
Chain and Structural Dynamics in Melts of

Sphere-Forming Diblock Copolymers

Anshul Chawla, Frank S. Bates, Kevin D. Dorfman,∗ and David C. Morse∗

Department of Chemical Engineering and Materials Science, University of Minnesota –

Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA

E-mail: dorfman@umn.edu; morse012@umn.edu

Abstract

Melts of asymmetric sphere-forming diblock copolymers form a dense liquid of mi-

celles at temperatures above the order-disorder transition (ODT) temperature and

below a critical micelle temperature (CMT), above which micelles dissolve. Molecular

dynamics simulations were used to study how tracer diffusivity, the rate of chain ex-

change between micelles, and the rate of structural relaxation change with increasing

degree of segregation or decreasing temperature in this state. Results for tracer dif-

fusion and chain exchange are consistent with experimental results, and confirm that

diffusion in well-segregated systems occurs via hops of chains between neighboring mi-

celles. A structural relaxation time τs is obtained from decay of the dynamic structure

factor S(q∗, t) at the peak wavenumber q∗. The time τs increases dramatically with

increasing degree of segregation, reaching values near the ODT of order 102 times the

homopolymer Rouse time, with larger increases for systems with lower invariant de-

grees of polymerization. A theoretical prediction of the micelle lifetime, based on a

model of stepwise micelle dissociation, yields an estimated lifetime of order 103τs near

the ODT, indicating that micelle birth and death may occur too slowly to be observed

in these simulations. The relationship to experimental evidence is discussed.
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Introduction

When a complex fluid is perturbed from equilibrium, equilibrium is restored through a

variety of relaxation processes. For example, liquids of long homopolymers relax via relax-

ation of polymer conformations. Disordered materials that contain self-assembled micelles or

other supramolecular aggregates relax much more slowly via processes that generally involve

changes in both the positions and the number of such aggregates. In the present study, we

use large-scale molecular dynamics (MD) simulations of a coarse-grained polymer model to

study a variety of dynamical processes that occur in melts of compositionally asymmetric

AB copolymers that form a disordered fluid of spherical micelles, with the goal of providing

an understanding of the remarkably slow kinetics in these systems.1–6

Diblock copolymers in selective solvents tend to form micelles or other aggregates, much

like small-molecule surfactants. Highly asymmetric AB diblock copolymers with a minority

B block immersed in a solvent that favors contact with A tend to form spherical micelles

with a B-rich core. Relaxation in a dense fluid of such micelles involves several dynamical

processes with disparate relaxation times. The fastest processes involve local relaxation of

chain conformations within micelles, which can occur over times comparable to the relaxation

times observed in homopolymer melts. Longer times are required for exchange of molecules

between micelles, due to the free energy cost of temporarily extracting the core block of

a copolymer from a micelle. Long relaxation times are also expected for processes that

rearrange the positions of micelles within a dense liquid, which is essential to the relaxation of

stress that is measured in linear rheological experiments. Processes that change the number

of micelles and the average micelle aggregation number may require even longer relaxation

times, due to the existence of particularly large barriers to micelle creation and destruction,

whether these processes occur by stepwise association and dissociation or by fission and

fusion.7–15 While substantial attention has been focused on characterizing this entire range

of processes in micellar block copolymer solutions,15 somewhat less work has been done on

analogous problems in neat melts of compositionally asymmetric diblock copolymers.2,6,16–18
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Figure 1: Structural changes of a compositionally asymmetric diblock copolymer melt as a
function of temperature or, equivalently, as a function of the segregation strength χN . TODT

and TCMT are the order-disorder temperature and the critical micelle temperature, respec-
tively. χNODT is the segregation strength at the true order-disorder transition temperature.
χNSCF

ODT is the order-disorder transition predicted by self-consistent field theory.

One-component melts of sphere-forming diblock copolymers pass through three different

structural states with increasing temperature or, equivalently, decreasing values of the prod-

uct χN of the Flory-Huggins χ-parameter and degree of polymerization N . At sufficiently

low temperatures or high χN , micelles formed by neat diblock copolymer melts pack on a

lattice (Figure 1). Most systems form a body-centered cubic (BCC) lattice,19 and a small

region of close-packing is sometimes observed near the order-disorder transition (ODT). 20–22

Conformationally asymmetric systems with statistical segment lengths bB > bA, however,

also form Frank-Kasper phases,23 with σ and A15 formed at equilibrium24–28 and the C14

and C15 Laves phases accessible through thermal processing.4,5,29 As such a system is heated

through the ODT temperature TODT, crystalline order is disrupted and the Bragg peaks ob-

served in small-angle x-ray scattering (SAXS) in the ordered state are converted to the broad

peak characteristic of a disordered micellar liquid.30 Further heating causes a shift in the

peak wavenumber q∗ as the number of micelles changes,2,6,31 followed by disappearance of

micelles at the critical micelle temperature (CMT).

Equilibrium properties of diblock copolymer melts exhibit a universal dependence on the

parameters that control behavior in self-consistent field theory (SCFT) and the invariant

degree of polymerization N . Self-consistent field predictions for diblock copolymer with
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monomers of equal statistical segment length b depend on the minority block volume fraction

f and the product χN . The invariant degree of polymerization for such a system is given by

N = N(cb3)2, where c is the concentration of monomers.32 Theory and simulation suggest

that the CMT occurs at a value of χN very close to the ODT value predicted by SCFT,31,33–35

and that the ODT occurs at a higher value of χN that increases with decreasing N . The

width of the range of values of χN between the ODT and CMT in which a micellar liquid

exists thus increases with decreasing N . The width of this range is expected to vanish

in the limit N → ∞, in which SCFT becomes exact, and in which the CMT and ODT

coincide. Most experiments are, however, performed on systems with N ≈ 102 − 104,36

in which the disordered micellar state persists over a sizable temperature range. Notably,

systems that have been observed to form Frank-Kasper phases have tended to have rather

low values of N and thus possess substantial disordered micelle regimes proximate to their

ODTs. The increase in the value of χN at the ODT with decreasing N is relevant to our

understanding of their dynamical behavior near the ODT, because systems with greater

values of χN exhibit stronger segregation, and correspondingly longer relaxation times for

all of the relevant dynamical processes in the disordered phase near the ODT.

