn to the proof of (a), (b)� and (c)�. To do so we ûrst pickH ∈ C �

and we start by considering a chain of ancestor-cubes H = Hj0+1 ⊂ Hj0 ⊂ · · · ⊂ Hj̄

such that Hj is the father of Hj+1 and Hj̄ is the ûrst ancestor that is a boundary

cube or j̄ = N0. We want to show by induction that

(i)j |πHj
− πHj−1

| ≤ C1ε
1
2
1 �(Hj)

1−αe and |πHj
− π0| ≤ C1ε

1
2
1 ;
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(ii)j spt(T ) ∩Cj ⊂ BHj
and h(T,Cj , π0) ≤ C1ε

1
2m
1 �(Hj) with

Cj := C48rj (pHj
, π0);

for suitable constants C1 = C1(αe, αh,M0, N0, Ce) and

C1 = C1(αe, αh,M0, N0, Ce, Ch).

Base Step, j = j̄: If Hj̄ = HN0
we have shown already that

|πHN0
− π0| ≤ C(M0, N0)ε

1
2
1 �(HN0

)1−αe

and spt(T ) ∩CN0
⊂ BHN0

. Hence we need to consider only the case in which Hj̄

is a boundary cube. In this case we argue as in (8.21) to deduce

(1− C0ε
1
2
1 )|pHj̄+1

− p�Hj̄
| ≤ |pπ0

(pHj̄+1
− p�Hj̄

)|
≤ |cHj̄+1

− cHj̄
|+ |cHj̄

− pπ0
(p�Hj̄

)| ≤ 65rHj̄
.(8.22)

In particular this implies that BHj̄+1
⊂ B�

Hj̄
. Hence we have

|πHj̄+1
− πHj̄

|2 ≤ C0E(T,BHj̄+1
) + C0E

�(T,B�
Hj̄

).

As before if Hj̄+1 ∈ Sj̄+1 we directly conclude that

|πHj̄+1
− πHj̄

| ≤ Cε
1
2
1 �(Hj̄+1)

1−αe .

Otherwise let π be the projection of πHj̄
onto the tangent space of Σ at pHj̄+1

. By

the regularity of Σ and the estimate (8.22) we have |π−πHj̄+1
| ≤ C(M0)ε

1
2
1 �(Hj̄+1).

Since ‖T‖(B�
Hj̄

) ≥ ωmr
m
Hj̄
/2,

E(T,BHj̄+1
) ≤ E(T,BHj̄+1

, π) ≤ C0E
�(T,B�

Hj̄
) + C0|π − πHj̄+1

|2

≤ Cε
1
2
1 �(Hj̄+1)

2−2αe .(8.23)

We conclude the ûrst part of (i)l for j = j̄, while the second one follows from (6.7)
and the estimate:

|π(p�Hj̄
)− πHj̄

| ≤ C0ε1r
1−αe

Hj̄
.

Induction Step: Let us assume the validity of (i)j’, (ii)j’ for all j̄ ≤ j′ ≤ j, we want
to show that (i)j+1, (ii)j+1 hold true. First note that pHj+1

∈ Cj , and thus, by (ii)j,

|pHj+1
− pHj

|2 ≤ |c(Hj+1)− c(Hj)|2 + |p⊥
π0
(pHj+1

− p�Hj
)|2

≤
(

9

M2
0

+ 4C1ε1

)
r2Hj+1

,(8.24)

where � = � or � = depending on whether Hl is a boundary or a non-boundary
cube. Hence, provided M−1

0 and ε1 are sufficiently small, BHj+1
⊂ B�

Hj
. Thus

|πHj+1
− πHj

|2 ≤ C0E
�(T,B�

Hj
) + C0E(T,BHj+1

).

Note now that Hj ∈ Sj (since otherwise it would have not been subdivided to
produce Hj+1), hence

E(T,BHj+1
) ≤ C0E

�(T,B�

Hj
) ≤ C0Ceε1�(Hj)

2−2αe ≤ Cε1�(Hj)
2−2αe
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for a constant C which depends only on m,n,Q, and Ce. This proves the ûrst part
of (i)j+1 if we choose C1 ≥ C. The second part follows from the ûrst one and the
inductive assumption via the estimate

|πHj+1
− π0| ≤

j+1∑

j′=j̄

|πHj′
− πHj′−1

| ≤ C1ε
1
2
1

j+1∑

j′=j̄+1

2−(1−αe)j
′ ≤ C1ε

1
2
1 .

since we can choose N0 big enough to ensure

∞∑

j′=N0

2−(1−αe)j
′ ≤ 1 .

We now prove (ii)j+1. The idea is to ûrst use the inductive assumption (namely
the height bound in Cj) in order to prove that spt(T ) ∩Cj+1 ⊂ BHj+1

and hence
to use the height bound in BHj+1

in order to conclude an height bound in Cj+1: in
the second step it is crucial that the tilt |πHj+1

−π0| has already been proved to be

under control, cf. Figure 8.3. Indeed, by (ii)j for all x ∈ spt(T )∩Cj+1 ⊂ spt(T )∩Cj

we have

|x− pHj+1
|2 ≤

(
48rHj+1

)2
+ h(T,Cj , π0)

≤
(
48rHj+1

)2
+ C14ε1�(Hj+1)

2 ≤ (64rHj+1
)2.(8.25)

provided ε1 is small enough. This implies that spt(T ) ∩ Cj+1 ⊂ BHj+1
and thus

the ûrst part of (ii)j+1. We now note that, if Hj+1 ∈ Sj+1, then

h(T,Cj+1, π0) ≤ C0rHj+1
|πHj+1

− π0|+ h(T,BHj+1
, πHj+1

)

≤ C1ε
1/2m
1 �(Hj+1) .

provided C1 is chosen big enough. If instead Hj+1 /∈ Sj+1 (which can just happen
for j = j0) we just observe that Cj+1 ⊂ Cj and that Hj ∈ Sj (otherwise it would
have not been subdivided) and thus, by choosing C1 possibly bigger,

h(T,Cj+1, π0) ≤ h(T,Cj , π0) ≤ C0rHj
|πHj

− π0|+ h(T,B�

Hj
, πHj

)

≤ C0rHj+1
|πHj+1

− π0|+ Chε
1/2m
1 �(Hj)

1+αh

≤ C1ε
1/2m
1 �(Hj+1)

This complete the proof of (ii)j+1 and of the claim. Note in particular that (ii)j+1

implies (b)�.
Let us now prove (a), and (c)�. For (a), let L be an ancestor of H, then either

L = Hi for some i ≤ j̄ or L is a boundary cube with Hj̄ ⊂ L. In the ûrst case the

we use (i)j to deduce that

|πH − πL| = |πHj0+1
− πHi

| ≤
j0+1∑

j=i+1

|πHj
− πHj−1

|

≤ Cε
1
2
1 �(Hi)

1−αe

j0−i∑

j=1

2−(1−αe)l
′ ≤ Cε

1
2
1 �(Hj)

1−αe .
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BHj+1

Cj+1

πHj+1

π0

Figure 8.1. The inductive proof of (ii)j+1 consists of two steps:
ûrst the height bound in the cylinder Cj is used to prove that
spt(T ) ∩ Cj+1 ⊂ BHj+1

; then the height bound in BHj+1
is used

to prove the height bound in the cylinder Cj+1.

In the second case we use the triangle inequality and (a) for boundary cubes (which
has already been shown) to deduce

|πH − πL| ≤ |πH − πHj̄
|+ |πHj̄

− πHL
|

≤ Cε
1
2
1 �(Hj̄)

1−αe + Cε
1
2
1 �(L)

1−αe ≤ Cε
1
2
1 �(L)

1−αe

It remains to prove the second part of (a) in the case that L,H are neighbors
and both are non-boundary cubes. Let M be the father of L and we may assume
that �(H) ≤ �(L) = 1

2�(M). Since |c(H) − c(M)| ≤ 3
√
m�(L) we have that pH ∈

C32rM (pM , π0)∩spt(T ) or pH ∈ C2732rM (p�M , π0)∩spt(T ) ifM is a boundary cube.

In both cases, by (b), BH ⊂ BM (or BH ⊂ B�
M ), hence

|πH − πM | ≤ Cε
1
2
1 �(M)1−αe .

Since a symmetric argument holds for L we obtain

|πH − πL| ≤ |πH − πM |+ |πL − πM | ≤ 4Cε
1
2
1 �(L)

1−αe .

and this concludes the proof of (a). To prove (c)� we consider again the chain of
ancestors H = Hj0+1 ⊂ Hj0 ⊂ · · · ⊂ Hj̄ where Hj̄ is either the ûrst boundary cube

in this chain or Hj̄ ∈ CN0
. Let us set Cj := C48rHj

(p�Hj
, π0), (c)

� will follow if we

show that for all j ≥ j̄

(8.26) spt(T ) ∩C36rHj
(p�Hj

, πHj
) ⊂ spt(T ) ∩Cj

(note that the possibility � = � can only occur for j = j̄). Indeed the inclusion
spt(T )∩C36rHj

(p�Hj
, πH) ⊂ B�

L will then follow from (b), the arguments in the last
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step and simple geometric considerations. Moreover, assuming (8.26) and using (a)
we will have

h(T,C36rHj
(p�Hj

, πH)) ≤ h(T,Cj , πH) ≤ h(T,B�
Hj
, πH)

≤ h(T,B�

Hj
, πHj

) + C|πH − πHj
|rHj

≤ Chε
1

2m
1 �(Hj)

1+αh + Cε1�(Hj)
2−αe ,

from which we easily conclude.
We are thus left to show (8.26). First, note that from (8.24) and (a) for j ≥ j̄

|pπH
(pHj+1

− p�Hj
)| ≤ |pπ0

(pHj+1
− p�Hj

)|+ C|π0 − πH ||pHj+1
− p�Hj

|

≤ (3
√
m+ Cε

1
2
1 )�(Hj)

(recall that Hj+1 is a non-boundary cube by assumption). Hence, by choosing ûrst
M0 large and then ε1 small, we always have

(8.27) C36rHj+1
(pHj+1

, πH) ⊂ C36rHj
(p�Hj

, πH).

Now, if Hj̄ = HN0
we deduce from |πH − πHN0

| ≤ Cε
1
2
1 that

C36rHN0
(pHN0

, πH) ⊂ CN0

if ε1 is sufficient small. If Hj̄ is a boundary cube, Corollary 6.4 implies that

C2736rHj̄
(p�Hj̄

, πH) ⊂ C2748rHj̄
(p�Hj̄

, π0). Hence, in both cases, (8.26) holds for

j = j̄. Let us assume now that there exists a ûrst index j′ ≥ j̄ + 1 such that (8.26)
fails. Then there is a point p ∈ spt(T ) such that

p ∈ spt(T ) ∩C36rH
j′
(pHj′

, πH) \Cj′ .

By a simple geometric argument and (a), this implies that

|p⊥
π0
(p− pHj′

)| ≥
36rHj′

C|π0 − πH | ≥
CrHj′

ε1
.

On the other hand, by the inclusion (8.27), the validity of (8.26) at the step j′ − 1
and (b), we have

|p⊥
π0
(p− pHj′

)| ≤ |p⊥
π0
(p− pHj′−1

)|+ |p⊥
π0
(pHj′

− pHj′−1
)|

≤ 2h(T,Cj′−1, π0) ≤ CrHj′
.

Taking ε1 small enough the last two inequality are in contradiction, from which we
deduce the validity of (8.26) for j′. �

In particular, a simple additional argument implies Proposition 8.7, in the
following strengthened version:

Proposition 8.25. Under the Assumptions 7.1 and 8.6 the following holds for
every couple of neighbors H,L ∈ S ∪W and any H,L ∈ S ∪W with H descendant
of L:

spt(T ) ∩C36rL(pL, πH) ⊂ BL when L ∈ C
�,

spt(T ) ∩C2736rL(p
�
L, πH) ⊂ B�

L when L ∈ C
�,

and the current T satisfies the assumptions of Theorem 7.5 in the cylinder
C36rL(pL, πH) (resp. of Theorem 7.4 in C2736rL(p

�
L, πH)).
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Proof. The ûrst two claims have already been proved in the previous propo-
sition. We now wish to prove the applicability of Theorem 7.5 in C36rL(pL, πH),
resp. of Theorem 7.4 in C2736rL(p

�
L, πH). In both cases let C be the corresponding

cylinder and B their bases, namely B36rL(pπH
(pL), πH) and B2736rL(pπH

(p�L), πH).
We only have to show the following properties:

pπH
(T C) = Q �B� if L ∈ C

�(8.28)

pπH
(T C) = Q

�
B+

�
+ (Q− 1)

�
B−�

if L ∈ C
�(8.29)

where, in the second identity, we consider B+ and B− as the regions of B which
are separated by pπH

(Γ).
We just show the argument for the second case, since the ûrst one is entirely

analogous and already contained in [16] (in fact also the argument for the second
case is just a modiûcation of the one contained in [16]).

Assume ûrst that L 
∈CN0
, letM be the father of L and letC′=C2736rM (p�M , π0).

Consider that, by case (c)� of the previous proposition, we clearly have spt(T ) ∩
C ⊂ C′. Consider thus a continuous path of planes [0, 1] � t �→ π(t) such that

π(0) = π0, π(1) = πH and |π(t) − π0| ≤ Cε
1/2
1 and let S := T C′, C(t) :=

C2736rL(p
�
L, π(t)) and T (t) := pπ(t)(S C(t)). Observe that, by the height bound

on C′, if ε1 is sufficiently small, then spt(∂S) ∩ C(t) ⊂ Γ. In particular, if
B(t) = B2736rL(pπ(t)(p

�
L), π(t)) and B(t)± are the corresponding regions in which

pπ(t) subdivides it, we must have

T (t) = k(t)
�
B(t)+

�
+ (k(t)− 1)

�
B(t)−

�

for a suitable integer k(t). However, by a simple continuity argument on t �→ T (t),
the map t �→ k(t) must be as well continuous, that is constant. Since k(0) = Q,
we thus must have k(1) = Q as well. On the other hand T (1) = pπH

(T C), thus
implying the desired claim.

In case L ∈ CN0
we use the same argument where we deûne C′ to be the

cylinder C2772rL(p
�
L, π0). �

8.4. Interpolating functions and linearized system

Consider now a pair H,L ∈ S ∪ W which are either neighbors or such that
H is a descendant of L. By Proposition 8.25 we can consider corresponding maps
f+
HL and fHL as in Section 8.1.4, by applying Theorem 7.4 and Theorem 7.5 in the

cylinders C2736rL(p
�
L, πH) and C36rL(pL, πH), respectively. Hence we introduce the

corresponding maps hHL(x) = (h̄HL(x),ΨH(x, h̄HL(x))) where h̄HL solves

(8.30)

§
¨
©

ΔhHL = L · (x− pπH
(pH))

hHL = η ◦ fHL on ∂B8rL(pL, πH) ,

if H and L are both nonboundary cubes,

(8.31)

§
¨
©

ΔhHL = L · (x− pπH
(pH))

hHL = η ◦ f+

HL on ∂B+
278rL(p

�
L, πH) ,
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if L is a boundary cube and H is a non-boundary cube,

(8.32)

§
¨
©

ΔhHL = L · (x− pπH
(p�H))

hHL = η ◦ fHL on ∂B8rL(pL, πH) ,

if L is a nonboundary cube and H is a boundary cube and ûnally

(8.33)

§
¨
©

ΔhHL = L · (x− pπH
(p�H))

hHL = η ◦ f+

HL on ∂B+
278rL

(p�L, πH) ,

if both H and L are boundary cubes. The constant coefficient matrix L is given by

Lik = −
∑

j

ΔxΨ
j
H(pH)∂2yixk

Ψj
H(pH) if H ∈ C

�(8.34)

Lik = −
∑

j

ΔxΨ
j
H(p�H)∂2yixk

Ψj
H(p�H) if H ∈ C

�.(8.35)

Observe that the third case cannot happen when H is a descendant of L and thus
it can only happen when H and L are neighbors.

In order to simplify our discussion, in what follows we always use the convention
that κH is the orthogonal complement in TpH

Σ (resp. Tp	
H
Σ) of πH . Moreover,

for every map u deûned on a domain Ω ⊂ πH and taking values in π⊥
H , we denote

by ū its projection on κH . In particular, if the graph of u is contained in Σ, then
we have u = (ū,ΨH ◦ ū). The same convention, given the obvious adjustments, is
adopted for multivalued maps.

The key estimate leading to the proof of Theorem 8.13 is contained in the
following proposition.

Proposition 8.26. Under the Assumptions 7.1 and 8.6 the following estimates
hold for every pair of cubes H and L which are either neighbors or such that H is
a descendant of L:
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∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH

(x− pH))
)

≤ Cε1r
m+1+αh

L (rL‖Dζ‖0 + ‖ζ‖0)(8.36)

∀ζ ∈ C∞
c (B8rL(pL, πH),κH) if L,H ∈ C

�;
∫ (

D(η ◦ f̄HL) : Dζ + ζt · L · (pπH
(x− p�H))

)

≤ Cε1r
m+1+αh

L (rL‖Dζ‖0 + ‖ζ‖0)(8.37)

∀ζ ∈ C∞
c (B8rL(pL, πH),κH) if L ∈ C

� and H ∈ C
�;

∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH

(x− pH))
)

≤ Cε1r
m+1+αh

L (rL‖Dζ‖0 + ‖ζ‖0)(8.38)

∀ζ ∈ C∞
c (B+

278rL
(p�L, πH),κH) if L ∈ C

� and H ∈ C
�;

∫ (
D(η ◦ f̄HL) : Dζ + ζt · L · (pπH

(x− p�H))
)

≤ Cε1r
m+1+αh

L (rL‖Dζ‖0 + ‖ζ‖0)(8.39)

∀ζ ∈ C∞
c (B+

278rL
(p�L, πH),κH) if L,H ∈ C

�.

