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A B S T R A C T

We consider codimension 1 area-minimizing m-dimensional currents T mod an even integer
p = 2Q in a C2 Riemannian submanifold � of Euclidean space. We prove a suitable excess-
decay estimate towards the unique tangent cone at every point q * spt(T ) ö sptp()T ) where at
least one such tangent cone is Q copies of a single plane. While an analogous decay statement
was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for
stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the
second fundamental form of �. This improvement is in fact crucial in De Lellis et al., (2022) to
prove that the singular set of T can be decomposed into a C1,� (m−1)-dimensional submanifold
and an additional closed remaining set of Hausdorff dimension at most m − 2.

1. Introduction

In this paper we consider area minimizing currents mod an integer p e 2 which have codimension 1 in a given smooth Riemannian
ambient manifold.

Definition 1.1. Let p e 2, 
 ⊂ Rm+n be open, and let � ⊂ Rm+n be a complete submanifold without boundary of dimension m + n̄

and class C2. We say that an m-dimensional integer rectifiable current T * ℛm(�) is area minimizing mod(p) in � K
 if

ĉ(T ) d ĉ(T +W ) for any W * ℛm(
 K �) which is a boundary mod(p) . (1.1)

In [12] the authors leverage the regularity theory of [18] for stable integral varifolds in codimension n̄ = 1 and use an observation
in [4] to prove, among other things, the uniqueness of tangent cones at every interior point q where at least one tangent cone is flat,
namely contained in an m-dimensional plane. Recall that at any such q the density �T (q) is necessarily an integer no larger than

p

2
.

Moreover, if 1 d �T (q) d + p−1
2
,, the regularity results of Allard [1] and White [17] apply: in this case T is a regular submanifold

in a neighborhood of q, counted with multiplicity �T (q). The case of interest here is therefore that of even moduli p = 2Q and
interior points q with at least one flat tangent cone and density Q =

p

2
. Under the latter assumption, in fact, q can be a singular

point (cf. [16] and [6, Example 1.6]). The result of [12] on which we focus here can therefore be stated as follows.
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Theorem 1.2. Let p = 2Q be even, �, T , and 
 be as in Definition 1.1 with dim(�) = dim(T ) + 1 = m+1. If at q * spt(T ) ö sptp()T ) one
tangent cone to T is of the form ÿ = Q [[�]] for some m-dimensional plane �, then ÿ is the unique tangent cone to T at q.

In [5] the above theorem was one of the starting points to complete the study of the fine structure of the singular set of area-
minimizing hypercurrents mod p in the case when p is even. More precisely, we prove there that, outside an exceptional closed subset
of (Hausdorff) dimension at most m − 2, the rest of the interior singular set of T is, locally, an (m − 1)-dimensional submanifold of
class C1,� . This generalizes the classical theorem in [16] to the case of even p = 2Q > 4 (the case p = 2 is special, because locally
area-minimizing hypercurrents mod 2 are area-minimizing integral currents, see the discussion in the introduction to [6]; note also
that [5] needs a slightly stronger regularity for the ambient manifold � than the one stated in Definition 1.1, and more precisely �
is assumed to be of class C3,� for some � > 0). The main theorem in [5] complements the analogous theorem for odd moduli, first
shown by Taylor in [15] for p = 3 and m = 2, and extended recently to any odd p and arbitrary m in [4]. As was later pointed out
in [12], the one proposition in [4] which is used in combination with [18] to yield Theorem 1.2 above can in fact be also used to
derive the same regularity results of [4] via the theory of stable varifolds of [18].

While uniqueness of flat tangent cones is the starting point of the analysis we carried out in [5], in fact we do need there an
important refinement of Theorem 1.2. In order to give the precise statement, we introduce the L2 excess of T from an m-dimensional
plane �̄ in a ball þr(q), namely

ā(T , �̄, q, r) ∶=
1

rm+2 +þr(q) dist
2(q2 − q, �̄) d‖T ‖(q2) , (1.2)

the minimal planar L2 excess

ā̄(T , q, r) ∶= min
�̄⊂Tq�

ā(T , �̄, q, r) , (1.3)

and the notation ý for the supremum norm of the second fundamental form of �, i.e. ý = ‖A�‖@. The precise decay statement
which is needed in [5] is then the following.

Theorem 1.3. There are positive constants ", �, and C with the following properties. Let p = 2Q be even and �, T , 
, q, and � be as in
Theorem 1.2. Assume in addition that T is a representative mod(p), that þr(q) ⊂ 
 ö sptp()T ), ‖T ‖(þr(q)) < (Q +

1

2
)!mr

m and that

ā̄(T , q, r) + r2ý2 d " . (1.4)

Then, for every � < r
2
we have

ā(T , �, q, �) d C
(�
r

)�
(ā̄(T , q, r) + r2ý2) . (1.5)

Note that the quadratic dependence on ý in the right-hand side is essential for the arguments in [5]: the power 2 in ý and a
subtle analysis of the anisotropic rescalings of T around q allow us to improve � in (1.5) to any exponent strictly smaller than 2;
this almost quadratic decay is then a crucial ingredient in the rest of the work.

Estimate (1.5) is certainly an outcome of [12] when � is flat, i.e. if ý = 0. On the other hand, the ‘‘obvious’’ modification of
the arguments in [12] seem to yield an ý-dependence of the right-hand side of (1.5) which is linear, rather than quadratic, since ý

bounds the L@ norm of the generalized mean curvature H⃗T of the varifold induced by T . The aim of this work is to show that the
improvement from ý to ý2 is however possible, and hence the regularity theory of [5] holds in the full generality claimed there.

Roughly speaking, we need to control error terms in inequalities and identities derived through first variations along some test
vector fields X. All the vector fields X relevant to the proof of Theorem 1.3 are almost tangential to the ambient manifold � and the
deviation from tangentiality can be controlled with ý. Since the mean curvature vector H⃗T is directed normally to �, the L

@ norm
of the scalar product H⃗T ⋅X can then be estimated by ý2. This idea is used already in [10, Appendix A] to improve the ý-dependence
in the classical monotonicity formula. Incidentally, this quadratic improvement plays also a pivotal role in the work [8].

While the underlying idea towards the improvement is simple, the proof of the excess decay theorem is highly involved at the
technical level: for that reason, we hope with this note to provide a self-contained reference of the strategy, which keeps full track
of the ambient curvature contributions in the estimates.

2. Notation and preliminaries

In this section we collect the main notation in use in the paper as well as one important estimate that will be used multiple times
in the sequel.

2.1. Notation

The symbol Ď will be typically used for orthogonal projections: in particular, given a linear subspace � ⊂ Rm+n, Ď� is the
orthogonal projection onto �, while Ďé� is the orthogonal projection on the orthogonal complement. The symbol Tq,r will denote
the recentered and rescaled current, with base point q and scale r: more precisely, if �q,r is the map q

2
Ç �q,r(q

2) ∶= r−1(q2 − q), then
Tq,r ∶= (�q,r)♯T . We next introduce two families of sets which are central to the rest of our work.
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Definition 2.1. Let T , �, p = 2Q and 
 be as in Definition 1.1. We let:

(a) P(q, �) be the set of m-dimensional planes � ⊂ Tq�, where m = dim(T );

(b) ℬ(q, �) be all the sets of the form

ď =

Nå
i=1

Ąi ,

where 2 d N d 2Q and the Ąi are pairwise distinct m-dimensional half-planes of Tq� joining at a common (m−1)-dimensional
linear subspace V = V (ď) ⊂ Tq�. Any such ď will be called an open book, V (ď) will be called the spine1 of ď, and Ąi will be
called the pages of ď.

We will simply write P(q) and ℬ(q) when � is clear from the context.

Remark 2.2. Observe that, if:

(i) ď * ℬ(q),
(ii) we orient the halfplanes Ąi so that )

[[
Ąi

]]
= [[V ]],

(iii) and we choose multiplicities �i * [1, Q] K N so that
1
i �i = 2Q,

then ÿ ∶=
1
i �i

[[
Ąi

]]
is a cycle mod(p). There is of course only a finite number of possible choices for the weights, and the choice

is unique if and only if N = 2Q.

Next we introduce various notions of excess that will be used throughout the paper.

Definition 2.3. Let T * ℛm(�), let q * Rm+n and let þr(q) ⊂ Rm+n be an open ball.

(a) The one-sided L2 excess of T from ď * ℬ(q) in þr(q) ⊂ Rm+n is

ā(T ,ď, q, r) ∶= r−(m+2) +þr(q) dist
2(q2 − q,ď) d‖T ‖(q2) .

(b) The one-sided L2 excess of ď * ℬ(q) from T in þr(q) is defined by

ā(ď, T , q, r) ∶= r−(m+2) +ďK(þröBr∕8(V (ď)))

dist2(q + q2, spt(T )) döm(q2) ,

where Bs(V ) denotes the tubular neighborhood of V in Rm+n of radius s.
(c) The double-sided L2 excess between T and S * ℬ(q) in þr(q) is

E(T ,ď, q, r) ∶= ā(T ,ď, q, r) + ā(ď, T , q, r).

Furthermore we shall write:

(d) ā(T , q, r) and E(T , q, r) for, respectively, the minima of ā(T ,ď, q, r) and E(T ,ď, q, r) over all open books ď * ℬ(q);
(e) ā(T , �, q, r) with � * P(q) and ā̄(T , q, r) as in (1.2) and (1.3), respectively.

We will often denote with �q,r an optimizing plane in the ball þr(q), i.e. such that

ā(T , �q,r, q, r) = min
�*P(q)

ā(T , �, q, r) = ā̄(T , q, r).

2.2. Allard’s height bound

We end up this section recalling a useful L@ −L2 estimate due to Allard that will be used in several places later on in the paper.

Lemma 2.4 (L@-L2 Estimates). There exists a geometric constant C > 0 such that, if T ,� are as in Definition 1.1, 0 * �, þ1Kspt
p()T ) = ∅,

and ‖T ‖(þ1) < (Q +
1

2
)!m, then

sup
q*sptp(T )Kþ15∕16

|Ďé�0 (q)|
2 d C (ā(T , �0, 0, 1) + ý2) for every �0 * P(0) . (2.1)

A proof can be found for instance in [14, Lemma 1.7], and is based on an argument of Allard (see [1, Theorem (6)]). Note that
the argument in [14, Lemma 1.7] just uses the fact that T induces a varifold in Rm+n with generalized mean curvature bounded by
ý.

1 Note that, according to our definition, an m-dimensional plane � ⊂ Tq� is an open book, and however in the latter case the spine V is not uniquely defined
and can be taken to be an arbitrary (m − 1)-dimensional linear subspace of �. When we regard � as an open book, we assume that a choice of V has been
specified, too.
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3. Excess decay in the two regimes and the proof of Theorem 1.3

For the rest of the paper we will mostly work under the following assumption:

Assumption 3.1. We let T , � be as in Definition 1.1 with 
 = þ1(0), n̄ = 1, and p = 2Q, and let T be a representative mod(p).
Moreover we assume ý d 1,

�T (0) e Q , þ1(0) K sptp()T ) = ∅ , and ‖T ‖(þ1(0)) d
(
Q +

3

4

)
!m . (3.1)

Our main Theorem 1.3 will then be proved by showing two suitable decay propositions in two different regimes based on the
value of the ratio ā̄−1E.

Proposition 3.2. For every p = 2Q, m, n, and any fixed �1 > 0 there are 1

2
e r1 = r1(�1, p, m, n) > 0 and "1 = "1(�1, p, m, n) > 0 with the

following property. Assume that Assumption 3.1 holds and that in addition

ý2 d "1ā̄(T , 0, 1) d "2
1
, (3.2)

then

E(T , 0, r1) d �1ā̄(T , 0, 1) . (3.3)

Proposition 3.3. For every p = 2Q, m, n, there are 0 < r2 d 1

2
, "2 > 0, and 0 < �2 d 1 with the following property. Assume that

Assumption 3.1 holds and that in addition

E(T , 0, 1) d �2ā̄(T , 0, 1) and ý2 d "2E(T , 0, 1) d "2ā̄(T , 0, 1) d "2
2
. (3.4)

Then

E(T , 0, r2) d 1

2
E(T , 0, 1) . (3.5)

Proposition 3.2 will be proved in Section 5, whereas Sections 6 to 13 will be devoted to the proof of Proposition 3.3. The key
step towards the proof of Proposition 3.2 is to establish that an analogous decay result holds true for the solutions to a suitable
linearized problem: these are the Dir-minimizing special multi-valued functions first introduced in [7] and further studied in [5] in
the codimension one case. The scheme of the proof of Proposition 3.3 follows instead the blueprint of [4, Theorem 4.5], but the
additional difficulty here is that, when p = 2Q is even, the open books optimizing E may be arbitrarily close to being flat. The
same issue arises when working in the framework of the classes of stable varifolds studied by Wickramasekera in [18] and Minter-
Wickramasekera in [12], and in fact Proposition 3.3 has a counterpart in [18, Lemma 13.3] and [12, Theorem 3.1]. The approach
followed in the present paper is robust, and, a few months after a preprint version appeared online, some of the arguments and
calculations here presented were successfully exported to the higher codimension setting in [9].

As anticipated in the Introduction, while presenting self-contained proofs of Propositions 3.2 and 3.3, we will have care of
keeping track of the contribution of the curvature of the ambient manifold � in the estimates: the fact that the decay propositions
hold true under the smallness assumptions (3.2) and (3.4) on ratios ā̄−1ý2 and E−1ý2 rather than ā̄−1ý and E−1ý will ultimately
lead to the quadratic dependence on ý in the right-hand side of (1.5).

Next, in the rest of this section, we will show precisely how Theorem 1.3 follows from the two decay propositions. First, we
show the validity of a slightly modified version of Proposition 3.2.

Corollary 3.4. For every p = 2Q, m, n, and �1 > 0 there are 1

2
e r1 = r1(�1, p, m, n) > 0 and "3 = "3(�1, p, m, n) > 0 with the following

property. If Assumption 3.1 holds, and if furthermore

ý2 d "3E(T , 0, 1∕2) and ā̄(T , 0, 1) d "3 , (3.6)

then (3.3) holds true.

Proof. We show that (3.6) implies (3.2) when "3 is chosen sufficiently small. To this aim, it is sufficient to show that there exists
a geometric constant C > 0 such that

E(T , 0, 1∕2) d C
(
ā̄(T , 0, 1) + ý2

)
. (3.7)

To prove (3.7), we let �0 * P(0) ⊂ℬ(0) be a plane realizing ā̄(T , 0, 1), so that

E(T , 0, 1∕2) d E(T , �0, 0, 1∕2) , (3.8)

where in the calculation of E(T , �0, 0, 1∕2) the subspace V (�0) can be chosen arbitrarily. Next, if "3 is chosen sufficiently small then

((Ď�0 )♯(T þ1)) þ3∕4 = Q
[[
�0 K þ3∕4

]]
mod(p) .

In particular, by Lemma 2.4 we easily see that for every z * �0 K þ3∕4 there is a point q * spt(T ) such that Ď�0 (q) = z and
|q − z|2 d C(ā̄(T , 0, 1) + ý2). This implies easily that

ā(�0, T , 0, 1∕2) d C(ā̄(T , 0, 1) + ý2) . (3.9)
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Since

ā(T , �0, 0, 1∕2) d 2m+2 ā(T , �0, 0, 1),

(3.7) follows immediately from (3.8) and (3.9). □

Finally, before coming to the proof of Theorem 1.3 we come to another important ingredient, which is in fact an outcome of the
analysis leading to Propositions 3.2 and 3.3.

Lemma 3.5. For every p = 2Q,m, n, and 
 > 0 there is C(p, m, n, 
) > 0 with the following property. If Assumption 3.1 holds, if ď and ď2

are open books in ℬ(0) realizing E(T , 0, 1) and E(T , 0, r) respectively, and r e 
, then

dö (ď K þ1,ď
2 K þ1)

2 d C
(
ý2 + E(T ,ď, 0, 1) + E(T ,ď2, 0, r)

)
, (3.10)

where dö denotes Hausdorff distance. Moreover, there is a constant C(p, m, n) such that

E(T ,ď, 0, 1
2
) d C (E(T ,ď, 0, 1) + ý2) . (3.11)

Lemma 3.5 will be proved in Section 8.

3.1. Proof of Theorem 1.3

Without loss of generality, using the scaling and translation invariance of the problem we assume that r = 1 and q = 0. We fix
therefore �, T ,
 = þ1, and assume that spt

p()T ) K þ1 = ∅, ‖T ‖(þ1) < (Q +
1

2
)!m and fix a plane �0 such that

ā̄(T , 0, 1) + ý2 = ā(T , �0, 0, 1) + ý2 d " . (3.12)

The choice of " will be subject to various smallness specifications along the argument. In fact we first notice that, by the classical
monotonicity formula, if it is smaller than some geometric constant then ‖T ‖(þr) d (Q +

3

4
)!mr

m for every r d 1. In particular,
Assumption 3.1 holds for T0,r and �0,r in place of T and �, whenever r d 1.

Next, we fix "2, �2, and r2 as in Proposition 3.3. We then specify �1 =
�2
2
, and fix correspondingly r1 and "3 as in Corollary 3.4.

For convenience we define "̄ ∶= min{"2, "3, 1} and we next proceed to define inductively a family of radii tk indexed by a set ù
which is either the set of natural numbers or the subset of all natural numbers up to a maximum kmax. The procedure will also give
a suitable estimate for E(T , 0, tk).

First of all we set t0 ∶=
1

2
, and notice that

E(T , 0, 1
2
) d E(T , �0, 0,

1

2
) d C(ā̄(T , 0, 1) + ý2) , (3.13)

as in the proof of Corollary 3.4. Assume next that tk has been chosen and consider the current T0,tk , the manifold �0,tk
and

ý2
k
∶= ‖A�0,tk

‖2@ = t2
k
ý2 d "t2

k
. We then examine the following three conditions:

ā̄(T0,tk , 0, 1) d "̄ (3.14)

ý2
k d "̄min{E(T0,tk , 0, 1),E(T0,tk , 0,

1

2
)} (3.15)

E(T0,tk , 0, 1) d �2ā̄(T0,tk , 0, 1) . (3.16)

(a) If (3.14) fails we set kmax = k.
(b) If (3.14) holds but (3.15) fails we set tk+1 =

tk
2
and we invoke (3.11) to conclude

E(T , 0, tk+1) d C
"̄
ý2
k =d Cbt

2
k+1ý

2 (3.17)

for a constant Cb depending only on p, m, n, and "̄.
(c) If (3.14) and (3.15) hold, but (3.16) fails we apply Corollary 3.4, set tk+1 = r1tk and estimate

E(T , 0, tk+1) = E(T0,tk , 0, r1) d �1ā̄(T0,tk , 0, 1) = �1ā̄(T , 0, tk)

d �1
�2

E(T , 0, tk) =
1

2
E(T , 0, tk) . (3.18)

(d) If (3.14), (3.15), and (3.16) hold we apply Proposition 3.3, set tk+1 = r2tk and conclude

E(T , 0, tk+1) = E(T0,tk , 0, r2) d 1

2
E(T0,tk , 0, 1) =

1

2
E(T , 0, tk) . (3.19)

Next observe that the following inequality holds for k = 0 and for those k for which (k − 1) falls under alternative (b), because
t2
k
d tk d 2−k:

E(T , 0, tk) d Cb(ý
2 + ā̄(T , 0, 1))2−k . (3.20)
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For any other k * ù we let k2 be the largest integer smaller than k for which k2 − 1 falls in alternative (b), if it exists, or set k2 = 0.
We now can use (3.18) and (3.19) and the validity of (3.20) for k2 to conclude

E(T , 0, tk) d 2−(k−k
2)
E(T , 0, tk2 ) d 2−(k−k

2)Cb(ý
2 + ā̄(T , 0, 1))2−k

2
,

and hence the validity of (3.20) for every k * ù. Next set 
 ∶= min{r1, r2} and observe that 
 d tk+1
tk

d 1

2
. For each k let ďk be an

open book such that E(T , 0, tk) = E(T ,ďk, 0, tk). By Lemma 3.5 we have

dö (ďk K þ1,ďk−1 K þ1)
2 d C(ý2 + ā̄(T , 0, 1))2−k "k * ù ö {0} (3.21)

dö (�0 K þ1,ď0 K þ1)
2 d C(ý2 + ā̄(T , 0, 1)) , (3.22)

where in (3.22) we have applied (3.10) to the current T0,t0 = T
0, 1

2

together with (3.13). In particular we conclude that dö (�0Kþ1,ďkK

þ1)
2 d C(ý2 + ā̄(T , 0, 1)) d C", which in turn, together with (3.20) implies ā(T , �0, 0, tk) d C". Since the constant C is independent

of ", upon choosing " sufficiently small, we conclude

ā(T , �0, 0, tk) d "̄ "k * ù . (3.23)

On the other hand the latter estimate implies that alternative (a) never applies and the inductive procedure never stops, namely
ù = N.

Observe next that (3.21) implies that ďk K þ1 is a Cauchy sequence of compact sets in the Hausdorff distance. It thus converges
to ď K þ1 for some unique open book ď. Consider next a sequence rj ´ 0 with the property that T0,rj converges to Q [[�]] for some

plane �. We can find a sequence k(j) so that tk(j)+1 d rj d tk(j). Given that
tk(j)+1
tk(j)

e 
, we immediately conclude that T0,tk(j) converges

to Q [[�]]. On the other hand this implies that E(Q [[�]] ,ď, 0, 1) = 0, which in turn forces the equality ď = �.
Next, summing the appropriate tail of the series (3.21) we immediately see that

dö (ďk K þ1, � K þ1)
2 d C(ý2 + ā̄(T , 0, 1))2−k .

Combined with (3.20) we conclude

ā(T , �, 0, tk) d C(ý2 + ā̄(T , 0, 1))2−k .

Finally, for any r d 1

2
we choose k so that tk+1 d r d tk and we immediately conclude

ā(T , �, 0, r) d C
−m−2ā(T , �0, 0, tk) d C(ý2 + ā̄(T , 0, 1))2−k .

Since r e tk+1 e 
k+1, the latter implies the desired estimate (1.5) for � = − log
 2. □

4. Graphical parametrizations over planes

Next we introduce the graphical parametrization that will play in this paper the same role that Allard’s and White’s regularity
results play in [4,13], respectively. The first proposition follows essentially from [6, Theorem 16.1] once we can show that the tilt-
excess is controlled by the L2 planar excess (an estimate which can be reduced to Allard’s classical work). We follow the notation
of [4], and for planes � ⊂ Tq� we denote by �é their orthogonal complement in Rm+n and by �éq their orthogonal complement in
Tq�. Moreover, we set, for an open set 
 ⊂ Rm+n,

Ć(T ,
, �) ∶= sup{|Ď�é (x − y)| ∶ x, y * spt(T ) K
} ,

and we introduce two further notions of excess, which are ‘‘W 1,2-based’’ rather than L2-based.

Definition 4.1. Let T be a representative mod p.

(a) āo is the oriented2 tilt excess of T with respect to a plane. More precisely, let � * P(q) be oriented by the unit m-vector �⃗, and
set ÿr(q, �) ∶= Br(q, �) × �

é, where Br(q, �) ∶= þr(q) K (q + �). Then, we set, for 
 = þr(q) or 
 = ÿr(q, �):

āo(T , �,
) ∶=
1

2!mr
m +
 |T⃗ (q2) − �⃗|2 d‖T ‖(q2) ;

(b) āno for the unoriented tilt excesses of T with respect to a plane � * P(q), namely

āno(T , �,
) ∶=
1

2!mr
m +
 |T⃗ (q2) − �|2no d‖T ‖(q2),

where

|�1 − �2|no ∶= min{|�⃗1 − �⃗2|, |�⃗1 + �⃗2|}.

2 The other notions of excess have the property that they only depend on the mod(p) class [T ] of T , as long as T is a representative mod p. This is however
not the case for the oriented tilt excess.
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Note moreover that in place of |�1 − �2|no we could use the integrand |Ď�1 − Ď�2 |, as the two integrands are equivalent up to a
multiplicative constant.

Remark 4.2. While we will use the notation and terminology of [7] for ‘‘special’’ Q-valued functions, since we are in a codimension
one context and we will always deal with Lipschitz multifunctions, in our case they reduce to the specification of the following
classical maps:

• Q Lipschitz maps v1,& , vQ defined on some domain 
 of an oriented m-dimensional plane �q ⊂ Tq� with values into its
orthogonal complement �éq , taking values in �. This means that the maps will take the special form vi(z) = ui(z) +	 (z+ ui(z)),

where 	 ∶ Tq� Ç Tq�
é parametrizes � as a graph over Tq� and ui takes values on the real line �

éq
q .

• A map "v ∶ 
 ³ {−1, 1}. This map specifies whether we should consider the tangent planes to the graphs of each vi at
(z, vi(z)) as positively oriented (i.e. having the same orientation as the pushforward of �q), or negatively oriented. Note that,
by definition of special Q-valued functions, at any given point z either all such planes are positively oriented, or they are all
negatively oriented.