Our interest in modeling the relaxation of the particle-forming diblock polymers is mo-

tivated in part by experimental evidence of anomalously long relaxation times observed in

experiments as micellar-forming systems crystallize and melt. It has been known for over

two decades that formation of a BCC crystal can take several days, and some systems may

not crystallize at all.1 A particularly notable example of the slow ordering of BCC was ob-

served in experiments of Cavicchi and Lodge.2 After first annealing either a poly(isoprene)-b-

poly(styrene) (PI-PS) or poly(ethylene-alt-propylene-b-dimethylsiloxane (PEP-PDMS) sys-

tem for several months to form BCC, the sample was then heated through TODT, with the

anticipated disordering. Subsequent cooling below the ODT restored the BCC ordering, but

at a larger primary peak wavenumber q∗ than the initially annealed sample. Moreover, this

higher q∗ only returned to the annealed value after 100 hrs for the PI-PS sample, and failed
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to do so for the PEP-PDMS system after 2 months. Remarkably, the time scale for diffusion

over the unit cell in the latter system is only 10 s,18 two orders of magnitude smaller than

the annealing time and thus indicating that chain diffusion is not the rate limiting factor.2

Diblock copolymer melts that form Frank-Kasper phases and their related quasicrystals,

which possess much more intricate unit cells when compared to BCC, exhibit even more

remarkable dynamical behavior. The most salient examples are the thermal processing of

poly(isoprene)-b-poly(lactide) (PI-PLA) melts.3–5 When this system with minority block

volume fraction fPI = 0.15 is cooled directly from the disordered state, it first forms BCC and

then σ upon further cooling. Rapid cooling of the same polymer in liquid N2 and subsequent

reheating can instead yield a C14 Laves phase.4 Remarkably, these systems appear to retain

memory of their crystal structure even after a crystal is destroyed by heating through the

ODT; the value of peak wavenumber q∗ obtained from SAXS from the disordered phase

after melting C14 differs by 15% from that obtained after melting a BCC crystal in the

same system, and this difference was observed to persist for at least 30 min.5 Moreover,

C14 re-emerges after slow cooling of a disordered phase that was created by melting C14

back through the ODT.5 Similar memory effects were also observed5 with a cylinder-forming

PI-PLA system (fPI = 0.2), which produces C15 after thermal processing.4

The experiments of Kim et al.5 have thus demonstrated that non-equilibrium values of

q∗ can persist in the disordered phases for surprisingly long times, of order 103 seconds or

more. Notably, these experiments were performed on systems of relatively low viscosity,

for which the terminal rheological relaxation time appears to be less than one second. 37

This observation indicates that the mechanism by which q∗ relaxes toward its equilibrium

value must be distinct from, and much slower than, the process by which stress relaxes.

Kim et al.5 have hypothesized that micellar liquids at temperatures near the ODT might

be able to relax stress via comparatively rapid re-arrangements in micelle positions, but

that changes in q∗ may be controlled by much slower processes that can change the micelle

number concentration by creating or destroy entire micelles.
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Patel et al.6 have studied dynamics in disordered micellar diblock copolymer melts by

comparing measurements of linear viscoelastic moduli to results of x-ray photon correlation

spectroscopy (XPCS) experiments. These authors studied an asymmetric styrene-isoprene

(SI) copolymer at temperatures slightly above TODT, in a system that forms a hexagonal

phase at T < TODT. Patel et al.
6 compared values of a structural relaxation time τstruc that

characterizes the decay of the X-ray intensity-intensity autocorrelation function g2(q, t) at a

wavenumber q equal to the peak wavenumber q∗ to the terminal rheological relaxation time τtr

obtained from measurements of linear viscoelastic moduli. Strikingly, these authors obtained

values of τstruc that are 1-2 orders of magnitude greater than τtr. Like the experiments of

Kim et al.,5 these experiments thus demonstrated the existence of a structural relaxation

time as detected by a scattering experiment that is significantly larger than τtr, though the

disparity appears to be much less extreme than that observed in the experiments of Kim

et al.5 Comparison of these experiments is complicated by fact that different properties of

the scattering signal were observed (i.e., relaxation of q∗ vs. an intensity autocorrelation

function), which may be sensitive to different types of structural relaxation.

The relationship between rheology and dynamic scattering has also been explored in

a prior simulation study of disordered symmetric diblock copolymers by Ghasimakhbari

and Morse.38 In that work, MD simulations were used to measure both the stress relaxation

modulus G(t) and the dynamic structure factor S(q, t). Near the lamellar-disorder transition,

the terminal rheological relaxation time τtr was found to be very similar to a structural

relaxation time τs inferred from the decay of S(q∗, t) at the peak wavenumber. In fact, it was

shown there38 that the behavior of G(t) could be rather accurately predicted by using the

measured behavior of S(q, t) as an input to the Fredrickson-Larson (FL) theory39 of the effect

of composition fluctuations on linear viscoelasticity, while adding a Rouse-like contribution

to G(t) to the contribution arising from composition fluctuations that is predicted by the

FL theory.

In this work, we use molecular simulation in attempt to quantify some of the dynamical
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phenomena underlying observations of sphere-forming melts, using well calibrated simulation

models that have been shown to yield universal equilibrium behavior.36,40 Simulations and

experiments have complementary strengths and weaknesses. The strengths of simulations

include the ability to measure quantities that are not easily accessible in experiments, the

freedom to vary χN over wide ranges without encountering experimental constraints such

as thermal degradation, and the ease with which one can vary N independently of χN . The

limitations of simulations studies arise primarily from the need to study relatively small

systems over simulation times much less than corresponding times accessible in experiments.

Simulation Method

The methodology of the simulations reported here closely follows that of our previous

work34,35 on analysis of equilibrium properties of sphere-forming systems. All results re-

ported here are obtained from MD simulations of coarse-grained models of highly asymmet-

ric AB copolymers with a soft non-bonded interaction and a harmonic bond potential. All

potential energy parameters correspond to those of models referred to in earlier work 40 as

models S1 and S2. These are models in which a parameter that controls the strength of

repulsion between A and B beads can be adjusted to vary the effective χ parameter, while

holding all other model parameters constant, and for which the relationship between χ and

this adjustable parameter is known from prior work. The two systems considered both have

N = 64 beads per chain and a volume fraction of fB = 1/8, or 8 beads in the minority B

block, but have different invariant degrees of polymerization N = 960 (model S1) and N =

3820 (model S2). We sometimes refer to these two systems by the labels S1-64 and S2-64.

Simulations of disordered phase for each model are performed over a range of χ from χ = 0

(i.e., homopolymer melt) up to values for which an ordered state is stable. Simulations of

the ordered phase are performed using an artificially initialized BCC crystal, in which the

number of molecules is chosen so as to create a unit cell size that corresponds to an estimate
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of the equilibrium value at each value of χN , with a 3 x 3 x 3 array of BCC unit cells

(54 micelles), as described in previous work.34,35 At conditions near the ODT, resulting sys-

tems contained roughly 6000 molecules for model S1-64 and 9000 molecules for model S2-64,

which were simulated for 1-3 ×108 MD steps (exact values are given in the supplemental

information for Ref. 35). Further details of the simulation methodology are provided in the

Supporting Information of this article and in previous related work.34,35

Chain Dynamics: Diffusion and Exchange

In this section, we characterize dynamics of individual chains by measuring tracer diffusivities

and rates of exchange of molecules between micelles. To characterize diffusion, we measure

the average mean-squared displacement

g(t) = ⟨|R(τ + t)−R(τ)|2⟩

of the center-of-mass R(t) as a function of time separation t and fit the behavior at long

times to the expected linear behavior g(t) = 6Dt for a polymer with diffusivity D. Results

have been measured for both models of interest here over a range of values of χN in both

disordered and ordered phases. Examples of resulting data for g(t) are provided in supporting

information (SI), Figure S1.