Moreover,

‖h̄HL − η ◦ f̄HL‖L1(B8rL
(pL,πH)) ≤ Cε1r

m+3+αh

L if L ∈ C
�;(8.40)

‖h̄HL − η ◦ f̄HL‖L1(B+

278rL
(p	

L,πH)) ≤ Cε1r
m+3+αh

L if L ∈ C
�;(8.41)

‖Dh̄HL‖L∞(B7rL
(pL,πH)) ≤ Cε

1
2
1 r

1−αe

L if L ∈ C
�;(8.42)

‖Dh̄HL‖L∞(B+

277rL
(p	

L,πH)) ≤ Cε
1
2
1 r

1−αe

L if L ∈ C
�.(8.43)

Proof. Proof of (8.36), (8.38) and (8.39). The argument follows that of
[16, Proposition 5.2] with essentially no variations and we report it here for the
reader’s convenience.

In order to simplify our notation we let p = pH in the ûrst and third cases and
p = p�H in the second and fourth ones and we write π,κ and� for the planes πH ,κH

and TpΣ
⊥. With a slight abuse of notation we denote by Ψ the map ΨH , so that the

graph of Ψ : TpΣ → TpΣ
⊥ is Σ. Finally we use the coordinates (x, y, z) ∈ π×κ×�

to identify points in Rm+n̄+l = Rm+n and we set f = fHL, f
+ = f+

HL, r = rL. To
avoid cumbersome notation we use ‖·‖0 for ‖·‖C0 and ‖·‖1 for ‖·‖C1 .

In all the cases the identities are derived by testing the ûrst variation condition
δT (χ) = 0 for the vector ûeld χ(x, y, z) = (0, ζ(x), DyΨ(x, y) · ζ(x)): in the ûrst
case the condition will be tested in the cylinder C := C8rL(pL, πH), whereas in the
second and third cases it will be tested in the domain C+ := B+

278rL
(p�L, πH)× π⊥

H .
Note that in both cases the vector ûeld χ vanishes at the boundaries of the respective
domains, whereas the current T has zero boundary in both C and C+. Finally,
although χ does not have compact support, the currents T C and T C+ have
both bounded support and thus we have δ(T C)(χ) = 0, δ(T C+)(χ) = 0. Using
the formula for the ûrst variation and the estimates in the Theorem 7.5, in the ûrst

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



118 8. CENTER MANIFOLDS

case we conclude

|δGf (χ)| = |δ(Gf − T C)(χ) ≤ ‖Dχ‖0M(T C−Gf )

≤ C0‖Dχ‖0rm(E(T,C, πH) + r2A2)1+σ(8.44)

≤ C0‖Dχ‖0rm(ε1r
2−2αe)1+σ .(8.45)

On the other hand ‖χ‖0 ≤ 2‖ζ‖0 and ‖Dχ‖0 ≤ 2‖ζ‖0 + 2‖Dζ‖0, provided ε1 is
sufficiently small. Choosing αh ≤ σ

2 and αe small enough so that (2−2αe)(1+σ) ≥
2 + σ

2 , we conclude that

(8.46) |δGf (χ)| ≤ Cε1r
m+1+αh(r‖Dζ‖0 + ‖ζ‖0) .

Using the same argument and the estimates in Theorem 7.4, we gain the same
estimate for the second and third case.

The remaining computations are the same for all the cases and we give them for
case two and three. First we write f+ =

∑
i

�
f+
i

�
and f̄+ =

∑
i

�
f̄+
i

�
. Gr(f+) ⊂ Σ

implies f+ =
∑

i

�
(f̄+

i ,Ψ(x, f̄+
i ))

�
. From [15, Theorem 4.1] we can infer that

δGf+(χ) =

∫

B

∑

i

(
DxyΨ(x, f̄+

i ) · ζ︸ ︷︷ ︸
(A)

+(DyyΨ(x, f̄+
i ) ·Dxf̄

+
i ) · ζ︸ ︷︷ ︸

(B)

+DyΨ(x, f̄+
i ) ·Dxζ︸ ︷︷ ︸

(C)

)
:
(
DxΨ(x, f̄+

i )︸ ︷︷ ︸
(D)

+DyΨ(x, f̄+
i ) ·Dxf̄

+
i︸ ︷︷ ︸

(E)

)

+

∫

B

∑

i

Dxζ : Dxf̄
+
i + Err .(8.47)

Recalling [15, Theorem 4.1], the error term Err in (8.47) satisûes the inequality

(8.48) |Err| ≤ C

∫
|Dχ||Df+|3 ≤ ‖χ‖1

∫
|Df |3 ≤ C‖χ‖1 Lip(f+)

∫
|Df+|2 .

Using now the estimates of Theorem 7.4 and arguing as above we achieve

(8.49) |Err| ≤ ε1r
m+1+αh(r‖Dζ‖0 + ‖ζ‖0) .

The second integral in (8.47) is obviously Q
∫
B
Dζ : D(η ◦ f̄+). We therefore

expand the product in the ûrst integral and estimate all terms separately. In order
to simplify our computations we shift coordinates so that p = (0, 0, 0). Recall that
this implies that |pπ(pL)| ≤ C0�(L), or |pπ(p

�
L)| ≤ C064r if L is a boundary cube.

In particular we have Ψ(0, 0) = 0 and DΨ(0, 0) = 0. Taking into account the
bounds on A, we then can write the Taylor expansion

DΨ(x, y) = DxDΨ(0, 0) · x+DyDΨ(0, 0) · y +O
(
ε
1/2
1 (|x|2 + |y|2)

)
.

In particular we gather the following estimates:

|DΨ(x, f̄+
i )| ≤ Cε

1/2
1 r,

DΨ(x, f̄+
i ) = DxDΨ(0, 0) · x+O

(
ε
1/2
1 r1+ah

)
,

|D2Ψ(x, f̄+
i )| ≤ ε

1/2
1 ,

D2Ψ(x, f̄+
i ) = D2Ψ(0, 0) +O

(
ε
1/2
1 r

)
.
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We are now ready to compute the behavior of the summands in (8.47). First
∫ ∑

i

(A) : (D) =

∫ ∑

i

(DxyΨ(0, 0) · ζ) : DxΨ(x, f̄+
i )

+O
(
ε1r

2

∫
|ζ|

)

= Q

∫ ∑

i

(DxyΨ(0, 0) · ζ : DxxΨ(0, 0) · x+O
(
ε1 r

1+αh

∫
|ζ|

)
.(8.50)

Next, we estimate
∫ ∑

i

(A) : (E) = O
(
ε1r

1+αh

∫
|ζ|

)
,(8.51)

∫ ∑

i

(B) : ((D) + (E)) = O
(
ε1r

1+αh

∫
|ζ|

)
,(8.52)

∫ ∑

i

(C) : (E) = O
(
ε1r

2+αh

∫
|Dζ|

)
.(8.53)

Finally we compute
∫ ∑

i

(C) : (D) =

∫ ∑

i

((DxyΨ(0, 0) · x) ·Dxζ) : DxΨ(x, f̄+
i )

+O
(
ε1 r

2+αh

∫
|Dζ|

)

= Q

∫ ∑

i

(DxyΨ(0, 0) · x) ·Dxζ) : (DxxΨ(0, 0) · x)

+O
(
ε1 r

2+αh

∫
|Dζ|

)
.

In summary, the ûrst integral in (8.47) takes the following form:

Q

∫ ∑

i,j,k,s

∂2xiyj
Ψk(0, 0)ζj(x)∂2xixs

Ψk(0, 0)xs dx

+Q

∫ ∑

i,j,k,s,r

∂2xiyj
Ψk(0, 0)xi∂sζ

j(x)∂2xrxs
Ψk(0, 0)xr dx+ Err ,

where Err satisûes the estimate (8.49). Integrating by parts the second term we
achieve

−Q
∫ ∑

i,j

xi

⎛
¿∑

j

ΔxΨ
k(0, 0)∂2xiyj

Ψk(0, 0)

À
⎠ ζj(x) dx+ Err ,

which completes the proof of the claim.

Proof of (8.40) and (8.41). The estimate is the same in all cases: we denote
by Ω the domain of the function h̄ := h̄HL and observe that for the difference
u := h̄− η ◦ f̄ , resp. u := h̄− η ◦ f̄+, the function u satisûes u|∂Ω = 0 and

∣∣∣∣
∫

Ω

Du : Dζ

∣∣∣∣ ≤ Crm+1+αh(‖ζ‖0 + r‖Dζ‖0) ∀ζ ∈W 1,2
0 (Ω)

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



120 8. CENTER MANIFOLDS

(although the estimates in (8.36), (8.38) and (8.39) were proved for ζ ∈ C∞
c (Ω),

a simple density argument extends it to the case above). Now, for every v ∈ L2

consider the unique solution ζ := P (v) ∈ W 1,2
0 (Ω) of Δζ = v. We then have the

estimates
r−1‖P (v)‖0 + ‖D(P (v))‖0 ≤ r‖v‖0 .

Therefore we can write

‖u‖L1(Ω) = sup
v:‖v‖0≤1

∫

Ω

u · v = sup
v:‖v‖0≤1

∫

Ω

u ·Δ(P (v))

= sup
v:‖v‖0≤1

(
−

∫

Ω

Du : D(P (v))

)

≤ Cε1r
m+1+αh sup

v:‖v‖0≤1

(‖P (v)‖0 + r‖D(P (v))‖0)

≤ Cε1r
m+3+αh .

Proof of (8.42). We split h as v + w, where

(8.54)

§
¨
©

Δv = 0 in B8rL(pL, πH)

v = η ◦ f̄ on ∂B8rL(pL, πH)

and

(8.55)

§
¨
©

Δw = L · x in B8rL(pL, πH)

w = 0 on ∂B8rL(pL, πH)

The estimate (8.42) follows from the interior regularity for the Laplace equation.
More precisely, for the harmonic part we have

‖Dv‖2L∞(B7rL
(pL)) ≤ Cr−m

L

∫

B8rL
(pL)

|Dv|2

≤ Cr−m
L

∫

B8rL
(pL)

|D (η ◦ f̄)|2 ≤ Cε1r
2−2αe

L ,

whereas for w the estimate holds up to the boundary

‖Dw‖L∞(B8rL
(pL)) ≤ CrL‖Δw‖∞ ≤ Cε1r

2
L .

For later use let us note that in particular if L ∈ C
�
N0

we have (for some constant
C depending on N0)

4∑

k=0

∥∥Dkv
∥∥
B7rL

(pL)
≤ C ‖Dh‖L2(B8rL

(pL)) ≤ Cε
1
2
1

4∑

k=0

∥∥Dkw
∥∥
B7rL

(pL)
≤ C ‖Δw‖C2(B8rL

(pL)) ≤ Cε1 .

Therefore we conclude that, for any L ∈ C
�
N0

,

(8.56) ‖hHL‖C3,κ(B7rL
(pL)) ≤ Cε

1
2
1 .

Proof of (8.43). Let L be a boundary cube, we want to apply Schauder estimates
to prove (8.43). To this aim we ûrst observe that η ◦ f coincides with the C3,a0
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function whose graph describes Γ on γ = pπ(γ). For this reason we ûx a C3,a0

extension of it to the whole domain Ω. We will show below that, by our assumption

on Γ, we can impose ‖φ‖3,a0
≤ Cε

1/2
1 . As customary we write φ = (φ̄,Ψ(x, φ̄)).

We then split h as v + w + φ̄, where

(8.57)

§
¨
©

Δv = 0 in B+
278rL

(p�L, πH)

v = η ◦ f̄ − φ̄ on ∂B+
278rL

(p�L, πH)

and

(8.58)

§
¨
©

Δw = L · x−Δφ̄ in B27 8rL(p
�
L, πH)

w = 0 on ∂B+
278rL

(p�L, πH) .

Step 1: Definition of φ. Recall that Γ is a C3,a0 graph of a function ψL over

τ1 := Tp	
L
Γ with ‖ψL‖3,a0

≤ Cε
1/2
1 . Consider now that |π − π�

L| ≤ Cε
1/2
1 �(L)1−αe ≤

Cε
1/2
1 and hence, if we deûne τ := pπ(τ1), under the assumption that ε1 is smaller

than a geometric constant we conclude as well that|τ−τ1| ≤ Cε
1/2
1 �(L)1−αe ≤ Cε

1/2
1 .

We can now invoke Lemma 8.30 below (namely [16, Lemma B.1]) to conclude that

Γ is the graph of a function ψ over τ with ‖ψ‖3,a0
≤ Cε

1/2
1 . Fix next a unit vector

e orthogonal to τ . We can then write ψ = ψ̃e + φ̃, where φ̃ = pπ⊥(ψ). Since

∂B+
278rL

(p�L, πH) ∩ B278rL(p
�
L, πH) ⊂ pπ(Γ), we infer that the graph of ψ̃ over a

suitable subdomain of τ describes ∂B+
278rL

(p�L, πH) ∩B278rL(p
�
L, πH).

Next, for every x ∈ π we let x = v + te with v ∈ τ and deûne φ(x) =

φ̃(v). Clearly ‖φ‖3,a0
≤ Cε

1/2. Moreover, when restricted to ∂B+
278rL

(p�L, πH) ∩
B278rL(p

�
L, πH) the graph of the function φ gives the portion of Γ lying over it.

Hence φ = η ◦ f over ∂B+
278rL

(p�L, πH) ∩B278rL(p
�
L, πH). Note in addition that for

every q ∈ B�
L,

|TqΓ− τ | ≤ |TqΓ− τ1|+ |τ1 − τ | = |TqΓ− Tp	
L
Γ|

≤ Cε+ 1
1/2|q − p�L|+ Cε

1/2
1 �(L)1−αe ≤ Cε

1/2
1 �(L)1−αe .

This estimate implies
‖Dφ‖∞ ≤ Cε

1/2�(L)1−αe .

Step 2: Schauder estimates. By interpolation

[Dφ]α ≤ C ‖Dφ‖1−α
∞

∥∥D2φ
∥∥α

∞ ≤ Cε
1
2 �(L)(1−αe)(1−α).

Since 1
m+1 div(x⊗ x) = x, we have

Lx−Δφ = div

(
1

m+ 1
Lx⊗ x−∇φ

)
= div(F ).

By classical Schauder theory for operators in divergence form and 0-boundary con-
ditions, we have

[Dw]α ≤ C[F ]α ≤
[

1

m+ 1
Lx⊗ x−∇φ

]

α

≤ Cε
1
2
1 r

(1−αe)(1−α)
L .

We moreover have the elementary estimate

‖Dw‖L2 ≤ C‖F‖L2 ,
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which follows from multiplying the equation by w and integrating by parts. Hence
we conclude

‖Dw‖∞ ≤ Crα[Dw]α ≤ Cε
1
2 r1−αe

L .

It remains to estimate the harmonic part ‖Dv‖∞. Since v = 0 on ∂B+
278rL

(p�L, πH)∩
B278rL(p

�
L, πH) we can use a classical estimate on harmonic functions vanishing on

a smooth boundary to deduce that

‖Dv‖2C0(B+

277rL
(p	

L,πH)) ≤ Cr−m

∫

B+

278rL
(p	

L,πH)

|Dv|2

≤ Cr−m

∫

B+

278rL
(p	

L,πH)

|D(η ◦ f̄ − φ)|2 ≤ Cε1r
2−2αe

L .

Combining all estimates give (8.43). As in the interior situation let us remark that
for L ∈ C �

N0
there is a constant depending on N0 such that for κ ≤ a0

[D3v]κ,B′ +
3∑

k=0

∥∥Dkv
∥∥
C0(B′)

≤ C‖η ◦ f̄‖C0 + ‖φ‖C0 ≤ Cε
1
2
1

and

[D3w]κ,B′ +

3∑

k=0

∥∥Dkw
∥∥
C0(B′)

≤ C ‖Δw‖C1,κ ≤ Cε
1
2
1 ,

where B′ = C3,κ(B+
277rL

). Therefore

(8.59) ‖hHL‖C3,κ(B+

277rL
(p	

L,πH)) ≤ Cε
1
2
1 .

�

We end this section by recalling the following simple consequence of the regu-
larity theory for harmonic functions vanishing at a sufficiently smooth portion of
the boundary.

Lemma 8.27. Let r < 1 and consider any m−1 dimensional C3,a0 hypersurface
γ ⊂ Rm which passes through the origin and is the graph of a C3,a0 function ϕ with
‖ϕ‖C3,a0 ≤ 1. Let B+ the subset of B1 lying over γ. Then there is a constant
C(r, a0,m) such that the following estimate holds for every harmonic function h in
B+ which vanishes along γ:

(8.60) ‖h‖C3,a0 (Br∩B+) ≤ C(r, a0,m)‖h‖L1(B+) .

8.5. Tilted L1 estimate

Definition 8.28. Four cubes H, J, L,M ∈ C make a distant relation between
H and L if J,M are neighbors (possibly the same cube) with same side length and
H and L are descendants respectively of J and M .

Lemma 8.29 (Tilted L1 estimate). Under the Assumptions 7.1 and 8.6 the
following holds for every quadruple H, J, L and M in S ∪W which makes a distant
relation between H and L.
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• If J ∈ C �, then there is a map ĥLM : B4rJ (pJ , πH) → π⊥
H such that

GĥLM
= GhLM

C4rJ (pJ , πH)

and

(8.61) ‖hHJ − ĥ�LM‖L1(B2rJ
(pJ ,πH)) ≤ Cε1�(J)

m+3+αh/2 ,

where � = + or � = depending on whether M is a boundary or a non-
boundary cube.