Following [7] such an object will be denoted by (
1
i

[[
vi
]]
, "v) and ăv will denote the integer rectifiable current associated to it (the

‘‘graph’’ of v), which happens to be a representative mod 2Q, with no boundary (mod 2Q) in the cylinder 
 × �éq . If not otherwise

specified, the functions will be ordered so that u1 d u2 d ⋯ d uQ, for some ordering of the real line �
éq
q (a canonical choice of

ordering of �
éq
q is the one which is compatible with the orientations of Tq� and �q).

The main results of this section are Propositions 4.3, 4.4, and 4.5 below.

Proposition 4.3 (Multivalued Approximation). For every p = 2Q, m, and n there exist constants "G , 
, C > 0 depending on (Q,m, n), with
the following property. Assume that

(a) T , �, and 
 = þ1 are as in Definition 1.1 with n̄ = 1 and p = 2Q, and T is a representative mod(p);
(b) ā̄ + ý2 ∶= ā̄(T , 0, 1) + ý2 d "2

G
, and ā̄(T , 0, 1) = ā(T , �0, 0, 1);

(c) þ1 K sptp()T ) = ∅;
(d1) either there exists � * þ1∕16 such that �T (�) e Q

(d2) or

(Ď�0 )♯(T ÿ7∕8(�0) K þ1) = Q
[[
�0 K þ7∕8

]]
. (4.1)

Then, there exist a function u∶B3∕4 ∶= B3∕4(0, �0) ³ AQ(�
é0

0
), and a closed set K ⊂ B3∕4 such that, if we set

v(z) ∶=

(
Q1
i=1

[[
vi(z)

]]
, "u(z)

)
, vi(z) ∶= ui(z) + 	 (z + ui(z)) , (4.2)

then the following holds:

spt(ăv) ⊂ � , (4.3)

Lip(v) d C(ā̄ + ý2)
 and osc(v) d C(ā̄ + ý2)
1∕2 + Ć(T ,þ15∕16, �0), (4.4)

ăv (K × �é
0
) = T (K × �é

0
) K þ15∕16 mod(p) , (4.5)

|B3∕4 öK| d ‖T ‖(((B3∕4 öK) × �é
0
) K þ15∕16) d C(ā̄ + ý2)1+
 , (4.6)

|||||
‖T ‖(ÿ3∕4 K þ15∕16) −Q|B3∕4| − 1

2 +B3∕4

|Dv|2
|||||
d C (ā̄ + ý2)1+
 , (4.7)

‖v‖2L@ + +B3∕4

|Dv|2 d C (ā̄ + ý2) . (4.8)

The next proposition adds two conclusions which are useful in our situation and which follow from a careful combination of the
estimates in Proposition 4.3 with the classical monotonicity formula.

Proposition 4.4. Let T , �, u, and v be as in Proposition 4.3. Then:

(i) If q0 = (z0, w0) * B1∕4 × B1∕4 ⊂ �0 × �
é
0
and �T (q0) e Q, then

+Br0 (z0 ,�0)KK
1

|z − z0|m−2
Q1
i=1

||||)r
(vi(z) −w0)

|z − z0|
||||
2

dz d Cr−m
0

(
ā̄ + ý2

)
"r0 <

1

4
. (4.9)

(ii) If ď * ℬ(0) has spine V = V (ď) and (!−1
m ā(ď, T , 0, 1))

1
m+2 d 1

8
then for any �0 *

[
(!−1

m ā(ď, T , 0, 1))
1

m+2 , 1
8

]
, upon setting

ď(�) ∶= ď K þ7∕8 K ÿ 1
2

ö B 1
8
+�
(V ),
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we have that

+ď(�0) dist
2(q, spt(ăv)) döm d C +ď(�0) dist

2(q, spt(T )) döm + C
(
ā̄ + ý2

)1+�
, (4.10)

for some positive geometric constant � = �(m,Q).

In the final proposition we take advantage of the regularity theory for area-minimizing currents in codimension 1. Before coming
to the statement we introduce a suitable cylindrical version of the L2 excess which is given by

ā(T , �0,ÿr(z, �0)) ∶=
1

rm+2 +ÿr(z,�0) dist(q − z, �0)
2 d‖T ‖(q) . (4.11)

Proposition 4.5. Let T and � be as in Proposition 4.3. The approximating map v and the set K can be required to satisfy the following
additional property. Assume that for some q = (z,w) * spt(T ) K þ7∕8 K ÿ1∕2 ⊂ �0 × �

é
0
and some cylinder ÿ2r(z, �0) ⊂ ÿ1∕2 the following

holds:

�T (q
2) < Q "q2 * ÿ2r(z, �0) K þ7∕8, (4.12)

rm e (ā̄ + ý2)1−
 . (4.13)

Then Br(z) ⊂ K and there is a C1,1∕2 selection for u|Br(z). More precisely:
(i) "u is constant on Br(z);
(ii) there are C1,1∕2 functions u1 d ⋯ d uQ ∶ Br(z) ³ �

é0

0
= R such that u = (

1
i

[[
ui
]]
, "u),

(iii) for all i < j, either ui(� ) < uj (� ) "� * Br(z) or ui(� ) = uj (� ) "� * Br(z);

(iv) The following estimate holds for every i * {1,& , Q}

‖Dui‖C0(Br(z))
+ r−1∕2[Dui]1∕2,Br(z) d C (ā(T þ7∕8, �0,ÿ2r(z, �0)) + ý2)

1∕2 . (4.14)

Proof of Proposition 4.3. Having fixed the plane �0, we will write ā
no(T ,
) = āno(T , �0, 
) to simplify the notation. First, observe

that the unoriented excess āno(T ,þ1) introduced in Definition 4.1 is in fact equivalent, up to multiplicative constants, to the classical
varifold excess (see [1]) of the varifold Ĕ(T ) associated to T . Invoking [6, Lemma 5.1], we have that

�Ĕ(T )[X] = −+ X ⋅ H⃗T (x) d‖T ‖(x) for all X * C1
c (þ1;R

m+n),

where H⃗T is a Borel function satisfying ‖H⃗T ‖@ d Cý. Hence, we can use the classical tilt excess inequality, cf. [3, Proposition 4.1],
to achieve, for every z0 * B3∕4 = B3∕4(0, �0) and for any r0 with 9r0 < 1∕8,

āno(T ,þ9r0
(z0)) d C(ā̄ + ý2) . (4.15)

By Lemma 2.4,

sup
{
|Ďé�0 (x)| ∶ x * spt(T ) K þ15∕16

} d C(ā̄ + ý2)
1∕2,

so that, if we set T 2 ∶= T þ15∕16 and ÿ7∕8 ∶= ÿ7∕8(0, �0), we then conclude that

)T 2 ÿ7∕8 = 0 mod(p)

and that

Ć(T 2,ÿ7∕8, �0) d Ć(T ,þ15∕16, �0) < C(ā̄ + ý2)
1∕2 , (4.16)

and thus

āno(T 2,ÿ8r0
(z0)) d āno(T ,þ9r0

(z0)) d C(ā̄ + ý2).

Observe next that, by the constancy lemma mod(p) (see [6, Lemma 7.4]), there exist (up to a change of orientation of �0) an integer
1 d k d Q such that

(Ď�0 )♯T
2 ÿ7∕8 = k

[[
�0 K þ7∕8

]]
mod(p) .

We claim that it is necessarily k = Q. Indeed, if k < Q, assuming "G sufficiently small we can appeal to White’s regularity
theorem [17, Theorem 4.5], and conclude that T 2 ÿ7∕64 is (the current associated to) a regular submanifold of �, which, in
particular, would be free of points q with �T (q) e Q: thus, having k < Q would contradict both (d2) and (d1).

We can now appeal to [6, Theorem 16.1] and (4.15) to conclude that

āo(T 2,ÿ4r0
(z0)) d C(ā̄ + ý2).

We can thus apply [6, Theorem 15.1] to find a map uz0 ∶ Br0 (z0, �0) ³ AQ(�
é0

0
) and a closed set Kz0 ⊂ Br0 (z0, �0) so that the

associated map vz0 as in (4.2) satisfies (4.3) to (4.7) on the cylinder ÿr0 (z0, �0), where 
 > 0 is a geometric constant. Using the same
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arguments as in [11, Section 6.2] to patch the maps uz0 together when z0 * B3∕4 varies, we conclude the existence of a unique map

u∶B3∕4 ⊂ �0 ³ AQ(�
é0

0
) and a closed set K ⊂ B3∕4 so that the associated map v satisfies (4.3) to (4.7). Moreover, using [6, Theorem

16.1], a standard covering argument, and the tilt excess inequality as in (4.15), it holds

‖T 2‖(ÿ3∕4) −Q|B3∕4| d C(āno(T 2,ÿ7∕8) + ý2) d C(ā̄ + ý2) ,

we can use (4.7) to infer

+B3∕4

|Dv|2 d C(ā̄ + ý2) . (4.17)

Now, the second estimate in (4.4) and (4.16) give immediately

osc (v) d C(ā̄ + ý2)
1∕2 .

However observe also that

sup{|Ď�é
0
(q)| ∶ q * spt(T ) K þ15∕16 K ÿ3∕4} d C(ā̄ + ý2)

1∕2,

while spt(T ) K spt(ăv) K þ15∕16 K ÿ3∕4 is certainly nonempty. We thus conclude the estimate ‖v‖2
L@ d C(ā̄ + ý2). □

Proof of Proposition 4.4. In order to prove (4.9), let q0 = (z0, w0) be as in the statement of the proposition and let r0 <
1

4
. Observe

first that, since þr0 (q0) ⊂ þ15∕16 K ÿ3∕4, it follows rather easily from Proposition 4.3 that

‖T ‖ (þr0 (q0))
!mr

m
0

− �T (q0) d
‖‖ăv

‖‖ (þr0 (q0))
!mr

m
0

−Q +
‖‖T −ăv

‖‖ (þr0 (q0))
!mr

m
0

d C

(
1

rm
0
+B3∕4

|Dv|2 + 1

rm
0

(ā̄ + ý2)

)
(4.7)d C

rm
0

(ā̄ + ý2) .

We then use the monotonicity formula and the fact that �T (q0) = Q to infer that

+þr0 (q0)
|(q − q0)é|2
|q − q0|m+2

d ‖T ‖ d ‖T ‖(þr0 (q0))
!mr

m
0

− �T (q0) + Cý
2r2

0

d Cr−m
0

(ā̄ + ý2) .

Note that the usual monotonicity formula for varifolds with bounded mean curvature (as in [1]) would give an error term of type
Cý in the first line. In order to get a quadratic error it suffices to invoke the argument in [10, Appendix A], which uses the stronger
fact that ‖T ‖ is a stationary varifold in the Riemannian manifold �, cf. also [10, Remark A.2].

Using the Lipschitz continuity of v, the same argument as in the proof of [4, Proposition 8.3] shows that

+Br0 (z0)KK
1

|z − z0|m−2
Q1
i=1

||||)r
(vi(z) −w0)

|z − z0|
||||
2 d C +þr0 (q0)

|(q − q0)é|2
|q − q0|m+2

d ‖T ‖

d Cr−m
0

(ā̄ + ý2) ,

thus proving (4.9).
We now come to (4.10). Recall that ď(�) ∶= ď K þ7∕8 K (ÿ 1

2

ö B 1
8
+�
(V )). Upon introducing the set ÿK ∶= K × �é

0
, we note that it

is enough to show

+ď(�0) dist
2(q, spt(T ÿK ) K þ15∕16) döm d C +ď(�0) dist

2(q, spt(T )) döm + C
(
ā̄ + ý2

)1+�
, (4.18)

since then (4.10) follows from

+ď(�0) dist
2(q, spt(ăv)) döm d +ď(�0) dist

2(q, spt(ăv ÿK ) K þ15∕16) döm

= +ď(�0) dist
2(q, spt(T ÿK ) K þ15∕16) döm .

Towards the proof of (4.18), define the set

U ∶=
{
q * ď(�0) ∶ dist(q, spt(T )) <

1

2
dist(q, spt(T ÿK ) K þ15∕16)

}
.

It is clear that (4.18) holds true provided we can show that, for a suitable choice of �0,

öm(U ) d C(ā̄ + ý2)1+� . (4.19)

To this aim, first observe that if we set

�q ∶=
1

2
min

{
dist(q, spt(T )), �0,

1

8

}
for q * ď(�0),
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then one has

ā(ď, T , 0, 1) e +þ�q (q)Kď
dist2(x, spt(T )) döm(x) e !m �

m+2
q , (4.20)

where in the second inequality we have used that dist(x, spt(T )) e �q for all x * þ�q (q) due to the definition of �q . It follows that if

1∕8 e �0 e 10
(
!−1
m ā(ď, T , 0, 1)

) 1
m+2 , then

dist(q, spt(T )) = 2�q d 2 (!−1
m ā(ď, T , 0, 1))

1
m+2 d 1

40
"q * ď(�0) . (4.21)

In particular,

dist(q, spt(T )) = dist(q, spt(T ) K ÿ5∕8 K þ29∕32) for all q * ď(�0) . (4.22)

We will estimate the measure of U by a Vitali covering argument. We apply Vitali’s covering theorem to the family of balls
{þ2r(q)(q) ∶ q * U} with r(q) ∶= dist(q, spt(T )) to find a disjoint subfamily {þ2r(qi)

(qi)} such that

U ⊂
å
i

þ10r(qi)
(qi).

For each i, fix pi * spt(T ) such that |qi − pi| = dist(qi, spt(T )) = r(qi). Notice that pi * spt(T ) Kÿ5∕8 Kþ29∕32 as a consequence of (4.22).
Hence

þr(qi)(pi) K spt(T ÿK ) = þr(qi)(pi) K spt(T ÿK ) K þ15∕16 = ∅ , (4.23)

for otherwise, given the definition of r(qi), one would contradict the fact that qi * U . Notice that, since for every i we have
þr(qi)(pi) ⊂ þ2r(qi)

(qi), then also {þr(qi)(pi)}i is a disjoint family. We recall next the density lower bound for area minimizing currents
mod(p), that is !mr

m d 2 ‖T ‖ (þr(q̃)) for all q̃ * spt(T ), which holds provided ý is smaller than a geometric constant. We then have

öm(U ) d p
1
i

10m!mr(qi)
m d 2p ⋅ 10m

1
i

‖T ‖
(
þr(qi)(pi)

)

= 2p ⋅ 10m ‖T ‖
(å

i

þr(qi)(pi)

)

d 2p ⋅ 10m ‖T ‖
(
þ15∕16 K (B 3

4

öK) × �é
0

)
d C(ā̄ + ý2)1+
 ,

where in the last inequality we have used (4.6) and the second last inequality is a consequence of (4.21), (4.22), and (4.23). We
have thus proved that (4.19) holds with � = 
, and the proof of (4.10) is complete. □

Proof of Proposition 4.5. In order to simplify our notation, we set T 2 ∶= T þ7∕8. Note first that under the additional assumption
(4.12) we can apply [4, Lemma 9.5] to deduce that T 2 is a classical area minimizing current in þ2r(q), and thus, thanks to Lemma 2.4
and (4.13), in ÿ7r∕4(z, �0). We can then apply the standard decomposition of codimension 1 area minimizing currents in sum of
area minimizing boundaries with constant multiplicities, and De Giorgi’s "-regularity theorem with L2-excess (see for instance [2,
Theorem 4.5]), so to conclude that in ÿ3r∕2(z, �0) the support spt(T

2) coincides with the union of the graphs of finitely many C1,1∕2

functions ṽ1,& , ṽN with the property that ṽi(� ) = ũi(� )+	 (� + ũi(� )) and ũ1 d ũ2 d ⋯ d ũN . Observe that, because of the assumption
(4.13) and the estimate (4.6), KKBr(z) can be assumed to have positive measure, provided " is chosen sufficiently small. In particular
we conclude that N = Q and that the multifunctions

1
i

[[
ṽi
]]
and

1
i

[[
vi
]]
coincide on a set of positive measure. Because of the

constancy lemma we immediately conclude the existence of a constant "̃ * {−1, 1} such that

T 2 ÿ3r∕2(z, �0) = ăṽ

for the special multivalued function

ṽ = (
1
i

[[
ṽi
]]
, "̃) .

We remark in passing that the estimate

‖Dũi‖C0(B5r∕4(z))
+ r−1∕2[Dũi]1∕2,B5r∕4(z)

d C (ā(T þ7∕8, �0,ÿ2r(z, �0)) + ý2)
1∕2 (4.24)

follows from classical elliptic regularity, the reader can for instance see the argument in the proof of [4, Theorem 6.3].
If we could show that v and ṽ coincide on the domain of definition of ṽ, we would be finished. In the remaining argument we

will show that we can in fact modify v suitably so to coincide with the map ṽ for all choices of z and r, while retaining all the
estimates that v satisfies (of course with some larger geometric constants).

Define the set þ of pairs (q, r) satisfying the assumption of the Proposition, and denote by ũq,r and ṽq,r = ũq,r + 	 (⋅ + ũq,r) the
corresponding maps which we just found. We wish to redefine the map v of Proposition 4.3 with the following algorithm:

(1) First of all we restrict u to K;
(2) We then enlarge K by adding B9r∕8(z) for every pair (q, r) * þ (where q = (z,w)) and denote by K♯ the corresponding set;
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(3) Furthermore we extend u to each such B9r∕8(z) by setting it equal to ũ
q,r;

(4) We make a final Lipschitz extension to the whole ball B1∕2, and then we lift such extension to � using 	 .

We denote by u♯ the map defined through the steps (1), (2), and (3), and we set v♯(� ) = u♯(� ) + 	 (� + u♯(� )). Note that the
extension in (3) is well defined because necessarily ṽq,r = ṽq

2 ,r2 on B9r∕8(z) KB9r2∕8(z
2) whenever the latter is nonempty. This crucial

property follows from the fact that over both balls the graphs of the corresponding maps coincide with the restrictions of T 2 on the
corresponding cylinders.

We next claim that

Lip (v♯) d C(ā̄ + ý2)
 . (4.25)

Given that ‖v♯‖L@ d C(ā̄ + ý2)1∕2 just because of Lemma 2.4, we can use the extension theorem [7, Corollary 5.3] to extend u♯ to
B1∕2 by enlarging the Lipschitz constant and the L

@ bound by a constant geometric factor and then lift such extension to � using
	 . All the remaining conclusions of Proposition 4.3 will then follow, except for the fact that K♯ is not closed. To overcome this
issue, we replace K♯ with the closed set

K⋆ ∶= K L
å

(q,r)*þ
Br(z).

We observe that all the conclusions of Proposition 4.3 still hold, since K ⊂ K⋆ ⊂ K♯. The first inclusion is obvious; the second

follows from (4.13), which in particular implies that
å

(q,r)*þ Br(z) ⊂
å

(q,r)*þ B9r∕8(z).

We are left with the proof of (4.25): we fix �, � * K♯ and distinguish several cases.
Case (a) �, � * K. Then

õs(v♯(�), v♯(� )) = õs(v(�), v(� )) d Lip(v)|� − � | d C(ā̄ + ý2)
 |� − � | . (4.26)

Case (b) � * K, � * K♯ öK. Consider then (q, r) * þ such that � * B9r∕8(z). We distinguish further two situations:

(b1) � * B5r∕4(z). Then we obviously have

õs(v♯(�), v♯(� )) = õs(ṽq,r(�), ṽq,r(� )) d Lip(ṽq,r)|� − � |
d C(ā(T 2, �0,ÿ2r(z, �0)) + ý2)1∕2|� − � | . (4.27)

Note however that, by (4.13)

ā(T 2, �0,ÿ2r(z, �0)) d 1

rm+2
ā̄ d ā̄2
 .

Therefore we again conclude

õs(v♯(�), v♯(� )) d C(ā̄ + ý2)
 |� − � | . (4.28)

(b2) � + B5r∕4(z). We then select �
2 * K K B9r∕8(z). Since |� − � | > r

8
we certainly have

|�2 − � | d 4r d 32|� − � | , (4.29)

|� − �2| d |� − � | + |�2 − � | d 33|� − � | . (4.30)

We can then use the estimates in cases (a) and (b1) to conclude

õs(v♯(�), v♯(� )) d õs(v♯(�), v♯(�2)) + õs(v♯(� ), v♯(�2)) d C(ā̄ + ý2)
 |� − � | . (4.31)

Case (c) �, � * K♯öK. As above we choose a pair (q, r) * þ such that � * B9r∕8(z). As in case (b) we distinguish two corresponding
cases, which we call (c1) and (c2). In case (c1), namely if � * B5r∕4(z), we argue as in case (b1) to conclude (4.28). If instead
� + B5r∕4(z) we then choose �

2 * K K B9r∕8(z). The two inequalities (4.29) and (4.30) are still valid. We can now proceed as in the
proof of (4.31), using, this time, case (b) and case (c1). □

5. Proof of Proposition 3.2

In this section we prove the first decay Proposition 3.2. This will be achieved via a suitable linearization over a plane using the
theory of special multivalued functions.

5.1. Preliminary decay estimate on harmonic multifunctions

The main reason behind Proposition 3.2 is an analogous decay estimate for Dir-minimizing functions u taking values in AQ(R).

Lemma 5.1. For every � > 0 there is a constant r̄(Q,m, �) > 0 with the following property. Let B1 ⊂ Rm and let u * W 1,2(B1,AQ(R)) be
Dir-minimizing and such that u(0) = Q [[0]]. Then there is a 1-homogeneous Dir-minimizing ū * W 1,2(B1,AQ(R)) such that

1

rm+2 +Br õs(u(x), ū(x))
2 dx d � +B1

|Du|2 "r d r̄. (5.1)
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Proof. We first claim that it suffices to prove that the lemma holds under the additional assumption that Ā◦u � 0 and with the
additional conclusion that Ā◦ū � 0. Towards proving the claim, notice first that, if f ∶B1 ³ R is a harmonic function with f (0) = 0,
then it is elementary that, denoting f̄ the linear term in the Taylor series representing f , one has

1

rm+2 +Br |f − f̄ |2 dx d Cr2 +B1

|Df |2 . (5.2)

Next, for a general u * W 1,2(B1,AQ(R)) which is Dir-minimizing and such that u(0) = Q [[0]], one denotes f ∶= Ā◦u and v ∶= u ⊖ f ;
if v̄ denotes the 1-homogeneous and Dir-minimizing function with zero average obtained applying the lemma to v, and f̄ denotes
the linear term in the Taylor series of f then, setting ū ∶= v̄ ⊕ f̄ one has, for all r d r̄(Q,m, �)

1

rm+2 +Br õs(u, ū)
2 =

1

rm+2 +Br õs(v, v̄)
2 +

Q

rm+2 +Br |f − f̄ |2

d � +B1

|Dv|2 + C Qr2 +B1

|Df |2

d � +B1

(|Dv|2 +Q|Df |2)

= � +B1

|Du|2 ,

where the second to last inequality holds up to choosing a possibly smaller value for r̄ so that Cr2 d �.
Next, we prove the validity of the lemma under the additional assumption that Ā◦u � 0 and with the additional conclusion that

Ā◦ū � 0. We denote by ℐ1 ⊂ W 1,2(B1,AQ(R)) the space of 1-homogeneous Dir-minimizing functions with zero average. We argue
by contradiction and assume therefore that for every choice of r̄ = 1

k
there is a Dir-minimizing function uk * W 1,2(B1,AQ(R)) such

that uk(0) = Q [[0]], Ā◦uk � 0, and for which there is a positive radius rk <
1

k
such that

inf
ū*ℐ1

1

rm+2
k

+Brk
õs(uk(x), ū(x))2 dx e � +B1

|Duk|2 . (5.3)

By rescaling we can, w.l.o.g., assume that +B1
|Duk|2 = 1 and thus up to subsequences we can assume that uk converges to some

Dir-minimizing u * W 1,2(B1,AQ(R)), while statement (5.3) becomes

inf
ū*ℐ1

1

rm+2
k

+Brk
õs(uk(x), ū(x))2 dx e � . (5.4)

Clearly

+B1

|Du|2 d 1 .

Moreover, by [5, Theorem 3.1], uk is equilipschitz on each compact subset of B1, and thus the convergence is uniform. In particular
u(0) = Q [[0]] and Ā◦u � 0. Recall next that the convergence is strong in W 1,2(Br) for every r < 1 (see [7]). Therefore +B1

|Du|2 > 0.
Otherwise we would have

lim
k³@+B3∕4

|Duk|2 = 0 . (5.5)

Combined with the Lipschitz estimate of [5, Theorem 3.1], the latter would imply

lim
k³@

‖Duk‖L@(B1∕2)
= 0 .