Figure 2 summarizes the resulting values for D as a function of the segregation strength

χNB calculated using the minority block degree of polymerization NB.
16,18 The diffusivities

are made dimensionless by dividing them by the diffusivity D0 obtained in a system with

χ = 0 or, equivalently, by the tracer diffusivity of homopolymers with the same degree of

polymerization.

Measured diffusivities for both models are nearly independent of χNB at values less

than the value (χNB)
SCF
ODT at which SCFT predicts an order-disorder transition, and decrease

rapidly with increasing χNB at higher values. Previous simulation work has shown that

8



0 2 4 6 8 10

10-1

100

Figure 2: Tracer diffusivity of a single chain D normalized by the diffusivity of a homopoly-
mer with the same chain length as a function of the product χNB, where NB is degree of
polymerization of the core block. Circles and diamonds denote the diffusivity for simulations
having N = 960 and 3820 respectively. Open symbols represent results obtained in the dis-
ordered phase and closed symbols represent those obtained in an ordered BCC phase. The
vertical dotted line is the prediction of the ODT from SCFT. The dashed lines are regression
of the ordered state data to Eq. 1. For N = 960, D/D0 = 16.83 exp[−0.4552(χNB)] with a
correlation coefficient of R2 = 0.9994, and for N = 3820, D/D0 = 8.914 exp[−0.4552(χNB)]
with R2 = 0.9947.

(χNB)
SCF
ODT approximately corresponds to the CMT, above which micelles appear.34,35 The

segregation of copolymers into micelles clearly has a profound affect on diffusivity. Crystal-

lization of micelles onto a lattice seems, however, to have no discernible affect; for both values

of N , we find no significant difference between values of D in the ordered and disordered

phases at values of χNB for which both phases remain stable over the course of a simulation.

This observation is consistent with the experimental observations of Cavicchi and Lodge, 18

who also found that D is continuous across the ODT.

In more strongly segregated systems, or higher values of χNB, D is well described by an

approximately exponential function of χNB of the form

D

D0

∼ exp(−AχNB) , (1)

where A is a dimensionless O(1) prefactor, as found in prior experimental work.2,16,18 Fitting
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of results of simulation of the ordered phase to Eq. 1 yields the fits shown by dashed lines

in Figure 2, with a coefficient of A ≈ 0.45 for both models. This value is roughly consistent

with the value of A obtained in the BCC phase for the high molecular weight PEP-PDMS

system studied by Cavicchi and Lodge,18 but substantially less than the value A ≈ 1.2

used to fit the experimental data for BCC-forming poly(styrene)-b-poly(2-vinylpyridine)

(PS-P2VP).2,16 The higher value of N = 3820 simulated here is comparable to that of

the PEP-PDMS 30-4 system studied by Cavicchi and Lodge,18 for which N = 3770. Hin-

dered diffusion with behavior consistent with Eq. (1) has also been observed previously in

Langevin simulations of individual chains diffusing in a static potential field that approxi-

mates the BCC structure.17 It is gratifying to instead see behavior consistent with that found

in experiments emerge here from direct many-chain simulations of a model in which micelles

can form spontaneously. One important difference between our simulations and experimen-

tal systems, however, is the fact that these simulations use soft pair interactions that allow

polymers to pass through each other, and thus exhibit unentangled Rouse-like dynamics,

while different experimental systems may be entangled to greater or lesser degrees. 2

We characterize the exchange of polymers between micelles by measuring the average

number nL(t) of molecules that are in a particular micelle at any time τ that remain in the

same micelle at a later time τ + t. The identification of micelles, and of which molecules

belong to which micelles, is performed using a cluster analysis that was described in our

previous work.34,35 We have performed this analysis only in the BCC ordered phase, which

allows for the use of somewhat simplified rules to identify corresponding clusters at different

times. Let τex denote the average time required to expel any specific polymer from within

a micelle, or the lifetime of a polymer within a micelle. We identify τex by fitting data for

nL(t) to the functional form

nL(t) = Q exp

(
− t

τex

)
+ c , (2)
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in which Q is the average micelle aggregation number for a given value of N and χN , and c

is a small constant.

We use a functional form in Eq. (2) that allows nL(t) to approach a small nonzero value

nL(t) → c in the limit t→ ∞, rather than assuming that nL(t) → 0 in this limit, to account

for the fact that these simulations are carried out on a finite system of micelles with periodic

boundary conditions. In such a system, there is a small but nonzero probability of a polymer

returning to the same micelle even after an infinite delay. This argument predicts a value of

c = Q/nm where nm = 54 is the number of micelles in a system with 27 BCC unit cells. The

value of c has been adjusted to fit the data, which yields fitted values of c that are similar

to this prediction, but usually 10-30% larger.

In what follows, we non-dimensionalize values of τex by a characteristic homopolymer

conformational relaxation time38

τ0 ≡
ζN2b2

6π2kBT
, (3)

in which ζ = kBT/(ND0), where D0 is the measured homopolymer diffusivity for the model

of interest, kB is Boltzmann’s constant, and T is absolute temperature. This is the prediction

of the Rouse model for the terminal relaxation time of the end-to-end vector calculated using

bead friction coefficient ζ that is inferred from the homopolymer diffusivity.

Figure 3 shows both an example of our analysis of nL(t) and a summary of resulting values

for τex in the BCC phase, normalized by τ0. The inset of Figure 3 provides representative

examples of results for nL(t) for N = 960 at several values for χN , in which fits to Eq. (2)

are shown by dashed lines. Corresponding results for nL(t) for N = 3820 are provided in SI,

Figure S2. The main plot in Figure 3 provides the resulting values of τex as a function of

χN , shown as solid colored symbols connected by lines. Results for N = 3820 and N = 960

appear in different ranges of values of χN to accommodate the increase in (χN)ODT with

decreasing N .

In a melt of strongly segregated micelles, diffusion might be expected to occur primarily

via rare events in which a molecule is expelled from one micelle, diffuses through the A-rich
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Figure 3: Main plot: Normalized chain exchange time τex/τ0 vs. segregation strength χN
in simulations of ordered BCC phases, where τ0 is the homopolymer Rouse relaxation time.
Solid diamonds and circles indicate measured values of τex for N = 3820 and N = 960,
respectively. Open triangles show values of τex that are inferred from values of the tracer dif-
fusivity D by assuming that chains hop between nearest-neighbor micelles. Inset: Examples
of data for the average number of polymers in a particular micelle, nL(t), vs. normalized
delay time t/τ0 that was fit to obtain measured values of τex. Dashed lines show fits to Eq.
(2).

region, and is absorbed into a neighboring micelle. To test the validity of this picture, we

have considered a simple model in which each molecule can hop randomly from its current

micelle to a micelle which is a nearest neighbor on a BCC lattice, with an average time

τex between such hops, while assuming a Markov process in which subsequent hops occur

in statistically independent directions. This model gives a diffusivity D = r2/τex, in which

r =
√
3a/2 is the distance between nearest neighbors in a BCC lattice with a cubic lattice

spacing a.