• If both J andM belong to C �, then there is a map ĥLM : B+
274rJ

(p�J , πH) →
π⊥
H such that

GĥLM
= GhLM

C274rJ (p
�
J , πH)

and

(8.62) ‖h+HJ − ĥLM‖L1(B+

272rJ
(p	

J ,πH)) ≤ Cε1�(J)
m+3+αh/2 .

Before coming to the proof we recall the following two lemmas from [16].

Lemma 8.30 (Lemma B.1 in [16]). For any m,n ∈ N \ {0} there are constants
c0, C0 > 0 with the following properties. Assume that

(i) κ,κ0 ⊂ Rm+n are m-dimensional planes with |κ−κ0| ≤ c0 and 0 < r ≤ 1;
(ii) p = (q, u) ∈ κ × κ⊥ and f, g : Bm

7r(q,κ) → κ⊥ are Lipschitz functions
such that

Lip(f),Lip(g) ≤ c0 and |f(q)− u|+ |g(q)− u| ≤ c0 r.

Then there are two maps f ′, g′ : B5r(p,κ0) → κ
⊥
0 such that

(a) Gf ′ = Gf C5r(p,κ0) and Gg′ = Gg C5r(p,κ0);
(b) ‖f ′ − g′‖L1(B5r(p,κ0)) ≤ C0 ‖f − g‖L1(B7r(p,κ));

(c) if f ∈ C3,κ(B7r(p,κ)) then f ′ ∈ C3,κ(B5r(p,κ0)) with the estimates

‖f ′ − u′‖C0 ≤ C‖f − u‖C0 + C|κ − κ0|r(8.63)

‖Df ′‖C0 ≤ C‖Df‖C0 + C|κ − κ0|(8.64)

‖D2f ′‖C1,κ ≤ Φ(|κ − κ0|, ‖D2f‖C1,κ)(8.65)

where (q′, u′) ∈ κ0 × κ⊥
0 coincides with the point (q, u) ∈ κ × κ⊥ and Φ

is a smooth function with Φ(·, 0) ≡ 0.

All the conclusions of the Lemma still hold if we replace the exterior radius 7r and
interior radius 5r with ρ and s: the corresponding constants c0 and C0 (and the
function Φ) will then depend also on the ratio ρ

s .

Lemma 8.31 (Lemma 5.6 of [16]). Fix m,n, l and Q. There are geometric
constants c0, C0 with the following property. Consider two triples of planes (π,κ, �)
and (π̄, κ̄, �̄), where

• π and π̄ are m-dimensional;
• κ and κ̄ are n̄-dimensional and orthogonal, respectively, to π and π̄;
• � and �̄ l-dimensional and orthogonal, respectively, to π×κ and π̄× κ̄.

Assume An := |π − π̄| + |κ − κ̄| ≤ c0 and let Ψ : π × κ → �, Ψ̄ : π̄ × κ̄ → �̄
be two maps whose graphs coincide and such that |Ψ̄(0)| ≤ c0r and ‖DΨ̄‖C0 ≤ c0.
Let u : B8r(0, π̄) → AQ(κ̄) be a map with Lip(u) ≤ c0 and ‖u‖C0 ≤ c0r and set
f(x)=

∑
i�(ui(x), Ψ̄(x, ui(x)))� and f(x)=(η◦u(x), Ψ̄(x,η◦u(x))). Then there are
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• a map û : B4r(0, π) → AQ(κ) such that the map

f̂(x) :=
∑

i

�(ûi(x),Ψ(x, ûi(x)))�

satisfies Gf̂ = Gf C4r(0, π)

• and a map f̂ : B4r(0, π) → κ ×� such that

G
f̂
= Gf C4r(0, π) .

Finally, if g(x) := (η ◦ û(x),Ψ(x,η ◦ û(x))), then

‖f̂ − g‖L1 ≤ C0 (‖f‖C0 + rAn)
(
Dir(f) + rm

(
‖DΨ̄‖2C0 +An2

))
.(8.66)

Proof of Lemma 8.29. We start by examining the ûrst case. Using Proposi-
tion 8.26 we know that ‖h̄HJ −η ◦ f̄HJ‖L1(B8rJ

(pJ ,πH)) ≤ Cε1r
m+3+αh

J . Now, since

ΨH is Lipschitz and hHJ = (h̄HJ ,Ψ(x, h̄HJ)), fHJ = (η ◦ f̄HJ ,ΨH(η ◦ f̄HJ )), we
easily conclude that

(8.67) ‖hHJ − fHJ‖L1(B8rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh

J .

Similarly,

‖hLM − fLM‖L1(B8rM
(pM ,πL)) ≤ Cε1r

m+3+αh

M ≤ Cε1r
m+3+αh

J

in case M is a non-boundary cube or

‖h+LM − f+LM‖L1(B278rM
(p	

M ,πL)) ≤ Cε1r
m+3+αh

J

if it is a boundary cube. Since the two situations are entirely analogous, we just
focus on the case where M is a non-boundary cube.

Now both hLM and fLM are Lipschitz (and well deûned!) over B6rJ (pJ , πL)
and recall that, due to Proposition 8.24, |pπL

(pM − pJ)| ≤ 3
√
m�(M). Moreover

they satisfy the assumption (ii) of Lemma 8.30 by a simple Chebyshev argument

on the L1 estimate above. So we can apply Lemma 8.30 to get a function f̂LM the
function such that

G
f̂LM

C4rJ (pJ , πH) = GfLM
C4rJ (pJ , πH) ,

similarly for hLM and to conclude that

(8.68) ‖ĥLM − f̂LM‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh

J .

In order to simplify the notation, shift the center pJ to the origin and consider next

f̂LM , û and g as in Lemma 8.31 once we deûne f = fLM , π = πH and π̄ = πL. Now,
the graphs of û and f̄HJ coincides except for a set of Lebesgue measure bounded by
CrmJ (ε1r

2−2αe

J )1+σ because of the Lipschitz approximation theorems. On the other

hand the oscillations of both functions are bounded by Cε
1/2m
1 r1+αh

J . It is thus easy
to verify that

(8.69) ‖fHJ − g‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh

J .

We now claim that

(8.70) ‖f̂LM − g‖L1(B4rJ
(pJ ,πH)) ≤ Cε1r

m+3+αh/2
J

which combined with (8.67), (8.68), and (8.69) would give the desired estimate.

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



8.6. CONSTRUCTION ESTIMATES AND PROOF OF THEOREM 8.13 125

In order to reach (8.70) we wish to apply the estimate (8.66) in Lemma 8.31.
Recall that in our context we have the following estimates:

‖f‖0 ≤ Cε
1/2m
1 r1+αh

J ,

r = rJ ,

An ≤ Cε
1/2
1 r1−αe

J ,

Dir (f) ≤ Cε1r
m+2−2αe

J ,

‖DΨ̄‖C0 ≤ Cε
1/2
1 rJ .

Hence the estimate (8.70) follows easily from (8.66) once we impose αh > 4αe.

In the case where both M and J are boundary cubes, the argument is entirely
analogous. The only subtlety is that we cannot apply directly the lemmas 8.30 and
8.31 since the functions we are dealing with are only deûned on a portion of the
respective ball, namely on B+

276rJ
(p�J , πL). Note however that all functions can be

easily extended to the whole ball B276rJ (p
�
J , πL) with the following simple trick:

on the boundary γ = B276rJ (p
�
J , πL) ∩ ∂B+

276rJ
(p�J , πL) the graph of hLM coincides

with the boundary Γ, hence with a C3 function ψ, and the graph of fLM coincides
with Q �ψ�. Note moreover that ψ satisûes the estimates r−2

J ‖ψ‖0 + r−1
J ‖Dψ‖0 +

‖D2ψ‖0 ≤ Cε
1/2
1 . Hence it suffices to extend ψ to B−

276rJ
(p�J , πL) to a function

ϕ with the same estimates and hence extend hLM and fLM to B−
276rJ

(p�J , πL) by

setting them respectively equal to ψ andQ �ψ�. In this way we keep all the estimates
which were essential for the argument above. �

8.6. Construction estimates and proof of Theorem 8.13

In what follows we use the shorthand notations xH (resp. x�H) for the center

c(H) = pπ0
(pH) (resp. pπ0

(p�H)) and we write Br(x) for Br(x, π0).

Proposition 8.32. Let κ := min{αh/4, a0/2}. Under the Assumptions 7.1
and 8.6 the following holds for every pair of cubes H,L ∈ Pj.

3

(a) ‖gH‖C3,κ(B) ≤ Cε
1/2
1 , where B = B4rH (xH) when H ∈ C � and B =

B+
274rH

(x�H) when H ∈ C �;

(b) If H and L are neighbors then

‖gH − gL‖Ci(BrH
(xH)) ≤ Cε

1/2
1 �(H)3+κ−i ∀i ∈ {0, 1, 2, 3}

when H ∈ C
�,(8.71)

‖gH − gL‖Ci(B+

27rH
(x	

H)) ≤ Cε
1/2
1 �(H)3+κ−i ∀i ∈ {0, 1, 2, 3}

when H,L ∈ C
�;(8.72)

(c) |D3gH(x�H) − D3gL(x
�
L )| ≤ Cε

1/2
1 |x�H − x�L |κ, where � = if the corre-

sponding cube is a non-boundary cube and � = � if it is a boundary cube;

(d) ‖gH−p⊥
π0
(pH)‖C0(B) ≤ Cε

1/2m
1 �(H) if H ∈ C � and gH |γ∩B = ψ if H ∈ C �,

where B is as in (a);

(e) |πH − T(x,gH(x))GgH | ≤ Cε
1/2
1 �(H)1−αe for every x ∈ B, where B is as in

(a);

3Recall the definition of Pj given in Section 8.1.5.
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(f) If H ′ is the cube concentric to H ∈ Wj with �(H ′) = 9
8�(H), then

(8.73) ‖ϕi − gH‖L1(H′) ≤ Cε1�(H)m+3+αh/2 ∀i ≥ j + 1 .

Proof. Proof of (a). Consider the chain of ancestors H = Hi ⊂ Hi−1 ⊂
. . . ⊂ HN0

. Fix any j and consider the two cases where Hj is a boundary cube or
where Hj is a non-boundary cube. In the ûrst case observe that Hj−1 must also be
a boundary cube. It follows then that h̄HHj

− h̄HHj−1
is an harmonic function on

Ωj := B277rHj
(p�Hj

, πH) in the ûrst case and in Ωj := B7rHj
(pHj

, πH) in the second

case. Notice next that, by Proposition 8.26, we have

‖h̄HHj
− h̄HHj−1

‖L1(Ωj) ≤ ‖η ◦ f̄HHj
− η ◦ f̄HHj−1

‖L1(Ωj) + Cε1r
m+3+αh

Hj−1
.

On the other hand η ◦ f̄HHj
− η ◦ f̄HHj−1

vanishes except for a set of Lebesgue

measure at most C�(Hj−1)
m(ε1�(Hj−1)

2−2αe)1+σ. Taking into account that the

oscillation of both functions are bounded by Cε
1

2m
1 r1+αh

Hj−1
we also know that

‖η ◦ f̄HHj
− η ◦ f̄HHj−1

‖L1(Ωj) ≤ Cε1�(Hj−1)
m+3+2αh .

We thus conclude

‖h̄HHj
− h̄HHj−1

‖L1(Ωj) ≤ Cε1�(Hj−1)
m+3+αh .

Now, if Hj is a non-boundary cube we immediately conclude from the mean-value
inequality for harmonic functions that

(8.74)

4∑

k=0

�(Hj−1)
k‖Dk(h̄HHj

− h̄HHj−1
)‖C0(B4rHj

(pHj
,πH)) ≤ Cε1�(Hj−1)

3+αh .

In particular we conclude the estimates

(8.75) ‖h̄HHj
− h̄HHj−1

‖C3,κ(B4rHj
(pHj

,πH)) ≤ Cε12
−jκ .

Similarly, using an obvious scaling argument together with Lemma 8.27, when Hj

is a boundary cube we conclude

3∑

k=0

�(Hj−1)
k‖Dk(h̄HHj

− h̄HHj−1
)‖C0(B274rHj

(p	
Hj

,πH))

≤ Cε1�(Hj−1)
3+αh(8.76)

[D3(h̄HHj
− h̄HHj−1

)]0,a0,B274rHj
(p	

Hj
,πH)

≤ Cε1�(Hj−1)
αh−a0 .(8.77)

In particular,

(8.78) ‖h̄HHj
− h̄HHj−1

‖C3,κ(B274rHj
(p	

Hj
,πH)) ≤ Cε12

−jκ .

Summing all the estimates we conclude that if H is not a boundary cube then

(8.79) ‖h̄H‖C3,κ(B4rh
(pH ,φH)) ≤ ‖h̄HHN0

‖C3,κ(ΩN0
) + Cε1 .

If H is a boundary cube we have

‖h̄H‖C3,κ(B+

274rh
(p	

H ,φH)) ≤ ‖h̄HHN0
‖C3,κ(ΩN0

) + Cε1 .

Recall that in previously in (8.56), (8.59) we already showed that

‖h̄HHN0
‖C3,κ(ΩN0

) ≤ Cε
1
2
1 ,
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composing with ΨH we ûnd the desired regularity for hH . The regularity for gH
follows then from Lemma 8.30.

Proof of (b). Consider the function ĥL deûned by Lemma 8.29 when we take
H = J and L =M . We then have the two estimates

‖hH − ĥL‖L1(B2rJ
(pJ ,πH)) ≤ Cε1�(J)

m+3+αh/2 .(8.80)

‖hH − ĥL‖L1(B+

272rJ
(p	

J ,πH)) ≤ Cε1�(J)
m+3+αh/2 ,(8.81)

depending on the two cases under examination (H non-boundary cube or both H
and L boundary cube).

Observe that the graph of gL coincides with (a portion) of the graph ĥL. We
can thus use Lemma 8.30 to prove

‖gH − gL‖L1(Ω) ≤ Cε1�(J)
m+3+αh/2

where Ωi is either BrJ (xJ , π0) or B+
27rJ

(x�J , π0) depending on whether J is a non-

boundary cube or a boundary cube (in the second case we argue as in the proof of

Proposition 8.29: in order to apply Lemma 8.30 we extend both maps hH and ĥL so
that they are equal on B−

272rJ
(pJ , πH) and the Lipschitz constant of both remains

bounded by Cε
1/2
1 ). In order to conclude the estimates we then apply [16, Lemma

C.2]. In the case of boundary cubes it is easy to see that the proof given in [16] of
Lemma [16, Lemma C.2] extends to B+

272rJ
(pJ , πH) with trivial modiûcations.

Proof of (c). If the distance between H and L is larger than 2−N0 then there
is nothing to prove. Otherwise we can ûnd an ancestor J of H and an ancestor
M of L which make a distant relation and such that �(J) = �(M) is comparable
to |x�H − x�L | up to a geometric constant. Consider then the chain of ancestors
H ⊂ Hj−1 ⊂ . . . ⊂ J . Observe that, by the same arguments given in the previous
step we can ûnd maps gHHi

whose graphs coincide with (subsets of ) the graphs
hHHi

and satisfy the estimates

‖gHHi
− gHHi−1

‖C3(Ωi) ≤ Cε
1/2
1 �(Hi−1)

κ

where the domains Ωi are either BrHi
(xHi

, π0) or B27rHi
(x�Hi

, π0) depending on
whether Hi is a non-boundary cube or a boundary cube. Moreover, all the maps
gHHi

enjoy uniform C3,κ bounds by the same arguments of point (a). We thus
conclude that

|D3gHHi
(x�Hi

)−D3g�HHi−1
(x�Hi−1

)| ≤ Cε
1/2
1 2−iκ .

Summing all the estimates we then reach

|D3gH(x�H)−D3gHJ (x
�

J )| ≤ Cε
1/2
1 �(J)κ ≤ Cε

1/2
1 |x�H − x�L |κ .

Arguing similarly we conclude the corresponding estimate

|D3gL(x
�
L )−D3gLM (x�M )| ≤ Cε

1/2
1 |x�H − x�L |κ .

Finally, the obvious adaptation of the argument for (b) gives

|D3gHJ (x
�

J )−D3gLM (x�M )| ≤ Cε
1/2
1 |x�H − x�L |κ .

Proof of (d). The claim is obvious by construction for boundary cubes.
For non-boundary cubes, consider that the height bound for T and the Lipschitz

regularity for fH give that ‖pπ⊥
H
(pH) − η ◦ fH‖∞ ≤ Cε

1/2m
1 �(H). If we set fH :=
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(η ◦ f̄H ,ΨH(x,η ◦ f̄H)) we also get ‖pπ⊥
H
(pH)− fH‖∞ ≤ Cε

1/2m
1 �(H). On the other

hand the Lipschitz regularity of the tilted H-interpolating function hH and the L1

estimate on hH − fH easily gives ‖pπ⊥
H
(pH) − hH‖∞ ≤ Cε

1/2m
1 �(H). The estimate

claimed in (d) follows then from Lemma 8.30.

Proof of (e). The estimates (8.42) and (8.43) show that the distance be-

tween any tangent to the graph of hH and πH is at most Cε
1/2
1 �(H)1−αe in the

corresponding regions, which is just a reformulation of (e).