Observe however that, given the information uk(0) = Q [[0]], from this we would easily infer

lim
k³@

1

rm+2
k

+Brk
õs(uk(x), Q [[0]])2 dx d C(m) lim

k³@
‖Duk‖2L@(B1∕2)

= 0 ,

which is incompatible with (5.4) because the function identically equal to Q [[0]] is certainly 1-homogeneous and with zero average.
We thus conclude

� ∶= +B1

|Du|2 > 0 . (5.6)

Consider next the frequency I = Iu,0(0). By [5, Theorem 3.6] we know that I is a positive integer. If I e 2, it then follows from the
monotonicity of the frequency function that

+Br |Du|
2 dM0r

m+2 for every r > 0 .

In particular, for any fixed positive r̄ there would be K ∶= K(r̄) * N such that

+B2r̄

|Duk|2 d 2m+3M0 r̄
m+2 "k e K.
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By the Lipschitz estimate of [5, Theorem 3.1] we then conclude

‖Duk‖L@(Br̄)
d CM

1∕2

0
r̄ "k e K

for a geometric constant C. In particular, again using uk(0) = Q [[0]] we get

1

rm+2 +Br õs(uk(x), Q [[0]])2 dx d CM0 r̄
2 "k e K,"r < r̄ .

We thus choose first r̄ sufficiently small so that CM0 r̄
2 d �

2
and k sufficiently large so that k e K and 1

k
< r̄. Again our conclusion

would be in contrast with (5.4) for all such k’s and we thus conclude that the frequency I cannot be larger than 1. It must therefore
be 1. From this, we can draw the following conclusions:

lim
r´0

rDu,0(r)

Hu,0(r)
= 1 (5.7)

lim
r´0

Hu,0(r)

rm+1
=∶ 
 > 0 (5.8)

lim
r´0

Du,0(2r)

Du,0(r)
= 2m (5.9)

lim
r´0

Wu,0(r) ∶= lim
r´0

(
r−mDu,0(r) − r

−m−1Hu,0(r)
)
= 0 . (5.10)

In particular, consider the threshold "̄ > 0 given by [5, Proposition 7.1] for the choice C = 2m+2. Next choose r̄ sufficiently small
so that

Hu,0(r̄) e 


2
r̄m+1 (5.11)

r̄Du,0(2r̄) d 2m+1Hu,0(r̄) (5.12)

r̄m+1Wu,0(r̄) d "̄
2
Hu,0(r̄) . (5.13)

For any sufficiently large k we then have

r̄Duk ,0
(2r̄) d 2m+2Huk ,0

(r̄) (5.14)

r̄m+1Wuk ,0
(r̄) d "̄Huk ,0

(r̄) . (5.15)

We then can apply [5, Proposition 7.1] to each rescaled function vk(x) ∶= uk(r̄x). We thus conclude the existence of a constant �
(which is geometric) and a constant C̄ (which depends on r̄) such that there exists a 1-homogeneous Dir-minimizing function ūk
with Ā◦ūk � 0 (although this property is not claimed in the statement of [5, Proposition 7.1], it can be easily concluded by a rapid
inspection of the proof) and with the property that

‖õs(uk, ūk)‖C0(Br)
d C̄r1+� "r d r̄ .

In particular, for every k sufficiently large, we would infer

+Br õs(uk(x), ūk(x))
2 dx d C̄rm+2+2� "r d r̄ .

Choosing k large enough we also ensure rk d 1

k
d r̄ and we thus can write

1

rm+2
k

+Brk
õs(uk(x), ūk(x))2 dx d C̄r2�

k
. (5.16)

Since rk ´ 0, for k large enough we have C̄r2�
k

d �
2
. In particular, given that ūk * ℐ1, (5.4) and (5.16) are incompatible. □

5.2. Proof of Proposition 3.2

Let �1 > 0 be given and fix a small constant

r1(�1, m, n,Q) <
1

2

whose choice will be specified later. We will argue by contradiction and assume that, for the choice of "1 =
1

k
, there is a current Tk

which satisfies the assumptions of the Proposition but for which (3.3) fails. We set ā̄k ∶= ā̄(Tk, 0, 1), denote by �k the corresponding
Riemannian manifolds and let ýk be the L

@ norms of their second fundamental forms. We can further assume to rotate the currents
and the ambient manifolds �k so that R

m × {0} = �0 ⊂ T0�k = Rm+1 × {0} is a plane minimizing the excess ā̄k. We then let vk be
the Lipschitz approximation of T 2

k
∶= Tk ÿ1∕2(0, �0) given by Proposition 4.3, and v̄k ∶= ā̄

−1∕2

k
vk their normalizations. By (4.8) we

conclude that

+B1∕2

(|v̄k|2 + |Dv̄k|2) d C . (5.17)
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We can therefore appeal to the extension of the classical Sobolev space theory to AQ(R
n)-valued maps to conclude that v̄k converges

to a map v * W 1,2(B1∕2,AQ(R
n)) strongly in L2, up to extraction of a subsequence (not relabeled). Moreover we observe that:

(a) Since ýk ³ 0, �k converge to Rm+1 × {0} and thus, by (4.3), v takes values in �é
0
K (Rm+1 × {0}), i.e. it can be regarded as a

AQ(R)-valued map;

(b) by [6, Theorem 13.3] v is Dir-minimizing;
(c) since �(T 2

k
, 0) = �(Tk, 0) e Q, by [6, Theorem 23.1] we have that

lim
s´0

1

sm +Bs õs(v(y), Q [[Ā◦v(0)]])2 = 0 ;

in fact, the validity of [6, Theorem 23.1] is stated under the assumption that �(T 2
k
, 0) = Q, but an inspection of the proof

(which is as in [10, Proof of Theorem 2.7]) shows that the same result also holds when �(T 2
k
, 0) e Q (precisely, the condition

on the density is crucial in [10, Formula (9.9)], and the latter inequality is valid also in our setting). Furthermore, one sees
that, since the origin is a point of density at least Q for T 2

k
, v(0) = Q [[Ā◦v(0)]] = Q [[0]].

We are then in a position to apply Lemma 5.1 and conclude that there are r̄ > 0 and a 1-homogeneous Dir-minimizing function ℎ
such that

+Br õs(v, ℎ)
2 d �1

4Q
rm+2 "r d r̄ . (5.18)

Our choice of r1 is then given by the above r̄.
We next consider the rescaled functions ℎk ∶= ā̄

1∕2

k
ℎ and observe that the supports of their graphs are open books ďk which

belong to ℬ(0). In particular we must have

E(Tk, 0, r1) d 1

rm+2
1

(
+þr1

dist2(x,ďk) d‖Tk‖ + +ďkK(þr1 öBr1∕8(V ))

dist2(x, spt(Tk)) döm

)
.

We now claim that, for a sufficiently large k,

lim sup
k³@

1

ā̄kr
m+2
1

(
+þr1

dist2(x,ďk) d‖Tk‖ + +ďkK(þr1 öBr1∕8(V ))

dist2(x, spt(Tk)) döm

)
d �1

2
, (5.19)

and the latter will give a contradiction since we were assuming E(Tk, 0, r1) > �1ā̄k for every k.
Observe first that dist(x,ďk) d r1 for every x * þr1 and we can therefore estimate

+þr1
dist2(x,ďk) d‖Tk‖(x) d +þr1

dist2(x,ďk) d‖ăvk
‖(x) + C‖Tk‖((Br1 öKk) × �é0 )

d +þr1
dist2(x,ďk) d‖ăvk

‖(x) + Cā̄1+

k

.

Moreover we have

+ďkK(þr1 öBr1∕8(V ))

dist2(x, spt(Tk)) döm

d+þr1
dist2(x, spt(ăvk

ÿKk )) d
‖‖‖ăℎk

ÿKk
‖‖‖ + Cā̄

1+

k

,

so that

lim sup
k³@

1

ā̄kr
m+2
1

(
+þr1

dist2(x,ďk)d‖Tk‖(x) + +ďkK(þr1 öBr1∕8(V ))

dist2(x, spt(Tk)) döm

)

d lim sup
k³@

1

ā̄kr
m+2
1

(
+þr1

dist2(x,ďk)d‖ăvk
‖(x)

+ +þr1
dist2(x, spt(ăvk

ÿKk )) d
‖‖‖ăℎk

ÿKk
‖‖‖
)
.

(5.20)

Consider next that þr1 ⊂ ÿr1 and that, since the Lipschitz constants of vk and ℎk converge to 0, we conclude

lim sup
k³@

1

ā̄kr
m+2
1

+þr1
dist2(x,ďk) d‖ăvk

‖(x)

d lim sup
k³@

1

ā̄kr
m+2
1

+Br1
Q1
i=1

dist2((y, (vk)i(y)),ďk) dy , (5.21)

as well as

lim sup
k³@

1

ā̄kr
m+2
1

+þr1
dist2(x, spt(ăvk

ÿKk )) d‖ăℎk
ÿKk‖(x)
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d lim sup
k³@

1

ā̄kr
m+2
1

+Br1KKk
Q1
i=1

dist2((y, (ℎk)i(y)), spt(ăvk
ÿKk )) dy , (5.22)

where (
1
i

[[
(vk)i(y)

]]
, "vk (y)) is the value of the AQ(R

n)-valued function vk at y and (
1
i

[[
(ℎk)i(y)

]]
, "ℎk (y)) is the value of the

AQ(R
n)-valued function ℎk at y.

Now, observe that ℎk = ā̄
1∕2

k
ℎ, and that ďk is its support. Thus, if we denote by (

1
i

[[
ℎi(y)

]]
, "(y)) the value of ℎ at y, then "ℎk = ",

(ℎk)i = ā̄
1∕2

k
ℎi, and for every y, k and i there is a j = j(k, y, i) with the property that

|(vk)i(y) − ā̄
1∕2

k
ℎj (y)| d õs(vk(y), ā̄1∕2

k
ℎ(y)) .

Since dist(
(
y, (vk)i(y)

)
,ďk) d |(vk)i(y) − ā̄

1∕2

k
ℎj (y)|, we can write

lim sup
k³@

1

ā̄kr
m+2
1

+Br1
Q1
i=1

dist2((y, (vk)i(y)),ďk) dy

d lim sup
k³@

1

ā̄kr
m+2
1

+Br1
Qõs(vk(y), ā̄1∕2

k
ℎ(y))2 dy

= lim sup
k³@

Q

rm+2
1

+Br1
õs(v̄k(y), ℎ(y))2 dy

=
Q

rm+2
1

+Br1
õs(v(y), ℎ(y))2 dy (5.18)d �1

4
. (5.23)

Arguing analogously, one sees that dist(
(
y, (ℎk)i(y)

)
, spt(ăvk

)) d õs(ā̄1∕2

k
ℎ(y), vk(y)) for every y * Br1 KKk, so that

lim sup
k³@

1

ā̄kr
m+2
1

+Br1KKk
Q1
i=1

dist2((y, (ℎk)i(y)), spt(ăvk
ÿKk )) dy d

�1
4
. (5.24)

Combining (5.23) and (5.24) with (5.21) and (5.22), and plugging in (5.20), we conclude (5.19), thus completing the proof. □

6. Proof of Proposition 3.3: propagation lemmas and behavior of č-points

Many ingredients in the proof of Proposition 3.3 will be borrowed from [4, Theorem 4.5]. However, several substantial changes
are needed, mostly because the ‘‘optimal open book’’ ď in [4, Theorem 4.5] is assumed to be at a fixed distance from a plane, while
the one in Proposition 3.3 is not. The first such change is related to the construction of the graphical parametrization, where we
cannot rely solely on White’s "-regularity theorem [17], but we will also need to use Proposition 4.3.

Over the next sections we will work under the following set of assumptions.

Assumption 6.1. We let T and � be as in Assumption 3.1, and "̄, �̄ *
(
0, 1

2

)
are fixed positive constants. There are an open book

ď =
åN
i=1 Ąi ⊂ T0� and a plane �0 ⊂ T0� such that

(i) ý2 d "̄ā(T , �0, 0, 1) d "̄2;
(ii) E(T ,ď, 0, 1) d �̄ ā(T , �0, 0, 1);
(iii) ā̄(T , 0, 1) e (1 − �̄)ā(T , �0, 0, 1).

Setting V = V (ď), we write T0� = V é0 ⊕ V with coordinates

z = (x, y) = (x1, x2, y1,& , ym−1) .

If additionally V = V (ď) ⊂ �0, then we set

�0 = {x2 = 0} and �±
0
∶= �0 K {±x1 > 0}.

Coordinates in T0�
é C Rn−1 are denoted w.

6.1. Angle bound

We start with a lemma bounding the angles formed between the various pages of ď and �0.

Definition 6.2. For every fixed q * T0�, let ℋq = {Ą ⊂ ď ∶ dist(q,Ą) = dist(q,ď)}, and, for any m-dimensional plane � ⊂ T0�,
denote by �� (q) the maximal angle between half-planes Ą * ℋq and �. More precisely, for any Ą * ℋq we let �(Ą) denote the
m-plane containing Ą, and then we set

�� (q) ∶= max{distö (�(Ą) K þ1, � K þ1) ∶ Ą * ℋq},
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where dö denotes Hausdorff distance. We record the elementary fact that, when � and � are two m-planes in T0�,

distö (� K þ1, � K þ1) = sup{|Ď�é (z)| ∶ z * � K þ1}.

We also set

�� (ď) ∶ = max
q*)þ1Kď

�� (q)

= max
{
distö (� K þ1, �i K þ1) ∶ �i ⊃ Ąi , i * {1,& , N}

}
,

�max(ď) ∶ = max

{
max

q*)þ1Kď
�� (q) ∶ � ⊃ Ąi for some i * {1,& , N}

}

= max
{
distö (�i K þ1, �j K þ1) ∶ �i ⊃ Ąi , �j ⊃ Ąj , i, j * {1,& , N}

}
.

�� (ď) is the maximal angle formed by pages of ď and �, while �max(ď) is the maximal angle formed by distinct pages of ď. Observe
that �max(ď) = 0 if and only if ď is an m-dimensional plane.

Lemma 6.3 (Angle bound). There are positive constants "4, �4, and C such that, if T satisfies Assumption 6.1 with "̄ d "4 and �̄ d �4, then
the following holds:

C−1�2�0
(ď) d ā(T , �0, 0, 1) d C�2max(ď) d C2�2�0

(ď) . (6.1)

The same conclusions hold if the first inequality in Assumption 6.1(i) is replaced by ý d �̄�max(ď).

Proof. We first observe that, under the hypotheses (ii) and (iii) of Assumption 6.1, the book ď cannot be an m-dimensional plane,
that is �max(ď) > 0. Indeed, should ď be a plane, we would have, for �̄ < 1

2
, the contradiction

ā(T , �0, 0, 1) d 1

1 − �̄
ā̄(T , 0, 1) d 1

1 − �̄
ā(T ,ď, 0, 1) d �̄

1 − �̄
ā(T , �0, 0, 1)

< ā(T , �0, 0, 1) .

Next, we prove that there exists a positive geometric constant C such that

1

C
ā(T , �0, 0, 1) d �2max(ď) . (6.2)

Indeed, for q * � K þ1 set q
2 ∶= ĎT0� (q), let Ąq2 * ℋq2 be such that distö (�(Ąq2 ) K þ1, � K þ1) = �� (q

2), and let q22 * Ąq2 be such that
dist(q2,Ąq2 ) = dist(q2,ď) = |q2 − q22|. Notice that, for � an arbitrary plane in T0�, it holds

|Ď�é (q)| d dist(q2,Ąq2 ) + �� (q
22) + ý.

Therefore we have that

+þ1

dist2(q, �) d‖T ‖ d 2+þ1

dist2(q,ď) d‖T ‖(q) + 2+þ1

�� (q
22)2 d‖T ‖(q) + Cý2

dC ā(T ,ď, 0, 1) + C"̄ā(T , �0, 0, 1) + C�̄
2�max(ď)

2 + 2+þ1

�� (q
22)2 d‖T ‖(q)

dC(�̄ + "̄)ā(T , �0, 0, 1) + C�̄�max(ď)
2 + 2+þ1

�� (q
22)2 d‖T ‖(q) ,

where in the second inequality we have used Assumption 6.1(i) (or the alternative ý d �̄�max(ď)) and in the last inequality we used
Assumption 6.1(ii). The above implies

ā̄(T , 0, 1) d ā(T , �, 0, 1) d C(�̄ + "̄)ā(T , �0, 0, 1) + C�̄�max(ď)
2 + 2+þ1

�� (q
22)2 d‖T ‖(q) ,

which coupled with Assumption 6.1(iii) yields, for �̄ and "̄ sufficiently small,

ā(T , �0, 0, 1) d 4 +þ1

�� (q
22)2 d‖T ‖(q) + C�̄�max(ď)

2 . (6.3)

We fix next � to be some m-dimensional plane containing a page Ąi of ď, so that �� (q
22) d �max(ď) for ‖T ‖-a.e. q. We then achieve

ā(T , �0, 0, 1) d C �2max(ď) . (6.4)

The inequality �max(ď) d 2��0 (ď) immediately follows from the triangle inequality for the Hausdorff distance.
We next claim that there exists a positive geometric constant C such that

�2�0
(ď) d C ā(T , �0, 0, 1) . (6.5)

We assume by contradiction that for every C1 > 0 one could have

�2�0
(ď) > C1 ā(T , �0, 0, 1),
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and we let Ą0 be a half plane realizing ��0 (ď), namely ��0 (ď) = distö (�(Ą0) K þ1, �0 K þ1). Then, let V = V (ď) be the spine of ď, set
W ∶= �0 KĄ0, and define


 ∶=
{
z * Ą0 ∶ |z| d 1

4
, dist(z, V ) e 1

8
, dist(z,W ) e 1

8

}
.

Notice that öm(
) e cm for some positive geometric constant cm. Notice also that

|Ď�é
0
(z)|2 e 8−2dist2(z,W ) ��0 (ď)

2 for every z * 


Next recall Lemma 2.4:

sup
q̃*þ15∕16Kspt(T )

|Ď�é
0
(q̃)|2 d C0 ā(T , �0, 0, 1) + C0ý

2

d C0 ā(T , �0, 0, 1) + C0"̄ā(T , �0, 0, 1) + �̄��0 (ď)
2 ,

where we have used either Assumption 6.1(i) or the alternative ý2 d �̄2�max(ď)
2 d �̄��0 (ď)

2. It follows then that for every z * 


2 dist(z, spt(T ))2

e 8−2dist2(z,W )��0 (ď)
2 − 2 sup

q̃*þ15∕16Kspt(T )
|Ď�é

0
(q̃)|2

e ((8−4 − �̄)C1 − 3C0)ā(T , �0, 0, 1) .

We then infer that

ā(ď, T , 0, 1) e ā(Ą0, T , 0, 1) e ((8−4 − �̄)C1 − 3C0)

2
cm ā(T , �0, 0, 1) ,

which, for �̄ sufficiently small and C1 > 0 sufficiently large, is a contradiction with Assumption 6.1(ii). □

Remark 6.4. A quick inspection of the proof of Lemma 6.3 shows that in order to prove the inequalities

ā(T , �0, 0, 1) d C �2max(ď) d C2 �2�0
(ď)

only the smallness condition ā(T ,ď, 0, 1) d �̄ ā(T , �0, 0, 1) on the one-sided excess is needed. The smallness condition in As-
sumption 6.1(ii) for the double-sided excess, which involves also a condition on ā(ď, T , 0, 1), is only needed to prove the other
bound

�2�0
(ď) d C ā(T , �0, 0, 1).

6.2. Propagation of graphicality

The following lemmas will be the key to achieve a graphical parametrization of the current over ď.

Lemma 6.5 (Kick-Off Lemma). There exists �5 > 0 with the following property. Let T and � be as in Assumption 3.1. Assume that there
are an open book ď =

åN
i=1 Ąi ⊂ T0� and a plane �0 ⊂ T0� such that, for some �̄ d �5

(a1) ā(T , �0, 0, 1) d �̄ and ā̄(T , 0, 1) e (1 − �̄)ā(T , �0, 0, 1);
(a2) E(T ,ď, 0, 1) d �̄ ā(T , �0, 0, 1);
(a3) ý2 d �̄ ā(T , �0, 0, 1).

Then, there exists a plane �2
0
such that the rescaled current T 2 = (�0,1∕2)♯T satisfies (a1)-(a2)-(a3) with �0 replaced by �

2
0
and �̄ replaced

by some � = �(�̄) such that �(�̄) ³ 0 when �̄ ³ 0. Furthermore, �2
0
satisfies the additional properties that

(a4) ā(T 2, �2
0
, 0, 1) d 2 ā̄(T 2, 0, 1∕2);

(a5) V (ď) ⊂ �2
0
.

Proof. If we choose �5 d min{"4, �4}, then under the hypotheses of the lemma we can apply Lemma 6.3, so that we have

C �max(ď)
2 e ā(T , �0, 0, 1) e �̄−1ý2 , (6.6)

and

��0 (ď)
2 d Cā(T , �0, 0, 1) . (6.7)

Consider now sequences {Tk}
@
k=1

of currents and {�k}
@
k=1

of manifolds satisfying, for open books ďk and planes �k in T0�k,
assumptions (a1)-(a2)-(a3) with parameters �̄ = �k ³ 0+. Up to rotations, we can assume that each �k has the same tangent
T0�k = �0 and is the graph of a function 	k ∶ �0 ³ �é

0
over a region including all points of interest for the rest of the proof. Upon

applying a further rotation, we may also assume that the planes �k coincide with a fixed plane �0, and also that the spines V (ďk)
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have the same projection onto �0, that is Ď�0 (V (ďk)) = V 2 for every k, where V 2 is an (m− 1)-dimensional linear subspace of �0. We
let �±

0
denote the two halves of �0 delimited by V

2.
Next, we observe that, for all k sufficiently large, we can apply Proposition 4.33 and guarantee the existence of Lipschitz maps

v = vk ∶B3∕4 = B3∕4(0, �0) ³ AQ(�
é
0
) and closed sets K = Kk ⊂ B3∕4 such that (4.3)–(4.8) hold for T = Tk and � = �k. Writing

vk =
(1

i

[[
(vk)i

]]
, "vk

)
and ā̄k ∶= ā(Tk, �0, 0, 1), we consider the functions v̄k ∶B3∕4 ³ AQ(�

é
0
) defined by

v̄k ∶=

(1
i

[[
(vk)i

ā̄
1∕2

k

]]
, "vk

)
,

and we let v be a subsequential limit (in the weak topology ofW 1,2 over B3∕4) of the v̄k’s. Now consider any linear map lk ∶ �0 ³ �
é0

0

whose graph describes (on a suitable half of �0) an arbitrary page of the book ďk. The estimate (6.7) implies that ā̄
−1∕2

k
lk is uniformly

locally bounded and it thus converges, up to subsequences, to some function l. By (a2)-(a3), the support of the graph of v coincides
with the union of the graphs of all linear functions l arising as possible limits as above, after restricting each of them to the
appropriate half plane �±

0
(we shall denote l± such restriction): in other words, there are positive integers N± and �±i such that

v =
⎛
⎜⎜⎝

N±1
i=1

�±i
[[
l
±
i

]]
,±1

⎞
⎟⎟⎠

on �±
0
,

which in fact takes values in AQ(�
é0

0
). By (6.6) it follows easily that v cannot be trivial, i.e. the collections {l±

i } contains at least
three distinct linear maps. The support of the graph of v then coincides with a non-flat open book with (m − 1)-dimensional spine.

Notice that if ď̄k denote the rescaled non-flat open books defined as the support of the graphs of ā̄
1
2

k
v then there exists a rotation

Ok in �0 such that Ok(V (ď̄k)) = V (ďk) and

lim
k³@

ā̄
−1∕2

k
‖Ok − Id‖ = 0 . (6.8)

We next observe that, by [6, Theorem 13.3], we have in addition that v̄k converge to v strongly in W
1,2 on B1∕2, and that v is

Dir-minimizing. In particular, the averages

l± ∶=
1

N±

1
i

�±i l
±
i

defined on the respective halfplanes �±
0
form a single harmonic function l over �0.

We next consider the planes �̂k which are the graphs of ā̄
1
2

k
l. Using the estimates of Proposition 4.3, the strong L2 convergence

of the maps above, and the definition of l = Ā◦v, it is easy to see that, upon setting T 2
k
∶= (�0,1∕2)♯Tk and ý2

k
∶=

1

2
ýk, we have

lim
k³@

(
ā(T 2

k, �̂k, 0, 1) +
(ý2

k
)2

ā(T 2
k
, �̂k, 0, 1)

+
E(T 2

k
,ďk, 0, 1)

ā(T 2
k
, �̂k, 0, 1)

)
= 0 (6.9)

lim
k³@

ā(T 2
k
, �̂k, 0, 1)

ā̄(T 2
k
, 0, 1)

= lim
k³@

ā(T 2
k
, �̂k, 0, 1)

ā̄(T 2
k
, 0, 1∕2)

= 1 , (6.10)

Setting now �2
k
∶= Ok(�̂k), we have that �

2
k
⊃ V (ďk) and, thanks to (6.8), the conditions in (6.9)–(6.10) remain true with �

2
k
in place

of �̂k. This completes the proof. □

The following corollary can be easily proved by iterating Lemma 6.5 (or by following the same proof).

