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Abstract—Recent years have seen the increasing proliferation
of distributed energy resources with intermittent power outputs,
posing new challenges to the voltage management in distribu-
tion networks. To this end, this paper proposes a data-driven
affinely adjustable robust Volt/VAr control (AARVVC) scheme,
which modulates the smart inverter’s reactive power in an affine
function of its active power, based on the voltage sensitivities with
respect to real/reactive power injections. To achieve a fast and
accurate estimation of voltage sensitivities, we propose a data-
driven method based on deep neural network (DNN), together
with a rule-based bus-selection process using the bidirectional
search method. Our method only uses the operating statuses of
selected buses as inputs to DNN, thus significantly improving the
training efficiency and reducing information redundancy. Finally,
a distributed consensus-based solution, based on the alternating
direction method of multipliers (ADMM), for the AARVVC is ap-
plied to decide the inverter’s reactive power adjustment rule with
respect to its active power. Only limited information exchange is
required between each local agent and the central agent to ob-
tain the slope of the reactive power adjustment rule, and there
is no need for the central agent to solve any (sub)optimization
problems. Numerical results on the modified IEEE-123 bus sys-
tem validate the effectiveness and superiority of the proposed
data-driven AARVVC method.

Index Terms—Volt/VAr control, voltage sensitivities, bidirec-
tional search method, data-driven method.

I. INTRODUCTION

OLT/VAr control (VVC) has always been a critical is-

sue for power system operations. According to the stan-
dard by American National Standards Institute [1], the voltage
level should be maintained within a secure range, otherwise
the performance of electrical equipment might be affected.
Along with the growing trend of distributed energy resources
(DERs), the ability of voltage support for distribution networks
also needs further improvements. According to the IEEE stan-
dard 1547-2018, proactive voltage regulations are mandatory
rather than optional for power systems [2]. But considering the
long reaction time and high operation cost, the legacy volt-
age regulation devices cannot provide dynamic voltage sup-
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port in shorter time periods against the fluctuating voltage is-
sues. Compared with switch-based legacy voltage regulation
devices, power electronics-based smart inverters have a much
shorter response time and better controllability [3]. They can
both absorb or inject reactive power to eliminate the rapid volt-
age fluctuations across power systems. Authors in [4] declaim
that the high penetration of DERs may bring more difficulties
in coordinating different voltage regulation devices.

In order to coordinate both the switch-based discrete de-
vices and responsive smart inverters for voltage regulation,
VVC problems in distribution networks are often formulated
as optimal power flow (OPF) problems to maintain the system
voltage level within a pre-defined range while accomplishing
different objectives, e.g., minimizing system loss [5], reducing
system cost [6] or minimizing system voltage deviations [7].
Taking full advantage of measurements, communications and
control capabilities, different VVC strategies are proposed. In
[8], a centralized VVC framework is proposed for day-ahead
scheduling of different voltage regulation devices. To address
voltage issues in different timescales caused by the stochas-
tic and intermittent nature of DER, a robust two-stage VVC
strategy is proposed in [9] to coordinate the discrete and con-
tinuous voltage regulation devices and find a robust optimal
solution, which can cope with any possible realization within
the uncertain DER output. However, the VVC problems in [8],
[9] are solved in a centralized manner, leading to high com-
munication costs and computational burdens. As discussed in
[10], the advantages of distributed algorithms over centralized
approaches in power systems include: (1) Limited information
sharing, which can improve cybersecurity and protect data pri-
vacy; (2) Robustness with respect to the failure of individual
agents; (3) The ability to perform parallel computations and
better scalability. Distributed VVC strategies, based on the Al-
ternating Direction Method of Multipliers (ADMM) [11] or
projected Newton method, are applied to coordinate photo-
voltaic inverters [12], [13], and wind turbines [14], relying on
the communication between neighboring buses/zones or the
communication between the central agent and local agents.