Proof of (f). For nearby neighbors H and L we can conclude the estimate
‖gH−gL‖L1(H∪L) ≤ Cε1�(H)m+3+αh/2 from the corresponding estimate for hH−hL
and Lemma 8.30. The conclusion is then an obvious consequence of the deûnition
of the glued interpolation maps ϕi. �

Proof of Theorem 8.13. The estimate in (a) is a consequence of Proposition
8.32: the argument is entirely analogous to that of [16, Theorem 1.17(i)]. Point (b)
is a direct consequence of the deûnition of ϕi. Points (c) and (d) are a consequence
of (a) and of the obvious facts that by construction the graphs of ϕj are contained
in Σ and coincide with Γ ∩ C3/2 over γ ∩ B3/2. Next, take any point q ∈ γ and
consider ϕi. Let H ∈ Ci be any cube which contains q and observe that, since
H is a boundary cube, it must necessarily be that H ∈ Si. In particular we have

|πH−TqGϕi
| ≤ Cε

1/2
1 2−i(1−αe) by Proposition 8.32 (b)&(e). Note moreover that by

Theorem 6.3 we have |πH − π(q)| ≤ Cε
1/2
1 2−i(1−αe). On the other hand, as i → ∞

the planes TqGϕi
converge to TqM+, thus completing the proof of the theorem. �

8.7. Proof of Cor. 8.17 and 8.21, Prop. 8.20 and Theo. 8.19

Since all of the cubes in W are non-boundary cubes, the proofs follow liter-
ally the ones of the corresponding corollaries, proposition and theorem in [16],
where Corollary 8.17 corresponds to [16, Corollary 2.2], Corollary 8.21 corre-
sponds to [16, Corollary 3.2], Proposition 8.20 corresponds to [16, Proposition
3.1] and Theorem 8.19 corresponds to [16, Theorem 2.4]. Note in particular that
the estimates claimed in our statements match the ones of the statements in [16]
once we identify our parameters a0, αe, αh,M0, N0, Ce, Ch, ε1 with the parameters
ε0, δ2, β2,M0, N0, Ce, Ch,m0 in [16]. Moreover, although the excess E(T,BL) used
in [16] differs slightly from ours (since it corresponds to minimizing E(T,BL, π)
over all planes π, whereas in this note we minimize over all planes π ⊂ TpL

Σ),
it is obvious that it is smaller than the one used in this note, which suffices to
prove all the estimates claimed. For the reader’s convenience we brieüy outline the
arguments:

Proof of Corollary 8.17. First of all, while in [16, Corollary 2.2] it is
claimed that the boundary of T U is supported in ∂lU, in our case we claim
that it is supported in ∂lU∪ Γ. This is a consequence of the height bounds in (b)�

and (b)� of Proposition 8.24. In order to prove the second claim of (a) we proceed
similarly to the proof of the corresponding statement of [16, Corollary 2.2]. First
of all consider that from the ûrst part of the claim we conclude that the current
S := p�T C1(0, π0) is integer rectiûable and ∂S C1(0, π0) ⊂ Γ. In particular we
must have S = k+ �M+ ∩C1(0, π0)� + k− �M− ∩C1(0, π0)� for some integers k0
and k1. Next ûx any cylinder C = C(x, r, π0) for some point x ∈ B1(0, π0) \ γ
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and some 2r < dist(x, γ). We can then repeat literally the argument of [16, Sec-
tion 6.1] to show that p�T C(x, r, π0) is either Q �M+ ∩C� or (Q−1) �M− ∩C�,
depending on whether x belongs to B+

1 or B−
1 . We then must have k+ = Q and

k− = Q1.
For the proof of (b) and (c) we can apply the same argument of [16, Section

6.1] used to prove (ii) and (iii) of [16, Corollary 2.2], since the cylinders and balls
considered in the corresponding argument do not touch Γ. The ûnal conclusion (d)
of the corollary follows from the fact that boundary cubes are always reûned, that
the corresponding balls B�

H are always centered on points of Γ and from (b)� of
Proposition 8.24. �

Proof of Theorem 8.19. The construction of (F+, F−) is done separately
on the two manifolds M+ and M− following the exact same procedure of [16,
Section 6.2]. Note that for all L ∈ W + and for all L ∈ W − the cylinders
C8rL(pL, πL) which are involved in the corresponding argument have empty in-
tersection with Γ and enjoy the relevant estimates once we identify our parameters
a0, αe, αh,M0, N0, Ce, Ch, ε1 with the parameters ε0, δ2, β2,M0, N0, Ce, Ch,m0 in
[16]. This procedure deûnes F+ on M+ \ Γ and F− on M− \ Γ−. However, using
the height bound in the boundary cylinders C2736rL(p

�
L, , πL) of (c)

� in Proposition
8.24 it is easy to see that F+ (resp. F−) on M+\Γ (resp. M−\Γ) can be extended
to a unique Lipschitz map on the whole M+ (resp. M−) by setting F (x) = Q �x�
(resp. (Q− 1) �x�) for every x ∈ Γ ∩M+ (resp. Γ ∩M−). �

Proof of Proposition 8.20. We follow literally the argument given in [16,
Proof of Proposition 3.1] given in [16, Section 7.1]. Note in particular that all the
cylinders involved in the argument of that proof do not intersect Γ, because the
cubes H and L involved in the statement of Proposition 8.20 are all non-boundary
cubes. �

Proof of Corollary 8.21. Again we can repeat word by word the proof of
[16, Corollary 3.2] given at the end of [16, Section 7.1]: note indeed that all the
cubes involved in the argument are necessarily non-boundary cubes. �

8.8. Proof of Proposition 8.23

The proof follows the one of the corresponding statement in [16], namely [16,
Proposition 3.4], with one minor adjustment, which is needed because our excess
is not exactly the excess of [16] (namely here we minimize only among planes
contained in TpΣ). The adjustment goes as follows. Note ûrst that we know that
a cube H ∈ W e must be a non-boundary cube. In fact the very same argument
given in Proposition 8.24 shows the following simple fact:

Lemma 8.33. For any fixed i ∈ N, if ε1 is chosen sufficiently small, then for
every H ∈ W e the chain of ancestors H = Hj ⊂ Hj−1 ⊂ . . . ⊂ Hj−i consists all of
non-boundary cubes (and in particular j − i ≤ N0).

The proof given in [16, Section 7.3] of [16, Proposition 3.4] is then based on
the following two facts:

(a) IfH ∈ W e, then the chain of ancestorsH = Hj ⊂ L = Hj−1 ⊂ . . . ⊂ Hj−6

consists all of non-boundary cubes;
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(b) The following inequality holds:

(8.82) min
π

E(T,BH , π) ≥ 2−2+2δ2 min
π̄

E(T,BL, π̄) ,

for some positive δ2: correspondingly M0 will have to be chosen large
depending on such δ2.

The ûrst condition is covered by Lemma 8.33. As for the second condition, observe
that we actually have

min
π⊂TpH

Σ
E(T,BH , π) = E(T,BH) ≥ 2−2+2αeE(T,BL)

= 2−2+2αe min
π̄⊂TpL

Σ
E(T,BL, π̄) .(8.83)

We now want to show that (8.82) will indeed follow from (8.83), provided δ2 = αe/2.
In order to apply the argument of [16, Section 7.3] we then just need M0 to be
sufficiently large with respect to αe, which is indeed one of the requirements of
Assumption 8.6.

Proof of (8.82) First of all, in order to simplify our notation, for every q ∈ Σ
we denote by pq the orthogonal projection onto TqΣ. Moreover, if π is an m-
dimensional (oriented) plane, we let �π be the unit m-vector orienting it. Consis-

tently, we denote by �T (p) the unit m-vector orienting the approximate tangent
plane of T at p (which exists for ‖T‖-a.e. p).

Next, clearly

(8.84) E(T,BL) ≥ min
π̄

E(T,BL, π̄) .

So, we need a reverse inequality between the quantities E(T,BH) and

min
π

E(T,BH , π).

We select thus a π which attains the latter minimum. Notice that we have the
following inequality

1

‖T‖(BH)

∫

BH

|ppH
(�π)− �T (q)|2 d‖T‖(q)

≤ 2

‖T‖(BH)

∫

BH

|ppH
(�π)− ppH

(�T (q))|2 d‖T‖(q)

+
2

‖T‖(BH)

∫

BH

|ppH
(�T (q))− �T (q)|2 d‖T‖(q)

≤ C0E(T,BH) + C0 sup
q∈Σ∩BH

|ppH
− pq|2

≤ C0Ceε1�(H)2−2αe + C̄ε1�(H)2 ,

where C0 is a geometric constant and the constant C̄ depends only upon M0. In
particular, since Ce is assumed to be sufficiently large compared to M0 and N0, we
conclude

1

‖T‖(BH)

∫

BH

|ppH
(�π)− �T (q)|2 d‖T‖(q) ≤ C0Ceε1�(H)2−2αe .

We next use the obvious inequality |1 − |ppH
(�π)|| = ||�T (q)| − |ppH

(�π)|| ≤ |�T (q) −
ppH

(�π)| to infer

|1− |ppH
(�π)||2 ≤ C0Ceε1�(H)2−2αe .
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Observe also that |ppH
(�π)| is necessarily smaller than 1, because ppH

is a projection.
We thus reach

(8.85) 1− C0Ceε1�(H)2−2αe ≤ |ppH
(�π)| ≤ 1 .

In particular, since ε1 is assumed to be small with respect toCe, we have |ppH
(�π)| ≥

1
2 . Consider now the m-dimensional plane π′ which is oriented by ppH

(�π)/|ppH
(�π)|.

Clearly π′ ⊂ TpH
Σ. Moreover, since �T (q) has norm 1 whereas ppH

(�π) has norm at
most 1, we have the pointwise inequality

|�T (q)− π′|2 =

∣∣∣∣�T (q)−
ppH

(�π)

|ppH
(�π)|

∣∣∣∣
2

≤ 1

|ppH
(�π)| |

�T (q)− ppH
(�π)|2 .

We can thus repeat the computations above to conclude

|ppH
(�π)|E(T,BH) ≤ |ppH

(�π)|E(T,BH , π′)

=
|ppH

|
2ωm(64rH)m

∫

BH

∣∣∣∣�T (q)−
ppH

(�π)

|ppH
(�π)|

∣∣∣∣
2

d‖T‖(q)

≤ 1

2ωm(64rH)m

∫

BH

|�T (q)− ppH
(�π)|2 d‖T‖(q) .(8.86)

Next, arguing as few lines above
(∫

BH

|�T (q)− ppH
(�π)|2 d‖T‖(q)

)1/2

≤
(∫

BH

|ppH
(�T (q))− ppH

(�π)|2 d‖T‖(q)
)1/2

+

(∫

BH

|ppH
(�T (q))− �T (q)|2 d‖T‖(q)

)1/2

≤
(∫

BH

|pH(�T (q))− ppH
(�π)|2 d‖T‖(q)

)1/2

(8.87)

+ C̄(ωm(64rH)m)
1/2ε

1/2
1 �(H) .(8.88)

Combining the latter inequality with (8.86) and with

1

2ωm(64rH)m

∫

BH

|ppH
(�T (q))− ppH

(�π)|2 d‖T‖(q)

≤ 1

2ωm(64rH)m

∫

BH

|�T (q)− �π|2 d‖T‖(q)

= E(T,BH , π) = min
π̄

E(T,BH , π̄) ,(8.89)

we reach the inequality

|ppH
(�π)|E(T,BH) ≤ min

π̄
E(T,BH , π̄) + C̄

(
min
π̄

E(T,BH , π̄)
) 1

2

ε
1
2
1 �(H)

+ C̄ε1�(H)2 ,(8.90)

where C̄ depends only upon M0. By Young inequality we thus deduce that

|ppH
(�π)|E(T,BH) ≤ 2

αe

2 min
π̄

E(T,BH , π̄) + Ĉε1�(H)2
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where Ĉ depends on M0 and αe. Since H ∈ W e,

E(T,BH) ≥ Ceε1�(H)2−2αe ,

hence, by also using (8.85) and that �(H) ≤ 1,

(1− C0Ceε1)E(T,BH) ≤ 2
αe

2 min
π̄

E(T,BH , π̄) +
Ĉ

Ce

�(H)2αeE(T,BH),

i.e. (
1− C0Ce −

Ĉ

Ce

�(H)2αe

)
E(T,BH) ≤ 2

αe

2 min
π̄

E(T,BH , π̄) .

Since the constant Ĉ depends only on M0, choosing N0 sufficiently large (which
implies that �(H)2αe ≤ 2−2αeN0 is sufficiently small) and then ε1 small we deduce
that

2−αeE(T,BH) ≤ min
π̄

E(T,BH , π̄) .(8.91)

Combining (8.83), (8.84), and the latter inequality we conclude

min
π

E(T,BH , π) ≥ 2−αeE(T,BH) ≥ 2−2+αeE(T,BL)

≥ 2−2+αe min
π̄

E(T,BL, π̄) ,(8.92)

thus (8.82) holds with δ2 = αe/2 as promised.

Licensed to Univ of Toronto.  Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



CHAPTER 9

Monotonicity of the frequency function

In this chapter we establish the monotonicity of a suitable frequency function
at a collapsed point. We assume therefore that 0 ∈ Γ is a collapsed point and that
Assumption 8.16 holds. In particular we ûx a center manifold M = M+ ∪ M−

as in Theorem 8.13 and an M-normal approximation as in Theorem 8.19. We will
indeed consider two different frequency functions: one related to the <left side= of
the approximation and the other one related to the <right side=. Without loss of
generality we will carry on our discussion on M+.

Remark 9.1. By our construction M+ is the graph of a map ϕ+ : π+
0 ⊃ B+

1 →
π⊥
0 , where we assume that π0 is the tangent plane to T in 0 ∈ Γ. For convenience

we can extend ϕ+ to a C3 map ϕ̃ on the whole ball B1∩π0. When referring to ϕ+

we will then drop the superscript +, but we will keep the notation M+ for that
portion of the extended graph {(x, ϕ̃(x)) : x ∈ B1(0, π0)} which lies over B+

1 . The

graph of the function ϕ̃ on the whole B1(0, π0) will instead be denoted by M̃. Note
that in this setting the projection p : p−1(M+) → M+ is of class C2,κ, cf. with
Assumption 8.16.

9.1. Frequency function and main monotonicity formula

In order to deûne our main quantities, we start with the following simple lemma
which is the curvilinear version of Lemma 4.25.

Lemma 9.2. There exists a continuous function d+ : M+ → R+ which belongs
to C2(M+ \ {0}) and satisfies the following properties:

(a) d+(x) = distM+(x, 0) +O(distM+(x, 0)2) = |x|+O(|x|2);
(b) |∇d+(x)| = 1 +O(d+), where ∇ is the gradient on the manifold M;
(c) 1

2∇2d2(x) = g + O(d+), where ∇2 denotes the covariant Hessian on M
(which we regard as a (0, 2) tensor) and g is the induced metric on M as
a submanifold of Rm+n;

(d) ∇d+(x) ∈ TxΓ for all x ∈ Γ, i.e.

(9.1) ∇d+ · �n+ = 0 on Γ,

where �n+ denotes the outer unit normal to M+ inside M̃.

In particular this implies

(9.2) ∇2d+(x) =
1

d

(
g −∇d+(x)⊗∇d+(x)

)
+O(1)

and

(9.3) Δ d+ =
m− 1

d+
+O(1)

133
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134 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where Δ denotes the Laplace-Beltrami operator on M, namely the trace of the
Hessian ∇2. Moreover:

(S) All the constants estimating the O(·) error terms in the above estimates
can be made smaller than any given η > 0, provided the parameter ε1 in
Assumption 8.6 is chosen appropriately small (depending on η).

On the “left side” there exists an analogous function d− : M− → R+ satisfying
the properties corresponding to (a), (b), (c), (d) and (S).

Proof. For the sake of simplicity we focus on the <right side= and we drop
the subscript + from the function d. As noted in Remark 9.1 we can extend M+

to a C3 manifold M̃ such that Γ ⊂ M̃ is a C3 submanifold of M̃ passing through

the origin. Hence there exists a C2 regular map Ξ : U × (−δ, δ) → M̃, U ⊂ Rm−1,
with the properties that

(1) Ξ(0) = 0 and DΞ(0) = 0;

(2) Ξ is a local parametrization of M̃ and y′ � U �→ Ξ(y′, 0) is a local
parametrization of Γ;

(3) ∂mΞ(y′, 0) ⊥ TΞ(y′,0)Γ for all y′ ∈ U .

Hence, if g := Ξ#δ is the pullback metric of M̃ on U × (−δ, δ), we have

gij(y) = δij +O(|y|2), ∂kgij = O(|y|),

and similarly for gij . In particular this implies that distM(Ξ(y), 0) = |y|+ O(|y|2)
on M+. We claim that d(x) := |Ξ−1(x)| has the desired properties. We will check
(a) - (c) using the coordinates associated to the map Ξ. Since

|∇d|2(Ξ(y)) = gij∂id∂jd = gij(y)
yiyj

|y|2 = 1 +O(|y|2)

we have that (b) is satisûed. For the Christoffel symbols we have Γk
ij(y) = O(|y|)

since ∂igij = O(|y|). Hence (c) follows, because

1

2
∇2d(Ξ(y))ij =

1

2
∂ijd

2 − 1

2
Γk
ij∂kd

2 = δij + O(|y|2) = gij(y) +O(|y|2) .

Concerning (d) we just note that, by (3), we have gim(y′, 0) = 0 for all y′ ∈ U ,
hence gij∂jd ∈ Rm−1×{0} for all y′ ∈ U and ∇d(Ξ(y)) = Ξ#(g

ij∂jdei). Equations
(9.3) and (9.2) are now simple consequences of (c) and (b).

Claim (S) follows easily from a closer inspection of the above argument. �

We now ûx a cutoff function

(9.4) φ(t) :=

§
¨
©

1 for 0 ≤ t ≤ 1
2

2(1− t) for 1
2 ≤ t ≤ 1

0 for t ≥ 1.

and deûne

Dφ,d+(N+, r) :=

∫

M+

φ

(
d+(x)

r

)
|DN+|2(x)(9.5)

Hφ,d+(N+, r) := −
∫

M+

φ′
(
d+(x)

r

)
|∇d+(x)|2 |N

+(x)|2
d+(x)

,(9.6)
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where all integrals are taken with respect to the standard volume form on M+.1

The frequency function is then deûned as the ratio

Iφ,d+(N+, r) :=
rDφ,d+(N+, r)

Hφ,d+(N+, r)
.

