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Abstract

Let ¥ be a smooth Riemannian manifold, I' € ¥ a smooth closed oriented
submanifold of codimension higher than 2 and 7" an integral area-minimizing current
in ¥ which bounds I". We prove that the set of regular points of T" at the boundary
is dense in I'. Prior to our theorem the existence of any regular point was not
known, except for some special choice of ¥ and I". As a corollary of our theorem

e we answer to a question in Almgren’s Almgren’s big reqularity paper from
2000 showing that, if I" is connected, then T" has at least one point p of
multiplicity %, namely there is a neighborhood of the point p where T is
a classical submanifold with boundary T’

e we generalize Almgren’s connectivity theorem showing that the support
of T is always connected if I" is connected;

e we conclude a structural result on 7" when I' consists of more than one
connected component, generalizing a previous theorem proved by Hardt
and Simon in 1979 when ¥ = R™*! and T is m-dimensional.
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CHAPTER 1

Introduction

Consider a smooth complete Riemannian manifold ¥ of dimension m +n and a
smooth closed oriented submanifold I' C ¥ of dimension m — 1 which is a boundary
in integral homology. Since the work of Federer and Fleming (cf. [24]) we know
that T" bounds an integer rectifiable current 7" in ¥ which is mass minimizing.

Starting with the pioneering work of De Giorgi (see [9]) and thanks to the efforts
of several mathematicians in the sixties and the seventies (see [4,10,25,37]), it is
known that, if ¥ is of class C?¢ for some a > 0, in codimension 1 (i.e., when i1 = 1)
and away from the boundary I', T' is a smooth submanifold except for a relatively
closed set of Hausdorff dimension at most m — 7. Such set, which from now on
we will call interior singular set, is indeed (m — 7)-rectifiable (cf. [36]) and it has
been recently proved that it must have locally finite Hausdorff (m — 7)-dimensional
measure (see [33]).

In higher codimension, namely when n > 2, Almgren proved in a monumental
work (known as Almgren’s Big regularity paper [5]) that, if X is of class C®, then the
interior singular set has Hausdorff dimension at most m — 2. Subsequently Chang
proved in [8] that such set is indeed discrete when m = 2. In fact Chang’s paper is
missing one substantial step of the proof, which was completed only recently by the
first author in a series of joint works with Emanuele Spadaro and Luca Spolaor, cf.
[18-21]. The latter papers are based on a revisitation of Almgren’s theory, due to
the first author and Emanuele Spadaro (cf. [13-17]), which simplifies Almgren’s
proof introducing several new ideas. The latter works are indeed one of the starting
points of this paper.

Both in codimension one and in higher codimension the interior regularity
theory described above is, in terms of dimensional bounds for the singular set,
optimal:

e The celebrated paper by Bombieri, De Giorgi and Giusti [6] (see [22]
for a very short proof) shows that Simons’ cone {2% + 23 + 23 + 23 =
22+ 22+ 22+ 22} is an area-minimizing current of dimension 7 in R® with
an isolated singularity.

e Federer’s calibration theorem shows that any holomorphic subvariety of
a Kéahler manifold induces an area-minimizing current: in particular the
holomorphic curve {(z,w) € C? : 22 = w3} is a 2-dimensional area-
minimizing current in R* with an isolated singularity.

The main purpose of this paper is to study the regularity of the minimizers at
the boundary. In the rest of the note we will always assume that such boundary
is the integer rectifiable current naturally induced by some oriented submanifold
I' and we will use the notation [I'] for it. As it is customary in the literature,
we take advantage of Nash’s isometric embedding theorem and we consider X as

1
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2 1. INTRODUCTION

a submanifold of some Euclidean space R™". In particular we can regard any
integer rectifiable current 7' in ¥ as an integer rectifiable current in the Euclidean
space whose support spt(7T) is contained in ¥: hence T' minimizes the mass among
all currents S which are supported in ¥ and such that 95 = [I'].

DEFINITION 1.1. A point z € T' is a boundary regular point for T if there exist
a neighborhood U 3 z and a regular m-dimensional submanifold 2 C U N X as
in Definition 1.1 (without boundary in U) such that spt(7) N U C =Z. The set of
such points will be denoted by Regp(T") and its complement in I" will be denoted
by Singy, (T').

Analogously, the set of interior regular points and interior singular points will
be denoted by Reg;(T) and Sing;(T).

We further subdvide Sing,(T) into two categories. We will say that x €
Singy, (T') is of crossing type if there is a neighborhood U of z and two currents
Ty and T, in U with the properties that:

e I+ Ty, =T and 9T} = 0;

o 1 € Regy(Tn).
If x € Singy,(T) is not of crossing type, we will then say that x is a genuine boundary
singularity of T.

REMARK 1.2. Notice that Singy(7') is closed in I'. Moreover, the Constancy
Lemma has the following simple consequence. Let p € I' be a regular point and =.
Assume the neighborhood U is sufficiently small, so that U N = is diffeomorphic to
an m-dimensional disk. Then the following holds:

e ' U is necessarily contained in = and divides it in two disjoint regular
submanifolds =T and =~ of U with boundaries +T;
e there is a positive ) € N such that

TLU=Q[E"]+@-1)[E7].
We define the density of such points p in ' N U as Q — % and we denote it by
O(T,p) = Q — 1. Later (in Definition 3.1) we will define, as customary, the density
at every boundary point p as the limit, as r | 0, of the ratio between the mass of the
current in a ball of radius r (denoted by ||T'||(B.(p))) and the m-dimensional volume

of an m-dimensional disk of radius r (denoted by w,,,7™). The two definitions clearly
agree on regular points.

Of particular interest are those regular points where @@ = 1: at such points
there is a neighborhood U where the current 7' is a classical submanifold with
multiplicity 1 and with boundary I' N U. Such points will be called in the rest of
the note density % points or one-sided points. In contrast, the regular points where
Q@ > 1 will be called two-sided. Note that, when p is a one-sided point only =+ NU
is determined (and coincides, in fact, with the support of the current in U): 2~ NU
can be chosen to be any “smooth continuation” of =¥ N U across the boundary
I'NU. On the other hand when p is two-sided then the whole submanifold =N U
is determined by the current T" and coincides with its support in U.

The first boundary regularity result is due to Allard who, in his Ph.D. thesis
(cf. [1]), proved that, if ¥ = R™*™ and T is lying on the boundary of a uniformly
convex set, then every point p € T' is regular and has multiplicity % In his later
paper [3] Allard developed a more general boundary regularity theory from which

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



1. INTRODUCTION 3

he concluded the above result as a simpler corollary. In particular Allard’s theory
establishes, among other things, the following two facts:
ITI(B,(p))

(a) if p € T' is a point where the density ©(T,p), defined as lim, o =l
equals %, then p belongs to Regy (T);

(b) if there is some wedge W of opening angle smaller than 7= whose tip
contains p and such that spt(T") C W then O(T,p) = % and thus p €
Regb(T).l

In contrast to (b), a boundary point p € I' with density @ + % for some @Q €
N\ {0} is not necessarily a regular point.

Suitable generalizations of (a) and (b) can be proved in more general ambient
manifolds ¥ and they imply full boundary regularity under geometrically inter-
esting assumptions: a simple example is given when I' lies on the boundary of a
geodesic ball of sufficiently small radius. However, even when ¥ = R™"" Allard’s
theory implies the existence of relatively few boundary regular points for general
submanifolds T'; in particular (b) above can be guaranteed for an appropriate subset
of those points where I' coincides with its convex envelope, for the proof see [28].

In the codimension one case Hardt and Simon proved later in [27] that the set of
boundary singular points is empty, hence solving the boundary regularity problem
when 7 = 1 (although the paper [27] deals only with the case ¥ = R™*"  its
extension to a general Riemannian ambient manifold should not cause real issues).
A major problem that Hardt and Simon have to face compared to Allard is that
under their assumption two-sided boundary points may occur, as it is witnessed by
the following example.

EXAMPLE 1.3. Let I' be the union of two concentric circles I'y and I's contained
in a given 2-dimensional plane 7y C R?T" and having the same orientation. Then
the area-minimizing current 7' in R?*™ which bounds I is unique and it is the sum
of the two disks bounded by I'; and I'y in mg. In particular T has density % at
every point p which belongs to the inner circle, see Figure 1.

FIGURE 1.1. p is a two-sided point while ¢ is a one-sided point.

Nonetheless, an outcome of the Hardt-Simon boundary regularity theorem is
that, if I' contains a two-sided point p, then the connected component I which
contains p arises from a situation like the one described in Example 1.3. Therefore

1A wedge W C R™*™ with opening angle 9 is a set which can be mapped via a suitable rigid
motion to {(z,y) € R™ x R™ : |y| < z1 tan g}, the tip of W is the set {(z,y) : |y| = z1 = 0}.
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4 1. INTRODUCTION

the presence of regular two-sided points is very rare: for instance, when ¥ = R™+!,
we can immediately exclude it if we know that no connected component of I" can
be included in the interior of a real analytic hypersurface.

According to the results described so far, in higher codimension and for a
general ambient manifold 3 we cannot even exclude that the set of boundary regular
points is empty. In particular, in the last remark of the last section of his Big
regularity paper, cf. [5, Section 5.23, p. 835], Almgren states the following open
problem:

QUESTION 1.4 (Almgren). “I do not know if it is possible that the set of density
% points is empty when I' is connected.”

We will see in the next chapter that such question is equivalent to ask the
existence of at least one regular boundary point.

The interest of Almgren in Question 1.4 is motivated by an important geometric
conclusion: in [5, Section 5.23] he shows that, if there is at least one density 3
point and I' is connected, then spt(7') is as well connected and the current T has
(therefore) multiplicity 1 almost everywhere, in other words the mass of T' coincides
with the Hausdorff m-dimensional measure of its interior regular set.

In this note we fill the aforementioned gap in the literature, proving the first
general boundary regularity theorem without any restrictions on the codimension,
on the ambient manifold ¥ or on the geometry of I'. Since it will be used repeatedly
throughout the paper, we isolate the assumptions of our main theorem for further
reference.

AssUMPTION 1.5. Let ag €]0,1]. Consider a C3% complete Riemannian sub-
manifold ¥ C R™*" with dimension m+7 and I' C ¥ a C>% oriented submanifold
without boundary. Let T be an integral m-dimensional area-minimizing current in
B, N Y with boundary 0T L Bs = [I' N Bs], namely such that

(AM) M(T") > M(T) for every integer rectifiable current 7" with (T —T")_ By
=0and spt(T —7T") C N B..

THEOREM 1.6. Let T, X, T be as in 1.5. Then Regy(T) is dense in I' N Bs.

Of course by rescaling and translating, the ball of radius 2 centered at 0 can
be replaced by any ball B,.(p).
It can be easily shown that boundary singular points can occur when I is a
C* curve in R* for any k, cf. [42]. Such examples are isolated and can be both of
crossing type or genuine boundary singularities. A typical construction of the latter
goes as follows. We identify R* with C2, we take a holomorphic subvariety with a
singularity, as for instance A := {(z,w) € C? : w® = 2z3**1} and then we consider
a suitable C* closed (real) curve I' lying in A and passing through the singularity
of A. In the specific case {(z,w) € C? : w® = z3¥+1} a T of interest is defined so
that:
e its projection on the plane m = {w = 0} contains an open segment o =
{w=0,Imz=0,—r <Rez <r};
e it bounds a disk D C A;
e the intersection of D with the cylinder {|z| < r} covers once the half disk
{w=0,Imz <0, |z| < r} and twice the half disk {w = 0,Im > 0,|z] < r}.
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1. INTRODUCTION 5

T := [D] is then the unique area-minimizing current which bounds [I'], while 0 is
an isolated genuine boundary singular point.

Below we will show examples where Sing, (T') has the same (Hausdorff) dimen-
sion of the boundary. Nonetheless the theorem above does not seem optimal from
at least two points of view: first of all our example leaves open the possibility that
Singp(7T") has zero (m — 1)-dimensional measure; secondly the singularities of the
example are all of crossing type. Indeed it is tempting to advance the following
conjecture, which in view of the examples known so far seems rather reasonable.

CONJECTURE 1.7. Let T, 3, T be as in 1.5. The Hausdorff dimension of the set
of genuine singular points is at most m — 2.

When m = 2 we cannot however expect that genuine singular points are iso-
lated.

THEOREM 1.8. There are:

(a) A smooth closed simple curve I' C R* and a mass minimizing current T in
R* such that OT = [I] and Singy,(T) has a genuine boundary singularity
which is an accumulation point.

(b) A smooth 1-dimensional closed submanifold Ty C R* (consisting of two
disjoint simple curves) and a mass minimizing current Ty in R* such that
0Ty = [T'1] and Singy, (T1) has Hausdorff dimension 1.

Moreover the proof of (a) can be easily modified to provide an example of a two
dimensional mass minimizing current for which there exists a sequence of interior
singular points accumulating towards the boundary. This shows that the (interior)
regularity results for two dimensional mass minimizing currents in [8,13-17] are
actually optimal, see Remark 2.3. The proof of (b) is essentially contained in [30].

The example of Theorem 1.8 is related to a previous one of Gulliver? given in
[26]. In both examples there is a boundary branch point where the surface has
an infinite order of contact with a plane. In view of Gulliver’s surface, White in
[42] stated that “Proving partial regularity for integral currents at C°°-boundaries
seems to be much harder”. In the case of real analytic curves White proved in [42]
that there is no branching boundary point for any solution of the Douglas-Radé
problem. In view of this he conjectured that the topology of any area minimiz-
ing 2-dimensional integral current is finite if its boundary is a real analytic curve:
combined with his result, White’s conjecture would then imply that for real ana-
lytic curves both the boundary singular points and the interior singular points are
isolated and that the boundary singular points can only be of “crossing” type, i.e.
there is no genuine boundary singularity.

Even though at the moment we cannot progress further in a finer analysis of
the singularities, as a corollary of Theorem 1.6 we can reduce it to the analysis of
one-sided boundaries.

THEOREM 1.9. Let 3 and T be as in Assumption 1.5. Assume I' is closed and
T is an area-minimizing integral current in ¥ with 0T = [I']. Let I" C T be a
connected component of T'. If T/ N Regy(T) contains a point p with multiplicity
O(T,p) > %, then

2Gulliver’s example is a minimal immersed disk in the 3-dimensional space. It is obviously
not a minimizer as a current, but it is not known whether it is a solution of the Douglas-Radé
problem.
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6 1. INTRODUCTION

(a) the Hausdorff dimension of Singy,(T) NI is at most m — 2;
(b) if m = 2, then Singy,(T) NI consists of finitely many points.

Theorem 1.9 is a consequence of a suitable decomposition of the current T,
which will be stated in the next chapter (cf. Theorem 2.1). One consequence of the
latter result is that the two-sided components of I' are, in a suitable sense, “internal
to the current”, as in Example 1.3. So, even if Theorem 1.6 is not a full regularity
statement as the one in [27], it is still powerful enough to yield a similar description
of the current T in a neighborhood of the two-sided connected components of I'.
Moreover, the decomposition Theorem 2.1 leads easily to a full answer to Question
1.4 and in particular we can show the connectedness of the support of any minimizer
T whose boundary IT' is connected.

COROLLARY 1.10. Let X, T and T be as in Theorem 1.9 and assume in addition
that T' is connected and that both T' and spt(T') are compactly contained contained
in By. Then,

(a) Regp(T) coincides with the set of density % points;
(b) the set of interior regular points Reg;(T) is connected;
(¢) ©(T,p) =1 forallp € Regi(T) and M(T) = H™(Regi(T)) = H™(spt(T)).

While Theorem 2.1, Theorem 1.9, and Corollary 1.10 are rather straightfor-
ward consequences of Theorem 1.6 and of the interior regularity theory via well-
established techniques in geometric measure theory, the proof of Theorem 1.6 is
very long and will occupy essentially all the rest of the note. In a nutshell we
will develop a suitable counterpart of Almgren’s interior regularity theory at the
boundary in order to prove it. Such task poses many additional difficulties and in
order to overcome them we introduce several new ideas and tools, some of which
might be useful even for the interior regularity theory.

Our work would have not been possible without the new insight provided by
the papers [13-17] and by the Ph.D. thesis of the third author, cf. [29,30]. In
particular the latter contains two fundamental starting points: a suitable boundary
regularity theory for Dir-minimizing multiple valued map and a fruitful discussion
on how the frequency function estimate of Almgren might fail at the boundary.
Such discussion has been essential to identify the key “estimate” which underlies
the present work.

In Section 2.4 we will give a road map to the proof of Theorem 1.6, we will
discuss the most important ideas which enter into it and we will point out their
relations with Almgren’s big regularity paper [5], with the works [13-17] and
with [29].
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CHAPTER 2

Corollaries, open problems, and plan of the paper

2.1. Indecomposable components of T’

We start this chapter by stating and proving our main structure theorem as
corollary of Theorem 1.6.

THEOREM 2.1. Let ,T,T be as in Assumption 1.5 and assume in addition
that T and spt(T') are compactly contained in By. Let us denote by T'y,...,T'n the
connected components of . Then there exist a natural number N € N, integer
multiplicities QQ; € N\ {0} and currents T; such that

~
(2.1) T=> QTy,
j=1

where:

(a) Foreveryj =1,...,N, Tj is an integral current with 0T, = Zf\;l oi; [T4]
and 055 € {—]., 0, 1}

(b) For every j = 1,...,N, T; is an area-minimizing current and T; =
H™LAj, where Ay, ..., Ay are the connected components of spt(T) \ (I'U
Sing,;(T")) = Reg,(T).

(¢) Each T; is

e cither one-sided, which means that there is one index o(i) such that
Tio(iy = 1 and o5 = 0 Vj # o(i);
e or two-sided, which means that:
— there is one j = p(i) such that o) = 1,
— there is one j = n(i) such that o) = —1,
— all other o;; equal 0.

(d) If I'; is one-sided, then Q,¢;y = 1 and all points in T'; N Regy, T have
multiplicity %

(e) If I'; is two-sided, then Q,;y = Qpquy — 1, all points in T'; N Reg, T have
multiplicity Qpy — % and T,y + Ty 18 area minimizing.

PROOF. Let A be a connected component of
spt(T) \ (I' U Sing;(T")) = Reg,(T) .

Since A is smooth and connected, by the Constancy Theorem the multiplicity of T
is a constant @ € N\ {0} on A. Let S := Q[A NReg,;(T)], where we orient A so
that S = T in every sufficiently small neighborhood of every point p € A. Observe
that spt(9S) C T'USing;(T). Since H™ ! (Sing,;(T)) = 0, from [23, Theorem 4.1.20]
we then conclude that S = 0 on R™*™ \ I". Thus spt(dS) C I'. Let now I'; be
a connected component of I' and let p be a retraction of a neighborhood U of T}
onto I';. Since 95 is a flat chain supported in I';, Federer’s flatness theorem, cf.

7
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[23, Section 4.1.15], implies that R := py(0SLU) = dSLU. On the other hand,
since (OSLU) = 0, we also have OR = 0 and we conclude from the Constancy
theorem, cf. [23, Section 4.1.7], that R = ¢[I';] for some ¢ € R. Thus 9S =
ZzNzl ci [Ii].

From Theorem 1.6 there is at least one point p € Regy, (7)) NT';. In a sufficiently
small neighborhood V' of p, the set spt(T') \ T'; consists of at most two connected
components which are regular submanifolds and which we call =+ and =, consis-
tently with the notation of Definition 1.1 and Remark 1.2. Since A is connected,
we have the following three alternatives:

(i) p&A;
(i) A contains only one of the two components Z*;

(iii) A contains both =% and Z~.

However, by the Constancy Lemma, the density of T on A must be constant,
whereas, according to Remark 1.2, it differs on the two surfaces =+ and Z—. For
this reason we can exclude the alternative (iii) and in particular,

e cither 0SLV =0,
e or SLV = (0(p,T) + 1) [I,]LV = Q[Ii]LV,
e or ISLV =—(O(T,p) — %) [LJLV =-Q[Iy]LV.

If we consider the connected components of Reg;(7") we obtain a decomposition as
in (2.1) with property (a), except that we have not yet shown that the number of
connected components is finite (they might be countably infinite). First observe
that

(2.2) M(T) =) Q;M(T}),

Jj=1

and hence we easily see that each T; must be area-minimizing. Next observe that
each connected component A; must contain a point at a fixed positive distance from
I’ (otherwise we could retract T; on I'). By the monotonicity formula the mass of
each T can be bounded from below with a constant independent of j. Thus from
(2.2) we conclude that the number of T;’s must be finite.

We now prove (c¢), (d) and (e): fix I'; and fix a regular point p € Regp(T) NT;.
If ©(T,p) = %, then in a suitable neighborhood V' of p the set (spt(7) \I') NV
coincides with Reg,(T)) NV and consists of only one connected component, so there
is one and only one o;; # 0. Moreover, for that particular j =: o(i), Q,;) = 1. In
particular, Regy(T') NT'; Nspt(7T};) = 0 for every j # o(i), which proves (d) and the
first part of (c).

Analogously, if (T, p) > 3, then VNspt(T)\T consists of exactly two connected
components with two different multiplicities in the current 7', namely there must be
exactly A+ and A;- from which the two connected components of spt(7)\I'NV =
Reg;(T)NV arise. Moreover the difference of the two multiplicities Q;+ — @ ;- must
necessarily be 1. As above, since all other o;; are equal to 0, at any other point
q € I'sNRegy(T) there is a neighborhood V' which intersects only A+ and A;-. On
the other hand it must intersect at least one of them (otherwise 0TV = 0) and
therefore it must intersect both of them (otherwise either OT'LV = Q;+ [I; N V]
or TV = —Q,- [I'; N V], which is not possible because @+ > 2 and Q;- > 1).
This completes the proof of (¢) and shows the first part of (e).

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



2.3. PROOF OF THEOREM 1.8 9

In order to complete the proof of (e), consider a I'; which is two-sided. Denote
by S the current T),;y + T}, ;). Notice that

M(T) = QupyM(S) + M(Tyi)) + > Q;M(Ty).
n(i)#j#p(i)
From this it follows easily that S must be area-minimizing. O

2.2. Almgren’s question and proof of Theorem 1.9
We can now use Theorem 2.1 to prove Corollary 1.10 and Theorem 1.9.

PrROOF OF COROLLARY 1.10. When I' is connected the decomposition in (2.1)
consists necessarily of at most two currents because of Theorem 2.1(c), depending
on whether I' is one-sided or two-sided. On the other hand, if I" were two-sided, the
decomposition (2.1) would consist of two currents T} and Tp with @ = Q2+1 > 2.
Thus 77 would have boundary [I'] and strictly less mass than T, contradicting the
minimality of T |

PrOOF OF THEOREM 1.9. Consider IV and p as in the statement and apply
Theorem 2.1. Without loss of generality assume IV = T';. By point (d) of Theorem
2.1, I'y is necessarily two-sided, therefore S := T,(1)+7},(1) is area-minimizing. Since
all points of I'y are interior points of S, we know from the interior regularity theory
that S is regular at p in I'1, except for a set of points of dimension m — 2 (which
is finite if m = 2). At any point p where S is regular, the boundary regularity of
Tp(1y and T,,(1y follows easily from the Constancy Theorem [23, Section 4.1.7]. [

REMARK 2.2. It is clear from the proof of Theorem 2.1 and of Corollary 1.10
that the requirement that I" and spt(7") are compactly contained in Bo can be
somehow relaxed, and that suitably local versions of these results are true. Since
however the proof will follow the same arguments described above, we leave these
generalizations to the interested reader.

2.3. Proof of Theorem 1.8

First of all consider the complex halfplane H := {z € C: Rez > 0} over which
we fix the following determination of the complex logarithm:

_ Imz
Log z = log |z| 4+ ¢ arctan —— .
Rez

(where arctan : R — (=7, 7) is the usual inverse trigonometric function on the real
axis). Correspondingly we define (again on H) the functions 2~ = exp(—aLog z)

for a € (0,1) and

3—2k
fr(z) = exp(—z~) sin (Logz + 5 m’) for k=0,1,2,3.

Observe that:

(i) Each f;, can be extended smoothly to a C* function on H. Indeed, observe
first that there is an holomorphic extension of fi to C\ {z € R:Imz =
0,Re z < 0}, which, with a slight abuse of notation, we keep denoting by
fx- Such extension is thus defined on H \ {0}. Hence, in order to prove
our claim it suffices to show that any partial derivative (of any order) of
fr can be extended continuously from H \ {0} to the origin. We claim
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in particular that such extension can be achieved by setting it 0 at the
origin. Since dzf; = 0 (on H \ {0}), it suffices to show our claim for any
partial derivative 9 f. For the latter we easily have the inequality

a

(23)  104f(2)] < Cla, )]z~ V @D o= < C(a, )]z N ED el

where N (o, £), C(a, £) and c(c) = cos(aF) are positive constants.

(ii) Since exp(—z~%) does not vanish on H \ {0}, the zero set Zj, of f, in
H\ {0} is given by

— k
Zk_{zeH:Logz—l— m’Gﬂ'Z},

namely by

(2.4) Zy = {exp (mr—i—i2k6_37r> :nGZ} .

Consider next the function

3
g(=) = [ 2.
k=0

We then conclude that g is holomorphic on H, it is C> on H and its zero set, which
we denote by Z, is given by

3
Z={0}u ] Z-.
k=0
Define now the map G : H — C2 by G(z) = (23, 9(2)). We consider a smooth
simple curve v C H which contains a nontrivial segment

(2.5) o = [—Ti,Ti|

on the imaginary axis and we let D C H be the open disk bounded by 7. The
current T := Gy [ D] is integer rectifiable and

oT = G,0[D] = Gy ] .

Observe that G(D) is an holomorphic curve of C2, which carries a natural orien-
tation. If [G(D)] denotes the corresponding integer rectifiable current, we then
have T' = O [G(D)], where © is the integer-valued function which at H™-a.e. point
p € G(D) counts the number of preimages in D, namely O(p) = t{z € D : G(z) =
p} (indeed our argument below will show that © equals 1 except for a countable
number of points). It follows from a classical result of Federer (cf. [23]) that T is
an area-minimizing current.
We then claim that
(a) for an appropriate choice of v, Gy [v] = [G(7)] and G(y) C C* =R*is a
smooth embedded curve;

(a) o NG(Z) is contained in Singy(T).

Since
3
G(Z)={0}U | G(Z) = {0} U{(#ic*™,0) € C* =R* : n € Z},
k=0

we conclude from (b) that Singy,(7") has an accumulation point at the origin. Thus,
because of (a), I' = G(v) is a closed curve which satisfies the claims of the theorem.

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



2.3. PROOF OF THEOREM 1.8 11

In order to show (a) and (b) consider first that the map G is a local smooth
embedding at every point z € H which is not the origin, because the differential of
z +— 23 has full rank everywhere except at the origin. We next claim that

(c) There is a discrete subset W C H \ {0} such that the map G is injective
when restricted onto H \ (W U {0}).

In order to show (c) consider first that, if G(z) = G(w), then 2% = w3. Thus our
claim reduces to showing that the map A(z) := g(z) — g(€*™*/32) has a dlscrete set
of zeros on the domain

A::{z;«éO:zeﬁ and 627“/326@}.

By the holomorphicity of A and the connectedness of A, it suffices to show that
A does not vanish identically on A. On the other hand, if it were A\ = 0, then
we could extend g holomorphically to a function § on C2\ {0} with the property
that §(z) = §(e*™/32) for every z. From the discussion above it follows easily that
such a map ¢ could be extended continuously at the origin and it would thus be
holomorphic on the entire complex plane. On the other hand § has a sequence
of zeros which accumulate to the origin and thus it would be forced to vanish
identically. In particular we would conclude that g vanishes identically and that
one of the fi’s must vanish identically too. By the very definition of f; this is
obviously false.

Having proved (c) we now show the existence of 7 as in (a). First we show that
7 can be chosen so that G|, is injective. As a preliminary remark, the only point
of H which G’ maps to the origin (0,0) of C? is the origin 0 of C, so we just need
to show the injectivity of G on 7\ {0}. Observe that, by (c), we can assume that
both G(7i) and G(—71i) have exactly one preimage in H. Since G is an immersion
on H \ {0}, we can choose T so that there are two neighborhoods U; and Us of,
respectively, the endpoints 7¢ and —7i of the segment o with the property that
G(z) has exactly one counterimage in H for every z € (U; U Uz) N H. Moreover,
a generic v will avoid the set W, which is discrete, and thus we have shown that
G is injective on « \ 0. Furthermore, we can ensure that all points z in v\ ¢ have
modulus strictly larger than 7. Since G(z) = G(w) implies 23 = w?® and hence
|z| = |w], such a choice enforces that G(v\ o) NG(co) = 0. It remains to show that
G is injective on o, but this is easy because, if z,w € o, then both z and w are
purely imaginary and the equation 23 = w? implies z = w.

We next wish to show that G(v) is a smooth curve. As already observed, G is
an immersion when restricted to H \ {0}. Thus we only have to show that G(v) is
smooth in a neighborhood of (0,0) = G(0). Observe that, in such a neighborhood
G(v) is given by the points {(—is3 g(is)) : s € — 4,6[}, which we can rewrite as
{(~is, g(is?)) : s €] — 63,6%[}. We thus have to show that the map

RBS»—)h(s):g(is%) eC

is smooth in a neighborhood of the origin and we will then conclude that G(7)
is indeed a smooth embedded curve. In fact the map h is certainly smooth on
(=1,0) U (0,1). Computing its derivatives we conclude easily that

|-e/3

KO(s)] < C@O)s] VO 3" Drg(ish)| < O, a)|s| N Demcl@ls™

0<k<¢
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where we have used the estimate (2.3). In particular
lim 29 (s) =0
s—0

for every ¢ € N. This shows the smoothness of g in 0.

We finally come to (b). We just have to show that every point p € G(Z)
is singular: since the origin is an accumulation point of G(Z) and Singy(T) is
closed, the origin will be a singular point as well. Let p be in G(Z) \ {0}, then
p = (£ie3"™,0) for some n € Z. Let us assume that p = (ie3"™,0) (the other
case being analogous) and note that p has exactly two preimages in H through G,
namely

_ T _ T\ 2mi/3

Z1 = exp (mr—z§) Z9 = exp (n7r+zg) =e z1.
Since, as already observed, dG, has full rank for ¢ = 1,2, there are small neighbor-
hoods U; and Us of z; and z3 such that G|y, and G|y, are embeddings. Since we
have already shown that the set {2 : g(2) = g(e*™/32)} is discrete in H\ {0}, up to
making the neighborhoods smaller we have that G(U;) N G(Us) = {p}. This shows
that around p, G(D) is an immersed surface with boundary and with a “double
point” at p. Thus p belongs to Singy, (7).

REMARK 2.3. Note that the curve v in the above Theorem can be slightly
modified in order to have that G(v) is still a smooth curve and that 4 bounds a
smooth connected open disk D with 0 € D and ¢ = (—7i,7i) \ {0} ¢ D. In
particular there is a sequence of points in Z which are in the interior of D and
that accumulates towards {0}. G(Z) now consist of interior singular points for
T := G4 D] which accumulate towards the boundary.

REMARK 2.4. It is not difficult to see that, in the example above, at any singular
point p € G(Z) the tangent cone consists of one two-dimensional plane [7(p)] and a
two-dimensional half-plane |7 (p)], which intersect only at the origin. By slightly
modifying the example, namely by considering the map G(z) = (23, (g(2))?), we can
easily ensure that the tangent cone at every p € G(Z) is contained in a single two-
dimensional plane 7(p). In particular the tangent line to the boundary curve splits
such planes in two halves 7~ (p) and 7" (p): the tangent cone is then 2 [71(p)] +
[~ (p)]. On the other hand we do not know whether it is possible to have a
sequence of boundary branching singularities which accumulate somewhere.

2.3.1. Proof of Statement (b). We now turn to the proof of statement (b)
in Theorem 1.8. The starting point is the following fact, proved by the third author
in [30], where we keep using the notation

H={z€C:Rez>0}
for the complex halfplane.

LEMMA 2.5 ([30, Lemma 0.1]). There exists a holomorphic function g : H — C
which extends to a smooth function F € C(H) and such that the set

E:={F=0}n0H

is contained in the segment o := OHN{Im z € [—%, 1|} and has Hausdorff dimension
dimy (E) equal to 1.
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2.4. PLAN OF THE PROOF OF THEOREM 1.6 13

Let now 7 be a smooth curve contained in H N {|z| < 1} such that
(a) o C;
(b) yN{ze€eH:g(z) =0} =0.
Note that this is possible since {g = 0} N H is at most countable. We denote by
D, C H the disk bounded by ~. We let

G(z) = (2, F(2))

and S = Gy [D4]. Note that G(v) is a smooth curve. Arguing as in the proof of
Statement (a), we get

95 =Gy [V =[G]-
We furthermore let D = {|z| < 1} be the unit disk and R = 4 [D], ¢ : C — C?,
1(z) = (#,0). Note that
spt 0S Nspt OR = 0.
Now the current Ty = R+ S satisfies the conclusion of the first of the claim. Indeed

o1y = [T'4] with ' =G(y)U{(z,w) : |z| =1, w =0}

and, since the latter union is disjoint, I'; is a smooth 1-dimensional manifold.
Furthermore, since both R and S are calibrated by the Ké&hler form, so is 77,
implying that it is the only mass minimizing current spanned by [['1]. Finally

Singy (T1) > E x {0},
from which we conclude that dimy (Singy,(71)) = 1.

REMARK 2.6. In fact it is easy to see that Singy,(71) = E x {0}, therefore, even
though the latter set has Hausdorff dimension 1, it is a #!'-null set. Note also that
around points in F, the current S can be represented by a smooth graph, and thus
these are crossing singularities.

Eventually we remark that by the F. and M. Riesz’ Theorem, [34], the conclu-
sion of [30] is optimal, meaning that the set E in Lemma 2.5 cannot have positive
measure. Hence the above construction cannot give an example of a 2-dimensional
mass minimizing current which bounds a smooth submanifold and has a boundary
singular set of positive '-measure.

2.4. Plan of the proof of Theorem 1.6

In this section we outline the long road which will take us finally to the proof
of Theorem 1.6. We fix therefore 3, T" and T as in Assumption 1.5.

Reduction to collapsed points. We start in Chapter 3 by recalling Allard’s
monotonicity formula at the boundary. First of all, combining it with a suitable
variant of Almgren’s stratification theorem, we conclude that, except for a set of
Hausdorfl dimension at most m — 2, at any boundary point p there is a tangent
cone which is “flat”, namely which is contained in an m-dimensional plane = D
ToI'. Secondly, using a classical upper semicontinuity argument, we will focus our
attention on “collapsed points”, cf. Definition 3.7: additionally to the existence
of a flat tangent cone, at such points p we know that there is a sufficiently small
neighborhood U where O(T,q) > ©(T,p) for all ¢ € T NU. In particular we will
reduce the proof of Theorem 1.6 to proving that any collapsed point is regular, cf.
Theorem 3.8 and Theorem 3.9.
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The “linear” theory. Assume next that 0 € T" is a collapsed point and let
Q- % be its density. Note that by Allard’s regularity theory we know a priori that
0 is a regular point if = 1 and thus we can assume, without loss of generality,
that Q > 2. Fix a flat tangent cone S to T at 0 and assume, up to rotations,
that it is supported in the plane myp = R™ x {0} and that ToI' = {z1 = 0} N .
Denote by 7r0i the two half-planes 7r3[ := {£x1 > 0} N'mp, with the assumption that
S=(Q-1) [[7r0_ ]] +Q [[71'3 ]] It is reasonable to expect that, at suitably chosen
small scales, the current 7' is formed by @ sheets over 74 and @ — 1 sheets over 7,
respectively. Taken all together such sheets form the current 7' and have boundary
[T]- Moreover, by a simple linearization argument such sheets can be expected to
be almost harmonic.

Having this picture in mind, it is natural to develop a theory of (Q - %)—Valued
functions minimizing the Dirichlet energy. Their domain of definition is an open
subset Q of R™ which is divided into two halves QF by some smooth (m — 1)-
dimensional surface v C 2. A (Q — %)-Valued map consists then of a pair (fT, f7)
where f~ is a (Q — 1)-valued map over Q~ (in the sense of Almgren, cf. [13]) and
fT is a Q-valued map over Q7. Such pairs are required to satisfy an additional
assumption: the trace of f over v is obtained from that of f~ by adding a classical
single valued map ¢, which is called the “interface”, cf. Definition 4.1 for the precise
statement. The relevant problem is then that of minimizing the sum of the Dirichlet
energies of the two maps subject to the constraint that their boundary values on 92
and the interface ¢ are both kept fixed. In Chapter 4 we develop a suitable existence
theory for such objects, cf. Theorem 4.2. Concerning their interior structure, we
can apply all the conclusions of Almgren’s theory (indeed in this paper we will take
advantage of the point of view developed in [13]).

The correct counterpart of the collapsed situation in Theorem 3.9 must assume,
however, that all the 2Q) — 1 sheets meet at the interface ¢; under such assumption
we say that the (Q — %) Dir-minimizer collapses at the interface, cf. Definition 4.3.
The core of Chapter 4 is a suitable regularity theory for minimizers which collapse
at the interface. First of all their Holder continuity follows directly from the Ph.D.
thesis of the third author, cf. [29]. Secondly, the most important conclusion of our
analysis is that a minimizer collapses at the interface only if it consists of a single
harmonic sheet “passing through” the interface, counted therefore with multiplicity
@ on one side and with multiplicity ¢ — 1 on the other side, cf. Theorem 4.5.

Theorem 4.5 is ultimately the deus ex machina of the entire argument leading
to Theorem 1.6. The underlying reason for its validity is that a monotonicity
formula for a suitable variant of Almgren’s frequency function holds, cf. Theorem
4.15. Given the discussion of [30], such monotonicity can only be hoped in the
collapsed situation and, remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed interface
is flat. When we have a curved boundary a subtle yet important point becomes
crucial: we cannot hope in general for the exact first variation identities which
led Almgren to his monotonicity formula, but we can replace them with suitable
inequalities. However the latter can be achieved only if we adapt the frequency
function by integrating a suitable weight, cf. Definition 4.13. The idea of “smooth-
ing” Almgren’s frequency function with a suitable weight is indeed already present
in [17] and in this paper we need to push it much further, distorting substantially
the geometry of the domain.
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First Lipschitz approximation. In Chapter 5 we use the linear theory for
approximating the current with the graph of a Lipschitz (Q — %)—valued map and
we then show that such approximation is close to be Dir-minimizing, cf. Theorem
5.5 and Theorem 5.6. The approximation algorithm is a suitable adaptation of the
one developed in [14] for interior points. In particular, after adding an “artificial
sheet”, we can directly use the Jerrard-Soner modified BV estimates of [14] to
give a rather accurate Lipschitz approximation: the subtle point is to engineer the

approximation so that it collapses at the interface.

Height bound and excess decay. In Chapter 6 we use the Lipschitz approx-
imation of Chapter 5 together with the regularity theory of Chapter 4 to establish
a power-law decay of the excess d la De Giorgi in a neighborhood of a collapsed
point, cf. Theorem 6.3. The effect of such theorem is that the tangent cone is flat
and unique at every point p € T" in a suitable neighborhood of a collapsed point
0 € I'. Correspondingly, the plane 7(p) which contains such tangent cone is Holder
continuous in the variable p € T and the current is contained in a suitable horned
neighborhood of the union of such 7(p), cf. Corollary 6.4.

An important ingredient of our argument is an accurate height bound in a
neighborhood of any collapsed point in terms of the spherical excess, cf. Theorem
6.5. The argument follows an important idea of Hardt and Simon in [27] and takes
advantage of an appropriate variant of Moser’s iteration on varifolds, due to Allard,
combined with a crucial use of the remainder in the monotonicity formula. The
same argument has been also used by Spolaor in a similar context in [39], where he
combines it with the decay of the energy for Dir-minimizers, cf. [39, Proposition
5.1 & Lemma 5.2].

Second Lipschitz approximation. The decay of the excess proved in Chap-
ter 6 is used in Chapter 7 to improve the accuracy of the Lipschitz approximation
of Theorem 5.6, cf. Theorem 7.4. In particular, by suitably decomposing the do-
main of the approximating map in a Whitney-type cubical decomposition which
refines towards the boundary, we can take advantage of the interior approximation
theorem of [14] on each cube and then patch the corresponding graphs together.

As in the case of the interior regularity, this new Lipschitz approximation is of
key importance since it coincides with the current up to an error which is superlinear
in the excess.

Left and right center manifolds. In Chapter 8 we use the approximation
Theorem 7.4 and a careful smoothing and patching argument to construct a “left”
and a “right” center manifold M* and M~, cf. Theorem 8.13. The M¥* are C3*
submanifolds of ¥ with boundary I' and they provide a good approximation of the
“average of the sheets” on both sides of I" in a neighborhood of the collapsed point
0 € I'. They can be glued together to form a C'! submanifold M which “passes
through I'”: each portion has C3" estimates up to the boundary, but we only know
that the tangent spaces at the boundary coincide, whereas we have a priori no
information on the higher derivatives (it must be noted though that, at the end of
the argument for Theorem 1.6, we will conclude that the center manifolds and the
current coincide and that the latter is regular: a posteriori we will then conclude
that M is indeed C**). The construction algorithm follows closely that of [16] for
the interior, but some estimates must be carefully adapted in order to ensure the
needed boundary regularity.
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The center manifolds are coupled with two suitable approximating maps N+,
cf. Theorem 8.19. The latter take values on the normal bundles of M* and provide
an accurate approximation of the current 7. Their construction is a minor variant
of the one in [16].

Monotonicity of the frequency function. In Chapter 9 we use a suitable
Taylor expansion of the area functional to show that the monotonicity of the fre-
quency function holds for the approximating maps N* as well, cf. Theorem 9.3.
In particular we use the first variations of the current along suitably chosen vector
fields in order to derive the same inequalities which allow to prove Theorem 4.15.
Such inequalities contain however several additional error terms which must be esti-
mated with high accuracy: our proof follows crucially some ideas of [17]. Moreover,
the “adapted” frequency function introduced in Chapter 4 plays a central role in
the estimate of Theorem 9.3.

Final blow-up argument. In Chapter 10 we then complete the proof of
Theorem 1.6: in particular we show that, if 0 were a singular collapsed point,
suitable rescalings of the approximating maps N* would produce, in the limit, a
(Q - %) Dir-minimizer violating the regularity Theorem 4.5. On the one hand the
estimate on the frequency function of Chapter 3 plays a primary role in showing
that the limiting map is nontrivial. On the other hand the properties of the center
manifolds M® enter in a fundamental way in showing that the average of the sheets

1

of the limiting (Q - 5) map is zero on both sides.

2.5. Open problems

Clearly, since the size of the boundary singular set in all known examples is
much smaller than what proved in Theorem 1.6, the most central open question is
whether one can improve the “generic boundary regularity” proved in this paper.
As already mentioned in the introduction, the most daring conjecture compatible
with the examples known so far is the following:

CONJECTURE 2.7. Let T, X, T be as in Assumption 1.5. The Hausdorff dimen-
sion of the set of genuine boundary singularities is at most m — 2.

A somewhat milder statement, which would still give a substantial improvement
of Theorem 1.6 is instead

CONJECTURE 2.8. Let T, %, T be as in Assumption 1.5. Then H™ 1(Singy,(T))
=0.

The “linearized problem” discussed in Chapter 4 enjoys a regularity theorem
which is analogous to Theorem 1.6.

DEFINITION 2.9. Let (g%,97) be a (Q — %)—valued function with interface
(7, ¢) as defined in Chapter 4. A point p € « is regular if there are a ball B,(p),
Q — 1 functions us,...,ug : B.(p) = R™ and a function u; : B (p) — R" such
that
(i) g* =32, [ui] on Bf (p) and g~ = S22, [wi] on By (p);
(ii) For any pair ¢,j > 2 either the graphs of u; and u; are disjoint or they
coincide;
(iii) For any ¢ > 2 either the graphs of u; and wu; are disjoint or the graph of
w7 is contained in that of wu;.
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2.5. OPEN PROBLEMS 17

The complement of the regular points in ~ is called the set of boundary singular
points. If at a boundary singular point there are maps u;’s which satisfy (i) and
(ii) (but not (iii)), then the singular point will be called of crossing type. Singular
points which are not of crossing type will be called genuine boundary singularities.

A point p € Q\ 7 is regular if it is an interior regular point for either the Q-
valued map f* or the (Q — 1)-valued map f~ (cf. the introduction of [13] for the
precise definition). The complement, in Q \ v, is the set of interior singular points.
The union of interior singular points and boundary singular points will be called
the singular set.

THEOREM 2.10. Let (g%, 97) be a (Q — %)—valued function with C3 interface
(7,¢) defined over a domain Q and assume that it minimizes the Dirichlet energy

in Q C R™. Then the set of boundary singular points is meager.

We do not give a proof of Theorem 2.10: using the tools developed in Chapter
4, the argument is a simple adaptation of the interior regularity theory for Q-valued
maps, cf. [13]. The conjectures corresponding to 2.7 and 2.8 are then open in the
linearized case as well:

CONJECTURE 2.11. Let (g7, g™) be as in Theorem 2.10. The Hausdor(f dimen-
sion of the set of genuine singularities is then at most m — 2.

CONJECTURE 2.12. Let (g%, g7) be as in Theorem 2.10. The boundary singular
set is then a H™'-null set.