In the centralized and distributed VVC strategies, the re-
active power outputs of DERs highly rely on communication
and coordination across distribution systems, lacking the self-
regulation ability of local DERs to some extent. In order to
enhance the self-regulation ability of local DERs, some local
voltage control strategies are proposed to combine with the
centralized and distributed VVC strategies. For instance, lo-
cal voltage controls are combined with centralized/distributed



VVC strategies in [15]-[17]. The local voltage control always
adjusts the reactive power outputs of DERs as a function of
voltage magnitude following a given ‘Volt-Q’ piecewise linear
characteristic. The characteristics and performance of droop
control are tested in [18], [19]. However, according to [20],
[21], the droop control may lead to some stability or feasibil-
ity issues under certain circumstances. Adaptive droop control
methods are introduced in [22], [23], where the slopes and in-
tercepts are varying in real-time to improve the stability and
feasibility performance. According to IEEE 1547-2018 stan-
dard [2], it calls for supplemental capabilities — the ‘P-Q’ rule,
other than the ‘Volt-Q’ rule, needed to adequately integrate
DERs when the aggregated DER penetration is higher or the
overall DER power output is subject to frequent large varia-
tions. For the ‘P-Q’ rule, the smart inverter’s reactive power
adjustment is based on its local real-time active power rather
than its voltage magnitude. More specifically, the smart in-
verter’s reactive power is adjusted as a function of its active
power following a given/pre-defined ‘P-Q’ characteristic. In
[24], the reactive power outputs of DERs are adjusted based
on a quadratic relationship with the active power outputs. Re-
searchers in [25] introduce a dynamic VVC strategy with sev-
eral states, where the ‘Volt-Q’ rule and the ‘P-Q’ rule are
applied to different operating statuses, respectively.

How to determine a ‘P-Q’ rule is the key to achieving good
voltage regulation performances. By projecting the complex
power flow relationship into linear space, the voltage devia-
tions caused by the power injection fluctuations can be ap-
proximated rapidly [26] using voltage sensitivities. Taking ad-
vantage of voltage sensitivity analysis, different ‘P-Q’ con-
trol rules for voltage regulation are investigated. For example,
in [27], an affine ‘P-Q’ rule is introduced against the volt-
age deviations caused by PV uncertainties, where the reactive
power adjustment ratio is obtained by solving an optimiza-
tion problem with voltage sensitivities as parameters. Besides,
the affine ‘P-Q’ rule is further refined by incorporating volt-
age and inverter limit constraints in [28], resulting in fewer
voltage violations and reactive power usages. But the ‘P-Q’
rules in [27], [28] are determined in a system-wise centralized
manner. In [29], a network partition method is applied to di-
vide the system into several zones, where the ‘P-Q’ rule for
each zone is separately determined. That is, the ‘P-Q’ rule is
determined in a zone-wise centralized manner without consid-
ering the interactions among zones. Both the system-wise and
zone-wise centralized manner require a large amount of infor-
mation exchanging and computational burdens. Moreover, as
mentioned before, voltage sensitivities are the key parameters
for performing ‘P-Q’ rules. In [27], the voltage sensitivities
are calculated by inverting the Jacobian matrix, requiring a
large amount of computation and system topology informa-
tion. Authors in [28] utilize the surface fitting technique [30],
a non-linear regression method, to estimate voltage sensitivi-
ties, where each bus voltage sensitivity is approximately cal-
culated based on the mapping from its local power injections
to its local voltage. However, this technique does not consider
the influences from other buses on the local bus voltage sen-
sitivity. The sensitivity analysis in [29] relies on the perturb
and observe method, which means to repeatedly inject a small

amount of power at one node and calculate the impact on bus
voltages. The perturb and observe method requires repeatedly
solving the power flow.

To this end, a data-driven method is proposed for fast esti-
mation of voltage sensitivities without requiring system topol-
ogy information. Compared with conventional methods, e.g.,
inverting Jacobian matrices or the perturb and observe method,
the proposed method is much faster. Based on the estimated
voltage sensitivities, an affinely adjustable robust Volt/VAr
control (AARVVC) scheme is further proposed to mitigate
voltage issues against the PV uncertainty. In the first stage, the
switch-based discrete devices and the base reactive power set
points for PV inverters are determined with the goal of mini-
mizing the total system power losses. In the second stage, the
reactive power outputs of PV inverters are further adjusted,
following a data-driven affine ‘P-Q’ control rule, to reduce
possible voltage fluctuations, which is decided in a hierarchi-
cal distributed manner. The main contributions of this work
are listed as follows:

o A data-driven method, based on the deep neural net-
work (DNN), is proposed to predict voltage sensitivi-
ties. Given the voltage magnitudes and power injections
of pre-selected buses as inputs, the well-trained DNNs
output the corresponding voltage sensitivity parameters,
which are of great importance for determining the affine
‘P-Q’ rule. It greatly improves the speed of calculating
voltage sensitivities while maintaining high prediction ac-
curacy.