To test the validity of this simple nearest-neighbor hopping model for diffusivity, we have

computed the value of τex that would be inferred from the value of the tracer diffusivity D

(as determined by measuring mean-squared displacements) while assuming the validity of

this model. Values of τex that were inferred from the diffusivity are shown as open triangles

in the main plot of Figure 3, while measured values obtained from the time-dependence of

nL(t) are shown as solid symbols. Agreement between measured and inferred values of τex

is excellent for the systems with N = 960 (S1-64) for which the data was taken at higher

values of χN (i.e., in more strongly segregated systems), and still reasonably good for N =
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3820 (S2-64). This agreement indicates that diffusion in the ordered phase is well described

to a first approximation by such a hopping process, particularly at higher values of χN .

Given that diffusivity appears to be unaffected by the appearance of order, we infer that the

diffusivity in the disordered micelle regime is also dominated by hopping between micelles

at conditions near the ODT. In systems with the higher value of N = 3820, and lower values

of χN , the inferred values of τex are slightly greater than the measured values, indicating

that the measured diffusivity is greater than predicted by this model. This is consistent with

the existence of a small contribution to D by some other mechanism, such as, e.g., hopping

to next-nearest neighbors on the lattice. As χN decreases further, and the fraction of free

chains that remain outside of micelles increases, the physical picture underlying our model

is unlikely to remain valid at conditions sufficiently near the CMT. This hopping picture is

clearly inappropriate for states with χN < (χN)CMT, in which there are no micelles.

Structural Dynamics: Dynamic Structure Factor

In a dense liquid of micelles, the dynamic structure factor provides information about col-

lective structural re-arrangements involving entire micelles. The dynamical structure factor

S(q, t) for a diblock copolymer is defined as an ensemble average41

S(q, t) =
1

V
⟨ψ̂∗(q, t)ψ̂(q, 0)⟩ , (4)

where V is the simulation volume and ψ̂(q, t) is the spatial Fourier transform of the com-

position field ψ(r, t) ≡ [cA(r, t) − cB(r, t)]/2, in which ci(r, t) denotes the instantaneous

concentration of monomers of type i at time t. Additional details on the computation of

S(q, t) are provided in the Supporting Information. At t = 0, S(q, 0) reduces to the static

structure factor measured by elastic small angle x-ray and neutron scattering. The rate of

relaxation of S(q, t) in an isotropic liquid depends on wavenumber q = |q|, and is known

to be slowest for values of q nearest the wavenumber q∗ at which the static structure factor
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Figure 4: Normalized dynamical structure factor at the peak wavenumber S(q∗, t)/S(q∗, 0)
vs. the normalized time t/τ0, where τ0 is the homopolymer Rouse relaxation time, for
simulations with N̄ = 960 and three values of χN . Circle and square markers are used to
help distinguish between the different curves and are shown every 2000 data points. The
black dashed line is an example of exponential fit to the initial decay shown for χN = 58.8.

is maximum. The relaxation time of S(q, t) for q ≃ q∗ is thus expected to yield a terminal

relaxation time for structural re-arrangements in a micellar liquid.

Figure 4 provides several examples of the normalized dynamical structure factor S(q∗, t)

in the disordered phase for N = 960 at several values of χN ; similar data for N = 3820

are provided in SI, Figure S3. To obtain a structural relaxation time, we fit the early time

behavior of S(q∗, t) to an exponential decay. As the relaxation time increases with increasing

χN , our results for S(q∗, t) become increasingly noisy, making it difficult for us to characterize

the final decay of this function within a feasible computational time at conditions near the

ODT. Our data quality is, however, sufficient to allow us to estimate the time constant for

the initial decay of S(q∗, t) to a factor of 3-5 times less than the initial value S(q∗, 0). In

what follows, we use τs to denote the time constant extracted by fitting this initial decay of

S(q∗, t) to an exponential.

Figure 5 summarizes our results for structural relaxation times. For the homogeneous

state, the structural relaxation time is smaller than the self-diffusion time by a factor of three.

14



0 20 40 60
0

50

100

150

200

250

300

Figure 5: Structural relaxation time τs for simulations with N̄ = 960 and 3820 normalized
by the homopolymers structural relaxation time τs0 (i.e., the value of τs at χN = 0)). We
find that τs0 = 0.334τ0 for N = 960 and τs0 = 0.3158τ0 for N = 3820. Green circles and blue
diamonds correspond to N = 960 and 3820, respectively. The dotted vertical line shows the
SCFT prediction for χN at the ODT.

When micelles begin to appear at χN ≃ χNSCF
ODT, the structural relaxation time increases

sharply, with the rate of increase being faster for the larger N . Eventually, the curves in

Figure 5 will be cut off by the ODT and the system should crystallize, as observed previously

for lamellae-forming systems.38 As a result, the structural relaxation time for the smaller

N near its ODT is larger than that for the larger N at its ODT because compositional

fluctuations push the ODT to higher values of χN as N decreases. However, we do not

have a precise measurement of the ODT in either case because we have never observed

crystallization from an initially disordered state for these system sizes.34,35 At best, we have

previously established lower bounds for the ODT at χNODT ≃ 44.2 for N = 3820 and

χNODT ≃ 63.7 for N = 960 from the melting of initially ordered systems.35 Previous work

indicates that micellar crystals can be only slightly undercooled,42,43 suggesting that these

lower bounds may be close to the true ODT.

This behavior of τs shown in Figure 5 for BCC-forming systems is similar to that observed

in related simulations of compositionally symmetric diblock copolymer melts,38 but with
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somewhat longer time scale. Simulations of lamellar-forming systems yields a value of τs/τ0 ≈

28 near the ODT in simulations of the compositionally symmetric model S1-16, for which

N = 239. This is a model that is similar in most respects to the asymmetric model with

N = 960 considered here (asymmetric model S1-64), having a B-block of the same length

(8 beads), while differing only in the length of the A block (8 beads for symmetric model

S1-16 rather than 56 beads for the asymmetric model S1-64 studied here). Simulations of

corresponding symmetric copolymers with chains of 32 beads (model S1-32) and N = 478

gave τs/τ0 ≈ 25. Given the observed trends, we would expect a slightly smaller value

of τs/τ0 for a symmetric copolymer with N = 960. The corresponding value for sphere-

forming polymer with N = 960 near our best estimate of its ODT is τs/τ0 ≈ 100. For

an experimentally relevant value of N ∼ 103, the value of τs/τ0 for a BCC-forming system

with fB = 1/8 is thus 4-5 times that of a symmetric polymer with the same value of N .