Analogously we deûne Dφ,d−(N−, r), Hφ,d−(N−, r) and Iφ,d−(N−, r).
The main theorem of this chapter is then the following counterpart to Theorem

4.15, where we use the notation

C± =
{
y ∈ B1 : p(y) ∈ M± and |y − p(y)| ≤ dist(y,Γ)3/2

}

for the horned neighborhoods of M± in which T is supported (compare with Corol-
lary 6.4 and Theorem 8.13 (e)).

Theorem 9.3. Let T , Σ and Γ be as in Assumption 8.16 and consider φ and
d as above. Then:

(a) either T C+ equals Q �M+� in a neighborhood of 0, in which case we set
I+0 = +∞;

(b) or there is a positive number I+0 such that

(9.7) I+0 = lim
r↓0

Iφ,d+(N+, r) .

The corresponding statements hold on the left side for the current T C− and the
frequency function Iφ,d−(N−, r).

9.2. Poincaré inequality

From now on, in order to simplify our notation, we drop the supscripts + from
N and d and the subscripts d and φ from H, D and I.

We notice here the following simple consequence of the fact that N |Γ vanishes
identically.

Proposition 9.4. There is a geometric constant C such that

(9.8) H(r) ≤ CrD(r) for all sufficiently small r.

In particular

(9.9) I(r) ≥ C−1 for all sufficiently small r.

Moreover,

(9.10)

∫

{d<r}∩M+

|N |2 ≤ Cr2D(r) for all sufficiently small r.

Proof. We start noticing that, for r sufficiently small, we can assume

(9.11)
1

2
≤ |∇d| ≤ 2

and that the domains {d = r} ∩M+ and {d < r} ∩M+ are diffeomorphic to the
corresponding half-sphere and half-ball in Rm

+ = {x1 ≥ 0}, with uniform controls

1The convention of omitting the volume form in the integrals taken over M+ and M− will
be used systematically in the rest of the paper.
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on the ûrst derivative of the diffeomorphism and its inverse. In particular we have
the trace Poincaré inequality

∫

{d=s}∩M+

|N |2 ≤ Cs

∫

{d<s}∩M+

|D|N ||2 ≤ Cs

∫

{d<s}∩M+

|DN |2 ,

because |N | vanishes identically on Γ.
Integrating the latter inequality, using (9.11) and the coarea formula, we achieve

H(r) = −
∫ r

r
2

1

s
φ′

(s
r

)(∫

{d=s}∩M+

|∇d||N |2
)

ds

≤ −C

∫ r

r
2

φ′
(s
r

)(∫

{d<s}∩M+

|DN |2
)

ds

= Cr

∫ r

r
2

(∫

{d=s}∩M+

|DN |2|∇d|−1

)
φ
(s
r

)

+ Crφ
(r
2

)∫

{d<r/2}∩M+

|DN |2

≤ CrD(r) .

Next, the inequality (9.9) is a trivial consequence of (9.8). Moreover, (9.8) and
(9.11) give

∫

{r/2<d<r}∩M+

|N |2 ≤ Cr2D(r) .

On the other hand
∫

{d<r/2}∩M+

|N |2 ≤ Cr2
∫

{d<r/2}∩M+

|DN |2 ≤ Cr2D(r)

follows from the usual Poincaré inequality since |N | vanishes identically on Γ. Thus
(9.10) can be achieved summing the last two inequalities. �

9.3. Differentiating H and D

We compute here the derivatives of H and D.

Proposition 9.5. If D and H be as in the definitions of Section 9.1, then

D′(r) = −
∫

φ′
(
d(x)

r

)
d(x)

r2
|DN |2 ;(9.12)

H ′(r) =

(
m− 1

r
+O(1)

)
H(r) + 2E(r) ,(9.13)

where

E(r) := −1

r

∫
φ′

(
d(x)

r

)∑

i

Ni(x) · (DNi(x)∇d(x)) .
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Proof. The identity (9.12) is an obvious computation. In order to compute
H ′ we ûrst use the coarea formula on embedded manifolds to write

H(r) = −
∫ ∞

0

∫

{d=s}

1

s
φ′

(s
r

)
|∇d(x)||N |2(x) dHm−1(x) ds

= −
∫ ∞

0

φ′(t)

t

∫

{d=rt}
|∇d(x)||N |2(x) dHm−1(x)

︸ ︷︷ ︸
=:h(rt)

dt.(9.14)

In order to compute h′(t) we consider that ν(x) = ∇d(x)
|∇d(x)| is orthogonal to the level

sets of d in M+ and it is parallel to Γ. Thus, using the divergence theorem on M+

we obtain

h(t+ ε)− h(t) =

∫

{d=t+ε}∩M+

|N |2∇d · ν dHm−1

−
∫

{d=t}∩M+

|N |2∇d · ν dHm−1

=

∫

{t<d<t+ε}∩M+

div(|N |2∇d(x))

=

∫

{t<d<t+ε}∩M+

2
∑

i

Ni(x) · (DNi(x)∇d(x))

+

∫

{t<d<t+ε}∩M+

|N |2Δd(x) ,

Dividing by ε, taking the limit (and using the coarea formula once again) we con-
clude

(9.15) h′(t) =

∫

{d=t}∩M+

|∇d|−1

(
2
∑

i

Ni · (DNi∇Md) + |N |2Δd

)
dHm−1 .

Differentiating (9.14) in r, inserting (9.15) and using the fact that, if φ(d(x)/r) 
= 0,
then d(x) = O(r), we conclude

H ′(r)(9.16)

=

∫ ∞

0

φ′(σ)

∫

{d=σr}

1

|∇d|
(
2
∑

i

Ni · (DNi∇d) + |N |2Δd)
)
dHm−1 dσ

= 2E(r)− 1

r

∫
φ′

(
d(x)

r

)
|N |2Δd(x)

(9.3)
= 2E(r)− 1

r

∫
φ′

(
d(x)

r

)
|N |2

(
m− 1

r
+O(1)

)
(9.17)

= 2E(r) +

(
m− 1

r
+O(1)

)
H(r) . �

9.4. First variations

In order to derive the two key identities leading to the monotonicity of the
frequency function we will use the ûrst variations of the currents.

Lemma 9.6. Let T , Σ and Γ be as in Assumption 8.16. Then, provided ε1 is
sufficiently small, we have that
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(a) C+ ∩ C− = Γ;
(b) T B1 = T+ + T− where T± = T C±;
(c) ‖T‖(B1) = ‖T+‖(B1) + ‖T−‖(B1);
(d) ∂T+ B1 = Q �Γ� and ∂T− B1 = −(Q− 1) �Γ� ;
(e) For any current S± such that spt(S±) ⊂ Σ ∩B1 and ∂S± = ∂(T± B1)

we have that ‖T±‖(B1) ≤ ‖S±‖(B1).

Proof. Statement (a) is obvious. Statement (b) is a consequence of Corollary
6.4 and of Theorem 8.13(c) & (d). Statement (c) comes directly from (a), (b)
and the fact that ‖T‖(Γ) = 0. Statement (e) can be inferred from (c) and (d):
for instance, if S+ is as in the statement then ∂(T− + S+) = ∂(T B1) and by
minimality of T

‖T+‖(B1) + ‖T−‖(B1) = ‖T‖(B1) ≤ ‖T− + S+‖(B1) ≤ ‖S+‖(B1) + ‖T−‖(B1).

The proof of point (d) follows the same idea of the proof of Corollary 1.10. In-
deed, ûrst remark that ∂T+ (B1 \ Γ) = 0, thus spt(∂T+) ∩ B1 ⊂ Γ. Let r

be a retraction of a neighborhood of Γ onto Γ. Since ∂T+ B1 is a üat chain
supported in Γ, Federer’s üatness theorem, cf. [23, Section 4.1.15], implies that
R := r�(∂T

+ B1) = ∂T+ B1. On the other hand, since ∂(∂T+ B1) B1 = 0,
we also have ∂R B1 = 0 and we conclude from the Constancy Theorem, cf.
[23, Section 4.1.7], that R = c �Γ� B1 for some c ∈ R. Thus ∂T+ = c �Γ� B1.

Fix a point p ∈ Γ∩B1 and recall that, from Theorem 6.3 and Theorem 8.13 (e),
at every p ∈ Γ∩B1 there is a unique tangent cone to T+ and it is T+

p = Q �π(p)+�,
where π(p) is tangent to TpM, by Theorem 8.13, and π(p)+ is the inner half portion
of π(p), where we consider M+ as a manifold with boundary Γ. Hence

lim
r→0

∂((ιp,r)�T
+) = ∂(Q

�
π(p)+

�
) = Q �TpΓ� .

Since we also know that

lim
r→0

∂((ιp,r)�T
+) = lim

r→0
(ιp,r)�(c �Γ� B1) = c �TpΓ� ,

then we conclude c = Q. A similar argument holds for T−. �

Lemma 9.7. Under the same assumptions and with the same notations of
Lemma 9.6, for all X ∈ C1

c (B1,R
m+n) which are tangent to Γ, we have that

(9.18) δT+(X) = −
∫

X⊥(x) · �HT (x) d‖T+‖(x)

where X⊥ is the component of X orthogonal to Σ and �HT (x) is the mean curvature
vector of (3.1). Analogously

δT−(X) = −
∫

X⊥(x) · �HT (x) d‖T−‖(x) .

Proof. This proof follows the same ideas of Section 3.4. Without loss of
generality, we focus on T+. Since T+ is stationary with respect to variations which
are tangential to Γ and Σ, we have the identity

δT+(X) = −
∫

X(x) · �HT (x) d‖T+‖(x)

for all X ∈ C1
c (B2) tangent to Γ, where �HT is deûned in (3.1) (cf. for instance

[35, Lemma 9.6]). Note next that, by the explicit formula for �HT in (3.1), �HT (x)
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is orthogonal to TxΣ, which in turn contains the tangent plane to T at x. Thus in
the integral of the right hand side we can substitute X with X⊥. �

In what follows we let p : p−1(M+) → M+ be the retraction of a normal
neighborhood of M+ to M+. In this section we will use Lemma 9.7 with two
speciûc choices of vector ûelds:

• the outer variations, where Xo(p) := φ
(

d(p(p))
r

)
(p− p(p)).

• the inner variations, where Xi(p) := −Y (p(p)) with

(9.19) Y =
1

2
φ

(
d

r

) ∇d2

|∇d|2 .

Note that Y tangent is to M and to Γ.

Consider now the map F (p) :=
∑

i �p+Ni(p)� on M+ and the current TF associ-
ated to its image, cf. [15]. By Lemma 9.7 ,

δTF (Xo) = (δTF (Xo)− δT+(Xo))︸ ︷︷ ︸
Erro4

+δT+(Xo)

(9.18)
= Erro4 −

∫
X⊥

o (x) · �HT (x) d‖T+‖(x)
︸ ︷︷ ︸

Erro5

.

Since Xi is also tangent to Γ, by Lemma 9.7, we write

δTF (Xi) = (δTF (Xi)− δT+(Xi))︸ ︷︷ ︸
Erri4

+δT+(Xi)

(9.18)
= Erri4 −

∫
X⊥

i (x) · �HT (x) d‖T+‖(x)
︸ ︷︷ ︸

Erri5

.

Hence

δTF (Xi) = Erri4 + Erri5 .

9.4.1. Outer variation. The following proposition holds (for the proof, see
[15, Theorem 4.2]).

Proposition 9.8 (Expansion of outer variations). Consider the function ϕ :=

φ
(

d(p)
r

)
and denote by A and HM the second fundamental form and the mean

curvature of M+, respectively. Then

δTF (Xo) =

∫

M+

(
ϕ |DN |2 +

∑

i

(Ni ⊗Dϕ) : DNi

)

−Q

∫

M+

ϕ〈HM,η ◦N〉
︸ ︷︷ ︸

Erro1

+

3∑

j=2

Erroj(9.20)
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140 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where

|Erro2| ≤ C

∫

M+

|ϕ||A|2|N |2(9.21)

|Erro3| ≤ C

∫

M+

(
|ϕ|

(
|DN |2|N ||A|+ |DN |4

)

+ |Dϕ|
(
|DN |3|N |+ |DN ||N |2|A|

))
.(9.22)

9.4.2. Inner variation. We denote by Ξε the one-parameter family of biLip-
schitz homeomorphisms of M+ generated by −Y . We observe that Xi is then the
inûnitesimal generator of the one-parameter family of biLipschitz homeomorphisms
Φε of p−1(M) deûned by

Ξε(p) := Ψε(p(p)) + p− p(p) .

Therefore, we can follow the computations of [15, Theorem 4.3] to prove a suitable
Taylor expansion for the inner variation. In what follows, we will denote by DMY
the (1, 1) tensor which expresses the covariant derivative of the vector ûeld Y (which
is tangent to M), in particular, when Z is a vector ûeld tangent to M, DM

Z Y is
the projection onto TM of the standard euclidean derivative DZY . Accordingly
divM Y will denote the trace of DMY , namely

divM Y =

m∑

i=1

〈DMY (ei), ei〉

where e1, . . . , em is an orthonormal frame of TM. Note that, in particular,

divM Y =
m∑

i=1

〈DeiY, ei〉 .

Proposition 9.9 (Expansion of inner variations). The following formula holds:2

(9.23) δTF (Xi) =

∫

M+

⎛
¿∑

j

DNj : (DNjD
MY )− |DN |2

2
divM Y

À
⎠+

3∑

j=1

Errij ,

2Recall that each Nj is a map taking values in Rm+n and thus we understand DNj as a map

from TM into Rm+n. More precisely, if Nj = (N1
j , . . . , N

m+n
j ) is the expression of Nj into its

components and if Z is a vector field tangent to M, then

DNj(Z) = (DXN1
j , . . . ,DZN

m+n
j ) .

With DNjD
MY we then understand the following map on TM:

DNjD
MY (Z) = DNj(D

MY (Z)) = (DDMY (Z)N
1
j , . . . DDMY (Z)N

m+n
j ) .

Accordingly, the scalar product DNj : (DNjD
MY ) is given by

DNj : (DNjD
MY ) =

∑




〈De�Nj , DDMY (e�)
Nj〉 =

∑

k,


De�N
k
j DDMY (e�)

Nk
j

where e1, . . . , em is an orthonormal frame on TM.
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where

Erri1 = Q

∫

M+

(
〈HM,η ◦N〉 divM Y + 〈DY H,η ◦N〉

)
,(9.24)

|Erri2| ≤ C

∫

M+

|A|2
(
|DY ||N |2 + |Y ||N | |DN |

)
,(9.25)

|Erri3| ≤ C

∫

M+

(
|Y ||A||DN |2

(
|N |+ |DN |

)

+ |DY |
(
|A| |N |2|DN |+ |DN |4

))
.(9.26)

The proof of the previous theorem follows literally the same computations of
[15, Section 4.3]. The only subtle point is that in the ûnal part of that proof the
integration by parts needed to handle the term J2 in [15, Eq. (4.17)] is valid in our
context because the vectorûeld Z, on which the integration by parts is performed,
vanishes on Γ.

9.5. Key identities

In this section we use the Taylor expansions of the ûrst variations to derive
the key identities which lead to the monotonicity of the frequency function. We
introduce therefore the quantity

G(r) := − 1

r2

∫

M+

φ′
(
d

r

)
d

|∇d|2
∑

j

|DNj · ∇d|2 .

Proposition 9.10. The following two inequalities hold

|D(r)− E(r)| ≤
5∑

j=1

|Erroj |(9.27)

∣∣∣∣D
′(r)−

(
m− 2

r
+O(1)

)
D(r)− 2G(r)

∣∣∣∣ ≤
2

r

⎛
¿

5∑

j=1

|Errij |

À
⎠ .(9.28)

Proof. For the ûrst identity it suffices to check that
∫

M+

(
ϕ |DN |2 +

∑

i

(Ni ⊗Dϕ) : DNi

)
= D(r)− E(r) ,

which is an obvious computation. For the second identity we need to show that
∫

M+

2
∑

j

DNj : (DNjD
MY )− |DN |2 divM Y

= rD′(r)− ((m− 2) +O(r))D(r)− 2rG(r)

Recalling the deûnition of Y in (9.19), that is

Y =
1

2
φ

(
d

r

) ∇d2

|∇d|2 ,
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we easily compute using Lemma 9.2(b), (c), and (9.2),

DMY =
d

r
φ′

(
d

r

) ∇d⊗∇d

|∇d|2 +
1

2
φ

(
d

r

) ∇2d2

|∇d|2

− φ

(
d

r

)
2(d∇2d∇d)⊗∇d)

|∇d|4

=
d

r
φ′

(
d

r

) ∇d⊗∇d

|∇d|2 + φ

(
d

r

)(
g +O(d)

)
,(9.29)

where we recall that g is the metric induced on M by the Euclidean ambient
manifold. In particular

divM(Y ) =
d

r
φ′

(
d

r

)
+ φ

(
d

r

)
(m+O(d)) .

Hence, using also that, on {φ 
= 0}, d = O(r), we obtain
∫

M+

2
∑

j

DNj : (DNjD
MY )− |DN |2 divM Y

=
2

r

∫

M+

φ′
(
d

r

)
d

|∇Md|2
∑

j

|DNj∇d|2

+

∫

M+

φ

(
d

r

)
(2−m+O(r))|DN |2 −

∫

M+

φ′
(
d

r

)
|DN |2

= −2rG(r)−
(
(m− 2) +O(r))D(r) + rD′(r),

which concludes the proof. �

9.6. Estimates on the error terms

9.6.1. Families of subregions. In order to estimate the various error terms
we select an appropriate family of subregions of B+

r := {p ∈ π+
0 : d(ϕ(p)) < r}) .