Corollary 6.6. For every r0 > 0 there exists �6 > 0 such that if T , �, ď, �0 are as in Lemma 6.5 and they satisfy (a1)-(a2)-(a3) with
�̄ d �6, then, setting V = V (ď), for every y * þ1∕4 K V and r0 d r d 1∕4 there exists a plane �̂y,r so that the rescaled current Ty,r = (�y,r)♯T

satisfies (a1)-(a2)-(a3)-(a4)-(a5) with �0 replaced by �̂y,r and �̄ replaced by some � = �(�̄) such that �(�̄) ³ 0 as �̄ ³ 0.

Lemma 6.7 (Propagation Lemma). For every � > 0, 0 < r0, �0 * (0, 1
4
) there exist �7 > 0 and C > 0 with the following property. Let T

and � be as in Assumption 3.1. Assume that there are an open book ď =
åN
i=1 Ąi ⊂ T0� and a plane �0 ⊂ T0� such that, for some �̄ d �7

(b1) ā(T , �0, 0, 1) d �̄ and 2 ā̄(T , 0, 1) e ā(T , �0, 0, 1);
(b2) ā(T ,ď, 0, 1) d �̄ ā(T , �0, 0, 1);
(b3) ý2 d �̄ ā(T , �0, 0, 1);
(b4) ā(T , �0, 0, 1) d 2 ā̄(T , 0, 1∕2);
(b5) V (ď) ⊂ �0.

Then, the following holds.

3 Notice that the conclusions of Proposition 4.3 still hold true (with a slightly worse constant) if the second part of hypothesis (b) on the optimality of �0
is replaced by the almost-optimality condition (a1).
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(1) Pushing Q-points: writing V = V (ď),

�(T , q) < Q for all q * spt(T ) K þ7∕8 K ÿ 1
8

ö B�(V ) . (6.11)

(2) Propagation estimates: for every y * þ 1
4

K V and r0 d r d 1

2
it holds

ā(T , �0, y, r) d 2ā(T , �0, 0, 1) . (6.12)

Furthermore, for y and r as above there exists an m-dimensional plane �̂y,r such that, when we write y for the point (0, y) * V é×V =

Rm+n, it holds

V ⊂ �̂y,r , (6.13)

2 ā̄(T , y, r) e ā(T , �̂y,r, y, r) , (6.14)

ā(T , �̂y,r, y, r) d 2 ā̄(T , y, r∕2) . (6.15)

(3) No-holes condition:

for any y * þ 1
4

K V there exists q * þ�0 (y) such that �T (q) e Q . (6.16)

Proof. Notice that if �7 d min{"4, �4} then under the hypotheses of the lemma we can apply Lemma 6.3 (see also Remark 6.4), and
conclude

C2 �2�0
(ď) e C �max(ď)

2 e ā(T , �0, 0, 1) . (6.17)

Nonetheless, since (b2) only provides control on the one-sided conical excess, we cannot conclude that the planar excess is controlling
��0 (ď).

Fix now � > 0, 0 < r0, and �0 * (0, 1
4
), and consider sequences {Tk}

@
k=1

of currents and {�k}
@
k=1

of manifolds satisfying, for
open books ďk and planes �k in T0�k, assumptions (b1)–(b2)–(b3)–(b4)–(b5) with parameters �̄ = �k ³ 0+. Since the sequences are
arbitrary, the proof will be complete if we can show that all the conclusions hold true along the given sequence for all sufficiently
large k. Up to rotations, we can assume that each �k has the same tangent T0�k = �0 and is the graph of a function 	k ∶ �0 ³ �é

0

over a region including all points of interest for the rest of the proof, with 	k satisfying 	k(0) = 0 and D	k(0) = 0. Upon applying
a further rotation, we may also assume that the planes �k coincide with a fixed plane �0 ⊂ �0, and, thanks to (b5), also that the
spines V (ďk) coincide with a fixed (m − 1)-dimensional linear subspace V ⊂ �0. We make the following choice of coordinates: we
denote by y = (y1,& , ym−1) the coordinates of V , whereas points in �0 will be given coordinates (x, y) = (x1, x2, y). The plane �0 is
the subspace {x2 = 0}, and we let �±

0
= {±x1 > 0} ⊂ �0 denote the two halves of �0 delimited by V . Coordinates in �

é
0
are denoted

w = (w1,& , wn−1). We also give an explicit expression of ďk =
å

±

å
i(Ąk)

±
i within this coordinate system. For a half-plane (Ąk)

±
i

there exists ((�i
k
)±, (
 i

k
)±) * S1 with ±(�i

k
)± e 0 such that

(Ąk)
±
i =

{
(t (�ik)

±, t (
 ik)
±, y) ∶ t * [0,@)

}
⊂ �0.

Notice that the condition that one of the coefficients � = 0 corresponds to the parametrization of one of the two half-planes of
{x1 = 0} delimited by V .

Next, we observe that, as in the proof of Lemma 6.5, for all k sufficiently large, we can apply again Proposition 4.3 and guarantee
the existence of Lipschitz maps v = vk ∶B3∕4 = B3∕4(0, �0) ³ AQ(�

é
0
) and closed sets K = Kk ⊂ B3∕4 such that (4.3)–(4.8) hold for

T = Tk and � = �k. Writing vk =
(1

i

[[
(vk)i

]]
, "vk

)
and ā̄k ∶= ā(Tk, �0, 0, 1), we consider the functions v̄k ∶B3∕4 ³ AQ(�

é
0
) defined

by

v̄k ∶=

(1
i

[[
(vk)i

ā̄
1∕2

k

]]
, "vk

)
,

and we let v be a subsequential limit (in the weak topology of W 1,2 over B3∕4, strong over B1∕2) of the v̄k’s.
Now, we apply the same rescaling (in the coordinates (x2, w) of the orthogonal complement to �0) to the open books ďk, and we

thus obtain

ď̄k =
å
i

(Ą̄k)
±
i ,

where

(Ą̄k)
±
i =

{
(t (�ik)

±, t ā̄
−1∕2

k
(
 ik)

±, y) ∶ t * [0,@)
}

=
{
(t (�̄ik)

±, t (
̄ ik)
±, y) ∶ t * [0,@)

}
,

having defined

(�̄, 
̄) =
(�, ā̄−1∕2 
)

|(�, ā̄−1∕2 
)| .
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Upon passing to a (not relabeled) subsequence, the open books ď̄k converge to some open book ď@ with spine V . Notice that, as a
consequence of (6.17), ď@ cannot be flat. Next, we claim that spt(ăv) K ÿ 1

2

(0, �0) K þ 7
8

⊂ ď@. To see this, notice first that, for any

given k, any point q * spt(ăv̄k
) K ÿ 3

4

has coordinates

q =
(
x1, ā̄

−1∕2

k
(uk)i(x1, y), y, ā̄

−1∕2

k
	k(x1, (uk)i(x1, y), y)

)
, (x1, y) * B3∕4,

for some i * {1,& , Q}. Observe that |ā̄−1∕2

k
	k| d ā̄

−1∕2

k
ý d �k ³ 0, so that a point q * spt(ăv) K ÿ 3

4

necessarily belongs to �0 and it

has coordinates

q = (x1, vi(x1, y), y, 0) , (x1, y) * B3∕4,

for some i. Now, by the strong convergence of v̄k to v in L
2 on B1∕2 and the above observation, we have that

1
i
+B1∕2

dist2((x1, vi(x1, y), y, 0),ď@)dx1dy

= lim
k³@

1
i
+B1∕2

dist2((x1, ā̄
−1∕2

k
(uk)i(x1, y), y, 0), ď̄k) dx1dy ;

(6.18)

on the other hand, for a point (x1, x2, y) * �0 we have

dist2((x1, x2, y), ď̄k) = inf
{|x1 − x21|2 + |x2 − x22|2 + |y − y2|2 ∶ (x2

1
, x2

2
, y2) * ď̄k

}

= inf
{
|x1 − x21|2 + |x2 − ā̄

−1∕2

k
x2
2
|2 + |y − y2|2 ∶ (x2

1
, x2

2
, y2) * ďk

}

d ā̄−1
k inf

{
|x1 − x21|2 + |ā̄1∕2

k
x2 − x

2
2
|2 + |y − y2|2 ∶ (x2

1
, x2

2
, y2) * ďk

}

= ā̄−1
k dist2((x1, ā̄

1∕2

k
x2, y),ďk)

so that
1
i
+B1∕2

dist2((x1, ā̄
−1∕2

k
(uk)i(x1, y), y, 0), ď̄k) dx1dy

d 1
i

ā̄−1
k +B1∕2

dist2((x1, (uk)i(x1, y), y),ďk) dx1dy

d ā̄−1
k

(
ā(Tk,ďk, 0, 1) + C ā̄

1+

k

)
,

where we have used (4.5) and (4.6). Since the right-hand side is infinitesimal by (b1) and (b2), (6.18) concludes the proof of the
claim.

Now recall that v∶B3∕4(0, �0) ³ AQ(�
é0

0
) C AQ(R): the fact that its graph is supported on ď@ implies, in particular, that some of

the pages of ď@ are linear graphs over �0.
Next, we claim that the support of the graph of v is not a single hyperplane, but a non-degenerate open book with spine

V . Suppose, towards a contradiction, that, calling z = (x1, y) the coordinate on �0, v(z) = (Q [[l(z)]] , "v) for a linear function
l∶�0 ³ �

é0

0
C R. Then, calling �̄k the graph of ā̄

1∕2

k
l we would have

ā̄k d 2 ā̄(Tk, 0, 1∕2) d 2ā(Tk, �̄k, 0, 1∕2),

and thus, in particular,

1

2
d lim
k³@

ā(Tk, �̄k, 0, 1∕2)

ā̄k
d C lim

k³@+B 1
2

|v̄k ⊖ l|2 dz = 0,

a contradiction.
Now that the fundamental properties of the limit v have been established, we proceed with proving the validity of conclusions

(1)(2)(3), namely that the corresponding estimates hold true for all sufficiently large k.

Proof of (1). Suppose that (6.11) fails for a subsequence (not relabeled), i.e. that there exists a sequence of points qk * spt(Tk) K
þ7∕8 K ÿ 1

8

ö B�(V ) such that

�(Tk, qk) e Q for all k .

Setting zk ∶= Ď�0 (qk) and wk ∶=
Ď
�é
0
(qk)

Cā̄
1∕2

k

for a suitable geometric constant C, Lemma 2.4 implies once again that

|wk| < 1

4
,

so that, up to subsequences, the sequence q̄k =
(
zk, wk

)
converges to a point q0 = (z0, w0) * ÿ 1

8

ö B�(V ).

Applying estimate (4.9) to vk we conclude that for every 0 < r1 < 1∕4 it holds

+Br1 (zk)KKk
1

|z − zk|m−2
Q1
i=1

||||)r
((v̄k)i(z) −wk)

|z − zk|
||||
2 d C.
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Using the strong convergence of v̄k to v in W
1,2 and the dominated convergence theorem, we conclude that

+Br1 (z0)
1

|z − z0|m−2
Q1
i=1

||||)r
(vi(z) −w0)

|z − z0|
||||
2 d C.

Recall now that, since v is Dir-minimizing and takes values in AQ(R), we can apply [5, Theorem 3.1] to infer that v is Lipschitz. In
particular the real-valued map |v ⊖ w0| is also Lipschitz and we can use Rademacher’s theorem (cf. [7] for its validity in the case
of multivalued functions) to get

||||)r
|v(z)⊖w0|
|z − z0|

||||
2 d

Q1
i=1

||||)r
(vi(z)⊖w0)

|z − z0|
||||
2

.

In particular

+Br1 (z0)
1

|z − z0|m−2
||||)r

|v(z)⊖w0|
|z − z0|

||||
2 d C .

But then the Lipschitz map zÇ |v(z)⊖w0| must vanish in z0, which in turn implies that v(z0) = Q
[[
w0

]]
. Since however z0 does not

belong to the spine V , the latter fact would contradict the structural description of the map v discussed above (in particular, recall
that the graph of v is supported on a non-flat open book with spine V ).

Proof of (2). We first prove the estimate in (6.12). Should it fail, there would be sequences yk * þ 1
4

KV and r0 d rk d 1∕8 such that

2 d ā(Tk, �0, yk, rk)

ā̄k
.

Letting y * þ 1
4

K V and r0 d r d 1∕8 be subsequential limits of yk and rk respectively, we would on the other hand have

lim
k³@

ā(Tk, �0, yk, rk)

ā̄k
= r−(m+2) +þr(y)|v|

2 = +þ1

|v|2 d 1,

where we have used the invariance of v with respect to V and the lower semi-continuity of the L2-norm with respect to weak
convergence. Now, the last two displayed estimates are in contradiction.

Next, we show that the set of m-dimensional planes � for which (6.13)–(6.14) hold with � in place of �̂y,r is not empty; then, we

show that for some choice of �̂y,r in such set we must have (6.15). For the first claim, let l∶ �0 ³ �
é0

0
be the linear function such

that l(z) = Ā◦v(z) for z * B3∕4(0, �0), and let �k be the graph of the function x2 = ā̄
1∕2

k
l(z). Since V is the spine of the support of v,

we have that l(0, y) = 0 for every y, and thus V ⊂ �k by construction. Moreover, we have that

lim
k³@

ā(Tk, �k, y, r)

ā̄(Tk, y, r)
= 1 for every y * þ1∕4 K V and r0 d r d 1∕8

as a consequence of the strong convergence v̄k ³ v in L2(B3∕4(0, �0)) and the definition of �k. This proves the existence of planes
satisfying the conditions in (6.13)–(6.14).

Assume finally that (6.15) fails along a subsequence, that is there are points yk * þ1∕4 K V and radii r0 d rk d 1∕4 such that
whenever �k is an m-dimensional linear subspace of �0 with V ⊂ �k and 2 ā̄(Tk, yk, rk) e ā(Tk, �k, yk, rk) we get

ā(Tk, �k, yk, rk) > 2ā(Tk, �k, yk, rk∕2) . (6.19)

First, we claim that such a plane �k must be the graph over �0 of a linear function ℎk ∶�0 ³ �
é0

0
with ℎk||V � 0 satisfying

|∇ℎk|2 d C(r0) ā̄k , (6.20)

where ā̄k = ā(Tk, �0, 0, 1) as usual. Indeed, for every k let z be a point in Kk K þrk∕2(yk), and observe that, if q(z) * spt(Tk) satisfies
|z − q(z)| = dist(z, spt(Tk)), then by (4.8) we have

|z − q(z)|2 d |vk(z)|2 d C ā̄k .

On the other hand, by Lemma 2.4 and the almost-optimality of �k we also get

dist(q(z), �k)
2 d C ā(Tk, �k, yk, rk) + Cý

2 d C(r0) ā̄k.

This shows that there exists a large set of points z * �0 K þrk∕2(yk) such that

dist(z, �k)
2 d C(r0) ā̄k,

thus proving the claim.
As a consequence of (6.20), modulo passing to (not relabeled) subsequences, we have that yk ³ y * þ̄1∕4 K V , rk ³ r *

[
r0, 1∕4

]
,

and the functions lk =
ℎk

ā̄
1∕2

k

converge to a linear function l over �0. Since þrk (yk) ⊂ þ1∕2, using the Lipschitz bound on vk and the

fact that the Lipschitz constant of ℎk converges to 0, we get, under the assumption that (6.19) holds,
(
2

r

)m+2
+B r

2
(y)
|v ⊖ l|2 = lim

k³@

ā(Tk, �k, yk, rk∕2)

ā̄k
d 1

2
lim
k³@

ā(Tk, �k, yk, rk)

ā̄k



Nonlinear Analysis 247 (2024) 113606

22

C. De Lellis et al.

Fig. 1. The Whitney decomposition of [0, 2−N0 ] × [−2, 2]m−1. In the above example the parameter M equals 2.

=
1

2

1

rm+2 +Br(y)|v ⊖ l|2 = 1

2

(
2

r

)m+2
+B r

2
(y)
|v ⊖ l|2 ,

which contradicts the fact that v is non-flat.

Proof of (6.16) Finally assume that (6.16) fails, that is there exists a sequence of points yk * þ 1
4

K V such that �Tk (q) < Q

for every q * þ�0 (yk). Therefore (4.12) is satisfied in the cylinder B�0∕2(yk, �0) × �é
0
and so by Proposition 4.5 we have that

vk|B�0∕2(yk ,�0) = (
1
i

[[
(vk)i

]]
, ") with " * {−1, 1} a constant, and (vk)1 d ⋯ d (vk)Q each satisfying the minimal surfaces equation

in �k. Since up to subsequences we can assume that yk ³ y * V K þ̄1∕4, it follows that in B�∕4(y, �0) the functions (v̄k)i = ā̄
−1∕2

k
(vk)i

converge in the C1 topology to harmonic functions. In particular there would be a C1 selection for v in B�∕4(y, �0), which is not
possible, because it would contradict the structural description of v. □

7. Proof of Proposition 3.3: Whitney decomposition

Using the results of the previous section we can now adapt the graphical parametrization constructed in [4] to our setting. In
view of Lemma 6.5, we start by updating Assumption 6.1 into

Assumption 7.1. Assumption 6.1 holds, and in addition ā(T , �0, 0, 1) d 2 ā̄(T , 0, 1∕2) and V (ď) ⊂ �0.

Recall then that under the above Assumption 7.1 we set coordinates (x, y,w) in Rm+n, where y = (y1,& , ym−1) are the coordinates
on the spine V (ď), �0 has coordinates (x1, y), and T0� has coordinates (x1, x2, y). The half-planes �

±
0
are defined by �±

0
= {±x1 >

0} ⊂ �0.
Next, we need to identify the domains on which the different graphical approximations of T are going to be defined. These will

consist of a union of cubes in a Whitney-type decomposition of (a subset of) [0,@) × V with suitably good properties. Here, the
coordinate t on the ‘‘abstract’’ closed half-line [0,@) will play the role of the distance function from V .

Fix a large positive integer N0 * N, and consider the rectangle

Đ0 ∶= [0, 2−N0 ] × [−2, 2]m−1 ⊂ [0,@) × V ,

as well as the collection úN0
of sub-cubes defined as follows. First, we partition (0, 2−N0 ] into the dyadic intervals {[2−k, 2−k+1]}k>N0

.
Then, we further divide each layer [2−k, 2−k+1] × [−2, 2]m−1 into sub-cubes of side-length 2−(k+M), where M is a large integer to be
chosen later, cf. Fig. 1. If L * úN0

has side-length 2−(k+M), we will say that L has order k. Notice that

2M+1

√
m

diam(L) e max
z*L

dist(z, V ) e min
z*L

dist(z, V ) e 2M√
m

diam(L) "L * úN0
. (7.1)

For any L * úN0
, we shall denote cL = (tL, yL) the center of L and dL the diameter of L. In order to ease the notation, we will

write yL in place of the more cumbersome (0, yL, 0) * Rm+n, and we will be interested only in those cubes L for which |yL| < 3∕4.
For such cubes L we introduce the notation

āL ∶= ā
(
T ,ď, yL, M̄dL

)
and ā̄L ∶= ā̄

(
T , yL, M̄dL

)
,

where M̄ ∶= 2M+6∕
√
m and ā̄L is computed by minimizing ā(T , �, yL, M̄dL) among m-dimensional planes � ⊂ T0�. The parameter

N0 is chosen so large that if L * úN0
is a cube with |yL| < 3∕4 then þM̄dL

(yL) ⊂ þ1(0).

Definition 7.2 (Whitney Domains). We establish the following partial order relation in ú: if L,L2 * ú, we say that L is below L2,
and we write L ⪯ L2, if and only if ĎV (L) ⊂ ĎV (L

2). Let T be as in Assumption 3.1, and let ď * ℬ(0). For �, � * (0, 1∕2), we define
the following regions.
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(W) The good Whitney domain of Đ0 associated with (T ,ď, �, �,N0), denoted by ą = ą(T ,ď, �, �,N0), is the subfamily of L * úN0

with |yL| < 3∕4 such that

āL2 < �2 and āL2 < � ā̄L2 (7.2)

for all L ⪯ L2.
(B) The bad Whitney domain of Đ0 associated with (T ,ď, �, �,N0), denoted by ð = ð(T ,ď, �, �,N0) is the subfamily of L * úN0

with
|yL| < 3∕4 such that L2 * ą for all L ⪯ L2 with L2 � L and

āL < �
2 and āL e � ā̄L . (7.3)

Since we will often deal with suitable dilations of the cubes in úN0
, we introduce the following notation. For 1 d � d 2M , �L is

the cube with the same center cL as L and diameter d�L = � dL.
We next define the regions where we shall build the graphical parametrization of the current. First, given 1 d � d 2M , we set

U�ą ∶=
å
L*ą

�L L
([
2−N0 , 2−1

]
× Bm−1

3∕4
(0)

)
, (7.4)

and, setting Uą = U1ą , we define the function %ą ∶Bm−1
3∕4

(0) ³
[
0, 2−N0

]
as

%ą (y) ∶= inf
{
t ∶ (t, y) * Uą

}
. (7.5)

We also define

R�ą ∶= (Ď−1�0
(U+

�ą ) L Ď−1�0
(U−

�ą )) K þ3∕4 , (7.6)

where, for a domain U ⊂ [0,@) × V , we have denoted

U± ∶=
{
(±t, 0, y) * �±

0
⊂ T0� ∶ (t, y) * U

}
(7.7)

the corresponding domains on �±
0
.

Next, we consider the family

ô =
{
þM̄dL

(yL) ∶ L * ð} ,
and we let

{
þM̄dLi

(yLi )
}
i*N

be a Vitali covering of
åô : that is, each Li * ð, the balls þM̄dLi

(yLi ) are pairwise disjoint, and

å
L*ð

þM̄dL
(yL) ⊂

å
i*N

þ5M̄dLi
(yLi ).

To ease the notation, we set di ∶= dLi , yi ∶= yLi , āi ∶= āLi , and ā̄i ∶= ā̄Li , and, with this notation in place, we define

Rð ∶=
å
i*N

þ5M̄di
(yi) ö BC⋆(�−1āi)1∕2di

(V ) , (7.8)

where C⋆ is a geometric constant.
Finally, before proceeding we also record the following

Remark 7.3. If T satisfies Assumption 7.1, then we have

ā̄L d ā(T , �0, yL, M̄ dL) d C (�2 + "̄) "L * ą L ð . (7.9)

Indeed, the first inequality is trivial, while the second inequality follows from

ā(T , �0, yL, M̄ dL) d ā(T ,ď, yL, M̄ dL) + C ��0 (ď)
2

(6.1)d �2 + C ā(T , �0, 0, 1) d C (�2 + "̄) .

7.1. Graphicality on good cubes

In the following theorem, we are going to represent T as a special multi-valued graph in the region Rą which ‘‘projects’’ onto the
good Whitney domain. As it will become apparent in the proof, in this region the hypotheses from Proposition 4.5 will be satisfied,
so that the special multi-valued function u which parametrizes T (in the sense that T is the graph of v when v(z) = u(z)+	 (z+u(z)))
will come equipped with a C1,1∕2 selection as specified in Proposition 4.5. The latter may then be considered as a ‘‘p-multifunction’’
on the ‘‘abstract’’ domain U = Uą over the (degenerate) open book �0; see [4, Definition 5.4]. More precisely, a p-multifunction
in the present context will be a collection u = {u±j }

Q
j=1

of functions of class C1,1∕2 defined on domains U± corresponding to some
domain U ⊂ (0,@) × V as specified in (7.7). For every � = (t, y) * U , we let �± ∶= (±t, 0, y) * �±

0
, and we set

|u(� )| ∶ = max
±

max
j

|u±j (�±)| ,
|Du(� )| ∶ = max

±
max
j

|Du±j (�±)| ,
[Du]1∕2(� ) ∶ = max

±
max
j

[Du±j ]1∕2(�
±) ,
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where, for z * U±, we have set

[Du±j ]1∕2(z) ∶= inf
�>0

sup

{|Du±j (z1) −Du±j (z2)|
|z1 − z2|1∕2

∶ z1 � z2, zk * U± K þ�(z)

}
.

Finally, we define the weighted C1,1∕2 norm for a p-multifunction u = {u±j }j setting

‖u‖
C
1,1∕2
∗ (U )

∶= sup
�=(t,y)*U

(
t−1|u(� )| + |Du(� )| + t1∕2 [Du]1∕2(� )

)
.