e To improve the training efficiency and reduce redun-
dant information, a feature-selection process, based on
the rule-based bus selection with a Bidirectional Search
(BDS) process [31], is proposed. The operating statuses
of each bus, including the bus active and reactive power
injections and voltages, are regarded as one feature. Then
the bus-selection problem can be converted into a feature-
selection problem. By applying the rule-based bus selec-
tion process, the operating statuses of a selected subset
of buses, instead of the whole system, are sufficient for
the fast and accurate voltage sensitivity estimation.

o The slope of the affine ‘P-Q’ rule is obtained using the
consensus-based ADMM algorithm. Taking advantage of
the hierarchical distributed solution structure, the opti-
mization problem is divided into subproblems and solved
by each local agent while only simple averaging calcu-
lation is processed at the center agent. It leads to lower
computational burdens for the center. Additionally, rely-
ing on the communication between the central agent and
local buses, the distributed consensus-based AARVVC re-
quires less information than the system-wise and zone-
wise centralized manners, which protects local informa-
tion privacy.

The rest of the paper is organized as follows. Section II
provides an overview of the proposed two-stage VVC strat-
egy. The first-stage VVC strategy is formulated in Section III.
Section IV presents the second-stage VVC strategy, includ-
ing the data-driven voltage sensitivity estimation and the dis-
tributed consensus-based AARVVC. Numerical results on the
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Fig. 1. The reactive power adjustment following an affine "P-Q’ rule

modified IEEE-123 bus system are given in Section V and thg
paper is concluded in Section VI.

II. TWO-STAGE VVC FRAMEWORK: OVERVIEW

The paper proposes a two-stage VVC framework. Based
on the predicted information, the first stage aims to minimizg

ya Data-Driven Voltage Sensitivity Estimation ™~

\
I
f : 3 i e Estimated Voltage |

[
|
| i Sensitivit
|
i
|

Coefficients I

Pre-selected
Buses

Rule-Based Bus

DNN
\ Selection

|
|
Local Agents I
|
|
i
i

'/
/
>

Fig. 2. The data-driven AARVVC for the second-stage VVC

the system power losses by dispatching the optimal settings
of switch-based discrete devices and determining the optimal
base reactive power set points for PV inverters. Considering
the long reaction time of the discrete voltage control devices,
the first-stage VVC has a slow timescale. However, only rely-
ing on the forecast values, the intermittent nature of PV may
cause unexpected voltage deviations. In the second stage, the
PV deviation from its forecast value is considered. On the ba-
sis of its reactive power set point determined in the first stage,
each PV inverter further adjusts its reactive power along with
its real-time active power output to avoid potential voltage vi-
olations. The reactive power adjustment of PV inverter follows
an optimal affine ‘P-Q’ rule. As shown in Fig.1, ¢/ ' is the PV
inverter’s base reactive power set point determined in the first
stage, and Apf* is the PV deviation from its forecast value.
Upon the optimal affine ‘P-Q’ rule, the PV inverters’ real-time
reactive power can be adjusted as follows:

¢/* = ¢’ + Aq? (1)
with
A¢) = a; Apd” (2)

steps: (1) Data-driven voltage sensitivity estimation; (2) Dis-
tributed consensus-based AARVVC.

With respect to the data-driven voltage sensitivity estima-
tion, the DNN is utilized to predict voltage sensitivities by
using the operating statuses, including the bus active and re-
active power injections and voltages, as the input. The operat-
ing statuses of each bus can be regarded as one input feature
for the DNN. To improve the training efficiency and reduce
redundant information behind features, a rule-based bus se-
lection with a BDS process is first utilized to select a subset
of buses whose operating statuses have a more important and
greater impact on the voltage sensitivity estimation. More de-
tails about the rule-based bus selection process are provided
in Section IV. Then, the DNN-based voltage sensitivity esti-
mation is performed to predict voltage sensitives.