First of all we introduce a suitable family of cubes in the Whitney decomposition:

Definition 9.11. The family T ⊂ W consists of :

(i) all L ∈ W e ∪ W h which intersect B+
r ;

(ii) all L ∈ W e which are domains of inüuence of some L′ ∈ W n intersecting
B+

r , i.e., L
′ ∈ W n(L) (cf. Deûnition 8.22).

Next, for any L ∈ T note that

sep(L,B+
r ) := inf{|q − p| : q ∈ L, p ∈ B

+
r } ≤ 3

√
m�(L) .

For each such L we deûne an appropriate <satellite= ball B(L) with the following
properties:

(A) B(L) has radius comparable to �(L) (say �(L)/4));
(B) the concentric ball with twice the radius is contained in B+

r ;
(C) B(L) is close to L (comparably to �(L)).

If B�(L)/2(c(L)) ⊂ B+
r , then we simply set B(L) = B�(L)/4(c(L)).

If instead B�(L)/2(c(L)) 
⊂ B+
r , we then use the following selecting procedure.

(i) First consider a point q ∈ ∂B+
r at minimum distance from L.

(ii) Observe that, since L ∈ W , it is a non-boundary cube. Thus dist(q, γ) ≥
�(L) and in particular d(ϕ(q)) = r.
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(iii) Let v be the exterior unit normal to ∂B+
r at q and let qL := q − �(L)

2 v.
(iv) Recalling claim (S) in Lemma 9.2 and the estimates on ϕ we see that

∂B+
r \ γ is locally convex and that the principal curvatures of ∂B+

r \ γ
can be assumed to be all smaller than 2

r . Since �(L) < r, this implies that
B�(L)/2(qL) ⊂ B+

r . We ûnally set B(L) := B�(L)/4(qL).

Definition 9.12. Given a cube L ∈ T , the ball B(L) chosen above will be
called the satellite ball of L.

Note that, by simple geometric arguments and by the properties of d, we can
assume that

(9.30) |qL − c(L)| ≤ 5
√
m�(L) and dist(L, qL) ≤ 4

√
m�(L).

We next select a suitable countable subfamily T of T with the property that,
for any pair of distinct H,L ∈ T , the corresponding balls B(L) and B(H) are
disjoint. We denote by S the supremum of �(L) for L ∈ T . We start selecting a
maximal subfamily T1 in T of cubes L with �(L) ≥ S/2 such that the corresponding
balls B(L) are pairwise disjoint. We then add to T1 a maximal subfamily T2 in
T of cubes L with S/4 ≤ �(L) ≤ S/2 such that the balls B(L′) corresponding to
L′ ∈ T1 ∪T2 are all pairwise disjoint. We proceed inductively with the selection of
the family Tk ⊂ T such that:

(i) it consists of cubes with side 2−k−1S ≤ �(L) ≤ 2−kS;
(ii) the balls B(L′) with L′ ∈ T1 ∪ . . . ∪ Tk−1 ∪ Tk are pairwise disjoint;
(iii) Tk is maximal among the families satisfying (i) and (ii).

T is the union of all the Tj . A simple geometric argument and (9.30) ensures that

(Cov) If H ∈ T , then there is L ∈ T such that the distance between H and L
is at most 20

√
m�(L) and even though there might be more than one L,

we ûx for each H an arbitrary choice of an L with such a property.

Therefore we can partition T into (disjoint!) families T (L) with L ∈ T with
the property that for each H ∈ T (L), the distance between H and L is at most
20
√
m�(L) and �(H) ≤ 2�(L). For each L ∈ T we denote by W (L) the family of

cubes ⋃

H∈T (L)

W
n(H) ∪ {H} .

Furthermore we denote by U(L) the following region in M+:

⋃

H∈W (L)

Φ(H) .

From now on we ûx an enumeration {Li} of T and we denote:

• by Ui the corresponding regions U(Li) ∩ B+
r ;

• by Bi the regions Φ(B(Li));
• by �i the scale �(Li).

where, here and in the following, we set

B+
r = M+ ∩ {d < r} .
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9.6.2. Lower and upper bounds in the subregions. First of all observe
that

(9.31) c
�i
r

≤ inf
p−1(Bi)

ϕ

for a geometric constant c (recall that ϕ(p) = φ
(d(p(p))

r

)
). In particular

sup
p−1(Ui)

ϕ− inf
p−1(Ui)

ϕ ≤ C
�i
r

≤ C inf
p−1(Bi)

ϕ ,

which leads to

(9.32) sup
p−1(Ui)

ϕ ≤ C inf
p−1(Bi)

ϕ ,

where C is a geometric constant. Since we have p−1(Ui) ∩M+ = Ui and the same
for Bi, the above estimates, when restricted to M+, become:

(9.33) c
�i
r

≤ inf
Bi

ϕ

and

(9.34) sup
Ui

ϕ ≤ C inf
Bi

ϕ .

Observe that
max{�(H) : H ∈ W (Li)} ≤ C�i

and ∑

H∈W (Li)

�(H)m ≤ C�mi

Thus, as a consequence of the estimates in Theorem 8.19 and Corollary 8.17(b)
(namely, applying the corresponding estimates in each cube in W (Li) and summing
the respective contributions) we achieve the following:

Lip
(
N |Ui

)
≤ CεαL

1 �αL

i(9.35)

‖N‖C0(Ui) + sup
p∈spt(T+)∩p−1(Ui)

|p− p(p)| ≤ Cε
1/2m
1 �1+αh

i(9.36)

‖T+ −TF ‖(p−1(Ui)) ≤ Cε1+αL

1 �m+2+αL

i(9.37) ∫

Ui

|DN |2 ≤ Cε1�
m+2−2αe

i(9.38)

∫

Ui

|η ◦N | ≤ Cε1�
2+m+

αL

2
i + C

∫

Ui

|N |2+αL .(9.39)

Note in particular that (9.39) follows from choosing a = 1 in (8.15) and V = L.
The second important ingredients in order to estimate the various error is the

following lemma.

Lemma 9.13. Under the assumptions of Theorem 9.3, for a sufficiently small
r the following inequalities hold:

ε1
∑

i

�m+2+2αh

i inf
p−1(Bi)

ϕ ≤ CD(r)(9.40)

ε1
∑

i

�m+2+2αh

i ≤ C

∫

B+
r

|DN |2 ≤ C(D(r) + rD′(r)) ,(9.41)
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for a geometric constant C. Moreover we have

(9.42) ε1 sup
i

�i ≤ C (rD(r))
1

m+3+αh and ε1 sup
i

(
inf

p−1(Bi)
ϕ �i

)
≤ CD(r)

1
m+2+αh .

Proof. First of all observe that every cube Li ∈ T belongs to either W h or to
W e. For every cube Li ∈ T ∩W h, as a consequence of Corollary 8.21, we must have
Li ∩ B+

r 
= ∅. Hence Bi ⊂ M∩C2
√
m�(Li)(pLi

) and therefore Proposition 8.20(S3)

applies. Recalling that G(N(x), Q �η ◦N(x)�) ≤ |N |, for every cube Li ∈ T ∩ W h

we can estimate

(9.43)

∫

Bi

|N |2 ≥ c0ε
1/m
1 �m+2+2αh

i .

By estimate (8.16) in Proposition 8.23 , for every Li ∈ T ∩ W e we have

(9.44)

∫

Bi

ϕ|DN |2 ≥ c0ε1�
m+2−2αe

i inf
Bi

ϕ = c0ε1�
m+2−2αe

i inf
p−1(Bi)

ϕ .

Summing the last two inequalities over i, using that {Bi} are disjoint and contained
in {d < r}∩M+ and the simple observation that 2+αh ≥ 2−2αe, we easily conclude

ε1
∑

i

�m+2+2αh

i inf
p−1(Bi)

ϕ ≤ C0

∫

B+
r

(
|N |2 + ϕ|DN |2

)
.

Thus, (9.40) can be inferred from (9.10).
Note that, analogously, for Li ∈ T ∩ W e we have also

(9.45)

∫

Bi

|DN |2 ≥ c0ε1�
m+2−2αe

i .

Arguing as above with (9.45) in place of (9.44) and exploiting that 2+αh ≥ 2−2αe,
we conclude

ε1
∑

i

�m+2+2αh

i ≤ C0

∫

B+
r

|DN |2 .

Since φ′(t) = −2 on [1/2, 1], clearly
∫

{r/2<d<r}∩M+

|DN |2 ≤ rD′(r) .

On the other hand we trivially have
∫

{d<r/2}∩M+

|DN |2 ≤ D(r) .

Thus, (9.41) follows easily.
Finally the second estimate of (9.42) is a direct consequence of (9.40) and the

ûrst follows combining (9.40) with (9.31). �

9.6.3. Estimates on the error terms. We are ready to prove the main
estimates on the various error terms appearing in the inequalities of Proposition
9.10. We ûrst introduce the auxiliary term

(9.46) S(r) :=

∫
φ

(
d

r

)
|N |2 .
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146 9. MONOTONICITY OF THE FREQUENCY FUNCTION

Proposition 9.14. There are positive numbers C and τ such that

|Erro1|+ |Erro3|+ |Erro4| ≤ CD(r)1+τ(9.47)

|Erro2| ≤ CS(r) ≤ Cr2D(r)(9.48)

|Erro5| ≤ CS(r) + CD(r)1+τ ≤ Cr2D(r) + CD(r)1+τ(9.49)

|Erri1|+ |Erri3|+ |Erri4| ≤ CD(r)τ (D(r) + rD′(r))(9.50)

|Erri2| ≤ CrD(r)(9.51)

|Erri5| ≤ CrD(r) + CD(r)τ (D(r) + rD′(r)).(9.52)

Proof. Since αL is independent of αe, αh (compare Theorem 8.19), we can
choose αe, αh such that

αL

2
≥ 4αh ≥ 4αe .

We let τ � αe ≤ αh ≤ αL/8.

Proof of (9.47). Recalling that ‖ϕ‖C3,κ ≤ Cε
1/2
1 , which in turn implies

‖HM‖C0(M+) ≤ Cε
1/2
1 , we get from (9.39)

|Erro1| ≤ C

∫

M+

ϕ|HM+ ||η ◦N |

(9.34)

≤ Cε
1/2
1

∑

j

(
sup
Uj

ϕ ε1�
2+m+αL/2
j + C

∫

Uj

ϕ |N |2+αL

)

(9.34)

≤ Cε
1/2
1

∑

j

(
inf
Bj

ϕ ε1�
2+m+αL/2
j + C

∫

Uj

ϕ |N |2+αL

)

(9.36)

≤ Cε
1/2
1

∑

j

(
inf
Bj

ϕ ε1�
2+m+4αh

j + C�8αh

j

∫

Uj

ϕ|N |2
)

(9.40)&(9.42)

≤ CD(r)1+τ + CD(r)τ
∫

B+
r

ϕ|N |2 ,

where in the last line we have used also that the intersection of distinct domains
Uj has zero measure. Using (9.10) we conclude

|Erro1| ≤ CD(r)1+τ .

Concerning Erro3, from Proposition 9.8 and recalling that |Dϕ| ≤ C
r we get

|Erro3| ≤
∫

ϕ
(
|DN |2|N |+ |DN |4

)

︸ ︷︷ ︸
I1

+C r−1

∫

B+
r

|DN |3|N |
︸ ︷︷ ︸

I2

+C r−1

∫

B+
r

|DN ||N |2
︸ ︷︷ ︸

I3

.

We estimate separately the three terms:

I1 ≤
(
sup
B+

r

|N |+ sup
B+

r

|DN |2
)∫

B+
r

ϕ|DN |2

≤ C sup
i

(
sup
Ui

|N |+ Lip
(
N

∣∣
Ui

))∫

B+
r

ϕ|DN |2

(9.35)&(9.36)

≤ C sup
i

�2αL

i

∫

B+
r

ϕ|DN |2 ≤ CD(r)1+τ .
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Moreover, recalling that αL ≥ 4αe,

I2
(9.35)&(9.36)

≤ Cr−1
∑

j

ε
1/2m+αL

1 �1+αh+αL

j

∫

Uj

|DN |2

(9.38)

≤ Cr−1
∑

j

ε
1+1/2m+αL

1 �m+3+αh+αL−2αe

j

(9.33)

≤ C
∑

j

�m+2+7αh

j inf
Bj

ϕ
(9.40)& (9.42)

≤ CD(r)1+τ ,

and

I3
(9.35)

≤ Cr−1
∑

j

εαL

1 �αL

j

∫

Uj

|N |2
(9.42)

≤ Cr−1D(r)τ
∫

B+
r

|N |2

(9.10)

≤ CrD(r)1+τ ,

provided τ > 0 is sufficiently small.
Recalling that

Erro4 = δ(TF − T+)(Xo) ,

we can estimate

|Erro4| ≤
∫

p−1(B+
r )

|DXo| d‖TF − T+‖ .

Since

|DXo(p)| ≤ C

( |p− p(p)|
r

+ ϕ(p)

)
,

we can estimate

|Erro4| ≤ C
∑

j

∫

p−1(Uj)

( |p− p(p)|
r

+ ϕ(p)

)
d‖TF − T+‖

(9.36)&(9.37)

≤ C
∑

j

(
r−1ε

1/2m
1 �1+αh

j + sup
p−1(Uj)

ϕ

)
ε1+αL

1 �m+2+αL

j

(9.31)&(9.32)

≤ C
∑

j

inf
p−1(Bj)

ϕ ε1+αL

1 �m+2+αL

i

(9.40)&(9.42)

≤ CD(r)1+τ .

Proof of (9.48). Since ‖AM+‖C0 ≤ C‖φ‖C2 ≤ Cε
1/2
1 , it follows easily that

|Erro2| ≤ CS(r) ≤ C

∫

B+
r

|N |2 .

Thus the estimate follows from (9.10).

Proof of (9.49). Recall that

Erro5 = −
∫

X⊥
o · �HT (x) d‖T+‖(x) ,

where �HT (x) is the trace of the second fundamental form AΣ of Σ restricted to

the tangent space �T (x) to the current T+ at x. For further use we introduce the
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148 9. MONOTONICITY OF THE FREQUENCY FUNCTION

notation h(�λ) for the trace of AΣ on the m-plane oriented by the m-vector �λ. In

particular �HT (x) = h(�T (x)). We can therefore write

(9.53) |Erro5| ≤
∣∣∣∣
∫
〈X⊥

o , h(�TF )〉d‖TF ‖
∣∣∣∣

︸ ︷︷ ︸
I1

+C‖AΣ‖0
∫

|X⊥
o |d‖T+ −TF ‖

︸ ︷︷ ︸
I2

.

Recall that ‖AΣ‖0 ≤ ε
1/2
1 . Since |Xo(p)| ≤ Cϕ(p(p)), the second term is estimated

by CD(r)1+τ by arguing as in the bound for Erro4. As for the ûrst term note that

|X⊥
o (p)| ≤ ϕ(p(p))|pTpΣ⊥(p− p(p))| ≤ Cϕ(p(p))‖AΣ‖0|p− p(p)|2 .

Hence, using the Lipschitz bound for N to pass the integration on the domain B+
r ,

we conclude

I1 ≤ C

∫
ϕ|N |2 = CS(r)

(9.10)

≤ Cr2D(r) .

We now estimate the error terms coming from inner variations. First let us
record here the following easy consequence of (9.19) and (9.29):

(9.54) |Y (p)| ≤ ϕ(p(p)) d(p(p)) |DY |(p) ≤ C1B+
r
(p(p)) .

Proof of (9.50). By Proposition 9.9,

|Erri1| ≤ C

∫

B+
r

(|HM|+ |DHM|)|η ◦N | ≤ C

∫

B+
r

|η ◦N |

(9.39)

≤
∑

j

(
ε1�

m+2+αL/2
j +

∫

Uj

|N |2+αL

)

(9.36)

≤
∑

j

(
ε1�

m+2+αL/2
j + �αL

j

∫

Uj

|N |2
)

(9.41)&(9.42)

≤ CD(r)τ (D(r) + rD′(r)) + CD(r)τ
∫

B+
r

|N |2

(9.10)

≤ CD(r)τ (D(r) + rD′(r)) .

Using (9.54) and Proposition 9.9,

|Erri3| ≤ C

∫

B+
r

(|DN |3 + |DN |2|N |+ |DN ||N |2) .

The third integrand can be treated like I3 in the estimate of Erro3 and thus can be
bounded by Cr2D(r)1+τ . As for the ûrst two we argue as follows:

∫

B+
r

(|DN |3 + |DN |2|N |)
(9.35)&(9.36)

≤
∑

j

εαL

1 �αL

j

∫

Uj

|DN |2

(9.42)

≤ CD(r)τ
∫

B+

|DN |2 ≤ CD(r)τ (D(r) + rD′(r)) .
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Concerning Erri4, using again (9.54), we estimate

|Erro4| ≤ C
∑

j

‖TF − T+‖(p−1(Ui))(9.55)

(9.37)

≤ C
∑

j

ε1+αL

1 �m+2+αL

j

(9.41)&(9.42)

≤ CD(r)τ (D(r) + rD′(r)) .(9.56)

Proof of (9.51). By Proposition 9.9 and once more (9.54),

|Erri2| ≤ C

∫

B+
r

|N |2 + Cr

∫
ϕ|N ||DN |

≤ C

∫

B+
r

|N |2 + r2
∫

ϕ|DN |2
(9.10)

≤ Cr2D(r) .