Theorem 7.4 (Graphical Parametrization). Let T and � be as in Assumption 3.1. For any N0 * N there are �8 > 0, �8 > 0, and C e 1,
depending on (m, n, p,N0) with the following property. If:

(a) the values of the parameters � and � in Definition 7.2 are smaller than �8 and �8,
(b) Assumption 7.1 holds with "̄ < C−1�2, �̄ < C−1� for some ď and �0,

then there is a special Q-valued map u = (
1
j

[[
uj
]]
, ") over U+

4ą L U−
4ą , with the following properties:

(i) " is constant on each of the two domains U±
4ą , each u±j ∶U±

4ą ³ �
é0

0
is of class C1,1∕2

loc
, and, regarding u as the p-multifunction {u±j }

Q
j=1
,

we have ‖u‖
C
1,1∕2
∗ (U4ą )

d C �;

(ii) T R4ą = ăv R4ą , where v = (
1
j

[[
vj
]]
, ") is the special Q-valued function on U+

4ą L U−
4ą defined by

v±j (z) ∶= u±j (z) + 	 (z + u
±
j (z)) ; (7.10)

(iii) if L * ð(T ,ď, �, �,N0) then there exists �L * þM̄dL∕2
(yL) with �T (�L) e Q;

(iv) the following estimate holds:

+þ1∕2ö(R2ąLRð)
dist(q, V )2 d‖T ‖ d C ��−3∕2 ā(T ,ď, 0, 1) ; (7.11)

(v) For every fixed �, �, and �, if �̄ and "̄ are chosen sufficiently small, then %ą (y) d � for all y * þ1∕4 K V .

Proof. In this proof all constants denoted by C can only depend on Q,m, n, and N0. If the constant does not depend on N0 it will
then be denoted by C̄.

First of all, if the constant C in (b) is chosen large enough, and if tau8 and �8 are chosen small enough, it follows from
Assumption 7.1 and Corollary 6.6 that the cubes of order (N0 + 1) belong to ą . This is important, as it guarantees that every
cube L * ð has a father in ą . Moreover, for fixed � > 0 and �0 * (0, 1∕4), the hypotheses of Lemma 6.7 are satisfied at the scale
of all cubes L of order (N0 + 1): that is, conditions (b1) up to (b5) in Lemma 6.7 are satisfied with T replaced by TL = (�yL ,M̄dL

)♯T

and �0 replaced by �̂L ∶= �̂yL ,M̄dL
from Corollary 6.6.

Next, we claim that if L is a cube in ą L ð then we can apply Lemma 6.7 at the scale of L. The proof is by induction on the
order k of the cube. The claim is true for k = N0 + 1. Let us then fix a cube L of order k + 1 which is in ą L ð, and make the
induction hypothesis that Lemma 6.7 can be applied to all cubes L2 of order N0 + 1 d j d k that are in the ancestry of L. We shall
prove that the lemma can be applied to L. We let L2 denote the ‘‘father’’ of L, i.e. the cube of order k which is closest to L: notice
that L2 * ą , regardless of whether L * ą or L * ð. Now, we observe that:

; ā̄(T , yL, M̄dL) d C̄(�2 + "̄) by Remark 7.3;
; the inequalities

ā(T ,ď, yL, M̄dL) d 2m+2 ā(T ,ď, yL2 , M̄dL2 ) < 2m+2 � ā̄(T , yL2 , M̄dL2 )

d 2m+2 � ā̄(T , yL, M̄dL)

hold by the definitions of ð and ą and (6.15);
; (M̄dL)

2ý2 d (M̄dL)
2 �̄ ā(T , �0, 0, 1) d 2(M̄dL) �̄ ā̄(T , yL, M̄dL) by Assumption 7.1 and an iterative application of (6.15) over the

ancestry of L;
; there exists �̂L so that V ⊂ �̂L, 2 ā̄(T , yL, M̄dL) e ā(T , �̂L, yL, M̄dL), and

ā(T , �̂L, yL, M̄dL) d 2 ā̄(T , yL, M̄dL∕2) ,

as a consequence of Lemma 6.7 applied at scale L2.

The above considerations imply that, if �8 and �8 are chosen small enough, then Lemma 6.7 applies indeed. In particular, we
conclude that �(T , q) < Q for every q * spt(T ) K ÿM̄dL∕8

(yL, �̂L) K þ7M̄dL∕8
(yL) ö B�dL (V ). We can then apply Proposition 4.5 in

Ď−1�0
(8L) K þM̄dL∕2

(yL) (where we used the short-hand notation Ď−1�0
(8L) for Ď−1�0 (8L

+) L Ď−1�0
(8L−)) to conclude that the support of T

decomposes into smooth minimal surfaces over 4L. Observe that, as a consequence of Lemma 2.4 and of the planar excess estimates
obtained at the scales of all cubes L * ą L ð, we have

spt(T ) K þ3∕4 K ÿM̄dL∕4
(yL, �0) ⊂

{
q ∶ |Ďé�̂L (q)|

2 d C(�2 + "̄) d2L

}
,
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so that

spt(T ) K þ3∕4 K ÿM̄dL∕4
(yL, �0) ⊂ þM̄dL∕2

(yL) . (7.12)

This guarantees that Ď−1�0 (4L) K þM̄dL∕2
(yL) K spt(T ) = Ď−1�0

(4L) K þ3∕4 K spt(T ). The graphical representation over U4ą follows now
from noticing that, where cubes 4L and 2L2 coincide, the corresponding functions must agree because they parametrize the same
piece of the current. In particular this proves (ii). For the argument leading to the precise estimate claimed in (i) we refer the reader
to [4, Section 5]

Fix now L * ð and L2 be the ‘‘father’’ of L as above. By Lemma 6.7, we have

"y * þ M̄dL2
4

(yL2 ) K V #�L * þ�0M̄dL2
(y) such that �T (�L) e Q . (7.13)

We apply (7.13) with y = yL, and thus we guarantee the existence of �L * þ M̄dL
2

(yL) with �T (�L) e Q. This proves (iii).

We next come to (iv). We first claim that

spt(T ) K þ1∕2 ö R2ą ⊂
å
L*ð

þM̄dL
(yL) ⊂

å
i*N

þ5M̄di
(yi) . (7.14)

To see this, let L * úN0
with |yL| < 3∕4 be such that L + ą but L2 * ą for every L ⪯ L2 with L2 � L. In particular, let L2 be

the father of L. Since L2 * ą , and assuming �8 and �8 are sufficiently small, we can apply Lemma 6.3 and Remark 6.4 to conclude
that āL2 d � ā̄L2 d C � �2max(ď). Now, since þM̄dL

(yL) ⊂ þM̄dL2
(yL2 ), and since dL2 = 2 dL, we have that

āL d 2m+2 C � �2max(ď).

On the other hand, by Lemma 6.3 we have �2max(ď) d C̄ ā(T , �0, 0, 1) d C̄"̄. Hence, a suitable choice of "̄ guarantees that āL < �2,
namely that L * ð.

Next, let L * úN0
with |yL| < 3∕4 be such that L + ą , and let L2 be the largest ancestor of L such that L2 + ą . By the

considerations above, L2 * ð, and thus ĎV (int(L)) ⊂ ĎV (int(L
2)) for some L2 * ð.

With this in mind, let now q = (x, y,w) * spt(T ) K þ1∕2, and let t =
√

|x|2 + |w|2 = dist(q, V ). If t e %ą (y), then (t, y) * Uą , and
q * þM̄dL

(yL) for some L * ą . Applying Lemma 2.4 and Remark 7.3, we have, on the other hand,

|Ď�0 (q)| d C dL
(
ā(T , �0, yL, M̄dL) + d

2
Lý

2
)1∕2 d C dL (� + "̄1∕2),

so that, if �8 is sufficiently small, q * R2ą . If, instead, t < %ą (y) then %ą (y) > 0 and, by the considerations above, y * ĎV (int(L)) for
some L * ð, and thus q * þM̄dL

(yL), completing the proof of (7.14).
We can now complete the proof of (iv). We notice that for each i * N, denoting Ui ∶= þ5M̄di

(yi) K BC⋆(�−1āi)1∕2di
(V ), we have

+Ui dist
2(q, V ) d ‖T ‖ (q) d C2

⋆

�
d2i āi ‖T ‖ (Ui) d

C2
⋆

�
dm+2i āi ā

1∕2
i

d C�

�3∕2 +þM̄di
(yi)

dist2(⋅,ď) d ‖T ‖ ,

where we used that ā
1∕2
i d � by (7.3), and that, by a simple covering argument and the monotonicity formula for T ,

‖T ‖(Ui) d C dm−1i �−1∕2 di ā
1∕2

L
.

By (7.14) and the definition of Rð in (7.8),
spt(T ) K þ1∕2 ö (R2ą L Rð) ⊂

å
i*N

Ui,

and thus (7.11) follows by summing over i, keeping in mind that the balls þM̄di
(yi) are pairwise disjoint.

Finally, (v) is just a consequence of Corollary 6.6. □

7.2. Improved L2 estimate

The next results are proved in the same way as in [4, Sections 6 and 7].

Definition 7.5. We let l±j ∶ �±
0
³ �

é0

0
be the maps whose graphs describe the pages of the open book ď.

Note that all of them must vanish on V = V (ď), the (m − 1)-dimensional spine of ď. There are N+ e 1 functions l+j and N
− e 1

functions l−j , with N
++N− d 2Q, and with the possibility that N+ � N−. The key point of this section is that over the two halves of

the ‘‘good’’ region U4ą , namely U±
4ą we will be able to select, for each map u±j in the collection of maps describing u, some linear

map l±
ℎ±(j)

for which the L2 norm of w±
j ∶= u±j − l±

ℎ±(j)
can be estimated in terms of the excess with respect to ď, rather than the

excess with respect to �0. The proof is verbatim that given in [4, Section 6] for the corresponding estimate in that situation and it
is therefore omitted.
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Theorem 7.6 (Improved L2 Estimates). Let T , �, ď and �0 be as in Theorem 7.4. Let u be the corresponding map, and let l = {l±j }
N±

j=1
be

the maps of Definition 7.5. There are a geometric constant C and two selection functions ℎ± ∶ j * {1,& , Q} Ç ℎ±(j) * {1,& , N±} such
that if l̃±j ∶= l±

ℎ±(j)
and

w±
j ∶= u±j − l̃±j , (7.15)

then

sup
�=(t,y)*U3ą

|t| m2 +1 (|t|−1|w(� )| + |Dw(� )| + |t|1∕2[Dw]1∕2(� )
) d C (ā(T ,ď, 0, 1)1∕2 + ý) , (7.16)

1
±

Q1
j=1

+U±
3ą

(|w±
j (z)|2 + |x|2|Dw±

j (z)|2) dz d C (ā(T ,ď, 0, 1) + ý2) , (7.17)

where, for z * �0, |x| denotes, as usual, the distance of z from V .

8. Proof of Proposition 3.3 : reparametrization on the new book

In this and the next section we assume that the parameters � and � defining the Whitney decomposition used in the previous
section are fixed. The two selection functions ℎ± and the corresponding linear maps l̃±j of Theorem 7.6 identify a new open book
ď̃ ⊂ ď as follows

Definition 8.1. We define

ď̃ =
å
±

N±å
j=1

(id + l̃±j )(�
±
0
) =∶

å
±

N±å
j=1

Ą̃±
j . (8.1)

Remark 8.2. Observe that ď̃ can be a proper subset of ď. However it certainly contains at least two pages, one on the left and one
on the right.

In this section we reparametrize a large portion of the current T as graph over the pages of ď̃. The advantage of ď̃ over ď is that
we have ‘‘thrown away useless pages’’, i.e. pages of ď which were not really close to spt(T ). In particular the conclusions of this
section will be used to prove Lemma 3.5.

8.1. Reparametrizing over ď̃

By Theorem 7.4(ii), in the region Rą the current T coincides with the graph ăv of the special Q-valued function v = u+	 (⋅+ u)

over the domains U±
4ą . Recall that on each domain U±

4ą of �±
0
the function u is canonically decomposed into C1,1∕2 functions u±j , and,

since each domain U±
4ą is connected, the sign function "u is constant on each of them. We will then simply reparametrize the graph

of each map u±j over the domain U
±
4ą as the graph of a map ũ±j over a subset of the corresponding page Ą̃±

j . Observe that because
the orientation of the graph of u is constant on each U4ą± , so is the orientation of the graph of ũ in order for the map ṽ = ũ+	 (⋅+ ũ)

to describe the same current. In particular in this case, with a slight abuse of notation, we can omit to specify such orientation, and
the corresponding sheets will be denoted by ăṽ±j

, while the sum of them will be denoted by ăď̃(ṽ). This is discussed in Section 8.2.

In Section 8.3. we will instead aim at reaching a similar parametrization for T over the ‘‘bad’’ domain Rð. Taking advantage of
the smallness of planar excess at the scale of each bad cube L * ð, and of the existence of points of density at least Q in the current
at that scale, we may still define Lipschitz approximations uL on suitable planes �̂L satisfying the estimates of Proposition 4.3. Of
course, as specified in Remark 4.2, for each such function uL we also have a canonical selection by Lipschitz maps. After carefully
estimating the angle between the cone ď̃ and the plane �L, we will be able to reparametrize the portion of the current described by
the graphs of the vL = uL + 	 (⋅ + uL) over the varying domains in �̂L for L * ð with the union of graphs of functions ṽ±j defined
over suitable domains of Ą̃±

j . This time we do not have a ‘‘sign function’’ which is locally constant on the regions on the left and
on the right of the spine. On the other hand, every point q = � + ṽ±j (� ) with � * Ą̃±

j can be rewritten as z + (vL)j (z) for a suitable
L * ð and z * �̂L, and we orient the approximate tangent to the graph of ṽ

±
j at q positively (with respect to the orientation of Ą̃

±
j )

if "vL (z) = 1 and negatively (with respect to the orientation of Ą̃±
j ) if "vL (z) = −1. This defines an integer rectifiable current ăṽ±j

and the sum of all these will be denoted by ăď̃(ṽ).

8.2. Reparametrization over the good domain

As in [4, Section 7], a reparametrization of the graph of v on the slightly smaller good region R2ą over the new book ď̃ follows
from Theorem 7.6. The proof can be taken verbatim from [4] and it is therefore omitted. In what follows, we adopt, for a given
domain U ⊂ [0,@) × V , the notation

Ũ±
j ∶=

{
(x, y) * Ą̃±

j ∶ (|x|, y) * U
}
,
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where, since each Ą̃±
j ⊂ ď ⊂ T0�, we can use (x, y) as a short-hand notation to identify the point (x, y, 0). We will also adopt the

following convention in order to further ease the notation. The reparametrization algorithm will produce precisely p = 2Q functions,
Q defined on the half planes Ą̃+

j projecting on �
+
0
and the other Q defined on the half planes Ą̃−

j projecting on �
−
0
. We agree to

denote such functions as ũ±j , where j * {1,& , Q}, and to let Ą̃±
j denote the half plane containing its domain. In particular, if two

functions, say ũ+j and ũ
+
j2
, are defined on the same half plane, then that half plane will be denoted Ą̃+

j or Ą̃
+
j2
depending on whether

it is thought of as the domain of ũ+j or ũ
+
j2
. At the price of possibly having Ą̃±

j = Ą̃±
j2
for some j � j2, we can think from now on that

ď̃ =
å
±

Qå
j=1

Ą̃±
j .

Corollary 8.3 (Reparametrization on Good Cubes). Let T ,�,ď, and �0 be as in Theorem 7.6, and let ď̃ be the open book in Definition 8.1.

There are 2Q functions ũ±j ∶ (Ũ2ą )±j ⊂ Ą̃±
j ³ (Ą̃±

j )
é0 (with j * {1,& , Q}) of class C1, 1

2 with the following properties. The estimate

‖ũ‖
C
1, 1
2

∗ (Ũ2ą )

d C(ā(T ,ď, 0, 1)1∕2 + ý) (8.2)

holds. Moreover, if we set

ṽ±j (z) ∶= ũ±j (z) + 	 (z + ũ
±
j (z)) , (8.3)

there is an appropriate choice of the orientation of the graphs of ṽ±j so that, following the notation of Section 8.1,

T Rą = ăď̃(ṽ) Rą . (8.4)

Finally,

+(Ũ2ą )±j

(|ũ±j |2 + |x|2|Dũ±j |2) d C +U±
3ą

(|w±
j |2 + |x|2|Dw±

j |2)

d C (ā(T ,ď, 0, 1) + ý2) ,

(8.5)

where w is the multifunction over �0 defined in (7.15).

8.3. Multivalued approximation in bad cubes

Here we show that over the ‘‘bad’’ Whitney region ð the current T can still be approximated with a multivalued graph over ď̃,
with good estimates, in the following sense.

Remark 8.4 (Graphicality in Bad Cubes). By virtue of Theorem 7.4(iii) and (7.9), as soon as � and "̄ are chosen sufficiently small, for
any cube L * ð we may apply Proposition 4.3 in the ball þ20M̄dL

(yL) and conclude from the Propagation Lemma 6.7 the existence
of:

; a plane �̂L so that V ⊂ �̂L, 2 ā̄(T , yL, 20M̄dL) > ā(T , �̂L, yL, 20M̄dL), as well as ā(T , �̂L, yL, 20M̄dL) d C ā̄L,
; a closed set KL ⊂ BL ∶= þ10M̄dL

(yL) K (yL + �̂L),

; and a function uL ∶BL ³ AQ(�
é0

L
)

such that the corresponding map vL = uL + 	 (⋅ + uL) satisfies (the rescaled version of) (4.3)–(4.8), which we record here for future
reference, keeping in mind that (M̄dL)

2ý2 d �̄ ā̄L as shown in the proof of Theorem 7.4:

spt(ăvL
) ⊂ � , (8.6)

Lip(vL) d Cā̄

L

and osc(vL) d CĆ(T ,ÿ15M̄dL
(yL, �̂L)) + C dL ā̄

1∕2

L
, (8.7)

ăvL
(KL × �̂éL ) = T (KL × �̂éL ) K þ15M̄dL

(yL) mod(p) , (8.8)

|BL öKL| d ‖T ‖(((BL öKL) × �̂
é
L ) K þ15M̄dL

(yL)) d C dmL ā̄
1+

L

, (8.9)
|||||
‖T ‖(ÿ10M̄dL

(yL, �̂L) K þ15M̄dL
(yL)) −Q|BL| − 1

2 +BL |DvL|
2
|||||
d C dmL ā̄

1+

L

, (8.10)

d−2L ‖vL‖2L@(BL)
+ d−(m+2)

L +BL
(|vL|2 + |z − yL|2 |DvL|2 dz

) d C ā̄L . (8.11)

As in Corollary 8.3, we can reparametrize the function uL on the cone ď̃ outside of a small region around the spine of ď̃. Recall
the notation Rð introduced in (7.8).

Corollary 8.5 (Reparametrization on Bad cubes). Let T ,�,ď, and �0 be as in Theorem 7.6, and let ď̃ be the open book in Definition 8.1.
There exist 2Q functions ũ±j ∶Rð K Ą̃±

j ³ (Ą̃±
j )

é0 and an appropriate choice of orientations "±j with the following properties. The estimates

Lip(ũ±j ) d C�2
 , ‖ũ±j ‖L@ d C�2 (8.12)
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holds. Moreover, if we set

ṽ±j (z) ∶= ũ±j (z) + 	 (z + ũ
±
j (z)) , (8.13)

and denote by ăď̃(ṽ) the current described in Section 8.1, then

|||||+Rð
dist2(q, V ) d‖T ‖(q) − +Rð

dist2(q, V ) d‖ăď̃(ṽ)‖(q)
|||||
d C
�
ā(T ,ď, 0, 1) (8.14)

and

+RðKĄ̃±
j

(|ũ±j |2 + |x|2|∇ũ±j |2) d C
�
ā(T ,ď, 0, 1) . (8.15)

Before coming to its proof we register the following further corollary.

Corollary 8.6. Let T ,�,ď, and �0 be as in Theorem 7.6, and let ď̃ be the open book in Definition 8.1, then we have

rm+2E(T , ď̃, 0, r) d C

�3∕2
ā(T ,ď, 0, 1) + Cý2 , 0 < r d 1

2
. (8.16)

Moreover, if �̄ and "̄ are sufficiently small, compared to �, then

C(�)−1�2�0
(ď̃) d ā(T , �0, 0, 1) d C(�)�2max(ď̃) d C(�)�2�0

(ď̃) , (8.17)

where the constant C(�) depends additionally only upon Q, m, and n. Combining this with (6.1) we get

��0 (ď) d C(�) ��0 (ď̃) . (8.18)

Proof of Corollary 8.6. The proof of (8.16) follows as in [4] using (7.11), (7.17), (8.14), and (8.15).
To obtain (8.17) it is sufficient to check that the new book ď̃ satisfies the assumptions of Lemma 6.3 at scale 1∕2. As a consequence

of (8.16), we have an upper bound of the double-sided excess between T and ď̃ at scale 1∕2 in terms of the control quantity
ā(T ,ď, 0, 1) + ý2. Since ā̄(T , 0, 1

2
) e 1

2
ā(T , �0, 0, 1) e 1

4
(�̄−1ā(T ,ď, 0, 1) + "̄−1ý2), this is sufficient to prove Assumption 6.1(ii) at

the scale 1∕2 and conclude. □

Proof of Corollary 8.5. Step 1. Here we estimate the tilt of the plane �̂L at the scale of cubes L * ð with respect to the reference
plane �0. Let L be any cube in ð, and let L2 * ą be its father. As noticed in the proof of Theorem 7.4, Lemma 6.7 can be applied
at the scale of L2, so that, in particular,

ā̄L d 2 ⋅ 2m+2 ā̄L2 , ā̄L2 d 2 ā̄L . (8.19)

This implies that we can estimate

|�̂L − �̂L2 |2 d C
(
āno(T , �̂L,þM̄dL∕2

(yL)) + āno(T , �̂L2 ,þM̄dL2 ∕2
(yL2 ))

)

d C ā̄L ,
(8.20)

where āno is the unoriented tilt excess defined in Definition 4.1, and where we have used the classical tilt-excess inequality together
with the condition (M̄d)2ý2 d ā̄ at the scales of L and L2 and (8.19).

Next, denoting by �(�,Ą) = distö (� K þ1,Ą K þ1) the ‘‘angle’’ between a plane � and a half plane Ą, we claim that:

�(�̂L,Ą)2 d C(ā̄L + �2max(ď)) for every Ą ⊂ ď . (8.21)

To see this, first apply Lemma 6.7 at the scale of L and with � sufficiently small to conclude that �(T , q) < Q for every
q * spt(T ) KÿM̄dL∕8

(yL, �̂L) Kþ7M̄dL∕8
(yL) öBdL (V ). In particular, if we let q * �̂L denote any of the two points with ĎV (q) = yL and

dist(q, V ) =
M̄dL
16

then for every half plane Ą̃±
j ⊂ ď̃

þ4dL
(q) K Ą̃±

j ⊂ (Ũ2ą )±j K ÿM̄dL∕8
(yL, �̂L) K þ7M̄dL∕8

(yL) ö BdL (V ),

and, as a consequence of Proposition 4.5,

B2dL
(q, �̂L) ∶= þ2dL

(q) K (q + �̂L) ⊂ KL,

so that

ăvL
ÿ2dL

(q, �̂L) = T ÿ2dL
(q, �̂L) K þ7M̄dL∕8

(yL) = ăď̃(ṽ) ÿ2dL
(q, �̂L).

As a further consequence of Proposition 4.5, there is a C1,1∕2-selection for uL||B2dL
(q,�̂L)

, which we denote (uL)1 d ⋯ d (uL)Q. Now,

by standard arguments one immediately concludes that there exists Ą⋆ ⊂ ď such that

úm
⎛⎜⎜⎜⎜⎝

{
z * B2dL

(q, �̂L) ∶ dist(z + (vL)1(z),ď) = dist(z + (vL)1(z),Ą⋆)
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶OL

⎞⎟⎟⎟⎟⎠
e c dmL ,
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where c = c(m,Q). For every z * OL, we then have

�(�̂L,Ą⋆) dL d dist(z,Ą⋆) d dist(z + (vL)1(z),ď) + |(vL)1(z)|,
so that after squaring and integrating over OL we reach

�(�̂L,Ą⋆)
2 dm+2

L
d C

⎛⎜⎜⎝+þM̄dL2
(yL2 )

dist2(⋅,ď) d‖T ‖ + +BL |vL|2 dz
⎞⎟⎟⎠
,

which in turn implies, by (8.11), L2 * ą (whence āL2 d � ā̄L2 ), and (8.19) that

�(�̂L,Ą⋆)
2 d C ā̄L,

and (8.21) follows by triangle inequality.
With (8.21) at our disposal, and recalling that ��0 (ď) d C �max(ď) as a consequence of Lemma 6.3, we may conclude that

distö (�̂L K þ1, �0 K þ1) d C (ā̄L + �2max(ď)) d C (�2 + "̄) . (8.22)

In turn, the L@ estimate (8.11), the condition ā̄L d �−1āL for a cube L * ð, and (8.22) imply that for a suitable choice of the
geometric constant C⋆ in (7.8), for each L * ð the graph ăvL

Rð splits into two disjoint parts, one that projects on �+
0
and the

other on �−
0
, that is

ăvL
Rð = ăv+

L
Rð +ăv−

L
Rð . (8.23)

Step 2: Here we exploit the conclusions drawn in Step 1 in order to produce the claimed reparametrization over Rð. Let L be any
cube in ð. By (8.23), it will be sufficient to seek a reparametrization for the function v+

L
over the half-planes Ą̃+

j projecting onto �
+
0
,

because the argument for the function v−
L
is going to be the same. As noticed above, Proposition 4.5 implies that, for q as in Step 1

which projects onto �+
0
, B2dL

(q) ⊂ KL and therefore

ăv+
L

ÿ2dL
(q, �̂L) = T ÿ2dL

(q, �̂L) K þ7M̄dL∕8
(yL) = ăď̄(ṽ) ÿ2dL

(q, �̂L).