This difference is notable, but not as dramatic as we one might have thought in light of

much more dramatic differences between lamellar- and sphere-forming systems in the rates

of crystallization and rates of equilibration of q∗ within the disordered phase.

Predicting Micelle Lifetime

Kim et al.5 have showed that sphere-forming PI-PLA diblocks prepared by different routes

can show different values of q∗ that persist for surprisingly long times (at least 103 seconds)

even in systems with much shorter rheological relaxation times (less than one second). 37

These authors hypothesized that q∗ is controlled by the number concentration of micelles,

and that persistence of non-equilibrium values of q∗ in a liquid might be a result of the rarity

of events that can create or destroy entire micelles.

In this section, we thus attempt to use the information obtained from our simulations to

construct a theoretical estimate of the characteristic time scale for changes in the number of

micelles in a micellar liquid. Changes in the number of micelles can occur either primarily by
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stepwise growth processes, in which micelles are created by stepwise association of unimers

and destroyed by stepwise dissociation, or by micelle fission and fusion. Early analyses of

kinetics in micellar solutions7–9,44 focused on the stepwise growth mechanism, and assumed

negligible rates for micelle fission and fusion. A growing body of evidence from experiments

and simulations has shown, however, that fission and fusion sometimes dominate, particularly

in systems of very sparingly soluble surfactants.13–15

We cannot be certain which of these two competing mechanisms dominates in the simu-

lation model considered here at conditions near the ODT. Comparison of parameters of the

models considered here with those used in a previous simulation study of the mechanism of

the slow process by Mysona et al.13,14 suggests that a stepwise process is more likely. In that

study, the authors compared estimated rates of stepwise association/dissociation processes

to those of fission/fusion processes for micelles of AB asymmetric copolymers with 32 beads

per chain, fB = 1/8 and N = 480 dissolved in an A homopolymer solvent with the same

total number of beads per chain as the copolymer, using simulation models similar to those

considered here but with somewhat shorter chains. They found that stepwise processes ap-

peared to dominate for more weakly segregated systems, with χNB < 12, while fission and

fusion dominate for larger values of χNB. The systems considered here have χN < 70 at

the ODT, giving values of χNB < 9 throughout the disordered phase. If we assume that

processes that involve a single micelle (i.e., stepwise dissociation and fission) exhibit similar

rates in a dense melt as those found for AB micelles dissolved in A homopolymer at similar

values of χNB, then the comparison suggests that stepwise processes are likely to dominate

micelle birth and death within the disordered micellar state of the systems considered here.

In what follows, we consider a stepwise growth model to describe changes in the number

of micelles in a dense micellar liquid. Specifically, we attempt to estimate the average time

it would take an existing micelle to be destroyed by stepwise dissociation in the absence of

fission and fusion, and denote this time τd. Analysis of a stepwise growth model provides

an estimated upper bound for the true micelle lifetime, since we expect the overall lifetime
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to be significantly less than this stepwise dissociation lifetime τd if and only if fission and

fusion actually dominate the slow process of interest.

Consider a micellar liquid with an equilibrium number concentration cn for micellar

clusters of aggregation number n, also known as “n-mers”. In a system with well defined

micelles, cn has a maximum at some equilibrium aggregation number ne and a minimum

at a transition state value nt, such that cne ≫ cnt . This is the behavior observed for both

of the models studied here at conditions near the ODT in our earlier work on equilibrium

properties.34,35 Let Wn denote a corresponding formation free energy, defined such that

cn(r) ∝ e−Wn/kBT . The thermodynamic barrier to stepwise dissociation is given by the free

energy

∆Wd = Wnt −Wne = kBT ln(cne/cnt) (5)

required to “shrink” a micelle from the most probable value ne to the transition state value

nt via a sequence of stepwise expulsion events. The distribution of cluster sizes required to

compute this quantity is known for both models of interest from our previous work. 34,35

We consider a stepwise growth model in which the aggregation number of each micelle

changes via a Markov chain of insertion and expulsion events. Let r−n denote the rate for

expulsion of any chain from an (n + 1)-mer to create an n-mer. The corresponding rate r+n

for insertion of one chain into an n-mer is related to this expulsion rate by the principle of

detailed balance, which requires that r−n cn+1 = r+n cn. For simplicity, and in the absence of

data that would allow use of a more accurate treatment, we consider a model in which r−n is

given by a constant r− that is independent of n, which we approximate by

r− = Q/τex , (6)

where τex is the average time before any specific polymer in a micelle would be expelled, and

Q is the average aggregation number.

The micelle dissociation lifetime τd predicted by this model can be approximated in the
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limit of a large dissociation barrier13,14,44 as a product

τd ≃ 2πσeσt
r−

exp (∆Wd/kBT ) . (7)

Here, σe is the width of the peak in cn near the value n = ne at which cn is maximum,

defined as a standard deviation, while σt is the corresponding width of the peak in 1/cn vs.

n near the transition state value n = nt at which cn is minimum.

Values for the quantities Q, exp(∆Wd/kBT ), σe and σt can be obtained from an analysis

of the equilibrium distribution of cluster sizes. Values for the fraction xn of chains in clusters

of aggregation number n, or n-mers, have been obtained in a previous study of equilibrium

properties of the two models studied here.35 These can be converted into estimates for the

number concentration cn of n-mers, for which cnvc = xn/n, where vc is the average volume

per chain. The exponential factor is simply given by the ratio exp(∆Wd/kBT ) = cne/cnt of

the local maximum and local minimum values of cn. The average micelle aggregation number

Q may be adequately approximated by the most probable aggregation number ne. Values of

σe and σt have been estimated by fitting the behavior of cn near ne and the behavior of 1/cn

near nt to a Gaussian distribution. An estimate of τd may thus be obtained by equilibrium

data with a measurement of the exchange time τex.

For concreteness, we focus on the behavior of a system with N = 960 at a value of

χN = 68.5 near its estimated ODT. A plot of cn vs. n for this system is given in SI, Fig. S4.

For this system, we estimate τex/τ0 ≃ 90, and examination of the cluster size distribution

yields exp(∆Wd/kBT ) = cne/cnt ≃ 273, Q ≃ 100, and σe ≃ 17, σt ≃ 8. Using these values in

Eq. (7) yields an estimated micelle dissociation time

τd/τ0 ≃ 2× 105 . (8)

This estimate is more than 3 orders of magnitude greater than the structural relaxation time

τs/τ0 ≃ 100 obtained for this system by examining the initial decay of S(q∗, t).
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Slowly evolving fluctuations of q∗ that are related to slow changes in micelle number

concentration might be expected to create a weak, very slowly decaying tail in both the

intensity autocorrelation function and S(q, t) at long times. The strength of the resulting

feature might be expected to be particularly small, however, for q near the value q∗ at which

S(q, t) is maximum, for which the change in intensity associated with a change in q∗ would

vanish to first order in an expansion in the change in q∗. In light of the limited length

of our simulations, and of the large statistical fluctuations observed in our measurements of

S(q∗, t) near the ODT, we think it is unlikely that we would have been able to observe such a

feature if it does exist, particularly if the time over which q∗ fluctuates is indeed comparable

to the value of τd predicted above. We thus believe that our simulations do not rule out

the possible existence of a very slow relaxation mechanism that would not be detectable in

computationally feasible measurements of S(q, t).

