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Abstract  

An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in 
a new wave of dynamic RNA synthetic biology. Here we review recent advances in engineering 
dynamic RNA systems across the molecular, circuit and cellular scales for important societal 
scale applications in environmental and human health, and bioproduction. For each scale we 
introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss 
technologies incorporating these concepts, covering new approaches to engineering 
riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, 
biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic 
nature of RNA within the engineering design process promises to spark the next wave of 
innovation that will expand the scope and impact of RNA biotechnologies. 
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Introduction 

RNAs play central roles in biological systems1,2. These roles range from messenger RNA 
sequences that encode proteins, to the folding of non-coding RNAs into structures that perform 
many functional roles including regulating and coordinating gene expression and performing 
catalysis central to life2. Because of these features, engineered RNAs have been long sought 
after components of the synthetic biologists’ toolbox3, where the promise of programming the 
RNA sequence-structure-function relationship has great potential to contribute solutions to 
society’s most pressing challenges in environmental health4, human health5, and sustainable 
manufacturing6. Decades of work towards this promise has resulted in powerful new 
technologies such as CRISPR gene editing7, mRNA vaccines8, and point-of-care biosensor 
diagnostics9,10 with far reaching impacts. Yet these technologies only scratch the surface of 
RNA’s natural abilities, suggesting that this is the beginning of an era of RNA synthetic biology. 

One of the most exciting developments in RNA synthetic biology is an appreciation of how 
dynamic RNA behavior influences RNA function. A renewed interest in understanding how the 
dynamic, out-of-equilibrium environment created by cellular processes affects how RNAs fold in 
the cell, and how their function is governed by these folds, is adding new layers to 
understanding the RNA sequence-structure-function relationship11. This understanding is in turn 
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teaching us new principles by which RNAs act as sensors, how RNAs control gene expression 
processes, and how RNAs drive the formation of higher order structures inside cells. These 
principles are forming the basis of a new approach to RNA design that uses dynamic RNA 
properties to control the formation of functional RNA structures that can be used to program 
biological systems in a range of applications from diagnostics to therapeutics.  

Here, we highlight recent advances and opportunities in dynamic RNA synthetic biology, 
organized along the spatial scales of biological systems where RNA engineering is finding the 
most impact (Figure 1). We start with the molecular scale, where new principles for 
programming RNA folding dynamics is giving rise to new approaches to program riboswitches 
as biosensors, ribozymes as genetic control elements, and RNA origami as scaffold systems. 
Next, we discuss the circuit scale, where advances in controlling interactions of multiple RNAs is 
giving rise to engineering new dynamical systems including RNA logic circuits and feedback 
loops. Finally, we highlight RNA engineering at the cellular scale, where higher order RNA 
assemblies are being engineered into new classes of biomaterials, into biomolecular 
condensates that control localization and function of cellular components, and RNAs that act as 
core components of extracellular vesicle signaling systems and synthetic cells. In each case, we 
introduce the core concepts of the scales and phenomena, and then discuss applications of 
technologies being developed to solve important societal scale challenges. 

Molecular Scale 

The molecular scale phenomenon of RNA folding is intimately related to the myriad roles that 
non-coding RNAs play across the cell, including controlling transcription12-14, translation15-17, 
transcript stability16-18, epigenetic modification19,20, splicing21-23, polyadenylation24, and 
scaffolding25. As a single-stranded polynucleotide, RNA can flexibly fold to form diverse 
structures, from simple hairpins that can block transcription12 and translation15, to three-
dimensional structures that bind ligands26 or perform catalysis27. Recently, there is renewed 
focus on the dynamic nature of RNA folding11, which is leading to new concepts in programming 
RNA folding to optimize or engineer new functions within biotechnologies28-31. Here, we discuss 
several classes of RNAs where these concepts are being developed with exciting results 
(Figure 2). 

Riboswitches 

As the RNA chain elongates and exits the RNA polymerase during transcription, intermolecular 
interactions among the nascent RNA’s nucleotides and with interacting molecules in its 
proximity drive RNA folding changes32-34. The importance of such intermolecular interactions in 
driving dynamic RNA folding is particularly evident in riboswitches - non-coding RNA molecules 
that can rearrange in response to ligand binding to control gene expression at multiple levels, 
including transcription, translation, and splicing35. 