Hence, we can consider the function u+
L
so that v+

L
= u+

L
+ 	 (⋅ + u+

L
), and, recalling from Remark 4.2 that we have a fixed selection

u+
L
=

1Q
j=1

[[
(u+
L
)j
]]
of Lipschitz functions (u+

L
)1 d (u+

L
)2 d & d (u+

L
)Q, we proceed as follows. For every j * {1,& , Q}, we let ℎ+(j)

be the index such that the half-plane Ą̃+
ℎ+(j)

⊂ ď̃ hosts the domain of the function in ṽ which reparametrizes (v+
L
)j over B2dL

(q, �̂L).

Then, we call (ũ+
L
)j the reparametrization of (u

+
L
)j over Ą̃

+
ℎ+(j)

. By (8.22) and the L@ bound (8.11), the domain of (ũ+
L
)j contains

DL,j ∶= Ą̃+
ℎ+(j)

K þ8M̄dL
(yL) ö BC(�2+"̄)(�−1āL)1∕2dL

(V ), and the currents associated to the graphs of (u+
L
)j and (ũ+

L
)j agree, provided

the choice of the orientation of the tangent plane to the graph of (ũ+
L
)j is made following the algorithm detailed in Section 8.1.

Furthermore, using the estimates produced in Step 1 we can calculate

Lip((ũ+
L
)j ) d C(Lip((u+

L
)j ) + �(�̂L, Ą̃

+
ℎ+(j)

)) d C(ā̄

L
+ ā̄

1∕2

L
) d C(�2 + "̄)
 d C�2
 ,

as well as

d−2L ‖(ũ+
L
)j‖2L@(DL,j )

d C(d−2L ‖vL‖2L@(BL)
+ �(�̂L, Ą̃

+
ℎ+(j)

)2) d Cā̄L d C�2.

By the above argument, for each j * {1,& , Q} the page Ą̃+
j hosts a domain Dj such that

Dj ⊃
å
L*ð

{
(x, y) * Ą̃+

j ∶ y * ĎV (int(V )) and C(�2 + "̄)(�−1āL)
1∕2dL d |x| < 5M̄dL

}
.

In particular, since cubes L * ð have interiors with disjoint projection onto V , for a suitable choice of the geometric constant C⋆
in (7.8) we can define a global function ũ+j over Ą̃

+
j K Rð. We can now estimate, using that the balls þM̄di

(yi) are disjoint:

+RðKĄ̃+
j

(|ũ+j |2 + |x|2|Dũ+j |2) dz d
1
i
+(þ5M̄di

(yi)öBC⋆ (�−1āi )
1∕2di

(V ))KĄ̃+
j

(|ũ+j |2 + |x|2|Dũ+j |2) dz

d 1
i
+BLi

(|vLi |2 + |z − yi|2|DvLi |2 + d2i ā̄Li ) dz

d C
1
i

dm+2i ā̄Li d C�−1
1
i

dm+2i āLi d C�−1ā(T ,ď, 0, 1) ,

thus completing the proof of (8.15) for the part over �+
0
. Similarly, we obtain the missing estimate (8.14) summing the errors in the

region where T does not agree with the graph ăď̃(ṽ) by means of (8.8), (8.9), and (8.11). □

8.4. Proof of Lemma 3.5

Fix 
 > 0, and let T and � be as in Assumption 3.1. Correspondingly, choose the parameters "̄ and �̄ depending on 
 so that
whenever Assumption 7.1 holds for some open book ď and some plane �0 with "̄ and �̄ then one can conclude graphicality of T
over a suitable subset of ď̃ ⊂ ď up to distance 
∕8 from V (ď). Now fix two open books ď and ď2 in ℬ(0). Since the Hausdorff distance
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between any two open books in ℬ(0) is bounded by a universal constant C̄, if r e 
 and ý2 + E(T ,ď, 0, 1) + E(T ,ď2, 0, r) e �̄(
) then
the conclusion in (3.10) is trivially true with the choice C(
) = C̄2 �̄(
)−1. Hence, we assume

ý2 + E(T ,ď, 0, 1) + E(T ,ď2, 0, r) < �̄(
) , (8.24)

where �̄(
) will be chosen momentarily, and we consider the following two cases:

(a) Assumption 7.1 holds for ď and a plane �0 with "̄ and �̄ as specified above;
(b) Assumption 7.1 for ď with "̄ and �̄ as above fails.

In case (a), after denoting ď̃ ⊂ ď the open book in Definition 8.1, we estimate for r e 


dö (ď̃ K þ1,ď
2 K þ1)

2 = r−2 dö (ď̃ K þr,ď
2 K þr)

2 d C(E(T , ď̃, 0, r) + E(T ,ď2, 0, r))

d C 
−(m+2)(ý2 + E(T ,ď, 0, 1) + E(T ,ď2, 0, r)) ,

where in the last inequality we have used (8.16). On the other hand, it is immediately seen that dö (ď̃Kþ1,ďKþ1)
2 d C(E(T ,ď, 0, 1)).

This proves (3.10) when (a) holds, and (3.11) is also a consequence of (8.16).
Now, suppose we are in case (b). Of course, we can assume that the failure of Assumption 7.1 is due to the failure of

Assumption 6.1, for otherwise Lemma 6.5 would imply that case (a) holds for the current T 2 = (�
0, 1

2

)♯T (possibly upon reducing the

values of "̄ and �̄). Hence, in this case at least one of the following holds:

(b1) ý2 > "̄ ā̄(T , 0, 1),
(b2) ā̄(T , 0, 1) > "̄,
(b3) E(T ,ď, 0, 1) > �̄ ā̄(T , 0, 1),

If (b2) holds, then (8.24) for �̄(
)≪ "̄ implies a lower bound on the opening angle �max(ď). Then by choosing �̄(
) much smaller,
if necessary, depending on "̄, we would once again deduce graphicality of T over a suitable subset ď̃ ⊂ ď due to [4, Corollary 6.6]
and conclude as in case (a).

In case (b1) or (b3) holds, (3.10) is a simple consequence of the fact that

dö (ď K þ1, �0 K þ1)
2 d C

(
ā̄(T , 0, 1) + ý2

)

when ď is optimal for the conical excess and �0 is optimal for the planar excess in þ1, as a consequence of the height bound
Lemma 2.4. Analogously, Lemma 2.4 also implies that

E(T ,ď, 0, 1∕2) d C
(
ā̄(T , 0, 1) + ý2

)
,

which in turn implies (3.11) if (b1) or (b3) holds. □

9. Proof of Proposition 3.3: Simon type estimates

In this section we use one of the crucial ideas of Simon’s work [13] (cf. also [2]): close to points of high density, the monotonicity
formula gives an improved L2 estimate, see (9.1); in particular, such points of high density are bound to lie close to the spine V at
the scale of the excess ā. An analogous estimate was proved in [4], but here the situation is more subtle as we have to take into
account that the ‘‘opening angle’’ of ď might be relatively small.

Theorem 9.1. There are positive constants C, �9, and "9 depending upon (m, n, p) such that if T ,�,ď, �0 are as in Assumptions 3.1 and
7.1 with "̄ < "9 and �̄ < �9 then the following conclusion holds. Assume that

(a) ď̃ denotes the open book introduced in Definition 8.1
(b) and q0 = (x0, y0) * (V é × V ) K þ1∕4 is a point with �T (q0) e Q.

Then

��0 (ď)
2 |x0|2 + |xé

0
|2 + +þ1∕4

dist2 (q − q0, ď̃)

|q − q0|m+
7
4

d‖T ‖(q) d C(ā(T ,ď, 0, 1) + ý2) , (9.1)

where xé
0
= Ďé�0

(x0) = Ďé�0
(q0).

The proof follows the same argument as in [4, Section 8], however we need to suitably modify [4, Proposition 8.4] to take into
account the presence of the bad Whitney region ð. This will be done by taking advantage of the fact that in this region the planar
and conical excess are comparable, and using once more the multivalued approximation to estimate the required errors.

9.1. Consequences of the monotonicity formula

We start with an improved version of the first part of [4, Lemma 8.2]. More precisely, the bound (9.2) differs from the
corresponding one in [4, Lemma 8.1] in the dependence upon ý. The proof is given in the appendix.
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Lemma 9.2. Let T and � be as in Assumption 3.1, and assume that g(q) = |q|k ĝ( q|q| ) for some k e 1 and some Lipschitz non-negative
function ĝ on the unit sphere. Then, for every 2 > � > 0 and R d 1 we have

�
2 +þR

g2(q)

|q|m+2k−� d ‖T ‖ (q) d
m + 2k

Rm+2k−� +þR g
2 d ‖T ‖ + 2

� +þR
|∇g(q)|2|qé|2
|q|m+2k−� d ‖T ‖ (q)

+ Cý2‖ĝ‖2@
‖T ‖ (þR)
Rm−�

, (9.2)

where qé ∶= q − Ď
T⃗
(q) at öm-a.e. q * spt(T ) (here, Ď

T⃗
= Ď

T⃗ (q)
is the orthogonal projection onto span(T⃗ (q))).

As a simple corollary we then conclude the following.

Corollary 9.3. Let T and � be as in Assumption 3.1. Then, for every r < 1 and any open book ď̄,

+þr
dist(q, ď̄)2

|q|m+ 7
4

d‖T ‖ dC +þr
|qé|2
|q|m+2 d‖T ‖ + C(ā(T , ď̄, 0, r) + ý2) . (9.3)

Proof. Observe that g(q) ∶= dist(q, ď̄) is 1-homogeneous function and that g̃ is 1-Lipschitz. The inequality follows therefore applying
Lemma 9.2 with k = 1 and � =

1

4
. □

We next use the refined Lipschitz approximation of the previous sections to suitably bound the first summand in the right-hand
side of (9.3).

Proposition 9.4. There are positive �10 and "10 such that the following holds. Let T , �, and ď be as in Assumptions 3.1 and 7.1 with
�̄ d �10 and "̄ d "10. Denote by ĎV the orthogonal projection on the spine V of ď, and for ‖T ‖-a.e. q denote by Ď

T⃗ (q)é
the projection on the

orthogonal complement of the tangent plane to T at q. Also set qé ∶= q − Ď
T⃗ (q)

(q) for öm-a.e. q * spt(T ). Then

+þ1∕3

(
|||ĎV ⋅ Ď

T⃗ (q)é
|||
2
+

|qé|2
|q|m+2

)
d‖T ‖(q) d C (ā + ý2) , (9.4)

where | ⋅ | is the Hilbert–Schmidt norm and the constant C depends upon (m, n, p).

Proof. Let g * C@
c (þ1), and, denoting ĎV é the orthogonal projection onto the complement V é to the spine V of ď, proceed as in

the proof of [4, (8.14) Proposition 8.4] to estimate

+ |||ĎV ⋅ Ď
T⃗é

|||
2
g2d‖T ‖ + 2

(
+ g2d‖T ‖ − + g2d‖ÿ̃‖

)

d −2+ g2x ⋅HT d‖T ‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶(A)

+4+ |xé|2 |∇V g|2 d‖T ‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶(B)

+ 4+ g
(
x ⋅ ∇V ég

)
d‖ÿ̃‖ − 4+ g (Ď

T⃗
(x) ⋅ ∇V ég) d‖T ‖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶(C)

. (9.5)

Here recall that ÿ̃ is a suitable representative mod(p) supported in the book ď̃: for its definition we refer to [4].
Notice that when calculating (B) and (C) we can replace ‖T ‖ with ‖ăď̄(ṽ)‖ up to an error of size ā thanks to (8.14), since in

all instances the integrand can be bounded by |x|2 (see [4, Proof of Proposition 8.4]). The rest of the proof now proceeds as in [4,
Proposition 8.4] using Corollaries 8.3 and 8.5 in place of Corollary 6.6 therein. □

We can now combine Corollary 9.3 and Proposition 9.4 to infer the following

Corollary 9.5. Let T , �, and ď be as in Proposition 9.4. Then

+þ1∕3

dist(q,ď)2

|q|m+ 7
4

d‖T ‖ dC(ā(T ,ď, 0, 1) + ý2) . (9.6)

9.2. Shifted cones

In the next two steps to prove Theorem 9.1 we will make a fundamental use of the following geometric lemma.

Lemma 9.6.

(a) Assume ď is an open book and q, z * Rm+n and O * SO(m + n). Then:

dist(z, q + O(ď)) d dist(z, q + ď) + 2|O − Id||z − q| (9.7)
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(b) There is a geometric constant C such that the following inequality holds for any q, q2, z * Rm+n, any m-dimensional plane � with
� ⊃ V = V (ď) and under the additional assumptions that Ď� (ď) = � and ��(ď) d 1

2
:

dist(z, q + ď) d dist(z, q2 + ď) + |Ď�é (q − q2)| + C�� (ď)|Ď�KV é (q − q2)|. (9.8)

(c) For any constant C0 there is a constant C1 such that the following holds under the assumption that C
−1
0
�� (ď) d �max(ď) d �� (ď). For

every q * Rm+n there is a page Ą ⊂ ď such that

|Ďé� (q)| + �� (ď)|ĎV é (q)| d Cdist(x − q,ď) whenever |ĎV é (x)| e 2|ĎV é (q)| . (9.9)

Proof. Proof of (a). We can assume without loss of generality that q = 0. Fix z and let y be a point in ď such that dist(z,ď) = |z − y|.
Observe that certainly |y| d 2|z|, otherwise 0 * ď would be closer to z then y. On the other hand O(y) * O(ď) and thus we can
estimate

dist(z, O(ď)) d |z − O(y)| d |z − y| + |y − O(y)| d dist(z,ď) + |O − Id||y|
d dist(z,ď) + 2|O − Id||z| .

Proof of (b). Observe that we can write

q = q2 + ĎV (q − q
2)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
q1

+Ď�KV é (q − q2)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

q2

+Ď�é (q − q
2)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
q3

.

Evidently, it suffices to prove the three claims

dist(z, q2 + q1 + ď) = dist(z, q2 + ď)

dist(z, q2 + q1 + q2 + ď) d dist(z, q2 + q1 + ď) + C�� (ď)|q2|
dist(z, q2 + q1 + q2 + q3 + ď) d dist(z, q2 + q1 + q2 + ď) + |q3| .

This amounts to show the inequality (9.8) in three particular cases in which q − q2 * V , q − q2 * � K V é, and q − q2 * �é. In all
of these cases we can assume, without loss of generality, that q2 = 0. The third case is the trivial estimate, while the first one is
obvious because q + ď = ď when q * V . We are thus left with the second case.

Fix thus z * Rm+n and q * �KV é. Denote by � the (m+1)-dimensional plane which contains ď and � and observe that it contains
q + ď as well. Without loss of generality we can assume therefore that z * �. The assumption Ď�(ď) = � implies the following
geometric property:

(P) for every � * �, the line � + � K �é intersects ď.

Consider now y such that dist(z,ď) = |z − y| and let Ą be the page containing it. We further set y2 ∶= Ď�KV é (y). Since � K V é is
1-dimensional, we can distinguish two cases:

(a) y2 is not contained in the segment [0, q]; in this case Ď� (y) + �
é K � intersects q + Ą in some point yq and |y − yq| d tan �|q|,

where � denotes the angle between Ą and �. Since � d C�� (ď) the desired inequality follows.
(b) y2 is contained in the segment [0, q]. In this case |Ď�é (y)| d |q| tan �. The geometric property (P) guarantees that y + � K �é

intersects q + ď at some point yq . If Ą
2 is the page of ď such that yq * q + Ą2, this time we get |Ď�é (yq)| d tan �2|q|. Since

|y − yq| d |Ď�é (y)| + |Ď�é (yq)| the desired inequality follows again.
Proof of (c). Let Ąi be the pages of ď and denote by �i the m-dimensional plane which contains Ąi. We will show below the

following fact

(F) For every x * Ąi with |ĎV é (x)| e 2|ĎV é (q)|, we have dist(x, q + ď) = dist(x, q +Ąi) = |Ď�éi (q)|.
From (F) we conclude as follows. We select a page Ąi with the property that |Ď�éi (q)| is maximal. We then have to show that

|Ď�é (q)| d C|Ď�éi (q)| (9.10)

�max(ď)|ĎV é (q)| d C|Ď�éi (q)| . (9.11)

Consider the plane � which contains � and ď and observe that

|ĎV é (q)|2 = |Ď�KV é (q)|2 + |Ď�é (q)|2
|Ď�éi (q)|

2 = |Ď�éi (Ď�KV é (q))|2 + |Ď�é (q)|2
|Ď�é (q)|2 = |Ď�é (ĎV éK� (q))|2 + |Ď�é (q)|2 .

Since moreover ď and q + ď are invariant under translations along V , we can just reduce to the situation in which q * V é K �.
Moreover, by dilation, we can assume it has unit length. Note therefore that we are reduced to prove the following claim. We have
2Q lines in R2 with the property that the maximal angle between them is �max(ď) and the maximal angle between one of them and
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the horizontal axis is �� (ď). � = (cos �, sin �) is a unit vector in R2 and l is the one among the 2Q lines which is further away from
�, while we wish to show that

| sin �| d Cdist(�,l) (9.12)

�max(ď) d Cdist(�,l) . (9.13)

Pick the two lines l1 and l2 which form the largest angles �max(ď) and let l1 be the one further away from � of the two. The angle
between � and l1 is thus at least half of �max(ď), but it is also smaller than the angle between � and l and so the second inequality
is trivial. For the other inequality we notice that � is the angle between � and the horizontal axis, which is bounded by the sum of
the angle between � and l1 (controlled by �max(ď) and so by dist(�,l)) and the angle between l1 and the horizontal line, which is
bounded by �� (ď). Since the latter is also bounded by �max(ď), which in turn is bounded by Cdist(�,l), we have proved our claim.

We now come to the proof of (F). Let �i be the plane containing Ąi and observe that, since |ĎV é (x)| e 2|ĎV é (q)|, we easily see
that Ď�i (x − q) = x − Ď�i (q) belongs to Ąi. Thus dist(x, q +Ąi) = |Ď�éi (q)|. We hence just need to show that

dist(x, q +Ąj ) e |Ď�éi (q)| = dist(x, q +Ąi)

for every other page Ąj . We will in fact show that dist(x, q+�j ) e dist(x, q+�i) (which is enough because dist(x, q+Ąj ) e dist(x, q+�j )).
Summarizing, we are left with the task of proving

dist(x − q, �i) d dist(x − q, �j )

for every x * �i such that |ĎV é (x)| e 2|ĎV é (q)|.
Arguing as above, we can ignore the components of q and x along V and along �é. We thus reduce the claim to a statement

about pairs of lines. More precisely, given two lines l,l2 ⊂ R2, a point x * l and a point q with 2|q| d |x|, we wish to show
that dist(x − q,l) d dist(x − q,l2). By scaling we can assume |q| = 1. We thus fix coordinates on the plane in such a way that
l = {(s, 0) ∶ s * R}, x = (�, 0) with � e 2, q = (cos �, sin �), and (cos �, sin �) is a unit vector orthogonal to l2. The claim then amounts
to the inequality

sin2 � d (� − cos �)2 cos2 � + sin2 � sin2 � .

Notice however that, since � e 2, sin2 � d 1 d (2 − cos �)2 and the desired inequality follows easily. □

9.3. Shifted Q-points

Consider now any point q * þ1∕16 with �T (q) e Q. For each such q we fix a rotation Oq of the ambient space, with the properties
that

(i) Oq(T0�) = Tq�;

(ii) |Oq − Id| is minimal among all rotations which satisfy condition (i).
Clearly

|Oq − Id| d C0|q|ý , (9.14)

for some geometric constant C0. The point of this Section is to show that, provided �̄ and "̄ are small enough, we achieve an estimate
as in (9.6) with q replacing the origin and Oq(ď̃) replacing ď.

Proposition 9.7. Let T , �, �0, and ď be as in Assumptions 3.1 and 7.1, with parameters �̄ and "̄ small enough to apply Theorem 7.6 and
define the book ď̃. Then there are �11 and "11 such that, if �̄ < �11 and "̄ < "11, then Corollary 9.5 applies with Tq,1∕3 in place of T , Oq(ď̃)
in place of ď, and Oq(�0) in place of �0, whenever q * þ1∕16 satisfies �T (q) e Q. In particular, for any such point we gain the estimate

+þ1∕9(q)

dist(z − q, Oq(ď̃))
2

|z − q|m+ 7
4

d‖T ‖ d C(ā(T ,Oq(ď̃), q, 1∕3) + ý2) . (9.15)

Proof. In order to show that Corollary 9.5 applies with T 2 = Tq,1∕3 in place of T , ď
2 = Oq(ď̃) in place of ď and �

2 = Oq(�0) in place
of �0 we need to show the following conditions:

(i) 9−1ý2 d "10 ā(T
2, �2, 0, 1) d "2

10
;

(ii) E(T 2,ď2, 0, 1) d �10ā̄(T
2, 0, 1);

(iii) ā̄(T 2, 0, 1) e (1 − �10)ā(T
2, 0, 1).

This will be shown assuming that

(a) ý2 d "̄ā(T , �0, 0, 1) d "̄2;
(b) E(T ,ď, 0, 1) d �̄ā(T , �0, 0, 1);
(c) ā̄(T , 0, 1) e (1 − �̄)ā(T , �0, 0, 1);
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where "̄ and �̄ are two much smaller parameters.
Step 1. Height of q. We first prove that, for every fixed positive �, no matter how small,

|Ďé�0 (q)|
2 d �2ā(T , �0, 0, 1) (9.16)

provided �̄ and "̄ are chosen small enough.
Assume by contradiction this is not the case. Then there are sequences Tk, ďk, �k satisfying Assumption 3.1 and (a), (b), and (c)

above with vanishing �̄ = �k and "̄ = "k, and a sequence of points qk * þ1∕16 with �Tk (qk) e Q such that

|Ďé�0 (q)|
2 e �2ā(Tk, �0, 0, 1) . (9.17)

By applying a rotation, we can assume that all ďk have the same spine V . Let now yk = ĎV (qk) and recall that, by Lemma 6.7
|qk − yk| ³ 0. Up to subsequences we can also assume that yk ³ y. We argue as in the Proof of Lemma 6.5 and in particular
introduce the maps v̄k and study their limit v, which is a Dir-minimizing map, and is a strong L

2 limit. By Proposition 4.3 and
because v is 1-homogeneous and invariant by translation along the spine V , we see that, for every fixed r,

lim
k³@

ā(Tk, �0, y, r)

ā(Tk, �0, 0, 1)
= 1 . (9.18)

In particular we also see that

lim
k³@

ā(Tk, �0, yk, r)

ā(Tk, �0, 0, 1)
= 1 . (9.19)

So, for k large enough, we have

ā(Tk, �0, yk, r) d 2ā(Tk, �0, 0, 1) .

Since qk converges towards yk, we can, for a sufficiently large k, apply Lemma 2.4 to conclude

|Ď�é
0
(qk)| d Crā(Tk, �0, 0, 1)

1∕2 .

The constant C is independent of r. Therefore, by choosing r smaller than �

C
we contradict (9.17).

Step 2. We now wish to prove (i). We argue again by contradiction. This time we have, however, either

ā(Tk, Oqk (�0), qk,
1∕3) e "10 , (9.20)

or

ý2
k e 9"10ā(Tk, Oqk (�0), qk,

1∕3) . (9.21)

Observe that

ā(Tk, Oqk (�0), qk,
1∕3) d (

1 + 3|qk − yk|
)m+2

ā(Tk, �0, yk, 1∕3 + |qk − yk|)
+ C|Ďé�0 (qk)|

2
+ Cý2

k ,

but also

ā(Tk, Oqk (�0), qk,
1∕3) e (

1 − 3|qk − yk|
)m+2

ā(Tk, �0, yk, 1∕3 − |qk − yk|)
− C|Ďé�k (qk)|

2
− Cý2

k ,

Recalling (9.18) we conclude that

lim
k³@

ā(Tk, Oqk (�0), qk,
1∕3)

ā(Tk, �0, 0, 1)
= 1 . (9.22)

Since however ā(Tk, �0, 0, 1) and ā(Tk, �0, 0, 1)
−1ý2

k
are both infinitesimal, clearly we contradict either (9.20) or (9.21).