Recently, in [32] the first author, together with Z. Zhao, proved that for m =
2 and real analytic boundary data, the set of boundary singularities is discrete
even though there is one example of genuine boundary singularity. Note that the
examples (a) and (b) of Theorem 1.8, combined with a routine adjustment of the
arguments given in [38], see also [30, Corollary 3.5], to the (Q — %)—valued setting,
gives a ¢ which is not real analytic for which the above conclusions are indeed false.

THEOREM 2.13. There is a real analytic' v C By C R? passing through the
origin, a C> function ¢ : v — R? and a %-map (g7, 97) with interface (v,¢)
which is Dir-minimizing on By and whose singular set has Hausdorff dimension 1.

Conjecture 2.7 is widely open also for real analytic boundary data. As we
already mentioned, the “linear” 2-dimensional case of the conjecture is addressed
in [32]. On the other hand, the 2-dimensional “fully non-linear” counterpart of [32]
is a well-known conjecture of White, cf. [42]:

CONJECTURE 2.14. Let T, %, T be as in 1.5, let m = 2 and assume ¥ and T’
are real analytic. Then the union of the boundary and of the interior singular sets
is discrete.

Again such conjecture is widely open and in [11] the first three authors have
shown that the conclusion of the conjecture is false when ¥ and I' are just C'°°°. A
first step in the positive direction is given in the paper [31] where the third author
and Marini prove the uniqueness of tangent cones at any point p € I' when the
latter is merely C1.

Coming back to the case of C*° boundaries IT', the example (a) in Theorem
1.8 shows that Conjecture 2.7 must be taken with a grain of salt. One reason why

Mn fact v is a segment, in our example.
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Conjecture 2.7 might still be correct is that, while the accumulation singular point
in the example of Theorem 1.8(b) is a boundary branch point, the singularities
accumulating to it are of “crossing type”, namely points where the minimizer is in
fact an immersed surface. If it were possible to produce an example with an accu-
mulating sequence of branch points, one could conceive to modify the construction
to produce a Cantor-like set of genuine boundary singularities, possibly disproving
Conjecture 2.7. The following question seems thus a very relevant one:

QUESTION 2.15. Is it possible to produce an example as in Theorem 1.8 with
a boundary singular point which is an accumulation of boundary branch points?
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CHAPTER 3

Stratification and reduction to collapsed points

3.1. First variation and monotonicity formula

Here and in the sequel we will denote by Ay, and Ar the second fundamental
forms of ¥ and I' and we will assume that T is as in Assumption 1.5.

As usual, given a vector field X € C}(By) we let By x R 3 (z,t) — ®4(z)
be the flow generated by X, namely each curve n,(t) := ®;(x) satisfies the ODE
N (t) = X(n.(t)) subject to the initial condition 7, (0) = z. We then define the
first variation of T" along X as

ST(X) = % 0M((<I>t)uT).

If the vector field X is tangent to spt(97) = I' and is tangent to the manifold ¥,
we then know that 07(X) = 0. Moreover, it is well known that if X vanishes on
spt(9T) but it is not tangent to X, then

ST(X) = — A X - Hy(z) d||T| ()

where the mean curvature vector Hy can be explicitly computed from the second
fundamental form Ayx,. More precisely, if T'(z) = v1A. . .Av,, and v; are orthonormal,
then

(3.1) Hy(z) =Y As(vi,v;)
i=1

(see for instance [35]). In this section we derive a similar formula for variations
along general vector fields X, namely not necessarily vanishing on the boundary.
As a consequence we also get Allard’s monotonicity formula at the boundary, with
precise error terms. We summarize all these conclusions in the next theorem. These
are in fact classical facts, under our assumption. Since however it is not easy to
pin-point precise references for our statements in the literature, we include a short
derivation from similar (more general) statements proved in other articles.

DEFINITION 3.1. For every point p € Bo, the density of T at p is defined as

O(T, p) = tim L 1B ()

rl0 Wy, T
whenever the latter limit exists.
19
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20 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

We then consider the functions

(32) 0i(T, p,7) = exp (Coll Axlor) —”T”(%:flp)) ,
(3.3) Ou(T,p,r) := exp (Co(|[As]lo + ||Arllo)r) ITI(®B-(p) ,

W™
where Cy = Cy(m, n,n) is a suitably large constant.

THEOREM 3.2. Let T be as in Assumption 1.5.
(a) If p e Bo\ T, then r — ©;i(T,p,r) is monotone on the interval

(Ov min{diSt(p, F)a 2— |p|}),
(b) if p € BaNT, then r — Oy (T, p,r) is monotone on (0,2 — |pl).

Thus the density exists at every point. Moreover, the restrictions of the map p —
O(T,p) to T N By and to Bo \ T are both upper semicontinuous.
If X € C}(By,R"™), then we have

(3-4) IT(X) = —/B X - Hy(x) d|\T||(x)+/FX-ﬁ(:Jc) dH™ " (2)

where Hy is the vector field in (3.1) and 71 is a Borel unit vector field orthogonal
toT.

Moreover, if peT and 0 < s < r < 2 — |p|, we then have the following precise
monotonicity identity

o o B @)
IT1(B, () - s~ ™IT)(Ba(p)) /B o e AT
- / Ty [ /B @) @A
(3.5) + / @) ) cmml(x)] dp.,

where Y (x) denotes the component of the vector Y (z) orthogonal to the tangent
plane of T at x (which is oriented by T (x)).

In this chapter we in fact only need (a) and (b), which are proved in [2] and [3],
and some consequences of the monotonicity formula for which less precise versions
are sufficient: in particular many of the statements needed can be easily derived
from [3] and for this reason we postpone the proof of Theorem 3.2 to the last
section.

Note that at any p € Reg,(T) the density equals @ — %, where the positive
integer @ is as in Remark 1.2. Moreover we recall the following

THEOREM 3.3 (cf. [3, Theorem 3.5 (2)]). ©(T,p) > 5 for every p € T.
DEFINITION 3.4. Fix a point p € spt(7’) and define
tpr(q) == g Vr>0.

We denote by T}, , the currents
Tpr = (tpr)yT VY7 >0.
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3.1. FIRST VARIATION AND MONOTONICITY FORMULA 21

We recall the following consequence of the Allard’s monotonicity formula, cf.
[3]. From now on, given any smooth oriented submanifold of R™*™ like I' and 3,
we will use the notation 7,,I" and 7},% for the tangent space to the manifold at the
point p (which will be always identified with a linear oriented subspace of R™™).

THEOREM 3.5. Take p € spt(T') and any sequence ri, | 0. Up to subsequences

Tp.r. 18 converging locally to an area-minimizing integral current Ty supported in
T,% such that

(a) To is a cone with vertex 0 and ||T]|(B1(0)) = w,,©(T, p);
(b) if pespt(T)\T, then 0Ty = 0;
(c) ifpel, then Ty = [T,I7].

Moreover ||T), .|| converges, in the sense of measures, to || Tp||-

DEFINITION 3.6. Any cone Ty as in Theorem 3.5 will be called a tangent cone
to T at p. A tangent cone Ty will be called flat if spt(Tp) is contained in an
m-~dimensional plane.

Note that a flat tangent cone at a point p € spt(T') \ I' is necessarily a positive
integer multiple of [x] for some m-dimensional plane 7 contained in 7,,%: this is a
consequence of the Constancy Theorem and of (b) above. For p € T a flat tangent
cone has instead the form Q7] + (Q — 1) [r~], where Q@ > 1 is an integer,
m =7t Ur~ is an m-dimensional plane contained in T,X and 9 [7] = [T,I'] =
—O[r~]. The latter is again a consequence of the Constancy Theorem taking into
account that, by (b), 0Ty = [T,I7].

DEFINITION 3.7. A point p € " will be called a collapsed point if

(i) there exists a flat tangent cone to T at p;
(i) there exists a neighborhood U of p such that ©(T,q) > O(T,p) at every
qgel'nU.

The first main point of this chapter is to show how standard regularity theory
implies that

THEOREM 3.8. If Regy(T) is not dense in T' then there exists a collapsed sin-
gular point.

The proof of Theorem 1.6 will then be reduced to the following statement:
THEOREM 3.9. A collapsed point is always a regular point.
All the remaining chapters will in fact be devoted to prove it.

Observe that at collapsed points the density O(T,p) equals @ — % for some
positive integer (). The case Q = 1 of the above theorem is indeed a consequence of
Allard’s boundary regularity theorem for varifolds. Moreover, if p is a point where
O(T,p) = 1, then by Theorem 3.3 assumption (ii) in Definition 3.7 is automati-
cally satisfied and in fact the theory of [3] shows that even (i) holds necessarily.
Therefore, multiplicity % points are always regular:

THEOREM 3.10 (Allard’s boundary regularity theorem). All points p € I' with
o(T,p) = % are reqular points.

Finally, it is worth noticing the following two consequences of our analysis,
which we will also prove in the last section of this chapter:

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



22 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

COROLLARY 3.11. For every a > 0 at H™ 2*%-a.e. p € T there is a flat
tangent cone, and hence Q = O(T, p) —l—% is a positive integer. At H™ l-a.e. p€ T
any flat tangent cone takes the form Q[n+] + (Q — 1) [r~], where the plane 7 is
the unique plane containing T,I' and the vector 7i(z) appearing in (3.4) (with the
natural orientation).

Finally, by the very same arguments of [35, Theorem 35.3 (1)] and a simple
analysis of two dimensional tangent cones at the boundary, one of the conclusions
of the above corollary can be strengthened as follows.

COROLLARY 3.12. For every a > 0 and H™3+%-q.a. pe T, O(T,p) + % is a
positive integer.

3.2. Stratification

DEFINITION 3.13. Let p € I" and Tp be a tangent cone at p. The spine Spine(Tp)
is the set of vectors v € T,I" such that (7,)¢To = To, where 7,(q) := ¢ + v.

We recall that the following conclusions are simple consequences of the mono-
tonicity formula, cf. for instance [43, Sections 3 & 5].

LEMMA 3.14. Spine(Tp) is a vector space and we have the following character-

1zations:
(a) v € Spine(Ty) if and only if ©(Ty,0) = O(Tp,v);
(b) v € Spine(Ty) if and only if (tyr)sTo = Ty for every r > 0.

DEFINITION 3.15. Given a point p € I', an area-minimizing current 7" with
boundary 8T =T and a tangent cone Ty of T at p, the building dimension Bdim(Tp)
is the dimension of Spine(Tp). We stratify the boundary I' according to the maxi-
mum of the building dimension of the tangent cones at the given point:

(T, T) .= {p e T': Bdim(Tp) < j for every tangent cone Ty at p} .
The following stratification result holds, cf. [43, Theorem 5] (note that by
definition Spine(Tp) C T,T).
THEOREM 3.16. . (T,T') is at most countable, the Hausdorff dimension of
each stratum .7;(T,T") is at most j and
(T, CcATT)C...C Iy (T,T) =T
We close this section proving the following elementary but useful lemma.

LEMMA 3.17. If Bdim(Tp) = m — 1 then Ty is flat.

PrOOF. Fix a tangent cone Tj to T' at p of maximal building dimension m — 1
and observe that Spine(Ty) = T,I'. By a well-known result of Federer (cf. [23,
Section 5.4.8]) there exists a one-dimensional area-minimizing current S in (7,T)+
such that Ty = [I,I] x S. Note in particular that 9S = [0] and there exist
... ,62571, 525 and {7, ..., 05 _; oriented half lines with endpoint at 0 such that

a[6] ==+[o],

(3.6) S =

(2

[T +> " Ie]

Q Q-1
=1 j=1
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3.3. PROOF OF THEOREM 3.8 23

and

Q Q-1
(3.7) IS = Z e+ Z e 11

cf. Figure 3.2.

FIGURE 3.1. An example of current S and oriented lines Zj[ when
Q@ = 4: the arrows represent the oriented tangent to the lines.
Note that pairs of lines Z;',KZ' and éj_,ﬁj might coincide: in the
example we have ¢] = (] and ¢; = ¢, . However the support of
any line E;r can intersect the support of any line ¢, only at the

origin, otherwise (3.7) would be violated.

In particular [[fﬂ] + [[f;]] is an area-minimizing current without boundary for
every i,7. But then we conclude the existence of a single one-dimensional vector
space £;; such that spt( [[ﬂﬂ] + [[E;]]) = {;;. Since this has to be valid for any choice
of (i,7), we then also conclude that the ¢;; coincide all with a single line ¢. Hence
spt(Tp) C TpI' + ¢, which shows the flatness of Tj. O

3.3. Proof of Theorem 3.8

Fix an area minimizing current 7" with boundary 9T = [I'] and assume that

Singy, (T") has nonempty interior, which we denote by G. Define
Ci={pel:0(T,p)>i-3}NG.
Recall that, by upper semicontinuity of the density, C; is relatively closed in G. Let
D; be the interior of C; and F; := D; \ Ci;1. If p is not in |J,~, E;, then fix the
natural number ¢ > 1 such that B
i—3<OT,p) <i+i

and observe that therefore p € C; \ D;. The latter is a relatively closed meager
subset of G and thus we conclude that G \ |J; F; is the union of countably many
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24 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

closed meager subsets of G. By the Baire Category Theorem (J;-, F; cannot be
empty.

This means that at least one F; is not empty and, being relatively open in T,
by the stratification Theorem 3.16 we conclude that F; contains a point p ¢ .7, _s.
By the Lemma 3.17 there is at least one flat tangent cone Ty at p, which in turn
implies the existence of a positive integer @) such that ©(Tp,p) = Q — % Observe
that p € E; C C; \ Ci4+1 and, hence, Q = i. Being E; relatively open in I, there is
a neighborhood U of p such that UNT C E; C C;. Therefore O(T, q) > O(T, p) for
every ¢ € UNT. Thus p is a collapsed point. On the other hand p € G, namely it
is a singular point. O

3.4. Proofs of Theorem 3.2 and Corollaries 3.11 and 3.12

Statement (a) is the classical monotonicity formula, which in fact holds in
a much more general situation, see for instance [2, Theorem 5.1(1)]. Statement
(b) follows from Allard’s monotonicity formula at the boundary for varifolds, see
[3, Theorem 3.4(2)].! The upper semicontinuity of the restriction of the density
on the two sets I' and Bs \ T" is then a standard consequence, see for instance
[35, Corollary 17.8].

Since T is stationary with respect to variations which vanish on I' and are
tangential to 3, we have the usual identity

0T(X)=— | X-Hp(z)d|T|(z) forall X € C}(By\I),
B3
cf. for instance [35, Lemma 9.6]. Thus we can apply [3, Lemma 3.1] to the integer
rectifiable varifold naturally induced by T to conclude 6T = Hyp|T|| + 6T, where
6T, is a singular Radon measure supported in I". By the Radon-Nikodym decom-
position, if we denote by ||07s|| the total variation of §Ts we conclude the existence
of a unit Borel vector field 7 such that

B8 TN =~ [ X Ar@dlTI@)+ [ X @) T @)

for all X € C1(B5). Note next that, by the explicit formula for Hy in (3.1), Hy(z)
is orthogonal to T, and in particular it is orthogonal to the tangent plane to T'
at . Thus in the first integral of the right hand side of (3.8) we can certainly
substitute X with X+,

Moreover, according to [3, Section 3.1], ||0Ts| satisfies the following upper
bound for any positive ¢ € C.(Bs):

.1
[wdior) < fim 5 [ V(@)d| T ().
r —0 {a:dist(z,I")<h}

Hence it follows easily from the existence and boundedness of the density Oy, (T, p)
that ||6Ts|| = 6H™ LT for a locally bounded Borel function 6 with 0 < §(p) <
C(m)y(T, p)

Now, we know from the previous sections that at H™ !-a.e. p there exists a
flat tangent cone S, = Q [7#] + (Q — 1) [7~ ], where 7 contains 7,I". On the other
hand we know from the convergence of the currents together with the convergence
of the respective total variations that the varifolds induced by (¢p, )47 converge to

1For an alternative approach, similar to the one used for proving Theorem 4.15 we refer the
reader to [12, Section 4].
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3.4. PROOFS OF THEOREM 3.2 AND COROLLARIES 3.11 AND 3.12 25

the varifold induced by S),. Thus, by continuity of the first variation, we conclude
that

85p(X) = 1im 8(up, ), T(X)

On the one hand simple computations lead to the identity
58,(X) = / v XdH"
T,T

where v is the unique unit vector contained in 7 which is orthogonal to T,,I' and
is compatible with the orientations of m and 7,,I'. On the other hand, by a simple
rescaling argument

(3.9) lim 30, s T(X) = [ 0)(p) - X
r—0 T,T

at H™ l-a.e. p. We thus conclude 7i(p) = v, and 6 = 1. This argument proves the
identity (3.4), but it shows as well the validity of the last conclusion of Corollary
3.11: if we fix a point p where (3.9) holds, we have actually shown that, for any flat
tangent cone Q [ ]+ (Q—1) [x~] at that point, the vector 7i(p) must belong to 7,
which uniquely determines the pair (77, 77). Since @ is uniquely determined as
o(T,p)+ %, we conclude that any flat tangent cone at p is determined by 7i(p). The
identity of (3.5) is then a consequence of [7, Eq. (31)]. Finally, the first assertion
of Corollary 3.11 is a consequence of Theorem 3.16 and of Lemma 3.17.

To prove Corollary 3.12, by Theorem 3.16 it suffices to show that the density
is a half integer at every point p € .7, _o(T,T): the latter claim follows if we can
show that every boundary area-minimizing cone 7Ty with building dimension m — 2
satisfies the property that ©(Tp,0) is a half-integer. The latter property is in effect
of the following characterization.

LEMMA 3.18 (Characterization of 2 dimensional area minimizing cones with
boundary). Let Ty be an integral 2-dimensional locally area-minimizing current in
R2E with (10.,)4To = Ty for every r > 0 and 0Ty = [['o], where To = {(z,y) €
R2 x R* : 1y = |y| = 0}, Then

To =[] + Z 0; [ri]

where

(a) 7t is a closed oriented half-plane;

(b) the m;’s are all oriented 2-dimensional planes which can only meet at the
origin;

(c) the coefficients 0;’s are all natural numbers;

(d) if ™ Nm; # {0}, then 7+ C m; and they have the same orientation.

PROOF. Let | -| : R*** — R* be the Lipschitz map (z,y) — |(z,y)| and
consider the 1-dimensional integral current S := (Tp, |- |, 1). Recall that, since Tj
is a cone,

ToLBy =S % [0] ,
Ty = L (10, (5 [0]) .

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



26 3. STRATIFICATION AND REDUCTION TO COLLAPSED POINTS

Note moreover that, by the usual formula on the boundary of slices,
(310) 98 = <8T07 | : |a 1> = Helﬂ - [[_61]] )
where e; = (1,0,...,0). By [23, 4.2.25] we have

N
S=>6;[nl,
§=0
where ; is a simple Lipschitz curve, 6; € N and ~y; # y; for ¢ # j and

N N
(3.11) M(S) =Y 0;M([y;]), M(dS) = 6,M(3[y]).

Jj=0 Jj=0
From the second identity in (3.11) and from (3.10) we conclude that there is pre-
cisely one ¢ for which £0 ;] = [e1] — [—e1], whereas all the other curves v;’s are
closed. Without loss of generality we assume that such i is 0 and note that 6y = 1,
so that we can write

N
(3.12) S=Twl+>_6; vl -
j=1
Consider now the currents Z; = lim,4o(t0,r)(8; [v;] % [0]) and observe that:
N
To=Zo+ Y Zi, M(TolBg)
i=1
N
(3.13) =M(ZLBgr)+ Y M(ZLBg) VR>0.

i=1
In addition Sing;(7y) must be empty, otherwise it would have dimension at least 1.
Thus all the «;’s are disjoint great circles for j =1,..., N and 7y is half of a great
circle. This gives (a), (b) and (c), where we let 7+ be the half-plane containing o
and m; be the plane containing 7;. Note next that if 7+ N 7; contains one point p
besides the origin, then

o If p ¢ 'y, then 7" must be a subset of 7; because otherwise p would be
an interior singular point of Tp;

o If p € T'y, then Sy + S, is, by (3.11), an area minimizing 2-dim. cone with
boundary [I'o] and it has building dimension 1; thus by Lemma 3.17 we
have again 7 C ;.

We thus conclude that 7+ C m;. The fact that both have the same orientation
follows finally from the second identity in (3.13). O
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CHAPTER 4
Regularity for (Q — %) Dir-minimizers

As explained in the introduction the second important step in the proof of
Theorem 1.6 is the understanding of its “linearized” version. This requires the
study of the boundary regularity of Dir-minimizers @-valued map subject to a
particular type of boundary condition, see Definition 4.1 and Remark 4.33 below.

We assume the reader to be familiar with the theory of @ valued maps as it
is presented in [13,15,29]. We just recall here that a Q-valued map is a map
u: 2 CR™ = Ag(R"™) where

Q
Ag(R™) := {Z[[Pi]] : P,eR™ Vi= 1,...,@}
i=1

can be thought as the set of Q-tuples of unordered points in R". Ag(R™) can
be easily given the structure of a metric space via the following definition: given
Fi,F, € Ag(R™) with Fy = )", [P;] and F> = ), [S;] we define their distance as

Fy, F5) := min P; — Sq
g( ! 2 oc :@Q ; |
where & denotes the group of permutations of ) items.
Throughout all the chapter we will consider an open set 2 C R™ together with
a hypersurface v dividing Q in two disjoint open sets Q" and Q.

DEFINITION 4.1. Let ¢ € Hz z(v,R") be given. A (Q — ) valued function with
interface (v, ) consists of a pair (fT, f~) with the followmg properties:
(i) fTewh2(QFf, Ag(R")) and f~ € WH2(Q ™, Ag_1(R"));
(i) f*ly = f" 1y + [el-
Its Dirichlet energy is defined to be the sum of the Dirichlet energies of f* and f~.
Such a pair will be called Dir-minimizing if any other (Q — %)—valued function
with interface (v, @) which agrees with (fT, f~) outside of a compact set K C
has bigger or equal Dirichlet energy.

Although the definition makes sense also for () = 1, notice that, in that case,
the pair (fT, f7) consists of a single-valued function f* and its Dir-minimality is
equivalent to the harmonicity of f*. In this chapter we will focus on the nontrivial
case ) > 2.

The first result of this chapter is a “soft” existence theorem for (Q - %)—Valued
Dir-minimizers.

THEOREM 4.2. Given a (Q — %)—valued function (g%, g™) with interface (7, ¥)

on a bounded Lipschitz domain , there exists a (Q — %) Dir-minimizer (f*, f7)
with interface (7, ) such that f* =g" on QT \ v and f~ =g~ on 9N~ \ 7.

27
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28 4. REGULARITY FOR (Q — 3) Dir-MINIMIZERS

FIGURE 4.1. A 3-valued function with interface (v,¢): the func-
tion fT is the 2-valued map [[fﬂ] + [[fj]] and f~ coincides with
the (classical) single-valued f; .

A particular class of (Q — %)—valued functions with interface (v, ¢) are the ones

with collapsed interface.

DEFINITION 4.3. A (Q — 3)-valued function with interface (7, ) is said to

collapse at the interface if f+|, = Q [¢].

REMARK 4.4. Observe that (fT, f7) collapses at the interface if and only if
7l =@ -1 [¢l.

FIGURE 4.2. A 3-valued function which collapses at the interface (7, ¢).

The main theorem of this chapter is the following:

THEOREM 4.5. Let ¢ : v — R™ be of class C1*, « be of class C*, Q > 2
and (f*,f7) be a (Q — 1)-valued Dir-minimizer with interface (v, ). If (f*, f7)
collapses at the interface, then there is a single-valued harmonic function h : Q —

R" such that f+ = Q[hlg+] and f~ =(Q — 1) [h|a-]-

Note that the above theorem is the “linearized” version of Theorem 3.9. Note
also that we are requiring C?® regularity of v, this seems to be due to our method of
proof more then to a serious technical obstruction, see Section 4.2.5 below. However
Theorem 4.5 is enough for our purposes because the boundary data I' is assumed
to be of class C3% in Assumption 1.5.
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4.1. PRELIMINARIES AND PROOF OF THEOREM 4.2 29

4.1. Preliminaries and proof of Theorem 4.2
In this Section we prove existence of Dir-minimizing (Q — %)—Valued functions.

PROOF OF THEOREM 4.2. Take a minimizing sequence (f,j, f;, ) with interface
(7, ) and f,;t = g% on QT \ 4. Tt is simple to see that f,;t enjoy a uniform bound
in L2(Q%). For instance, consider the bi-Lipschitz embeddings

£q: AQ(R") = RN@™ g4 1t Ag i (R") » RV@TEY

of [13, Theorem 2.1]. Then it suffices to bound the L? norm of £ o f,j, €o-10f)
and the latter bounds are a simple consequence of the classical Poincaré inequality
using the uniform H2-bound for the restriction of o f,;t to 00T \ 7.

By [13, Proposition 2.11] we can extract a subsequence (not relabeled) such
that f,j' and f, converge strongly in L? to W2 functions fT and f~, respectively.
By continuity of the trace operator (cf. [13, Proposition 2.10]) the pair (f*, f7)
has interface (v, ) and coincides with (g%, ¢g~) on the boundary of . By lower
semicontinuity of the Dirichlet energy (cf. [13, Section 2.3.2]),

Dir(f*,Q") + Dir(f~,Q7) < llgm_&nf (Dir(f;, Q) + Dir(f,, Q7)) .
——+o00
This obviously implies that (f*, f7) is one of the sought minimizers. O

Next we record the following continuity property for (Q — %) Dir-minimizers
which collapse at the interface. The property is a direct consequence of the main
result in [29]. Note that, from now on, for every metric space (X, d) and any map
f 8 = X we will use the notation [f], k for the Holder seminorm of the restriction
of f to the subset K C 2, more precisely

fowi= sp LW@IW)

z,y€K,xy |z — y|6

THEOREM 4.6. If is of class C* and ¢ of class C%® , with § > %, then there ex-
ist a positive constant C = C'(m,n,v, Q) and a positive constant o = a(m,n,Q, 3)
with the following property. Consider a (Q — %) Dir-minimizer which collapses
at the interface (v, ). Then the following estimates hold for every x € QT U+,

respectively x € Q= U+, and every 0 < 2p < dist(z, 99):

[fi]a,Bp(x)in < Cp' 27 (Dir(f*, Bay(2) N QF)) % + Cpﬁ_a[@]ﬁ,mBQ,,(x) .

An outcome of the proof of Theorem 4.6 in [29] is the following compactness
statement:

LEMMA 4.7. Let (f;7, fi) be a sequence of (Q — 1) Dir-minimizers in Q which
collapse at the interfaces (i, pr) and satisfy the following assumptions:
(i) limsup;_, o (Dir(f;") + Dir(f,)) < oo;
(ii) & is converging in C* to a hyperplane ~;
(iii) g is converging' in C%P to a constant function o for some 3 > %

_1

Then there exists a subsequence (not relabeled) and a (Q 5

(f*, f) with interface (v,¢) such that
(a) fif — f* in L*(K) for every compact set K C QF.

) -valued function

1By this we mean that for every k there is a C%# extension @y, of gok}% to the whole R"™

such that the sequence {@r} converges to a constant function.
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30 4. REGULARITY FOR (Q — %) Dir-MINIMIZERS

(b) Dir(f*,Q* N Q') = limy, Dir(fif, Q5 N Q') for every Q' CC Q, where Qf
denote the two open domains in which  is subdivided by i ;
(c) fT is Dir-minimizing in QF and f~ is Dir-minimizing in Q.

In turn we can take advantage of a standard blow-up argument to upgrade
Lemma 4.7 to the following more general statement, where the convergence in
(c) is to a general hypersurface v and we conclude additionally that the limiting
(fT, f7) is Dir-minimizing as a (Q - %) map.

THEOREM 4.8. Let Q be bounded and let (f;7, f;,) be a sequence of (Q — 3) Dir-
minimizers in Q which collapse at the interfaces (yx, ) and satisfy the following

assumptions:

(i) limsupy_, o (Dir(f;") + Dir(f;)) < oo;

(ii) & is converging in C' to a hypersurface v;

ces . . . 0, . l
(iii) g is converging in C%P to a function o for some 3 > 5

Then there exist a subsequence (not relabeled) and a (Q— %)—valued function
(f*, f7) with interface (v, ) such that the conclusions (a) and (b) of Lemma 4.7
apply. Moreover (f+,f7) is a (Q — %) Dir-minimizer which collapses at the inter-

face.

Before coming to the proof of the latter theorem we need two important tech-
nical ingredients.

4.1.1. Interpolation lemma. The following technical lemma allows to “glue”
together two different functions and will be instrumental to several proofs:

LEMMA 4.9 (Interpolation). Let U C R™ be a domain with smooth boundary
U and let v C R™ be a smooth interface that intersects OU transversally and
divides U into two subdomains UT. Then for every compact subset K C U there
exist constants C, A\g > 0 depending on

L4 m7 Q7 K7
o the C? reqularity of U and v,
e and min{|T,0U — T,y|: x € yNOU},

such that the following holds.

Let (f*,f7), (g7, 97) be two (Q — %)-valued maps in U with interface (v, ¢|)
for some ¢ € WL2(U). Additionally we assume that (f*, f~) collapses at the
interface. Then for every 0 < X\ < Ao there exist open sets K C V, C Wy C U and

a (Q — %)—valued map (CT,¢7) in Wy \ Vi with the following properties:

+ ; £
NP (), ifxecoWy
(&) ¢(2) {gi(fv)7 ifx € 8V>\i ’
(b) ¢ has interface (7, ¢ly);
(c) the following estimate holds

e P SO [DrE DG4+ QIDP)
S \Wa

(a.1) S autgty
UE\K
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If in addition f and g are Lipschitz then ¢ can be chosen to satisfy

(4.2) Lip(¢¥) < C (Lip(fi) + Lip(g™®) + % sup Q(f*ﬂ*)(ﬂ?)) :

zeU\K

REMARK 4.10. If U = By C R™, we can take any A\g < i and we may assume

that V\ = Bs_) and W) = B, for some s €]1 — Ao, 1[, while the constant C in
the estimates depends only on m,n, Q. Furthermore, with an obvious scaling and
translation argument, we can get a corresponding statement for U = B,(x).

PROOF. We divide the proof in some steps:

Step 1: Choice of “cylindrical” coordinates around OU: We may assume that
there is a smooth function d such that:

o U={d>0};
e 0 is a regular value of d.

In particular there is 7 > 0 such that
(4.3) |Vd(x)| >n in a neighborhood of U’ of dU.

As it will be customary in the sequel, we will use the symbol p, to denote the
orthogonal projection onto a plane 7. By assumption «y intersects OU transversally:
hence, possibly choosing > 0 and U’ smaller, we can also assume

(4.4) e, (Vd@)| 25 VoeynU'.

In order to simplify our notation from now on we will set (Vd(z))? = pr,,(Vd(z)).

The inequalities above imply that we can define a smooth vectorfield X in a
neighborhood V' of QU with the following properties:

(A) |X| =1and (Vd(z), X(x)) > & for all z € V;

vd(z))”

(B) X = % forallz € VNr.

Let ¢ : V x [—to,to] = R™ be the flow generated by X. Hence the map
(yat) € 90U x [_t()vtO] = w(y,t)

gives a parametrization of a neighborhood V’ of U with the additional property
that

(4.5) ¥(y,t) € v for all (y,t) € yNOU x [0, o).
Possibly decreasing to, we may assume that ¥(9U x]0,to[) C U \ K.

Step 2: Reduction to ¢ = 0. Instead of considering f, g directly, we look first
at the two functions

FE=d el =) et -l

i i
Note that they satisfy the same assumptions of f and g but with interface (v, 0).
Furthermore, one readily checks that

(4.6) IDfF(x) < 2| DfF*(x) +2Q| Dl ()
and similarly for §. Additionally we have that
G(f*.9%) =6(f*.9%).
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32 4. REGULARITY FOR (Q — 3) Dir-MINIMIZERS

Step 3: Choice of Vs C Wy and definition of C for f,§. Define next
F5(y,t) = (W (y, 1)
g5 (y,t) =g (¥(y, 1)) and
Py, 1) = ((y,1) -
Set now Ag := tg, let A be a positive number smaller than Ay and select the natural
number N such that NA <ty < (N + 1)A. For our purposes, by making ¢, slightly
smaller, from now on we can assume A = tﬁo Consider the disjoint intervals I; :=

[(j—l)tﬁo,jtﬁ[forj =1,...,N. Then there must be at least one j € {1,...,N—1}
such that

| prp+pgtp s | IDF*E + Dy
(BU)E X, (BU)* x [0, to]

/ G(F*,5%)° < 8 / G(FE,55)°.
(OU)E X1,

(8U)E x[0,t0]
If ¢ # 0 we require additionally that

(4.7) [ peesm | DEE
(OU): xI; (8U) % x[0,t0]

Fix such a j and define
Vai= U\ (00 x [0,to/N]) - W= U\(0U x [0, = Dto/N]),
so that
WA\ Va = (00U x](j = Dto/N jto/N]).
We consider the Almgren embedding £o : Ag(R™) — RN(@™) (resp. o1 :

Ag_1(R") — RN(@=Ln)) and the retraction pg : RN(@m) — €Q(Ag(R™)) (resp.
Po—1) as in [13, Theorem 2.1]. We then define the functions ¢* as

S0 =5 oo (P 6ot 0 + L (gm0

and analogously for ¢~. Finally, we set {(z) := ((¢»"*(z)). The estimates (4.1) and
(4.2) are then routine calculations for the case ¢ = 0. Hence, it remains to check
that (¢, ¢ ™) has interface (v,0) , namely that

CHy,t) = ¢ (y,t) + [0] whenever x = (y,t) € 7.
Fix thus (y,t) € OUx](j — 1), jA] such that « = ¢(y,t) € v and observe that,
since f*(y,t) = f*(z) = Q[0], f~(y,t) = f~(2) = (R —1) [0], and £, (Q [0]) =0,

we have

0 =5 opo (U et )

and the same for (~. Note next that £5(Ag(R™)) is a cone and in fact

£ (Z [[m]]) = (YoI71) -
We therefore conclude

CHyt) = H#(Q*)i(y,ﬂﬂ ~

i
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4.1. PRELIMINARIES AND PROOF OF THEOREM 4.2 33

and the same for ¢~ (y,t). Since g*(y,t) = g (y,t) + [0] we conclude as well that
CHy,t) = ¢ (y,t) + [0].
Step 4: The general case. To conclude the proof we finally define

@)= [ @) + el@)] -
i
One readily checks that ¢ satisfies the claimed boundary values and has interface
(7, ¢). Using once again (4.6) for ¢ and exploiting also (4.7), we obtain the estimates
(4.1) and (4.2). O

4.1.2. A simple measure theoretical lemma. The second technical ingre-
dient is the following simple measure theoretic fact.

LEMMA 4.11. Let u be a Radon measure supported in a C' k-dimensional sub-
manifold M of some Euclidean space. Set

A= {x € spt(p): liminf M(Lk(l‘)) > 0}
r—0 r

and
B:= {a: € spt(p): hr;lj(l)lp % > 2"“} .
Then p(M\ A) =0=pu(M\ B).

PROOF. Since the statements can be easily localized and a C! change of vari-
able would not affect them, we can assume w.l.o.g. that M = RF. By Radon-
Nikodym Theorem we can decompose pu as

Pa + ps = fdz + ps

where dx is the k-dimensional Lebesgue measure, f is a nonnegative L' function
and ug is a singular measure with respect to Lebesgue. Moreover, for ug-a.e. x we

have
i BB
r—0 wk’l’
and for p,-a.e. x we have
. UBr(x)
fing wrrk J(x)>0.

Combining the above facts one immediately gets that p(A°) = 0.
To prove the second claim assume by contradiction that there exists g > 0
such that the set

B — {x € spt(y): limsup %

has positive measure. Since for all o € B*° there exists rg such that
(B (0)) < 27%(1 — o) u(Bar (o)) for all r € (0, ro],
one easily get that, for all } > 1

1(Ba-iry (%0))
2 kirk

<27F(1 - 250)}

<(1- 50)lw_
0

Hence, letting j — oo, B C A, a contradiction with u(B®°) > 0. (]
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34 4. REGULARITY FOR (Q — 3) Dir-MINIMIZERS

REMARK 4.12. Note that, as a consequence of the above Lemma, for p-a.e. x
there exists a vanishing sequence {r;} such that

Lo BB (@)

>k,
j—oo pi(Bay, (1))

Recall moreover that p(0Bs(y)) # 0 for only countably many radii s. Since
lim (B (2)) = u(Br(2))
we can choose s; < r; so close to r; to ensure

o BBy @) (B @)

1 —k,
% 1(Basy (@) 1% w(Bar, (@)

and at the same time enforce the additional property p(0Bas, (x)) =0= (0B, (x)).

4.1.3. Proof of Theorem 4.8: Compactness. : Let (f,j, f ) be a sequence
of (Q - %)— Dir-minimizers satisfying the assumption of the theorem. As in the
proof of Theorem 4.2, we can extract a subsequence such that f,;t converges strongly
in L2 to a W2 function f* with Dir(f*, Q%) < liminfy Dir(f,;t, Qf) It remains
to prove that, when Q' C Q we actually have

Dir(f*,Q*NnQ') = Jim Dir(ff,0fn Q).

The argument is the same for f* and f~ and for simplicity we focus on f+.

Possibly passing to a further subsequence, we may assume that the sequence
of Radon measures py, defined by p(A4) := Dir(f,:r, AN Qz) converges, weakly* in
the sense of measures, to some u. By lower semicontinuity of the Dirichlet energy
there is then a nonnegative “defect measure v” such that

pw(A) =Dir(fT,ANQT) +v(A4) for all Borel A CC €.

The goal is to show that ¥ = 0 and we therefore assume, by contradiction, that
v > 0. Observe that v must be supported in «y, because in the interior of 2 we can
appeal to [13, Proposition 3.20]. We can then apply Lemma 4.11 (with M = ~)
and the Remark 4.12 to find that at v-a.e. point xy € spt(v) there is a sequence
r; 1 0 such that:
B,.
lim inf ”(7(%_)3 >a>0

=00 wm—lrlm

v(By,(20)) < (2" + o(1)v(B,, j2(20)),
V(aBTj (:L'())) =0= V(aBrj/Q(xO))'

(4.8)

Moreover, since v is singular with respect to the Lebesgue measure, we also have

M(Br] (xo))

v(By (zo)) -

for v-a.e. xg.

We thus fix an z¢ and a sequence r; with the properties above and also as-
sume, after applying a suitable rotation, that the blow up ¢4, () converges to the
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4.1. PRELIMINARIES AND PROOF OF THEOREM 4.2 35

hyperplane 7o = {z,,, = 0}. We next consider the sequences?

+
f(xo +rz Tron(@o +rjz)
(o) = LT ) = )
(rj I/(Brj (xo)) (rj Z/(BTJ. (xo))
where we have chosen k(j) sufficient large such that

max{|puyj) (Br(x0)) — p(Br(20))|: 7 = 15,7/2} < 27107 2w( By, (w0))

/ (z0)NQ, NQ+ (fkl)’f+) <272 0(By, (20))
Brj (o)€M

)

=

Furthermore the choice of k(j) ensures that

ity (Br, (z0))
v(Br,(20))

/ Glgj.hy)* <279
Bin{z,>0}

Note that h; and g; are (Q - %) Dir minimizers which collapse at their interfaces
(%5, ¢4) and (95, ¢;), respectively, where 7; := tyy (), ¥ = tao,r; (Ve@)) and
. o(zo +7,7) . o) (To + 157)
Gifa) = —CT T and yla) =
(rj v(By,(20)) (rj v(By,(20))

Note that, as | — oo, 4;,9; — 7 in C'. Moreover ©j, 95 — p(xo) in C#, since,
thanks to (4.8),

Dir(h;, ., N By) = =1+o0(1)

k(5)

and

B

) T [<Pk7(l)]ﬁ7'7k(1)mB'r'j (zo) 36

[@5]8,4;0B:1 = - 1 < 1 rerls, Y NBr; (x0)
(ri" (B, (20))) ar;

and 8 > 1 (and similarly for ).

We are therefore in the situation of Lemma 4.7 and thus we can find functions
h and g such that, passing to a subsequence, h; — h and g; — g. Furthermore, by
condition (B) above, h = g.

Let us show that this is a contradiction and thus conclude the proof. Indeed,
on the one hand,

Dir(f*, By, (x0))
V(BT]‘ (‘TO))
and, on the other hand, due to the conclusions of Lemma 4.7,

Dir(h, By N {zy, > 0}) = hjm Dir(hj, By N tag,r, (i)

Dir(g, By N {zy, > 0}) < liminf =0
l—o00

)(B,,
_ g P (Bry2(20))
j—>OO V(B’r‘j(xo))

L 1B a(a0)

> 9~ (m=1)
i—eo V(B (z0))

2In order to simplify our formulas, we will use the following abuse of notation: if f = >_, [fi]
is a multivalued map and A is a classical real valued function, we will denote by Af the map

z = 32 [ i(@)]-
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4.1.4. Proof of Theorem 4.8: Minimality. We now come to the second
part of the theorem, namely to the claim that (fT, f7) is a (Q — %) Dir-minimizer.
This requires a suitable modification of the same argument given in [13, Proposition
3.20]. We assume by contradiction that (fT, f~) is not a minimizer and let (g7, g7)
be a suitable competitor, which coincides with (fT, f~) outside of a compact set
K. First of all we notice that we may assume that, by Sard Lemma, we can find
an open set U C ) that contains K and intersects =y transversally.

Thus we have that (¢7,¢97) = (fT,f7) on 9U, that g7 |, = [¢] + g~ |, and
that

Dir(g*) + Dir(¢~) < Dir(f*) + Dir(f~) — 4c
for some positive c. For each k we let @4 be a diffeomorphism which maps U onto
itself and v, N U onto ¥ N U. Clearly this can be done so that ||®) — ®||cr — 0,

where ® is the identity map. Thus, from the convergence in energy of ( f,j fr ) to
(fT, f7) we conclude that, for a sufficiently large k,

Dir(g" o @) + Dir(g~ o ®;) < Dir(f,") + Dir(f, ) —

Observe that each pair (g+ o @, g~ o ®y) has interface (yx, g o Py), where ||po Py —
kaHCO,ﬁ — 0.

In particular, since 8 > 1, we can fix first ¢ € W12(U) such that ¢|, = ¢.
Furthermore, since ||¢ o ®;, — @k fr1/2(,,) — 0, there is a sequence of classical W2
functions s on U such that

® 3, = o Py — pp on Yy
o [Illwre = 0.

This implies that [;;|D(@o®y — »)[? is uniformly bounded. We consider the maps

hf ::Z[[giio@k—%k]],

i

Observe that (A}, h; ) have interfaces (yx, %), that G(fi5, h) — 0 strongly in
L?(U* \ K) and that, for k large enough,

Dir(h}) + Dir(h;,) < Dir(f) + Dir(f;) — 2¢.

We apply the interpolation Lemma 4.9 to the maps (f;", f, ), (b}, h,) and the
set K C U. We obtain, for each A > 0, interpolation maps ((,j,(,;) defined on
K C Vf Cc WF CU. We can now define competitors to (f;, fi ) on W{ by

uE = G on (WR)FA\VY
4§ hE on (V).

Using (4.1) one readily checks that, for k sufficiently large and A > 0 sufficiently
small,

< Dir(f;f) + Dir(f, ) — c.

This contradicts the minimality of (f,", f,.)-
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4.2. The main frequency function estimate

We start this section by introducing the frequency function and deriving the
main analytical estimate of the entire chapter.

DEFINITION 4.13. Consider f € W).?(Q, Ag(R")) and fix any cut-off ¢ :
[0,00[— [0, 00[ which equals 1 in a neighborhood of 0, it is non increasing and
equals 0 on [1,00[. We next fix a function d : R™ — R* which is C? on the
punctured space R™ \ {0} and satisfies the following properties:
(i) d(x) = [z + O(|z[*);
(i) Vd(z) = & + Oz}
(ili) D?d = |z|71(Id — |z| 22 @ z) + O(1).

We define the following quantities:

Dy.a(f,r) = /qu (@) |Df?(z) dx

atrry = - [ () watop L2

The frequency function is then the ratio

Iya(f,r) = rDg.a(f,7)

Hga(fr)

H obviously makes sense when ¢ is Lipschitz. When ¢’ is just a measure we
understand H as an integral with respect to the measure ¢’ in the variable d(x)/r
and this also makes sense because the integrand is bounded and continuous on the
support of ¢'. Of particular interest is the case when ¢ is the indicator function of
[0,1[ and d(x) = |z|: then D(r) is the Dirichlet energy on B,.(0), H(r) is the integral
/. B, |f|? and I is the usual frequency function defined by Almgren. In the sequel,
if we do not specify ¢ and d, we then drop the subscripts and understand that the
claims hold for all cut-off functions ¢ and all d as in Definition 4.13. If instead we
require some more assumptions on ¢ or d (for instance a certain regularity) we then
leave the cut-off ¢ or the function d in the subscripts.

REMARK 4.14. Note that if a function d satisfies (i), (ii) and (iii) in Definition
4.13 with certain implicit constants, than the function d,.(x) = d(rz)/r satisfies the
same assumptions with the same constants (actually smaller). Moreover d,.(z) —
2] in C2,(R™\ {0}) N €L, (R™).