Finally, a distributed consensus-based AARVVC is pro-
posed to determine the optimal ‘P-Q’ rule of each PV inverter
in a hierarchical manner after receiving the estimated voltage
sensitivities from the DNN. The communication between the
local bus agents and the central agent is required for informa-

where «; is the slope of the affine ‘P-Q’ rule.

The value of «; is determined by solving an affinely ad-
justable robust problem with the goal of minimizing voltage
deviations caused by the PV fluctuations. Note that voltage
sensitivities with respect to active/reactive power injections are
the key parameters to determine the optimal affine ‘P-Q’ rule.
Conventionally, the voltage sensitivities can be estimated by
inverting the Jacobian matrix or using the perturb and observe
method, which could be time-consuming. To this end, we pro-
pose a data-driven AARVVC to determine the optimal affine
‘P-Q’ rule in the second stage. As shown in Fig. 2, the data-
driven AARVVC for the second-stage VVC consists of two

tion exchange. As every local bus agent reaches a consensus
with the central agent on the optimal ‘P-Q’ rule, the commu-
nication process halts.

III. FIRST-STAGE VVC STRATEGY

The first-stage VVC strategy is a deterministic OPF problem
to determine the step positions of discrete devices and the
optimal base reactive power set points for PV inverters based
on the forecast values of DERs. The objective of this first
stage is to minimize the total power losses while maintaining
system voltages within the range of [0.95, 1.05].



A. The Distribution Network

Consider a radial distribution network containing n+1 buses
represented as set {0} | J N, where {0} denotes the slack bus at
which the distribution network is connected to the transmission
network and set N := {1, ...,n} denotes all other buses. Hence
the radial network contains n line segments connecting the
adjacent buses. For any bus j € A/, ; is the set of all children
buses of bus j. The set consisting all line segments in the
distribution network can be expressed as: £ = {¢; = (4, j)|i =
bP(j),j € N}, where bP(j) denotes the parent bus of bus j.
For each line segment (,j) € L, let P;; and Q);; represent
the active/reactive power flow through the line respectively,
r;; and x;; denote the line resistance and reactance. Let p;
and ¢; represent the active and reactive power injections of
bus ¢, V; and v; denote the voltage magnitude and the squared
voltage magnitude of bus ¢. Then the linearized distribution
power flow [32], [33] can be expressed as:

Pyj= Y Pj—p (3a)
keN;

Qij = Z Qjr — qj (3b)
KEN;

v —vj = 2(rij Pij + 24 Qij) (30)

B. First-Stage VVC Problem Formulation

On the basis of the linearized distribution power flow, the
first-stage VVC problem is formulated as ':

Pz 1+ Q2
min F= Y ry-—2—4 @i 4)
(’L,j)eﬁ IU’",Om
subject to:
Pj= > Pp+ps—plVjeN (5)
kEN]‘
Qij= Y Qi+di—q—dg,VjeN  (5b)
keN;
v; —v; = 2(rij Pij + 2;Qi5),V(4,5) € L (50)
vo = 1 4 2nyepAtap + (nmpAtap)2
~ 14 2nipAtap (5d)
Qtap S ntap S ﬁtapy ntap € Z (56)
‘ ntap - nfap S Antap (Sf)
@ =ni - A¢i,nf € Z,Vie N 5g)
0<nf<m,VieN (5h)
‘nf —nl < An{,VieN (51)
- <q¢l <¢ VieN (5j)
7l =/S7 - ()2 VieN (5k)
v<v <T,VieEN (5D

'For this first-stage VVC froblem, the power losses can be approximated

P2 (1)+Q3; (1)
by X pyec iz = .

to convexify the optimization problem, like
Unom
[34], [35].

where (4) represents the first-stage VVC goal is to minimize
the total power losses. Constraints (5a)-(5c) are the linearized
power flow constraints. Equation (5d) represents the voltage
of the swing bus considering the on-load tap changing trans-
former (OLTC) where n.,),, denotes the tap position and Atap
denotes the tap step size. A linear approximation is applied to
(5d). Equations (5e) and (5f) are the operational constraints of
OLTC, where nfap is the previous tap position. The operational
constraints of capacitor banks and PV inverters are presented
in (5g)-(51) and (5j)-(5k), where nt"“ denote the previous num-
ber of capacitor banks. Equation (51) is the voltage constraint.
Including the settings of the switch-based discrete devices as
controllable variables, the first-stage VVC is a mixed-integer
optimization problem. By running the first-stage VVC opti-
mization, the optimal step positions of switch-based discrete
devices and the base reactive power set points for PV invert-
ers can be obtained. With respect to the first-stage VVC, the
optimization variables include:
(1) Exogenous variables:

q?,q5,n5, Vi € N'yand nyq,
(2) Endogenous variables:

PijaQijvv(iaj) € ‘C
Vg, Vs, Vi eN

However, the fluctuating nature of PV is not considered
in the first-stage VVC, and the real-time PV generation may
vary rapidly and deviate from its forecast value, potentially
leading to voltage violations. Due to the slow response time
of the legacy voltage control devices like OLTCs and capacitor
banks, the first-stage VVC may not be capable of dealing with
such fast voltage deviations. To this end, a second-stage VVC
strategy is proposed to resolve voltage issues by adjusting PV
inverters’ reactive power in real-time.

IV. SECOND-STAGE VVC STRATEGY: REAL-TIME
ADJUSTMENT OF REACTIVE POWER

The second-stage VVC strategy focuses on the real-time ad-
justment for the reactive power outputs of inverters. In the first
stage, the base reactive power set points for inverters are de-
termined based on the forecast values of PV outputs without
considering the uncertain characteristic of renewable energy.
To avoid potential voltage issues caused by the PV fluctua-
tions, the second-stage VVC is proposed for reactive power
adjustment. A ‘P-Q’ affine rule is applied as the adjustment
rule. The reactive power of PV inverter at bus ¢ after the ad-
justment can be expressed as (6):

¢ =g’ + ai - Ap! (6)

Here the PV inverter reactive power ¢/ can be split into two
parts: the non-adjustable (or deterministic) part g7 *and the
adjustable part which is expressed as an affine function of the
PV deviation Ap? with the slope ;. Note that ¢/** is the opti-
mization solution of ¢/ in the first-stage VVC. Given the slope
«;, the reactive power adjustment can be calculated immedi-
ately with the real-time PV output. Therefore, the second-stage
VVC strategy allows the real-time adjustment of PV inverter’s



reactive power in accordance with its real-time active power
output to mitigate the voltage fluctuation.

A. Second-Stage Problem Formulation: Robust Optimization
Solution

The aim of the second-stage VVC strategy is to minimize
the system voltage deviations due to the rapid PV fluctuations
by adjusting inverters’ reactive power following the optimal
affine ‘P-Q’ rule.

Let N denote the set of all buses with PVs installed. For
any bus 7 € NV, its voltage deviation can be estimated based
on voltage sensitivity:

AV; =Y KV Apl+ KL -A¢d VjeNa (D)

where K7, and K| are the voltage sensitivities at bus i to the
active and reactive power injections at bus j, respectively.
It is worth mentioning that the PV deviation Ap? from the

base PV set point p‘j’b is an uncertain parameter:

Ap? € [Ap]"™", Ap]**], Vi € Ne (8)

where Ap;-”m <0, Apj* >0 indicates that the actual PV
outputs can deviate from the predicted values in both posi-
tive and negative directions. The second-stage VVC strategy
is expected to be robust against the PV output uncertainty.
Considering the uncertain parameter Apg , the second-stage
VVC problem can be formulated as a robust optimization

problem:
min Z ‘ AV
i=1

©))
subject to:
(7). (8)

To get rid of the absolute value operator in (9), an auxil-
iary variable V*“* is introduced, and the problem (9) can be
rewritten as follows:

min Z youe (10)
=1

subject to:
(8)
VA >N (K 4oy - KE) -Ap?, Vi € NVj € No (11a)
J=1

Vi > =N (KP4 oy - KY) -Apd, Vi € N,Vj € No - (11b)
j=1

Given that Apf varies in the uncertainty interval, the corre-
sponding affinely adjustable robust counterpart (AARC) [36]
of (11) can be reformulated as follows:

min Z yaue (12)
i=1
for Vi € N,Vj € Ng, subject to:
(13a)

n
‘/iau:r > Z (9;] . Ap}naz + 0;; . Ap;m,n)
j=1

n
Ve > = (0] - Apptt 4 6] - ApT) (13b)
j=1
0, >0 (13¢)
6! <0 (13d)
0;; > K} +a; - K (13e)
0;; < Kjj +aj - K (13f)
where 0;; and 0} are the dual variables. Finally, the AARC

problem reduces to a linear problem [27], whose solution is
the optimal slope «; for each PV inverter.