Step 3. We next prove (iii). Assume by contradiction that there is a sequence of planes �k ⊂ Tq�k such that

ā(Tk, �k, qk, 1∕3) d (1 − �10)ā(Tk, Oq(�k), qk, 1∕3) .

Using again the estimate |Oqk − Id| d Cýk and the estimates of the previous steps, we conclude that

ā(Tk, �k, y, 1∕3 − |qk − y|) d (1 − �10∕2)ā(Tk, �0, y, 1∕3 + |qk − y|) .
Observe also that |�k − �0| d Cā(Tk, �0, 0, 1)

1∕2 =∶ ā̄
1∕2

k
. Consider the linear maps lk ∶ �0 ³ �

é0

0
whose graph give �k and let l be

their limit, up to subsequences.
If v is the limiting function found in the proof of Lemma 6.5, observe that

lim
k³@

ā̄−1
k ā(Tk, �0, y, 1∕3 + |qk − y|) = 1

3m+2 +B1∕3(y)
|v|2 .
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On the other hand we also get

lim
k³@

ā̄−1
k ā(Tk, �k, y, 1∕3 − |qk − y|) = 1

3m+2 +B1∕3

1
i

|vi − l|2 .

In particular we would conclude that there is a linear function l such that

+B1∕3

1
i

|vi − l|2 < +B1∕3

|v|2 .

Recall however that, because ā(Tk, �0, 0, 1) d (1 − �k)
−1ā̄(Tk, 0, 1), Ā◦v = Q−1 1

i vi vanishes identically. In particular1
i

|vi − l|2 = |v|2 +Q|l|2 ,

which in turn shows

+B1∕3

1
i

|vi − l|2 e +B1∕3

|v|2 .

Step 4. It remains to show (ii). By Lemma 9.6 we have

dist(z, Oq(ď̃) + q) d Cý|q||z − q| + dist(z, ď̃ + q)

d Cý|q||z − q| + dist(z, ď̃) + |Ď�é
0
(q)| + C��0 (ď)|q − ĎV (q)| .

In particular, we can estimate

ā(T 2,ď2, 0, 1) d C(ā(T , ď̃, 0, 1∕2) + ý2 + |Ď�é
0
(q)|2 + C��0 (ď)|q − ĎV (q)|2)

d C(ā(T ,ď, 0, 1) + ý2 + |Ď�é
0
(q)|2 + C��0 (ď)|q − ĎV (q)|2) , (9.23)

where in the last line we have used (8.16).
From the previous steps it follows that each of the summands on the right hand side can be made arbitrarily small with respect

to ā(T , �0, 0, 1), provided �̄ and "̄ are taken small enough. Since in turn ā(T , �0, 0, 1) can be bounded by 2ā(T 2, �2, 0, 1) by possibly
choosing the two parameters even smaller, we conclude the proof. □

9.4. Proof of Theorem 9.1

By Proposition 9.7 we have

+þ1∕9(q0)

dist(q, Oq0 (ď̃) + q0)
2

|q − q0|m+
7
4

d‖T ‖ d C(ā(T ,Oq0 (ď̃), q,
1∕3) + ý2) ,

provided the parameters are small enough. Using Lemma 9.6 and (8.16) we then get

+þ1∕9(q0)

dist(q − q0, ď̃)
2

|q − q0|m+
7
4

d‖T ‖ dC +B1∕3

dist(q, ď̃)2d‖T ‖ + C(ý2 + |xé
0
|2 + ��0 (ď̃)2|x0|2)

dCā(T , ď̃, 0, 1∕2) + C(ý2 + |xé
0
|2 + ��0 (ď̃)2|x0|2)

dCā(T ,ď, 0, 1) + C(ý2 + C |xé
0
|2 + C��0 (ď̃)2|x0|2) . (9.24)

From now on in order to simplify our notation we use ā in place of ā(T ,ď, 0, 1). Fix � > 0. We next wish to show that, provided the
parameters "9 and �9 are small enough, then

|xé
0
|2 + ��0 (ď̃)2|x0|2 d C�7∕4 +þ1∕9(q0)

dist(q − q0, ď̃)
2

|q − q0|m+
7
4

d‖T ‖ + C�−m(ā + ý2) , (9.25)

where the constant C is independent of �9 and "9. In particular, for � sufficiently small we can combine (9.25) and (9.24) to get

|xé
0
|2 + ��0 (ď̃)2|x0|2 d C�−m(ā + ý2) . (9.26)

We fix such a � and gain therefore

��0 (ď̃)
2 |x0|2 + |xé

0
|2 + +þ1∕4

dist2 (q − q0, ď̃)

|q − q0|m+
7
4

d‖T ‖(q) d C(ā(T ,ď, 0, 1) + ý2)

(where we are treating the fixed � as a geometric constant). Since however ��0 (ď) d C��0 (ď̃) by (8.18), we achieve our desired
conclusion.

It remains to show (9.25). First of all, by assuming the parameters small enough, Lemma 6.5 implies that 2|ĎV é (q0)| d �. Thus
we can apply Lemma 9.6(c) and select a page Ąi of ď̃ with the property that

��0 (ď̃)
2 |x0|2 + |xé

0
|2 d Cdist(x − q0, ď̃)

2 "x * Ąi ö B�(V ) .
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We next apply Theorem 7.4(v) and assume the parameters "̄ and �̄ are small enough so that �ą (y) d � for all y * þ1∕4. Since Ąi * ď̃,
it follows that there is a function ṽj as in Corollary 8.3 and that 
 ∶= (B2�(V ) ö B�(V )) K þ�(q0) belongs to the domain of ṽj . For
each point x, consider the point q = x + ṽj (x) * spt(T ). We then have

��0 (ď̃)
2 |x0|2 + |xé

0
|2 d Cdist(q − q0, ď̃)

2 + C|ṽj (x)|
d Cdist(q − q0, ď̃)

2 + C|ũj (x)|2 + Cý2 "
 . (9.27)

Moreover, given the Lipschitz and L@ bounds on ṽj , it follows that q * þ1∕9(q0) and that |q − q0| e �

4
. We thus average (9.27) over

the set � ∶= {x + ṽj (x) ∶ x * 
} and use (8.5) to achieve

��0 (ď̃)
2 |x0|2 + |xé

0
|2 d C�−m +� dist(q − q0, ď̃)

2döm + C�−m +
 |ũj |2 + C�−mý2

d C�7∕4 +�
dist(q − q0, ď̃)

2

|q − q0|m+7∕4
döm + C�−m(ā + ý2)

d C�7∕4 +þ1∕9

dist(q − q0, ď̃)
2

|q − q0|m+7∕4
d‖T ‖(q) + C�−m(ā + ý2) .

This completes the proof of (9.25) and hence the proof of Theorem 9.1.

10. Proof of Proposition 3.3: binding functions

Following the blueprint of Simon’s work on cylindrical tangent cones, in the form used in [4] in this section we prove the existence
of suitable ‘‘binding functions’’, which in the final blow-up proof of Proposition 3.3 will be crucial to show the compatibility of the
harmonic sheets. The central Proposition of this section has its counterpart in [4, Theorem 9.3]. The crucial difference is that we
are not able to really estimate the ‘‘binding function’’ � in terms of the excess ā (as it is the case for [4, Theorem 9.3]). We will
instead be able to estimate separately its vertical portion Ď�é

0
(�) and the horizontal portion Ď�0 (�): it is in the estimate for the latter

part that we ‘‘lose’’.

Definition 10.1. A binding function is any Borel measurable function � ∶Rą ³ V é with the property that �(q) = �(q2) for all
q = (0, x, y) and q2 = (0, x2, y2) such that (|x|, y) and (|x2|, y2) belong to the interior of the same Whitney cube.

Theorem 10.2. There are positive constants C, �12, and "12 depending upon (m, n, p) such that the following holds. If

(i) T ,�,ď, �0 are as in Assumptions 3.1 and 7.1,
(ii) "̄ < "12 and �̄ < �12,
(iii) ď̃ denotes the open book introduced in Definition 8.1,
(iv) and %@ ∶= ‖%ą‖@,
then

+þ1∕8

dist(q, ď̃)2

max{%@, |x|}1∕2
d‖T ‖(q) d C(ā(T ,ď, 0, 1) + ý2) =∶ C(ā + ý2) . (10.1)

Moreover, there exists a binding function � ∶ Rą ³ Rm+n such that the following estimates hold for every j:

+þ1∕8KU
±ą

|u±j (q) − lℎ(j)(q)) − (Ď�é
0
(�(q)) − lℎ(j)(Ď�0 (�(q)))|

2

|x|5∕2 döm(q) d C(ā + ý2) , (10.2)

+þ1∕8KU
±ą

|∇u±j (q) − ∇lℎ(j)(q)|2

|x|1∕2 d C(ā + ý2) , (10.3)

‖Ď�é
0
(�)‖2@ d C(ā + ý2) . (10.4)

‖lℎ(j)◦Ď�0 (�)‖2@ d C��0 (ď)
2‖Ď�0 (�)‖2@ d C(ā + ý2) . (10.5)

Proof. The proof of (10.1) follows verbatim the one given in [4, Section 9.2] for the analogous estimate [4, (9.5)]: in this case the
argument would substitute Lemma 6.5 to [4, Proposition 9.4] and Theorem 9.1 to [4, Theorem 8.1]. Note that since the left hand
side of (9.1) has a quadratic dependence on ý rather than the linear one of [4, (8.1)], (10.1) gains the quadratic dependence on ý

on its right hand side as well.
As for (10.3) we can follow the argument in [4, Section 9.2] in order to show the following partial statement. For every cube

L * ą we find a suitable point �L * spt(T ) K þ1∕4 with �T (�L) e Q such that, for every j

1
L*ą±∶LKþ1∕8�∅+2L

|(uj (z) − lℎ(j)(z)) − (Ď�é
0
(�L)) − lℎ(j)(Ď�0 (�L))|2

|x|5∕2 dz d C(ā + ý2) (10.6)
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and

1
L*ą±∶LKþ1∕8�∅+2L

|∇uj (z) − ∇lℎ(j)(z)|2
|x|1∕2 dz d C(ā + ý2) . (10.7)

Again in this case the gain of a quadratic estimate on ý, compared to the linear dependence of the analogous estimates in [4], is
due to the quadratic dependence on ý of the right hand side of (9.1).

We now set the binding function to be equal to ĎV é (�Q) in each cube Q * W. Summing over all the cubes we then reach (10.2)
and (10.3). At the same time (10.4) and (10.5) follow immediately from (9.1). □

11. Proof of Proposition 3.3: final blow-up

In this section we introduce a suitable blow-up sequence which will be used to prove Proposition 3.3.

11.1. Blow-up sequence

The main argument is by contradiction. We therefore fix p = 2Q and fix sequences �k, Tk, �k, and ďk with the following properties:

(a) Tk and �k satisfy Assumption 3.1;
(b) T0�k = Rm+1 × {0n−1} =∶ �0 and ýk = ‖A�k‖@;
(c) �k * P(0, �k) and ā̄k ∶= ā̄k(Tk, 0, 1) = ā(Tk, �k, 0, 1);
(d) ďk * ℬ(0, �k) and Ek ∶= E(Tk, 0, 1) = E(Tk,ďk, 0, 1);
(e) the following holds:

lim
k³@

(
ā̄k +

Ek

ā̄k
+

ý2
k

Ek

)
= 0 . (11.1)

From Lemma 6.5 if we pass to (�
0, 1

2

)♯Tk and change the optimality of �k in (c) to ‘‘almost optimality’’, we can additionally assume

that V (ďk) ⊂ �k. Since passing to the rescaled currents just leads to a slightly different radius r2 in the conclusion of Proposition 3.3,
we will keep the notation Tk. Moreover, by possibly applying a rotation, without loss of generality we can assume in addition to
(a)–(e) the following two facts:

(f) �0 = Rm × {0n}, and |�k − �0| d Cā̄
1∕2

k
, and V = V (ďk) = {01} × Rm−1 × {0n};

(g) �0 is almost optimal, namely

lim
k³@

ā(Tk, �0, 0, 1)

ā̄k
= 1 . (11.2)

Definition 11.1. A blow-up sequence is a sequence of quadruples (Tk, �k, �k,ďk) together with linear subspaces �0 = T0�k ⊃ �0 ⊃

V = V (ďk) satisfying (a), (b), (c), (d), (e), (f), and (g).

We are now in a position of applying Theorems 7.4, 7.6, Corollary 8.3, Theorems 9.1, and 10.2, for any k sufficiently large. In
particular we can introduce

(�) The Whitney decompositions ąk, the good regions R�ąk
with the corresponding functions uk,±j as in Theorem 7.4, and the

radii �k@ as in Theorem 10.2;

(�) The new books ď̃k and the linear maps l̃
k,±
j = lk,±

ℎk(j)
∶ �±

0
³ �

é0

0
parametrizing their pages Ą̃k,±

j ;

(
) The binding functions �k ∶ Rąk
K þ1∕8 ³ Rm+n.

The following is then an easy corollary of the estimates in Theorem 10.2, whose proof is left to the reader.

Corollary 11.2. Consider a blow-up sequence (Tk, �k, �k,ďk) and a plane �0 as in Definition 11.1. Consider books ď̃k, with pages Ą̃
k,±
j ,

and maps �k and ũ
k,±
j as in (�)-(
). Hence set w̄k,±j ∶= E

−1∕2

k
(uk,±j − l̃k,±j ), �kv ∶= E

−1∕2

k
Ď�é

0
(�k), and �ko ∶= E

−1∕2

k
��0 (ď̃)Ď�0 (�

k). Then, up to

subsequences, the following holds:

(i) For each j the sequence w̄k,±j converges locally in C1 to a map w̄±
j ∶ þ1∕2 K �

±
0
³ �

é0

0
;

(ii) �̄ko and �̄
k
v converges locally uniformly to a pair of bounded functions

�̄v ∶ þ1∕8 K �0 ³ �
é0

0
(11.3)

�̄o ∶ þ1∕8 K �0 ³ V é K �0 (11.4)

which are even with respect to V , namely �v(t, y) = �v(−t, y) and �o(t, y) = �o(−t, y) for every (t, y) * (V é K �0) × V on their domain
of definition;

(iii) The normalized linear functions l̄k,±j ∶= (��0 (ď̃))
−1 l̃k,±j converge smoothly to linear functions l̄±j ;
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(iv) The following estimates hold (for a geometric constant C = C(Q,m, n)):

sup
�=(t,y)*�±

0

|t| m2 +1
(
|t|−1|w̄±

j (� )| + |Dw̄±
j (� )| + |t|1∕2[Dw̄±

j ]1∕2(� )
) d C (11.5)

+þ1∕8K�
±
0

|z|2−m
||||||
)r
w̄±
j (z)

|z|
||||||

2

dz d C (11.6)

1
j
+þ1∕8K�

±
0

|w̄±
j − (�̄v − l̄

±
j ◦�̄o)|2

|x| 52
+

|∇w̄±
j |2

|x| 12
dz d C . (11.7)

11.2. Strong convergence

Again following the blueprint of Simon’s work, the estimates of the previous sections will allow us to conclude that the
convergence of the w±,k

j is in fact strong, that the conical excess in þ1∕8 can be controlled in terms of the limiting w̄
±
j , and that the

w̄±
j are indeed harmonic.

Proposition 11.3. Let Tk, �k, �k,ďk, w̄
±,k
j , and w̄±

j be as in Corollary 11.2. Then thew following holds.

(i) The convergence of w̄k,±j to w̄±
j is strong in the sense that

+�±
0
Kþ1∕8

(|w̄±
j |2 + |x|2|∇w̄±

j |2) = lim
k³@+þ1∕8KU

±ąk

(|w̄k,±j |2 + |x|2|∇w̄k,±j |2) . (11.8)

(ii) The following estimate holds:

lim sup
k³@

E
−1
k ā(T ,ďk, 0, 1∕8) d

1
j

(
+�+

0
Kþ1∕8

|w̄+
j |2 + +�−

0
Kþ1∕8

|w̄−
j |2

)
. (11.9)

(iii) Each w̄±
j is smooth and harmonic in its domain of definition.

The proof is verbatim the same of (i), (ii), and (iii) of [4, Proposition 10.5].

11.3. Simon’s and Wickramasekera’s variational identities

We next introduce two important functions, which will be crucial to show that in fact the functions w̄±
j can be suitably extended

to harmonic functions over �0 K þ1∕8. The first function is considered by Simon in his original work and it is simply the ‘‘average’’
of the w̄±

j in the following sense:

!(t, y) ∶=
1
j

(w̄+
j (t, y) + w̄

−
j (−t, y)) , for (t, y) * þ1∕8 K �

+
0
. (11.10)

The second one is instead introduced by Wickramasekera in [18]. We start by recalling that �é0

0
is one-dimensional, and can therefore

be identified with R. After fixing such identification, there exists coefficients �±j with the property that

l̄±j (t, y) = �±j t . (11.11)

Wickramasekera’s weighted average takes then the form

$(t, y) =
1
j

(�+j w̄
+
j (t, y) + �

−
j w̄

−
j (−t, y)) , for (t, y) * þ1∕8 K �

+
0
. (11.12)

We note in passing the following obvious consequence of the estimate in Corollary 8.6.

Lemma 11.4. There is a positive constant C depending on m and Q such that

C−1 dmax{|��j − ��
2

j2
| ∶ �, �2 * ±, 1 d j, j2 d Q}

d2max{|��j | ∶ � * ±, 1 d j d Q} d 2C . (11.13)

Both functions ! and $ satisfy then the same variational identity.

Proposition 11.5. Let w̄±
j and l̄

±
j be as in Corollary 11.2 and consider the functions ! and $ introduced in (11.10) and (11.12). Then

the following identities hold for every w * C@
c (þ1∕8 K �0, �

é0

0
) which is even in the variable t * V é K �0 and for every direction v * V :

+þ1∕8K�
+
0

∇! ⋅ ∇
)w
)v

= 0 , (11.14)

+þ1∕8K�
+
0

∇$ ⋅ ∇
)w
)v

= 0 . (11.15)
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Proof. The proof of (11.14) is the same as the proof of (iv) in [4, Proposition 10.5]. In particular, if we fix a unit vector em+1 * �
é0

0
and let

W ∶= wem+1 ,

we observe that W is cylindrical in the sense of [4, Definition 10.4], while the identity [4, (10.7)] is equivalent to (11.14).
The proof of (11.15) follows a slightly different argument. We can definitely argue as in the proof of (iv) in [4, Proposition 10.5]

to assume, without loss of generality, that w depends only on the y * V variable in a neighborhood B�(V ) of V . Hence we let e be
a unit vector which spans V é K �0, we fix a direction v * V and we consider the vector field

W̄ ∶=
)w
)v
e . (11.16)

Proceeding as in the proof of (iv) in [4, Proposition 10.5] we first choose an orientation for V , fix a corresponding orientation for

the pages of ď̃k so that )
[[
Ą̃
k,±
j

]]
= ) [[V ]] and hence introduce the cylindrical current

ÿk ∶=
1
j

[[
Ą̃
k,+
j

]]
+
[[
Ą̃
k,−
j

]]
.

Because W̄ is a derivative along a direction v * V , while ÿk is invariant under translations in the v direction, we have �ÿk(W̄ ) = 0.
On the other hand we have

�Tk(W̄ ) = −+ H⃗T (q) ⋅ W̄ (q)d‖T ‖(q) .

As already argued several times, ‖H⃗T ‖@ d ý, while H⃗T (q) ⋅ W̄ (q) = H⃗T (q) ⋅ Ď(T�q )é (W̄ (q)) and ‖Ď(T�q )é◦W̄ ‖@ d CĀ‖W̄ ‖@, so that
we reach

|�Tk(W̄ ) − �ÿk(W̄ )| d C‖W̄ ‖@ý2
k . (11.17)

Our goal is to show next that

lim
k³@

1

��0 (ďk)E
1∕2

k

(�Tk(W̄ ) − �ÿk(W̄ )) = −+þ1∕8K�
+
0

∇$ ⋅ ∇
)w
)v

, (11.18)

which, given (11.1) and the bound in Lemma 6.3, implies (11.15).
In order to show (11.18), we subsequently fix a r > 0 and k sufficient large such that �k@ < r and introduce the currents

T g
k
∶= Tk (Br(V ))c (11.19)

ÿ
g
k
∶= ÿk (Br(V ))c (11.20)

T rk ∶= Tk Br(V ) (11.21)

ÿrk ∶= ÿk Br(V ) . (11.22)

Note in particular that T g
k
is a multigraph over �0

We will then split our proof of (11.18) in two separate parts, in particular we will show that

lim sup
k³@

��0 (ďk)
−1
E
−1∕2

k

||||+ divTkW̄ d‖T rk‖ − + divÿkW̄ d‖ÿrk‖
|||| d Cr1∕2 (11.23)

for a constant C independent of r, and that

lim
k³@

��0 (ďk)
−1
E
−1∕2

k

(
+ divTkW̄ d‖T g

k
‖ − + divÿkW̄ d‖ÿg

k
‖
)

= − +þ1∕8K�
+
0
öBr(V )

∇$ ⋅ ∇
)w
)v

. (11.24)

From (11.23), (11.24) and the facts that ∇$ * L2 and r is arbitrary, we conclude (11.18).
Recall that W̄ is directed along e * �0 K V

é, while, in the region B�(V ), it does not depend on directions orthogonal to V . In
particular, on the latter region we have tr(Ď�0DW̄ ĎV ) = 0. We can thus estimate

| div� (W̄ )(q)| = |tr(Ď�Ď�0DW̄ (q)ĎV )| = |tr(Ďé�Ď�0DW̄ (q)ĎV )|
d |tr(Ďé�Ď�0 )| |tr(Ďé�ĎV )| |DW̄ |(q) d C|Ď�0 − Ď� ||ĎV ⋅ Ď�é | |DW̄ (q)| ,

for every q * B�(V ) and for every m-dimensional plane �. Recall that r < �. In particular, since V is a subset of any tangent plane
to ÿk, we immediately conclude

+ divÿkW̄ d‖ÿg
k
‖ = 0 . (11.25)

Moreover we can use Proposition 9.4 to estimate

||||+ divTk W̄ d
‖‖‖T

r
k
‖‖‖
||||
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dC
⎛
⎜⎜⎝+B 1

4

KBr(V )

|Ď
T⃗k

− Ď�0 |2d
‖‖‖T

r
k
‖‖‖
⎞⎟⎟⎠

1
2 ⎛
⎜⎜⎝+B 1

4

KBr(V )

|ĎV ⋅ Ďé
T⃗k
|2d ‖‖‖T

r
k
‖‖‖
⎞⎟⎟⎠

1
2

dCE 1
2

k

⎛
⎜⎜⎝+B 1

4

KBr(V )

|Ď
T⃗k

− Ď�0 |2d
‖‖‖T

r
k
‖‖‖
⎞
⎟⎟⎠

1
2

. (11.26)

Next, using (6.12) in Lemmas 6.5 and 6.3, for k large enough we have

ā(Tk, �0, y, 2r) d 2ā(Tk, �0, 0, 1) d C��0 (ďk)
2

for every y * þ1∕4 K V . Subsequently, we can use Allard’s tilt-excess estimate [3, Proposition 4.1] to conclude that

+þr(y) |ĎT⃗k − Ď�0 |2d
‖‖‖T

r
k
‖‖‖ d Crm(��0 (ďk)

2 + ý2
k)

for every y * þ1∕4 K V (provided k is large enough). Since we can cover þ1∕4 K V with Cr−m+1 balls of radius r centered at points
y * V K þ1∕4, we clearly conclude that

lim sup
k³@

��0 (ďk)
−2 +B 1

4

KBr(V )

|Ď
T⃗k

− Ď�0 |2d
‖‖‖T

r
k
‖‖‖ d Cr . (11.27)

Combining (11.25), (11.26), and (11.27), we then get (11.23).
In order to prove (11.24) we observe that, for r large enough, T rg þ1∕8 = T (þ1∕8 ö Br(V )) is the union of the 2Q graphs over

�±
0
K þ1∕8 ö Br(V ) of the functions

q Ç vk,±j (q) =
(
wk,±j (q) + l̃k,±j (q), 	k(q,w

k,+±
j (q) + l̃k,±j (q))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ k,±j (q)

)
* �

é0

0
× T0�

é .

while ÿk is the union of the graphs, over the same domains, of the functions

q Ç l
k,±
j (q) =

(
l̃k,±j (q), 0

)
* �

é0

0
× T0�

é .