Riboswitches consist of two domains – an aptamer domain that when folded creates a binding 
pocket for a specific ligand, and an expression platform that controls a specific gene expression 
process through its structure36 (Figure 2a). For example, an expression platform that folds into 
an intrinsic terminator hairpin will regulate transcription elongation12, while an expression 
platform hairpin that sequesters a ribosome binding site will block translation initiation37. In many 
cases, the aptamer and expression platform folds are mutually exclusive, allowing ligand 
binding to ‘flip’ the RNA structure into different conformations leading to genetic decision-
making36. 



3 
 

Recent studies on transcriptional riboswitches demonstrate the importance of RNA folding 
dynamics in regulating transcription. Specifically, multiple transcriptional riboswitch classes that 
sense different ligands have all been shown to utilize internal strand displacement, where base 
pairing complementarity is exchanged between regions of the growing RNA transcript (Figure 
2b), driving large-scale changes in expression platform folding within the millisecond time scales 
of transcription38. In these mechanisms, aptamer domains have been found to fold first, enabling 
ligand binding early in the folding pathway38. In the absence of ligand, synthesis of additional 
nucleotides triggers strand displacement, leading to a specific expression platform fold. 
However, ligand binding blocks this strand displacement, leading to a ligand-dependent 
switch34,38. 

Fascinatingly, more detailed studies of riboswitch strand displacement are revealing links to 
lessons learned from studies of DNA nanotechnology. Molecular scale features such as base 
pair mismatches, bulges, deletions, or wobbles appear to slow the process of internal strand 
displacement32, much like how these features slow strand displacement in DNA circuits39. In the 
riboswitch context, recent work shows that tuning the kinetics of strand displacement in the 
expression platform fold can lead to functional changes such as tuning dynamic range (Figure 
2c), without having to alter the aptamer ligand-binding interactions32. Furthermore, sequences 
can be added to compete with expression platform strand displacement folding, causing larger-
scale rearrangements that flip riboswitch logic32. 

Viewing riboswitches through the lens of strand displacement is establishing a new foundation 
for engineering riboswitch-based biosensors (Figure 2d). Knowledge of strand displacement 
from DNA nanotechnology39 creates new approaches for programming riboswitch dynamic 
range and sensitivity to meet application needs. Exciting opportunities also exist to leverage 
transcription factors that can modulate transcription kinetics by competing with ligands to bind 
co-transcriptionally folding RNA33. A deeper understanding of how RNA folding dynamics direct 
riboswitch decisions is moving us closer to the vision of using directed evolution to generate 
new ligand-binding aptamers40 and rational expression platform design to make programmable 
biosensor switches. 

Outside of bacteria, exciting new approaches are illuminating the existence and possible roles 
of RNA switches in human cells to treat genetic diseases by controlling gene expression by 
shifting the balance between RNA conformations41. We speculate that further exploration of 
such RNA switches in humans will enhance our understanding of the molecular basis of gene 
regulation and enable the identification of novel therapeutic targets. 

Ribozymes 

The importance of molecular-scale interactions in driving dynamic RNA behavior is also 
highlighted in ribozymes – catalytically active RNAs with diverse functions such as cleavage42,43 
and splicing44 (Figure 2e). Self-cleaving and self-splicing ribozymes were first discovered 
decades ago and have been used extensively to elucidate the impacts of dynamic RNA folding 
conditions on their ability to fold into functional forms45. For such ribozymes, molecular scale 
interactions including intra-chain base pair complementarity and interactions with ions or small 
molecules in solution influence progression through different folding pathways46-48, thereby 
inducing transitions between active and inactive conformations and thus cleavage or splicing 
activity48. 

Self-cleaving and self-splicing ribozymes remain at the forefront of RNA research and are 
enabling exciting new RNA technologies. For example, in the De novo Rapid In Vitro Evolution 
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of RNA biosensors (DRIVER) platform, the influence of interacting molecules on folding 
pathway progression and consequently cleavage activity has been exploited for high-throughput 
biosensor development, where ribozymes that self-cleave in their native conformation are 
selected against cleavage in the presence of a desired ligand. The selected ribozymes can then 
be used to yield a translatable RNA output in a ligand-dependent fashion49 (Figure 2f). Base-
pair complementarity has also been exploited to construct systems where RNA inputs are used 
to template trans-acting self-splicing ribozymes. For example, in the Ribozyme-ENabled 
Detection of RNA (RENDR) platform, these interactions are used to conditionally control splicing 
activity – in the presence of a specific input RNA the transcript is spliced to yield an mRNA that 
encodes for a downstream protein output that can be used in a range of applications including 
detection of antibiotic resistance in microbes50 (Figure 2g). 