In previous work on equilibrium properties of the models considered here, an analysis

of clusters formed in the melt showed that equilibrated melts exhibit frequent formation

and destruction of very narrow, short-lived “bridges” or “throats” of core block material

connecting neighboring micelles.35 We have not, however, seen any evidence of irreversible

fusion of small clusters into larger clusters via the formation these transient bridges. Instead,

the bridges between micelles that we observed all appeared to break shortly after they

were formed, rather than leading to formation of long-lived large clusters. We thus do not

think that our previous observation of very short-lived bridges between micelles necessarily

indicates that fission and fusion must dominate the slow process, or that these bridges

represent an effective pathway for micelle fusion. Instead, as already noted, comparison with

a previous simulation study of the slow process of copolymer micelles in a homopolymer

matrix13,13 instead indicates that stepwise processes are likely to dominate in the disordered

phase at χN ≃ (χN)ODT.

The fact that the above estimate of τd is much greater than the measured value of τs

establishes the plausibility of the physical picture proposed by Kim et al.,5 in which the slow
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relaxation of non-equilibrium values of q∗ in disordered systems with N ∼ 103 near the ODT

is controlled by very slow changes in micelle number concentration.

Any attempt to more quantitatively compare our simulation results to experiments would

be complicated by the fact that different physical quantities have been measured in different

studies, and by differences in values of fB and N used in different studies. Specifically,

comparison to analyses of experiments that compare scattering and rheology measurements 6

is complicated by the fact that we have not measured the stress relaxation modulus in these

simulations. The simplest view of the relationship between scattering and rheology would be

to assume that the terminal rheological relaxation time τtr and the time τs associated with

the decay of S(q∗, t) are both controlled in a liquid of long-lived micelles by a characteristic

time scale for local structural re-arrangements, and that these two relaxation times should

thus be similar. This picture is consistent both with the behavior of dense simple liquids,

and with the results of simulations of lamellar diblock copolymers38 in which both relaxation

times were measured. This picture is not, however, compatible with the results of Patel et

al.,6 who instead obtained a structural relaxation time from XPCS experiments on melts

of asymmetric diblock copolymers that exceeds τtr by 1-2 orders of magnitude. We remain

unsure of the physical reason for this observation by Patel et al.6 We note, however, that if

the terminal rheological relaxation time for the simulation model analyzed here actually is

substantially less than the structural relaxation time τs measured here, that would imply a

value for the ratio τd/τtr that is substantially larger than the value of the ratio τd/τs that

we attempt to predict here. Any such increase in the estimated value of τd/τtr would thus

bring our analysis of micelle lifetime into closer agreement with observations by Kim et al.,5

which suggest the existence of an extremely large value τd/τtr near the ODT.
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Conclusions

Extensive molecular dynamics simulations have been used to quantify rates for several dy-

namical processes that occur in disordered melts of sphere-forming diblock copolymers near

the ODT.

Measurements of tracer diffusivity shows a dependence on χN consistent with that seen in

experiments. Nearly equal diffusivities are obtained in disordered and ordered phases at equal

values of χN under conditions near the ODT for which both phases can be observed. Analysis

of the relationship between diffusivity and rates of expulsion of polymers from micelles

confirm that, near the ODT, diffusion occurs primarily by random hopping of polymers

between neighboring micelles.

Structural relaxation has been probed by examining the decay of S(q, t) for q ≃ q∗, which

we use to define a structural relaxation time τs. For a model with a value of N ∼ 103 com-

parable to typical experimental values, the ratio of τs to the homopolymer Rouse relaxation

time τ0 reaches a value of τs/τ0 ∼ 100 near the ODT. This value of τs/τ0 near the ODT

is roughly 4 times greater than that observed in previous simulations of symmetric diblock

copolymers with similar values of N near the disordered-lamellar transition. Symmetric and

highly asymmetric copolymers thus both show a signficant decrease in rates of structural

relaxation with increasing χN near the ODT. The relatively modest difference in the extent

of this decrease, as characterized by the value of τs/τ0, does not, however, appear to us to

be sufficient to explain some of the dramatic reported differences in rates of crystallization

and structural relaxation observed in lamellar and sphere-forming systems.

One of the most surprising experimental observation involving sphere-forming diblock

copolymers is the observation by Kim et al.5 of very long-lived differences in values of q∗ in

disordered phases that were created by melting different ordered structures. In an attempt to

understand this, we used information from our simulations to estimate the micelle lifetime,

using a simple model of stepwise micelle dissociation. When applied to a system with

N ∼ 103, this model was found to predict a micelle lifetime near the ODT that is 3 orders of
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magnitude greater than the relaxation time τs obtained from S(q∗, t). This estimate provides

support for the proposal of Kim et al.,5 who hypothesized that the very slow relaxation of

q∗ observed near the ODT may be controlled by the rate of very slow changes in the number

concentration of micelles.
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(30) Schwab, M.; Stühn, B. Thermotropic Transition from a State of Liquid Order to a

Macrolattice in Asymmetric Diblock Copolymers. Phys. Rev. Lett. 1996, 76, 924–927,

DOI: 10.1103/PhysRevLett.76.924.

(31) Wang, J.; Wang, Z. G.; Yang, Y. Nature of disordered micelles in sphere-forming block

copolymer melts. Macromolecules 2005, 38, 1979–1988, DOI: 10.1021/ma047990j.

(32) Fredrickson, G. H.; Helfand, E. Fluctuation effects in the theory of microphase separa-

tion in block copolymers. J. Chem. Phys. 1987, 87, 697–705, DOI: 10.1063/1.453566.

(33) Dormidontova, E. E.; Lodge, T. P. The order-disorder transition and the disordered

micelle regime in sphere-forming block copolymer melts. Macromolecules 2001, 34,

9143–9155, DOI: 10.1021/ma010098h.

(34) Chawla, A.; Bates, F. S.; Dorfman, K. D.; Morse, D. C. Identifying a critical micelle

temperature in simulations of disordered asymmetric diblock copolymer melts. Phys.

Rev. Mater. 2021, 5, L092601, DOI: 10.1103/PhysRevMaterials.5.L092601.

(35) Chawla, A.; Bates, F. S.; Dorfman, K. D.; Morse, D. C. Simulations of sphere-

forming diblock copolymer melts. Phys. Rev. Mater. 2022, 6, 095602, DOI:

10.1103/PhysRevMaterials.6.095602.

(36) Glaser, J.; Medapuram, P.; Beardsley, T. M.; Matsen, M. W.; Morse, D. C. Uni-

versality of block copolymer melts. Phys. Rev. Lett. 2014, 113, 068302, DOI:

10.1103/PhysRevLett.113.068302.