THEOREM 4.15. Let Q C R™ be an open set of class C2, with 0 € 9Q. Then
there is a function d satisfying the requirements of Definition 4.13 such that the
following holds for every ¢ as in the same definition.

If f e WH2(Q N By, Ag(R™)) satisfies

(1) floans, = Q[0];
(ii) Dir(f) < Dir(g) for every g € WH2(QNBy, Ag(R™)) such that gloonp,) =
flaensy);
then, either f = Q [0] in a neighborhood of 0, or the limit

lriﬁ)l Iya(f,r

exists and it is a positive finite number.

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.
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FIGURE 4.3. The domain Q. f in Theorem 4.15 collapses to @ [0]
on 0f).

REMARK 4.16. In fact the conclusion of Theorem 4.15 holds for every d which,
additionally to the requirements of Definition 4.13, has the property that Vd is
tangent to 2. The existence of such a d is then guaranteed by a simple geometric
lemma, cf. Lemma 4.25.

REMARK 4.17. Note that if (f*,f7) is a (Q — %)—function which collapses at
its interface (92N By, 0), then f¥ satisfies the assumptions of Theorem 4.15.

4.2.1. H' and D’. In this section we compute H' and D’. Since there is no
possibility of misunderstanding, we omit to specify the dependence of D, H, I on f.

PROPOSITION 4.18. Let ¢ and d be as in Definition 4.13, assume in addition
that ¢ is Lipschitz and let Q be as in Theorem 4.15. If f € Wh2(Q N By, Ag(R™))
satisfies condition (i) of Theorem 4.15, then the following identities hold for every
r €]0, 1]:

(19) Dy = [o (M) D

m—1

r

(4.10) H'(r) = <

where

(1) 1 o (2 )Zfl (Dfila) - Vd(x)) da

and the constant O(1) appearing in (4.10) depends on the function d but not on ¢.

+ O(l)> H(r)+2E(r),

REMARK 4.19. It is possible to make sense of the identities above even when ¢
is not Lipschitz. In that case, using the coarea formula appropriately, it is possible
to see that the right hand sides of the two identities (4.9) and (4.10) are in fact
well-defined for a.e. r and that both D and H are absolutely continuous. Hence, if
formulated appropriately, the proposition is valid for every d and ¢ as in Definition
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4.13, without any additional regularity requirement on ¢. This will, however, not
be needed in the sequel.

PRrROOF. The identity (4.9) is an obvious computation. In order to compute H’
we first use the coarea formula to write

[ e (B IV anr @)
0 J{d=p} T
(4.12) :—/0 @/{d_ }|Vd(x)|\f|2(x) dH™ H(z) do .

=:h(ro)

In order to compute h'(t) we note that v(z) = ;ZE gl is orthogonal to the level sets

of d and we use the divergence theorem to obtain

h(t+5)—h(t):/ |f\2w-yd%m*1—/ |f1°Vd - vdH™
{d=t+e} {d=t}
(4.13) :7/ div(|f1?Vd(x)) de

{t<d<t+e}

- / 2) filw) - (Dfi(x) - Vd(x)) do
{t<d<t+e}

i

+ / |fI?Ad(z) dx
{t<d<tte}

Dividing by e, taking the limit (and using again the coarea formula) we conclude

(4.14) h'(t) = / |Vd|~? (2 Zfi -(Df;-Vd) + |f|2Ad> dH™ .
{d=t} i
By the properties of d, we have that

Ad = “ess 4+ 0(1).

Differentiating (4.12) in 7, inserting (4.14) and using that if ¢(d/r) # 0 then d =
O(r) we conclude

H'(r)

__/0°°¢/(U)/d . \le( Zfz (Df; - Vd) + |f| Ad) dH™ " do

-1 o (%2 )IfIAd()
=5 Jo (57 ) (=i o) o

— 2B + (Tl +o( )) Hr). 0

(4.15)
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REMARK 4.20. Observe that the assumption f = @ [0] on 9Q has been used
only in deriving (4.13): without that condition we would have the additional term

- / |f>°Vd-n
dQN{t<d<t+te}

where n is the outward unit normal to 9€2. Note in particular that we could drop
the assumption f = @Q [0] and add instead the requirement that Vd is tangent to
on.

4.2.2. Lower bound on H.

LEMMA 4.21. Assume ¢ is identically 1 on some interval [0,p[. Under the
assumption of Theorem 4.15 there exist constants Cy and ro, depending only on the
Cl-regularity of Q, on p and on d (but not on ¢), such that

(4.16) H(r) < CorD(r) for all r <rg.
PrOOF. If we introduce the usual scaling
fr(x) == f(ro) and d.(x) =r d(rz),
then

H¢'7d7-(f7‘7 1) = Tm71H¢,d(f7 T) and D(b,dr,-(fra 1) = rm72D¢'7d(fa T) .

Observe also that for 7 < 1 the C?! regularity of the boundary of Q,. := {z/r: z € Q}
improves compared to that of €2 and d, satisfies the same properties of d with bet-
ter bounds on the errors, see Remark 4.14. By taking r( sufficiently small we can
assume that

(4.17) Byrja C {d, < 0} C Bayr for all r <rp and p < 1.
Let us assume without loss of generality that v = 1. If we define the “distorted
balls”
B = {z:d(z) < p},

the inclusions above imply that they are comparable to the Euclidean ones up and
thus we can transfer most estimates of the last sections to these new balls. Let us
now extend f to be identically 0 outside on Q \ Bf so that we can consider the
integrals in the definitions of H(1) and D(1) as taken over the whole Bj.

By a standard approximation procedure we can assume that ¢ is smooth. Let

0<p< % be such that ¢ is identically 1 on [0, p]. Then, as a particular case of
Theorem 4.6 we have

[fla.Bzna < CDir(f, B, NQ)% < CD(1)7,

where a = a(m,n,Q) and C = C(m,n,Q,p) and in the last inequality we have
also used (4.17). Of course the same estimate extends trivially to Bj\ €2, where the
function vanishes identically. Thus

@) [ Vi@l = [ [Vd@Ie(e). f0)° < D).
On the other hand, using the coarea formula

(4.19) H(1)= —[ M /{d_ } \Vd(z)||f|* (') da’ dr = —/ ¢/(T)h(r) dr,

r
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where h > 0 is as in (4.12). Integrating by parts we get

H(1) <C/ fI? + /¢ (r='h'(r) = r2h(r))

<CD(1 /qs

“ o) + 0 %d((ﬁ” (D1 + 1117
Bi\B; T
(4.20) <OD()+C o(d(x))|f | (z) da

Bi\Bj

where the constants depend only on p and d, but not on ¢. The proof will be
concluded if we can show that

4:21) |, oI < 0DO)

To this end note that for p < r <1 the function |f \2 vanishes on a non trivial part
of Bf (namely B\ ). Hence by the (m — 1)-dimensional Poincaré inequality on

OB
[ ae<c[ pifi<e [ inps
aB; aB; oB;
Hence, the function A’ defined in (4.14) satisfies:

pei<c [ s

Since ¢(t) > ¢(r) for p < ¢t < r < 1, using again the coarea formula we can now
estimate

o(r)h(r) < B(r)h(p) + 6(r) / () de
<oD(1 / o(1) |1 (£)] dt

<CD()+ _9(d@)|fIDf|(z) da

Bi\B;

Integrating in r and using Young’s inequality we obtain

/ o(d(x)| f () da
Bi\B;
<cp(1)+C o(d(x))| fI| DS () da

Bi\B;
<O+ DM +Ce [ gdw)IfPe)da

Choosing ¢ appropriately we get (4.21) and thus we conclude the proof. (|

COROLLARY 4.22. Assume ¢ is identically 1 on some interval [0, p[. Unless
f = Q0] in a neighborhood of 0, the following lower bound for the frequency
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42 4. REGULARITY FOR (Q — 1) Dir-MINIMIZERS
function holds:
liminf I(r) > Cy > 0,
rl0
where Cq depends only on the C* reqularity of Q, on p and on d.

4.2.3. Outer variations. We now derive the first interesting identity relating
D and E, which is proved variationally using a perturbation of the map in the target.

LEMMA 4.23 (Outer variation). Let Q be open and f € WH2(QN By, Ag(R™))
be as in Theorem 4.15. Then D(r) = E(r) for every 0 < r < 1, where E(r) is
defined in (4.11).

PrOOF. We first assume ¢ to be Lipschitz. Consider the family

gel@) = 3 [ ful) 20 (42) Jitw)]

and observe that on 9Q we have f(z) = Q [0] and so g-(z) = Q [0]. Therefore each
ge is a competitor and we conclude

d

el Dg.|? =

de eo/QmBl| el
Hence

d(x
0= /¢ (Q) Df ()] da
o1 fo ("2 ) (Dfi(a) : Vd(x) ® fi(x)) da
=D(r)— E(r).

For a general ¢ it suffices to use a standard approximation argument. (I

4.2.4. Inner variations. We now derive the second key identity, which uses
perturbations of the domain. To this end consider a compactly supported vector
field Y which is tangent to 9 (i.e. such that such that Y (z)-v(x) = 0 for all z € 992,
where v denotes the outward unit normal to 0€2). Let ®; the one-parameter family
of diffeomorphisms generated by Y, namely ®;(x) = ®(z,t) where

0 ®(z,t) =Y (®(x,t))
d(z,0) =

Obviously ®; maps 2 into itself and, more importantly, maps 92 into itself. In
particular we have the following lemma.

LEMMA 4.24 (Inner variation). Consider a modified distance function d as in
Definition 4.13 such that Vd(z) - v(z) = 0 for every x € 0Q N By, where v denotes
the outward unit normal to Q0 and fix a Lipschitz ¢ as in the same same definition.

Let
d(z)\ d(x)Vd(x)
Y(z) = .
0=0(%7) e
and let ®; be the flow genemtcd by Y . Then

Gl [
t=0
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In particular, if we define

6= -1 [ o (12 )HWQQDDL V()P do,

we conclude

(4.23) D'(r)—(m‘2—0<1>> D) 200y ="V — ¢,

r r

where the constant O(1) depends on d and Q but not on ¢. In particular the latter
identity holds even for a general ¢ as in Definition 4.13.

PROOF. (4.22) is obvious by the minimality of f, because ®;(9Q) = 0Q2. We
thus just need to prove the identity between the left hand side of (4.23) and InV
n (4.22). Note that, by standard computations (cf. [13])

(4.24) InV:2/ZDfi:DfiDY—/|Df|2divY.
Hence, by the properties of d, we compute

d\ d d
DY = ¢’ <;) ;\Vderd@ Vd+ ¢ (;> D (|Vd|~*dVd)

¢ (g) g\wﬂw ®@Vd+ ¢ (g) (Id + O(d))

¢/ (g) g‘Vdr?Vd@ Vd+ ¢ (g) (Id+ 0(7’))>

d\ d d
divy = ¢’ (—> —+0¢ <—) (m+0(r)).
r)or r
Plugging the latter identities in (4.24) and recalling the formula (4.9) for D’, we
conclude the proof. |

and

4.2.5. A good function d. In this section, relying on the C® regularity of
0f) we construct a modified distance function whose gradient is tangent to 02. We
believe that the same result can be achieved with less regularity of 9, namely C?2,
however since we will not need this in the sequel, we stick to C? regularity, where
the proof is rather straightforward.

LEMMA 4.25. Let Q be a C3 domain such that 0 € Q and Ty = {z,, = 0}.
Then there is a continuous function d : @ — R which belongs to C*(Q\ {0}) and
such that

(a) dsd(x) = ds)z| + O(|z|>~ V1) for every multiindex J with |J| < 2;
(b) Vd is tangent to OS).

ProoOF. Consider normal coordinates on a sufficiently small tubular neighbor-
hood Uy of 09 and construct a diffeomorphism between Us and a tubular neigh-
borhood Vj of a suitable subset of R™~! x {0} with the properties that:

e & c(C?% ®0) =0 and DP|y = 1d;

e &(0Q) C R™ 1 x {0};

e For every p € 01 and every vector v normal to X2 at p, D®|,(v) is normal
to R™~1 x {0}.
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44 4. REGULARITY FOR (Q — 3) Dir-MINIMIZERS

The existence of such diffeomorphism follows easily from our assumptions. Define
then d(z) := |®(x)|. It is obvious that d(z) = |z| + O(|x|?). Computing the first
and second derivatives we get, using Einstein’s summation convention,

<I>k8i<1>k xZ;

(4.25) 0id = ———— ol Tl + O(Jz|)
92— 0;PF0; 0k ®F9,; 0% k9,099, P!
v | | [©
(4.26) = |2| 718 — |=| Pz + O(1) .

In particular (a) follows easily.

Next, consider a vector v orthogonal to 92 at p # 0, let z = ®(p). Let (-,) be
the standard Euclidean scalar product and observe that, from the first equality in
(4.25), we get

(4.27) (Vd(p),v) = |2|7 (2, DD|,(v)) -

On the other hand, since z = ®(p) € R™~! x {0} and D®|,(v) € (R™ ! x {0})+
by the assumptions on ® above, we clearly have

(Vd(p),v) =0.
We conclude that Vd is orthogonal to any vector field normal to 92 and thus it
must be tangent to 0f. ]

4.2.6. Proof of Theorem 4.15. Assume that ¢ and d have the properties of
Definition 4.13. As a consequence of Lemma 4.25 we may assume that Vd-v =0
on B,,(0). This implies that the conditions of Proposition 4.18, Lemma 4.23, 4.24
are satisfied. Hence,

d _H'(r) D'(r) 1@ 10),(4.9) 2E(r)  2G(r)

"= H "D Her) Do)

Furthermore due to (4.23) we have
E(r) _G(r)
H(r)E(r) (H(r) B D(r))
= (E(r)* - H(r)G(r))

( [# (¢ )Zfz (D w>>2
(o () ) (22 () e oo o) <o

due to the Cauchy—Schwarz inequality. Moreover the equality holds if and only if
there is a function «, such that

+0(1)

d

(4.28) fi= arw(Dfi - Vd)
Finally we deduce, that
(4.29) —% In(I(r)) < O(1)
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and therefore we deduce that, for r < ro,
s eCTI(r)

is monotone. This directly implies that lim,\ o eCTI(r) = Iy exists. Moreover, by
Corollary 4.22, we have Iy > Cy > 0.

4.3. Further consequences of the frequency estimate

As a further consequence of the almost monotonicity of the frequency we obtain
the following result, compare [13, Corollary 3.16].

COROLLARY 4.26. Under the assumptions of Theorem 4.15 there exists a con-
stant C' such that setting I(0) = Iy > 0 for every A\ > 1 there exists 11 < r¢ for
which the following estimates hold true

(a) ANHo < I(r) < X for allr < ry;
(b) forall0<s<t<mr

m—1+22""11, m—142X1
(4.30) o~ Cli—s) (L ’ < H(t) < Clt=5) t 0;
s H(s) s

(c) forall0 < s<t<mr

m—2+42X711
) ° . D) < AZeC(t=5) (f

~ D(s) s

(4.31) A2 U (f
S

) m—2+2AIo
PRrROOF. Point (a) is an immediate consequence of the almost monotonicity of
the frequency, (4.29)
Concerning point (b), using (4.10) and Lemma 4.23, we compute
d (H(r))H’(r) m—1 2

%ln 1 ) T ) . ;I(T)‘FO(U-

Integrating the above identity between 0 < s < ¢t < 7y and using point (a), we
obtain the estimate 4.30.
To prove (c), we have only to note that

D(t) _ I(t) <t>1 H(t)
D(s) I(s) H(s)

and appeal to points (a) and (b). O

S

COROLLARY 4.27. Under the assumptions of Theorem 4.15 with Iy = 1(0),
there are constants A\ > 1 (depending only on ¢), C > 1 (depending on ¢,d and Iy)
and ry > 0 such that the following estimate holds for all 0 < \?s <t < ry:

m—242X"11, Df|2 m—2+2XI,
(4.32) ot (f) < me—|f|2 <c <£) .
s fQﬁBS [Df §

When ¢ = 10,1}, we can choose both A\ and C arbitrarily close to 1, provided ry is
small enough.

PROOF. Recall that ¢ = 1 on some interval [0, p[. By the assumptions on d,
for any A\ > p~—! there is then a positive r; such that

1Bk1,,(x) < ¢<@) <1p,,(x) Vr <ry, Vo € R™.
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46 4. REGULARITY FOR (Q — 3) Dir-MINIMIZERS

Hence we deduce that

D)< [ DFP < D),
B,.NQ

and we conclude the proof from (4.31). When ¢ = 1j,1; we can choose any X > 1.

Note moreover that the constant C' in (4.32) can be taken to be e“"™1 A7 where the

exponent 7 depends only on Iy and m. The last claim of the corollary is thus

obvious. O

LEMMA 4.28. Let Q C R™ be an open set of class C® with 0 € 9. Furthermore
assume f € Wh2(QN By, Ag(R™)) satisfies the assumption of Theorem 4.15. Then,
for any i, 1 0, there is a subsequence, not relabeled, such that®

1
(a) f(x):= (7‘,3_'” I mQ|Df|2) ’ flrrz) converges to a map
Tk

g € Wh2(H, Ag(R™))
such that g = Q[0] on OH, where H is some halfspace containing the
origin.
(b) g is Dirichlet minimizing, in the sense that
Dir(g, Br N H) < Dir(h)
for every R > 0 and for every h € WY2(H N Bg, Ag(R")) such that

9lo(anBr) = bloHNBz)-
(c) g(x) = |zl g({%), where

|]

Iy = ljfgfd,qs(o)
(which exists thanks to Theorem 4.15).

PROOF. Let d, ¢ be a distance function and cut-off function that are admis-
sible in the sense of Theorem 4.15. As before we introduce the usual scaling
fr(x) = f(rz), d.(z) = r~td(rz) and Q, := {z/r : z € Q}. Observe that ), con-
verges locally in C? to a halfspace H, which up to a rotation we may assume to be
{x : &y, > 0}. Furthermore, by Remark 4.14 d,.(z) — |z| in CZ .(R™ \ {0}). More-
over, by direct computation, Hy g, (fr, R) = 1™ 'Hy 4(f,7R) and Dy 4, (fr, R) =
™ 2Dy a(f,TR), for any R > 0.

Let us pick A and r; > 0 such that the conclusions of Corollary 4.27 apply.
Then, for every R > 1, the following estimate holds provided r is sufficiently small:

/ IDJ, 2 < C(Io, m)R™>+215 / DJJ2,
BrNDom(f¥) BinDom(f)

where Dom( fi) denote the domains of the rescaled functions fi. Appealing to
[29, Theorem 3.6] we deduce the existence of g satisfying (a) and (b).
It remains to prove (c). Observe that (a), (b) together with d, — || in C?
imply, for R > 0,
RriyDay(f.rxR) . RDa, ¢(fr,R) RD||4(9,R)

I 0)= lim ———" "~ = lim = = :
a0(0) = Hm =R A Hy, (fr,B)  Hpe(9, R)

3Here again we are using the following abuse of notation: if ) is a scalar and P = > [P
an element in Ag(R™), then AP =", [AR;].
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Now (iii) follows by straightforward adaption of the proof of [13, Corollary 3.16]
using (4.28). O

4.4. Blowup: Proof of Theorem 4.5 with ¢ =0

The proof is based on the monotonicity of the frequency function and the fact
that it ensures two things: nontriviality of the blow-ups and radial homogeneity.
More precisely, we have the following:

LEMMA 4.29. Let (f*,f7) be a (Q — %) Dir-minimizer which collapses at the
interface (7,0), where v is C3. Fix p € ~ and, unless (f*,f~) is identically
(Qo], (@ —1)[0]) in some ball B,-(0), for every r define

Ft (@) = o).

DT

The normalizing factor A, , is chosen to fulfill

AZ = p2m / IDFF? 42 / Df P,
B (p) B, (p)

so that
Dir(f,},, B1) + Dir(f,,., B1) = 1.

P

If we set m = Ty, then, up to subsequences, the pair of sequences (f;r7 fpjr) con-
verges to a (Q — %) Dir-minimizer (g7, g~ ) which collapses at the interface (m,0)
satisfying the following properties:

(a) The convergence is as in Theorem 4.8.

(b) Dir(¢g") + Dir(g™) = 1.

(c) (97,97) is radially homogeneous, namely g*(rz) = rlog*(z), where, if

we fir ¢ = 11} in Definition 4.13, then

L r (D) + D)
(4.33) o= m n T BG0

PROOF. After a translation we may assume that p = 0. Observe that both
x— fT(x) and z — f~(x) satisfy the assumptions of Theorem 4.15. Let us define
the single normalization factors

(AF)2 = y2m / DF*P,
BF

so that A2 = (A)% + (A,)2. Thanks to Lemma 4.28, given any sequence 75 — 0
there is a subsequence (not relabeled) such that f(z) 1= A%fi(rkx) converge to
Tk

some §*(z), which are homogeneous with exponent Ig[. Since

(Fr @) = (5277 557 ).

A,
Ai
it is sufficient to understand the possible limits of aj := ~= € [0,1]. Up to
T

subsequences, we may assume that their limits exist and are a™ > 0. Due to the
properties of A* and A,, we have

(@) + (o) =1
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Point (a) agrees with the statement of Theorem 4.8 since
(@) fr@) = (@*5*,a757) = (g"07).
We now distinguish three cases depending on the values of
D(fE
[* = Jig P2UZT)

r—0 H(’r‘)
Case I] = I : In this case the tangent function (g%, ¢7) is I] = I, homogeneous
and satisfies (b). Point (c) follows from the simple observation that

rDG e Do) (BE) DU+ (55) PG
H(f*,r)+H(f~,r) (%YH(JFTJFJ)#L(@—Z)ZH(]%J)'

Case I > Iy : We claim that in this case a* = 0, so that (g7,¢7) = (Q[0],§7) is
Iy = I; - homogeneous. Pick A > 1 such that AI;” < A~!I". For 71 > 0 sufficiently
small, such that Corollary 4.27 applies for fT and f~, we may choose r < r;. Using
(4.32), for some fixed ¢ < r; and for any s < ¢, we have that

T2 _ - +)2
Jp+ DS < AZmH2My (f)’\ iy [gp DI .
[, IDF P2 : J5 IDF P
By our choice of A this converges to 0 as s — 0.

Case I{)" < Iy : We argue as in the previous case swapping + and — and conclude
that = = 0. O

DEFINITION 4.30. A (g%, 97) as above will be called, from now on, a tangent
function to (fT, f~) at p.

REMARK 4.31. Let (g7, ¢7) be a tangent function to some (f*, f~) at some
point p. Let ¢ € Ty \ {0} and let us consider a further tangent function (g;", g; ) to
(97,97) at ¢. Then, by [13, Lemma 12.3], (¢;, g7 ) is invariant along the direction
¢, namely g7 (z + \q) = g* () for every X € R.

As a simple corollary we then conclude the following:

LEMMA 4.32. Let (f*, f) and p € v be as in Lemma 4.29. Consider a tangent
function (g%, 97) to (f, f7) at p. Moreover fix a base ey, ..., em—1 of 7 = Ty, and
define inductively (gi,g7) to be a tangent function to (g%, g7) at ey and (g;,g;)
to be a tangent function to (g;r_l,g;_l) at ej. Then (h*,h™) = (g} 1,9, _1) is
given by (Q[L],(Q — 1) [L]), where L is a nonzero linear function which vanishes
on .

PrROOF. Assume 7 = {z : z,, = 0}. Applying the remark above m times we
infer the existence of a map (h*,h™) with the following properties:
e (h*,h7)isa (Q — 1) Dir-minimizer which collapses at the interface (, 0);
e (h™,h™) depends only on ,,, namely there exist @-valued function a* :
Ry — Ag(R™) and a (@ — 1)-valued function o~ : R_ — Ag_1(R™) such
that h*(z) = a®(z,,);
e (h*t,h7) is an I-homogeneous function for some I > 0, namely there
is a Q-point P and a (Q — 1)-point P’ such that a*(x,,) = x! P and
a () = (—zm) P
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e Dir(h*,By) + Dir(h~, By) = 1.
Since (h*, h™) is a Dir-minimizer both ht and h~ are classical harmonic functions

and, since they depend only upon one variable, we necessarily have that I = 1. So
there are coefficients 7, ... ,65 and B ,..., ﬂé71 such that

Q
W@ =3 [8wn]

=1

-
Il

If @ = 1, then there is nothing to prove. If @ > 1, then necessarily for every choice
of 7 and j the function

B;Fxm if z,, >0
k(z) =
B xm if z,, <0

must be harmonic and hence linear. This implies that all 3;” and 6;." coincide. The
claim of the lemma follows. O

REMARK 4.33. The above result is the key step to establish Theorem 4.5. Note
that in proving that the only 1 homogeneous 1 dimensional (Q — %) Dir-minimizer
which collapses at the interfaces (m,0) we have used in an essential way that only
one sheet has to take care of the interface, while the values of the others can be
modified even over . In other words the above result is easily seen to be false if
we would have required to be minimizers only with respect to variations that keep
the pair f* and f~ completely fixed over .

As a simple corollary of the above Lemma we have:

COROLLARY 4.34. Assume (f*,f7) isa (Q — %) Dir-minimizer with collapsed
interface (v,0), where v is C3. If po f~ = mo fT =0, then f+ = Q[0] and
fm=(@-1[o].

ProOOF. If (fT, f7) is identically (Q [0], (@ — 1) [0]) in a neighborhood U of
a point p € «, then, by the interior regularity theory of Dir-minimizer, (f*, f7)
is identically (Q[0],(® — 1)[0]) in the connected component of the domain of
(fT, f7) which contains p. Thus, if the corollary were false, then there would be a
point p such that Dir(f*, B.(p)) + Dir(f~, B-(p)) > 0 for every r > 0.

If we consider (b, h™) as in Lemma 4.32, we conclude that noh™ = noh™ = 0,
since such property is inherited by each tangent map. But then the nonzero linear
function L of the conclusion of Lemma 4.32 should equal 5 o h™ on {z,, > 0}
and noh~ on {z,, <0}. Hence L should vanish identically, contradicting Lemma
4.32. O

COROLLARY 4.35. Theorem 4.5 holds when ¢ = 0.

PrOOF. We start noticing that by classical elliptic regularity, the functions
no f* belong to C1(Q* U~). Let v be the unit normal to 7. We claim that

(4.34) Qo fT)p)=0u(mof7)(p) forallpeynQ.
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The claim will be proved below, whereas we first show that it is enough to conclude.
Indeed it implies that the function

no f+ on QF
(4.35) ¢=

no f~ on )~
is a harmonic function. Now let us subtract it from (fT, f7), namely let us define
the functions

(4.36) FF=Y I =<
(4.37) Fm=X "I =<

We conclude that (f+,f7) is a (Q — 3) Dir-minimizer which collapses at the in-
terface (7,0) and that n o f+ =mno f‘ = 0. Thus we apply Corollary 4.34 and
conclude that ft = Q[0] and f~ = (Q — 1) [0], which complete the proof.

To prove claim (4.34) assume by contradiction that, at some point p € v N €,
we have 9, (no fT)(p) # d,(no f~)(p) and consider a tangent function (g, g~) to
(f*, f) at p, which is the limit of some (f;:pk7 o). Observe that, since at least
one among d,(no f*)(p) and d,(n o f7)(p) differs from 0, we necessarily have

Dil‘(f+, Bpk, (p)) + Dil"(f_, Bpk, (p)) Z COPZ”’
for some constant ¢y. We then have just two possibilities:

(A) limsupy(px) "™ (Dir(f*, B,, (p)) +Dir(f~, B, (p))) = co. In this case the
tangent function (g7, g~) has zero average, i.e.

nogt=mog- =0.

By Corollary 4.35, (g*,¢™) should be trivial. But this is not possible
because Dir(g™, By) + Dir(g~, B1) = 1.

(B) limsupy(pr) " (Dir(f*, B,, (p)) + Dir(f~, B, (p))) < co. In this case we
have that no gt and no g~ are also nontrivial and linear. Moreover they
are two distinct linear functions.

We can apply this argument to the tangent functions of (g7, g~) and since the case
(A) is always excluded, after applying it m — 1 times, we reach a pair (h*,h™) as
in Lemma 4.32, with the property that 170 h™ and 17 o h~ are two distinct linear
functions. However this contradicts the conclusion of Lemma 4.32. O

4.5. Proof of Theorem 4.5: General case

PROOF. Let v be the unit normal to v. As above, we claim that

dy(no fr)=0,(nof").

With this claim, proceeding as in the proof of Corollary 4.35, we can define ( as in
(4.35) and conclude that it is a harmonic function. We then define (f*, f~) as in
(4.36) and (4.37). To this pair we can apply Corollary 4.34 and conclude.

To prove the claim, assume by contradiction that, for some p € =, we have

that 8, (o fT)(p) # d,(no f~)(p). Without loss of generality we can assume that
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p=0, ¢(0) = 0and Dp(0) = 0. Since at least one among D f*(0) does not vanish,
we must have

(4.38) Dir(f*,B,) + Dir(f~, B,) > cop™

for some positive constant cq. It also means that there exist a constant n > 0 and
a sequence py | 0 such that

DiI‘(er, Bpk) + Dir(fia Bpk) Z W(Dlr(er’ B2pk) + Dir(fia B2pk)) )
otherwise we would contradict the lower bound (4.38). If we now define the blow-up
functions "

f* (o)

) = B, B,y) + Din(F, By
we see that they have finite energy on B and thus there is strong convergence of
a subsequence to a (Q — %) Dir-minimizer (g7, ¢~) with interface (7},7,0). The
latter must then have Dirichlet energy 1 on B;. We then have two possibilities:

(A) limsupy(px) "™ (Dir(f*, B,,) + Dir(f~,B,,)) = co. Arguing as in the
proof of Corollary 4.34, this gives that no gt = o g~ = 0. Thus,
applying Corollary 4.34 we conclude that (g%, g~) is trivial, which is a
contradiction.

(B) limsupy(px) " (Dir(f*,B,,) + Dir(f~,B,,)) < oo. Assuming in this
case that Toy = {x, = 0}, we conclude that (g7,¢g7) is a (Q — 3)
Dir-minimizer with flat interface (Tp7,0), but also that n o g*(z) =
éd,(n o f*)(0)x,, for some positive constant ¢. By Corollary 4.35, we
then conclude that 8, (no f1)(0) = d,(no f7)(0).

]
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CHAPTER 5

First Lipschitz approximation and harmonic
blow-up

In this chapter we assume that 7o = R™ x {0} and we use the notation p and
p* for the orthogonal projections onto 7y and 73 respectively., whereas p, and
p: will denote, respectively, the orthogonal projections onto the plane 7 and its
orthogonal complement 7. We also introduce the notation B, (p, ) for the disks
B, (p) N (p+7) and C,.(p, ) for the cylinders B, (p, )+ 7. If 7 is omitted, then
we assume T = 7.

DEFINITION 5.1. For a current 7" in a cylinder C,.(p, 7) we define the cylindrical
excess E and the excess measure er of a set F' C By, (pr(p), ) as

1 =
E(T, C, (p. 7)) := /C o Ewrar|
D, T

2wy, r™

1 =R
5[ TR,
F+nl

The height in a set G C R™™™ with respect to a plane 7 is defined as
(5.1) h(T,G, 7)== sup{|ps (¢ — p)| : ¢, p € spt(T) N G} .

The aim of this chapter is to produce a Lipschitz (Q — %)—valued approximation
for area-minimizing currents in a neighborhood of boundary points where the latter
are sufficiently flat. For this reason we will introduce a set of assumptions: in this
chapter we will work under these assumptions and only later we will show when
we will in fact fall under them. In what follows, in order to simplify our notation,
we will assume that (z,0) € my and we will abuse the notation by identifying R™
with 7o = R™ x {0}: in particular we will use C,(z) for the cylinder C, (x,mo)
and we will use the same symbol F' for subsets F' C R™ and for the corresponding
F x {0} C 7. Similarly we will write F' x R™ for the set F' x {0} + 7.

eT(F) :

ASSUMPTION 5.2. I' C ¥ is a C? submanifold of dimension m—1 and ¥ ¢ R™*+"
is a C? submanifold of dimension m + 7 = m + n — [ containing I'. We assume
moreover that both ¥ and I' are graphs of entire functions ¥ : R™*" — R! and
i : Rm~1 — RPH1H gatisfying the bounds

(5:2) [1D¢llo + 1D¥lg < o and A := [[Ar[lo + (| Azl < o

where ¢g is a positive (small) dimensional constant.
T is an integral current of dim. m with 0TL Cyr(z) = [I']JLCysr(x) and
spt(T) C X. Moreover we assume that

(i) p=(x,0) €T and T, = R™! x {0} C mp;
(ii) v = p(T') divides By,(z) in two disjoint open sets Q1 and Q~;

53
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54 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

(iii) for some integer @
(5.3) psT = Q2] +(@ -1 [

(iv) T is area minimizing in 3 N Cy,.(x);

(v) @ — 1 < O(T,q) for every g € I' N Cyy ().

Observe that thanks to (5.3) we have the identities

1 _

(64) BT, Curla)) = —— (I71(Carla)) — (@I + (@~ I0)
(5:5) er(F) = [|IT]|(F xR") — (QIQT N F| + (Q - 1)|2” N FY).

DEFINITION 5.3. Given a current 7' in a cylinder Cy,(p,7) we introduce the
non-centered mazximal function of er as

mer(y) == sup 7eT(BS(Z’L7T)) .
yE B, (z,m)CBay,(p,m) Wm S

Again abusing the notation, under Assumption 5.2 we regard mer has a func-
tion on By, (x) C R™.

In what follows, given a @Q-valued function u, we denote by Gr(u) and G,
respectively the set theoretic graph of w and the integer rectifiable current naturally
induced by it. For the precise definition we refer to [15]. We next rotate the
coordinates keeping 7 fixed and achieving suitable estimates for DW: the argument
is the same as in [14, Remark 2.5].

REMARK 5.4 (Estimates on ¥ in good Cartesian coordinates). Assume that T
is as in Assumption 5.2 in the cylinder Cy, (). If E := E(T, Cy4,(x)) is smaller than
a geometric constant, we can assume, without loss of generality, that the function
U : R+ 5 R parameterizing ¥ satisfies ¥(z) = 0, | D¥||o < C E'? + CAr and
| D?¥||p < CA. Indeed observe that

1

E = E(T,Cy.(z)) = 2eom ()7

[ 1) - w diTi).
Cyr(x)
Thus, we can fix a point p € spt(T) N Cy,(x) such that [T(p) — 7| < C E>.
Then, we can find an associated rotation R € O(m + 7, R) such that Rﬁf(p) =T
and |R — 1d| < CE'?. Tt follows that 7 := R(T,X) is a (m + n)-dimensional
plane such that 7y C 7 and |7 — T,%| < CE'?. We choose new coordinates so
that my remains equal to R™ x {0} but R™*" x {0} equals w. Since the excess
E is assumed to be sufficiently small, we can write ¥ as the graph of a function
U1 — 7h If (2,9(2)) = p, then |DVU(z2)| < O||T,E — R™™ x {0}|| < CE'>.
However, | D?>¥|jq < CA and so ||D¥||y < CE'> + CAr. Moreover, ¥(z) = 0 is
achieved translating the system of reference by a vector orthogonal to R™*" x {0}
and, hence, belonging to {0} x R'.

We introduce the notation Lip(u) for the Lipschitz constant of a Q-valued map
u =), u; and oscu for its oscillation, which is defined as in [14] by

osc(u) = sup |ui(z) —u;(y)l,
Z,Y,1,]

and let ¢ : ¥ — R™ be the function' whose graph coincides with I.

1If 41 is the first of component of the map %, then
v ={(=',¢1(2"),0) : ' e R™ 1}

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP 55

THEOREM 5.5. There are positive geometric constants C' and ¢y with the fol-
lowing properties. Assume T satisfies Assumption 5.2, E := E(T,Cg(x)) < ¢
and |D¥|ly < C(E'? + Ar). Then, for any 6. € (0,1), there are a closed set
K C Bs(z) and a (Q — )-valued function (u™,u™) on Bs,(z) which collapses at
the interface (v,v") satisfying the following properties:

(5.6) Lip(u®) < C(6,/2 +r2A2)

(5.7) osc(u®) < Ch(T, Cyp(z),m0) + CrE'* + Cr2A

(5.8) Gr(u®) c ¥

(5.9) K C Bs,(z) N{mer <.}

(5.10) G = L[(KNOF) xR = TL[(K NQF) x R"]

(5.11) |Bs(z) \ K| < % er ({mer > 6.} N Boyrr(z)) Vs < (3—r)r

where r1 = ¢ Y/ Jﬁ,

1
From now on the approximation of Theorem 5.5 is called the 67 -approzimation

of T in Cs,.(x). Actually in the sequel we will choose (5*% to be EP for a suitable
chosen small 5.

In a second step we will prove that, if F is chosen sufficiently small and T is
area minimizing, then u is close to a (Q — %) Dir-minimizer which which collapses
at its interface and thus, by Theorem 4.5, consists of a single harmonic sheet.

THEOREM 5.6. For every n,. > 0 and every 8 € (0, ﬁ) there exist constants
e > 0 and C > 0 with the following property. Let T be as in Theorem 5.5 and
mass-minimizing in %, let (ut,u™) be the EP-approzimation of T in Bs.(z) and
let K be the set satisfying all the properties (5.6)~(5.12). If E <& and rA < eEz,

then

(5.13) er(Bs. 2 \ K)) <n.E,

and

(5.14) Dir(ut, Q%" N By, (2) \ K) + Dir(u™, Q™ N Bo.(2) \ K) < Cn.E.

In particular ¢’ can be regarded as a function of z’ and in particular we have ¥(z') =
(¢1(2’),¢’(z’)). In the remaining part of the section we will adopt the latter convention.
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56 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

Moreover, there exists a (single) harmonic function h : Ba.(z) — R™ such that
hlz,,=0 = 0 and the function r(y) := (h(y),¥(y, h(y))) satisfies the following in-
equalities:

/ G(ut, Q[x])?
Bo(z)NQ+

2

(5.15) +/ (|Du+| — \/§|Dn|> < n.Er™

Bar(z)NQ+

ol (O R 1
BQ,,(m)ﬂQ*
2

(5.16) +/ (Ipu" |- VQ=1IDK|)" < n.Br™

Bzr,»(w)ﬂﬂ_

(5.17) / |D(nou®) — Dk|? < n.Er™.
Bzr(m)ﬁﬂi

REMARK 5.7. Observe that from the Schwarz reflection principle and the
unique continuation for harmonic functions, it follows immediately that the A of
the previous theorem is in fact odd in the variable x,,.

5.1. Proof of Theorem 5.5

5.1.1. Artificial sheet and “bad set”. Since the statement is invariant
under translations and dilations, without loss of generality we assume z = 0 and
r =1. We add to the current T" an artificial sheet , constructed by translating the
boundary I in the “negative direction” —e,, over the negative domain Q~. Clearly,
if the current 7" were area minimizing, the addition would (in general) destroy
such property. On the other hand we do not assume that T is area minimizing
in Theorem 5.5 and the “augmented current” has no boundary in the cylinder,
while it still has small excess. This will allow us to apply the first part of the
approximation theory in the interior developed in [14, Section 3], where the area
minimizing assumption is not relevant.

Let therefore ¢ (a’) = (¢1(2’),4’'(2’)) be the map introduced in Assumption
5.2, whose graph gives T', and let (2',x,,) = = be the coordinates of R™. We
introduce further the map Gy : m9p = R™ — R™ " given by Gy (2/,2,,) =
(@', m, ' (2')): the image of Gy is just the translation of I' in the direction e,, =
(0,...,0,1,0,...,0). Consider then the current Z := G¢/# [©7], cf. Figure 5.1.1.

Using the Taylor expansion of the mass, e.g. [14, Remark 5.4], we can estimate,
for any Borel set F' C R™.

M oy -ipnare [ PR ,
(ZL(FxR")=|FNnQ7 |+ — + R(Dy")
Fro- 2 FNQ-

where R(Dv') = O(|Dy’'|*). By assumption
Dy (2)| < |2'] | D*'[| , < cla’|A

for some dimensional constant c¢. Hence, assuming that the constant ¢o in (5.2)
sufficiently small,

ez(F) g/ |DY/|? < cA%[FNQ .
FNQ—
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Tm

[EEE—" -

FIGURE 5.1. The current Z is the graph over Q~ of a function v’
which does not depend on x,,: ¥’ is chosen so that 0Z = [I'].

By construction we have 0ZL Cy = Gy, [0927 N By] = —[I'] and pxZ = [Q7].
Therefore S := T + Z satisfies

pxS=Q[Bs], 0SLC4=0 and
(5.18) es(F) <er(F)+ez(F)<er(F)+cA?|FNQ|.
We can thus apply the modified Jerrard-Soner estimate of [14, Proposition 3.3]
which gives:
(JS) For every p € C°(R"™) set ®,(x) := S;(p) with
S, = pg (S, p,z) € Iy(R")

(the space of zero-dimensional integral currents in R™). If [|[Dy| < 1
then ®,(z) € BV (B4) and satisfies

(5.19) (|D<I>%,|(F))2 < 2m2es(F) ||S|| (F x my) for every Borel set F' C By.

Following a classical terminology we define noncentered maximal functions for
Radon measures u and (Lebesgue) integrable functions f : R¥ — R, by setting

1
m(f)(z) =  sup /B e,

m
2€B,(y)CBy WmS

B,
mu)(z) = sup B
2€B,(y)CBy WmS

Note that the functions z — m(f)(z),z — m(u)(z) and z — mez(z) are lower
semi-continuous. Indeed, since m(f) is obviously the maximal function of the
measure fZ™, it suffices to show the claim for m(u). Next observe that for a
general Radon measure p the map y — u(Bs(y)) is lower semicontinuous, and thus
the claim follows from the fact that the map z — m(u)(2) is the supremum of lower
semicontinuous functions.

Let us fix a small constant 0 < A < 1 and define the following “bad” sets, which
are, respectively, the upper level set U of mer

(5.20) U:={z € By: mep(z) > .}
and the upper level set of m(1y):
(5.21) U*:={z € By: m(1ly)(z) > A}.
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As proven in [14, Proposition 3.2.] we have a weak L' estimate for the Lebesgue
measure of U. Indeed, fix r < 3 and for every point € U N B, consider a ball
B?® of radius r(z) which contains x and satisfies mer(B*) > d,w;,r(z)™. Since
mer(B®) < E we obviously have

E

r(z) <rg= mw 5
mOx

Now, by the definition of the maximal function it follows clearly that B* C U N
By 4r,. In turn, by the 5r covering theorem we can select countably many pairwise
disjoint B** such that the corresponding concentric balls B? with radii 5r(z;) cover
U N B, Then we get

m

|UﬂB\<5memr (z;)™ < ZmeT B*%) 5

—mer(UNBryy,).

Since U is open we have U C U* and by the classical weak L! estimate (see e.g.
[40, 1.3 Theorem 1]), we have again

E
Wi Ay

5m
(5.22) [U* N B,| < T|UQBT+T1| Vr < 3, where r; =57

5.1.2. Lipschitz estimate. Since d, +cA? < 1, we infer that M(S,) < Q+1
for a.e. # ¢ U. Indeed recall that ||S|| (F x m5) > [ M(S,) dx for every open set
F (e.g. [35, Lemma 28.5]). Therefore using (5.1.1)

M(S,) < Tim LE @)

r—0 Wy, ™

< tim 171 (C- (@)

r—0 Wy, T

+ cA? < mer(r) + cA* + Q.

There are then () measurable functions ; : B4\U — R™ such that S, = Z?zl [gi(2)]
and we define g : B4 \ U — Ag(R") by

Q
= ls.@)]

Since the slicing is a linear operator and Z, = Z(y 4,.) = p#(Z,p,x) = [¢'(2")]
for all z € Q7, we have that

S—z:[[gZ )]+ [¥'(2")]  for ae. x € Q™ \ U.

In conclusion we can define a (Q — %)—valued function (g, ¢7) as
Q
gt (z) = Z lgi(x)] for ae. z€ QT \U,
i=1

g (x):= . [gi(x)] for ae. x € Q™ \ U,

ie. g(z) =g (z) +[¢'(2')] for all z € @~ \ U.
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Combining (5.19) and (5.1.1) we infer
m|D®,|(z)? < 2m*(mer(z) + cA?)(mer(z) + cA? + Q)
<2m(Q + 1)(8, + cA?).