Although many ribozymes are well characterized, a mechanistic understanding of their kinetics 
and the dynamic equilibrium that exists among their active and inactive conformations remains 
challenging48,51. An understanding of the rules that govern ribozyme folding pathway 
progression and kinetics, especially in the presence of ligands of interest, would pave the way 
for engineering ribozymes that avoid misfolded states and thus achieve greater kinetic 
functionality in applications such as sensing or controlling gene expression. 

Dynamic RNA Origami  

Nucleic acid origami involves DNA and RNA strands that programmatically self-assemble into 
two and three-dimensional structures with potential applications in therapeutics delivery52-55, 
tissue engineering56,57, and gene therapy58-60. Historically, focus has been on DNA origami 
where controlled annealing of high-purity DNA strands is used to achieve desired structures61,62. 
However, a growing interest in utilizing origami systems to control cellular processes has begun 
to shift focus towards RNA63,64. 

RNA origami provides advantages for cellular applications because RNA can be generated via 
transcription. However, challenges arise because RNA origami designs must consider the 
isothermal, out-of-equilibrium cotranscriptional folding environments of cells65-68, which are 
starkly different from the controlled annealing environments used for DNA origami. While 
complex, exciting progress is being made in RNA origami including in vivo folded double and 
tetra-squares69 and Z-tiles that cotranscriptionally fold and oligomerize via intramolecular 
kissing-loop interactions70 (Figure 2h). Novel characterization techniques with higher structural 
and temporal resolution are also enhancing our understanding of cellular RNA origami design. 
For example, atomistic models derived from Cryo-EM have been used to identify kinetic traps in 
RNA origamis that can take hours to escape in a cotranscriptional folding regime71.  

A growing understanding of RNA origami design rules is enabling the development of 
applications such as apta-FRET systems that use fluorescent RNA aptamers scaffolded into 
responsive RNA origami structures72 and translation regulators in E.coli that use protein-binding 
RNA origami scaffolds73. In eukaryotic cells, RNA origami scaffolds have been combined with 
protein-binding RNA aptamers, regulatory proteins, and guide RNAs to engineer CRISPR-based 
systems that achieve precise and modular activation of transcription74 (Figure 2i). We anticipate 
that the expansion of cellular RNA origami will enhance our ability to engineer processes using 
nanomachines that can sense and respond to their cellular environment and execute precise 
tuning control of metabolism and gene expression, with applications in biomanufacturing and 
biomedicine75-78.  