With respect to the AARC problem, two main challenges
should be considered:

(i) The first one is how to efficiently obtain the values
of voltage sensitivities to the active/reactive power injections.
Traditional methods to estimate voltage sensitivities, e.g., the
inversion of Jacobian matrix and the perturb and observe
method, can be time-consuming and complicated.

(i) What’s more is that the AARC problems (12) and (13)
are formulated in a centralized manner, which means the cen-
tral agent needs to collect all the information from local agents,
leading to large computational burdens for the central agent.

To this end, we propose a data-driven AARVVC scheme
consisting of the data-driven voltage sensitivity estimation and
distributed consensus-based AARVVC.

B. Data-Driven Voltage Sensitivity Estimation

Reflecting the impact of power injections change on nodal
voltages by projecting the complex power flow relationship
into linear space, the voltage sensitivities K fj and K fj are im-
portant parameters in the optimization problem in (12)-(13).
In other words, the optimal reactive power adjustment ratio of
the affine function in (2) depends on accurate voltage sensitiv-
ity calculation. If the accuracy of voltage sensitivity estimation
can not be guaranteed, it is difficult to get a reliable affine ad-
just ratio, thus significantly affecting the performance of the
second-stage VVC. To this end, the data-driven voltage sensi-
tivity estimation method is proposed.

The data-driven voltage sensitivity estimation includes the
rule-based bus selection with a BDS process and the DNN-
based voltage sensitivity estimation. The rule-based bus se-
lection with a BDS process is applied to select a subset of
buses whose operating statuses have a more important and
greater impact on the voltage sensitivity estimation, thus im-
proving the training efficiency and reducing redundant infor-
mation. And the DNN-based voltage sensitivity estimation can
efficiently predict voltage sensitivities with high accuracy.

1) Rule-based bus selection with a BDS process: The rela-
tionship between the voltage deviations and the deviations of
bus power injections is presented as follows:

MEag

where J is the Jacobian matrix, Ap and Agq are the deviations
of bus power injections, AV and A# represent the deviations
of voltage magnitudes and angles. This work mainly focuses
on the impact of bus power injections on voltage magnitudes.
By inverting the Jacobian matrix, the relationship between the

(14)



Algorithm 1: BDS-Based Bus Selection

S1: Initialization: Define set '=2 and set B=N, m = 0, and the
number of buses to be selected n .

S2: SFS process:
Let set Z={i|li ¢ F and §
{i1,12, ...yl }
Initialize ¢* = 41, n* = E(F U 1), where E is an indicator of
estimation error. The larger E is, the larger the error is.

€ B}, which contains k& buses

for ¢ = il,ig, ey Uk,
n=E(F U31).
if (n <n")
=1
nt=n
end if
end for
F=FU{i"}

S3: SBS process:
Let set J={j|j ¢ F and|j € B} which contains ! buses
{j17j27"'7jl}‘
Initialize j* = j1, pu* = E(Bk —jl).
for j = j1,j2,..., i,

p=E(By. — j).
if (< p®)
Jj =3
w=p
end if
end for
B=B-{j"}

S4: Let m = m+1, and go back to S2 until m = n, which means
that the pre-defined number of buses have been selected and
added to set F'.

deviations of voltage magnitudes and the deviations of bus
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Fig. 3. Merging process of buses selected by BDS and buses with PV installed

As a sequential searching strategy, BDS consists of two sep-
arate processes: a sequential forward selection (SFS) which
selects the feature that contributes most to improving the esti-
mation accuracy from the remaining feature set, and a sequen-

power injections can be written as:
Ap
Av=[ KP JKQ}~[Aq} (15)
where KP and K9 in (15) are sub-matrices of J~!. The
operation of matrix inversion can be time-consuming for large-
scale systems.

Conventionally, the entries of KP and K9 can be calculated
from the power flow solutions, demanding operating statuses
of all buses. However, there is always redundant information
behind operating statuses of all buses. By introducing the fea-
ture selection process, the information redundancy can be re-
duced. What’s more, from the point of practicality, it is not
easy to collect the operating statuses of every single bus and
use them for calculating the voltage sensitivities. The rule-
based feature selection process can pick out some key buses
whose operation statuses contain more valuable information
for voltage regulation, which makes the proposed data-driven
AARVVC more practical.