Therefore, the theory of BV functions gives a dimensional constant C such that,
for any ¢ € C*°(R") with || Dy|| <1,

@, (2) = Bu(y)| < CV2m(Q +1)(3. + cA?)|z —y|
< Ly|z — y| for z,y € Bs\ U,

1
where L, := C/2m(Q + 1)(62 + C%A). As pointed out in the proof of [14, Propo-
sition 3.2] one has

sup{|®,(2) — @, (y)|: [De¢loe < 1} = Wi(g(2),9(y))

where we have set
Wi (51, 52) = sup{(S1 — S2)(¢) : | D[, <1}
= min Z|S11 — Szo'(i)| Z g(ShSQ)

oc€Pq

for Sy, = E?:l [Ski] € Ag(R™). This implies the Lipschitz continuity of g on B3\ U
and of g on QF \ U. For g it follows directly from the above estimate:
(5.23) G(9(x),9(y)) < Wi(g(x), 9(y)) < Lulw —y| for all z,y € B3 \ U

and similarly for g™ and z,y € QT N B3 \ U. In the case of g~ we use the triangle
inequality to infer

99~ (x),9” (¥)) <Wilg™ (2),9” (v))
< Wiy (@) + ['@)]L 9~ ) + [ OD) + Wil @)] L [ (0)])
< Lilz =yl + [W'(2") =4/ (y)] < (Li + cA)|z —yl.
We now claim that for some dimensional constant a > ¢ we have
G(g* (). Q¥ (@)]) < 33v/Q(L. + aA?)|y —af
for all y € O \ U*,x € v and

Glg~ (1) (Q = ) [¥'(@)]) < 33V/Q(L. + aA®)|y - af
for all y € Q@ \ U*,x € v. The latter estimates are implied by the following claim:
(Cl) for y € Bg\ U* with |z — y| = dist(y,y) we have
l9:(y) = ' (2)] < 33(L. + aA)|e —y| Vi
(where we recall that, given a point x € R™, we write 2’ for the vector
2’ € R™~! having the first m — 1 coordinates of z.)

We will argue by contradiction. Assume yo € B3 \ U*, 9 € v and ¢ € {1,...,Q}
satisfy

193(y0) — ¥/ ()] = 33(L + aAZ)r,
where r = |yo — o] = dist(yo,y) < 1. Firstly, we note that
(5.24) [¢(z)) — ' (2h)| < cAlxy — xo| for all 1, x5 € By.
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Moreover g;(yo) € spt(T)\spt(Z) . Secondly, since yo ¢ U* we have m(1y)(yo) < A
and so

(5.25) | B, (o) NU| < X By(z0)].

Due to (5.23) for all y € B,.(zg) \ U there must be a j € {1,...,Q} with

195 (9) = ¥/ (20)] > l9:(w0) = ¥'(2)] = G9(v), 9(w0)) > 32(Lw + aA2)r
and, because of (5.24), g;(y) € spt(T) \ spt(Z).
Choose N € N such tha
1
REEESY
(1= 5&)rfori=0,...,1 N. This choice ensures that, if (y,z) €
)) and y belongs to the annulus A; := B,, (o) \ By, (z0), we must

(5.26) % < (4(Ly + aA?))?

and set r; :

B, (w0, ¢’ (25)
have

1
|z — 1//(z6)\2 < 7‘1-2 — Tz'2+1 < Nrri < (4(Ls + aA%))QTQ

Therefore, if y € A; \ U, the point (y, g;(y)) determined above cannot be contained
in B, ((zo,%'(2())). In order to simplify our notation, set py := (zo, ¥’'(x()). We

then have
A\ U C p(sptT N Cy,(po) \ B, (po))
and thus

We now claim that there should be i € 1,..., N such that [4; \ U] > 3|4,
indeed otherwise

N N
1 1
Br(a0) N1 2 Y101 2 5 3 1A 2 1B (o) \ By (an)

> 5 (1- 5 ) 1Baw)

which contradicts (5.25) because A < 1. Fix an annulus 4; with |A; \ U| > 1|A;|
and define p :=r;. Now we can estimate the mass of T' in B,(py) from above using
(5.5), in fact

] (Bp(po) = TN (Cp(po)) = IT[I (Cppo) \ By(po))

(5.27) 1
<17, (o)) — 514
(5.1)
<1QI0* 11 B,(@o)| + (@ ~ DI 1 By(ao)| + mer(By(ro) — 5|4
(538 <QIOB,(e0)|+ (@10 NB, (o) + mer (B, (wo) - 15| By(wo)].

Notice that
QI N By(xo)| + (Q — 1)|Q7 N By(xo)]

<(@ = 3)1Bw0)| +1B,(w0) N {1(s") < o < v(a)}

(5.29) <(Q— 3)IBo(o)] + cAplBy (o).
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Moreover B,(z¢) \ U # 0 and mer(B,(z¢)) < 6.|B,(x0)|. Combining the latter
inequality with (5.28) and (5.29) we have

1 1
. < _Z L.
530 ITIBy) < |Ba(ao)l (@ ) +eAr+o. - )
On the other hand, by Allard’s monotonicity formula and (v) in Assumption (5.2)
we have

1
R p™ T (B, (po)) = O(T,po) > Q — 3

from which we deduce that
1
(5.31) 111 (By(po)) > (1= Cop) (@ = 5 ) 1B (wo)]

The comparison of (5.30) and (5.31) gives a contradiction, because, for suffi-
ciently large a > 0,

1 1 1
- < 2 - —
dx + (c+ Co)Ap 1 < L7 +4(c+ Co)A SN 1

(5.26)
< L2+ (c+Co)A —4L% — 4a>A < 0.

This concludes the proof of the claim (Cl).

5.1.3. Conclusion. Having established the Lipschitz bounds, first we restrict
g7 to the sets QF N B3 \ U* and then we extend them to 7 setting:

g7 (@) = Q[ ("]
g9 (2)=(Q -1 [[¥' ("]
We define the “good” set to be
(5.32) K:=(QnB3\U")U~
and (5.22) agrees with the claimed estimate on |B; \ K|.
Next, write g*(y) = >, [[(hft(y)7 U(y, hf(y)))]] Obviously the maps

y > hE(y) = Z [hF ()]

are Lipschitz on K* := K N Q% with Lipschitz constant 33(L, + aA%). Recalling
[13, Theorem 1.7], we can extend h* to maps a* € Lip(B3NQ*, Ag(R™)) satisfying

Lip(a®) < C((Si/z +aA?)  and osc(a®) < Cosc(h®).
Set finally u*(z) = 3, [[(ﬂi(x),\ll(x,ﬂ;t(x)))] We start showing the Lipschitz

1
bound. Fix 1, zo € B3NQT and assume, without loss of generality, that G(a* (z1),

ai(@))z = Zi ‘ﬂ;t(xl) — ’l_tli(xg)|2 Then
G(u* (1), u* (22))”

< Z (@ (21), @ (@, T (21))) — (@ (@2), U2, 0 (22))|*

<23 (@ + 1D, PIR)IE (@1) - f (w) [ + | Do W1 — 2f?)

2(1+ | DY|5)G (@ (1), u* (22))* + 2| DY|[G|1 — o

<
< C(0u + a® A+ | DY|F) |1 — 2|
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Recalling that |[D¥||, < C(E'? + A) the Lipschitz bound follows. As for the L*°
bound, recall that osc(u®) = inf,, sup ¢, G(u®(z), Q [p]). Proceeding as above we
then conclude

osc(u®)? < inf sup G(u* (), Q [(p, ¥(0,p))])”
P zeBs;

< 2inf sup ((1+ |DUR)G(* (2),Q [p*])* + | DW|3laf?)

P xeBs
< 2(1+ ||DY||2) osc(a®)? + 18 || DY||2.

The identity G+ L (K* x R") = TL(K* x R") is a consequence of u™(z) = T, for
a.e. x € K*. Indeed, recall that both T and G+ are rectifiable and observe that?
(T, 7)) # 0 |T|-a.e. on K x R™, because mer < oo on K. Similarly, (G,x, 7o) # 0
|G]]-a.e. on K*xR", by [15, Proposition 1.4]. Thus, (G,+ —T)L K*xR" = 0 if
and only if (G,+ —T)Ldx1A.. . Adzy, L+ wgn = 0. The latter identity follows from
the slicing formula and the property (T',p,z) = (G,=,p,z) = >, [[(:zr,uli(x))]],
valid for a.e. * € K*. Finally, to prove (5.12) we simply not that by (5.11), (5.10)
and (5.5),

[T = Gyt = Gy [[(Cs(2) = [IT' = Gu+ — Gy~ [[(Cs(2) \ (K x R™))
< T[(Cs(x) \ (K x R™)) + C|B3 \ K|
<E+(C+Q)|B:s\K|<CE.

5.2. Lipschitz approximation of Sobolev maps

Before coming to Theorem 5.6, we need a preliminary lemma, which is a mod-
ification of a corresponding statements in [14].

LEMMA 5.8. Let (f*,f7) be a (Q — 3)-valued function on B, with interface
(7,0) where v = {x,, = 0}. Then for every e there exists a (Q — %)—fualued function

(fF, f7) with interface (v,0) such that

(a) fF and f- are Lipschitz continuous;
(b) The following estimate holds:

o 2%+ [ (Ipf* - IDsE)?

B By
(5.33) + [ 1Dme 4 - Do ££))° <
If flops € WL2(0Br, Ag), then fg': can be chosen to satisfy also
(5.31) G+ f27+ [ (Df* - D) <=
B oBF

PROOF. Firstly we argue that once we have the properties (a) and (b), the ad-
ditional conclusion (5.34) can be easily inferred using the same trick of [14, Lemma
4.5]. Indeed, without loss of generality, assume r = 1 and, using the hypothesis
f|631i € WY2(dBi, Ag), extend the maps on By \ Bf as 0-homogeneous: the

extension (fT, f~) are then still in W2 and they form a (Q — 1)-valued function

2Here we use the notation (vi,v3) for the standard inner product between m-vectors and
S| w for the restriction of currents S on forms w.
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with interface (7,0) (note that v is flat). Moreover f=((1+0)z) = f=(x) for every
6 >0 and every = € OB,

Assuming that we can prove (a) and (b) for a general r, we infer the existence
of a sequence (uz, u,, ) of Lipschitz (Q — %) approximations such that

[ o= ur+ [ (D~ ey
B} B}

+/i ID(no f*) = D(noui)))* = 0.

2
By Fubini, there is a sequence d J 0 such that
[ ety [ (pf - e o,
oBf, ;. OBY,,,

By a straightforward computation, if we define fi(x) := u; (2/(1 + 81,)), then we
have at the same time

[ ot [ (D= DFE) + [ Do 1%) - Dine ) 0.
B: B

1 Bl

O 12+ [ (D5 = IDfED .

OB

We now come to the main part of the lemma, namely the points (a) and (b).
First of all, without loss of generality, we can assume that » = 1. We next define
the auxiliary function h € W2(By, Ag(R™)) as

| (=) if 2, >0
hiw) = { f(2)+ 0] if zm <O.

Observe that |Df*+(z)| = |Dh(x)| for every = € B and |Df~(x)| = |Dh(x)| for
every € By . Consider the maximal function m(|Dh|)(z) and let

Ky :={z: m(|Dh|)(z) < A}

which is a closed set, since maximal functions are lower semicontinuous. Arguing
as in [13, Proposition 4.4] we conclude that h|g, is Lipschitz with a constant C'A
(where C' depends only upon m). Moreover, by the standard maximal function
estimates, we have

(5.35) N|B\ Ky <C |Dh|?.
Bi\Kx /2

We next consider the symmetrized set
K§ ={(2,2m) € Kx: (2/,—zm) € K)\}

and observe that

|B1\ K3| < 2[B1 \ Ky.
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3

By an elementary comparison® we easily see that

G(f(2), [~ (y)) < V2G(h(x), h(y)) -

Hence the Lipschitz constant of the restriction of f~ to K§ N By is at most 3C'A
and we can extend it to a function g~ on B] with Lipschitz constant at most C’A,

for some C’ depending only upon m,n and @, cf. [13, Theorem 1.7]. Consider now
the function k : By U (B] N K3) — Ag(R™) such that

k(z) = { g (x) + 0] for z € B]
() for z € Bf N K3.
We claim that k is in fact Lipschitz with constant at most C'A\. Fix two points
z,y in the domain of the function: if they are both in Bf or both in B; then our
claim is obvious, given the Lipschitz bounds on g~ and f7| K3, respectively. Fix
otherwise = = (z',2,,) € K5 N Bf and y € By . Consider now z* := (2’
observe that 2 € K3. On the other hand

, —Ty) and

|2® — z| = 2z, < 2|z —yl.
We can therefore estimate
G(k(x), k(y)) < G(k(x), k(a®)) + G(k(z"), k(y))
(@), h(z%)) + G(k(z°), k(y))
(x), h(z*)) +3G(9™ (2°), 9~ (y))
CAz — 2°| + CA\|z® — y| < CA|lz — y|.

)

G(k
g(h
g(h

?

I/\ IN

We can now extend k to a Lipschitz map on the whole ball B; and we define g™ (z)
equal to such extension for every @ € B;. Observe therefore that (g7, ¢7) is a
(Q — %)—Valued function with interface (y,0). Moreover the Lipschitz constant is
controlled by CA. Note also that ¢g* and f* coincide on K3n Bli.

Consider next that the functions

=G, 9%,

3Indeed, fix  and y and assume without loss of generality that hg(z) = hg(y) = 0, and
that h;(z) = f; (x) and hi(y) = f; (y) for every i < Q — 1. Let 7 be a permutation of the set
{1,...,Q} such that

G(h(z), h(y))*? Zlh = hay W)

We define a permutation o of {1,...,Q —1} in thc following way. If 7(Q) = @, then we simply set
o(j) = w(j) for every 5 < @Q — 1 and we easily that G(h(z),h(y)) > G(f~(x), f~(y)). Otherwise
there is a jo < @ — 1 such that 7(jo) = Q and an ig < Q — 1 such that 7m(ip) = Q. We then set
o(i0) = jo and o(k) = w(k) for every k € {1,...,Q — 1} \ {io}. We can therefore compute

G(f (), (v)?
< D M@ —fn@P= Y (@) = by W)+ Lhig (2) = hio (9)

i<Q—1 i<Q—1,i#ig

< D hi@) = by )1 + 20hig (@) + 2|hj, (v)]
1<Q—1,i#ig

= > hi(®@) = by @)+ 20hig () = hrio) W) + 2lhq () = by (W)
1<Q—1,i#ig

G(h(@).h(y)? + |hig (&) = B (i) W) + [hq (@) = by (W)I* < 2G(h(@), h(y))? .

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



5.3. PROOF OF THEOREM 5.6 65

vanish on K§. Furthermore by choosing X sufficiently large we can assume that
|K§ N BY| > 1/2|Bf|. Thus the Poincaré inequality gives

ot g* = [ (@< [ pa*p.
Bf Bf BY
Moreover, recalling that |By \ K3| < 2|B; \ K,| and (5.35)

/Bi (IDa™? + (IDfF| = [Dg™])* +[D(n o f¥) = D(n o g¥))

1

<c / (IDF*? + |Dg*P?) < C / (IDF*2 +A2)
:(:\Ki

+ s
1 BI\KS

<C IDfE|? + CA?[By \ Al
B\K§

<C D24 C |Dh)? = 0.
Bf\K3 Bi\Kx,2

Since the latter converges to 0 as A — oo, we conclude the proof. ([l

5.3. Proof of Theorem 5.6

It is not restrictive to assume that z = 0 and » = 1. Thus ¥(0) = 0 and
$(0) =0.
5.3.1. Proof of (5.13) and (5.14). Firstly we want to note that (5.14) is a
consequence of (5.13). Indeed, use first (5.9), (5.11) and (5.13) to estimate
|By \ K| < O E'28.

Since Lip(u®) < CE?, (5.14) follows easily.
We fix § and 7,. Assuming by contradiction that the statement is false we find
a sequence of area-minimizing currents T} and submanifolds Xy, I'y satisfying the
following properties:
(i) The cylindrical excesses satisfy the estimate
(536)  By= BT Cal0).m0) = 5 [T, — ol dITell <
2wm C4(0,m0) k

(ii) Ty are smooth submanifolds of dimension m — 1 and ¥, C R™™" are
smooth submanifolds of dimension m+7n = m-+n—1[ containing I'y,. After
possibly changing coordinates appropriately (cf. Remark 5.4), ¥ and T'y,
are graphs of entire functions ¥y, : R™*? — R! and v, : R™~! — RPT1H!
satisfying the bounds

(5.37) I Cellea(s, < CEB + Ax) < OB
C
(5.38) [llea s, < CAx < B

(iii) Assumption 5.2 holds for each Tj.
(iv) The estimate (5.13) fails, i.e.,

(5.39) er, (35/2 \Kk) > By = e By,

for some positive co. The pair of (Q — %)—valued maps (f,j, [ ) denotes
the E,f -Lipschitz approximations of the current T}.
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For every s > 5/2, we have
(5.40) er, (Kp N Bs) <er,(Bs) —5ca Ek.

In order to simplify our notation, we use B,:fr for the domains of the functions

fi& intersected with the ball B,(0) C m. Instead B} denotes the corresponding
limits, namely the sets B¥ := B,.(0) N {£x,, > 0}. Using this notation and the
Taylor expansion of the area functional, since Ej | 0, we conclude the following
inequalities for every s € [5/2, 3]:

D +12 Df~ 2
/ IDfy | +/ MS(]_—FCE?B)GT,C(K]CQBS)
KpNB;" 2 KxNB, 2

(5.41) < (1+CE¥) (eTk( s) = 5es Ek>
(542) S er, (BS) - 402 Ek.

Our aim is to show that (5.41) contradicts the minimizing property of T, k- To

construct a competitor we write fl;t(;v) > [[(fk )] and denote by (fE)! ()

the first 72 components of the point (fi7);(z). This induces a (Q — %) valued map

(fk ) =0 [[fk )7 ()], namely a pair of maps taking values, respectively, in
AQ(R”) and .AQfl(IR"). Observe that, since (fif);(z) are indeed point of the
manifold X, then

FiE@) =" [(FHY @), Uz, (£5)7(2)))] -

Moreover, by (5.41), the fact that Lip(f) < CE,f and |Bs \ K| < CE,?QB gives
(5.43) Dir(f,") + Dir(f, ) < CE.
Let ((vx)*(2), (v)"(2')) be the first i + 1 components of the map 1) whose

1
graph gives I';,. We consider the (Q—3) valued map (g;, g;, ) with gki =FE, 2(f,;'t)”
with interface (i, ¢x) where

_1
= A{zm = () (@)} and  px(a’) = By 7 ()" ().
By assumption (5.38), denote by v the plane {z,, = 0} C mp, we have that

(Vs k) = (7,0) in C.

For each k we let @, be a diffeomorphism which maps Bjs onto itself and ;N Bs
onto v N Bs. Clearly this can be done so that ||®f — Id||c: — 0. Moreover, given
the convergence of v to v = {z,, = 0}, it is not difficult to see that we can require
the property ®;(9B,) = 0B, for every r € [2,3] (provided k is large enough)*

4A simple procedure to define the map on each sphere 9B, is the following. Consider the
north and south poles pPF = (0,...,0,7). On each great circle C, passing through PF and P~
consider the corresponding half circles connecting Pri. Each have exactly one intersection with,
respectively, {z,, = 0} and ;. We then map both half circles onto themselves by keeping the
map an identity around the poles and moving the intersections with ~; to the intersections with
{xm = 0}. If we use polar coordinates on the circle C; so that the north and south poles are given
by +7, we then can assume that one half circle is parametrized by [~ 75, 5]: we seek a map which
is the identity around i% and which maps a small given « in 0. Consider then a bump function
A which is supported in (—1,1) and identically 1 on (— 2, 2) an explicit formula for such a map
is

0 0(1 — \6)) + \0)(0 — o) .
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(Bs) 0 so we can choose s, € C(B3)
1

with s, = @), 0 @' on v and >k llc1(p,) — 0. Now define the (Q — 3) valued
maps

Furthermore we have that HSDk ) q);;lHCl

G @) = 3 [(g)i 0 05 (@) — ()]
i
We observe that (g;7, ;) is a (Q — 3) valued map with interface (y,0) and by
straightforward computations

Dir(g;, ®;'(A) N BF)
(5.44) = (1+0(1)) (Dir(g{, AN By) + Dir(g; ) + o(1)

for all measurable A C Bs where o(1) is independent of the set A. From (5.43)
we conclude that the Dirichlet energy of (§;, g, ) is uniformly bounded. By the
Poincaré inequality and since the maps collapse at their interfaces, their L? norms
are uniformly bounded as well. By compactness we can find a subsequence (not
relabeled) and a (Q - %) valued map (g*, g~) with interface (v, 0) such that

166 0 81,6 gy —+ 0
and
Dir(¢g") 4 Dir(g™) < 1ikﬂj>i;‘}f(Dif(§;j) + Dir(gy, )
= lim inf (Dir(g;") + Dir(g;, ))

Up to extracting a subsequence, we can assume that |D§72E |- G* weakly in L?(Bs).
One can then easily check, see for instance the proof of [14, Proposition 4.3], that

|Dg*| < G*.
In particular, since |Bs \ K| — 0, we deduce that for every s € (0, 3):

Dir(¢g%, BY) < liminf / (G*)?
(5.45) k=00 JBEna, (k)
< lim inf Dir(gif, BE N &y (Ky)) < lim inf Dir(gif, B N Ky)
—00 —»00

where in the last inequality we have used (5.44).

Let € > 0 be a small parameter to be chosen later, we apply Lemma 5.8
to (g%,97)|B, with € to produce a Lipschitz functions (g, g-) satisfying all the
estimates there.

We would like to use Lemma (4.9) to interpolate between (g, ¢, ) and (g, g-)
(note that both have interface (y,0)). However we would like the functions (g;", g5, )
not to concentrate too much energy in the transition region. To this end let us define
the Radon measures

mA):/ |ng+|2+/ DG P AcC B
ANBY ANB;

Up to the extraction of a subsequence we can assume that p;— p for some Radon
measure ;. We now choose r € (5/2,3) and a subsequence, not relabeled, such that
(A) w(0B,) =0
(B) M({T}, — (Gf; + Gf;), Ip|,r)) < CE. "%’ where the map |p| is given by

7o X T3 2 (2,9) — |z
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Indeed (A) is true for all but countably many radii while (B) can be obtained
from the estimate (5.12) through the combination of Fatou’s Lemma and Fubini’s
Theorem. In particular, by (A) and the properties of weak convergence of measures,
we have

limsuplimsup/ |Dg|? —|—/ |Dgj, |°
s=r  k—oo JBI\BF ANB; \B;

s

< limsup u(B, \ B,) = 0.

S—r

Hence, given r € (5/2,3) satisfying (A) and (B) above, we can now choose s €
(5/2,3) such that

(5.46) lim sup / D2+ / Dg P < 2.
Bi\BY “\B5

k—o0 3

We now apply, for each k, Lemma (4.9) to connect the functions (g,j,g,;) and

(9F,9-) on the annulus B, \ B, . This gives sets B, C V)ﬁa C W/{‘:E C B, and a
(Q — %) valued interpolation map (C;‘E, Cpo) With

‘Dczl: 2
/<WK v, e

A€

. C .
SCA/ IDQ§|2+|D9§|2+X/ G(gE, 9%)?
(W;\C,E)i\vf,s (W;\c,a)i\vf,a

< CA/ DGE? + Dy [?
(WE =V,
c ) )
+5 (G5, 9%)* + G(5F, 95)?)
WE )\,

Hence
A—0 e—0 k—o0

lim sup lim sup lim sup/ |Dg€ts|2 =0.
(WEYE\VE '

Thus we can find A, ¢ > 0 sufficiently small such that

(5.47) limsup/ |D¢E|? < =
k—oo J(WE )E\VE, ’ 3

Moreover, up to further reduce €, we can also assume that

2 +p2 , ©2
(5.48) [ e < [ g

Next we define Lipschitz-continuous function on B, with interface (v,0) by (note
that since A and ¢ are fixed we drop the dependence on those parameters for the
sake of readability)

A g}it on B, \ (W/’\ie)i
(5.49) hi =G, on (WF)F\VE
g on (V¥)*
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Let us then consider the functions hf = [[(Bki)z o Py 4 s 0 @k]], defined on
Bi,. The resulting (Q — 3) valued map (h, h;, ) has interface (vx, ) and satisfies

lim in (Dir(hg, Bjf,) + Dir(hy, Bk,r—))
T . . 7+ + . T — —
= hkn_lg.}f (Dlr(hk ,B;") + Dir(hy, , B, ))
< Dir(¢Z, BY) + Dir(g-, B;)
+limsup (Dir(GF, (W )"\ Vi) + Dir(Gr, (WE) ™\ 1)

k—o0
+ lim sup (Dir(g,j, Bf\ B,) + Dir(g;, B\ BS))
k—o00
(5.50) < Dir(g", B) + Dir(g~, By) + s
(5.51) < limin (Dir(g,j, Bf N Ky) + Dir(jy, By N Kk)) t e
—00
where in the third inequality we have used (5.47), (5.48), (5.46), and in the fourth

inequality we have used (5.45).
We thus conclude that, for infinitely many k,

EpDir(hy, B ) + ExDir(hi, B )
(5.52) < Dir((f;)", By, N Kx) + Dir((f;)", By, N Ki) + 2¢2E}, .
Let us consider the functions
1
vl (2) = B*hif (x)

and

Z[[ vk ), Ui (x 11,::( )))]] .

Observe that wi|pp, = fif and Lip(wi) < CE,E.

We are now ready to construct our competitor currents to test the minimality
of the sequence T}. First of all, by the isoperimetric inequality, there is a current
Sk supported in X such that

8Sk = <Tk - (Gf+ +G *) |p|,T>
and M(Sy) < C(E. )75 = o(Ey,) .

where we have used that 3 < ;-. Let Z;, = wt LC,+G,-LC, + 5. We easily

see that the boundary of Zj, matches that of Tk LC and that the support of Zj, is
contained in . Thus it is an admissible competitor and we must have

M(Z) > M(T:LC,).

On the other hand, using the Taylor expansion of the mass, the bound on Lip(hki)
and the bound on M(Sy), we easily conclude that

(5.53) Dir(wy, Bf,) + Dir(wy, By,.) > 2er, (B,) — o(Ej) .

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



70 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

We next compute
Dir(w;f, B,ir) - Dir(f{, Blj.,r N K%)

— [ Dy / D)
B B NnK

k,r k,r

I

[ PP [ D 5D

k,r Bk,r

Iz

T 4\ 2.
+ /B 1P )

I3

By (5.52) we already know that I; < 2¢y E), for infinitely many k. For what concerns
15, we proceed as follows. First we write

-[2 = ZL+ (D(\I/k(x, ’l)]j(l'))l — D(\I/k(il," (f]:r)//(;[;))l) :

(D(Ty (2, v ()i + D(Wk(z, ()" ())i)-
Next, recalling the chain rule [13, Proposition 1.12], we get
| DUy, v ()i + D(Wk(z, (f;7)" ()]
< CIDWillo + CIDuTello(Lip(or) + Lip(£1)") = CE.

Using the latter inequality and the chain rule again, we obtain

B<CBl [ (S IDa(e i) ~ Datale, () 1(a)

+
By .

+ 1D Wil (1Dvf |+ D)) )

<crlivtuds [ o0l )+ CE [ (Dol + DG

k,r
(5.54) < CE,”.
Finally,
Iy < C| DU |12 |Bs \ K| + C|| Dy W% / (DY) < CE + CE}.

Hence I; + Iy + Is < 2¢3FEy + o( E,). Since an analogous estimates holds replacing
+ with —, we conclude that

Dir(wy, Bjf,.) + Dir(wy;, B ,.)
(5.55) < Dir(fy, B, N Kg) + Dir(f, By, N Ki) + 4ca By + o(Ey) -
However, the latter inequality combined with (5.41) implies
(5.56) Dir(w;, Blj,r) + Dir(wy,, By ) < 2er,(By) — c2Ey + o(Ey) .

Clearly (5.53) and (5.56) are incompatible for k large enough. This completes the
proof of the first part of the theorem.
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5.3.2. Proof of (5.15), (5.16), and (5.17). We again argue by contradiction.
Assume the second part of the theorem is false for some 7,.. We then have again
a sequence of area-minimizing currents T} and submanifolds X, I'y satisfying the
properties (i), (ii) and (iii) of the previous step, which we recall here for the reader’s
convenience together with the fourth contradiction assumption. More precisely:

(i) The cylindrical excesses satisfy the estimate

(557) Ek = E(Tk,C4(O),T(0) = L |T];—7T_6|2d”Tk|| < l
2wm J e, (0,m0) k
(ii) Ty are smooth submanifolds of dimension m — 1 and 3, C R™*™ are
smooth submanifolds of dimension m + 7 = m + n — [ containing I'y. 3
and T'j, are graphs of entire functions ¥y : R+t — R! and ), : R™~ 1 —
R™+1+ satisfying the bounds

(5.58) Wkl < B + Ax) < CBY?
C
(5.59) [llca sy < CAR < T E”.

(iii) Assumption 5.2 holds for each Tf.
iv) The EV -Lipschitz approximations (f;", f, ) fail to satisfy one among the
k koJk Y g
estimates (5.15), (5.16) and (5.17) for any choice of the function x.

As in the previous step we write fif (z) = 3, [[(f,;t),(x)]] and denote by (fi£)” (x) the
first 7 components of the point (fi);(x). This induces a (Q — 3) valued function
(f5) =3, [[(f,j[);’(x)]] with values in Ag(R™)(R™) and Ag_1(R™). Observe that,
since (fif)i(z) are indeed points of the manifold ¥, then

FE@) =D [(FHY (@), U, (f5)] (@))] -

K3

We keep using the notation of the previous step. In particular we let
(i)' ("), (i) ()

be the first 7+ 1 components of the graph map of I'y and ¢ = Ek_% (Yr)" (z"). We
consider the (Q — %) valued map (g;7, g;,) defined by

1
ot = B UEY

with interface (vx, k). For each k we let @ be a diffeomorphism which maps Bs

onto itself and y; N B3 onto v N Bs. Again this is done in such a way that | @ —

®||c1 — 0, where ® is the identity map. Furthermore, since ngk od, 1 Hcl(B'g) — 0,
we can choose sg, € C*(Bs) with s, = ¢ 0 @, " on v and 2kl w12 (py) — 0. Now

define the (Q — %) valued maps
gr (x) == Z [(g2)i 0 @ (@) = ser()] -

As in the previous step we can find a subsequence (not relabeled) and a (Q — %)

valued map (g*,g~) with interface (7, 0) such that ||g(g,§,gi)HL2(Bi) — 0. We
3
next claim that
(A) The convergence of g to g* is strong in W12(Bs5), namely

len;o(Dir(g,j, Bf,,) +Dir(g; , B y)) = Dir(g*, B ,) + Dir(g™, B5 ) -
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72 5. FIRST LIPSCHITZ APPROXIMATION AND HARMONIC BLOW-UP

(B) g% is a (Q — &)-minimizer.
Assuming that (A) and (B) are proved, from Theorem 4.5 we would then infer the
existence of a classical harmonic function A which vanishes identically on {z,, = 0}
and such that gt = Q[h] and g— = (Q — 1) [h]. Setting hy := E,lc/zlAz and ki (x) 1=
(hi(z), Ug(x, hi(x))) we would then conclude that

[ auraiml+ [ (1D51- vVaiDal) = oE).

Bk,5/2 Bk,S/2
2
[ au@-nis1r+ [ (1051-Vi@=DiDal) = o5,
k,5/2 k,5/2
/i ID(n o fif) — Dryl* = o(Ey).
Bk,5/2

But these estimates are incompatible with (iv) above. Hence, at least one between

(A) and (B) needs to fail. As in the previous section we will use this to contradict

the minimality of T);. Note that in both cases there exists a (Q — %) valued function

(g™, g~) with interface (v,0), v = {z,, = 0}, and a positive constant c3 > 0, such
that

(5.60)  Dir(g", BJ) + Dir(g", B,") < liminf Dir(g", B) + Dir(g , By') — 2c3
—00

for all s € (5/2,3). Indeed this is true with (g*,g7) = (g%, g7 ) if (A) fails, while

if (B) fails we choose (g, g~) to be a (Q — 3)-minimizer with boundary data g*

on dBs/, extended to be equal to gF on B3\ Bs /2. We can now argue exactly as
in the previous step to find a radius r € (5/2,3) and functions ﬁf such that

M((Ts = (Gy+ + G, ), Ipl, 7)) < CE, ™
and, arguing as we have done for (5.50),
(5.61) lim inf Dir(ht, B} ,) + Dir(h™, B, ,) < Dir(g*, B,}") + Dir(g~, B, ) + 3
—00 ’ ’

(5.62) < likrringir(ng, B;,) +Dir(¢™, B;,) — cs.

As in the previous section we consider vki (z) == E;/th(:c) and
wir (@) =Y [0 (@), Uula, v ()]

and observe that w,f|a B, = f,;t We then construct the same competitor currents
to test the minimality of T. First we consider a current Sy supported in ¥j such
that

08y = (T = (G + Gyo),[pl,7) and M(Sy) < C(EL )5 = o(Ey),

Then we define, as before, Z; := Gw: LC, + GwE L C, + Sk, for which we can
verify that

(5.63) M(Zx) > M(T;C,.).
By the result of the previous section, we know that

(5.64) 2er, (B,) = Dir(f{, BY,) + Dir(f . By,) + O(mEx).
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Observe that now we can choose 7, — 0 as k — co. On the other hand, using the
bound on M(S}) and Taylor expansion we infer

(5.65) 2ez, (B,) = Dir(w}, B,:r) + Dir(wy,, By ) + o(Ek) .

Arguing as in the previous section (see (5.54)) and relying on (5.62) we also have
(5.66)
Dir(w;, B,':’T) + Dir(wy, , B ,.) < Dir( - B,':’T) + Dir(fy, . By,) — caBy + o(Ey) -

Clearly (5.63), (5.64), (5.65) and (5.66) are in contradiction for k large enough,
which completes the proof.
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CHAPTER 6

Decay of the excess and uniqueness of tangent
cones

In this chapter we prove the decay of the excess at totally collapsed points for
area minimizing currents. As a consequence we will conclude that the tangent cone
at each such point is in fact unique.

DEFINITION 6.1. Let T' be an integral current of dimension m in R™*". We
define the excess E(T, B,.(p), ) of T in the ball B,.(p) with respect to the (oriented)
plane 7 as

1

2w r™

©)  E@Bp): [ @ - 7).

B.(p)
If T is area minimizing in a Riemannian manifold ¥ C R™*" we then define the
spherical excess of T at any ball B,.(p) centered at some point p € spt(T) C ¥ as

(6.2) E(T,B,(p)) := min{E(T,B,(p),n) : * C T,X}.

We underline that 7 is constrained to be a subset of 7},%, so probably a more
appropriate, yet cumbersome, notation would be E*(T,B,(p)). Moreover we let
h(T,B,(p)) be the minimum of h(T, B, (p), ) while 7 C T),¥ runs among those
planes which optimize the right hand side of (6.2).

Before stating the main theorem of this chapter we need to introduce a modified
excess function for boundary points, where we constrain the “minimal” reference
planes to contain T),I".

DEFINITION 6.2. Let T, ¥ and I' be as in Assumption 1.5 and assume that
p € I'. We define the modified excess in B,.(p) as

(6.3) E’(T,B,(p)) := min {E(T,B,(p),n): T,I C 7 C T,%} .
With this notation, the main result of this chapter is the following;:

THEOREM 6.3. Let T be a C? (m—1)-dimensional submanifold of a C? (m+n)-
dimensional submanifold ¥ C R™T™ and consider an area minimizing current T
in X with the property that 0T LU = [I'] for some open set U. If p e T'NU is a
collapsed point with density ©(T,p) = Q — %, then there exists r > 0 such that:

(a) Each q € T NB.(p) is a collapsed point for T with density Q — %;

(b) At each ¢ € T N B,.(p) there is a unique flat tangent cone Q [w(q)™] +
(Q — 1) [n(q)~], where m(q) C TyX is an oriented m-dimensional plane
containing T,T';

75
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76 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

(¢c) For each € > 0 there is a constant C' = C(g) with the property that
E’(T,B,(q)) < E(T. B, (). 7(q))

2-2
(64) <C (B) c Eb(T, Bzr(p)) + CpQ_QETZEAQ
r
for all g e T NB,(p) and for all p €]0,7(;
(d) For each € > 0 there is a constant C = C(g) such that

(6.5) m(q) = 7(d)| < COr="E" (T, B2r(p))* + Ar¥)lg’ — ' ~*

Vq,q' € TN By (p);
(e) There is a constant C such that

(6.6) h(T,B,(q),(q) < C(r "E’(T, B, (p)) + A) "*p*
for all g € TN B,.(p) and for all p €]0, 5.
Before coming to the proof we state an important corollary of the theorem

which will be used often in the remaining chapters (for a geometric illustration of
the conclusions we refer to Figure 6.1).

COROLLARY 6.4. Let I',%,T and p be as in Theorem 6.3, assume r = 20 is
a radius for which all the conclusions of Theorem 6.3 hold, set E = E’(T,B,.(p)).
Furthermore let m be an optimal plane for the right hand side of (6.3) and 7(q)
be the tangent plane to T in q as in conclusion (b) of Theorem 6.3. If we denote

by p,pl,pq and pqL respectively the orthogonal projections onto 7T,7rl,7r(q) and
7(q)*t, then

(6.7) i7(q) - 7| < C(E + Ar),

(6.8) spt(T) NB,(g) C {x: [p*(z — q)| < C(E+ Ar)"|z — g}

for allq e T NB,(p) and
(6.9)  spt(T) NBy(g) C {z: |py(z —q)| < C(r'E+A)"lz—q|?}
for all g e T NB,(p).

\ ,
\ ,
\ ,
\ /
\ ,
\ ,
\ :
\ :
\ /
\ ,
\ /
\ ,
\ ,
\ :
\ :
o
o
N m(q)
"
y
-
2

™

FIGURE 6.1. The region delimited by the thick curved lines is the
right hand side of (6.9), whereas the cone delimited by the thick
dashed straight lines is the right hand side of (6.8).
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6.1. HARDT-SIMON HEIGHT BOUND T

6.1. Hardt—Simon height bound

In this section we show the validity, at the boundary, of the classical interior
height bound, under Assumption 5.2. The argument follows an important idea of
Hardt and Simon in [27] and takes advantage of an appropriate variant of Moser’s
iteration on varifolds, due to Allard, combined with a crucial use of the remainder
in the monotonicity formula.

THEOREM 6.5. There are positive constants € = e(Q, m,n,n) and
CO - CO(Q7 m, ﬁ7 ﬂ)

with the following property. Let T, Cyr(x), X, T and 7y := R™ x {0} be as in
Assumption 5.2 and set

E:=E(T,Cy4-(z)), a:=|Arllo and a:=|As]o-
IfE+a+ac<eg, then
h(T, Cop.(2),m0) < Co(E'? +a'*r'? + ar)r.

We will split the proof of the theorem in the following two lemmas, where again
the corresponding geometric constants Cy depend only upon m, n,n and Q.

LEMMA 6.6. Under the assumptions of Theorem 6.5 there is a constant Cy such

that
sup P, (2 —2)* < Co?"m/ P, (= — )2 d||T|(=)
z€spt(T)NCar () Cs,.(x)
(6.10) + Cp(a? +a?)rt.
LEMMA 6.7. Under the assumptions of Theorem 6.5 there is a constant Cy such

that

611) / IpL (2 — 2)2d|T)(2) < CoBr? + Coar* + Coar®.

Cgr(z

After rescaling and translating we can assume in all our statements that r = 1
and z = 0 . Moreover, we use p and p* in place of p,, and pj;o.

6.1.1. Proof of Lemma 6.6. The estimate is a classical one in Allard’s inte-
rior regularity theory. The proof in our setting follows from a minor modification
of the arguments, which we however report for the reader’s convenience.

We fix a system of coordinates so that mo = {y : Ym+1 = ... = Ym+in = 0} and
fixie {m+1,...,m+n}. We fix a constant Cj, to be chosen in a moment, and
consider the function

f(z) := max{x; — Coa + Coa|z|?,0}.
‘We wish to show the estimate
(6.12) sup  fA2)<Cr | fA(2)d|T|(2),
z€spt(T)NCay Cs

from which we will get (6.10) simply summing up all the corresponding inequalities
when taking i € {m +1,...,m 4+ n} and —y; in place of y;.

In fact we let r4 s be a suitable convex smoothing of the function R > ¢ —
r4(t) := max{t, 0}, with the additional properties that r 5 vanishes on the negative
half line and equals the identity for ¢ > ¢: then we will show the inequality (6.12)
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78 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

for the function f(z) := ry s(x; — Coa + Cpal|z|?). Since the constant C; will not
depend on §, we will achieve the correct inequality by simply letting § | 0. For the
rest of this proof f denotes such a fixed smoothing of max{x; — Copa + Coalx|?, 0}.

Observe that, by choosing Cy sufficiently large we achieve that f vanishes on I'
and, according to [2, Section 7.5], that f is subharmonic! on the varifold induced
by T.

We next show that (6.12) holds under these two assumptions. Note that Allard
in [2, Section 7.5] proves precisely this statement, but we cannot use [2, Theorem
7.5(6)] directly because the constant in the inequality depends upon the distance
of the support of f and the boundary I': the purpose of the following argument is
to show that in fact such dependence is absent in our case.

We denote by C* the decreasing sequence of cylinders Cy, 5. We then observe
that the (short) paragraph proving [2, Lemma 7.5(5)] applies to our situation and
implies the inequality

(6.13) / rhPd|T] < 225+ / B2d||T|
Ck+1 Ck

for any subharmonic function & which vanishes on a neighborhood of I'. ' We next
use the Sobolev inequality on stationary varifolds, namely from [2, Theorem 7.3]
we know that, for a smaller than a positive geometric constant,

(6.14) ([ o) ™ <o [ 9ee

whenever ¢ is a smooth function compactly supported in C* (remember that h
vanishes in a neighborhood of T').
Following the classical scheme of Moser’s iteration, cf. [2, Theorem 7.5(6)], we

introduce 3 := - and
Next we fix a cutoff ¢y, identically equal to 1 on C?**2, compactly supported in
C2k+1 and with |Vir| < Cp22%. Substituting h = £28" and ¢ = ¢y, inside (6.14)
we then conclude

k k k
(6.15)  I(k+1)” SCo/ Ve (f? )|d|\T||+0022’“/ 2|
C2k+1 C2k+1
Next we compute

/ V(728 d|T)| < 2 / V(7)) £ )T
C2k+1 C2k+1

B2 ” 26" -
<2( [ gwepary) ([ Pt
C2k+1 C2k+1

1'We recall that a function h is said to be subharmonic on the varifold induced by T if
/VTh “Vred|T|| <0 Ve e Cl with ¢ >0,

where Vrh is the orthogonal projection of Vh on the tangent space to T (i.e., if v1,...,vm is an

orthonormal frame such that T(z) = v1 A ... A vm, then Voph = > gTh'vl)
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6.1. HARDT-SIMON HEIGHT BOUND 79

Now, since Ry > ¢ +— 7" is C?, convex, and increasing, the function h := fﬁk is
subharmonic (cf. [2, Lemma 7.5(4)]). Moreover it vanishes in a neighborhood of T".
From (6.13), we then conclude

(6.10) L ey <242 [ pa).
C2h+1 2k
Putting together (6.15) and (6.16), we then easily conclude
I(k+1) < C*P I(k).
The estimate (6.12) follows from
sup  f%(2) <limsup I(k) < CI(0).

z€spt(T)NC2 k—so00

6.1.2. Proof of Lemma 6.7. We follow here the proof of [39, Lemma 1.8]
(note that essentially the same idea was used in [27]). First of all, we let r = 4 and
s go to 0 in (3.5) to achieve

2
X
(6.17) / E m|+2d|T|( ) < 47™|T|(By) — wmO(T, 0) + Erry + Errs,

4
Frry i— / pm1 / ot - B (2)|d|T) () dp
0 B

P

4
Frrs ::/ p—m—l/ - 7i(a)| dH™ () dp.
0 B,Nr

Straightforward computations? show that |z - 7i(z)| < Coalz|? for z € T and |z+
Hyp(z)] < $|xJ-|2 +2m?2pa®. Thus we can bound

where

4
Erry Scoa/ pl T H™ (B, NT) dp < Coa
0

1/ 1 1 1TI(B
Errg gg/ m_+2/ |IJ‘|2dHT||(x)dp—|—2m252/ 7] ( p) dp
0 B, 0

pm

and

1 |zt |2 _
<5 L, eI + 260 T (B.)
where in the last inequality we have used the monotonicity of p — ¢©? p‘mHTH( 5)-
Plugging these two estimates in (6.17) and recalling that ©(T,0) > Q — 5 we then
conclude

T 2
(6.18) /B o AT @) < 47 ITI(B) — (@ — Yo + Con+ Coa?| T (Ba)

Next, by (5.4) and computations as in (5.29), we infer

(6.19) 4~ || T]|(B4)—(Q—1)wm = wm (% —(Q - %)) < W E(T, C4)+Coa.

2Observe that |+ - Hr(z)] < g5lat|? + 2p|Hr(x)[?, while |Hr(z)| < m||As[lo < ma by
(3.1).
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Hence we easily conclude from (6.18) that

(6.20) /B e 2d| T (2) < Co(E + a + a2).