In particular we can write

�T rk (W̄ ) − �ÿrk(W̄ ) =
1
j

(
�ă

vk,+j
(W̄ ) − �ă

l
k,+
j

(W̄ )
)
+
1
j

(
�ă

vk,−j
(W̄ ) − �ă

l
k,−
j

(W̄ )
)
,

and reduce the proof of (11.15) to

lim
k³@

ā
−1∕2

k
��0 (ďk)

−1
(
�ă

vk,±j
(W̄ ) − �ă

l
k,±
j

(W̄ )
)
= −+þ1∕8K�

±
0
öBr(V )

�±j ∇w̄
±
j ⋅ ∇

)w
)v

(11.28)

(note that summing over ± we then use the fact that the function is even to achieve (11.15)). The proof is the same for all 2Q
functions: we will therefore restrict to the case (+, 1) and, in order to simplify our notation, we will drop the indices + and 1, so
that our functions become

vk(z) = (wk(z) + l̃k(z),  k(z)) , (11.29)

lk(z) = (l̃k(z), 0) . (11.30)

It is important to recall that

‖l̃k − ��0 (ďk)�+1 l̄+1 ‖C1 = o(��0 (ďk)) , (11.31)

‖wk − E
1∕2

k
w̄+

1
‖C1 = o(E

1∕2

k
) , (11.32)

‖ k‖C2 = O(ýk) = o(��0 (ďk)
1∕2) , (11.33)

‖vk‖C1 + ‖l̃k‖C1 = O(��0 (ďk)) , (11.34)

‖wk‖C1 = O(E
1∕2

k
). (11.35)

We denote by � the function )w
)v

and consider, for small ", the diffeomorphism �"(p) = p + "W̄ (p) of Rm+n onto itself and the
diffemorpshim 	"(z) = z − "�(z)e. If a current is the graph ăv of a C

1 function v over some domain 
 of �0, then (�")♯ăv is the
graph of v" ∶= v◦	". The variation �ăv(W̄ ) can then be computed as

�ăv(W̄ ) =
d
d"

||||"=0 +	−1
" (
)

ï(Dv") = −+

[
)ï
)A

(Dv) ∶ (Dv ⋅ e ⊗ ∇� ) −ï(Dv)
)�

)e

]
, (11.36)

where ï(A) is the area integrand. The latter can be written explicitly as

ï(A) ∶=

√
1 + |A|2 + 1

M*ûi(A),ie2
(detM)2 ,
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where ûi(A) denotes the set of i × i minors of A.
Observe first that

ï(Dlk)
)�

)e
=

√
1 + |∇l̃k|2 )�)e (11.37)

and

)ï
)A

(Dlk) ∶ (Dlk ⋅ e ⊗ ∇� ) =
(∇l̃k ⋅ e)(∇l̃k ⋅ ∇� )√

1 + |∇l̃k|2
. (11.38)

Note next that, for anyM * ûi(Dvk) with i e 2, detM is the product of 2i entries of Dv, of which at least two are partial derivatives
of  k. Taking then into consideration (11.31)–(11.35) we get

ï(Dvk)
)�

)e
=

√
1 + |∇l̃k|2 )�)e +

(∇l̃k ⋅ ∇wk)
)�

)e√
1 + |∇l̃k|2

+ o(��0 (ďk)E
1∕2

k
) (11.39)

)ï
)A

(Dvk) =
Dvk√

1 + |∇l̃k|2
+ O(ýk + Ek + ��0 (ďk)

2
E

1∕2

k
) . (11.40)

Using then (11.34) and (11.35) we gain furthermore the expansion

)ï
)A

(Dvk) ∶ (Dvk ⋅ e ⊗ ∇� )

=
(∇l̃k ⋅ e)(∇l̃k ⋅ ∇� ) + (∇l̃k ⋅ e)(∇wk ⋅ ∇� ) + (∇wk ⋅ e)(∇l̃k ⋅ ∇� )√

1 + |∇l̃k|2
+ o(��0 (ďk)E

1∕2

k
) . (11.41)

Inserting (11.37), (11.38), (11.39), and (11.41) in (11.36) we then get

(�ăvk
(W̄ ) − �ălk

(W̄ ))

= − +�+
0
Kþ1∕8öBr(V )

(∇l̃k ⋅ e)(∇wk ⋅ ∇� ) + (∇wk ⋅ e)(∇l̃k ⋅ ∇� ) − (∇wk ⋅ ∇l̃k)
)�

)e√
1 + |∇l̃k|2

+ o(��0 (ďk)E
1∕2

k
) . (11.42)

However, since ∇l̃k = �̃k,+j e for some real numbers �̃k,+j , we easily see that in fact

(∇wk ⋅ e)(∇l̃k ⋅ ∇� ) = �̃k,+j
)wk
)e

)�

)e
= (∇wk ⋅ ∇l̃k)

)�

)e

In particular

(�ăvk
(W̄ ) − �ălk

(W̄ )) = − +�+
0
Kþ1∕8öBr(V )

(∇l̃k ⋅ e)(∇wk ⋅ ∇� )√
1 + |∇l̃k|2

+ o(��0 (ďk)E
1∕2

k
)

= − +�+
0
Kþ1∕8öBr(V )

(∇l̃k ⋅ e)(∇wk ⋅ ∇� ) + o(��0 (ďk)E
1∕2

k
) . (11.43)

We now use (11.31) and (11.32) to conclude that

(��0 (ďk)
−1
E
−1∕2

k
)(∇l̃k ⋅ e)(∇wk ⋅ ∇� ) ³ �+

1
∇w̄+

1
⋅ ∇�

uniformly on þ1∕8 K �
+
0
ö Br(V ). In particular we finally get

lim
k³@

(��0 (ďk)
−1
E
−1∕2

k
)(�ăvk

(W̄ ) − �ălk
(W̄ )) = −�+

1 +þ1∕8K�
+
0
öBr(V )

∇w̄+
1
⋅ ∇� ,

which completes the proof. □

12. Proof of Proposition 3.3: Decay for the linearization

The aim of this section is to prove the fundamental integral decay property of the blow-up maps w̄±
j which will allow us to

conclude the proof of Proposition 3.3.

Proposition 12.1. There exists a constant C e 0 depending only upon m and Q, with the following properties. Let w̄±
j be the maps in

Corollary 11.2. Then there are:

(i) 2Q linear maps a±j ∶ �0 ³ �
é0

0
which vanish on V ,

(ii) a linear map bv ∶ V ³ �
é0

0
,
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(iii) and a linear map bo ∶ V ³ �0 K V
é

such that

‖bo‖C1 + ‖bv‖C1 + ‖a±j ‖C1 d C (12.1)

and

+�±
0
Kþ�

|||w̄
±
j (t, y) − a

±
j (t) − (bv(y) − l̄

±
j (bo(y)))

|||
2
dy dt d C�m+4 "� <

1

32
. (12.2)

12.1. Smoothness and properties of Simon’s and Wickramasekera’s averages

In this subsection we use the variational identities (11.14) and (11.15) to conclude the following

Lemma 12.2. Let w̄ be as in Corollary 11.2 and define ! and $ as in (11.10) and (11.12). Then:

(i) ! and $ are harmonic and can be extended to harmonic functions (still denoted ! and $) on þ1∕8 K �0 with the property that
)2!
)t)v

=
)2$
)t)v

= 0 on V K þ1∕8 for every v * V ;

(ii) !(0) = $(0) = 0.

The proof is verbatim the same as the ones for the analogous claims in [4, Lemma 11.2] and is left to the reader. We just remark
that Corollary 11.2(iii) together with (11.7) implies that

+B 1
8

K�+
0

|∇$|2
t
1
2

dtdy d C.

Hence )t$ has a well-defined trace on V .

12.2. Proof of Proposition 12.1

We start by claiming the existence of a tk * [2−k−1, 2−k] such that the following estimate holds for every t * [2−k+1, 2−4],

+
2t

t +þ1∕16KV
|(�̄v(�, y) − l̄±j (�̄o(�, y))) − (�̄v(tk, y) − l̄

±
j (�̄o(tk, y)))|2 dy d� d C|t|5∕2 . (12.3)

Indeed denote by f the function w̄±
j − l̄±j and by g the function �̄v − l̄±j ◦�̄o and first of all use Fubini and (11.7) to choose a

tk * [2−k, 2−k+1] such that

+þ1∕16KV
|f (tk, y) − g(tk, y)|2dy dt d C2−3k∕2 . (12.4)

Hence integrate in t and use the second part of (11.7) to prove

+
2−k+1

2−k +þ1∕16KV
|f (t, y) − f (tk, y)|2dy dt d C2−5k∕2

Considering that, again by (11.7)

+
2−k+1

2−k +þ1∕16KV
|f (t, y) − g(t, y)|2dy dt d C2−5k∕2 ,

we can estimate

+
2−k+1

2−k +þ1∕16KV
|g(t, y) − g(tk, y)|2dy dt

d2+
2−k+1

2−k +þ1∕16KV
|g(t, y) − f (t, y)|2 + |f (t, y) − f (tk, y)|2 + |f (tk, y) − g(tk, y)|2 dy dt

dC2−5k∕2 . (12.5)

Observe also that we can use the second part of (11.7) again to prove

+V Kþ1∕16

|f (tj , y) − f (tk, y)|2 dy d 2−3j∕2 "j d k .

Combined with (12.4) we then gain

+V Kþ1∕16

|g(tj , y) − g(tk, y)|2 dy d 2−3j∕2 "j d k . (12.6)
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We can now combine (12.5) and (12.6) to reach

+
2−j

2−k
|g(t, y) − g(tk, y)|2 dt dy

d 1
j+1didk+

2−i+1

2−i
2(|g(t, y) − g(ti, y)|2 + |g(ti, y) − g(tk, y)|2) dy dt d C

1
j+1didk

2−5i∕2 .

Recall next the definition of the coefficients �±j , so that l̄
±
j (�̄o(t, y)) = �±j (�̄o(t, y)) upon identifying �0 K V

é with R. Use then (11.13)
in Lemma 11.4 to conclude the existence of two indices in the collection {(±, j)} whose absolute value of the difference is larger
than an absolute positive constant. Let �̄ and �̂ be the corresponding coefficients and observe that the inverse of the matrix

M ∶=

(
1 −�̄

1 −�̂

)

is bounded by a universal constant. In particular we can write �̄v and �̄o as a linear combination of �̄v− �̄�̄o and �̄v− �̂�̄o to pass from
(12.3) to

+
2t

t +þ1∕16KV
|�̄v(�, y) − �̄v(tk, y)|2 dy d� d C|t|5∕2 (12.7)

+
2t

t +þ1∕16KV
|�̄o(�, y) − �̄o(tk, y)|2 dy d� d C|t|5∕2 . (12.8)

Note moreover that from the above estimates it follows that the sequences �̄v(tk, ⋅) and �̄o(tk, ⋅) are Cauchy in L
2(V Kþ1∕16) and their

limits are bounded functions

�̄v(0, ⋅) ∶ V K þ1∕16 ³ �
é0

0

�̄o(0, ⋅) ∶ V K þ1∕16 ³ �0 K V
é

with the property that

+þ1∕16KV
|�̄v(tk, y) − �̄v(0, y)|2 dy d C2−3k∕2 (12.9)

+þ1∕16KV
|�̄o(tk, y) − �̄o(0, y)|2 dy d C2−3k∕2 (12.10)

In particular we can combine this information again with (11.7) to estimate

+
2−k+1

2−k
|w̄±

j (t, y) − (�̄v(0, y) − �
±
j �̄o(0, y))|2 dt dy d C2−5k∕2

Summing over all the dyadic scales we then conclude

+þ1∕16K�
±
0

|w̄±
j (t, y) − (�̄v(0, y) − �

±
j �̄o(0, y))|2

|t| 94
dt dy d C

@1
k=4

2−k∕4 d C . (12.11)

We next introduce the coefficients

� ∶=
1
j

(�+j + �−j )

� ∶=
1
j

((�+j )
2 + (�−j )

2) ,

and use (11.10) and (11.12) to show that

+þ1∕16K�
+
0

|!(t, y) − (2Q�̄v(0, y) − ��̄o(0, y))|2

|t| 94
dy dt d C (12.12)

+þ1∕16K�
+
0

|$(t, y) − (��̄v(0, y) − ��̄o(0, y))|2

|t| 94
dy dt d C (12.13)

Consider moreover the 2 × 2 matrix

M ∶=

(
2Q −�

� −�

)

and observe that, by Cauchy-Schwartz and (11.13),

C−1 d −detM d |M|2 d C .
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In particular the inverse

M−1 =

(
�2 �2


 2 �2

)

satisfies |M−1| d C. Now we gather therefore

+þ1∕16K�
+
0

|�̄v(0, y) − (�2!(t, y) + �2$(t, y))|2

|t| 94
dy dt d C (12.14)

+þ1∕16K�
+
0

|�̄o(0, v) − (
 2!(t, y) + �$(t, y))|2

|t| 94
dy dt d C . (12.15)

Therefore �̄v(0, ⋅) is the trace of the harmonic function

ℎv ∶= �2! + �2$

while �̄o(0, ⋅) is the trace of the harmonic function

ℎo ∶= 
 2! + �2$ .

Since by Lemma 12.2(i) both functions can be extended as harmonic functions on þ1∕8 K �0 and their L
2 norms are bounded by a

universal constant, we conclude that

|∇ℎo(0)| + |∇ℎv(0)| d C (12.16)

‖D2ℎo‖C0(þ1∕16K�0)
+ ‖D2ℎv‖C0(þ1∕16K�0)

d C . (12.17)

Next, consider the harmonic functions

ŵ±
j ∶= w̄±

j − (ℎv − �
±
j ℎo) .

Observe that the trace of these harmonic function on V K þ1∕16 is identically 0. So, by Schwartz reflection they can be extended to
an odd harmonic function on �0 K þ1∕16. Consider thus that

|∇ŵ±
j (0)| d C (12.18)

‖D2ŵ±
j ‖C2(þ1∕32K�0)

d C . (12.19)

Moreover ℎo(0) = ℎv(0) = 0 by Lemma 12.2 and by (12.11), while ŵ±
j (0) = 0 because the trace of ŵ±

j on V vanishes identically, we
conclude that

+þ�K�±0
|w̄±

j (z) − ∇ŵ±
j (0) ⋅ z − (∇ℎv(0) ⋅ z − �

±
j ∇ℎo(0) ⋅ z)|2 dz d C�m+4 . (12.20)

Next observe that ∇ŵ±
j (0) must be directed along the unit vector e * �+

0
K V é, given that ŵ±

j vanishes identically on V . Thus, if we
introduce the orthonormal coordinates y1,& , ym−1 on V , (12.2) holds for the linear functions

a±j (t) =

(
)ŵ±

j

)e
(0) +

)ℎv
)e

(0) − �±j
)ℎo
)e

(0)

)
t (12.21)

bv(y) =
1
i

)ℎv
)yi

(0)yi (12.22)

bo(y) =
1
i

)ℎo
)yi

(0)yi . (12.23)

13. Proof of Proposition 3.3: final step

In this section we finally complete the proof of Proposition 3.3.
We let r2 > 0 be a fixed small radius, whose choice will be specified later, and argue by contradiction. Assuming that the

proposition is false, we find a blow-up sequence (Tk, �k, �k,ďk), together with linear subspaces �0 = T0�k ⊃ �0 ⊃ V (ďk) = V as in
Definition 11.1, with the additional property that

E(Tk, 0, r2) e 1

2
Ek (13.1)

We can therefore, upon extraction of a suitable subsequence, assume that Corollary 11.2 and Proposition 11.3 apply, and we let
w̄±
j ∶ þ1∕8 ³ �

é0

0
be the corresponding functions. We then consider the linear maps bv, bo, and a

±
j produced by Proposition 12.1.

The linear maps a±j are used to ‘‘adjust’’ the pages of ď̃k in the following way. For each j we consider the half-spaces Ą̄
±,k
j given

by the graphs over �±
0
of the linear functions

l̃±j + E
1∕2

k
a±j .
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Hence we let ď̄k be the open book with pages Ą̄
±,k
j . Note that the open book ď̄k has the same spine V as ď̃k.

The linear maps bo and bv will instead be used to rotate suitably ď̄k. More precisely, with a slight abuse of notation we let
bo and bv denote the vectors such that bo(y) = bo ⋅ y and bv(y) = bv ⋅ y for every y * V , see (12.22)–(12.23), and we then let
V ³ �0 = V ⊕ Re ⊕ Rem+1 be the linear map

V - vÇ (e ⊗ ��0 (ď̃k)
−1 bo)(v) + (em+1 ⊗ bv)(v) * �

é0

0
× (V é K �0) = V é K �0 ⊂ �0 .

Observe that there is a unique skew-symmetric linear map bk ∶ �0 ³ �0 which extends it, i.e. bk = (e ⊗ ��0 (ď̃k)
−1 bo + em+1 ⊗ bv) −

(��0 (ď̃k)
−1 bo ⊗ e + bv ⊗ em+1). For every real number s we consider the exponential map exp(sbk) ∶ �0 ³ �0 and observe that it is an

element of SO(�0). We then set ď̂k ∶= exp(E
1∕2

k
bk)(ď̄k). Observe that, by construction, ď̂k is an open book in ℬ(0, �k). The proof of

Proposition 3.3 will then be completed by the following

Lemma 13.1. Let (Tk, �k, �k,ďk) be the blow-up sequence fixed above and consider the open book ď̂k just defined. Then there is a constant
C, independent of k and �, such that

lim sup
k³@

E
−1
k (E(Tk, ď̂k, 0, �)) d C�2 (13.2)

for every fixed � < 1

32
.

Indeed, given that ď̂k * ℬ(0, �k), from (13.2) we conclude

lim sup
k³@

E
−1
k (E(Tk, 0, r2)) d Cr2

2
. (13.3)

Since C is independent of r2, by choosing r2 sufficiently small we get that (13.1) and (13.3) are in contradiction, thus proving
Proposition 3.3.

Proof of Lemma 13.1. Let �s(x, z) = (x, z) + s(Xo(x, z), Xv(x, z)) + O(s
2) the flow of the vector field X(x, z) = (Xo(x, z), Xv(x, z)) *

Rm × Rn and f ∶
 ⊂ Rm ³ Rn a C1 regular map. Then there exists fs ∶
s ³ Rn such that

ăfs
(
s) = �s♯ăf (
)

where we have the expansion

fs(x) = f (x − sXo(x, f (x))) + sXv(x, f (x)) + O(s
2) . (13.4)

Indeed, note that �s(x) = Ď�0�s(x, f (x)) = x + sXo(x, f (x)) + O(s
2) is a C1-diffeomorphism from 
 to 
s with inverse

�−1
s (x) = x − sXo(x, f (x)) + O(s

2) ,

and observe that

fs(x) = Ď�é
0
�s(⋅, f (⋅))◦�

−1
s (x),

has precisely the claimed properties.
Next let us fix a k in the contradiction sequence, which we will not write in the following, and apply (13.4) to one of the

linear functions f = (l̃j + E
1
2 aj ) em+1 over the domain 
 = �+

0
and with s = E

1
2 and �s given by the rotation exp(E

1
2 b). Notice that

�0 K {t > r} ⊂ 

E

1
2
for sufficient small E, and so

l̂j (t, y) ∶= (f )
E

1
2
(t, y) =

(
l̃j (t) + E

1
2 aj t − E

1
2 l̄j (bo(y))

)
em+1 + E

1
2 bv(y) + O(E) (13.5)

where we have used that Xo(t, y, z) = e ��0 (ď̃k)
−1 (bo ⋅ y) − ��0 (ď̃k)

−1 bo t − bv(em+1 ⋅ z) and Xv(t, y, z) = em+1(bv ⋅ y), with (t, y, z) *

V é K �0 × V × �é
0
, the definition l̄j = ��0 (ď̃k)

−1 l̃j , and moreover that l̃j (bo) = l̃j (bv) = l̃j (0) = 0 given that the vectors b0 and bv are
directed along V .

We are now ready to estimate the excess along the blow-up sequence. We observe that dist(q, ď̂) d dist(q, ď̃) + E
1
2 |q| hence we

deduce from (10.1) for any �@ < r

+þ 1
8

Kþr(V )

dist(q, ď̂)2 d ‖T ‖ (q) d Cr
1
2 E

so that

lim sup
k³@

E
−1
k +þ�Kþr(V )

dist(q, ď̂)2 d ‖‖Tk‖‖ (q) d Cr
1
2 . (13.6)

For E sufficiently small T agrees with the graph of the multi-function u±j , j = 1,& , m over �0. Furthermore the E
−

1
2 (u±j − l̃

±
j ) converge

to the harmonic functions w̄±
j . Hence we conclude, using (13.5) in the second inequality below, that

+þ�Kþr(V )c
dist(q, ď̂)2d ‖T ‖ d 1

±,j
+|x|> r

2

|u±j − l̂±j |
2
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d C
1
±,j

+|x|> r
2

|(u±j − l̃±j ) − E
1
2

(
a±j t + bv(y) − l̄

±
j (bo(y))

)
|2 + O(E2) .

Thus by Proposition 12.1

lim sup
k³@

E
−1
k +þ�Kþr(V )c

dist(q, ď̂)2 d ‖‖Tk‖‖ (q)

d C +�±
0
Kþ�

|||w̄
±
j (t, y) − a

±
j (t) − (bv(y) − l̄

±
j (bo(y)))

|||
2
dy dt d C�m+4 . (13.7)

For the double sided excess we need to bound the distance from ď̂ to T outside of þ �
8
(V ). Since T and ď̂ are graph over �0 in this

region, we can estimate it as above by the distance between the graphs. Hence combining (13.6) with (13.7) we conclude

lim sup
k³@

E
−1
k (E(Tk, ď̂k, v0, �)) d C

r
1
2

�m+2
+ C�2.

Since r > 0 is arbitrary, (13.2) follows. □
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Appendix. Proof of Lemma 9.2

The proof follows closely the one given in [4] for [4, Lemma 8.2]
For any 0 < r < R, we consider the vector field

Wa,r(q) ∶=

(
1

max(r, |q|)m+a −
1

Rm+a

)+

q.

We then insert g2Wa,r in the first variation formula, cf. [4, Lemma 5.1] to derive

−+þR g
2Wa,r ⋅ H⃗T d ‖T ‖ =

m
rm+a +þr g

2 d ‖T ‖ − m
Rm+a +þR g

2 d ‖T ‖

− a+þRöþr
g2(q)

|q|m+a d ‖T ‖ (q) + (m + a)+þRöþr g
2(q)

|qé|2
|q|m+a+2 d ‖T ‖ (q)

+ +þR W
T
a,r ⋅ ∇g

2 ‖T ‖ ,

where W T
a,r(q) denotes the projection on the tangent plane to T at q of the vector Wa,r(q). Here, the generalized mean curvature

H⃗T (q) is given by

m1
i=1

A� (ei, ei) ,

where e1,& , en−1 is an orthonormal base of the approximate tangent space to T at q.
Observe that W T

a,r(q) is in fact parallel to q
T . Now we can use the homogeneity of g and the identity q = qT + qé to deduce that

∇g2(q) ⋅ qT = 2kg2(q) − 2 g(q)∇g(q) ⋅ qé e (
2k −

"
2

)
g2(q) −

2

"
|∇g(q)|2|qé|2.

In particular we may choose a = 2k − �, " = � to estimate

−+þR g
2Wa,r ⋅ H⃗T d ‖T ‖ e m + 2k − �∕2

rm+2k−� +þr g
2 d ‖T ‖ − m + 2k − �∕2

Rm+2k−� +þR g
2 d ‖T ‖

�
2 +þRöþr

g2(q)

|q|m+2k−� d ‖T ‖ (q) + (m + 2k − �)+þRöþr g
2 |qé|2
|q|m+2k+2−� d ‖T ‖ (q)
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−
2

� +þR
(

1

max(r, |q|)m+2k−� −
1

Rm+2k−�

)+

|∇g(q)|2|qé|2 d ‖T ‖ (q) .

We now claim that

|g2Wa,r ⋅ H⃗T |(q) d C‖ĝ‖2@ý2R�|q|1−m . (A.1)

First of all observe |H⃗T | d mý. Then note that H⃗T is orthogonal to Tq�. We can thus write, for |q| d R,

|g2Wa,r ⋅ H⃗T |(q) d C‖ĝ‖2@ýR�|q|−m|ĎTq�é (q)| .
However, given that both 0 and q belong to �, we see that

|ĎTq�é (q)| d Cý|q|
Having proven (A.1), we exploit the monotonicity formula to estimate

+þR |q|1−md‖T ‖(q) d C
‖T ‖(þR)
Rm

.

We thus conclude

�
2 +þRöþr

g2(q)

|q|m+2k−� d ‖T ‖ (q) d
m + 2k

Rm+2k−� +þR g
2 d ‖T ‖ + Cý2‖ĝ‖2@

‖T ‖ (BR)
Rm−�

+
2

� +þR
|∇g(q)|2|qé|2

max(r, |q|)m+2k−� d ‖T ‖ (q) .

Letting r ´ 0 we then conclude (9.2).
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