Circuit scale 



5 
 

Programming RNA interactions with other nucleic acids and proteins can be used to build 
molecular circuits that expand the capabilities of bioproduction strains, therapeutics, and 
diagnostics. Recent studies have shown that synthetic circuits can interface with endogenous 
gene networks to control apoptosis79, differentiation80, cell proliferation80, and cell–cell 
communication80. In application settings, RNA circuits are being used to control metabolic 
pathway flux81, to improve the efficacy and safety of “smart” therapeutics82, and in field 
deployable diagnostic platforms where RNA circuits can tune the specificity and sensitivity of 
transcription factor-based biosensors83. A particularly powerful feature of RNA circuits is the 
ability to tune circuit reaction kinetics using engineering of RNA-DNA interactions84. Here we 
discuss several types of RNA-mediated circuits and their use in application contexts (Figure 3). 
RNA Toehold-Mediated Strand Displacement Circuits 
One particularly powerful class of nucleic acid circuits is the toehold-mediated strand 
displacement (TMSD) circuit84. TMSD circuits are composed of a series of nucleic acid ‘gates’ 
that contain a double-stranded region and a single-stranded ‘toehold’ region (Figure 3a). Gates 
are formed when two different length complementary strands, denoted ‘substrate’ and 
‘incumbent’, are annealed to each other85     . The sequence of the gates determines whether 
they respond to an input ‘invader’ strand – if the invader is complementary to the substrate, it 
can bind to the toehold and strand displace the incumbent     . This results in the release of the 
incumbent which can serve as an input to another gate. In this way, networks of gates with 
different sequence complementary patterns can be created to process information by 
programmed cascades of strand displacement interactions. For example, an OR gate can be 
created by having two gates that have the same incumbent sequence, but different toehold 
regions for invaders to release the incumbent and allow it to, for example, generate signal by 
strand displacing a fluorophore-quencher labeled ‘signal’ gate84 (Figure 3b). 
Cell-free biosensors can also be interfaced with in vitro transcribed TMSD circuits to improve 
performance and expand functionality. Allosteric transcription factors can be configured to 
regulate the transcription of RNAs designed to interact with signal processing TMSD gates to 
perform information processing such as logic computation (Figure 3b). Since input RNAs are 
only generated when the transcription factors detect specific ligands, this combination in effect 
creates an interface between chemical sensing and TMSD signal processing. Importantly, these 
circuits leverage the powerful ability to program TMSD kinetics within gate design: increasing 
toehold length increases TMSD circuit speed, while adding mismatches in TMSD gates slows 
kinetics86,87. This feature can be used to create advanced circuit architectures, for example an 
analog-to-digital conversion circuit that provides a semi-quantitative read out of input chemical 
concentration84. In general, the interface of transcription factor sensing and TMSD gates creates 
exciting opportunities to perform complex logic on chemical inputs.  
While TMSD gates have been traditionally implemented with DNA, progress has been made in 
creating nucleic acid-based TMSD gates that can interface with input strands generated by 
transcription. One example is the genelet88 (Figure 3c). A genelet consists of a T7 RNAP 
transcription template where the T7 promoter region is missing a portion of a complementary 
DNA strand, rendering it non-functional and in a transcriptional OFF state88 The addition of a 
complementary strand (activator) can complete the promoter, leading to a transcriptional ON 
state. Similarly, genelets can be designed to be turned OFF by leaving a toehold on the genelet 
construct to allow an incoming nucleic acid strand to bind, displace and disassemble the 
promoter. In addition, genelets can be layered, with the RNA transcribed by one genelet 
interacting with a downstream genelet template, which has been used to build nucleic acid 
implementations of bistable circuits, feedforward and feedback circuits, as well as pulse 
generating circuits88,89. Genelet circuits show exciting potentials to increase the modularity and 
scale-up of transcriptional circuits to regulate and functionalize biological systems.  
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Traditionally TMSD gates have been prepared by annealing DNA strands, which often requires 
careful purification to isolate correctly assembled gates90. This has begun to change with a 
recent advance to encode TMSD gates in transcribable RNA sequences. Called 
cotranscriptionally encoded RNA strand displacement (ctRSD) gates91,92, these systems consist 
of a single RNA molecule that can fold back on itself to form a double stranded region with a 
toehold overhang (Figure 3d). Incorporation of a self-cleaving ribozyme sequence cleaves the 
single strand into two, thus completing the TMSD gate architecture. With this approach, ctRSD 
circuits have been shown to perform logic computation and multilayer cascades91. ctRSD gates 
can be encoded on transcription templates which are far simpler to synthesize and purify than 
traditional TMSD gates92. ctRSD circuits also have the powerful potential to be genetically 
encoded and continuously operated inside living cells91, thus opening new circuit design 
strategies to leverage gates that can be continuously produced and assembled. 
Strand Displacement within CRISPR technologies 
The CRISPR/Cas mechanism depends on dynamic RNA interactions that influence CRISPR 
complex formation and target recognition. Specifically, gRNA length, secondary structure, and 
structural stability can all affect the activity of Cas proteins93. Exciting recent progress has 
leveraged this feature with the power of strand displacement to conditionally render gRNAs 
active or inactive, providing an additional level of control over Cas-9 genome editing activity94. In 
this system, gRNAs are engineered to interact with different mRNA inputs via strand 
displacement to control CRISPR/Cas9 response outputs and perform logic. Programmability 
can also be added to Cas12a-based systems by introducing strand displacement-based circuits 
that control gRNA loading into Cas12a95. In this system, the gRNA is originally unable to bind to 
Cas12a due to a designed secondary structure that occludes the Cas12a binding region. This 
interference can then be removed by a trigger RNA sequence that unfolds the gRNA via a 
TMSD reaction, facilitating Cas12a binding. Orthogonal trigger RNA sequences can be 
designed for different gRNAs to enable multi-input logic gates with digital behaviors. These 
TMSD gRNA circuits can be implemented in bacterial systems for logic gated transcriptional 
control of gene expression in E. coli95. Finally, positive feedback loop circuits have been created 
in the Cas12a diagnostic system. In these systems, activation of indiscriminate Cas12a 
cleavage upon target recognition can be used to cleave inactive or “caged” gRNAs into active 
gRNAs, which recruits and activates additional Cas enzymes to improve diagnostic sensitivity96. 
Overall, integrating strand displacement circuits with CRISPR systems can enhance control of 
biological systems and improve diagnostic tools. 
RNA Feedback Control Circuits 
Positive and negative feedback control circuits help the performance of complicated tasks in 
biological systems, tune circuit dynamics, and increase system robustness84,97. However, the 
majority of synthetic biology feedback circuits rely on protein-based regulation to control circuit 
output98,99. Recent work shows that RNA-based feedback circuits can also be designed to 
improve system performance, including by improving the sensitivity of cell-free biosensors. For 
example, in the RNA Output Sensors Activated by Ligands INDuction (ROSALIND) system, 
allosteric transcription factors activate transcription of fluorescent RNA aptamers to produce 
signals in response to chemical inputs83. Typically, the sensitivity is determined by properties of 
the transcription factor. However, a negative feedback loop can be created by simultaneously 
activating transcription of an RNA aptamer that binds to the allosteric transcription factor and 
inhibits its function to allow more transcription, leading to enhanced sensitivity.  
Negative feedback circuits are also useful for compensating for unpredictable disturbances. 
Multiple negative feedback circuits can be layered to construct combinatorial regulation, 
activating cascade, and nested autoregulatory motifs in E. coli cells100. Recent work has used 
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an RNA negative feedback loop in mammalian cells to build robust control systems97. In this 
case, there are two genes that are encoded on two separate plasmids. The first plasmid 
(activator) expresses a synthetic transcription factor that activates the expression of an 
antisense RNA encoded on a separate plasmid. The antisense RNA hybridizes with the 
activator mRNA in a sequestration reaction, thus closing the negative feedback loop. The closed 
loop feedback control allows the system to robustly deal with disturbances and adjust to initial 
setpoints, which can be adjusted by varying different ratios of the plasmids. Prospective 
application of this feedback circuit in mammalian system includes exogenous insulin therapy for 
type 1 diabetes mellitus, as well as other applications in biotechnology and biomedicine that 
require robust controllers to restore homeostasis and deliver precise drug doses97.  