Next, a straightforward computation gives
1 -
=2 2 5P ()P = [T (2) = mo?

for every z € spt(T'). Integrating the latter inequality and inserting in (6.20) we
then conclude
(6.21) / [p*(2)]%d|[T||(2) < Co(E +a+a%).
By

In order to complete the proof we need to show that spt(T) N Cs C By, if
the parameter € in Theorem 6.5 is chosen sufficiently small. Arguing by contra-
diction, if this were not the case there would be a sequence of currents T} in Cy
and submanifolds Ty, X satisfying all the requirements of Assumption 5.2 with
E(Ty, Cy) + ||Ar,llo + |As,. lo — 0 but with the additional property that there is a
point pg € spt(Tx)NC3 with |pg| > 4. Note however that, under these assumptions,
the mass of T} in Cy converges to (Q — %)4mwm and T} converges, up to subse-
quences, to a current T, of the form @ [[C4 n 71'3']] +(Q-1) [[04 N w()_ﬂ. On the
other hand this means that, for some geometric constant r» > 0, B,.(py) has positive
distance from the plane 7y and is contained in C4. Let U be an open set which
contains the closure of C4 N 7y and has empty intersection with B,.(p). Then

M(Tx) = [|Tel[(U) + | T (B (p)) -

Letting £ — oo and using the semicontinuity of the mass we conclude
1 .
(@ 5)4me™ = T |(©) + lim sup | Tel| (B, (pr)
—00

On the other hand ||T||(U) = (Q — 3)4™w™ and so
Tim [[73]|(B, (pc) = 0.
—00

Since pr € spt(Tk) and B,.(pr) C C4\ T, for k large enough we contradict the
interior monotonicity formula.

6.2. Excess decay

The core of Theorem 6.3 is in fact the decay estimate (6.4), which we prove in
this section for the modified excess function introduced in Definition 6.2, under a
suitable smallness assumption.

THEOREM 6.8. For any € > 0 there is an g9 = eo(e,Q,m,n) > 0 and a My =
Mo(e,Q,m,n) with the following property. Let T, ¥ and I' be as in Assumption
1.5 and assume that

(i) A%0® + E = (| Ag|| + | Ar[)*0® + E*(T, Buo(q)) < e0;
(i) O(T,2) > Q — 1 for all z € T N Byy(q);
(iii) ¢ €T and || T (Bay(q)) < (Q — 7)wm(40)™.
Then, if we set e(t) := max{E"(T,By(q)), MoA%t*} we have
(6.22) e(0) < max{2” " ¢e(40),272%¢(20)} .

The rest of this section is devoted to the proof of Theorem 6.8.
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6.2.1. Preliminary considerations. Without loss of generality by scaling,
translating and rotating, we can assume o = 1, ¢ = 0, E*(T,By) = E(T, By, 1),
where T = R™ x {0} C ToX = R™ x R™ x {0}, and T,I' = R™~! x {0}. We also
recall that, if we do not specify the center of a ball or a cylinder, we implicitly
assume that such center is the origin.

We start by observing that, without loss of generality, we can assume

(6.23) E’(T,B3) > 2™ MyA?2,
and
(6.24) E’(T,By) > 274""E"(T,B,).

Indeed, note that
e(1) = max{MyA? E’(T,B;)} < max{MyA2 2"E’(T,B,)}.
So, if (6.23) fails, then
e(1) < MgA? =272(22MyA?) < 272¢(2),
whereas, if (6.24) fails, then
e(1) < max{MyA% 27*E’ (T, B,)} = 27 %e(4) .

Hence in both cases the conclusion would hold trivially.
Summarizing, under assumptions (6.23) and (6.24), we need to show the decay
estimate:

(6.25) E’(T,B,) < 2*72E’(T,B,).

Let us now fix a positive 7 < 1, to be chosen sufficiently small later, and
consider the cylinder U := By_,(0,m) + B"-(0, 75 ), which by abuse of notation

V1
we denote by By, X B\”/ﬁ. If &g is sufficiently small, we claim that
(6.26) spt(T) NOU C OBy X By,
(6.27) By, Nspt(T) CU.

Otherwise, arguing by contradiction, we would have a sequence of currents T}
satisfying the assumptions of the theorem with gy = %, but violating either (6.26)
or (6.27). Then T}, would converge, in the sense of currents, to

Tw:=Q [Bi]+(@ -1 [Bi]
where Bflt = B4(0,m) N {*x,, > 0} and Q' is a positive integer. By the area-
minimizing property, this implies that the supports of T converge to either By (if
Q >1)or EZ (if @ = 1) in the Hausdorfl sense in every compact subset of By.
This would be a contradiction because both By_,, \ U and 0U \ (0B4—,, x B%) are

compact subsets of By with positive distance from B,. We have therefore proved
(6.26) and (6.27).

We remark further that we must necessarily have ||To||(B4) < (Q — §)wn 4™
by assumption (iii). Hence, by the monotonicity formula Q" — % = 0(Tw,0) <
Q- %. On the other hand, by assumption (ii) and the upper semicontinuity of the
density of area-minimizing currents under convergence of the latter, we must have
O(Tw,0) > Q — % Since @’ is an integer we conclude Q' = Q. Observe also that,
by the area-minimizing property, ||T%|[(A) — ||Two||(A) for every compact subset A

of By4. Thus, for g is sufficiently small, we have that:
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82 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

(A) the mass of T' in the ball B, is, for any radius 1 <7 <4 — 2 and up to a
small error, (Q — %) W™
Next, let us define Ty := T'LU. Observe that (6.26) and (6.27) imply:
(B) 6T0LC4,,, = [[F n C4,T,H;
(C) TLBy—y, =ToL By,
Choose a plane T C TpX which contains TpI" and such that
E(T,By,7) = E’(T,By).
Let us observe that (since 7 is the optimal plane for E*(T, By)):
7 — mol*|T|(B2) = / |7 — mol* d|| T

B2

< 2/ T — mof2d|IT| +2/ T — =P dT
B2 B2

< 22w, E’(T,By) + 2 - 4™w,, B’ (T, By)
< CE’(T,By).
Moreover
E(Ty,Cs—yy) < E(T, B4,g,7r0)
< (T, By_y) + 54 7 — mol?II T (Ba_y)
(6.28) < 2E’(T,B,_3) + C|7 — mo|?||T||(B2) < CE’(T,By),
where in the third inequality we have used (A), namely that the mass of 7" in a ball
of radius » < 4 — 7 is comparable to (Q — %) W™, Thus
(D) E(Ty,Cy_,) < CE’(T,By).

Moreover, recalling that p : R™™™ — my is the orthogonal projection, by the
Constancy Theorem

(E) pyTo = Q*[QF] + (Q* — 1) [Q7], where Q* is a suitable positive natu-

ral number and QF are the regions in which B, is divided by p(T'); in
particular

0 IIQJrII LC4_17 = -0 [[Qi]] LC4_7] = P¢ [[F]]LC4_77 .
Since To = TLU and U C By, clearly || T5||(Cs—yy) < ||T]|(By—p/2). On the
other hand, by (D) and (E),
I Toll(Ca—p) = QTIQT| + (Q" — D).

Assuming that the constant ¢y in the assumption (i) of the theorem is sufficiently
small, we conclude that py [I']L. C4—,, is close to an m — 1-dimensional plane passing
through the origin. In particular Q* Q|+ (Q* —1)|Q7| is close to (Q* — §)wyn (4 —
n)™. Thus, if g9 is smaller than a geometric constant, we infer

. 3
ITl(Ca) 2 (@ = Deom(d = )"
However, by (A), a sufficiently small £ would imply ||T[|(B4—,/2) < (Q— 3 )wn (4—
#)™ and hence we achieve Q* < @ provided 7 is chosen smaller than a geometric
constant.
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On the other hand,
1To[(Ca—n) < Q*|QF| +(Q" = 1)|Q7| + E(Tp, Ca—y) -

Using (D) and the argument above, if ¢¢ is sufficiently small we get ||Tp||(Cs—yp) <
(Q* — T)wm (4 —n)™. Recall that we have shown that T By_, = Ty B,_,. Thus
IT[(Ba-y) < | Toll(Ca-y) and, using (A), we also have [|T[(Ba—y) > (Q — §)(4 —
7)™. Thus necessarily Q* > Q.

Next, since T By = Ty Bs, then

(6.23) 2 \™
A’ < 2"PMETE (T, By) < 27 (m) My "E(To, Cy—y)

(6.28) )

< COM;'E (T,B,).

Thus we can apply Theorem 5.6 with 5 = % and a sufficiently small parameter 7,
to be chosen later, provided ¢ is sufficiently small and Mj is sufficiently large.

6.2.2. Reduction to excess decay for graphs. From now on we let
(ut,u™),h and K be as in Theorem 5.6. In particular, recall that (ut,u™) is
the E#-approximation of Theorem 5.5 (and therefore it satisfies the estimate (5.6)—
(5.9)) and h is the single harmonic function which “supports” the collapsed (Q — %)

Dir-minimizer . Moreover, denote by E the excess E(Ty, C4—,) and record the

estimates:
(6.29) A? < CoMy'E
(6.30) E < CoE’(T,By),

where Cj is a geometric constant and the second inequality follows by combining
(6.28) and (6.24). Next, define 7 to be the plane given by the graph of the linear
function x — (Dh(0)z,0). Since, by Remark 5.7, h(z’,0) = 0 we have that

™D Tol' =R™ ! x {0}.
Moreover, by elliptic estimates,
(6.31) 7| < |Dh(0)| < (CDix(h, By (4_)))? < CE?.
Fix 1 to be chosen later; in the next steps we show that
(6.32)  E(Gu+ +G, ,Ci,m) <(2-7) ®9E(G,+ +G, ,Coy) +TE.
From this we easily conclude (6.25) as follows. First of all, by the Taylor expansion

of the mass of a Lipschitz graph and the Lipschitz bounds on u®, we conclude
E(G,+ + G,-,Co_5) <E(Ty,Co_z) + C |Dut >+ C |Du~ 2.
QF\K Q-\K
Secondly,

E(T,B;,7) < E(Ty, Cq,7)
<E(G,+ + G,-,C1,m) + 2er(B1 \ K) + 2|7*| B, \ K|.
From (5.13), (5.14), and (6.31) we infer
E(G,+ +G,-,Co_5) <E(Ty,Co_5) + Cn.E,
E(T,B,,7) <E(G,+ + G,-,Cy,m) + Cn, E.
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84 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

Combining these two last inequalities with (6.32), we conclude
(6.33) E(T,B;,7) < (2-7)?°E(Ty, Ca—5) + Cn.E +TE.
Using the height bound in Theorem 6.5, we infer
spt(T) N Co_y C By
Since Ty By = T'L By, (6.33) gives us that
E’(T,B;) < E(T,By,7)

2 m
<(2- ﬁ)*(Zfs) (m> E(T,Bq, 1) + Cn.E +TE

-7
Hence, since the constant C' in the last inequality is independent of the parameters
74,7, choosing the latter sufficiently small and recalling (6.30), we conclude (6.25).

2 m
=2-7"?9 (—2 ) E’(T,B2) + Cn.E +T7E.

6.2.3. Reduction to L?-decay. In this section we want to replace the ex-
cesses in (6.32) with suitable L? quantities. In particular the Taylor expansion of
the area functional and the estimate Lip(u®) < E® give

o (2 7)™ E(Gur +Gu ) Coy)— / Dut 4 / Du~P?
By_5NQ+ Ba_5NQ~

(6.34) < CE* / |Du+|2+/ Du 2| < 1B,
By_mnQ+ By 7N 3

provided ey is sufficiently small. Let us define the linear map x+— Az :=(Dh(0)x, 0).
We now claim that

2‘J-”m]-E(G"u‘*' +Gu_7clﬂ7r) < / g(Du+,Q[[AH)2
BiNnQt

(6.35) +/B 9w @Q-1) [A])? + gE

If we introduce the notation 7 for the unit simple m-vector orienting 7, then the
latter inequality is implied by

(6.36) /
Q+NB; xR™

and the analogous inequality for «~. In fact, since the argument is entirely similar,
we only show (6.36). The argument follows the one of [15, Theorem 3.5]. Arguing
as in [15], thanks to [15, Lemma 1.1], we can write u™ = Y, [u;"] and process
local computations (when needed) as if each u;-" were Lipschitz. Moreover, we have
that

—

G+ —T

S dG ] < / G(Dut. QA + 1B

F:% with €= (ey +Aei)A...Aem + Aep).

Here and for the rest of this proof, we identify R™ and R™ with the subspaces
R™ x {0} and {0} x R™ of R™*", respectively: this justifies the notation e; + A e
for e; € R™ and Ae; € R™. Next, we recall that

€] = VIE.€) = \/det(6;; + (Aer, Aej)) = 1+ §|AP +O( A1),
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By [15, Corollary 1.11]

. = 2
637) B / G, —7] d|G,+]
(Q+NBy)xR»
=2M(G+) —2/ (G, 7V d|| G+ ||
(Q+NB1)XR™

2010° N By + / (IDu* 2 + O(|Du* %))
O+

NBy

—2/ > ((er+ Duf er) A... Al(em + Duf en), 7
Q+tNB; .

On the other hand (Ae;, ex) = 0= (Duj e;,e;). Therefore,
{(e1 4+ Duf e1) A ... A (em + Duf ey,), )
= [¢]7  det(0;1 + (Du ej, Aex))

2 —1
= <1+ % +O(|A4)) (14 Duf : A+ O(|Dut?|A]P%)) .

By the mean value property of harmonic functions

][ Dh
By

and the Lipschitz bound Lip(u®) < E?, we conclude

(6.38) 14| = < CE?

Etilt:/ \Du+|2+Q\Q+ﬁBl||A|2
B1NQt

-2 Duf : A+ 0O (E'"t?8
/z ; (B4+29)

= / > [Duf — AP + O (E'T2P)
QtNB;

_ / G(Du*, Q[A])? + O(E'*2P)
Q+tNB;

The claim (6.35) follows from the latter identity for €y small enough.
Combining (6.34) and (6.35), (6.32) is reduced to

[ awut@uar+ [ e @-vlap?
QtNB;

Q+tNBy

(6.39) < (2-7) ™2t / |Du+|2+/ |Du™|? | +
Q+ﬁBgfﬁ Q_ﬂBzf.,—,

).

g,

3

85

6.2.4. Reduction to L?-decay for harmonic functions. As a first step,
we substitute u™ and v~ in the inequality (6.39) with @ [x] and (Q — 1) [«], where

k is as in Theorem 5.6. In fact, from (5.15) and (5.16)

[ e [P
Q+tNB2_5 Q- NBa_z

> Q \Dn\2+<cz—1>/

Q+tNBy_5

|DA[> — 4\ E

MNB2_7
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Moreover, using again (5.15), (5.16), and (5.17), the identity
[ awutapt= [ (DutP - 20(Dmout): )+ QlAP)
Q+tNBy Q+tNBy
and (6.38), we also conclude

/ G(Du', [A])? + / G(Du™,(Q — 1) [A])?
Q+tNB;

Q—NB;
<Q |Dn—A|2+(Q—1)/ |Dk — AP + Cipi°E.
QtNB; Q—NB;
Next, notice that

[0\ Bi| + | By \ | < CllArl < cA < oMy B
and compute

|Dk| <|Dh| + |Dg¥(x, h)| + |Dy ¥ (x, h)||Dh
C

<—E3 for x € By_,,.

In the latter estimate we are using that the harmonic function h is defined on By_ 1
and that [|Dh|?> < CE, together with the usual interior estimates for harmonic
functions. Note that, in particular, we have the better bound |Dx| < CE= on the

smaller ball B;.

Thus

Q Dr=AP+(Q-1) [ [Dr- AP
Q+tNB; Q—NB;y
gQ/ |D/<;—A|2+(Q—1)/ \Dr — AP? + CE?

B} By
and

Q DutP@Q-1 [ |puf

Q+NBz_5 Q+tNBz_5

z@/ \Dn\2+(Q—1)/ Dr? — LBt
B;Qﬁ B n

27
In conclusion, if €y is sufficiently small (depending on 7) (6.39) is reduced to

Q‘/BTDR—A2+(Q—1)/|DH—A|2

B

G40) < @og e (Q |, iosfr@-n [

2

|DH|2> + gE
2-7

Now we will substitute x with the harmonic function k in (6.40). To this regard,
recall that A = (Dh(0),0) and

Dk = (Dh, Dy W + D, U(x, h)Dh),

where

C
M

1D, | +|D,¥| < CA < —E%.

O

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



6.3. PROOF OF THEOREM 6.3 87

Therefore
C
|Dr — A2 < |Dh — Dh(0)]* + —E,
My
|Dk|? > |Dh/|?.

Hence, assuming M, sufficiently large, the proof of (6.40) will be completed in the
next paragraph, where we show that

_ 2 o o 2
Q/Br|Dh Dh(0)|% + (Q 1)/ \Dh — Dh(0)|

By

B,

(6.41) <@-p (@ [, oer@-n [ |Dh|2> .

Recall that h vanishes on {x,, = 0}, hence by the Schwarz reflection principle
and unique continuation for harmonic functions, h(z’,z,,) = —h(z',—x,,) (see

Remark 5.7). This implies that the left hand side of (6.41) equals (Q — 3) fBl |Dh—
Dh(0)|?, whereas the right hand side equals (2—7)"™"2 (Q — 3) fB.2_ﬁ |Dh|?. Thus
(6.41) is equivalent to

(6.42) /B |Dh — Dh(0)]* < (2 — ﬁ)—m-z/B i |Dh|?,

which is a classical inequality for harmonic functions. In order to show (6.42) it
suffices to decompose Dh in series of homogeneous harmonic polynomials Dh(z) =
>igo Pi(x), where i is the degree. In particular the restriction of this decom-
position on any sphere S := 0B, gives the decomposition of Dh|s in spherical
harmonics, see [41, Chapter 5, Section 2]. It turns out, therefore, that the P; are
L?(B,)-orthogonal. Since the constant polynomial Py is Dh(0) and [ |P[* =
(2-m)—m2% fB%T] |P;|2, (6.42) follows at once.

6.3. Proof of Theorem 6.3

We first notice that, by definition of collapsed point, for every § > 0 there exists
p = p(0) small such that

(i) E(T, By, (p)) +4A0? < 6 for every o < p;
(i) ©(T,q) > O(T,p) = Q — 1 for all ¢ € T' N Bos(p).

Next, since O(T,p) = Q — %, if the radius p is chosen small enough we can assume
that

ITIBan(p)) < (Q - g) (45)™

By a simple comparison, for n sufficiently small, if ¢ € B, (p) NT" and g’ = p — 7,
then

IT1Bay () < IT)Ban(p) < i (@~ § ) (49"

< W (Q - %) 4p)m.
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88 6. DECAY OF THE EXCESS AND UNIQUENESS OF TANGENT CONES

Next, by the monotonicity formula
o " TI(Bo(q)) < A4 =7 (45)) 7| T (Bay (9))
_ 5
< oA4p' —0o) _ 2
S € Wm <Q 16>

< 64prm (Q - %)

for all 0 < 4p’. In particular, if p is chosen sufficiently small, we then conclude
1
(6.43) IT](Bs(q)) < wm <Q - Z) o™  VgeB,(p)NT and Vo < 4p'.

Set now r := min{n, p'}. For all points ¢ in B, NT" we claim that
(6.44) E’(¢,B,) < 2"E’(p,By,) + CA*r* < C6.

Indeed let 7 be a plane for which E’(p, Bo,(p)) = E(p, Ba,(p), 7). By the regularity
of I" and ¥ we find a plane 7(q) such that |7 —7(¢)| < CrA and T,I' C 7(q) C T,X.
Then we can estimate

E’(T,B,(q)) < E(T,B.(q).7(g)) < 2"E(T, B (p). (q))
< 2™E’(T, By, (p)) + Cr®A* < C6.
We will now show that the conclusions of the theorem hold for this particular
radius 7. First, without loss of generality we translate p in 0 and rescale r to 1.

Summarizing our discussion above, for every ¢ € B; NI" we have the following three
properties

(A) E’(T,Bi(q)) + A% < 2mE*(T, By) + CA? < C9;
(B) O(T,z) > Q — 3 for every z € B1(¢q) NT;
©) ITII(Bs(q)) < (Q — i)wmsm for every s < 1.

We now fix any point ¢ € I' N B; and define e(s) := E*(T, B4(q)). We claim that
(6.45)  e(27F71) <max{272(17ke(ly 2720k t2 (L)) for all k € N

We prove it by induction on k: notice that the inequality is trivially true for k£ = 0, 1.
If the inequality is true for k = kg > 1, we want to show it for k = kg + 1. We set
0 = 27572 and notice that, by inductive assumption

(4)
e(40) < max{e(7),e(3)} < Ce(1) < C6.

Hence, provided we choose § = §(m, Q) (and thus r) sufficiently small, we are in
the position of applying Theorem 6.8: note that the induction assumption covers
hypothesis (i) of Theorem 6.8, whereas (B) and (C) imply the hypotheses (ii) and
(iii). We thus deduce that
e(27772) = e(0) < max{272"%¢(20),2 e (40)}
1

< max{27207ke(1) 9720k t2o(1yy
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From (6.45) we easily conclude that for all such points ¢ and for p €]0, [
(6.16) E(T,B,(q)) < E'(T,B,(g)) < Cp* *e(3)
< Cp* B (1, Ba(q)) + Cp* A

< Cp* B’ (T,Bi(q)) + Cp* > A*

(4)
(6.47) < Cp* B’ (T,By) + Cp* %A%,

In addition, the estimate is trivial for % < p <1 Next, given 0 <t < s <1, if
7(q, s) and 7(q,t) are the optimal planes for E(q,t) and E’(q, s), (6.47) implies

oo 1 i —7(q,s)|?
|7T(Q7S)_7T(Q7t)| S HTH(Bs(q)) /Bs(q) (qvt) (Q7 )|

< CE(T,Bs(q),7(q,5)) + CE(T,By(q)), (t))
< Cs* ¥ E(T,By) + Cs* A%,

We thus conclude the existence of a unique limit 7(g) such that

(6.48) Im(q) — (g, 5)|* < Cs* ¥E’(T,By) + Cs*> A% Vs<1.

From the latter inequality and (6.47), we conclude (6.4), namely statement (c) of
the theorem, for all ¢ € By NT.

Next, notice that, at every such ¢ € B; NI, T,I" C m(q) C T,X and that, from
(6.4), the tangent cone is unique and takes the form

Q (@) ] + (@ —1) [=(¢)7] .

for some Q* € N (since the tangent cone is an integral current). By (ii) Q* — § =

O(T,q) > Q — % Furthermore, by (C) @ < @ + 1 and thus @* = Q. Therefore

O(T,q) = Q — % and this proves statements (a) and (b) of the theorem.
We next turn to (e): arguing as in Section 6.2.1, we let

Ty = TL (B,(g,7(q)) x By (0,7(q)™))
and we note that it satisfies (5.2) in the cylinder C,(gq,w(g)). In addition we have
E(To, C,(q,m(q))) < CE(T, B,(q),7(q))
and TLB,(¢) = ToLB,(g). Thus, we can apply Theorem 6.5 to get

h(Ta Bp(Q), ’/T(Q)) < h(TOv Cp(q’ W(Q)), ﬂ—(q))
< C(B(T,B,(q), 7(q))* + A%p)p.
The estimate (6.6) follows at once from the latter inequality and (6.4).
We conclude by proving (d) of Theorem 6.3. First of all, observe that it suffices
to show (6.5) when p := |¢ — ¢’| < 1/2. Recall the estimate (6.48):

max{|r(q) — (g, p)|, |7(¢") — 7(d', p)|} < C(E"(T,B1)% + A)p' <.
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Hence to complete the proof of (6.5), we notice that

i(q.p) — (e p)? < ][ i(q,0) — (', )2
Bp(‘])me(q/)

C S C o
< m/ T — (g, p)” + m/ T —=(q,p)?
WP JB,(a) WmP " JB,(a")
= C(E’(T,B,(q)) + E’(T,B,(¢)))
< C(Eb(T,Bl) + A2)p2—25 ,

where we have also used that ||T||(B,(p) > ¢p™, a simple consequence of the mono-
tonicity formula in Theorem 3.2.

6.4. Proof of Corollary 6.4

The inclusion (6.9) follows immediately from (6.6) applied to some p with
2|z —q| > p > |z — ¢q|, where x € spt(T) N B,(q). Next we observe that (6.9) is
in fact stronger than (6.8), because, by (6.7), we can control the tilt |7(q) — 7(p)|.
Indeed,

P piP=lp - p? <mir - < CE.
Using Theorem 6.3(d) with ¢’ = p and ¢ = § we conclude the crude estimate
I7(q) — 7(p)| < C(E'*+ Ar). In particular
by — P> =Ipg — pI> <mln(q) — 7 < C(E+ A*?).
Fix therefore a point x € B,(¢) Nspt(T). Then
P (2 —q)| <|lz —qllp™ — | + Py (z — q)]

<C(E"" + Ar)|z — q| + C(r'E + A)'/*|z — ¢|?

<C(E+ Ar)'Plz —q|,
which proves (6.8).
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CHAPTER 7

Second Lipschitz approximation

Recalling Theorem 3.8, our main task is to show that, under Assumption 1.5,
any collapsed point g € T is regular. By the usual scaling and translation argument,
we can moreover assume that:

(i) 0 € T is a collapsed point with multiplicity ©(T,0) = Q — %;
(ii) at any point ¢ € I' N By the conclusions of Theorem 6.3 apply for every
radius r < 1;
(iii) A and E°(T,B,) are small, namely
(7.1) A2+ B (T,By) < ¢,
where gq is a sufficiently small constant whose choice will be specified in
the remaining proofs.

Let my be a plane which minimizes the expression defining E’(T,B;). By
Corollary 6.4, we know that
(7.2) spt(T) N By C {z : |pg (x)] < Cey’|al},

where pg is the orthogonal projection on w3 . Since we can restrict the current T
to By and further scale by a factor 2, we can assume, without loss of generality,
that

(iv) There is a plane 7y such that E°(T,By) = E(T, By, m), Tol' C 79 C ToX
and

(7.3) spt(1) VB2 C {x : |pg ()] < Cey*[a]} .

From now on we will work under the above assumptions, which we summarize
together in the following

ASSUMPTION 7.1. T, ¥ and I' are as in Assumption 1.5 and they satisfy addi-
tionally the conditions (i), (ii), (iii), and (iv) above.

In particular, Theorem 3.8 is implied by the following milder version:

THEOREM 7.2. If T,\Y and T are as in Assumption 7.1, then 0 is a regular
boundary point of T

In this framework we can then refine our Lipschitz approximation in cylinders
with small excess. We first note the following corollary of Theorem 6.3 and of the
cone condition in Assumption 7.1(iv).

PRrROPOSITION 7.3. Let T,Y and T" be as in Assumption 7.1 with ¢ sufficiently
small (depending only upon m,n,n and Q). Then there are positive constants C =
C(m,n,n,Q) and & = &(m,n,n, Q) with the following properties. Assume that
gel'NBy, r< % and 7 is an m-dimensional plane such that T,I' C m C T,;¥ and

(7.4) E =E(T,Cy(q,7)) < &.

91
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92 7. SECOND LIPSCHITZ APPROXIMATION

Then

Spt(a(Tl—C4r (q> W))) - aC47‘(Q7 7T) ur
and
(7.5) h(T, Ca,(q,7),m) < Cr(E + Ar)'2.

We are then ready to state our improved approximation theorem:

THEOREM 7.4. Let T, 3, I', q, r and ® be as in Proposition 7.3. Consider
the orthogonal projection v of T' N Cy,(q, ) onto the plane ¢ + 7 and observe that,
since g¢ is sufficiently small, T N Cy,.(q,7) is the graph over v of a C>% function
Y. Then there are a closed set K C B,.(q) = B,.(q,m) and a (Q — %)—valued map
(ut,u™) on B.(p) which collapses at the interface (v,%) satisfying the following

estimates:

(7.6) Lip(ut) < C(E + A%r?)°

(7.7) osc(u®) < C(E + Ar)'/r

(7.8) G, L[(KNQF) x 7] = TL[(K N Q%) x R"]

(7.9) Gr(uvt) c %

(7.10) 1B, (q) \ K| < C(E + A%?2) 1oy

(7.11) er(B.(q)\ K) < C(E + A% topm

(7.12) / |Du* < C(E + A?r?)ttopm
Br(\K

(7.13) < C(E + A%r?)opm  YF C QF measurable,

1
er(F) =5 [ IDu*F

where Q% are the two regions in which B, (q) is divided by v, whereas C > 1 and
o €]0, %[ are two positive constants which depend on m,n,n and Q.

7.1. Preliminary observations

We start recalling [14, Theorem 2.4] in our context.

THEOREM 7.5 (Almgren’s strong approximation). There exist constants C, o,
g > 0 (depending on m,n,n, Q) with the following property. Let T, ¥ and T be as
in Assumption 7.1, w, ¢ and r as in Proposition 7.3 and let x € By such that

(i) the cylinder C := Cy,(x,m) does not intersect I' and is contained in
C4T(q7 7T)j
(ii) A?p?+ E=A?+E(T,Cy,(z,m) <E.
Then, there is a map f : B,(z,7) — Ag(nt), or a map f : B,(z,7) = Ag-1(7t),
with spt(f(z)) C X for every z € B,(x, ), and a closed set K C B,(x,n) such that

(7.14) Lip(f) < C(E + A%?)°

GiL(K xR")=TL(K xR")
(7.15) and |B,(x, )\ K| < C (E+ A% pm,
(7.16) wwqmm—Qmmww—%L( s
(7.17) <C(E+ A2p2)1+g p V0<s<1
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and
(7.18) osc(f) < Ch(T,C, )+ C(E* + Ap)p.

From now on, in order to simplify our notation, we assume that = = my =
R™ x {0} and use the shorthand notation B;(x) for B;(x, ).

In addition to the conclusions of the theorem above, we observe that they imply
the following further estimates

(719) er(By(2) \ K) <C(E + PAD)H
(7.20) [ DfP <c(E A
Bp(z)\K
1 -
(7.21)  |er(F)— 5/ |IDfI?| <C(E + p*A*)'7p™ VF C B,(x) measurable.
F

This can be seen as follows. First of all (7.14) and (7.15) give
/F\K|Df2 < C(E+ A%p%)|B,(2) \ K| < C(E + A%p*)*7p™

for every F' C B,(x) measurable. In particular we achieve (7.20) setting F' = B,(x).
Next recall that | T'||(B,(z)) — Qump™ = er(B,(x)) and hence (7.17) can be
reformulated, for s = 1, as

S O(E+A2p2)1+gpm.

er(B,(x)) -} /B DS

In particular
1

5/ IDfIP < (E+ C(E+ A?p*)'7) p™ < C (E+ A%p?) p™.
Bp(w)

Secondly, the Taylor expansion of the area functional and (7.14) give

ec, (F)— 1 /F DfP

< C'Lip(f)? / D2 < C(E + A?p?) 275
F

for every F' C B,(x) measurable.
Combining the inequalities just obtained we achieve

er(B,(x) \ K) = er(B,(z)) — e, (B,(z) N K)
1

<ler(Bte) —5 [ s
1 _
H3 [ D ee B@nR)|+ [ Dfp
B, (2)NK B, (@)\K

< C’(E'—l—AQpZ)HUpm,

which implies (7.19).
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Finally, for every F' C B,(x) measurable we have

er(F) - 3 [ IDrP| <

ec,(FK) -5 [ DfP

FNK

2
S C’(E'—l—AQpZ)HUpm.

+eT<F\K>+1/ DfP
F\K

7.2. Proof of Theorem 7.4

Without loss of generality we assume that 7,I' = R™~! x {0}, 7 = R™ x {0}
and 7,3 = R™" x {0}. We then use C;(g) in place of C4(g, ), and Bs(q) in place
of Bs(g, 7). Note that

oTL C47’(Q) = [[F N C47‘(Q)ﬂ
(7.22) and  py(9TL Cyr(q)) = [y N Bar(p(q))] -

As in the previous sections, denote by Q7 and Q~ the two connected components
of Bar(q) \ 7, chosen so that

piTLCu(g)=Q[QT] +(@-D[27] .
Let Lo be the cube ¢ + [—r,r]™ and, for any natural number k, let Qj be the
collection of cubes L of the form
L=q+r2 g4 [—27Fp 27kpm
for x € Z™, which are contained in Lo and intersect B,(g). We fix a number
N € N such that the 16,/m2~Nr-neighborhood of Urcg, L is contained in Cy,(q)
and construct a Whitney decomposition of
Q= £\~
LeQN

in the following way. We set Ry = Qn. If L € Ry has diam(L) < 15 sep(L, ),
then we assign L to the class Wy. Here and in what follows we set

sep(L,v) =min{|lz —y|: x € v,y € L}.

Otherwise we subdivide it in 2™ subcubes of side 27 ¥r and assign them to Ry 1.
We then inductively define Wy, and Ry for every £ > N. The Whitney decom-
position W = Up>nWj; is then a collection of closed dyadic cubes whose interiors
are pairwise disjoint, which cover QU Q™ and such that

32 16

We denote with ¢y, the center of the cube L € W and set r, := 3 diam(L) so that
LC BiTL (CL).

We claim that for each cube L the current T restricted to the cylinder Cy,., (cr,)
satisfies the assumptions of Theorem 7.5.

First note that, by the construction of the Whitney decomposition, we have
Cyr () NT =0 and Bg,, (cr) C By (q) and thus 0T Cy,, (c) = 0. Moreover,
either By,, (cr) C Q1 or By, (cr) C€ Q and thus pyTL Cyyp (cp) equals either
Q[Bar, (cL)] or (Q — 1) [Bar, (cL)]-

(7.23) min { 1 sep(L, ), \/EZ_N'H} < diam(L) < 1 sep(L, 7).
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FI1GURE 7.1. The Whitney decomposition W in 7.

To check the second assumption of Theorem 7.5 we distinguish the two cases
rp =2 Vrand rp < 27Ny If rp = 27N we simply have

E(T,Cur, (cr)) < 2V™E(T, Cyy(q)) = 2V ™E.

For each L € W with 7, < 27N let z; be the point of v closest to ¢z and let
qr. € T be the point (zr,9¥(zr)). From the first inequality of (7.23) we deduce
that Cy,, (cr.) C Cisr, (qr). In particular notice that by the cone condition (7.5),
spt(T) N Ciar, (qr) C Bigr, (qr) and by our choice of N we have Ciyr, (qr.) C

Bi6r, (qz) C Cur(q)-
Next, observe that

E(T,Cy,, (c1)) <4™E(T,Bisr, (q1), )
< CE(T,Byigr,,m(qr)) + Clm — m(qr)?

According to Theorem (6.3) we then conclude
(7.24) E(T,Cy,, (c1)) < C(E + A%r?).

So, provided ¢ is chosen sufficiently small, we can apply Theorem 7.5 in every
cylinder Cy,, (cr) and obtain:

- a @-valued (or (Q—1)-valued) map f1, on each ball B, (cy) with spt(fr(x))
€ ¥ for every x € By, (cr)
- a closed sets K, C B, (cr)
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such that
(7.25) Lip(f1) < C(E + A®r})°
(7.26) Gy, (K, x R") = TL(K,, x R")
(7.27) |B,, (cr) \ K| < C(E + A%r}) orp
(7.28) er(B,, (ct)\ K1) < C(E + A%r?)ttopm
(7.29) / |IDf)? < C(E + A?r3)ltopm
Brp (cL)\KL

er(F) =5 [ IDAF| < OB+ %) 0y

(7.30) VF C By, (c1) measurable

whereupon (7.29), (7.30) follow as explained in (7.19), (7.21).
Next, for each L we let N7 (L) be the neighboring cubes in W with larger or
equal radius, i.e.

NHL)y={HeW: HNL#b,rg >rr}.

Note that by the construction of the Whitney decomposition we ensured that if
H e NT(L), then L C B,,,(cyg). We define

Kp=K.n () Ku

HeN*(L)
Kt= |J KinL
LeEW,LCQ+
K-= |J KinL
LeW,LCQ—

and further
@t (z) = fr(x)ifr € LNKT and @~ (z) == fr(z) ifz € LN K.

Since the cardinality of N (L) is bounded by a geometric constant C(m), we
conclude from from (7.27) that

(7.31) |L\ K} | < C(E + A%p?)tropm,
In particular, if ¢ is sufficiently small, we conclude that L N K} # (. We next
claim that
(7.32) Lip(a®) < C(E + A?%r?)°
(7.33) Ga: L(KE xR") = TL(K* x R")
(7.34) er(L\ K}) < C(E + A%p?)ttopm
(7.35) / |Dat|? < C(E + A?%r?)tHopm,
L\K7,

Inequalities (7.33), (7.34), and (7.35) follows easily by the fact that L \ K} C
B,,(cp) \ Kz and @F coincides with f;, on K. To show the the Lipschitz (7.32)
we let H,L € W be any two cubes and we assume that diam(H) > diam(L) and
ze€ H,ye L.
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If HN L # 0 (and in particular if H = L) by construction 4+ = fg on
K*NB,,(cy) C Kg, hence the inequality G(a*(z),a* (y)) < C(E+ A%r2)7 |z —y|
follows from the Lipschitz bound for fg.

If HN L = ( we have .

2/m

In case g = 2~ Vr then the Lipschitz estimate follows from the hight bound (7.5):
G(at(z),at(z") <2Cr(E + Ar)'* < C(E 4 Ar)'"?|z — 2/|.

If rg < 27 N7 consider for the points z,y € v which are the closest to z’,y/’
respectively We claim that
(7.36) G(@*(x), Q [¥(a")]) <Clz — 2'|(E + Ar)"
(7.:37) G(a(y), Q [¥(¥)]) <Cly — y/|(E + Ar)'2.
Indeed, both inequalities are due to the fact that dist (z,~) is comparable to rp,
and that, in the cylinder Ceig,, (2'), we have the height bound (7.5) (recall that
the points (z/,4(2’)) and (x,a;(x)) are all in the support of the current T'). Note
also that, by the regularity of I,

W)~ wl)] < OB+ A ela’ — .

In particular we can estimate

rg < |z —yl.

G(@* (x), @™ (y))
< Gt (2), Q[v(=")]) + Ql(x') — (¥ + G(@F (y), Q [¥(¥)])
S CE+Ar) " (|o— 2|+« —y'| + |y —yl)
< C(E+Ar) 2w — 2| + o —yl + 2ly' —yl)
<C(E+ A2r2)‘7|m -y

where we have used that o < i and that
|z — 2’| + |y — y| = dist(z,v) + dist(y,y) < C(rp +rg) < Crg < Clz —y|.

Note in particular that we have also proved that 4T (resp. @~) has a unique
Lipschitz extension to (K™ U~)N B,(q) (resp. (K~ U~v)NB,(q)) which on yN B,.(q)
coincides with @ [¢] (resp. (@ — 1) [¢]).

We next wish to extend @* to the whole Q% keeping the Lipschitz estimate (up
to a multiplicative geometric constant) and the property that spt(z, @t (z)) C .
This can be easily done observing that ¥ N C,(q) is the graph of a function W :
ToX N B.(q) = ToXt = {0} x R*~™ with Lipschitz constant controlled by CAr.
Therefore we can write

it (z) = Z [vi" (@), ¥ (, v (2))]

for an appropriate Lipschitz Q-valued map v : KT — Ag(R™) and an appropriate
Lipschitz (Q—1)-valued map v~ : K~ — Ag_1(R") with Lip(v*) < C(E+A%r?)7.
Extending first v* to QF and then composing with ¥, we achieve the desired
extension u* of 4 to QF. Note moreover that, by the observation above, the pair
(uT,u™) collapses at the interface (v N B.(q),%). Recalling the height estimate
(7.5), we also have that osc(@*) < C(E + Ar)'/*r and the Lipschitz extension can
be constructed so to preserve the oscillation bound as well (up to a geometric factor,
cf. [13, Theorem 1.7]).
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Setting K = K+t UK, we have so far proved the conclusions (7.6), (7.7), (7.8),
and (7.9). For the remaining estimates, observe first that

Z rit < C(m)r™.
Lew

Hence, (7.10), (7.11), and (7.12) follow from summing, respectively, (7.31), (7.34),
and (7.35).

Finally, fix a measurable set ' C Q" and observe that, for any cube L in the
Whitney decomposition of QF

1
er(FAL)— §/F Dt
n

<

1
er(FNLNK"Y) — —/ | Dut|?
FNLNK+

+er(L\ K*) + Lip(u®)?|L\ K|

1
eT(FﬂLﬂK+>—5/F i K+|DfL|2
NLN

< C(E + A%p?)ttopm

< + O(E + A%?) oy

Summing over L we obtain (7.13). The same arguments work for v~ and conclude
the proof.
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CHAPTER 8

Center manifolds

As already pointed out in the previous chapter, our task is to prove Theorem
7.2, which for the reader’s convenience we recall here:

THEOREM 8.1. If T,% and T are as in Assumption 7.1, then 0 is a regular
boundary point of T

We thus work from now on under the assumption that 0, the origin of our
system of coordinates, is a collapsed point and that

Tl =R™ 1 x {0},
ToX = R™™™ x {0} and
Rn — RerﬁJrl .

Therefore, the tangent cone of T at p =0 is Q [[773'] +(Q-1) [[7'('0_]], where

ﬂ(jf:{xER"::I:xm>(),xm+1:...:xn+m:0}.

As in the previous chapters, we denote by ~ the projection on 7y of I' and,
given any sufficiently small open set 2 C 7y which is contractible and contains 0,
we denote by QF those portions of  lying on the right and left of 4. We are going
to build two separate m-dimensional surfaces M* of class C® which will be called
(respectively) left and right center manifolds. Both surfaces lie in the manifold X.

M will be a graph over B;'/z(O7 7o) (which from now on we denote by B;'/z) of some

function ¢+ and M~ a graph over B?T/Q (0,7p) of some function ¢~ . Both center
manifolds will have I' N C3/5(0, 7o) as a boundary, when considered as surfaces in
the cylinder C3/2(0,m) and will be C? (in fact C** for a suitable positive k) up to
the boundary. In addition, at each point p € I'N Cg/5(0,m) the tangent space to
both manifolds will be the same and will coincide with the plane 7(g) of Theorem
6.3. In particular M = M+ UM~ will be a C*' submanifold of ¥ N C3/2(0,70)
without boundary.

Finally we remark that at this stage we do not have any information about
higher regularity of M: in particular we do not yet know that the second derivatives
of the two functions % coincide at 7. At the very end of the proof of Theorem
8.1, which will be accomplished in the final chapter, it will however turn out that
M is indeed C® and that T Cj3/5(0,m) = Q [MT] + (Q — 1) [M~].

8.1. Construction of the center manifolds

8.1.1. Boundary dyadic cubes and non-boundary dyadic cubes. We
focus on the construction of M™ (the one of M~ follows a “specular” algorithm).
We start by describing a procedure which reaches a suitable Whitney-type decom-
position of B;/Q with cubes whose sides are parallel to the coordinate axes and

99
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100 8. CENTER MANIFOLDS

have sidelength 2¢(L). The center of any such cube L considered in the procedure
will be denoted by ¢(L) and its sidelength will be denoted by 2¢(L). We start by
introducing a family of dyadic cubes L C g in the following way: for j > Ny (an
integer whose choice will be specified below), we introduce the families

%; == {L: L is a dyadic cube of side ¢(L) = 277 and B;)r/z NL#0},

For each L define a radius

ry, = Moy/mé(L),
with My > 1 to be chosen later. We then subdivide ¢ := U;% into, respectively,
boundary cubes and non-boundary cubes'

¢ :={L e € : dist(c(L),7) < 64rL},
€% :={L e € : dist(c(L),) > 64r}.

Likewise we also use the notation ‘5]'-’ and %f for 6” N€; and %jh = 6"N%;. Indeed
in what follows, without mentioning it any further, we will often use the same
convention for several other subfamilies of .

DEFINITION 8.2. If H,L € € we say that:
e H is a descendant of L (and L is an ancestor of H) if H C L;
e Hisa son of L (and L is the father of H) if H C L and {(H) = $((L);
e H and L are neighbors if $¢(L) < ¢(H) < ((L) and HN L # 0.

Note, in particular, the following elementary consequence of the subdivision
of ¢:

LEMMA 8.3. Let H be a boundary cube. Then any ancestor L and any neighbor
L with ¢(L) = 2¢(H) is necessarily a boundary cube. In particular: the descendant
of a non-boundary cube is a non-boundary cube.

PRrROOF. For the case of ancestors it suffices to prove that if L is a father of a
boundary cube H, then L as well is a boundary cube, and since the father of H is
a neighbor of H with ¢(L) = 2¢(H), we only need to show the second part of the
statement of the lemma. The latter is a simple consequence of the following chain
of inequalities:

dist(e(L),~) < dist(c(H), ) + e(H) — e(L)]
= dist(c(H),v) + 3vml(H)
67

< 6dry + 3o < (644 3My ) Tk < 2p < 647y, O
Mo 2 =72

Moreover, we set the following:

o If L c ngh, then By, is a ball in R™1t7+! with radius 64r;, and center some
chosen point py, € spt(T') such that p.,(pr) = ¢(L) (note that such py, is
a priori not unique: we just make an arbitrary choice) and 7, is a plane
which minimizes the excess in By, namely E(T,B.) = E(T,B,7) and
r C T;DL >

+
3/2°

we prefer to use the term “non-boundary” rather than “interior” for the cubes in %%.

1Observe that some boundary cubes can be completely contained in B For this reason
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e If L € %", then B, is the ball in R™*"*! with radius 27647, and center
p, € T such that |p.,(p}) — ¢(L)| = dist(c(L), 7). Note that in this case
the point p'i is uniquely determined because I is regular and A is assumed
to be sufficiently small. Likewise 7y, is a plane which minimizes the excess
E’, namely such that E°(T,B%) = E(T,B’ ,7;) and T, T Cmp CTp X

A simple corollary of Theorem 6.3 and Corollary 6.4 is the following lemma.