Proof of (9.52). Arguing as for Err5o, we write

(9.57) |Erri5| ≤
∣∣∣∣
∫
〈X⊥

i , h(�TF )〉d‖TF ‖
∣∣∣∣

︸ ︷︷ ︸
J1

+C‖AΣ‖0
∫

|X⊥
i |d‖T −TF ‖

︸ ︷︷ ︸
J2

.

The term J2 can be estimated arguing exactly as for the term I2 in (9.53) and we
get J2 ≤ CrD(r)1+τ (recall also (9.54)).

In order to treat the ûrst term we proceed as in [17, Section 4.3]. Denote by
ν1, . . . , νl an orthonormal frame for TpΣ

⊥ of class C2,a0 (cf. [15, Appendix A]) and

set hj
p(
�λ) := −∑m

k=1〈Dvkνj(p), vk〉 whenever v1 ∧ . . . ∧ vm = �λ is an m-vector of
TpΣ (with v1, . . . , vm orthonormal). For the sake of simplicity, we write

hj(p) := hj
p(�TF (p)) and h(p) :=

l∑

j=1

hj(p)νj(p),

ĥj(p(p)) := hj
p(p)(

�M+(p(p))) and ĥ(p(p)) :=
l∑

j=1

ĥj(p(p))νj(p(p)).

where �M(p) denotes the m-vector orienting TpM. Consider the exponential map

exp(p) : Tp(p)Σ → Σ and its inverse ex−1
p(p). Recall that:

• the geodesic distance dΣ(p, q) is comparable to |p − q| up to a constant
factor;

• νj is C2,a0 and ‖Dνj‖C1,a0 ≤ Cε
1/2
1 ;

• exp(p) and ex−1
p(p) are both C2,a0

and ‖d exp(p)‖C1,a0 + ‖d ex−1
p(p)‖C1,a0 ≤ ε

1/2
1 ;

• |hj
p| ≤ C‖AΣ‖C0 ≤ Cε

1/2
1 ;
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150 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where all the constants involved are geometric. We then conclude that

h(p)− ĥ(p(p)) =
∑

j

(νj(p)− νj(p(p)))h
j(p)

+
∑

j

νj(p(p))(h
j(p)− ĥj(p(p)))

=
∑

j

Dνj(p(p)) · ex−1
p(p)(p)h

j(p) +O(|p− p(p)|2)

+
∑

j

νj(p(p))(h
j(p)− ĥj(p(p))).(9.58)

On the other hand, Xi(p) = Y (p(p)) is tangent toM+ in p(p) and hence orthogonal

to ĥ(p(p)) and 〈Xi(p), νj(p(p))〉 = 0 for all j. Thus using (9.54)

〈Xi(p), h(p)〉 = 〈Xi(p), h(p)− ĥ(p(p))〉
=

∑

j

〈Y (p(p)), Dνj(p(p)) · ex−1
p(p)(p)〉hj(p) +O

(
r|p− p(p)|2

)
.(9.59)

Recalling that p ∈ spt(TF ), we can bound |p−p(p)| ≤ |N(p)| and therefore conclude
the estimate

〈Xi(p), h(p)〉 =
∑

j

〈Y (p(p)), Dνj(p(p)) · ex−1
p(p)(p)〉hj(p)

+ O
(
r|N |2(p(p))

)
.(9.60)

We now use the area formula for multivalued maps and the Taylor expansion
for the area functional in [15, Theorem 3.2]. Recalling that p(Fi(x)) = x we get

J1 =

∣∣∣∣
∫
〈Xi, h(p)〉d‖TF‖

∣∣∣∣ =
∣∣∣∣∣

Q∑

i=1

∫

M+

〈Y, h(Fi(x))〉JFi(x)dHm(x)

∣∣∣∣∣

(9.60)

≤

∣∣∣∣∣∣

∫

M+

l∑

j=1

Q∑

i=1

〈Y (x), Dνj(x) · ex−1
x (Fi(x))〉hj(F (x))dHm(x)

∣∣∣∣∣∣

+ Cr

∫
ϕ (|N |2 + |DN |2)

Using the Taylor expansion for ex−1
x at x (and recalling that Fi(x) − x = Ni(x))

we conclude

∣∣∣
Q∑

i=1

ex−1
x (Fi(x))

∣∣∣ ≤
∣∣d ex−1

x (η ◦N(x))
∣∣+O(|N |2)

≤ C|η ◦N(x)|+ C|N |2 .

Next consider that |〈Y,Dνj · v〉| ≤ Crϕ‖AΣ‖C0 |v| ≤ Crϕ ε
1/2
1 |v| for every tangent

vector v and |hj(F (x))| ≤ C‖AΣ‖C0 ≤ ε
1/2
1 . We thus conclude with the estimate

J1 ≤ C ε1r

∫
ϕ |η ◦N |+ Cr

∫
ϕ(|N |2 + |DN |2) .

Using the Poincaré inequality and the same argument as for Erro1, we conclude

J1 ≤ CrD(r)1+τ + CrD(r) . �
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9.7. Proof of Theorem 9.3

First of all, notice that if D(r) = 0 for some r, then N ≡ Q �0� on B+
r . This

means that no cube of W e ∪ W h intersects B
+

r = {p ∈ π+
0 : d(ϕ(p)) ≤ r}. On the

other hand from Corollary 8.21 we easily conclude that no cube of W intersects

the region B
+

r/2 (observe that no cube L ∈ W is a boundary cube and thus, if it

intersects B
+

r/2, we have �(L) � r). In particular, B+
r/2 is contained in the contact

set and thus there is a neighborhood of 0 where T+ coincides with Q �M+�.
Thus, without loss of generality we can assume that D(r) > 0. Notice that for

the same reason we can assume that there is a sequence of radii rj ↓ 0 such that
H(rj) > 0. More speciûcally, we claim that there is a radius r0 sufficiently small
for which, for all r < r0, H(r) > 0 and all the estimates of the previous sections
apply. Indeed, let ]ρ, r0[ be a maximal interval over which H 
= 0. On this interval
we compute the derivative of log I(r) using (9.13):

d

dr
log I(r) =

1

r
+

D′(r)

D(r)
− H ′(r)

H(r)
= O(1) +

2−m

r
+

D′(r)

D(r)
− 2E(r)

H(r)
.(9.61)

Next, by (9.27), (9.47), (9.48), and (9.49),

(9.62) |D(r)− E(r)| ≤ C(D(r)1+τ + CS(r)) ≤ C(D(r)1+τ + r2D(r)) .

Note that

D(r) ≤
∑

j

∫

Uj

|DN |2
(9.38)

≤ C
∑

j

ε1�
m+2−2αe

j ≤ Cr2−2αe

∑

j

�mj .

Recalling that all Lj ’s are disjoint and contained in B4
√
mr, we easily conclude that

D(r) ≤ Crm+2−2αe . In particular, (9.62) implies

(9.63) D(r)(1− Crτ ) ≤ E(r) ≤ D(r)(1 + Crτ ) .

Assuming r0 is sufficiently small, we infer

(9.64)
D(r)

2
≤ E(r) ≤ 2D(r) .

In particular, inserting (9.63) in (9.61), we obtain

(9.65)
d

dr
log I(r) ≥ O(1) +

2−m

r
+

D′(r)

E(r)
− 2E(r)

H(r)
−C

D′(r)(S(r) +D(r)1+τ )

D(r)2
.
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Using (9.28), (9.50), (9.51) and (9.52),

d

dr
log I(r)

(9.64)

≥ O(1) +
2G(r)

E(r)
− 2E(r)

H(r)
− C

D′(r)(S(r) +D(r)1+τ )

D(r)2

− 1

rE(r)

5
∑

j=1

|Errij |

≥ O(1) +
2G(r)

E(r)
− 2E(r)

H(r)
− C

D′(r)(S(r) +D(r)1+τ )

D(r)2

− C
D(r)

E(r)

(

1 +
D(r)τ

r
+

D′(r)

D(r)1−τ

)

(9.64)

≥ O(1) +
2G(r)

E(r)
− 2E(r)

H(r)
− C

D′(r)S(r)

D(r)2

− C
D(r)τ

r
− C

D′(r)

D(r)1−τ
.(9.66)

By Cauchy–Schwartz G(r)H(r) ≥ E(r)2. Moreover, we have already estimated
−D(r) ≥ −Cr. Inserting the latter inequalities in (9.66) and integrating, we obtain

log
I(r)

I(s)
≥ −C(rτ − sτ )− C(D(r)τ −D(s)τ )− C

∫ r

s

D′(σ)

D(σ)2
S(σ) dσ

≥ −Crτ + C

(

S(r)

D(r)
− S(s)

D(s)

)

− C

∫ r

s

S′(σ)

D(σ)
dσ ,(9.67)

for every ρ < s < r < r0. Recall that S(σ) ≤ Cσ2D(σ) for every σ ∈]ρ, r0[.
Moreover,

S′(σ) = −
∫

d

σ2
φ′

(

d

σ

)

|N |2 ≤ CH(σ)
(9.8)

≤ CσD(σ) .

In particular, we conclude

(9.68) log
I(r)

I(s)
≥ −Crτ .

From the latter inequality we conclude immediately that I(s) is uniformly bounded
and thus that H(ρ) = limr↓ρH(r) cannot vanish if ρ > 0. Since ]ρ, r0[ is a maximal
interval on which H is positive, we conclude that it is positive on the whole ]0, r0[.

Furthermore, it follows directly from (9.68) that the limit

I+0 := lim
r↓0

I+(r)

exists. Finally, from (9.9) we conclude I0 > 0.
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CHAPTER 10

Final blow-up argument

In this chapter we conclude the proof of Theorem 1.6. In particular we show
that alternative (b) in Theorem 9.3 cannot hold. This leaves alternative (a), which
therefore shows that, under the assumptions of the theorem, the origin is in fact
a regular boundary point. On the other hand, such point was a generic collapsed
point of an area-minimizing current which was later suitably rescaled and translated
in order to fulûll the Assumption 8.16.

The core of the argument is to derive a suitable contradiction to the linear
theory with a blow-up of the approximating

(

Q− 1
2

)

-map (N+, N−). In order to
state our main theorem we introduce the following notation.

Recall that M is the union of M+ and M− and is, therefore, a C1,1 subman-
ifold. Moreover M coincides with the graph of the functions ϕ+ and ϕ− on the
domains B+

1 and B−
1 . In order to simplify the notation we denote by ϕ the map

on B1 which coincides with both on the respective domains. In particular we are
ready to deûne suitable multivalued maps

N ±(x) =
∑

i

�
N

±
i (x)

�

given by the formulas

N
±
i (x) = pκ0

(

N±
i (x,ϕ±(x))

)

,

where we recall that κ0 is the plane T0Σ ∩ T0M⊥ = {0} × Rn̄ × {0}. Observe
that the pair (N +,N −) is a

(

Q− 1
2

)

-valued function with interface (γ, 0). We next
deûne

D(r) =

∫

B+
r

|DN +|2 +
∫

B−
r

|DN −|2 = D+(r) + D−(r)

and the corresponding rescaled multivalued functions

N ±
r (x) :=

∑

i

�
r
m/2−1D(r)−

1/2N
±
i (rx)

	
.

Definition 10.1. The domains of the rescaled functions N ±
r are divided by

(suitable) rescalings of γ, which in turn are converging to the (m− 1)-dimensional
plane T0γ. For this reason we introduce the notation B+

r,ρ (and B−
r,ρ) for the inter-

section of the domain of N +
r (respectively of N −

r ) with the disk Bρ(0, π0).

Note that the regions B±
r , which are subsets of the domains of the maps N ±,

coincide with the sets B±
1,r. Observe that a simple consequence of the estimates in

the previous chapter is that

D(r) ≤ Cε1r
m+2−2αe ,(10.1)

Lip(N ±|Br
) ≤ CεαL

1 rαL .(10.2)

153
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154 10. FINAL BLOW-UP ARGUMENT

We are now ready to state the key step of our ûnal contradiction argument.

Theorem 10.2. If alternative (b) in Theorem 9.3 would hold in any of the two
regions C±, then, up to a subsequence, the pair (N +

r ,N −
r ) would converge in B1

locally strongly in L2 and in energy to a
(

Q− 1
2

)

Dir-minimizer (N +
0 ,N

−
0 ) which

collapses at the interface (T0γ, 0) such that

(i) (N +
0 ,N

−
0 ) is nontrivial;

(ii) η ◦ N
±
0 ≡ 0.

Remark 10.3. Observe that, although the notation N
±
0 might suggest that

the <blow-up= map is unique, namely independent of the sequence {rk}k, we do
not claim such uniqueness, nor we need it for our purposes.

By convergence in energy we mean that for every R ∈ (0, 1)

lim
k→∞

(

∫

B+
R

|DN +
rk
|2 +

∫

B−

R

|DN −
rk
|2
)

=

∫

B+
R

|DN
+
0 |2 +

∫

B−

R

|DN
−
0 |2

Since by Theorem 4.5 any
(

Q− 1
2

)

Dir minimizer (N +
0 ,N

−
0 ) which collapses

at the interface must satisfy

N
+
0 = Q

�
η ◦ N

+
0

�
and N

−
0 = (Q− 1)

�
η ◦ N

−
0

�
,

the two properties (i) and (ii) above are incompatible. In particular we conclude

Corollary 10.4. Alternative (a) in Theorem 9.3 must hold for both T C+

and T C−, i.e. 0 is a boundary regular point for the current T .

10.1. Asymptotics for D(r)

Lemma 10.5. Under the assumptions of Theorem 10.2 for every λ ∈ (0, 1) one
has

(10.3) ∞ > lim sup
r↓0

D(λr)

D(r)
≥ lim inf

r↓0

D(λr)

D(r)
> 0 .

Observe that (i) in Theorem 10.2 is then a simple consequence of the above
lemma and convergence in energy.

Proof. Observe that, since T0M = π0 and N± are orthogonal toM, we easily
conclude that

(10.4) D±(r) = (1 +O(r))

∫

B±
r

|DN±|2 .

Furthermore, if one among I+0 and I−0 is +∞, then the corresponding energy van-
ishes identically. Thus, under the assumption that they are ûnite, it suffices to
show

∞ > lim sup
r↓0

(
∫

B±
r

|DN±|2
)−1 ∫

B±

λr

|DN±|2

≥ lim inf
r↓0

(
∫

B±
r

|DN±|2
)−1 ∫

B±

λr

|DN±|2 > 0 .(10.5)
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10.2. VANISHING OF THE AVERAGE 155

To ûx ideas consider the case of N+ and notice that, in the notation of the previous
chapter, we must simply show

(10.6) ∞ > lim sup
r↓0

D(r)−1D(λr) ≥ lim inf
r↓0

D(r)−1D(λr) > 0 .

Observe that the quantities D and H deûned in (9.5) and (9.6) are integrals over
(portions of) the <right center manifold= M+. Hence, from now on we use a more
consistent notation for the remaining computations of this chapter, namely D+ and
H+ (and analogously I+ and E+). In order to prove the desired estimate notice
ûrst that, by Proposition 9.5, and (9.63) we have

d

dr
log

(

H+(r)

rm−1

)

=
2E+(r)

H+(r)
+O(1) =

2

r
(1 +O(rτ ))I+(r) +O(1)

Next, by choosing r sufficiently small, we can assume that

I+0
2

≤ (1 +O(rτ ))I+(r) ≤ 2I+0 .

Thus, integrating the inequality above between s and t ≥ s, we conclude

e−C(t−s)

(

t

s

)m−1+I+
0

≤ H+(t)

H+(s)
≤ eC(t−s)

(

t

s

)m−1+4I+
0

.

Since

lim
r↓0

rD+(r)

H+(r)
= I+0 ,

we can argue as in Corollary 4.26(c) to conclude (10.6). �

10.2. Vanishing of the average

In this section we wish to show that

Lemma 10.6. Under the assumptions of Theorem 10.2 we have

(10.7) lim
r→0

(

∫

B+
1

|η ◦ N +
r |+

∫

B−

1

|η ◦ N −
r |
)

= 0 .

Indeed we have the stronger estimate

lim
r↓0

D(r)−1r−(1+τ ′)

(
∫

B+
r

|η ◦ N +|+
∫

B−
r

|η ◦ N −|
)

≤ lim
r↓0

D(r)−(1+τ ′)r−1

(
∫

B+
r

|η ◦ N +|+
∫

B−
r

|η ◦ N −|
)

= 0 .(10.8)

for any τ ′ smaller than the parameter τ of Proposition 9.14.

Notice that (ii) in Theorem 10.2 is then a trivial consequence of the lemma and
of Lemma 10.5.

Proof. In view of the same considerations used in the proof of Lemma 10.5,
in order to prove (10.7) it suffices to show that, under the condition that alternative
(b) holds,

(10.9) lim
r→0

1

rm/2+1D+(r)1/2

∫

B+
r

|η◦N+| = lim
r→0

D+(r)1/2

rm/2

1

rD(r)

∫

B+
r

|η◦N+| = 0.
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where we are using the notation of the previous chapter. By (10.1) and (10.4),

(10.10) lim
r→0

D+(r)1/2

rm/2
= 0.

We now claim that

(10.11)

∫

B+
r

|η ◦N+| ≤ Cr

(
∫

B+
r

|DN+|2
)1+τ

.

where C and τ are as in Proposition 9.14. The latter inequality, together with
(10.1), clearly implies (10.8). Moreover the combination of (10.10) and (10.11)
implies (10.9). Hence the proof of the lemma will be concluded once we show
(10.11). To this aim, with the notation of the previous chapter, we estimate

∫

B+
r

|η ◦N+| ≤
∑

j

∫

Uj

|η ◦N+| .

Applying (8.15) with a = r we easily conclude
∫

B+
r

|η ◦N+| ≤ Cr
∑

j

ε1�
m+2+αL/2
j +

C

r

∫

B+
r

|N+|2+αL .