(37) Lee, S.; Leighton, C.; Bates, F. S. Sphericity and Symmetry Breaking in the Formation

27



of Frank–Kasper Phases from One Component Materials. Proc. Natl. Acad. Sci. USA

2014, 111, 17723–17731, DOI: 10.1073/pnas.1408678111.

(38) Ghasimakbari, T.; Morse, D. C. Dynamics and Viscoelasticity of Disordered Melts

of Symmetric Diblock Copolymers. Macromolecules 2019, 52, 7762–7778, DOI:

10.1021/acs.macromol.9b01287.

(39) Fredrickson, G. H.; Larson, R. G. Viscoelasticity of homogeneous polymer melts near

a critical point. J. Chem. Phys. 1987, 86, 1553–1560, DOI: 10.1063/1.452194.

(40) Medapuram, P.; Glaser, J.; Morse, D. C. Universal Phenomenology of Symmetric Di-

block Copolymers near the Order-Disorder Transition. Macromolecules 2015, 48, 819–

839, DOI: 10.1021/ma5017264.

(41) Semenov, A. N.; Anastasiadis, S. H.; Boudenne, N.; Fytas, G.; Xenidou, M.; Hadjichris-

tidis, N. Dynamic Structure Factor of Diblock Copolymers in the Ordering Regime.

Macromolecules 1997, 30, 6280–6294, DOI: 10.1021/ma970700x.

(42) Beardsley, T. M.; Matsen, M. W. Fluctuation Correction for the Order – Disorder

Transition of Diblock Copolymer Melts. J. Chem. Phys. 2021, 154, 124902, DOI:

10.1063/5.0046167.

(43) Cheong, G. K.; Dorfman, K. D. Disordered Micelle Regime in a Conformationally

Asymmetric Diblock Copolymer Melt. Macromolecules 2021, 54, 9868–9878, DOI:

10.1021/acs.macromol.1c01629.

(44) Kahlweit, M.; Teubner, M. On the kinetics of micellization in aqueous solutions. J.

Phys. Chem. 1980, 13, 1–64, DOI: 10.1016/0001-8686(80)87001-1.

28



TOC Graphic

Temperature

<latexit sha1_base64="xLjEMtqlzi7R9Thy0h1gUS52R5A=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CVbBU9mVoh4LevBmhX7BdinZNNuGZpMlyQpl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwoQzbVz32ymsrW9sbhW3Szu7e/sH5cOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044vp35nSeqNJOiaSYJDWI8FCxiBBsr+c1+1lMxerhrTvvlilt150CrxMtJBXI0+uWv3kCSNKbCEI619j03MUGGlWGE02mpl2qaYDLGQ+pbKnBMdZDNT56ic6sMUCSVLWHQXP09keFY60kc2s4Ym5Fe9mbif56fmugmyJhIUkMFWSyKUo6MRLP/0YApSgyfWIKJYvZWREZYYWJsSiUbgrf88ippX1a9q2rtsVapn+VxFOEETuECPLiGOtxDA1pAQMIzvMKbY5wX5935WLQWnHzmGP7A+fwBozGQwA==</latexit>

TODT

<latexit sha1_base64="q8pOwVz0gbw/c85M12yPFC/Nyy8=">AAACA3icbZDLSsNAFIYn9VbrLepON4NVcFUSKeqyUBFXWrE3aGKYTCft0MmFmYlQQsCNr+LGhSJufQl3vo3TNAtt/WHg4z/ncOb8bsSokIbxrRUWFpeWV4qrpbX1jc0tfXunLcKYY9LCIQt510WCMBqQlqSSkW7ECfJdRjruqD6pdx4IFzQMmnIcEdtHg4B6FCOpLEffs/CQwmsnsbgPby6a6X1Gd/XL1NHLRsXIBOfBzKEMcjUc/cvqhzj2SSAxQ0L0TCOSdoK4pJiRtGTFgkQIj9CA9BQGyCfCTrIbUniknD70Qq5eIGHm/p5IkC/E2HdVp4/kUMzWJuZ/tV4svXM7oUEUSxLg6SIvZlCGcBII7FNOsGRjBQhzqv4K8RBxhKWKraRCMGdPnof2ScU8rVRvq+XaYR5HEeyDA3AMTHAGauAKNEALYPAInsEreNOetBftXfuYtha0fGYX/JH2+QOOXpa+</latexit>

�NSCF

ODT

<latexit sha1_base64="Cq/U4QPoGr1TD0E9NKt+W18XHmE=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BKvgqexKUY+FXrwIFfoF26Vk02wbmmyWZFYoS3+GFw+KePXXePPfmLZ70NYHA4/3ZpiZFyaCG3Ddb6ewsbm1vVPcLe3tHxwelY9POkalmrI2VULpXkgMEzxmbeAgWC/RjMhQsG44acz97hPThqu4BdOEBZKMYh5xSsBKfmuQ9bXEjYfWbFCuuFV3AbxOvJxUUI7moPzVHyqaShYDFcQY33MTCDKigVPBZqV+alhC6ISMmG9pTCQzQbY4eYYvrTLEkdK2YsAL9fdERqQxUxnaTklgbFa9ufif56cQ3QUZj5MUWEyXi6JUYFB4/j8ecs0oiKklhGpub8V0TDShYFMq2RC81ZfXSee66t1Ua4+1Sv0ij6OIztA5ukIeukV1dI+aqI0oUugZvaI3B5wX5935WLYWnHzmFP2B8/kDnpOQvQ==</latexit>

TCMT

<latexit sha1_base64="YjGhJScAe8nlJBU9ZpxTo1py2sc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LFbBU0mkqMeCHjxphX5BE8Jmu22X7iZhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMCxPOlHacb6uwtr6xuVXcLu3s7u0f2IdHLRWnktAmiXksOyFWlLOINjXTnHYSSbEIOW2Ho9uZ3x5TqVgcNfQkob7Ag4j1GcHaSIFte2TI0EOQeVKgx7vGNLDLTsWZA60SNydlyFEP7C+vF5NU0EgTjpXquk6i/QxLzQin05KXKppgMsID2jU0woIqP5tfPkXnRumhfixNRRrN1d8TGRZKTURoOgXWQ7XszcT/vG6q+zd+xqIk1TQii0X9lCMdo1kMqMckJZpPDMFEMnMrIkMsMdEmrJIJwV1+eZW0LivuVaX6VC3XzvI4inACp3ABLlxDDe6hDk0gMIZneIU3K7NerHfrY9FasPKZY/gD6/MHb/uSzQ==</latexit>

�NODT

Flory-Huggins Parameter

29



Supporting Information for “Chain and Structural Dynamics in

Melts of Sphere-Forming Diblock Copolymers”