LEMMA 8.4. Let T,Y and T' be as in Assumption 7.1. Then there is a positive
dimensional constant C(m,n) such that, if the starting size of the Whitney decom-
position is fine enough, namely if 20 > C(m,n) My, then the balls BbL and By, are
all contained in Bo.

Moreover, there exists €1 such that, for any choice of My, ae > 0 and ap < %,

if

(8.1) E’(T,Bo) + [ ¥[20.00 + 198000 <1,
then for every cube L € €° we have

(8.2) E’(T,B) < Coeyry 2,

(8.3) W(T, B}, 1) < Coe)/*ritom
(8.4) |7, — o] < 0061/2,

(8.5) i = m(py)] < Cosy*ry

where, 7(p%,) has been defined in (b) of Theorem 6.3 and Cy depends only upon e,
ap, m and n.

PROOF. The first part of the statement is just a direct inspection. Estimate
(8.2) is a direct consequence of (6.4). Consider now 7(p5 ) as in Theorem 6.3. By
the monotonicity formula we know that

IT|(BY) > wm (2764r)™
because we know that O(T,p}) = Q — + > 2. Moreover (6.4) implies
E(T,B}, ) < E(T,B}, n(p})) < Cocrry .
Thus
Im(p) = mil* < Co(E(T, B, m1) + E(T, By, m(p})) < Cos/rf >
which proves (8.5). (8.4) is now a direct consequence of (6.7) and (8.5) while (8.3)

is direct consequence of (6.6). O

8.1.2. Decomposition and stopping conditions. We will now defined a
suitable refining procedure of our initial Whitney decomposition. To this end let
Ce, Ch be two positive constants that will be fixed later, see Assumption 8.6 below.
We take a cube L € %, and we do not subdivide it if it belongs to one of the
following sets:

(1) #%, =={L € €y, : B(T,BL) > Cee1((L)?~};
(2) #p ={L €€ : h(T.By,71) > Che! " 0(L)Fon ).
We then define
TNy = Cne \ (W, U
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The cubes in #u, will be subdivided in their sons. In fact we will ensure that
W, =g UWP =0 (and therefore €y, = #,) by choosing Ce and Cy, large
enough, depending only upon an, ae, My and Ny, see Proposition 8.24 below.

We next describe the refining procedure assuming inductively that for a certain
step j > No + 1 we have defined the families #;_; and .#;_;. In particular we
consider all the cubes L in % which are contained in some element of .%;_;. Among
them we select and set aside in the classes % := #/°U V/jh U#" those cubes where
the following stopping criteria are met:

(1) #2:={Lsonof K € ]| : B(T,BL) > Cee1{(L)?> 2}
(2) V/jh :={L son of K € 5”]!4_1 : LgWe and

h(T, By, 77,) > Chey " 0(L)Hon};
(3) # :={Lsonof K€.%j_1: LEgWUW but

L' € #;_1 with LN L' # 0}.

Note, in particular, that the refinement of boundary cubes can never be stopped
because of the conditions (1) and (2). Indeed we could have included analogous
stopping conditions for boundary cubes as well, but Lemma 8.4 would have implied
in any case that these conditions would never stop the refining of boundary cubes.
In principle a boundary cube might still be stopped because of the third condition,
but we will see in Lemma 8.5 that this possibility can be excluded as well. Thus
boundary cubes always belong to .. Clearly, descendants of boundary cubes might
become non-boundary cubes and so their refining can be stopped.

We finally set #; := #° U V/jh U %" and we keep refining the decomposition
in the set

Sy ={LeCjsonof K€L 1}\#;.

Observe that it might happen that the son of a cube in .#;_; does not intersect
B;)r/zz in that case, according to our definition, the cube does not belong to .7}
neither to #: it is simply discarded.

As already mentioned, we use the notation 15”}’ and L§”jh respectively for .7 ne’
and 7 N %". Furthermore we set

W= U W
j>No

S = U Z;
j=>No

st= N (U z)=85\ U H.
j>No LeY; Hew

We emphasize that B;r/Q includes v N Bs/s.

LEMMA 8.5. %jb N =0 for every 7 > Ng and in particular v N BJ/Q CcST.

PROOF. Assume there is a boundary cube in # and let L be a boundary cube
in # with largest side length. The latter must then belong to #/* for some j.
However this would imply the existence of a neighbor L' € # with ¢(L') = 2¢(L):
by Lemma 8.3 L’ would be a boundary cube in #, contradicting the maximality
of L. |
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8.1. CONSTRUCTION OF THE CENTER MANIFOLDS 103

8.1.3. Hierarchy of parameters. From now on we specify a set of assump-
tions on the various choices of the constants involved in the construction.

AssUMPTION 8.6. T, and I' are as in Assumptions 7.1 and we also assume
that

oy is smaller than ﬁ and ae is positive but small, depending only on ay,,

My is larger than a suitable constant, depending only upon «,

2No > O(m,n, My), in particular it satisfies the condition of Lemma 8.4,
C, is sufficiently large depending upon ae, an, My and Ny,

Ch, is sufficiently large depending upon e, an, My, Ny and C,

(8.1) holds with an e; sufficiently small depending upon all the other
parameters.

T o

—_— o~
o
NN NGNS NN

—_~
= @

Finally, there is an exponent ay,, which depends only on m,n,n and @ and which
is independent of all the other parameters, in terms of which several important
estimates in Theorem 8.19 will be stated.

Note that the parameters are chosen following a precise hierarchy, in particular
ensuring that there is a nonempty set of parameters satisfying all the requirements.
The hierarchy is consistent with that of [16], in particular the reader can compare
Assumption 8.6 with [16, Assumption 1.9].

8.1.4. Interpolating functions. In this section we define the “interpolating

functions” gy, for each cube L. In particular, over the set BJ/Q \ S*, the function

T is defined by patching together the gr’s with a partition of unity subordinate
to the cover # . Since however we need to define ¢ over ST as well, we introduce
all the necessary objects for any cube in U #'.

PRrROPOSITION 8.7. If T, Y and I' are as in Assumptions 7.1 and if the various
parameters ae, an, My, Ng, Ce, Ch, €1 fulfill the Assumptions 8.6 we have

spt(T) N Cser,, (pr,71) C B when L € <7jh U ¥;,

Spt(T) N C2736TL (pra 7TL) C Bi when L € ’jgba
and the current T satisfies the assumptions of Theorem 7.5 in the cylinder

C367"L (pL; 7TL)7
resp. the assumptions of Theorem 7.4 in the cylinder Carsg,, (p'i, ).

We omit the proof here and in fact a strengthened version of the proposition
is included in Proposition 8.25. In each cube L € 5”]!’ (resp. L € jﬂjh U ;) we
define (f; , f;7) (resp. f1) to be the Lipschitz approximation of 7' in the cylinder
Corgy,, (pr,Tl'L) (resp. Coy, (pr,7r)). Moreover we define the multifunctions ff
(respectively f1) by projecting the values of fi (resp. fr) on the plane T, %
(resp. T,,%). More precisely, if we introduce the plane s, := 7Ti‘ N prLE (resp.

sy, = 73 NT,, %), which is the orthogonal complement of 7, in prLE (resp. in
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104 8. CENTER MANIFOLDS

T,,%), the functions fLi and fr, are defined by
Q

Q-1
£ =" (D] Fr = [P (F2)0)]

i=1 =1

Q
and  fr, = [Poey ((f1)i)] -

i=1
We can therefore regard each value (fi)i(z) (resp. (fr)i(z)) as an element of the
product space sy, X T:; Y (resp. »p, X TPJ-L ¥). Hence, if we let ¥y, : prLZ — TpJ; by

L L

(vesp. ¥y : T, 2 — Tli Y) be the parametrization of the ambient manifold ¥ (in
such a way that locally ¥ = Graph(¥)), we have the identities

(fD)ix) = (FE)i(@) Wil (FiDi(x))
(fr)i(z) = ((fo)i(2), r(z, (f)i(2))) -
Although abusive, in order to make our notation less cumbersome we will then

. -+ - - - :
write fi = (f7, %z 0 fr) (resp. fr = (fz, ¥ o f;) and we will adopt the same
convention for other maps with the same structure.

DEFINITION 8.8. The maps fLi and fr, defined above will be called 7 -approzi-
mations of T in the respective cylinders (indeed fLi approximates the current on
the “half cylinder” p;l(BQ%QTL)).

L

We next let hy, be the solution of a suitable elliptic system (coming from the
linearization of the mean curvature condition for minimal surfaces in ¥), subject
to appropriate boundary conditions, which differ depending on whether L is a non-
boundary or a boundary cube. More precisely, for each cube, we introduce the
constant matrix L as

(8.6) L% ==Y A, (pr)0;,,, ¥ (pr)  if L€
J

(8.7) L ==Y AW (p})07,, ¥ (p) ifLes.
J

and we impose that

AEL =L- (fl; — Prp (pL))
(8.8) _ .
hL:’r]OfL on 8B5TL(pL77TL)7

when L is a non-boundary cube and that

Ahp =L (2 = pr, (P}))
(8.9) N
hyp =mo f, on 8(B;'75TL (pI’L,ﬂ'L)) ,
when L is a boundary cube.
DEFINITION 8.9. The function
hL = (EL, \I/L OEL)
will be called the tilted L-interpolating function.
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8.1. CONSTRUCTION OF THE CENTER MANIFOLDS 105

We now are ready to define the final function, g1, on our “reference coordinate
system” (i.e. the domain of g, is contained in 7o and its values are contained in 7g-)
with the property that its graph coincides with (a suitable portion of) the graph of

hy. For this reason we need the following proposition ((cf. [16, Appendix B]).

PrROPOSITION 8.10. Under the assumptions of Proposition 8.7, for every L as
above the function hy, is Lipschitz on B;AQTL/2(pi}‘,7TL) (resp. By, /2(pL,7L)) and
we can define a function gr, : B;Mm (p'i,ﬂ'o) — g (resp.gr, : Bar, (pr,m0) — 73)
such that

GgL = GhL LB;?4TL (PbLﬂTO) X Rﬁ—H

(resp, G, =Gy, LCyy, (pL,’lTo)) .
DEFINITION 8.11. The function gy, is called L-interpolating function.

8.1.5. Glued interpolations and center manifolds. Let us define the
Whitney cubes at the step j as

J
'@j = jj U U Wz .
i=No+1
Note that &2; is a “Whitney family of dyadic cubes” in the sense that if K, L € &
have non empty intersection, then 1¢(L) < ¢(K) < 2¢(L). Consistently with the
notation introduced in the previous section we let s := 773- NTpX be the orthogonal
complement of 7y in 7oY. Recall then the map ¥ : mg X 39 = ToX — Toxt,

which is the graphical parametrization of ¥ with respect to Tp>. We fix a function
9 € CX([—12, 17)m [0, 1]) which is identically 1 on [~1,1]™. For each cube L we

16° 16
define further ()

~ L y —_ c
+

We obtain a partition of unity of B /2 by setting
1§L(y)

- ZHE.@J- Vn(y) .

wj = Z 0L§L7

Le®,

Ir(y) :

DEFINITION 8.12. We set

and
Pj = (¢j7‘IIO¢j) .
The latter map is called the glued interpolation at the step j.

We are now ready to state the main theorem regarding the construction of the
right center manifold.

THEOREM 8.13. IfT,% and I' are as in Assumptions 7.1 and ae, ay, My, No,
Ce, Ch, 1 fulfill the Assumptions 8.6, then there is a k > 0, depending only upon
Qe and oy, such that

(a‘) ngjH&ﬁ’Bg’/2 S 061/27 fOT some O = O(O&e, Oéh, M07 CEH Ch);

(b) Ifi < j, L € #i_y and H is a cube concentric to L with ((H) = §4(L),
then p; = @; on H;
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106 8. CENTER MANIFOLDS
(c) @j converges in C* to a map ¢t : B;F/Q — R", whose graph is a C>"
submanifold M of ¥, which will be called right center manifold;
(d) @™ =4 on N Bys, namely IMT NCy/o =T NCy)s;
(e) For any q € OM™ N Cy)q, the tangent plane TyM™ coincides with the
plane 7(q) in Theorem 6.3.

The construction of M* made in Theorem 8.13 is based on the decomposition
of B;'/Q. Under Assumption 8.6, the same construction can be made for Bg—/2 and
gives a C®" map ¢~ : B;/2 — R™ which agrees with ¢ on YN B3 /5. The graph of ¢~
is a C3* submanifold M~ C ¥, which will be called left center manifold. Clearly its
boundary in the cylinder Cs/5, namely M~ N Cs/5, coincides, in a set-theoretical
sense, with OM™ N Cy, but it has opposite orientation, and moreover its tangent
plane T, M~ coincides with 7(q) for every point ¢ € IM™NCs/5. In particular, the
union M := M* UM of the two submanifolds is a C''* submanifold of N Cs s
without boundary (in Cs/3), which will be called center manifold. Moreover, we
will often state properties of the center manifold related to cubes L in one of the
collections #; described above. Therefore, we will denote by #* the union of all
#; and by # ~ the union of the corresponding classes of cubes which lead to the
left center manifold M.

REMARK 8.14. We emphasize again that so far we can only conclude the C'*+!
regularity of M, because we do not know that the traces of the second derivatives
of ¢T and ¢~ coincide on 7.

DEFINITION 8.15. Let us define the graph parametrization map of M™ as
®t(z) == (x,pT (x)). We will call right contact set the subset Kt := ®*(S™). For
every cube L € # T we associate a Whitney region £ on M™ as follows:

e [ :=®T"(H N B;) where H is the cube concentric to L such that ¢(H) =
10(L).
Analogously we define the map ®~, the contact set K~ and the Whitney regions
on the left center manifold M ™.

8.2. The approximation on the normal bundle of M

In what follows we assume that Theorem 8.13 may be applied and we fix a
corresponding center manifold M, subdivided into its left and right portions. For
any Borel set V C M we denote by |V| its Hausdorff m-dimensional measure and
we write [, f for [}, f dH™.

Since the two portions M~ and M™* are C3* and they join with C* regularity
along I', in a sufficiently small normal neighborhood of M there is a well defined
orthogonal projection p onto M. The thickness of the neighborhood is inversely
proportional to the size of the second derivatives of (o and hence, for &, sufficiently
small, we can assume it is 2. Summarizing, in the rest of the section we make the
following assumptions:

ASSUMPTION 8.16. T,Y and I are as in Assumption 7.1 and the various pa-
rameters ae, an, My, Ng, Ce, Ch, €1 satisfy Assumption 8.6. In particular Theorem
8.13 applies and we let M be the union of the left and right center manifolds. &1
is sufficiently small so that, if

(810) U:={qeR™™: 3¢ =p(qg) e Mst. |g—¢|<1 andqg—q L M},
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8.2. THE APPROXIMATION ON THE NORMAL BUNDLE OF M 107

then the map p extends to a Lipschitz map to the closure U which is C%* on
U\p }(I') and

p (¢)=¢ + B (0,(TyM)+)  forall ¢ € M.
We then have the following as a consequence of the construction algorithm:

COROLLARY 8.17. Under Assumption 8.16 the following holds:
(a) spt(A(TLU))NCy cTUp H(OM), spt(T)NCy C U and

pi(TLU)=(Q—1) [M ] +Q[M*] ;
(b) spt((T,p,2)) C {y: |z —y| < Ce)"6(L) o} for a
C = C(Oée, Qh, M(), No, Ce, Ch)

and every x € L Whitney region corresponding to L € W T U W ~;
(c) (T,p,q) = Qlql Vg e KF\T and (T, p,q) = (Q — 1) [¢] g € K"\ T;
(d) KTNK~ =I'NCs/y and spt(T'Np~'(q)) = {q} for every ¢ € T N Css.

8.2.1. Local estimates. The center manifold is coupled with a map on M
taking values in the normal bundle which approximates the current T' with very
high accuracy.

DEFINITION 8.18. Given a center manifold M as in Assumption 8.16, an M-
normal approximation of T is given by a triple (KC, F*, F~) such that

(Al) Ft: MTNC; = Ag(U) and F~ : M~ N C; — Ag_1(U) are Lipschitz
and take the form F*(z) = 3, [v + Ni(2)] with Nj*(z) L T, M* and
x4 NE(z) € ¥ for every i and every x € M*;

(A2) K € M is closed and Tp=l p~ (KN M*) = TLp (KN M%), where
Tps 1= Fﬁi [M], see [15] ;

(A3) KT UK~ C K and moreover F't(z) = Q [z] (resp. F~(z) = (Q — 1) [z])
on K% (resp. K7).

Observe that the pairs (F*, F~) and (N, N~) can be regarded as (Q — 3)-
valued maps. The following theorem, which is a consequence of the construction
and of the estimates leading to Theorem 8.13, ensures the existence of an M-normal
approximation which describes the current T with a high degree of accuracy:

THEOREM 8.19 (Local estimates for the M-normal approximation). Under
Assumption 8.16 there is a constant ay, > 0 (depending only on m,n, 7, Q) such
that there is an M-normal approzimation (IC,(F+,F ™)) satisfying the following
estimates on any Whitney region L C M associated to a cube L € W'+ U W~
(where to simplify the notation we use N in place of N* and N~ ):

(8.11) Lip(N|.) < CeS™4(L)*x
(8.12) INllo < Cey*me(L) o
(8.13) [L\K]+ | Tr = Tl(p~"(£)) < CeyTomg(L)m+2+er
(8.14) / IDN|?> < Ceyf(L)™ 2720
L

for a constant C' = C(&e, an, My, No, Ce, Ch).

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



108 8. CENTER MANIFOLDS

Moreover, for any a > 0 and any Borel V C L,

[ e N < e (Hyessenss  ag(ryeensy))
Vv

(8.15) +%/VQ(N,Q[[170N]])2+“L.

8.2.2. Separation and domains of influence. We next analyze suitable
“bounds from below” induced by the stopping conditions in the center manifold
construction. The next proposition shows that the current “separates” suitably on
top of Whitney regions corresponding to cubes in #'?.

PROPOSITION 8.20 (Separation). Under the assumptions of Theorem 8.19 (re-
call, in particular, that Cy, > Cg), the following conclusions hold for every Whitney
region L corresponding to a cube L € WP C W :

(S1) ©(T,p) < Q — % for every p € Bug,, (pL);
(S2) LNH =0 for every H € #™ with ((H) < 1¢(L);

(83) G(N*(2),Q[no N*(@)]) > LChe)/*" (L) » ¥z € M*NCoymmgr) (PL)-
For L € W® C W~ the same conclusions, where in (S1) we replace Q — % with
Q-372

5

A simple corollary of the previous proposition is then the following

COROLLARY 8.21. Given any H € #™ C W't (resp. C W~ ) there is a chain
L =1Ly, Ly,...,L; = H such that:

(a) Loe #eC W™ (resp. CH~)and L € W™ C W™ (resp. # ) for all
i>0;
(b) LiNL;—y # 0 and €(L;) = 10(L;_1) for all i > 0.
In particular, H C By /(1) (T Lo, T0)-

We use this last corollary to partition #™.

DEFINITION 8.22 (Domains of influence). We first fix an ordering of the cubes
in #e C W (resp. C# ) as {J;}ien so that their side lengths do not increase.
Then H € #™ belongs to #™(Jy) (the domain of influence of Jy) if there is a
chain as in Corollary 8.21 with Ly = Jy. Inductively, #™(J,) is the set of cubes
H e #™\ Ui, #™(J;) for which there is a chain as in Corollary 8.21 with Lo = J,.

8.2.3. Splitting before tilting. Next we show that even around cubes L €
#'© the sheets of the current “open up” in a suitable quantitative way. Again we
bundle the estimates for the two maps N7 in single statements using the letter N
to denote both of them.

PRrOPOSITION 8.23 (Splitting). Under the Assumptions of Theorem 8.19 the
following holds. If L € W C W™ (resp. C #~), q € mo with dist(L,q) <

20bserve that, when Q = 2, we actually draw the conclusion that no cube L C # ~ can
belong to #P: in fact when Q = 2, we could use directly Allard’s regularity theorem to prove that
the “left” side of the current coincides with a single smooth classical graph over B,;/2. In order to
make our work shorter we prefer however to treat the case @ = 2 together with the general one
Q> 2.
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4ym (L) and Q = Cypy/4(q) "M, then (with C,C* = C(ae, an, Mo, Ny, Ce, Ch) ):

(8.16) Coerl(L)" 2720 < ¢(L)™E(T,Br) < C/ |IDN|?,
Q

(8.17) / IDN|*> < C(L)"E(T,Br) < C*¢(L)"* | |N|*.
L Q

8.3. Estimates on tilting and optimal planes

PROPOSITION 8.24 (Tilting and optimal planes). Under the Assumptions 7.1
and 8.6 we have Wy, = 0. Then the following estimates hold for any couple of
neighbors H,L € U W and for every H,L € & UW with H descendant of L:

(a) denoting by my, 7L, the excess-minimizing planes in By and By, respec-
tively,
|mg — 7] < C’ai/Qﬁ(L)lfae |my — 7ol < 051/2;
(b)% h(T, Cusy,, (pr,m0)) < Cey*"(H) and
Spt(T) N C487"H (pH77T0) C BH ZfH € Cgh7
1
()’ B(T, Carasy, (P 70)) < Cey"¢(H) and
spt(T) N Cor gy (P, m0) C By if H € 6°;
(¢)f h(T,Csg, (pr,7H)) < Csi/QmE(L)H‘O‘h and
Spt(T) N C367"L (pLaﬂ-H) CcBL Zf H7L € %h7
(¢)" W(T, Carasy, (P ma)) < Cey"0(L)
and spt(T) N Cyrse,, (P}, 7rr)) C By if L € €°;
where C = C(ae, an, My, No, Ce) and C = C(ae, an, Mo, Ny, Ce, Ch).

PROOF. In this proof, constants denoted by C' will be assumed to depend on
m,n,Q and all the parameters ae, an, My, Ny, Ce, Cp, constants denoted by C' will
be assumed to depend on m, n, Q, ae, an, My, Ny, Ce and constants denoted by Cjy
will be assumed to depend only upon m,n and (). Constants depending on other
subsets of the parameters above will be explicitly mentioned. We first show that
#n, = 0. We have already proved that # does not contain boundary cubes in
Lemma 8.5. Next, if H € ‘515,0, By C B by Lemma 8.4 and thus we can estimate

(818) E(T, BH,TF()) S C(MQ, No)E(T, B277T0) S O(M(),NQ)El .

Next, let m be the projection of the plane 7y in T},,%. Since my C TpX, by the
regularity assumption (8.1) on X,

|mo — 7| < C'Oai/z.
In particular, since by the monotonicity formula we can assume
IT|(Br) < Co(64rm)™,
we conclude
E(T,By) < E(T,By,n) < C(Mo, No)e1 < C(My, No)e1 L(H)?* 2%

By our assumptions on the parameters, since Ce > C(My, Ny), we conclude that
Lg&we.
Next, notice that, since py € spt(T'), by the monotonicity formula we know

(8.19) IT|(Bg) > %wm(64rH)m.
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Thus we can estimate
| — mo|* < CoE(T,By) + CoE(T, By, mo)
< Coer + C(Moy, No)E(T, Ba, mp)
< C (Mo, No)es
Hence,
h(T,By) =h(T,By,7xH)
< Colrg — mol(rg + (T, By, 7)) + h(T,Bgy, 7))
< C(My, No)e*™ .
Since C’}}ll is assumed to be large enough compared to My and Ny, we conclude that
Hgw™.

We next prove (b)°, (c)” and (a) when H € €”. Since the conclusions (b)* and
(c)” are direct consequences of Corollary 6.4 and (a), it will be enough to prove (a)
for H € €. To this end, note that the second part of the statement is in Lemma
8.4. We start with the first part of (a) in the case of L is a boundary cube. In this
is case the we can use Lemma 8.4 and Theorem 6.3 part (c) to conclude that

(8:20) fmn = mol? <3 (Imw — 7@ + Irn — w12 + 7 () — 7 (01
< 30051£(H)272ae + 30061@([1)2720{3 + 300516([1)2720‘6.
where we have also used that, by regularity of T', |p%; — p}| < Cole(H) — ¢(L)| <
Col(L). Since /(H) < 2¢(L) this proves (a) when L € ¢”.
It remains the case that L is not a boundary cube. Since H is a boundary
cube, Lemma 8.3 implies that 1¢(H) < ¢(L) < {(H). In this case from Corollary

6.4, equation (6.8), and the very definition of pt}l we deduce that
(8.21)

1
(1= Coe?)Ipr = Pl < |Po (P — Pi)| < (L) = ¢(H)| + |e(H) = pr, ()] < 6575
Hence we conclude that By, C B‘}I and so arguing as above
Ir, — mw|? < CoE(T, BL) + CoE’ (T, B%;).

— 1
If L ¢ #° we conclude that |7 — 7g| < Cefl(H)'~%. Otherwise let 7 be the
projection of mg onto T}, . By the regularity assumptions on ¥ and the estimate

(8.21) we have |7 — | < COE%E(H) and so
E(T,B) <E(T,Bp,7) < CoE’(T,BY;) + Co|m — mx?
<Coel 0(H)? 20

Hence we conclude as well if L € # |rp, — 7| < UE%K(H)l_O‘e, since ¢(H) < 2¢(L),
this concludes the proof of (a) if H is a boundary cube.

Now we now turn to the proof of (a), (b)? and (c)f. To do so we first pick H € €
and we start by considering a chain of ancestor-cubes H = Hj, 11 C Hj, C--- C H;
such that Hj is the father of H; 1 and H; is the first ancestor that is a boundary
cube or j = Ny. We want to show by induction that

. — 1 — 1
(i)'] |7THj — 7THJ-,1‘ S ClEff(Hj)l_ae and |7THj — 7T0| S 01612;
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1

(i)} spt(T) N C; C By, and h(T, C;,m) < C1e7" ((H;) with
C; := Cus, (pH;>m0);
for suitable constants C; = C1 (e, an, Mo, No, Ce) and
C1 = Ci(ae, an, Mo, No, Ce, Ch).

Base Step, j = j: If Hj; = Hpy, we have shown already that

T H, — ol < C(Mo, No)ei €(Hpy,)' ~

and spt(7) N Cy, C Bu,,. Hence we need to consider only the case in which H;
is a boundary cube. In this case we argue as in (8.21) to deduce

(1= Coe?)lps,, - P, | < Pro (P, — P
(8.22) <len;,, —cu;| +len; — pwo(pgqj)\ <657,
In particular this implies that By, C Bi‘l;' Hence we have

7, — 7w | < CoB(T, Ba, ) + CoE’ (T, By ).
As before if Hj ; € ;1 we directly conclude that

1
\mhs,, — 7| < Cef l(Hypq)' .
Otherwise let m be the projection of 7y, onto the tangent space of X at pp, . By
: 1
the regularity of ¥ and the estimate (8.22) we have [ —7y, | < C(Mo)ef £(Hj11).
Since T (BY.) > warf. /2.
E(T,By,,,) <E(T,By,,, m) < CoE’ (T, B} ) + Colm — 7y,

|2
j+1? 7 Jj+1

(8.23) < CeFO(H; )220,

We conclude the first part of (i)! for j = j, while the second one follows from (6.7)
and the estimate:

|7T(p'}13) — 7| < Co€1T}{;ae~

Induction Step: Let us assume the validity of (i), (i)l for all j < j' < j, we want

to show that (i)I*, (i4)7*! hold true. First note that py,,, € C;, and thus, by (i),

|ij+1 _ij|2 < |C(Hj+1) - C(HJ)|2 + |p7Jr_o(ij+1 _p%j)P
9 2

(824) S <MO2 + 40151) TH.7+1 s

where 0 = b or 0 = depending on whether H; is a boundary or a non-boundary

cube. Hence, provided M, ! and ¢, are sufficiently small, B Hi, C BE’IJ. Thus

|7THJ'+1 — ']'rHj‘2 < C()ED(T, B%J + C()E(T,BH._H).

J

Note now that H; € % (since otherwise it would have not been subdivided to
produce Hj1), hence

E(T,By,,,) < CoE7(T,BY,) < CoCeerl(H;)* 2% < Ceyl(H;)* >

Jj+1
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for a constant C' which depends only on m,n, @, and Ce. This proves the first part
of (i)i*1 if we choose C'; > C. The second part follows from the first one and the
inductive assumption via the estimate

J+1 , It , 1

raibs) —(1—ae)j . -2

mH, 0 = mol < lmm, —ww, | < Crei Y 270w <Ol
i'=j J'=j+1

since we can choose Ny big enough to ensure

oo

Z 9—(1—ae)j’ <1.

Jj'=No

We now prove (i)’ ™1, The idea is to first use the inductive assumption (namely
the height bound in C;) in order to prove that spt(7') N C;41 C By, , and hence
to use the height bound in By, , in order to conclude an height bound in C;;: in
the second step it is crucial that the tilt |7, , —mo| has already been proved to be
under control, cf. Figure 8.3. Indeed, by (ii)! for all z € spt(T)NC;41 C spt(T)NC;

we have
2
|z — pH, ., 1> < (48THj+1) +h(T,C;,m)
(8.25) < (48ry,,, )% + Crderl(H11)? < (64ry, )

provided €; is small enough. This implies that spt(T) N C;41 C Bpy,,, and thus
the first part of (ii)’*!. We now note that, if H; 41 € .41, then
h(T,Cj1,m0) < Cor, o Imm, . — Tol + W(T,Ba, .\, 7TH,,,)

J

< Cre/MU(Hj ).

provided C is chosen big enough. If instead H;i1 ¢ %11 (which can just happen
for j = jo) we just observe that C,;11 C C; and that H; € .; (otherwise it would
have not been subdivided) and thus, by choosing C; possibly bigger,

l’l(T7 Cj+1,7T0) < l’l(T7 Cj,ﬂ'o) < CoTHj‘TFHj — 7T0‘ + h(T,B%j,?THj)

1 m
< Corm, o T,y — mo| + Cney " 0(H;) +on

< Cyey*"0(Hj 1)

This complete the proof of (ii)) ™! and of the claim. Note in particular that (ii)I*?
implies (b).
Let us now prove (a), and (c)b. For (a), let L be an ancestor of H, then either

L = H; for some i < j or L is a boundary cube with H; C L. In the first case the
we use (i)} to deduce that

Jo+1
|7TH - 7TL| = |7THJ‘O+1 — 7| < Z "R—Hj - 7rHj_1|
J=it+l
1 Jo—t , 1
< Cell(H;)' mo Y 27 meell < el 0(Hy)' %,
=1
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THj41

o

N N

Cjn

FIGURE 8.1. The inductive proof of (ii)J*! consists of two steps:
first the height bound in the cylinder C; is used to prove that
spt(T) N Cj11 C Bpy,,,; then the height bound in By, is used
to prove the height bound in the cylinder C;4;.

In the second case we use the triangle inequality and (a) for boundary cubes (which
has already been shown) to deduce

\my — 7| < |7 — 7oy |+ T — TH |
1 1 1
< CePl(H;)' ™% + Ceif(L)' % < Cefl(L)' %
It remains to prove the second part of (a) in the case that L, H are neighbors

and both are non-boundary cubes. Let M be the father of L and we may assume

that ((H) < ¢(L) = $¢(M). Since |c(H) — ¢(M)| < 3/ml(L) we have that py €

Csar,, (par, m0) NSpt(T) or prr € Carsayy, (P, m0) Nspt(T) if M is a boundary cube.
In both cases, by (b), By C By (or By € B,), hence
1
|7TH — 7TM| < CEf@(M)liae.
Since a symmetric argument holds for L we obtain

1
"R’H—’JTL‘ S ‘7TH—7TM|+‘7TL—7TM| §4CEI2£(L)1_QQ.

and this concludes the proof of (a). To prove (c)! we consider again the chain of
ancestors H = Hj 1 C H;, C --- C H; where Hj is either the first boundary cube
in this chain or H; € €,. Let us set C; := Cugry, (p%j,wo), (c)® will follow if we
show that for all j > j

(8.26) spt(T) N ngmj (p%j,ij) Cspt(T)NC;

(note that the possibility [0 = b can only occur for j = j). Indeed the inclusion
spt(T)N Cs6ry, (p%j ,mgr) C BY will then follow from (b), the arguments in the last
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step and simple geometric considerations. Moreover, assuming (8.26) and using (a)
we will have

h(T, Cseryy, (P, 71)) < B(T, Cj,7) < W(T, B, 7n)
< h(T,BEIj,’]THj) +C|7TH _WHj‘THj
< Cre™ 0(H,)'To% 4 Cey ((H, )20,

from which we easily conclude.
We are thus left to show (8.26). First, note that from (8.24) and (a) for j > j

O O O
|p7TH (pH]+1 _ij)| < |p7ro(ij+1 _ij)‘ + C‘ﬂ-o - 7THHij+1 _ij‘
1
< (3vm + Cef )U(H;)

(recall that H;4q is a non-boundary cube by assumption). Hence, by choosing first
My large and then £; small, we always have

(]

(827) C367“H].+1 (ij+1,7TH) C CSGT’H]. (ijvﬂ—H)'
1

Now, if H; = Hy, we deduce from |7y — 7p, | < Cef that

Cs6ruy, (PHy, TH) C Cny

if €1 is sufficient small. If Hj; is a boundary cube, Corollary 6.4 implies that
Corzery. (p'}{?,ﬂH) C Caragry (p'}{?,ﬂo). Hence, in both cases, (8.26) holds for

j = j. Let us assume now that there exists a first index j’ > j + 1 such that (8.26)
fails. Then there is a point p € spt(7") such that

p € spt(T) N Cseryy , (Pr;, s 7o) \ Cyr-
By a simple geometric argument and (a), this implies that

36rm, _ Cra,

1
— >
|p7r0(p ij/)‘ = C|7T0 — 7TH‘ =g

On the other hand, by the inclusion (8.27), the validity of (8.26) at the step j' — 1
and (b), we have

pry (P — pu, )| < IPay (0 — P, )|+ Py (PH, — Py, )
S 2h(T, Cj/_l,ﬂ'o) S C’I"Hj,.

Taking £; small enough the last two inequality are in contradiction, from which we
deduce the validity of (8.26) for j. O

In particular, a simple additional argument implies Proposition 8.7, in the
following strengthened version:

PROPOSITION 8.25. Under the Assumptions 7.1 and 8.6 the following holds for
every couple of neighbors H,L € UW and any H,L € UW with H descendant
of L:

spt(T) N Cser, (P, ) C Br when L € €7,
spt(T) N Carser, (p7,7r) C BY when L € €,

and the current T satisfies the assumptions of Theorem 7.5 in the cylinder
Cser,, (pr, TH) (resp. of Theorem 7.4 in Cayrsg,, (0, 7H)).
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PROOF. The first two claims have already been proved in the previous propo-
sition. We now wish to prove the applicability of Theorem 7.5 in Csg,, (PL, TH),
resp. of Theorem 7.4 in Cyr3g,, (pr, g ). In both cases let C be the corresponding
cylinder and B their bases, namely Bsg,, (Pry (PL), Tr) and Barsg,, (Pry (07, 7).
We only have to show the following properties:

(8.28) Py (TLC) = Q[B] if L € 6"
(8.29) Py (TLC)=Q[BY] +(Q-1)[B7] if L €%

where, in the second identity, we consider B* and B~ as the regions of B which
are separated by pg,, (I').

We just show the argument for the second case, since the first one is entirely
analogous and already contained in [16] (in fact also the argument for the second
case is just a modification of the one contained in [16]).

Assume first that L& @, , let M be the father of L and let C'= Cayrsg,.,, (P, T0)-
Consider that, by case (c)” of the previous proposition, we clearly have spt(T") N
C C C'. Consider thus a continuous path of planes [0,1] 3 ¢ — m(¢) such that
m(0) = mo, m(1) = 7y and |7(t) — m| < Ce;/* and let S := TLC', C(t) :=
Corzery, (7, () and T(t) := pr(y(SLC(t)). Observe that, by the height bound
on C', if & is sufficiently small, then spt(9S) N C(t) C T'. In particular, if
B(t) = Byr36r, (Pr(t) (p%,),m(t)) and B(t)* are the corresponding regions in which
Pr(¢) subdivides it, we must have

T(t) = k() [BOT] + k(1) = 1) [B®)]

for a suitable integer k(¢). However, by a simple continuity argument on t — T'(¢),
the map ¢ — k(t) must be as well continuous, that is constant. Since k(0) = Q,
we thus must have k(1) = @ as well. On the other hand T'(1) = pr, (T'LC), thus
implying the desired claim.

In case L € ¥n, we use the same argument where we define C’ to be the
cylinder Cyrrg,., (p,,m0). a

8.4. Interpolating functions and linearized system

Consider now a pair H,L € . U # which are either neighbors or such that
H is a descendant of L. By Proposition 8.25 we can consider corresponding maps
f;L and fgy as in Section 8.1.4, by applying Theorem 7.4 and Theorem 7.5 in the
cylinders Car36,, (pr, 7)) and Cser, (pr, 7 ), respectively. Hence we introduce the
corresponding maps hgr () = (hgr(x), Yy (z, hgr(r))) where hyy solves

AEHL =L (37 — Pry (pH))
(8.30)

hur =mo fur on 0Bg,, (pr.7H) ,

if H and L are both nonboundary cubes,

Ahgr =L (2 — pry (pn))
(8.31)
- —+
hur =mo fuL on OBLerr (v}, m)
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if L is a boundary cube and H is a non-boundary cube,

AEHL =L- (CC — Pry (pgl[))
(8.32) ~ B
hHL:’r]OfHL on 8B8TL(pLa7TH)7

if L is a nonboundary cube and H is a boundary cube and finally

Ahpr =L (z = Pry (Py))
(8.33) .
hur =mo [y on 8B;grL(p'}Ja7TH),

if both H and L are boundary cubes. The constant coefficient matrix L is given by

(8.34) Lk = — ZAw\Il;{(pH 2 U (pr)  if H € %"
(8.35) Lt =~ ZA U (0" H)D2,, Vi (py)  if He? .

Observe that the third case cannot happen when H is a descendant of L and thus
it can only happen when H and L are neighbors.

In order to simplify our discussion, in what follows we always use the convention
that sy is the orthogonal complement in T,, % (resp. sz{ Y) of my. Moreover,

for every map u defined on a domain  C 7y and taking values in 77, we denote
by @ its projection on »pg. In particular, if the graph of u is contained in X, then
we have u = (@, Uy o @). The same convention, given the obvious adjustments, is
adopted for multivalued maps.

The key estimate leading to the proof of Theorem 8.13 is contained in the
following proposition.

PROPOSITION 8.26. Under the Assumptions 7.1 and 8.6 the following estimates
hold for every pair of cubes H and L which are either neighbors or such that H is
a descendant of L:
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[ (Do frn) s DE+¢' L (B o~ pin)
(8.36) < Cerrf ™ (r1 . DClo + 1€lo)
V(€ CX(Bsr, (pry7m) »m)  if L H € 6%
/ D(no fur): D¢+ ¢ L (Pry (@ —pgf)))
(8.37) < Cerry ™ (r I DClo + 1€]lo)
V¢ € C°(Bsy, (pr,mu), #g)  if LE€C" and H € €’;
/ (Do fur): D¢+ L (Pry (x — pa)))
(8.38) < Cerrp ™ (1D o + 1I¢]lo)
V¢ € C°(Bjrg,, (P 7mr),22m)  if L€ %" and H € 6%
[ (Do fus) s DC+¢ L (b (o = 1)
(8.39) < Cerr 1 (r D¢ o + 1€ lo)
V¢ € C®(Brg,, P 7u), 1) if LLHEE .

/\

/\

Moreover,

(8.40) lher =m0 farllBe, pumm) < Cerrp o if L€ €%
(8.41) |heL —mno fHLHLl(B;ST (P ) = Ceyrt3tor 4f [ e ¢
(8.42) IDhELl| Lo (Be,, (prrr)) < Cezrl=ee if L e %

(8.43) HDBHLHLOC(B+ . @) < Cafr; “e ifLe6.

PRrROOF. Proof of (8.36), (8.38) and (8.39). The argument follows that of
[16, Proposition 5.2] with essentially no variations and we report it here for the
reader’s convenience.

In order to simplify our notation we let p = py in the first and third cases and
p= p‘}{ in the second and fourth ones and we write 7, >r and w for the planes my, sy
and Tle. With a slight abuse of notation we denote by W the map ¥y, so that the
graph of ¥ : T,¥ — T,X~ is ¥. Finally we use the coordinates (x,y,2) € 7 X X @
to identify points in R™*7+ = R™*" and we set f = fur, fT = fi,, r=r5. To
avoid cumbersome notation we use ||-||, for [|-|| o and ||-||; for ||-[[o1-

In all the cases the identities are derived by testing the first variation condition
0T (x) = 0 for the vector field x(z,y,2) = (0,{(x), Dy¥(z,y) - ((z)): in the first
case the condition will be tested in the cylinder C := Cs,., (pr, 7x), whereas in the
second and third cases it will be tested in the domain C* := B;;STL (P, TH) X T3
Note that in both cases the vector field x vanishes at the boundaries of the respective
domains, whereas the current 7' has zero boundary in both C and CT. Finally,
although x does not have compact support, the currents 7L C and TL C* have
both bounded support and thus we have §(T'LC)(x) = 0, §(TLC")(x) = 0. Using
the formula for the first variation and the estimates in the Theorem 7.5, in the first
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case we conclude

160G (X)| =[0(Gf —TLC)(x) < [[Dx[[oM(TLC — Gy)
(8.44) < Co|| Dxllor™(E(T, C, 7)) + r2A%)1Fe
(8.45) < Col|Dxllor™ (617“2 20‘E)H"’.

On the other hand |x|lo < 2|[¢]lo and [|[Dx|lo < 2||¢llo + 2]|D¢||o, provided €7 is
sufficiently small. Choosing oy, < § and a, small enough so that (2 —2ae)(1+0) >
2+ Z, we conclude that

(8.46) [6G £ (x)| < Cerr™ e (r[| Do + Il lo) -

Using the same argument and the estimates in Theorem 7.4, we gain the same
estimate for the second and third case.

The remaining computations are the same for all the cases and we give them for
case two and three. First we write f =3 [f;"] and f* =3, [f]. Gr(fF) Cc =

implies f* =", [(f;", ¥ (=, f;"))]. From [15, Theorem 4.1] we can infer that

6G+(x / Z (@, f+) ¢+ (Dyy\l/(xvf:_) ) Dzﬁ*) ¢
(4) (B)
+ D, U(x, fiF )-ch) ; (Dxxp(:c,ﬁ)JrDnyf(x,ﬁ)-Dmfj)

(©) (D) (E)

(8.47) +/ > Du(: Dy f +Err.
B

Recalling [15, Theorem 4.1], the error term Err in (8.47) satisfies the inequality

8.48)  [Bux| <C [ IDXIDS < Il [ PSP < Cll Lintsh) [ PSP
Using now the estimates of Theorem 7.4 and arguing as above we achieve
(8.49) |Err| < eyr™ 0 (r]| D¢l + 1< o) -

The second integral in (8.47) is obviously QfB D¢ : D(no fT). We therefore
expand the product in the first integral and estimate all terms separately. In order
to simplify our computations we shift coordinates so that p = (0,0, 0). Recall that
this implies that |p,(pr)| < Col(L), or |px(p})| < Cobdr if L is a boundary cube.

In particular we have ¥(0,0) = 0 and D¥(0,0) = 0. Taking into account the
bounds on A, we then can write the Taylor expansion

DU(z,y) = Dy DY(0,0) - x + Dy DY(0,0) - y + O (e, (|z]> + |y]?)) -
In particular we gather the following estimates:
DU (z, [N < Ceyl*r
>f1 )| — 1 i
U(z, f;) = Do DY(0,0) - + O(e)*r+2an),
D*w <x f+>| <&,
2W(z, f;) = D*¥(0,0) + 0(81 °r).
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We are now ready to compute the behavior of the summands in (8.47). First

[ X @ 0= [ Y 0,90.0-0: v )
| +OEalr2/|g|)
(8.50) —Q/zi:(ny\I/(O,O)(:Dm\II(O,O) -x+0(alr1+ah/\g|)
Next, we estimate
O S )
(5.52) [ 3@ @)+ @) =0zt [ ).
(8.53) ];(0) . (E) :O<51r2+ah/|DC|).

Finally we compute

[32©:0) = [ 302 9(0.0) ) D.0): Dav (e )
+O(51 r2+ah/|D<|)
- Q / (D #(0,0) - 2) - Du) (Do W(0,0) )

+O(51 r2+°‘h/|DC|).

In summary, the first integral in (8.47) takes the following form:

Q[ Y e, v 0.0 @03, 10,0 ds

i,7,k,s
> 02, 050,0)2:0,¢ (2)02 , ¥*(0,0)a, dz + Err,
i,5,k,s,r

where Err satisfies the estimate (8.49). Integrating by parts the second term we
achieve

—Q/in S AT (0,002, 95(0,0) | ¢ () da + Fir
,J J

which completes the proof of the claim.