RNA circuits are also shown to be important components of new classes of therapeutics based 
on circular RNA (circRNA), which has shown promise due to increased stability and persistent 
gene expression in cells compared to non-circularized RNAs101,102. However, controlling 
translation of circRNAs has been challenging in cells due to a lack of mechanisms to sense 
intracellular conditions and autonomously control translation level. Recent work showed that 
circRNA protein expression can be controlled by a circuit with miRNA or protein inputs. In this 
circuit design, miRNA-binding and protein-binding sequences are inserted into the untranslated 
regions of circRNAs so gene expression can be turned off in the presence of these inputs, either 
through mRNA degradation for a miRNA input, or in cap-dependent translation repression for a 
protein input. Since the activity of miRNAs differs among cell types, miRNA levels can be used 
to precisely control circRNA expression between different cell types103. 

Cellular Scale 

An exciting new trend in synthetic biology is designing RNAs to accomplish cellular scale 
engineering. These include RNAs designed to be incorporated into biomaterials and synthetic 
biomolecular condensates, as components of extracellular RNA-based signaling and delivery 
platforms, and as key components of artificial cells. New challenges arise at the cellular scale, 
including those related to larger scale phenomena such as transport and structural mechanics, 
as well as those associated with the complex in vivo environments where many of these 
systems are applied. Recent work is addressing these challenges, creating cellular scale 
engineered RNA systems that address therapeutic applications with exciting new developments 
that leverage the dynamic properties of RNA (Figure 4). 

Biomaterials 

RNA biomaterials are ordered structural networks that span multiple length scales, from 
nanostructures to larger mesoscale materials104. While much of the work in nucleic acid 
nanomaterials originated with DNA, recently researchers have recognized the potential for 
RNA’s wider range of structural motifs to expand nanomaterial functionality104, such as 
metabolic pathway scaffolding106. 
  