Anshul Chawla, Frank S. Bates, Kevin D. Dorfman,∗ and David C. Morse†

Department of Chemical Engineering and Materials Science,

University of Minnesota – Twin Cities,

421 Washington Ave. SE, Minneapolis, MN 55455, USA

S-1



I. METHODS

The methodology used here follows closely from our previous work [1, 2]. Briefly, we have

leveraged two existing models for diblock copolymer melts, referred to as S1-64 and S2-64

in Ref. 3. In the simulation presented here, each chain contains 64 beads, with 56 A beads

with 8 B beads, giving a minority block volume fraction fB = 1/8. Consecutive beads are

connected by harmonic bonds with a bond potential

Vbond(r) =
κ

2
r2 (S-1)

with spring constant κ. All pairs of beads of monomer types i and j interact via a non-

bonded potential of the form

Vij(r) =
ϵij
2

(
1− r

σ

)2

(S-2)

for r less than a cutoff length σ, and Vij(r) = 0 for r > σ. The parameter ϵij governs the

repulsion between beads of type i and j, with ϵAA = ϵBB = 25kBT , where kB is Boltzmann’s

constant and T is the absolute temperature. The parameter

α =
ϵAB − ϵAA

kBT
(S-3)

controls the tendency to phase separate. For models S1 and S2, values of the spring constant

κ and pressure P in constant pressure simulations have been tuned in Ref. 3 to produce

invariant degrees of polymerization N̄ = 960 (for model S1) and N̄ = 3820 (for model S2).

Moreover, the relationship between the input parameter α and the effective Flory-Huggins

parameter χ has been determined for these models fitting the structure of the disordered

state to the renormalized one-loop theory [3, 4]. As a result, we are able to leverage the

parameters of Ref. 3 to produce simulation data at two different values of N̄ , and plot results

as functions of χN .

Simulations were performed in the NPT ensemble using a Martyna-Tuckerman-Tobias-

Klein barostat-thermostat [5, 6] using HOOMD-blue [7, 8]. The number of chains in each

system were selected to match, as closely as possible, the preferred number to create a 3 ×

3 × 3 BCC system, following the detailed discussion in the supporting information of our

prior work [1, 2]. To study dynamics of the ordered state, a guiding field was applied to

∗ dorfman@umn.edu
† morse012@umn.edu
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promote chain aggregation into micelles at the BCC lattice positions. The guiding field was

only used to create an ordered initial state, and then removed. The system sizes, α values,

number of molecules, and the number of time steps for each simulation are reported in the

Supplementary Material of Ref. 2.

To determine the exchange time for a micelle, we first identified isolated micelles using

the cluster identification algorithm reported in our prior work [1]. Then, using the positions

of these micelle singlets, we map micelles from a sampled configuration at time t to a

configuration at a time t+∆t and count the number of chains nL(t) that were retained. If

fluctuations in the micelle position relative to its BCC lattice site results in collision with a

neighboring micelle to form a multiplet at time interval ∆t, that micelle is discarded from

the analysis. Throughout this analysis, we keep track of the number nL(t) of labelled chains

retained within the micelle after a specified time interval t, and average this quantity over

all micelle singlets and all initial times.

II. POLYMER MEAN-SQUARED DISPLACEMENTS

Figure S-1 shows examples of results for mean-squared displacement g(t) of the polymer

center of mass vs. time for simulations with both values of N considered in this work.
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FIG. S-1. Mean-squared displacement g(t) vs. time t for simulations having N = 960 (left) and N

= 3820 (right). Values for g(t) and time t in these plots are shown in simulation units of length

and time in which the range of interaction σ, the thermal energy kBT and the monomer or bead

mass mb are all taken to unity, i.e., in which σ = kBT = mb = 1. The corresponding unit of time

is σ
√
mb/kBT .

III. CHAIN EXCHANGE

Figure S-2 shows examples of results for the number nL(t) of chains that are in a micelle

at time t = 0 that remain in the same micelle after time t, from simulations of the ordered

phase of systems with N = 3820. The dashed lines in the plot are the fits to an exponential

decay

nL(t) = Q exp (−t/τex) + c

from which we have extracted values for τex for each value of χN . Analogous data for

systems with N = 960 are shown in the inset of Fig. 3 of the main text.

IV. DYNAMIC STRUCTURE FACTOR

To obtain the dynamic structure factor, we define the composition field ψ(r, t) at a

position r and time t as

ψ(r, t) =
cA(r, t)− cB(r, t)

2
, (S-4)
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FIG. S-2. Number of labeled chains nL(t) retained in a micelle vs. the normalized time delay t/τ0,

in the ordered phase of systems with N = 3820. The dashed lines show fits to an exponential

decay.

where ci(r, t) is the instantaneous concentration of particle type i. The Fourier transform of

this concentration field can be expressed as

ψ̂(q, t) =

∫
d3r e−iq·rψ(r, t) (S-5)

and can therefore be calculated as

ψ̂(q, t) =
1

2

∑
j

e−iq·rjϵj , (S-6)

where j is a particle index, rj is the position of particle j and ϵj is +1 for particle type A

and −1 for type B.

The dynamic structure factor S(q, t) is then defined as the autocorrelation function of

ψ̂(q, t),

S(q, t) =
1

V
⟨ψ̂∗(q, t)ψ̂(q, 0)⟩ , (S-7)

where V is the volume of the simulation box and ψ̂∗ is the complex conjugate of ψ̂. For

a disordered phase, where there is no preferred direction, S(q, t) should be a function of

the scalar wavenumber q = |q| and time t. The static structure factor of the melt can be

directly be obtained from equation S-7 by setting t = 0.

The structural relaxation time for a given wavenumber q is then calculated by fitting the

initial decay of the autocorrelation function S(q, t) to an exponential function. It has been
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FIG. S-3. Normalized dynamical structure factor S(q∗, t)/S(q∗, 0) at the peak wavenumber q∗ vs.

normalized time t/τ0, where τ0 is the homopolymer Rouse relaxation time, for simulations having

N = 3820 and three different values of χN . Circle (χN = 34.8) and square (χN = 37.2) markers

are used to help distinguish different curves, but are not shown every data point: circles are shown

every 2000 data points and squares are shown every 1000 data points. The black dashed line is an

example of exponential fit to the initial decay shown for χN = 37.2.

shown that the maximum structural relaxation time or the terminal structural relaxation

time τs corresponds to the value extracted from the dynamical structure factor S(q∗, t) where

q∗ is the peak wavenumber [9].

Figure S-3 shows the decay in the normalized dynamical structure factor S(q∗, t)/S(q∗, 0)

with respect to the normalized time t/τ0 at different values of χN for simulations having

N̄ = 3820. Similar data for N̄ = 960 appear in the main text.
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V. CLUSTER SIZE DISTRIBUTION

Figure S-4 shows the normalized number concentration cn of clusters of aggregation num-

ber n for χN = 68.5 and N = 960 that was used in the estimate of micelle dissociation

lifetime presented in the main text.
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FIG. S-4. Normalized concentration of clusters cnvc of aggregation number n vs. n for χN = 68.5

and N = 960. Here cn is the number concenteration of micelles and vc is the average volume per

chain.
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