Proof of (8.40) and (8.41). The estimate is the same in all cases: we denote
by © the domain of the function h := hy; and observe that for the difference
uw:=nh—mnof, resp. u:=h—mno ft, the function u satisfies u|sq = 0 and

/Q Du:Dc‘ < Crmrten(|clo +rDClo)  VC € W)
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(although the estimates in (8.36), (8.38) and (8.39) were proved for ( € C°(Q),
a simple density argument extends it to the case above). Now, for every v € L?
consider the unique solution ¢ := P(v) € Wol’Q(Q) of A( = v. We then have the
estimates

r=HP)llo + ID(P())llo < rllv]o-
Therefore we can write

lullr ) = sup /u~v: sup /u-A(P(v))
Q Q

viflvflo<1 vifvllo<1
= sup (— Du : D(P(v)))
vi||lv|lo<1 Q

< Ceyrmtiton sup_ (1P ()llo + r[[D(P(v))llo)
vi||v|[o<

< Ceqrmt3tan

Proof of (8.42). We split h as v + w, where
Av=0 in Bs,, (pr, 7o)

(8.54)

v=mnof ondBg., (pr,TH)
and

Aw=L-z in Bg,, (pr,7H)
(8.55)

w=~0 on 0Bs,, (pL,7H)

The estimate (8.42) follows from the interior regularity for the Laplace equation.
More precisely, for the harmonic part we have

1Dl 5y iy < O™ [ D

Bsr; (pr)
<onm [ e P Ceng
Bsr; (pr)

whereas for w the estimate holds up to the boundary
[Dw|| Lo By, (pr)) < CrillAw]e < Cerri .
For later use let us note that in particular if L € %]hvo we have (for some constant

C depending on Np)
4

S 100, 1 < € I1DA, iy < Ce

= o=

k=0

4

> HDkaBWL(pL) < CllAwllgz gy, (1)) < Cer-
k=0

Therefore we conclude that, for any L € ‘flh\,o,
(8.56) ||hHL||Cs,K(B7TL(pL)) < Cef .

Proof of (8.43). Let L be a boundary cube, we want to apply Schauder estimates
to prove (8.43). To this aim we first observe that n o f coincides with the C3:a°
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function whose graph describes I' on v = p, (7). For this reason we fix a C3:

extension of it to the whole domain Q. We will show below that, by our assumption

on I', we can impose ||¢||3,q4, < 051/2. As customary we write ¢ = (¢, ¥U(z, @)).
We then split h as v + w + ¢, where

Av=0 in B;Sm (0%, 7H)
(8.57)
v=nof—¢ on 833’78” (pr,ﬂ'H)
and
Aw=L-2—-A¢ in B2787,L(pr77rH)
(8.58)

w=0 on GB;STL (0%, 7H) -

Step 1: Definition of ¢. Recall that I' is a C®% graph of a function 1y over
7 i= T, I' with lYLlls.e < 051/2. Consider now that |7 — 75 | < Csi/2€(L)1_ae <

C’ei/ * and hence, if we define 7 := p,(71), under the assumption that &, is smaller

than a geometric constant we conclude as well that|r—7| < Cai/zé(L)l_o‘e < 051/2.
We can now invoke Lemma 8.30 below (namely [16, Lemma B.1]) to conclude that
T is the graph of a function ¢ over 7 with ||¢||3,4, < 051/2. Fix next a unit vector
e orthogonal to 7. We can then write 1 = e + ¢, where ¢ = P (¥). Since
GB;STL (p%,7r) N Barg,, (1, 7)) C px(I), we infer that the graph of ¥ over a
suitable subdomain of 7 describes (’“)B;@STL (P}, 7r) N Barg,, (0%, TH)-

Next, for every x € 7 we let & = v + te with v € 7 and define ¢(z) =
d(v). Clearly ||¢]l3.q, < Ce'/2. Moreover, when restricted to 8B;78TL (P}, 7w) N
Borg,, (0%, mr) the graph of the function ¢ gives the portion of I' lying over it.
Hence ¢ = no f over 8B;8TL (p%,mH) N By, (p%,mH). Note in addition that for
every q € BbL,

T,I — 7| < |T,T — 7|+ | — 7| = [T, — prLF|
< Ce+1')q — p | + Ce"0(L) % < Ce)0(L) 0.

This estimate implies
1D¢l|oc < CeV20(L) 0%

Step 2: Schauder estimates. By interpolation
[Déla < C|1Dellc™ | D*0, < Cer(r) ot

. 1 . _
Since =5 div(z ® ) = x, we have

Lx—Aqbzdiv( Lx®x—V¢> = div(F).

m+1
By classical Schauder theory for operators in divergence form and 0-boundary con-
ditions, we have
1
m+1
We moreover have the elementary estimate
[Dwl|rz < C||F| 12,

[Dw]a < CF]a < [ Lz @z — V¢} < Ce%rg*%)(ka).

(03
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which follows from multiplying the equation by w and integrating by parts. Hence
we conclude

|Dw]|,, < Cre[Dw], < Cezrl—oe.

It remains to estimate the harmonic part ||Dv|| . Since v =0 on 8B;78TL (p%, mE)N
Borg,, (p‘}:, mp) we can use a classical estimate on harmonic functions vanishing on
a smooth boundary to deduce that

Cr—™ / | Dov|?

<
) = -

IDV|[20 5+
(Barr S, (P mH)

< Cr—m |ID(mo f—¢)|* < Ceyry 2.

BQ+78rL (p; 77TH)

Combining all estimates give (8.43). As in the interior situation let us remark that
for L € ‘KK,O there is a constant depending on Ny such that for k < ag

3
[ng]n,B’ + Z HDkUHco(B/) < OH’? ° f||CO + ||¢||CO < Calé
k=0

and
3

[Dsw]m,B’ + Z HDkaCO(B/) < C HAwHCI,N < Cv<€1% )
k=0

where B’ = O3 (B,

2777‘L

). Therefore

1
(8.59) ||hHL||Cs,K,(Bz+77TL w, mn)) < C€T -
(]

We end this section by recalling the following simple consequence of the regu-
larity theory for harmonic functions vanishing at a sufficiently smooth portion of
the boundary.

LEMMA 8.27. Letr < 1 and consider any m—1 dimensional C>% hypersurface
v C R™ which passes through the origin and is the graph of a C function ¢ with
llollcs.ao < 1. Let BT the subset of By lying over ~y. Then there is a constant
C(r,ag, m) such that the following estimate holds for every harmonic function h in
BT which vanishes along ~y:

(8.60) hllcs.a0 (B, nB+) < C(r,a0, m)||h||lLy(s+) -

8.5. Tilted L' estimate

DEFINITION 8.28. Four cubes H, J, L, M € € make a distant relation between
H and L if J, M are neighbors (possibly the same cube) with same side length and
H and L are descendants respectively of J and M.

LeEMMA 8.29 (Tilted L' estimate). Under the Assumptions 7.1 and 8.6 the
following holds for every quadruple H, J, L and M in . UW which makes a distant
relation between H and L.
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o If J € 6", then there is a map e By, (py,mn) — w5 such that
G}:LLM = GhLMLC4TJ(pJa7TH)

and
(8.61) hers = BErllLr (8o, (o war)) < Corb(J)™H34en/2,

where 1 = 4+ or O = depending on whether M is a boundary or a non-
boundary cube.

e Ifboth J and M belong to €”, then there is a map hia B;Mm (0%, 7r) —
7y such that

G :GhLMLCQ74T‘J(p|}>7rH)

hrpm

and

(8.62) ||hJ1Lr1J - }ALLM”Ll(B;z % ,7m)) < CElf(J)m-Q—S-Q—ah/? .
g

Before coming to the proof we recall the following two lemmas from [16].

LEMMA 8.30 (Lemma B.1 in [16]). For any m,n € N\ {0} there are constants
co, Co > 0 with the following properties. Assume that
(i) 5,500 C R™™ are m-dimensional planes with |sc— | < co and 0 < r < 1;
(i) p = (q,u) € 3 x 3* and f,g : BP(q,5) — s+ are Lipschitz functions
such that

Lip(f),Lip(g9) <co and [f(q) —ul[+1]9(q) —u| < cor.
Then there are two maps f', g’ : Bs.(p, #0) — »3- such that
(a‘) Gf/ = GfLC57"(pa %0) and Gg/ = GgLCE')?"(pa %0)7'

(B) 1" = gl (Bsr(p.0)) < Collf = 9llL1(Brn(p,)) 7
(c) if f € C3*( By (p, %)) then f € C3*(Bs.(p, 30)) with the estimates

(8.63) 11" = 'llco < Cllf = ullco + Clae — s0lr
(8.64) [Df lco < ClIDfllco + Cl3¢ = 34
(8.65) ID?f'lern < @(J5 = 520, [ D? fll o)

where (¢',u') € »p % »- coincides with the point (q,u) € 3 X - and ®
is a smooth function with ®(-,0) = 0.
All the conclusions of the Lemma still hold if we replace the exterior radius 7r and
interior radius br with p and s: the corresponding constants ¢y and Cqy (and the
function ®) will then depend also on the ratio 2.

LEMMA 8.31 (Lemma 5.6 of [16]). Fiz m,n,l and Q. There are geometric
constants cg, Cy with the following property. Consider two triples of planes (w, », @)
and (T, 3,%@), where

e 1 and T are m-dimensional;

e 3¢ and x are n-dimensional and orthogonal, respectively, to m and 7;

e w and w l-dimensional and orthogonal, respectively, to ™ X »x and T X .
Assume An = |r — 7| 4+ | — 3| < co and let ¥ : w1 X 36 - w, U : T X % > @
be two maps whose graphs coincide and such that |U(0)| < cor and || D¥]|co < co.
Let u : Bg,(0,7) = Ag(3) be a map with Lip(u) < ¢o and |lul|co < cor and set

fla)=>"1(ui(x), U(z,u;(x)))] and f(:C):(nou(x),_\il(x,nou(:v))). Then there are
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o a map U : By (0,m) = Ag(sr) such that the map
flz) = Z [(@i(z), ¥ (2, @i(z)))]

satisfies G = Gy Cyr (0, 7)

e and a map f : By, (0,7) = 3 x w such that
G; = GeL Cy (0,7) .
Finally, if g(x) := (nodi(x),¥(z,noi(x))), then
(366)  1f =gl < Collflco +rAn) (Dis(f) + ™ (|DF|2 + An2))

PROOF OF LEMMA 8.29. We start by examining the first case. Using Proposi-
tion 8.26 we know that ||has —no fusllLi(Bs,., (psmm)) < Ceyrpt3tem  Now, since
Wy is Lipschitz and hyy = (hHJ, \I/({E, hHJ)), fu; = ('r] o fus, \I/H(n o fHJ)), we
easily conclude that

(8.67) HhHJ — fHJHLl(BSTJ(pJ’TrH)) < C€1T}n+3+ah .

Similarly,

m—+3+an m—+3+an
Ihonr = fomllLr (B, (oarmn)) < Cerriy < Cerry

in case M is a non-boundary cube or
+ + m—~+3+an
i — fLM||L1(3278,,,M ) < Cerry

if it is a boundary cube. Since the two situations are entirely analogous, we just
focus on the case where M is a non-boundary cube.

Now both hra and fr s are Lipschitz (and well defined!) over Bg,,(ps,mr)
and recall that, due to Proposition 8.24, |p,, (ppm — ps)| < 3v/ml(M). Moreover
they satisfy the assumption (ii) of Lemma 8.30 by a simple Chebyshev argument
on the L' estimate above. So we can apply Lemma 8.30 to get a function foar the
function such that

Gf‘LM LC47nJ (p‘]7 7TH) = GfLM LC47"J (pJ, 7TH) s
similarly for hz s and to conclude that
(8.68) Wrar = £l Lr (B, primay) < CerryHHFom.

In order to simplify the notation, shift the center p; to the origin and consider next
fLM, 4 and g as in Lemma 8.31 once we define f = fr, 7 = 7y and 7 = wr,. Now,
the graphs of 4 and fy s coincides except for a set of Lebesgue measure bounded by
C’er(slr?]_%e)”” because of the Lipschitz approximation theorems. On the other
hand the oscillations of both functions are bounded by Cai/ er}ﬁo“‘
to verify that

. It is thus easy

(869) HfHJ - gHLI(BuJ (ps,mr)) < Cglr}n+3+ah :
We now claim that
(8.70) IE2rs = &l (B, o,y < Corr’y 2Fom2

which combined with (8.67), (8.68), and (8.69) would give the desired estimate.
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In order to reach (8.70) we wish to apply the estimate (8.66) in Lemma 8.31.
Recall that in our context we have the following estimates:

1

[llo < Cey*mrjte,
r=ry,
An < Cei/zr}f%,
Dir (f) < Ceyrpt?=20e,
|D¥||co < Cey?r.
Hence the estimate (8.70) follows easily from (8.66) once we impose ap > 4ae.
In the case where both M and J are boundary cubes, the argument is entirely
analogous. The only subtlety is that we cannot apply directly the lemmas 8.30 and

8.31 since the functions we are dealing with are only defined on a portion of the
respective ball, namely on B;@G”(p‘}, 71,). Note however that all functions can be

easily extended to the whole ball Barg,, (pz,wL) with the following simple trick:

on the boundary v = Bayrg,., (0, 71) N 8B;r76” (p’,7r) the graph of hras coincides

with the boundary I', hence with a C? function 1, and the graph of frus coincides
with Q [1/]. Note moreover that ¢ satisfies the estimates 75 21|lo + ;|| D3|lo +

D%y|lp < Ce”. Hence it suffices to extend ¥ to B (p%,7L) to a function
1 2767, \PJ
@ with the same estimates and hence extend hy s and frps to B;Gw (p[j],ﬂ'L) by

setting them respectively equal to ¢ and @ [¢]. In this way we keep all the estimates
which were essential for the argument above. O

8.6. Construction estimates and proof of Theorem 8.13

In what follows we use the shorthand notations z (resp. 2%;) for the center
c(H) = Py (pr) (resp. pr, () and we write B,(z) for B,.(z, ).

PROPOSITION 8.32. Let k := min{an/4,a0/2}. Under the Assumptions 7.1
and 8.6 the following holds for every pair of cubes H, L € 2;.3

(a) llgrllcsnm) < C’si/z, where B = By, (vy) when H € €° and B =
B;;MH (zb;) when H € €”;
(b) If H and L are neighbors then

||gH — gLHCi(BrH (xm)) < C81/2€(H)3+N7i Vi € {0, 1,2, 3}
(8.71) when H € €7,
! K—1 .
lgr — gLHci(B;m @y < Ce20(H) 1 Vi€ {0,1,2,3}
(8.72) when H,L € €°;

(c) |D3gu(2) — D3gr(aF)| < Ce?ﬂx% — 2P)%, where O = if the corre-
sponding cube is a non-boundary cube and O = b if it is a boundary cube;
1 m . .
(d) llgr—px, (p)llcocs) < Cey*"U(H) if H € €* and gy |5 = v if H € 6",
where B is as in (a);
(@) |1Ta = Ta,g4 (2)) Ggr | < Cai/ZE(H)l_O‘e for every x € B, where B is as in

(a);

3Recall the definition of Z; given in Section 8.1.5.

Licensed to Univ of Toronto. Prepared on Tue Aug 13 14:12:57 EDT 2024for download from IP 138.51.77.134.



126 8. CENTER MANIFOLDS

(f) If H' is the cube concentric to H € #; with ((H') = 3((H), then
(8.73) s — grrllprcmry < Cerl(H)™3ren/2 i > 541,

PRrROOF. Proof of (a). Consider the chain of ancestors H = H; C H;—1 C
... C Hy,. Fix any j and consider the two cases where H; is a boundary cube or
where Hj is a non-boundary cube. In the first case observe that H;_; must also be
a boundary cube. It follows then that hy H; — hu H;_, is an harmonic function on
Q; = BQ77THj (p'}{j,ﬂH) in the first case and in €2; := Bz, (pa,,Tr) in the second
case. Notice next that, by Proposition 8.26, we have

hma, —haw, i@, <lIme fum, —no fan, i@, + CerfSom.

On the other hand n o fHHj —no fHHJ;l vanishes except for a set of Lebesgue
measure at most Cl(H;_1)™(e14(H;_1)*"2%)1*. Taking into account that the

1
oscillation of both functions are bounded by Cej™ T}Itf‘f we also know that

o fum, —mo fum,_,|iq,) < Cerl(H; )2,

We thus conclude
lhem, — ham, |0, < Cerl(Hj_q)"tom .
Now, if H; is a non-boundary cube we immediately conclude from the mean-value

inequality for harmonic functions that
4

(8.74) ZE(ijl)kHDk(iLHHj — BHHj—l)‘lCO(B4rHj (pr, i) < CElf(Hj71)3+ah .
k=0
In particular we conclude the estimates

(875) HBHH]- — EHHj,l ||03'K(B4'r'Hj (ij,TFH)) S 06127J-N .

Similarly, using an obvious scaling argument together with Lemma 8.27, when H;
is a boundary cube we conclude

3
Z@(ijl)k’HDk(hHHj - hHHj_1)HCO(B274TH‘ (piqj JTH))
J

k=0
(8.76) < Cel(Hj_q)*ton
[D3(BHHj — i_LHHj_l)]OﬁamBz?MHj Wy, )
(8.77) < Ceyl(Hj_q)om™ 90,
In particular,
(8.78) |herm, — EHHf—l”CWBMHj hy mae) Cey279% .

Summing all the estimates we conclude that if H is not a boundary cube then

(8.79) sl cor (Bar, i) < i 03 (2,) + Cet -

If H is a boundary cube we have
sl coniss,, oy < It loan@y,) + Cer
Recall that in previously in (8.56), (8.59) we already showed that

_ 1
Ihe b, oo @on,) < Ccet
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composing with ¥y we find the desired regularity for hgy. The regularity for gy
follows then from Lemma 8.30.

Proof of (b). Consider the function hz, defined by Lemma 8.29 when we take
H = J and L = M. We then have the two estimates

(8.80) |he — EL||L1(B%J(,,‘,7WH)) < Ceyb(J)ymH3+en/2
(8.81) |he — hrl . (B, ) < Ceyf(J)ymH3tan/2,

depending on the two cases under examination (H non-boundary cube or both H
and L boundary cube).

Observe that the graph of g, coincides with (a portion) of the graph hr. We
can thus use Lemma 8.30 to prove

lgr — grllLr ) < Cepb(J)m+3ton/2

where Q; is either B, (z,m) or B;@m (2%, m) depending on whether .J is a non-
boundary cube or a boundary cube (in the second case we argue as in the proof of
Proposition 8.29: in order to apply Lemma 8.30 we extend both maps hy and hy, so
that they are equal on By, (ps, mr) and the Lipschitz constant of both remains

bounded by C{:‘i/ *). In order to conclude the estimates we then apply [16, Lemma
C.2]. In the case of boundary cubes it is easy to see that the proof given in [16] of
Lemma [16, Lemma C.2] extends to B;}Qm (pg, mr) with trivial modifications.

Proof of (c). If the distance between H and L is larger than 270 then there
is nothing to prove. Otherwise we can find an ancestor J of H and an ancestor
M of L which make a distant relation and such that ¢(J) = ¢(M) is comparable
to |z — 2| up to a geometric constant. Consider then the chain of ancestors
H C H;j_; C...CJ. Observe that, by the same arguments given in the previous
step we can find maps gy, whose graphs coincide with (subsets of ) the graphs
hrrp, and satisfy the estimates

gz, — g, e < Cey0(Hi 1)

where the domains (2; are either B,, (zm,,m0) or By, (x'}{i,ﬂ'o) depending on
whether H; is a non-boundary cube or a boundary cube. Moreover, all the maps
gru, enjoy uniform C3* bounds by the same arguments of point (a). We thus
conclude that

O O O 1/26—i
|D*grm, (zm,) — D39HH1»,1($H1»,1)| < C51/22 "
Summing all the estimates we then reach
1 1
D9 (ag) — D9 (2F)] < O 0())" < Ce)lolg — 2"
Arguing similarly we conclude the corresponding estimate
« 1
|D2g1(a]) = Dgrar(eir)] < O, laly — 221"
Finally, the obvious adaptation of the argument for (b) gives
1
D915 (25) = D?grn (a))| < Celay — 2|

Proof of (d). The claim is obvious by construction for boundary cubes.
For non-boundary cubes, consider that the height bound for T" and the Lipschitz

regularity for fy give that [P+ (pr) —mo fale < C’ei/zmé(H). If we set £y =
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(mo fu, Yy (z,no fg)) we also get IPrs (Pr) = fr oo < Csi/zmﬁ(H). On the other
hand the Lipschitz regularity of the tilted H-interpolating function hy and the L'
estimate on hy — fp easily gives [|p . (pr) — halloc < C’si/mﬁ(H). The estimate

claimed in (d) follows then from Lemma 8.30.

Proof of (e). The estimates (8.42) and (8.43) show that the distance be-

tween any tangent to the graph of hy and 7y is at most Csi/zﬁ(H)l’o‘e in the
corresponding regions, which is just a reformulation of (e).

Proof of (f). For nearby neighbors H and L we can conclude the estimate
g —grll 22 (mur) < Cer(H)™3+n/2 from the corresponding estimate for hy —hy,
and Lemma 8.30. The conclusion is then an obvious consequence of the definition
of the glued interpolation maps ;. (|

PROOF OF THEOREM 8.13. The estimate in (a) is a consequence of Proposition
8.32: the argument is entirely analogous to that of [16, Theorem 1.17(i)]. Point (b)
is a direct consequence of the definition of ;. Points (c) and (d) are a consequence
of (a) and of the obvious facts that by construction the graphs of ¢, are contained
in ¥ and coincide with I' N Cg/5 over v N Bs3/s. Next, take any point ¢ € v and
consider ¢;. Let H € %; be any cube which contains ¢ and observe that, since
H is a boundary cube, it must necessarily be that H € .#;. In particular we have
7 — T, Gy, | < Cey/*27i(1=0) by Proposition 8.32 (b)&(e). Note moreover that by
Theorem 6.3 we have |rg — 7(q)| < 051/22_"(1_%). On the other hand, as i — oo
the planes T,G.,, converge to T, M™, thus completing the proof of the theorem. O

8.7. Proof of Cor. 8.17 and 8.21, Prop. 8.20 and Theo. 8.19

Since all of the cubes in # are non-boundary cubes, the proofs follow liter-
ally the ones of the corresponding corollaries, proposition and theorem in [16],
where Corollary 8.17 corresponds to [16, Corollary 2.2], Corollary 8.21 corre-
sponds to [16, Corollary 3.2], Proposition 8.20 corresponds to [16, Proposition
3.1] and Theorem 8.19 corresponds to [16, Theorem 2.4]. Note in particular that
the estimates claimed in our statements match the ones of the statements in [16]
once we identify our parameters ag, Qe, @n, Mg, Ny, Ce, Cp, €1 with the parameters
€0, 02, B2, My, Ny, Ce, Cr, mq in [16]. Moreover, although the excess E(T,By) used
in [16] differs slightly from ours (since it corresponds to minimizing E(T, By, )
over all planes m, whereas in this note we minimize over all planes © C T, %),
it is obvious that it is smaller than the one used in this note, which suffices to
prove all the estimates claimed. For the reader’s convenience we briefly outline the
arguments:

PRrROOF OF COROLLARY 8.17. First of all, while in [16, Corollary 2.2] it is
claimed that the boundary of T'L U is supported in 0;U, in our case we claim
that it is supported in U UT'. This is a consequence of the height bounds in (b)b
and (b)? of Proposition 8.24. In order to prove the second claim of (a) we proceed
similarly to the proof of the corresponding statement of [16, Corollary 2.2]. First
of all consider that from the first part of the claim we conclude that the current
S 1= pyTL C1(0,m) is integer rectifiable and 9SL C1(0,m) C I'. In particular we
must have S = ky [MT N C1(0,7m)] + k- [M~ N C1(0,m)] for some integers ko
and k;. Next fix any cylinder C = C(z,r,m) for some point z € B1(0,m) \ v
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and some 2r < dist(z,7). We can then repeat literally the argument of [16, Sec-
tion 6.1] to show that psT'L C(x,r,mp) is either Q [MT N CJ or (Q —1) [M~ NC],
depending on whether = belongs to Bf or B;. We then must have ky = @ and
k_ = Q.

For the proof of (b) and (c) we can apply the same argument of [16, Section
6.1] used to prove (ii) and (iii) of [16, Corollary 2.2], since the cylinders and balls
considered in the corresponding argument do not touch I'. The final conclusion (d)
of the corollary follows from the fact that boundary cubes are always refined, that
the corresponding balls Biq are always centered on points of T' and from (b)” of
Proposition 8.24. |

PROOF OF THEOREM 8.19. The construction of (F'*, F~) is done separately
on the two manifolds M+ and M~ following the exact same procedure of [16,
Section 6.2]. Note that for all L € #* and for all L € #~ the cylinders
Cs,,. (pr,7r,) which are involved in the corresponding argument have empty in-
tersection with I' and enjoy the relevant estimates once we identify our parameters
ag, Qe, ap, My, Ny, Ce, Ch, g1 with the parameters &g, do, B2, My, Ng, Ce, Ch, mg in
[16]. This procedure defines F* on Mt \T and F~ on M~ \ I'". However, using
the height bound in the boundary cylinders Cyrsg,, (p’,,7r) of ()’ in Proposition
8.24 it is easy to see that F* (resp. F~) on MT\T (resp. M~ \T) can be extended
to a unique Lipschitz map on the whole M™ (resp. M ™) by setting F(z) = Q [z]
(resp. (Q — 1) [z]) for every x € TN M (resp. TN M™). O

PROOF OF PROPOSITION 8.20. We follow literally the argument given in [16,
Proof of Proposition 3.1] given in [16, Section 7.1]. Note in particular that all the
cylinders involved in the argument of that proof do not intersect I', because the

cubes H and L involved in the statement of Proposition 8.20 are all non-boundary
cubes. ]

PROOF OF COROLLARY 8.21. Again we can repeat word by word the proof of
[16, Corollary 3.2] given at the end of [16, Section 7.1]: note indeed that all the
cubes involved in the argument are necessarily non-boundary cubes. O

8.8. Proof of Proposition 8.23

The proof follows the one of the corresponding statement in [16], namely [16,
Proposition 3.4], with one minor adjustment, which is needed because our excess
is not exactly the excess of [16] (namely here we minimize only among planes
contained in T},3). The adjustment goes as follows. Note first that we know that
a cube H € #° must be a non-boundary cube. In fact the very same argument
given in Proposition 8.24 shows the following simple fact:

LEMMA 8.33. For any fized i € N, if 1 is chosen sufficiently small, then for
every H € W'° the chain of ancestors H = H; C Hj_1 C ... C H;_; consists all of
non-boundary cubes (and in particular j —i < Np).

The proof given in [16, Section 7.3] of [16, Proposition 3.4] is then based on
the following two facts:

(a) If H € #/°, then the chain of ancestors H =H; CL=H; 1 C...C Hj_¢
consists all of non-boundary cubes;
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(b) The following inequality holds:
(8.82) min E(T, By, ) > 27 2+2% min B(T, B, 7),

for some positive do: correspondingly My will have to be chosen large
depending on such Js.
The first condition is covered by Lemma 8.33. As for the second condition, observe
that we actually have
min _E(T,By,7) = E(T,Bn) > 9 22 B(T, By)

WCTPH

(8.83) =27 %t2% min E(T,Bp,7).

TCTp, T
We now want to show that (8.82) will indeed follow from (8.83), provided d; = ae /2.
In order to apply the argument of [16, Section 7.3] we then just need Mj to be
sufficiently large with respect to ae, which is indeed one of the requirements of
Assumption 8.6.

Proof of (8.82) First of all, in order to simplify our notation, for every q € X
we denote by p, the orthogonal projection onto T,%X. Moreover, if 7 is an m-
dimensional (oriented) plane, we let @ be the unit m-vector orienting it. Consis-
tently, we denote by f(p) the unit m-vector orienting the approximate tangent
plane of T at p (which exists for ||T||-a.e. p).

Next, clearly

(8.84) E(T,Br) > min E(T, By, 7).

So, we need a reverse inequality between the quantities E(T,By) and
min E(T, By, 7).
s

We select thus a m which attains the latter minimum. Notice that we have the
following inequality
1 / -, SN
TR IPpw (7) = T(q)|” d||IT']|(q)
IT(|(Bx) Jo, ="
2 / = 9
< o 1Ppy (T) — Ppy (L))" [T (q)
ITI(Br) Jg, " o

2 A B2
AED] /B IPoy (T'() = T(a) AT ()

< CoE(T,By) +Co sup  [ppy — Pq|2
qeEXNBy

< CyCeeil(H)? 2% 4 Cel(H)?,

where Cj is a geometric constant and the constant C' depends only upon M. In
particular, since C, is assumed to be sufficiently large compared to My and Ny, we

conclude
1 / A2 2-2
ey [ Pen(T) = T(Q7dl[T[[(q) < CoCerl(H)™ .
ITII(Bx) Jo, "
We next use the obvious inequality |1 — |p,,, (7)]| = ||T(q)| = |Pps (®)|] < |T(q) —

Ppy (T)] to infer
11— [Ppy (M)[1? < CoCeerl(H)? .
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8.8. PROOF OF PROPOSITION 8.23 131

Observe also that |[p,,, (7)] is necessarily smaller than 1, because pp,, is a projection.
We thus reach

(8.85) 1 — CoCe1l(H)?*72% < |p,, (F)] < 1.

In particular, since €7 is assumed to be small with respect to C., we have |p,,, (7)| >
5. Consider now the m-dimensional plane 7" which is oriented by p,,, (7)/|pp, (7)|-
Clearly 7’ C T},,X. Moreover, since T'(¢) has norm 1 whereas p,, (7) has norm at
most 1, we have the pointwise inequality

2

Fla) — 712 — | _ PpH(ﬁ) 1
@) =7F=TD =15 @Ml = b

We can thus repeat the computations above to conclude

[Py ()| E(T, Br) < [pp, (7)|E(T, By, )

1T(q) — Ppu (7).

d|T1l(q)

T’(q) Ppu (ﬁ)

—

_ |Ppul / _
2w (647H)™ B, Py (7))

1 = -
< iy o, T~ P P AITI).

(8.86)

Next, arguing as few lines above

( /B 1@ =y (P d||T|<q>)l/2

— 1/2
(8.87) < ( [ pa(Ta) - ppH<ﬁ>2d|T|<q>)

(8.88) + C(wpm (64rg)™) e 0(H) .
Combining the latter inequality with (8.86) and with
1 -
. — T(q)) — 7)[2 d||T
o oiry o, P @) o P AT
1 .
. — T(q) — 7|?d||T
< gy o, 1@~ FRAITIG)
(8.89) =E(T,By,n) = minE(T,By,7),

we reach the inequality

Nl

[Py (AIE(T, By) < min E(T, By, 7) + C (min B(T, By, 7)) 2 0(H)
(8.90) + Ceyl(H)?,
where C' depends only upon M. By Young inequality we thus deduce that

IPpu (R)|E(T,By) < 2% min E(T, By, 7) 4+ Ce£(H)?
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where C' depends on My and ae. Since H € #/©,
E(T, BH) > CeE1€(H)272ae s
hence, by also using (8.85) and that {(H) < 1,
oa c
(1 - CoCec1)E(T,By) <27 minE(T,By,7) + F@(H)MQE(T, Br),
T e
ie.

(1 — CoCe — CEE(H)2%> E(T,By) < 2% minE(T,By, 7).

e ™

Since the constant C' depends only on Mj, choosing Ny sufficiently large (which
implies that ¢(H)?¥e < 272@No s sufficiently small) and then &; small we deduce
that

(8.91) 2~ E(T,By) < minE(T, By, 7).

Combining (8.83), (8.84), and the latter inequality we conclude
min E(T, By, ) > 27*E(T,By) > 272"E(T,B.)

(8.92) > 27 2% % min B(T, By, 7),

thus (8.82) holds with ds = a,/2 as promised.
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CHAPTER 9

Monotonicity of the frequency function

In this chapter we establish the monotonicity of a suitable frequency function
at a collapsed point. We assume therefore that 0 € IT" is a collapsed point and that
Assumption 8.16 holds. In particular we fix a center manifold M = M+ U M~
as in Theorem 8.13 and an M-normal approximation as in Theorem 8.19. We will
indeed consider two different frequency functions: one related to the “left side” of
the approximation and the other one related to the “right side”. Without loss of
generality we will carry on our discussion on M™.

REMARK 9.1. By our construction M is the graph of a map ¢t : 75 O B —
7g, where we assume that g is the tangent plane to 7 in 0 € I'. For convenience
we can extend ¢ to a C2 map ¢ on the whole ball By Nmy. When referring to ¢o*
we will then drop the superscript +, but we will keep the notation M™ for that
portion of the extended graph {(z, p(x)): # € B1(0,7)} which lies over By". The
graph of the function ¢ on the whole By (0, 7p) will instead be denoted by M. Note
that in this setting the projection p : p~*(M™) — M™ is of class C**, cf. with
Assumption 8.16.

9.1. Frequency function and main monotonicity formula

In order to define our main quantities, we start with the following simple lemma
which is the curvilinear version of Lemma 4.25.

LEMMA 9.2. There exists a continuous function d* : MT — RT which belongs
to C2(M™\ {0}) and satisfies the following properties:
(a) dt(z) = dist pq+ (z,0) + O(dist pq+ (7, 0)%) = |z| + O(|z]?);
(b) |Vd*(z)] =1+ 0O(d"), where V is the gradient on the manifold M;
(c) 3V2d*(x) = g + O(d"), where V? denotes the covariant Hessian on M
(which we regard as a (0,2) tensor) and g is the induced metric on M as
a submanifold of R™t™;
(d) Vd*(z) e T,T for allz €T, i.e.

(9.1) vdt it =0 onl,

where it denotes the outer unit normal to M+t inside M.

In particular this implies

(9.2) V23dt(z) = %(g —Vd*t(z)® Vd+(a:)) +O(1)
and
m—1
(9.3) Adt = ——+0(1)
133
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134 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where A denotes the Laplace-Beltrami operator on M, namely the trace of the

Hessian V2. Moreover:

(S) All the constants estimating the O(-) error terms in the above estimates
can be made smaller than any given n > 0, provided the parameter €1 in

Assumption 8.6 is chosen appropriately small (depending on n).

On the “left side” there exists an analogous function d= : M~ — R satisfying

the properties corresponding to (a), (b), (c), (d) and (S).

PROOF. For the sake of simplicity we focus on the “right side” and we drop
the subscript + from the function d. As noted in Remark 9.1 we can extend M™
to a C3 manifold M such that I' C M is a C3 submanifold of M passing through
the origin. Hence there exists a C? regular map = : U x (=4,6) — M, U c R 1,

with the properties that
(1) £(0) = 0 and D=(0) = 0;

(2) Z is a local parametrization of M and 3 > U — Z(y,0) is a local

parametrization of T';
(3) OmE(Y,0) L Ty oyI for all y € U.

Hence, if g := =#46 is the pullback metric of Mon U x (—0,8), we have
9ij(y) = 615 + O(ly[*), Igi; = O(|yl),

and similarly for g¥/. In particular this implies that dist(Z(y),0) = |y| + O(|y|?)
on MT. We claim that d(z) := |=~!(z)| has the desired properties. We will check

(a) - (c) using the coordinates associated to the map Z. Since

. . )
IVd]*(E(y)) = 7 0,dd;d = g <y>% — 1+ 0(jyP)

we have that (b) is satisfied. For the Christoffel symbols we have I'};(y) = O(|y|)

since 0;9;; = O(Jy|). Hence (c) follows, because

1. 1 1
§V2d(:(y))ij = Eaide - §F§j5kd2 =05+ O(ly*) = gi;(y) + O(lyl*) .

Concerning (d) we just note that, by (3), we have g™ (y’,0) = 0 for all 3/ € U,
hence g79;d € R™~! x {0} for all y € U and Vd(E(y)) = Z4 (9" d;de;). Equations

(9.3) and (9.2) are now simple consequences of (c¢) and (b).
Claim (S) follows easily from a closer inspection of the above argument.

We now fix a cutoff function

1 foro<t<i
(9.4) o=1 21-0 orh<isl
and define )
(9.5) Dygar (N*,r) = /M+ ¢ (ﬁf‘”) IDN*[2(z)
06 Har = [ (T warop oL,
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9.2. POINCARE INEQUALITY 135

where all integrals are taken with respect to the standard volume form on M*.!
The frequency function is then defined as the ratio
Dy g+ (NT,r)
Hg g+ (NT,7) .
Analogously we define Dy, - (N7, 7), Hy q- (N7, 7) and Iy 4- (N7, 7).

The main theorem of this chapter is then the following counterpart to Theorem
4.15, where we use the notation

ct = {y €B;:py) € M™* and ly —p(y)] < dist(y,F)s/Q}

I¢7d+ (N+,’I“) =

for the horned neighborhoods of M¥ in which T is supported (compare with Corol-
lary 6.4 and Theorem 8.13 (e)).

THEOREM 9.3. Let T, ¥ and I be as in Assumption 8.16 and consider ¢ and
d as above. Then:

(a) either TL.C" equals Q [M™] in a neighborhood of 0, in which case we set
Iar = +o00;
(b) or there is a positive number I such that

(97) Iar :lii8]¢7d+(N+,T‘).
The corresponding statements hold on the left side for the current TL.C™ and the
frequency function I - (N, 7).

9.2. Poincaré inequality

From now on, in order to simplify our notation, we drop the supscripts + from
N and d and the subscripts d and ¢ from H, D and I.

We notice here the following simple consequence of the fact that N|r vanishes
identically.

PROPOSITION 9.4. There is a geometric constant C such that

(9.8) H(r) < CrD(r) for all sufficiently small r.

In particular

(9.9) I(ry>C™! for all sufficiently small 7.

Moreover,

(9.10) / IN|? < Cr2D(r) for all sufficiently small 7.
{d<r}nm+

PRrOOF. We start noticing that, for r sufficiently small, we can assume
1
(9.11) 3 <|Vd| <2

and that the domains {d = r} N M* and {d < r} N M™* are diffeomorphic to the
corresponding half-sphere and half-ball in R}* = {z; > 0}, with uniform controls

1The convention of omitting the volume form in the integrals taken over M1 and M~ will
be used systematically in the rest of the paper.
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136 9. MONOTONICITY OF THE FREQUENCY FUNCTION

on the first derivative of the diffeomorphism and its inverse. In particular we have
the trace Poincaré inequality

/ N[ < s / IDIN|[? < Cs / IDNP?,
{d=s}nM+ {d<s}nM+ {d<s}nM+

because |N| vanishes identically on T.
Integrating the latter inequality, using (9.11) and the coarea formula, we achieve

o _/ %df (;) (/{ds}mw IVd||N|2> ds
¢ ( ) (/{d<s}m/\/(+ |DN|2> “
[ ([ o))

,
+Cro (= / DN|?
7“</5(2) {d<r/2}ﬁ./\/l+‘ |

)

<CrD(r

ﬁw\

Next, the inequality (9.9) is a trivial consequence of (9.8). Moreover, (9.8) and
(9.11) give

/ IN[2< Cr2D(r).
{r/2<d<r}inmM+

On the other hand

/ IN|? < C’rQ/ IDN? < Cr’D(r)
{d<r/2}nM+ {d<r/2}n M+

follows from the usual Poincaré inequality since | V| vanishes identically on I'. Thus
(9.10) can be achieved summing the last two inequalities. O

9.3. Differentiating H and D
We compute here the derivatives of H and D.

PrROPOSITION 9.5. If D and H be as in the definitions of Section 9.1, then

(9.12) D'(r) = /¢( ) )|DN|2

+ O(l)> H(r)+2E(r),

(9.13) H(r) = <

r

e <@> 5 Nila) - (DN:(2) V(o).
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9.4. FIRST VARIATIONS 137

PRrOOF. The identity (9.12) is an obvious computation. In order to compute
H' we first use the coarea formula on embedded manifolds to write

/ / Y [d(@)| N[ () d" = (x) ds
(d=s} 5
(9.14) — /0 d)T /{ d:Tt}|Vd(x)||N\2(x) dH™ () dt.

=:h(rt)

In order to compute h'(t) we consider that v(z) = giég‘ is orthogonal to the level

sets of d in M™ and it is parallel to I". Thus, using the divergence theorem on M™
we obtain

h(t+s)—h(t):/ IN|?Vd-vdH™ !
{d=t+e}nM+

—/ IN|2Vd-vdH™ !
{d=t}nM+

div(|N|*Vd(z))

/{t<d<t+a}ﬁM+
23 Ni(z (z)Vd(z))

i

+ IN[2Ad(),
{t<d<t+e}nM+

Dividing by e, taking the limit (and using the coarea formula once again) we con-
clude

(9.15) K (t) = /{d ot |Vd| ™! (221\@- -(DN;VMa) + N|2Ad> dH™ .
0 i

/{t<d<t+s}mM+

Differentiating (9.14) in r, inserting (9.15) and using the fact that, if ¢(d(z)/r) # 0
then d(z) = O(r), we conclude

(9.16) H'(r)

_/OOO¢'(0) /{d . |Vd\( ZN (DN;Vd) +|N]| Ad)) AH™ 1 do

/ o (42 )|N| Ad(z)
011 omp) -1 [o (D) e (M o)

_ 9B + (Tl +o( )) Hr). 0

9.4. First variations

In order to derive the two key identities leading to the monotonicity of the
frequency function we will use the first variations of the currents.

LEMMA 9.6. Let T, ¥ and T’ be as in Assumption 8.16. Then, provided €1 is
sufficiently small, we have that
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138 9. MONOTONICITY OF THE FREQUENCY FUNCTION

(a) CtNC™ =Ty

(b) TLBy =T+ + T~ where T =T C*;

() [IT(By) = T*[|(By) + [T~ (By);

(d) OTTLB; =Q[I'] and 0T- LBy = —(Q — 1) [I] ;

(e) For any current ST such that spt(ST) C XN By and 9S* = (T B,)
we have that |T*(|(By) < ||ST||(B1).

PROOF. Statement (a) is obvious. Statement (b) is a consequence of Corollary
6.4 and of Theorem 8.13(c) & (d). Statement (c) comes directly from (a), (b)
and the fact that |T||(T') = 0. Statement (e) can be inferred from (c) and (d):
for instance, if ST is as in the statement then (T~ + ST) = (TL B;) and by
minimality of T
ITB1) + [77B1) = [TI(B1) < [T+ 571(By) < |57(By) + [177(By).
The proof of point (d) follows the same idea of the proof of Corollary 1.10. In-
deed, first remark that Tt (By \ I') = 0, thus spt(077) N By C I'. Let r

be a retraction of a neighborhood of I onto I'. Since 7T B; is a flat chain
supported in T, Federer’s flatness theorem, cf. [23, Section 4.1.15], implies that
R :=ry(0T"By) = 0T" L By. On the other hand, since (0T B;)LB; = 0,
we also have ORL.B; = 0 and we conclude from the Constancy Theorem, cf.
[23, Section 4.1.7], that R = ¢[I']L B; for some ¢ € R. Thus 9T+ = ¢ [[']LB;.

Fix a point p € I'NB; and recall that, from Theorem 6.3 and Theorem 8.13 (e),
at every p € I'N By there is a unique tangent cone to T and it is T,F = Q [« (p)*],
where 7(p) is tangent to 7, M, by Theorem 8.13, and 7(p)™ is the inner half portion
of 7(p), where we consider M™ as a manifold with boundary I". Hence

lim 3((1,,,);7") = 9(Q [+(»)*]) = QL.
Since we also know that
lim 3((15,):T*) = lim (1, )y (e [T]LBy) = e [T,
then we conclude ¢ = Q). A similar argument holds for 7'~ . |

LEMMA 9.7. Under the same assumptions and with the same mnotations of
Lemma 9.6, for all X € C}(Bq, R™™™) which are tangent to T', we have that

(9.18) 5T+ (X) = / X (z) - Hr(z) d|T*|(z)

where X+ is the component of X orthogonal to ¥ and ﬁT(:v) 18 the mean curvature
vector of (3.1). Analogously

5T (X) = / X' (2) - Br(z)d|T ().

PROOF. This proof follows the same ideas of Section 3.4. Without loss of
generality, we focus on TF. Since T is stationary with respect to variations which
are tangential to I' and ¥, we have the identity

STH(X) = - / X(z) - Hp(x) d| T (x)

for all X € C!(B,) tangent to I, where Hyp is defined in (3.1) (cf. for instance
[35, Lemma 9.6]). Note next that, by the explicit formula for Hr in (3.1), Hr(x)
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9.4. FIRST VARIATIONS 139

is orthogonal to T,X, which in turn contains the tangent plane to T" at x. Thus in
the integral of the right hand side we can substitute X with X . ([l

In what follows we let p : p~1(MT) — M™T be the retraction of a normal
neighborhood of M to M™. In this section we will use Lemma 9.7 with two
specific choices of vector fields:

e the outer variations, where X,(p) := ¢ M) (p — p(p)).

e the inner variations, where X;(p) := =Y (p(p)) with

1 d\ Vd?

Note that Y tangent is to M and to I'.

Consider now the map F(p) := >, [p + Ni(p)] on M™T and the current T associ-
ated to its image, cf. [15]. By Lemma 9.7 |

STr(X,) = (6Tp(X,) — 0TH(X,)) +6TT(X,)

Errg
(018) . .
2 g - [ X @) Hrla) d|T (2)

Errg

Since X; is also tangent to I', by Lemma 9.7, we write

STr(X:) = (OTp(X;) — 0TH(Xy)) +6T+(X;)

Errf1
O18)
Err / xt (2) d|T*|(x) -

Errt

5

Hence
0Tr(X;) = Err} + Errl.
9.4.1. Outer variation. The following proposition holds (for the proof, see

[15, Theorem 4.2]).