Some of the earliest work in RNA material design engineered squares of RNA called 
tectosquares to assemble into many different patterns and sizes107. Interestingly, RNA-based 
nanostructures can be tuned to have “rubber-like” properties, meaning that they can bend and 
return to their original shape108. RNA nanostructures can also act as scaffolds to incorporate 
protein components, giving additional functionality. For example, nanowires have been 
engineered from RNA dimers that can bind to peptides fused to proteins, forming a wire 
structure in which the length could be regulated by the blue light-responsive protein LOV2109. 
For soft material engineering, nucleic acids can be engineered to form hydrogels, consisting of a 
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network of cross links that are formed from base pairing interactions (Figure 4a). In DNA 
hydrogels, strand displacement reactions have been used to break or re-form hydrogel 
crosslinks, causing hydrogels to swell or propagate waves of autocatalytic amplification 
reactions in response to strand-displacing DNA or chemical stimuli110,111. Hydrogel engineering 
can also leverage higher-order RNA structures and dynamic RNA design features, such as 
using RNA G-quadruplexes for phase separation and sub-localization of translation112.  

In application spaces, nucleic acid-based biomaterials are being pursued for therapeutics, 
where they are used in drug and vaccine delivery, tissue engineering, and other applications113. 
The complexity of in vivo environments, however, presents challenges with stability and 
toxicity104. RNA modifications, such as fluorination of the 2’ ribose position, can improve 
resistance to nucleases while retaining RNA structure and biological activity114. There are 
opportunities to use dynamic RNA design principles to further enhance RNA material function. 
For example, size, shape, and sequence of RNA nanoparticles can be designed to optimize 
immunogenicity115. Programming these nanostructures to self-assemble at the in vivo target 
site69, could further alleviate challenges with immunogenic structures. RNA structures are also 
transient, enabling delivery of, for example, a hepatocellular carcinoma treatment that is then 
cleared quickly from the system after treatment116. To improve nuclease resistance, hydrogels 
have been engineered out of RNA triple-helix structures, a strategy that is showing promise in 
potential breast cancer treatments117-119. The dynamic nature of RNA has been shown useful for 
regulating soft material properties and optimizing RNA therapeutics kinetics. Full leverage of 
dynamic RNA properties in biomaterials has potential to create highly programmable 
biocompatible therapeutics. 

Biomolecular Condensates 

At the cellular scale, molecular function – including enzymatic reaction kinetics, gene regulation 
and macromolecular assembly – can be regulated by controlling localization120,121. While 
membrane-bound organelles have been long appreciated to achieve this, there has been 
exciting recent progress in our understanding of how biomolecular condensates can achieve 
“membrane-less organelle” function122. Biomolecular condensates are cellular coacervates, 
formed when negatively charged RNAs and tens to hundreds of different charged proteins 
interact with each other to form micron-scale structures through a phase separation process 
(Figure 4b)122. Condensate formation is governed by charge balance – lower RNA 
concentrations promote condensate formation through weak, multivalent interactions between 
proteins and RNA123, while higher concentrations of RNA disfavor the formation because of the 
large negative charge124. Biomolecular condensates have many functions, including gene 
regulation, signal transduction, RNA metabolism, and translation regulation122,123. 

In addition to modifying existing condensates, artificial condensates have also been developed 
that can add additional functionality, such as giving optogenetic control over phase transition 
behavior126. While most condensate engineering has focused on the protein components, there 
is great opportunity in the future to engineer dynamic properties of the RNA components to 
control the timing of formation, location, and regulatory function to expand the tools available in 
this area. 

Extracellular vesicles 

While RNA is mostly recognized for its cellular roles, it can also play important extracellular 
roles as core components of membrane-bound extracellular vesicles (EVs) (Figure 4c). EVs 
consist of membrane bound coding and non-coding RNAs, which can be present alongside 
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proteins, lipids, carbohydrates, and DNA127-129. RNA binding proteins can regulate RNA 
enrichment in EVs through RNA sequence motif recognition130. Membrane encapsulation of 
RNAs protect them from extracellular nucleases present in tissues, allowing RNAs to be 
transported between cells129. In this way, EVs can play important roles in intercellular 
communication131-133.  