To this end, a rule-based bus selection with a BDS Process is
utilized to pick the key buses for voltage sensitivity estimation.
Only the operating statuses of the selected buses will be used
to perform voltage sensitivity estimation.

The operating statuses, including the bus active and reactive
power injections and its voltage, of each bus are regarded as
one feature, then the bus-selection problem can be converted
into a feature-selection problem, which can be resolved by the
BDS feature-selection method.

tial backward selection (SBS) that deletes the feature which
contributes the least to improving accuracy from the remaining
feature set.

The procedure of the BDS is shown in Algorithm 1: BDS-
Based Bus Selection in detail. In step S2, E represents the
estimation error between the true and predicted voltage sensi-
tivities. Every feature from the feature set (B), combines with
the set of selected features(F') forming the input for training.
As for the feature union with the lowest error, the selected
feature from set B is added to set F'. In step S3, each feature
in the current feature set B is temporarily excluded, and the
DNN models are trained based on the remaining feature sets.
By comparing the errors, one feature that contributes the least
information for voltage sensitivity estimation, which means the
well-trained DNN model achieves the highest accuracy with-
out this feature, will be finally removed from the current set
B. Note that features selected by SFS will not be deleted by
SBS while features removed by SBS will not be selected by
SFS. This can ensure that the two processes can converge to
the same solution from two directions.

In the second-stage VVC, the PV inverter’s reactive power is
adjusted in accordance with its real-time active power. It indi-
cates that the operating statuses of buses with PV installed are
usually necessary for the AARVVC. From a practical point of
view, to reduce the investment in measuring devices, we fur-
ther define a rule to combine the key buses selected by the
BDS process and the buses with PV installed. The rule is de-
fined as follows: if one bus selected by the BDS process is the
neighboring bus of any bus with PV installed, then the bus,



selected by the BDS process, will be replaced by its neighbor-
ing bus with PV installed. This rule is based on the intuition
that there are relatively strong correlations between the operat-
ing statuses of two neighboring buses. An illustration example
to explain the rule to merge buses selected by BDS and buses
with PV installed is depicted in Fig.3.

2) A DNN-based voltage sensitivity estimation: The buses,
selected by the proposed rule-based bus selection, are used for
voltage sensitivity estimation. Instead of requiring the opera-
tion statuses of the whole system, only the operating statuses
of selected buses are set as the input of DNN. Aiming to es-
tablish the mapping relationship from the input features to
the voltage sensitivities, supervised machine learning, using a
three-layer fully connected DNN, is performed. With the help
of the well-trained DNN, the estimated voltage sensitivities
can be obtained in real-time. Compared with the conventional
methods to calculate the voltage sensitivities, the DNN-based
voltage sensitivity estimation can be much more efficient and
more capable of coping with the rapidly changing operating
statuses of power systems.

C. Distributed Consensus-Based AARVVC

To obtain the slope of the affine ‘P-Q’ rule for PV inverter
in a distributed manner, we propose the distributed consensus-
based AARVVC to solve the AARC problem (12)-(13). For
each bus i € N, we introduce z; = {z]|z] = a;,Vj € Ng},
and let z = {z;|Vi € N'}. Then the AARC problem (12)-(13)
can be reformulated as follows:

min Z youe (16)
=1
for Vi € N,Vj € Ng, subject to:
‘/Z_(Lu:l; Z Z (9;] . Ap;nax + 9;/] . Ap.;_rlirl) (173)
j=1
V;a,u.r > — Z (9;] . Ap;nin 4 9;; . Ap;nAX) (17b)
j=1

0}, >0 (17¢)
0!, <0 (17d)
0, > K¥ + 2] « K{, (17¢)
0y < KIj + 2+ K (17f)
7 = (17g)

Note Ap™™™ = [Ap"]jeng, Ap™* = [Ap]"**]jen, are

the uncertain parameters, which are assumed to be accessed
by each bus i € N in this paper, and K7}, K} are the volt-
age sensitivity of bus ¢ with respect to the active and reactive
power of bus j, which can be accessed by bus :. It is worth
mentioning K fj7 K f} can be estimated by the proposed data-
driven voltage sensitivity estimation.