On the other hand, using (9.36), (9.41), and (9.42) we then conclude

∫

B+
r

|η ◦N+| ≤ Cr

(
∫

B+
r

|DN+|2
)1+τ

+
C

r

(
∫

B+
r

|DN+|2
)τ ∫

B+
r

|N+|2 .

Combining the above estimates with the Poincaré inequality
∫

B+
r

|N+|2 ≤ Cr2
∫

B+
r

|DN+|2

we then conclude the proof of (10.11) and of the lemma. �

10.3. Minimality and convergence in energy

In this section we complete the proof of Theorem 10.2. In order to be consistent
with our notation on the domains of the functions N ±

r , we let B±
0,R denote the

intersections of the domain of deûnitions of the blow-up maps N
±
0 with the disk

Br(0, π0). By the Rellich-Kondrakov embedding we know that we can extract a
subsequence (N +

rk
,N −

rk
) converging locally strongly in L2(B1) to some

(

Q− 1
2

)

-

map (N +
0 ,N

−
0 ). The fact that the latter collapses at the interface (T0γ, 0) comes

from trace theory (cf. for instance [13], [29]). Observe that, by semicontinuity of
the Dirichlet energy we have

lim inf
k→∞

(

∫

B+
rk,R

|DN +
rk
|2 +

∫

B−

rk,R

|DN −
rk
|2
)

≥
∫

B+
0,R

|DN
+
0 |2 +

∫

B−

0,R

|DN
−
0 |2(10.12)

for every R ∈ (0, 1).
Assume without loss of generality that the inferior limit on the left hand side

is actually a limit. Choose now any
(

Q− 1
2

)

competitor (u+, u−) with interface
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(T0γ, 0) which coincides with (N +
0 ,N

−
0 ) on B1 \ BR. We now want to show that,

for any given positive η > 0,

lim
k→∞

(

∫

B+
rk,R

|DN +
rk
|2 +

∫

B−

rk,R

|DN −
rk
|2
)

≤
∫

B+
0,R

|Du+|2 +
∫

B−

0,R

|Du−|2 + η .(10.13)

Clearly this will show both the convergence in energy (by choosing u± = N
±
0 ) and

the local minimality of N
±
0 . Hence the proof of Theorem 10.2 will be concluded

once we show (10.13).
Without loss of generality we can assume that η ◦ u± = 0. Indeed, recall that

η ◦ N
±
0 ≡ 0 and thus, since

∫

B±

1

|Du±|2 ≥
∫

B±

1

∑

i

|D(u±
i − η ◦ u±)|2 ,

∑

i �u± − η ◦ u±� would be a better competitor with zero average.
It is convenient to introduce the energy difference

Ek :=

(

∫

B+
rk,1

|DN +
rk
|2 +

∫

B−

rk,1

|DN −
rk
|2
)

−
(

∫

B+
0,1

|Du+|2 +
∫

B−

0,1

|Du−|2
)

,

so that our claim reduces to

lim
k→∞

Ek ≤ η .

Note also that we can assume that Ek ≥ 0 otherwise there is nothing to prove, in
particular
(10.14)

(

∫

B+
0,1

|Du+|2 +
∫

B−

0,1

|Du−|2
)

≤ lim
k→∞

∫

B+
rk,1

|DN +
rk
|2 +

∫

B−

rk,1

|DN −
rk
|2 = 1 ,

where the last equality follows by the normalization of N ±
rk
.

Our ûrst step is then to produce a new
(

Q− 1
2

)

-map (N̂ +
k , N̂

−
k ) with interface

(γ, 0) and satisfying the following four properties:

(a) (N̂ +
k , N̂

−
k ) coincides with (N +,N −) outside Brk ;

(b) the Lipschitz constants Lip(N̂ ±
k ) converge to 0 as k → ∞;

(c) the following inequality holds for the energy:
∫

B+
rk

|DN̂
+
k |2 +

∫

B−
rk

|DN̂
−
k |2 ≤

∫

B+
rk

|DN +|2

+

∫

B+
rk

|DN −|2 + r2−m
k D(rk)

(

−Ek +
η

2

)

;(10.15)

(d) |η ◦ N̂
+
k | ≤ C|η ◦ N ±|;
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First, observe that by Lemma 5.8, we can choose a sequence of approximants
(u+

j , u
−
j ) which converge in energy to (u+, u−) in B0,1, satisfy η ◦ u±

j ≡ 0 and
with Lipschitz constant controlled by j,

Lip(u±
j ) ≤ j.

Next, choose a sequence of diffeomorphisms Φk of B1 which converges in C1 to the
identity and maps the rescalings γrk := r−1

k γ onto T0γ. We then deûne

(u+
j,k, u

−
j,k) = (u+

j ◦ Φk, u
−
j ◦ Φk).

Note that

(10.16) lim
k→∞

lim
j→∞

∫

B±

rk,1

|Du±
j,k|2 = lim

k→∞

∫

B±

rk,1

|D(u± ◦ Φk)|2 =

∫

B±

0,1

|Du±|2

and

(10.17) lim
k→∞

lim
j→∞

∫

B±

rk,1\Φ
−1
k (B±

0,R)

G2(u±
j,k,N ±

rk
) = 0 .

Using the interpolation Lemma 4.9 and proceeding as in Section 4.1.4 we obtain
(

Q− 1
2

)

-maps (w+
j,k, w

−
j,k) with the following properties for a sufficiently large k

and small λ:

(a1) (w+
j,k, w

−
j,k) coincide with (u±

j,k, u
±
j,k) on Φ−1

k (BR(0, π0)) and with (N +
rk
,

N −
rk
) outside Bsk(0, π0) for some R < sk < 1 such that Φ−1

k (BR(0, π0)) ⊂
Bsk(0, π0);

(b1) The Lipschitz constant of (w+
k,j , w

−
k,j) is estimated as1

Lip(w±
k,j) ≤ C

(

Lip(N ±
rk
) + Lip(u±

k,j) +
1

λ
sup

B±

1 \Φ−1
k (B±

0,R)

G(u±
j,k,N ±

rk
)
)

≤ C
(

Lip(N ±
rk
) + Lip(u±

k,j) +
1

λ(1−R)

∫

B±

1 \Φ−1
k (B±

0,R)

G(u±
j,k,N ±

rk
)
)

;

1Here we are using the simple inequality ‖f‖L∞(E) ≤ |E|−1‖f‖L1(B1)
+ diam(E) Lip(f).
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(c1) The energy of (w+
j,k, w

−
j,k) can be estimated as

∫

B+
rk,1

|Dw+
j,k|2 +

∫

B−

rk,1

|Dw−
j,k|2

≤ (1 + ‖Φk − Id‖C1)
(

∫

B+
0,R

|Du+
j |

2 +

∫

B−

0,R

|Du−
j |

2
)

+

∫

B+
rk,1\Bsk

(0,π0)

|DN +
rk
|2 +

∫

B−

rk,1\Bsk
(0,π0)

|DN −
rk
|2

+ Cλ

∫

B+
rk,1\Φ

−1
k (BR(0,π0))

(|Du+
j,k|

2 + |DN +
rk
|2)

+ Cλ

∫

B−

rk,1\Φ
−1
k (BR(0,π0))

(|Du−
j,k|

2 + |DN −
rk
|2)

+
C

λ

∫

B+
rk,1\Φ

−1
k (BR(0,π0))

G2(u+
j,k,N +

rk
)

+
C

λ

∫

B−

rk,1\Φ
−1
k (BR(0,π0))

G2(u−
j,k,N −

rk
)

≤

∫

B+
rk,1

|DN +
rk
|2 +

∫

B−

rk,1

|DN −
rk
|2 +

η

4
− Ek + oj,k(1) .(10.18)

where

lim
j→∞

lim
k→∞

oj,k(1) = 0

and we have chosen λ � η (recall also (10.14)).
(d1) |η ◦ w±

k | ≤ C|η ◦ N ±
rk
|. This can be easily seen as follows: ûrst of all

we can subtract the average from N ±
rk
, and interpolate it to 0, which

is the average of the competitors u±
j , hence we can interpolate between

the maps (u+, u−) and the average-free part of (N +
rk
,N −

rk
): a simple

inspection of the proof of Lemma 4.9 shows that this can be done while
keeping the average of the interpolation equal to 0. Hence we can add
back the average to the resulting maps in order to get w±

k . Note that
in estimating the Dirichlet energies we are using the crucial fact that the
Dirichlet energy of a multivalued map equals the sum of the Dirichlet
energies of its average and average-free part.

Next we set

N̂
±
j,k(x) =

∑

i

�
r
1−m/2
k D(rk)

1/2(w±
j,k)i(r

−1
k x)

	

and

N̂
±
j = N̂

±
j,kj

for kj appropriately large. Observe that (N̂ +
j , N̂

−
j ) clearly satisûes property (a).

Moreover,

Lip(N̂ ±
j,k) ≤ C Lip(N ±) + Cr

−m/2
k D(rk)

1/2j + Cη−1oj,k(1) .

In particular, taking into account (10.1) and (10.2),

Lip(N̂ ±
j,k) ≤ Cη−1εαL

1 rαL

k + Cε
1/2
1 r1−αe

k j + Cη−1r
−m/2
k D(rk)

1/2j + Cη−1oj,k(1).
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Thus, choosing ûrst j large and then kj much larger, we achieve (b). Finally, (10.15)
follows from (10.18).

We next deûne a suitable Lipschitz map Λ between a neighborhood U of the
origin in Σ onto a neighborhood of the origin in T0Σ. Fix therefore z ∈ U ∩ Σ.
First of all we deûne x ∈ π0 = T0M as the only point such that (x,ϕ(x)) = p(z),
where p is the projection onto M. Next, we let κ0 := T0Σ ∩ T0M

⊥ and we deûne
y := pκ0

(z − p(z)). We then set Λ(z) := (x, y) ∈ T0Σ and Λv(z) = y.
We partition U into U+ and U− according on whether p(z) belongs to M+

or M−. So, we can regard Λ as two maps Λ+ and Λ− which are C2,κ on the
corresponding domains and which agree on the common boundary U+ ∩ U− =
p−1(Γ) ∩ U . Observe that the differentials of Λ± at the origin are the identity in
both cases. Thus, using the inverse function theorem, we can ûnd two inverse maps
Ψ± deûned on B±

r (π0)×Br(κ0).

We are thus ready to deûne the competitor maps (N̂+
k , N̂−

k ) in the form

N̂±
k (x,ϕ(x)) = Ψ±(x, N̂

±
k (x))− (x,ϕ(x)) ,

namely

N̂±
k (x,ϕ(x)) =

∑

i

�
Ψ±(x, (N̂ ±

k )i(x))− (x,ϕ(x))
	
.

Observe that

N̂
±
k (x)) = pκ0

(N̂k(x,ϕ(x))) .

We thus conclude easily that:

(a2) (N̂+
k , N̂−

k ) coincide with (N+, N−) outside of C2rk ∩M;

(b2) the Lipschitz constants of N̂±
k on C2rk ∩M converge to 0;

(c2) for k large enough we have the energy comparison
∫

C2rk
∩M+

|DN̂+
k |2 +

∫

C2rk
∩M−

|DN̂−
k |2

≤

∫

C2rk
∩M+

|DN+|2 +

∫

C2rk
∩M−

|DN−|2 + D(rk)

(

−Ek +
3η

4

)

.(10.19)

(d2) |η ◦ N̂±
k | ≤ C|η ◦ N±|, since on p−1(Brk) we have 0 = η ◦ N̂

±
k (x)) =

pκ0
(η ◦ N̂k(x,ϕ(x))).

Now we consider the current Sk in C2rk induced by the multi-valued map

F̂±
k (x,ϕ(x)) =

∑

i

�
(x,ϕ(x)) + (N̂±

k )i(x,ϕ(x))
	

Observe that, since Sk = TF on C2rk \Crk , arguing as for the estimate in (9.56)
we easily conclude that

‖Sk − T‖(C2rk \Crk) ≤ C

(

∫

C3rk
∩M+

|DN+
k |2 +

∫

C4rk
∩M−

|DN−
k |2

)1+τ

.

In turn, using Lemma 10.5, we can control the right hand side with D(rk)
1+τ . In

particular, for a suitable σk ∈ (rk, 2rk)

M(∂((Sk − T ) Cσk
)) ≤

C

rk
D(rk)

1+τ .
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In particular, by the isoperimetric inequality we conclude the existence of a current
Zk with ∂Zk = ∂((Sk − T ) Cσk

), spt(Zk) ⊂ Σ and such that

M(Zk) ≤ Cr
−m/(m−1)
k D(rk)

m(1+τ)/(m−1)

≤ CD(rk)
1+τ

(

D(rk)
1+τ

rmk

)

1
m−1

≤ CD(rk)
1+τ ;

where we used the bound D(r) ≤ Crm+2−2αe (compare the argument leading to
(9.64)). In particular, the current

T̂k = Sk Cσk
+ T (Rm+n \Cσk

) + Zk

is an admissible competitor to check the minimality of T , since it coincides with T
outside a compact set and it has boundary �Γ�. In particular we conclude that

(10.20) M(Sk Cσk
) ≥ M(T Cσk

)− CD(rk)
1+τ .

Next, since T coincides with TF on a large set (compare with (9.56)) using again
the same estimate as above, we conclude also

M(Sk Cσk
) ≥ M(TF+ Cσk

) +M(TF− Cσk
)− CD(rk)

1+τ .

On the other hand, since F and F̂k coincide outside of Crk , we can write
(10.21)
M(TF̂+

k
Crk) +M(TF̂−

k
Crk) ≥ M(TF+ Crk) +M(TF− Crk)− CD(rk)

1+τ .

Using now the Taylor expansion in [15, Theorem 3.2] we easily conclude that
∣

∣

∣

∣

∣

M(TF+ Crk)−
1

2

∫

Crk
∩M+

|DN+|2 −QHm(Crk ∩M+)

∣

∣

∣

∣

∣

≤ C

∫

Crk
∩M+

(|η ◦N+|+ |N+|2 + |N+||DN+|2 + |DN+|3) .

By the estimate on |N+| and Lip(N+), we have
∫

Crk
∩M+

|N+||DN+|2 + |DN+|3

(9.35)&(9.36)&(9.42)

≤ C

(

∫

C2rk
∩M+

|DN+|2

)1+τ

≤ CD(rk)
1+τ ,

where in the last inequality we have also used Lemma 10.5. By the Poincaré
inequality (and Lemma 10.5)

∫

Crk
∩M+

|N+|2 ≤ Cr2k

∫

Crk
∩M+

|DN+|2 ≤ Cr2kD(rk) .

Finally, by Lemma 10.6,
∫

Crk
∩M+

|η ◦N+| ≤ CrkD(rk)
1+τ .

We thus conclude
∣

∣

∣

∣

∣

M(TF+ C2rk)−
1

2

∫

C2rk
∩M+

|DN+|2 −QHm(C2rk ∩M+)

∣

∣

∣

∣

∣

≤ Cr2kD(rk) + CD(rk)
1+τ .(10.22)
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Similarly,
∣

∣

∣

∣

∣

M(TF− C2rk)−
1

2

∫

C2rk
∩M−

|DN−|2 − (Q− 1)Hm(C2rk ∩M−)

∣

∣

∣

∣

∣

≤ Cr2kD(rk) + CD(rk)
1+τ .(10.23)

Observe next that the similar Taylor expansions hold for F̂±
k replacing F±, namely

∣

∣

∣

∣

∣

M(TF̂+
k

C2rk)−
1

2

∫

C2rk
∩M+

|DN̂+
k |2 −QHm(C2rk ∩M+)

∣

∣

∣

∣

∣

≤ Cr2kD(rk) + o(1)D(rk) ,(10.24)

and
∣

∣

∣

∣

∣

M(TF̂−

k
C2rk)−

1

2

∫

C2rk
∩M−

|DN̂−
k |2 − (Q− 1)Hm(C2rk ∩M−)

∣

∣

∣

∣

∣

≤ Cr2kD(rk) + o(1)D(rk) .(10.25)

Indeed:

• the linear term is estimated in the same way using |η ◦ N̂±
k | ≤ C|η ◦Nk|;

• the quadratic term is estimated by the Poincaré inequality and
∫

Crk
∩M+

|DN̂+
k |2 +

∫

Crk
∩M−

|DN̂−
k |2 ≤ CD(rk) ,

since we can assume without loss of generality that Ek ≥ −2;
• ûnally |N̂+

k ||DN̂+
k |2+ |DN̂+

k |3 = o(1)|DN̂+
k |2. Indeed, by (b2) Lip(N̂+

k ) =

o(1) and supx∈B+
2rk

|N̂+
k (x)| ≤ Crk Lip(N̂

+
k ) = o(rk), since N̂

+
k is vanishing

on Γ.

Inserting the Taylor expansions (10.22)–(10.25), we conclude
∫

Crk
∩M+

|DN̂+
k |2 +

∫

Crk
∩M−

|DN̂−
k |2

≥

∫

Crk
∩M+

|DN+|2 +

∫

Crk
∩M−

|DN−|2 − o(1)D(rk) .(10.26)

Combining now (10.19) and (10.26) we achieve

D(rk)

(

−Ek +
3η

4

)

≥ −o(1)D(rk) .

Dividing by D(rk) and choosing k large enough we achieve the desired inequality
Ek ≤ η.
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1420 Andrew Snowden and Sema Güntürkün, The Representation Theory of the
Increasing Monoid, 2023

1419 Rafael von Känel and Benjamin Matschke, Solving S-Unit, Mordell, Thue,
Thue–Mahler and Generalized Ramanujan–Nagell Equations via the Shimura–Taniyama
Conjecture, 2023
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