Because extracellular RNAs within EVs have been associated with many types of cancer, a 
number of diagnostic approaches focus on capturing and analyzing EVs134. For example, a 
colorimetric assay was developed to detect RNA in cancer exosomes135. Vesicles with RNAs 
are also released by pathogens such as Epstein-Barr Virus and uropathogenic E. coli136,137, 
suggesting that those vesicles could be a target for nucleic acid-based pathogen detection. 

Because of their natural role in delivering RNA components to cells, applications of engineered 
EVs have mostly focused on solving therapeutic delivery challenges. In one study, red blood 
cell-based vesicles were used to transport therapeutic antisense oligonucleotides to leukemia 
and breast cancer cells to inhibit a miRNA138. To improve targeting, T-cell-targeting single-chain 
variable fragments were displayed on an EV surface to target the CRISPR-Cas9 cargo to T-
cells139. Dynamic properties of RNA can be used to enable complex circuitry in cargo delivery to 
expand the functions of EVs.   

Synthetic cells 

Engineered RNAs are also emerging as important components of synthetic cells. There has 
been a long-standing interest in both top-down and bottom-up approaches to building synthetic 
cells140,141. Recent work has been expanding the capabilities of synthetic cells to include 
intercellular communication142,143 and artificial membrane-less organelle 
compartmentalization144-148.  

Many of the principles of molecular and network scale engineering of RNA systems discussed 
above can be directly applied in a synthetic cell context. For example, encapsulated genetic 
networks and riboswitch biosensors have been explored that offer protection from 
environmental matrix effects through having a barrier, which can be designed to be selective to 
the molecule of interest149-151. In this way, fluoride biosensors have been created by 
encapsulating a fluoride riboswitch-regulated reporter in a membrane that was able to sense 
environmental fluoride while preventing RNase-mediated degradation from the environment 
(Figure 4d)151. In another example, a histamine-sensing riboswitch was encapsulated to trigger 
a histamine-responsive release of small molecules or cleavage of the phospholipid membrane 
in an artificial cell context152. There is great promise for adding additional RNA-level 
functionality, such as dynamic regulatory circuitry and assembly of higher-order structures, to 
enhance the function of synthetic cells in applications, and even help uncover principles of the 
origins of natural cells153,154. By leveraging encapsulating technologies that are based on 
dynamic RNA such as genetic networks and riboswitch-based biosensors, the capabilities of 
synthetic cells have been expanded and can perform higher order functions. 