PRrOPOSITION 9.8 (Expansion of outer variations). Consider the function ¢ :=
1) (@) and denote by A and Haq the second fundamental form and the mean

curvature of M™, respectively. Then

0T p(X,) = /M+ ((p IDNJ? + Z(Ni ® D) : DNi)

(9.20) —Q/ o(Hpg,mo N) —|—ZErr

j=2

o
Errg
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140 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where
o2 [Eng<C [ lellAPIN
M+
g < C [ (Iel(IDNPINIIAL+DNTY)
M+
(9.22) + D@l (IDNFIN| + |DN|INJ?|4])).

9.4.2. Inner variation. We denote by =, the one-parameter family of biLip-
schitz homeomorphisms of M™ generated by —Y. We observe that X; is then the
infinitesimal generator of the one-parameter family of biLipschitz homeomorphisms
®. of p~1(M) defined by

E.(p) := V. (p(p)) +p—p»).

Therefore, we can follow the computations of [15, Theorem 4.3] to prove a suitable
Taylor expansion for the inner variation. In what follows, we will denote by DMY
the (1, 1) tensor which expresses the covariant derivative of the vector field Y (which
is tangent to M), in particular, when Z is a vector field tangent to M, DQAY is
the projection onto T'M of the standard euclidean derivative DzY. Accordingly
divag Y will denote the trace of DY, namely

diva Y =Y (DMY (e)), e:)

i=1

where eq, ..., e, is an orthonormal frame of T M. Note that, in particular,

m
divp Y = Z(Deg/, e:).
i=1
PROPOSITION 9.9 (Expansion of inner variations). The following formula holds:*

[DN?

(9.23) 5trF(Xi)_/M+ > DN; : (DN;DMY) — D;V

3
divy Y | + ) Errl,

j=1

2Recall that each Nj is a map taking values in R™*+™ and thus we understand DNj as a map
from TM into R™+". More precisely, if N; = (N;7 cee NJmJ’") is the expression of IV; into its
components and if Z is a vector field tangent to M, then

DN;(Z) = (Dx N}, .. .,DZN;”+").
With DN, DMY we then understand the following map on TM:
DN;DMY (Z) = DNj(DMY(Z)) = (Dprmy (2N}, Dpmy zyNj"+™).
Accordingly, the scalar product DN : (DN]-DMY) is given by

DNj : (DN;DMY) = (De,Nj, Dpaty(e,yNi) = D DeyNfDpaay (o) Nf
¢ k.t

where eq, ..., en is an orthonormal frame on T'M.
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where
(9.24) Errli:Q/ ((Hm,mo N) diva Y + (DyH,mpo N)),
M+
025)  [Bui[<C [ AP (DY|INE+[Y]IN|DN)).
M+
i <0 [ (IYIIAIDNE(N] + [DN)
M+
(9.26) +|DY|(|4]INP|DN| + |DNY))

The proof of the previous theorem follows literally the same computations of
[15, Section 4.3]. The only subtle point is that in the final part of that proof the
integration by parts needed to handle the term Js in [15, Eq. (4.17)] is valid in our
context because the vectorfield Z, on which the integration by parts is performed,
vanishes on T.

9.5. Key identities

In this section we use the Taylor expansions of the first variations to derive
the key identities which lead to the monotonicity of the frequency function. We
introduce therefore the quantity

1 L(d\ d
G(r) = ¢ <;) e Z IDN; - Vd[*.
J

- "
PRrROPOSITION 9.10. The following two inequalities hold
5
(9.27) ID(r) = E(r)| < |Exrf]
j=1
5

2 )
< = | Do 1)

=1

m— 2

(9.28) ‘D'(r) - ( + 0(1)) D(r) — 2G(r)

r

ProOF. For the first identity it suffices to check that
| (oIDNP+ (N0 Dg) s DNG) = DIv) - E(0).
M+ B
which is an obvious computation. For the second identity we need to show that
/ 2> DN, : (DN;DMY) — |DN[* divp Y
M+ j

=7rD'(r)— ((m—2)+O(r))D(r) — 2rG(r)

Recalling the definition of ¥ in (9.19), that is
1, [(d\ V&
Y=-¢|-| ==
2¢ <r> |Vd?’
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142 9. MONOTONICITY OF THE FREQUENCY FUNCTION

we easily compute using Lemma 9.2(b), (c), and (9.2),

d d\ Vde@Vd 1 ,[(d\ V2d?
DMY = ¢/ (=) ———+ =0 (- )| ==
o (5) T2 (5)
s d\ 2(dV2dvd) @ Vd)
|Vd|4
d d\ Vd® Vd
2 = —

(9.29) 1y () Yoo (4) o).

where we recall that g is the metric induced on M by the Euclidean ambient

manifold. In particular

divan(v) = 2 (9) o (9) (m+0(d).

Hence, using also that, on {¢ # 0}, d = O(r), we obtain

/ 23 DN : (DN;DMY) — [DN|* divpg Y
2 (d d )
== - ) == > |DN,;Vd
oo ? () o 1P

[ o(f)e-mromone- [ o (4)iowP
= ~20G(r) — ((m - 2) + O() D(r) +rD'(r),
which concludes the proof. O

9.6. Estimates on the error terms

9.6.1. Families of subregions. In order to estimate the Various error terms
we select an appropriate family of subregions of %, := {p € nj : d(p(p)) < r}) .
First of all we introduce a suitable family of cubes in the Whitney decomposition:

DEFINITION 9.11. The family 7 C # consists of :

(i) all L € #°U#™ which intersect %, ;
(ii) all L € #® which are domains of influence of some L’ € #™ intersecting
B, ie., L' € #™(L) (cf. Definition 8.22).

Next, for any L € T note that
sep(L, %) :=inf{l¢g —p|: g € L,p € B} < 3vml(L).
For each such L we define an appropriate “satellite” ball B(L) with the following

properties:
(A) B(L) has radius comparable to £(L) (say £(L)/4));
(B) the concentric ball with twice the radius is contained in Z;';
(C) B(L) is close to L (comparably to £(L)).
If Bg(L)/Q(C(L)) C %j, then we simply set B(L) = Bg(L)/4(C(L)).
If instead By(p)/2(c(L)) ¢ %", we then use the following selecting procedure.
(i) First consider a point ¢ € 0%, at minimum distance from L.
(ii) Observe that, since L € #/, it is a non-boundary cube. Thus dist(g,~y) >
¢(L) and in particular d(¢(q)) = r.
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(iii) Let v be the exterior unit normal to 9%, at ¢ and let ¢ := q — @v.

(iv) Recalling claim (S) in Lemma 9.2 and the estimates on ¢ we see that
0%} \ v is locally convex and that the principal curvatures of %, \ v
can be assumed to be all smaller than % Since ¢(L) < r, this implies that
Byry2(qr) € %;7. We finally set B(L) := By(r)/4(qr)-

DEFINITION 9.12. Given a cube L € T, the ball B(L) chosen above will be
called the satellite ball of L.

Note that, by simple geometric arguments and by the properties of d, we can
assume that

(9.30) lgr, —c(L)| <5yml(L)  and  dist(L,qr) < 4y/mé(L).

We next select a suitable countable subfamily .7 of 7 with the property that,
for any pair of distinct H,L € .7, the corresponding balls B(L) and B(H) are
disjoint. We denote by S the supremum of /(L) for L € T. We start selecting a
maximal subfamily .73 in T of cubes L with ¢(L) > S/2 such that the corresponding
balls B(L) are pairwise disjoint. We then add to 27 a maximal subfamily % in
T of cubes L with S/4 < ¢(L) < S/2 such that the balls B(L’) corresponding to
L' € 71U Z are all pairwise disjoint. We proceed inductively with the selection of
the family 9 C T such that:

(i) it consists of cubes with side 27*~1§ < /(L) < 27%;
ii) the balls B(L') with L' € A4 U ... U J,_1 U .9, are pairwise disjoint;
(i) p joint;
(iii) J is maximal among the families satisfying (i) and (ii).
& is the union of all the .7;. A simple geometric argument and (9.30) ensures that
(Cov) If H € T, then there is L € 7 such that the distance between H and L

is at most 20/mf(L) and even though there might be more than one L,
we fix for each H an arbitrary choice of an L with such a property.

Therefore we can partition 7 into (disjoint!) families 7(L) with L € . with
the property that for each H € T (L), the distance between H and L is at most
20y/m{(L) and ¢(H) < 20(L). For each L € 7 we denote by # (L) the family of
cubes

U »rmu{a}.

HeT (L)
Furthermore we denote by U(L) the following region in M™:
U @wm@).
Hew (L)

From now on we fix an enumeration {L;} of .7 and we denote:

e by U; the corresponding regions U(L;) N B, ;
e by B¢ the regions ®(B(L;));
e by ¢; the scale ¢(L;).

where, here and in the following, we set

Bf =M"n{d<r}.
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144 9. MONOTONICITY OF THE FREQUENCY FUNCTION

9.6.2. Lower and upper bounds in the subregions. First of all observe

that
(9.31) B< g
' P ey
for a geometric constant ¢ (recall that ¢(p) = ¢(M)). In particular
sup @ — inf @SCQSC inf
p—1(U;) p~ () r p~'(BY)
which leads to
9.32 sup <C inf ,
( ) p—l(ui)gp pfl(Bi)gp

where C' is a geometric constant. Since we have p~1(U;) N MT = U; and the same
for B?, the above estimates, when restricted to M™, become:

2

9.33 2 <inf

(9.33) e <infy

and

(9.34) supp < Cinfep.
U B

Observe that
max{é(H) H e W(LIL)} < CY;
and
o<
Hew (L;)
Thus, as a consequence of the estimates in Theorem 8.19 and Corollary 8.17(b)
(namely, applying the corresponding estimates in each cube in #'(L;) and summing
the respective contributions) we achieve the following:

(9.35) Lip (N, ) < Cegreer

(9.36) [Nl co @) + sup Ip—p(p)| < Ce*meiton
pEspt(TH)Np~—1 (Us)

(9.37) 1T+ = Trl|(p~! (Us)) < Ceytomg 2o

(9.38) /u IDN|? < Cey " 2720

(9.39) /u InoN| < Ce ™+ +c/u |N[>ter

Note in particular that (9.39) follows from choosing ¢ = 1 in (8.15) and V = L.
The second important ingredients in order to estimate the various error is the
following lemma.

LEMMA 9.13. Under the assumptions of Theorem 9.3, for a sufficiently small
r the following inequalities hold:

9.40 € (mrEt2en g <CD(r

(9.40) 122:2 pfl(Bi)Qo_ (r)

(9.41) ey e < C / IDN|> < C(D(r) +rD'(r)),
s Bf
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or a geometric constant C. Moreover we have
g
I I
(9.42) = supli < C (rD(r) T and < sup ( e «m) < OD(r)7
i i \p l(B

PROOF. First of all observe that every cube L; € .7 belongs to either #'® or to
we. For every cube L; € ZN#P, as a consequence of Corollary 8.21, we must have
LiN B} # 0. Hence B' € M N Cy myr,)(pr,) and therefore Proposition 8.20(S3)
applies. Recalling that G(N(x),Q [no N(z)]) < |N]|, for every cube L; € 7 N #'"
we can estimate

(9.43) INJ? > coe,/mem+2+20n
Bi
By estimate (8.16) in Proposition 8.23 | for every L; € J N #© we have
(9.44) / @|DN? > coer 272 inf p = coe £7"T272%  inf
Bi Bi p—1(B?)

Summing the last two inequalities over i, using that {’} are disjoint and contained
in {d < r}NM™ and the simple observation that 2+ay > 2—2a,, we easily conclude

€m+2+2011—. inf < C, / N2 DN2 .
61; i k< Co Bi(l * + | DNJ?)

Thus, (9.40) can be inferred from (9.10).
Note that, analogously, for L; € 7 N #© we have also

(9.45) IDN|? > coe 472720
Bt
Arguing as above with (9.45) in place of (9.44) and exploiting that 24+ayp > 2—2a,

we conclude
€1 Zg?l+2+2ah < CO /Bi— |DN|2 )
Since ¢'(t) = —2 on [1/2,1], clearly
/ IDN|> <rD'(r).
{r/2<d<r}nM+
On the other hand we trivially have
/ IDN < D(r).
{d<r/2}nM+

Thus, (9.41) follows easily.
Finally the second estimate of (9.42) is a direct consequence of (9.40) and the
first follows combining (9.40) with (9.31). O

9.6.3. Estimates on the error terms. We are ready to prove the main

estimates on the various error terms appearing in the inequalities of Proposition
9.10. We first introduce the auxiliary term

(9.46) S(r) = /gb <g) |N|2.
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146 9. MONOTONICITY OF THE FREQUENCY FUNCTION

PROPOSITION 9.14. There are positive numbers C and T such that
) |Err§| 4 |Err§] + [Errg| < CD(r)tt"
) |Erry| < CS(r) < Cr2D(r)
9.49) |Errg| < CS(r) + CD(r)'™™ < Cr*D(r) + CD(r)'*"
) |Err}| + |Errl| 4 |Erry| < CD(r)(D(r) + D' (r))
) |Errh| < CrD(r)
) |Erré\ < CrD(r)+CD(r)(D(r) +rD’'(r)).

PROOF. Since ap, is independent of e,y (compare Theorem 8.19), we can
choose ae, ap, such that

OL?L > 4oy > dae .
We let 7 < e < ap < a1,/8.
Proof of (9.47). Recalling that [|¢]cs. < 051/2, which in turn implies
| Hallcomry < 051/2, we get from (9.39)

En?| < C / | Hpr|In o N|
M+

(9.34) f R
< Ce—:i/zz (S;{lp(p€1£§+m+ L/2+C/M <p|N2+°‘L>
;o\ i
(9.34) f e
< Py (igf¢51£§+ AN /u ® |N2+aL>
i\ i
(9.36)

< ce? Z (igm g 7T L Cfien /M ¢|N2>
J ! j

J

(9.40)&(9.42)
< D@y £ opey /
B

where in the last line we have used also that the intersection of distinct domains
U; has zero measure. Using (9.10) we conclude

|Err{| < CD(r)*.

Concerning Errg, from Proposition 9.8 and recalling that |Dy| < % we get

¢|N|?,
+

|Err§| < /<p(|DN|2|N| +|DN|*) +Cr*1/+ |IDN3|N| +Or*1/+ |DN||N|? .
B} B

11 12 I3
We estimate separately the three terms:

(supN|+supDN|2>/ ©|DN?
B B B,

I

IN

IN

C N|+Lip (N DN|?
sgp(sipl |+ 1p( |“i)>/5,f¢ |

(9.35)&(9.36)
< C'sup £7°F /+ @©|DN|* < CD(r)**.
i B
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Moreover, recalling that ag, > 4ae,
(9.35)&(9.36)
I < crt Zei/mme;whm / |DN|?
J J

(9%8) CT_l Z €1+1/2m+041,£;n+3+ah+oq‘72ae
J
(9.33) (9.40) & (9.42)
< C Z €?+2+7ah inf ¢ < CD(r)'*7,

Bi
J

and

(9.35) (9.42)
L < C’r_lzs'fo?‘L/ N2 < C’r_lD(r)T/ INJ2
- U, Bt
J J "

(9.10)
< CT’D(T‘)1+T ,

provided 7 > 0 is sufficiently small.
Recalling that

Err§ = §(Tr — TT)(X°),

we can estimate

IExrg| < / IDX°|d||Tw — T+ .
p~1(BY)

Since

D <0 (2220 o))

we can estimate

pay < o[ (EEROLpg )are -
ijl(uj)

r

(9.36)&(9.37)
< C’Z r_lai/z’”éfah + sup o 5%*“%}’”%%
j p_l(uj)

(9.31)&(9.32 (9.40)&(9.42)
< <

< CD(r)'*".

)
C inf peptorgnttor
zj:p*(zsj) !

Proof of (9.48). Since || A+ |lco < C|l@]lcz < Cai/z, it follows easily that
|Errg| < CS(r) < C/ |N|?.
Bf

Thus the estimate follows from (9.10).
Proof of (9.49). Recall that

Bug = - [ X} firlz) |77 (z).

where Hp(z) is the trace of the second fundamental form Ay, of ¥ restricted to
the tangent space T'(z) to the current T at x. For further use we introduce the
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148 9. MONOTONICITY OF THE FREQUENCY FUNCTION

notation h(X) for the trace of Ay on the m-plane oriented by the m-vector X. In
particular Hp(z) = h(T(z)). We can therefore write

(053)  [Eng < ] [t i

Ol Az, / IXAd|T* — Tl .

11 I2

Recall that ||Axllo < 51/2. Since | X°(p)| < C(p(p)), the second term is estimated
by CD(r)'*7 by arguing as in the bound for Err§. As for the first term note that

X5 (0)] < e(P(P))IP7, 52 (P — P(P))| < Co(p(P))[|Aslolp — P(D)I* .

Hence, using the Lipschitz bound for N to pass the integration on the domain B,
we conclude

(9.10)
L < C/<p|N|2 —CS(r) < D).

We now estimate the error terms coming from inner variations. First let us
record here the following easy consequence of (9.19) and (9.29):

(9.54) Y (p)| < v(p(p)) d(p(p)) [DY|(p) < Clyz+(p(p))-

Proof of (9.50). By Proposition 9.9,

Emi| < C/ <|HM|+|DHM\>|noN|s0/ Ino N
B B
(9.39) .
< Z(EWT o ”2*/ v 'QML)
] J

(9.36) _
S Z <51£T+2+ L/ +‘€?L/ N|2>
J U
(9.41)&(9.42)
< D) (D) + D (1)) + CD(T)T/ N2
5
(9.10)
< CD(r)"(D(r)+rD'(r)).

Using (9.54) and Proposition 9.9,
[Errg| < C/+(\DN|3 +[DNJ?|N| + |DNIIN|?).
B,

The third integrand can be treated like I3 in the estimate of Err§ and thus can be
bounded by Cr2D(r)!*7. As for the first two we argue as follows:

Z Sl /M |DN|?

J

5 ) (9.35)&(9.36)
[ (NP NNy

(9.42)
< CD(r)" /B+ IDN|> < CD(r)"(D(r) +rD'(r)).
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Concerning Err}, using again (9.54), we estimate

(9.55) |Exrg] < CY |Tr—TH|(p~ ' Wh))
J
(9.37)
< C Z €1+QL Z;nJrQJrOtL
J
(9.41)&(9.42)
(9.56) < CD(r)"(D(r) +rD'(r)) .

Proof of (9.51). By Proposition 9.9 and once more (9.54),
|Erry| < C/ IN|? +Cr/ap|N|\DN|
B

(9.10)
SC/ \N|2+r2/<p|DN\2 < COr*D(r).
B

Proof of (9.52). Arguing as for Err®, we write

(9-57) |Errg| < ‘/(Xf,h(TF»dIITFII +C||AEH0/‘X1‘J_|dHT_TFH :

J1 J2

The term Jy can be estimated arguing exactly as for the term I in (9.53) and we
get Jo < CrD(r)1*7 (recall also (9.54)).
In order to treat the first term we proceed as in [17, Section 4.3]. Denote by

V1,...,v an orthonormal frame for T,%+ of class C*% (cf. [15, Appendix A]) and
set hg,(X) = =3 1t (Dy,vj(p), v) whenever vy A ... A vy, = X is an m-vector of
T,% (with vq, ..., vy, orthonormal). For the sake of simplicity, we write

l
h(p) := h)(Tr(p)) and h(p):=»_ W (p)v;(p),

l
W (p(p) = b, (M*(p(p)) and h(p(p)) = D> B (p(p))v;(P(p))-

p(p

where M(p) denotes the m-vector orienting 7,M. Consider the exponential map
eXp(p) | Tp(p)X — X and its inverse ex;(lp). Recall that:

e the geodesic distance dx(p,q) is comparable to |p — ¢| up to a constant
factor;
e v is C*% and || Dvj||gra < Cei/z;
® exp(p) and ex;(lp) are both C'?:%0
— 1
and ||dexpp)|lcre0 + ||dexp(lp)||c1,a0 < 81/2;

o |h] < CllAslco < CeY*;
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150 9. MONOTONICITY OF THE FREQUENCY FUNCTION

where all the constants involved are geometric. We then conclude that
h(p) = h(p(p)) = > _(v;(p) — v;(p(P)))H (p)
J

+> vi(p@) (W (p) — W (p(p)))
=Y Dv(p(p)) - exy (0) W (p) + O(lp — P(p) )

(9.58) + Z vi (P(p) (W (p) — 17 (p(p))).
On the other hand, Xi(p) = Y (p(p)) is tangent to M™ in p(p) and hence orthogonal
to h(p(p)) and (X;(p),v,;(p(p))) = 0 for all j. Thus using (9.54)

(Xi(p), h(p)) = (X:(p), h(®) — h(p(D)))
(9.59) Z p(p). Dy (p(p) - ex (D)W (p) + O (rlp — p(p)2) -

Recalling that p € spt(Tr), we can bound |p—p(p)| < |N(p)| and therefore conclude
the estimate

(Xi(p), h(p) = D (Y (P(p)), Drj(p(p)) - ex5 (s ()1 (p)
J
(9.60) +O0(r|NP(p(p))) -
We now use the area formula for multivalued maps and the Taylor expansion
for the area functional in [15, Theorem 3.2]. Recalling that p(F;(z)) = x we get

Q
[ nnaree| - ) IE () (@)
(9.60) t @ _
SN XS 0@ e (R @) @

+cr/@(|N|2 +|DNP?)

Using the Taylor expansion for ex; ! at z (and recalling that F;(x) — x = N;(z))
we conclude

Q
‘Zex;l(Fi(x))‘ < |dex;'(noN(x))| + O(IN|?)
i=1

< C|no N(z)| + CIN|*.

Next consider that [(Y, Dv; - v)| < Cro||As|colv] < Cre Ei/2|’U| for every tangent
vector v and |h/ (F(z))| < C||As|/co < 61/2. We thus conclude with the estimate

5 < celr/wnom +or /mmz +[DN?).

Using the Poincaré inequality and the same argument as for Err{, we conclude

J1 <CrD(r)*" 7 4+ CrD(r). O
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9.7. PROOF OF THEOREM 9.3 151

9.7. Proof of Theorem 9.3

First of all, notice that if D(r) = 0 for some r, then N = Q [0] on B;. This

means that no cube of #©U #'! intersects @r ={peny :d(p(p)) <r}. On the
other hand from Corollary 8.21 we easily conclude that no cube of # intersects

the region @:/2 (observe that no cube L € # is a boundary cube and thus, if it

intersects @r /2, we have {(L) < r). In particular, B:/z is contained in the contact
set and thus there is a neighborhood of 0 where Tt coincides with @ [M™].

Thus, without loss of generality we can assume that D(r) > 0. Notice that for
the same reason we can assume that there is a sequence of radii 7; | 0 such that
H(r;) > 0. More specifically, we claim that there is a radius ry sufficiently small
for which, for all » < o, H(r) > 0 and all the estimates of the previous sections
apply. Indeed, let |p,rg[ be a maximal interval over which H # 0. On this interval
we compute the derivative of log I(r) using (9.13):

(9.61) dirlogl(r) =1+ g((:)) - g((:; —om+ 2" g((:; - f(f))
Next, by (9.27), (9.47), (9.48), and (9.49),
(062)  |D(r) — E(r)| < C(D()™ +CS(r) < C(D(r)* +r2D(r)).

Note that
2 (9'38) m—+2—2ae 2—2ae m
D)<Y | IDN? < Y el <Cr S e
. U, . -
J 7 J J

Recalling that all L;’s are disjoint and contained in By, /., we easily conclude that
D(r) < Cr™*2=22_ In particular, (9.62) implies

(9.63) D(ry1—-Cr")< E(r) < D(r)(1+Cr").

Assuming rq is sufficiently small, we infer

(9.64)

In particular, inserting (9.63) in (9.61), we obtain

2—m L+ D'(r) B 2E(r) B
T E(r) H(r) D(r)?

(9.65) % log I(r) > O(1) +
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152 9. MONOTONICITY OF THE FREQUENCY FUNCTION

Using (9.28), (9.50), (9.51) and (9.52),
d (9.64) 2G(r) 2E(r)
g0 1(r) = O+ e = oy — D(r)2

5
1 .
o
TE(?“) j:1| I‘I']|

2G(r)  2EB(r)

> o)+

E(r)  H(r) D(r)?
_ OlE)E:i (1 n D(:)T + DI(D;SL)
=loms 21?(? B f(f)) B CD/L(QSY)
(9.66) ~c? (:)T -C Dj(j;)(fl .

By Cauchy-Schwartz G(r)H(r) > E(r)?. Moreover, we have already estimated
—D(r) > —C'r. Inserting the latter inequalities in (9.66) and integrating, we obtain
I(r)

log 1) > —C(r7 = 57) = Oy = D) =€ [ D000
(o

S(r) _ S(s) " 5'0)
. >-—Cr7 - - d
(9.67) > —Cr +C(D(r) D(s) C Do) o,
for every p < s < 7 < ry. Recall that S(0) < Co2D(0) for every o €|p,rol.

Moreover,
’ d ,(d 2 (0.8)
S(U):_/_2¢ C)INE < CH(o) < CoD(o).
o o

In particular, we conclude

I(r)
9.68 log —= > —Cr™.
(9.68) %875 = C7
From the latter inequality we conclude immediately that I(s) is uniformly bounded
and thus that H(p) = lim,|, H(r) cannot vanish if p > 0. Since |p, 7o is a maximal
interval on which H is positive, we conclude that it is positive on the whole ]0, rg].

Furthermore, it follows directly from (9.68) that the limit

If »=limI*
o i=lmI7(r)

exists. Finally, from (9.9) we conclude Iy > 0.
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CHAPTER 10

Final blow-up argument

In this chapter we conclude the proof of Theorem 1.6. In particular we show
that alternative (b) in Theorem 9.3 cannot hold. This leaves alternative (a), which
therefore shows that, under the assumptions of the theorem, the origin is in fact
a regular boundary point. On the other hand, such point was a generic collapsed
point of an area-minimizing current which was later suitably rescaled and translated
in order to fulfill the Assumption 8.16.

The core of the argument is to derive a suitable contradiction to the linear
theory with a blow-up of the approximating (Q — %)—map (NT,N7). In order to
state our main theorem we introduce the following notation.

Recall that M is the union of M+ and M~ and is, therefore, a C''! subman-
ifold. Moreover M coincides with the graph of the functions ¢ and ¢~ on the
domains By and By . In order to simplify the notation we denote by ¢ the map
on B; which coincides with both on the respective domains. In particular we are

ready to define suitable multivalued maps
(@) = [ @]
given by the formulas
N7 () = Py (N (2,07 (1))

where we recall that s is the plane TyX N TpM* = {0} x R™ x {0}. Observe
that the pair (AT, A7) is a (Q — %)-valued function with interface (v,0). We next
define

o) = [ DA+ [ DA P =2t )+ 07 ()
B B
and the corresponding rescaled multivalued functions

NE(x)i= Y [ o) acE )]

DEFINITION 10.1. The domains of the rescaled functions A(; are divided by
(suitable) rescalings of v, which in turn are converging to the (m — 1)-dimensional
plane Tyy. For this reason we introduce the notation B, , (and B, ) for the inter-
section of the domain of A" (respectively of A(;) with the disk B,(0,m).

Note that the regions B;*, which are subsets of the domains of the maps (¥,
coincide with the sets Bli,T. Observe that a simple consequence of the estimates in
the previous chapter is that

(10.1) D(r) < CegyrmT220e
(10.2) Lip(2(*|p,) < Cef*ron.
153
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154 10. FINAL BLOW-UP ARGUMENT

We are now ready to state the key step of our final contradiction argument.

THEOREM 10.2. If alternative (b) in Theorem 9.3 would hold in any of the two
regions C*, then, up to a subsequence, the pair (A, A, ) would converge in By
locally strongly in L? and in energy to a (Q — %) Dir-minimizer (N ¢, N ) which
collapses at the interface (To7y,0) such that

(1) (N§, N ) is nontrivial;
(i) poN T =0.

REMARK 10.3. Observe that, although the notation 9\[? might suggest that
the “blow-up” map is unique, namely independent of the sequence {ry}z, we do
not claim such uniqueness, nor we need it for our purposes.

By convergence in energy we mean that for every R € (0,1)
lim / |Dat |7 +/ DA | = / |DACT [ +/ |DACq |2
b \JBj By B, By
Since by Theorem 4.5 any (Q — %) Dir minimizer (A{, () which collapses
at the interface must satisfy
Ao =Q[noad] and Ag=(Q-1)[non,] .
the two properties (i) and (ii) above are incompatible. In particular we conclude

COROLLARY 10.4. Alternative (a) in Theorem 9.3 must hold for both T C*
and TLLC™, i.e. 0 is a boundary reqular point for the current T.

10.1. Asymptotics for D(r)

LeEMMA 10.5. Under the assumptions of Theorem 10.2 for every A € (0,1) one
has

D(\r)
inf —‘D(r) >0.

D(A
(10.3) oo > limsup (Ar) > limi
r10 ZD(’I“) r]0

Observe that (i) in Theorem 10.2 is then a simple consequence of the above
lemma and convergence in energy.

PROOF. Observe that, since TpM = my and N* are orthogonal to M, we easily
conclude that

(10.4) DE(r) = (1+ O(T))/i |IDN*|2.

By

Furthermore, if one among Iar and I is +oo, then the corresponding energy van-
ishes identically. Thus, under the assumption that they are finite, it suffices to

show
-1
oo > limsup (/ |DNi|2> / |DN*|?
rl0 BE BE
-1
(10.5) > lim inf </ |DNi|2> / IDNE]2 > 0.
rl0 Bri BE

AT
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To fix ideas consider the case of N* and notice that, in the notation of the previous
chapter, we must simply show
(10.6) oo > limsup D(r) " D(Ar) > lim&)nf D(r)"'D(\r) > 0.

rl0 r
Observe that the quantities D and H defined in (9.5) and (9.6) are integrals over
(portions of) the “right center manifold” M*. Hence, from now on we use a more
consistent notation for the remaining computations of this chapter, namely D+ and
HT (and analogously I™ and ET). In order to prove the desired estimate notice
first that, by Proposition 9.5, and (9.63) we have

d H*(r) 2E+(r)
1 = O(1
dr Og(rml ) H+(r) +0()
Next, by choosing r sufficiently small, we can assume that

+
Lot <o

201+ 0™ ) IH(r) + 0(1)

r

Thus, integrating the inequality above between s and ¢ > s, we conclude

m—1+I} 4 m—1+4I
o Cli—s) <f) ¢ HT() < Clt=9) (f) o

s ~ Ht(s) s
Since N
rDV(r) .
o Ht(r) 0
we can argue as in Corollary 4.26(c) to conclude (10.6). O

10.2. Vanishing of the average
In this section we wish to show that

LEMMA 10.6. Under the assumptions of Theorem 10.2 we have

(10.7) h%</ moact|+ [ nONZ)—U
=0 \Jy B

Indeed we have the stronger estimate

lim D (r) "1y~ </ Imoalt| + / Inw\U)
0 BY By
(10.8) snmw)‘“*”?‘_l(/ mo |+ / lnomH):O'
B By

rl0

s

for any 7' smaller than the parameter T of Proposition 9.14.

Notice that (ii) in Theorem 10.2 is then a trivial consequence of the lemma and
of Lemma 10.5.

PROOF. In view of the same considerations used in the proof of Lemma 10.5,
in order to prove (10.7) it suffices to show that, under the condition that alternative
(b) holds,

(10.9) lim ———~ [ |pont| =i v me Nl =0
. Tl_r,% 7,m/2+1D+(T)1/2 B n 7r1—r>% rm/2 TD(T) B K -
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156 10. FINAL BLOW-UP ARGUMENT
where we are using the notation of the previous chapter. By (10.1) and (10.4),
. Dt(r)'/?

‘We now claim that

1+7
(10.11) /|170N+|<Cr</ |DN+|2) .
Bt B

where C' and 7 are as in Proposition 9.14. The latter inequality, together with
(10.1), clearly implies (10.8). Moreover the combination of (10.10) and (10.11)
implies (10.9). Hence the proof of the lemma will be concluded once we show
(10.11). To this aim, with the notation of the previous chapter, we estimate

Imo N*| < /|noN+|.
. 2 )y

Applying (8.15) with a = r we easily conclude

m e C
/ |770N+|§C7’Z€1€j 2 L/2+—/ |N+‘2+QL.
B ; rJet

On the other hand, using (9.36), (9.41), and (9.42) we then conclude

147 T
C
/ |noN+|§C7‘</ |DN+|2) +—</ DN+|2>/ IN*2,
B B T \JBt B

Combining the above estimates with the Poincaré inequality

/ |NT|? gcﬁ’/ IDN*?
B B

we then conclude the proof of (10.11) and of the lemma. O

10.3. Minimality and convergence in energy

In this section we complete the proof of Theorem 10.2. In order to be consistent
with our notation on the domains of the functions A F, we let BSE’R denote the
intersections of the domain of definitions of the blow-up maps 57\[3[ with the disk
B,(0,7). By the Rellich-Kondrakov embedding we know that we can extract a
subsequence (A}, A(;,) converging locally strongly in L?(Bj) to some (Q — 3)-
map (A, N ). The fact that the latter collapses at the interface (T, 0) comes
from trace theory (cf. for instance [13], [29]). Observe that, by semicontinuity of

the Dirichlet energy we have

. + 12 — 12
hkrggf (/B+ |D9\[rk +/B_ |DNrk| )

e, R e R

(10.12) > / DA [ +/ DAy |?
for every R € (0,1).
Assume without loss of generality that the inferior limit on the left hand side
1

is actually a limit. Choose now any (Q — 5) competitor (u™,u™) with interface
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(Toy, 0) which coincides with (A&, A(y) on By \ Br. We now want to show that,
for any given positive n > 0,

lim (/ DA, P +/ |D9\£:k|2>
k—o0 Bt ’ B~
.

R iR

(10.13) g/ |Du+|2+/ \Du=[2 4 1.
BF B

0,R 0,R

Clearly this will show both the convergence in energy (by choosing u* = A F) and
the local minimality of 9\[3[. Hence the proof of Theorem 10.2 will be concluded
once we show (10.13).

Without loss of generality we can assume that n o u™ = 0. Indeed, recall that
noN L =0 and thus, since

wfﬁz/ D(uF —nout)?,
fprz 5

>, [u® — nou®] would be a better competitor with zero average.
It is convenient to introduce the energy difference

Zw-(/ |DN;2+/ DNWF>
BF B

rg,1 Tl

([ purE [ e
Bt B~

0,1 0,1
so that our claim reduces to
lim %, <n.
k—o0

Note also that we can assume that Z; > 0 otherwise there is nothing to prove, in

particular

(10.14)
/ |Du+|2+/ |Du~*] < lim/ \Dm[j;_%/ DN, P =1,
B, By, k=oo )l | ' By .

where the last equality follows by the normalization of 9\[;&.
Our first step is then to produce a new (Q — %)—map (i[;, ng) with interface
(7,0) and satisfying the following four properties:
(a) (A, A(}) coincides with (AT, (") outside B, ;
(b) the Lipschitz constants Lip(f)i[ki) converge to 0 as k — oo;
(c) the following inequality holds for the energy:

/ \DM|2+/ |D9§c,;|2§/ | DACH?
Bl By, B

(10.15) +/B+ DA+ r " D () (—£k+ g) ;

Tk

(d) [moal{] < Clnoact|;
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158 10. FINAL BLOW-UP ARGUMENT

First, observe that by Lemma 5.8, we can choose a sequence of approximants

(uj,u;) which converge in energy to (ut,u™) in By, satisfy n o u;t = 0 and

with Lipschitz constant controlled by j,
Lip(u;) < j.

Next, choose a sequence of diffeomorphisms ®;, of B; which converges in C* to the
identity and maps the rescalings v,, = r;lv onto Tpy. We then define

(uxk,ujjk) = (u;r o &y, u; o Py).

Note that
3 H + 2 _ + 2 _ +2
(10.16) kll}ngojlggo . | Duy | = lim " |D(u™ o ®y)| _/Bi | Du™|
.l o1 0,1
and
(10.17) lim lim g2(uj%k,9\[i):o_

k—o00 j—00 Bri,c,l\@;l(Boi,R)

Using the interpolation Lemma 4.9 and proceeding as in Section 4.1.4 we obtain
(Q — %)—maps (wj'k,wj_k) with the following properties for a sufficiently large k
and small \:

(al) (w;k,w;k) coincide with (uj[k,ufk) on @, *(Bgr(0, 7)) and with (At
A ) outside By, (0, ) for some R < s;, < 1 such that @, ' (Br(0,m)) C
B, (0,70);

(b1) The Lipschitz constant of (w,:r 2 Wy, ;) is estimated as!

. . . 1
Llp(w,fj) < C(Llp(.‘?\[ﬂi) + Llp(uﬁj) + - sup g(u;tk, Nﬁ))
| T A e s ’

),
AL = R) Jpive, (BE )

r)

gC(Lip(Ni)+Lip(u§j)+ Q(Ufk,-‘?\[i));

!Here we are using the simple inequality || f|| 1o () < |E|7" Il fllL1 (B, + diam(E) Lip(f).
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(c1) The energy of (wi w;y,wy,) can be estimated as

/B+ \Dw;fk|2+/3_ | Dwj,|?

Tl rg,1

<Gtle-wlo( [ P [ 10uP)
BO,R By r

+/ wmﬁ2+/ 1D [
B 1\Bsy (0,m0) B, 1\Bs, (0,m0)

+ OA/ 1 (IDuf, * + DAL 1)
1\ 2y (Br(0,m0))

+ O\ (IDuj, |* + DAL %)
B 1 \®; " (Br(0,m0))
C
+ < gz(u;r,kvg\[;:)

A B:rkJ\(I);l(BR(OJro))

5, G (1537 7,)
M Bz \aptBaomey T
7

(10.18) §/+ |DaACE 2+/_ IDNa|2+Z—£k+oj,k(1)~
Bl L el
where

jl;m khﬂrn 0jx(1)=0

and We have chosen A < 7 (recall also (10.14)).

(d1) [powf| < Clno ACE|. This can be easily seen as follows: first of all
we can subtract the average from A E .» and interpolate it to 0, which
is the average of the competitors ui hence we can interpolate between
the maps (u*,u~) and the average-free part of (A} ,A(, ): a simple
inspection of the proof of Lemma 4.9 shows that this can be done while
keeping the average of the interpolation equal to 0. Hence we can add
back the average to the resulting maps in order to get w? Note that
in estimating the Dirichlet energies we are using the crucial fact that the
Dirichlet energy of a multivalued map equals the sum of the Dirichlet
energies of its average and average-free part.

Next we set

NEo@) =D [re o) B wk )il )|

%

and

NT =N,
for k; appropriately large. Observe that (9\[ p ,ﬁ[;) clearly satisfies property (a).
Moreover,

Lip(ﬂi[fk) < C'Lip(n(*) + C’r,:m/zi)(rk)lﬁj +Cn~to; k(1)
In particular, taking into account (10.1) and (10.2),
Llp(.‘]\[ ) < O tefrryr 4 051/2 LT + C’n*lrk_mh@(rk)lhj +Cn~ o, k(1).
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160 10. FINAL BLOW-UP ARGUMENT

Thus, choosing first j large and then k; much larger, we achieve (b). Finally, (10.15)
follows from (10.18).

We next define a suitable Lipschitz map A between a neighborhood U of the
origin in ¥ onto a neighborhood of the origin in TpX. Fix therefore z € U N X.
First of all we define z € mg = T M as the only point such that (z,p(x)) = p(z),
where p is the projection onto M. Next, we let s := ToX N Ty M+ and we define
Y 1= Py (2 — p(2)). We then set A(z) := (z,y) € TpX and A¥(z) = y.

We partition U into U™ and U~ according on whether p(z) belongs to M™
or M~. So, we can regard A as two maps AT and A~ which are C%* on the
corresponding domains and which agree on the common boundary UT N U~ =
p~H(T) NU. Observe that the differentials of AT at the origin are the identity in
both cases. Thus, using the inverse function theorem, we can find two inverse maps
W+ defined on BF (1) x B, (30).

We are thus ready to define the competitor maps (N ,j N % ) in the form

ngt(xaso(x)) = ‘I’:‘:(QJ,_‘X[?({[)) - (.’[, 90(1')) 3
namely
Nif (o) = 3 [ 5 (@ (A0)u(2)) — (2. 0(@)] -
Observe that ) l A
Nf(x)) = Pse (Nk?(x7 (P(‘T))) :
We thus conclude easily that:
(a2) (N,F, N, coincide with (N+ N7) outside of Cy,, N M;

(b2) the Lipschitz constants of N on Ca,, N M converge to 0;
(¢2) for k large enough we have the energy comparison

[ oNEs [ NP
Cayp MM Cayp M-

(10.19) g/ |DN*|? +/ IDN~|2 + D(ry,) ( i + —’7)
Cszﬁ/\/H CngﬂM* 4

(d2) |mo Z\A],ﬂ < Oln o N*|, since on p~*(B,,) we have 0 = g o f =
Py (M 0 Ni(2, ().
Now we consider the current Sy in Cy,, induced by the multi-valued map

B a.e(@) = Y (@) + (V)i o)

K2

Observe that, since S, = Tr on Ca,, \ C,,, arguing as for the estimate in (9.56)
we easily conclude that

1+7
ISk~ Tl(Car, \ Cp) < © ( [ e | |DNk|2> .
CSrkmM+ C47‘ nM~—

k

In turn, using Lemma 10.5, we can control the right hand side with D(r;)'*7. In
particular, for a suitable oy, € (ry, 2r)

M(O((Sr, —T)LC,,)) < %@(rk)m.
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In particular, by the isoperimetric inequality we conclude the existence of a current
Zy, with 0Zy, = 0((Sk, — T)L C,,), spt(Zx) C ¥ and such that

M(Z;,) < Cry ™ Doy )/ (m=1)

@(Tk) 147
o

< CD(rp)" 7 < > " < onr)T

where we used the bound D(r) < Cr™+2-2% (compare the argument leading to
(9.64)). In particular, the current

Ty, = SkL.Cy, + TLR™ ™\ Cy,) + Z

is an admissible competitor to check the minimality of T, since it coincides with T’
outside a compact set and it has boundary [I']. In particular we conclude that
(10.20) M(Si.C,,) > M(TLC,,) — CD(ry)* 7.
Next, since T coincides with T on a large set (compare with (9.56)) using again
the same estimate as above, we conclude also

M(SiL C,,) > M(Tp+ | C,,) + M(Tp-L_C,,) — CD(r)' 7.
On the other hand, since F' and Fk coincide outside of C,,, we can write

(10.21)
M(Tp+ L Cy,) + M(T- L Cy,) > M(Tp+ L Cy,) + M(Tp- L Cy,) = CD(ri) 7

Using now the Taylor expansion in [15, Theorem 3.2] we easily conclude that

1
M(Tr+LC,,) — 3 /C . IDN*? — QH™(C,,, N M™)
Tkm

<C (Ino NT|+|NF|? +|NF|[DN*|* + |[DNT?).
C,, "M+

By the estimate on |[N*| and Lip(N ™), we have

/ INT[|DNt|?> + |DNT|?
G, AM*

(9.35)&(9.36)&(9.42) T
e DN*P) < Cn(r,
C2Tk nM+

where in the last inequality we have also used Lemma 10.5. By the Poincaré
inequality (and Lemma 10.5)

/ INT]2 < CT%/ IDNT|?> < Crio(ry).
G, NM+

rp OMT

Finally, by Lemma 10.6,
/ o N+| < Cripd(r) .
C, M+

‘We thus conclude

1
M(Tp+ L Ca,, ) — —/ IDNT|> — QH™(Ca,,, N M™T)
2 Cap MM+
(10.22) < Crio(ry) + CD(rp)t .
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Similarly,
1
M(Tr-LCqy,,) — —/ IDN™]? — (Q — )H™(Cap, "M™)
2 CQTk nM—
(10.23) < CriD(ry) + CD(ry) 7

Observe next that the similar Taylor expansions hold for F ,;t replacing F*, namely

1 .
M(T; L Csy,) — - / DN — QH™(Cay, 1 M)
k 2 Jes, nm+
(10.24) < Crio(ry) + o(1)D(ry),
and
1 . ” _
M(Ts-LCoy,) — —/ |IDN;|? — (Q — )YH™(Cap, N M)
k 2 CQTk M-
(10.25) < Crio(ry) + o(1)D(ry) .
Indeed:

e the linear term is estimated in the same way using |n o Nif| < C|no Ny|;
e the quadratic term is estimated by the Poincaré inequality and

[ pEgEe [ pRCP <Cng),
C,, NM+ C, NM—
since we can assume without loss of generality that £, > —2;
o finally [N,|| DN, |2+ |DN,5|? = o(1)|DN;f 2. Indeed, by (b2) Lip(N;") =
o(1) and SUP ey \J\A/',j(x)| < Cry Lip(NIj) = o(ry), since J\A/',j is vanishing
onI.
Inserting the Taylor expansions (10.22)—(10.25), we conclude

[N [ D
C, M+ C,, NM-

Tk
(10.26) > / |IDNT|? +/ IDN~|? — o(1)D(ry) .
C,, NM+ C,, M-
Combining now (10.19) and (10.26) we achieve
3n
D(ry) | —Er + 1) —o(1)D(ry).

Dividing by D(ry) and choosing k large enough we achieve the desired inequality
Er < 1.
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