Discussion 

The dynamic nature of RNA folding and function is giving rise to new concepts, tools and 
approaches that are being applied across the molecular, circuit, and cellular scales to create 
exciting new RNA-based technologies that address societal scale challenges in environmental 
health, sustainable biomanufacturing and human health. However, we are likely only beginning 
to understand how dynamic RNA behavior manifests itself across scales, and how this behavior 
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can be leveraged to engineer RNA systems. New fundamental approaches to understanding 
RNA cotranscriptional folding and processing11, assembly of RNA systems88, and the control of 
biomolecular condensates121 promise to accelerate the discovery of new dynamic RNA design 
principles that can be used to program RNA function. At the same time, the continual merger of 
concepts from DNA nanotechnology39 into RNA synthetic biology85 promises to introduce 
powerful new design motifs into engineered RNA systems that interface more naturally with 
other biological functions. These two trends, combined with recent efforts in computational 
modeling RNA folding pathways155 and breakthroughs in AI-directed RNA 3D structure 
prediction156 promise to dramatically accelerate RNA design. Although we are still far from fully 
grasping the nuances and potential of dynamic RNA behavior, a mindset that views RNA 
through the lens of dynamics157 will serve the field especially well in the pursuit of a 
comprehensive understanding of RNA behavior and its potential applications.   
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Figure 1. Engineering dynamic RNA folding and function can play key roles across 
multiple spatiotemporal scales within engineered biological systems. From left to right: 
Riboswitches and ribozymes are examples of molecular-level RNA tools that control gene 
expression processes in synthetic biology applications. These and other RNAs can act 
dynamically together at the circuits scale, for example within CRISPR-Cas13-mediated and 
toehold-mediated strand displacement circuits to allow signal propagation, logic, timing control 
and other circuit-level function. At the cellular scale, engineering of RNA components can help 
control the function of biomolecular condensates, extracellular vesicles, and synthetic cells. 
Finally, designing RNAs to function across the molecular, circuit, and cellular scales can have 
societal scale impacts through the development and deployment of medical and environmental 
biotechnologies. 
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Figure 2: Recent advances in understanding and utilizing molecular scale interactions to 
drive dynamic RNA folding and function. a. Riboswitches are composed of a ligand-binding 
aptamer domain connected to an expression platform that can dynamically change its fold to 
control gene expression36. b. These and other dynamic RNA folding pathways can be 
implemented and controlled through internal strand displacement, a process which involves 
exchanging base pair complementarity between different RNA strands. Dynamic RNA switches 
utilize cotranscriptional strand displacement processes38. c. Kinetic barriers to such internal 
strand displacement can affect riboswitch properties such as dynamic range32. d. Engineered 
riboswitches have been used for field-deployable biosensing of ions and small molecules31. e. 
Recent work has focused on utilizing self-cleaving and self-splicing ribozymes to control genetic 
processes in cellular systems in two exciting ways: f. through the automated selection of 
ribozymes that can sense a range of ligands in the De novo Rapid In Vitro Evolution of RNA 
biosensors (DRIVER) platform49; and g. through the split-ribozyme Ribozyme-ENabled 
Detection of RNA (RENDR) platform that acts as an RNA sensor50. h. Beyond individual RNA 
molecules and switches, RNA origamis are being built inside cells through the assembly of 
individual tiles that are cotranscriptionally folded70. i. Fusing CRISPR guide RNAs to the RNA 
origamis is allowing the development and optimization of modular transcriptional regulators that 
function in cells74. 
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Figure 3. Advances in dynamic RNA circuits that can be programmed to process 
information in a range of contexts. a. Toehold mediated strand displacement (TMSD). TMSD 
gates are formed by annealing substrate and incumbent DNA or RNA strands to leave a double-
stranded region and a single-stranded toehold overhang. An invading DNA or RNA strand, 
complementary to the substrate, can bind to the toehold and strand displace the gate, releasing 
the incumbent. The released strand can interact with additional downstream gates not shown, 
allowing gates to be configured into a range of circuit architectures84. b. Example TMSD OR 
gate. Two different gates are made with the same incumbent sequence but different toehold 
sequences. When two different input invaders are present, these gates release the same 
incumbent, which can then interact with a downstream signal gate labeled with fluorophore and 
quencher. When the quencher strand is released, a fluorescent signal is generated84. c. 
Genelets use TMSD circuits to control the activation of transcription. Genelets consist of an 
incomplete T7 RNAP transcription template that is specifically lacking a strand that is 
complementary to the promoter. In the absence of an input, this incomplete T7 RNAP promoter 
genelet is in a transcription OFF state. Addition of a designed ssDNA activator that 
complements the promoter enables transcription activation. The outputs of genelet transcription 
can then act as activators for downstream genelets, or can displace existing activators via 
TMSD to repress downstream genelets88. d. Cotranscriptionally encoded RNA strand 
displacement (ctRSD) gates allow TMSD gates to be synthesized on the fly, enabling gate 
designs to be encoded by easier to purify DNA templates that are activated when needed. In 
this design, an RNA transcript has complementary regions and folds into a double-stranded 
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gate as it is transcribed. Inclusion of a self-cleaving ribozyme exposes a toehold region in the 
gate for TMSD reactions to occur, including activating fluorophore-quencher “signal” gates91.  
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Figure 4. Cellular-scale dynamic RNA design has many biotechnological applications. a. 
RNA can be designed to form nanowires regulated by the blue light-responsive protein 109. This 
enables functions such as dynamic RNA release that can be used in therapeutic applications. b. 
RNA can also be designed to form artificial condensates or to modulate natural condensates. 
Altering the balance of charge between anionic RNA and cationic proteins can be used to 
regulate condensate formation and dissolution120-122. c. Extracellular vesicles secreted from cells 
contain many types of RNA that could be detected to diagnose diseases127-129. d. Artificial cells 
can also be engineered to form biosensors by encapsulating transcription/translation machinery. 
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For example, this has been applied to build an encapsulated fluoride riboswitch followed by a 
reporter gene to detect fluoride in water151. 
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