In addition, 6;, 0} can be regarded as the variables associ-
ated with bus ¢. In this case, the objective function (16) as well
as the constraints (17a)-(17f) can be split into subproblems re-
lated to each bus ¢ € A. Then, the only coupling constraint

is (17g).

Algorithm 2: Distributed Consensus-Based AARVVC

S1: Initialization. Let the number of iterations £ = 1, a(1) =
O,Zi(l) = O,Ai(l) =0, p>0.

S2: Each local bus agent i updates z;(k) based on the voltage
sensitivities K, and K.

zi(k +1) = argmin Li,w(a(k +1), zi, Ai(k))
s.t. (17a) — (17f)

S3: Each local agent then communicates z;(k+ 1) to the central
agent.

S4: Collecting z;(k) from each local bus agent i € N, the central
agent then updates a(k+1). Each entry o (k+1) of ae(k+1)
can be expressed as:

ZiEN ZZ (k+1)

Vi Vg
o} ,Vie N,Vj e Ng

aj(k+1) =
The central agent then sends o(k + 1) back to each local bus
agent <.
S5: Each local bus agent i updates \;(k + 1):

Ailk+1) =Xik)+p-(zi(k+1) —a(k+1)),VieN
S6: Let £k = k + 1. If k£ > kpaz, or the consensus is achieved,

stop the iteration process; otherwise, go to S2, where k., is
the maximum number of iterations.

To deal with the coupling constraint (17g), let A = {\;]i €
N}, where A\; = {\]|j € Ng}, denote dual variables associ-
ated with (17g), then the augmented Lagrangian function can
be written as:

n

Ly(o,z,A) = Z Lé“(ai, Zi, Ai)

=1

v 3 (M (e as) + Bl -y |?)
1 JENG

n

7

(18)

where p is a parameter. Based on ADMM, the problem (16)-
(17) can be solved in a distributed manner, which is shown
in detail in Algorithm 2: Distributed Consensus-Based
AARVVC.

As seen in S2 and S3 of Algorithm 2, each local agent is
assigned its own subproblem to obtain the optimal values of
z;(k) and then communicates z;(k) to the central agent using
the communication capacity of the inverters during the k-th
iteration. Then in step S4, the consensus-based ADMM also
simplifies the iteration process and the update of «; can be re-
alized by simply averaging all entries in the jth column of z,
and the values of «; are then sent back to corresponding local
agents. The local agents then update the dual variable \; based
on the updated ¢, z; and the parameter p in step S5. The iter-
ation process will stop until the consensus is achieved among
all the local agents or the maximum number of iterations is
reached.

V. NUMERICAL RESULTS

In this section, the proposed data-driven AARVVC is im-
plemented on the modified IEEE-123 bus test system to test
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its performance. The modified IEEE-123 bus test system with
PV generators is shown in Fig. 4. The base voltage for the test
system is set to 4.16 kV and the base power is set to 100 kVA.
The first-stage VVC strategy is run at a circle of 15 minutes
based on the forecast PV generations to dispatch the switch-
based discrete devices, e.g., OLTC, and determine the base
reactive power set points for PV inverters. For the data-driven
voltage sensitivity estimation process, 1500 scenarios are gen-
erated by randomly setting the nodal power injections, and
the real values of voltage sensitivities are obtained by invert-
ing the Jacobian matrices. The dataset is split into three parts
of training, validation, and testing, accounting for 80%, 10%,
and 10% of data, respectively. The model training, parameter
tuning, and testing are conducted offline, then the well-trained
model can be utilized for online voltage sensitivity estimation.

In the firs-stage VVC, the forecast PV penetration of this
system is 47.79%. In the second-stage VVC, a 50% uncer-
tainty interval is considered for each single PV, indicating the
uncertainty set of the PV penetration of this system can be
23.89% to 71.68%. Note that the tap positions of discrete de-
vices keep unchanged within the second stage. The reactive
power of PV inverter is adjusted following the optimal affine
‘P-Q’ rule, determined by the proposed data-driven AARVVC.
In the distributed consensus-based AARVVC, the parameter p
is set as 0.01 and the maximum number of iterations is set as
100.

A. Voltage Sensitivity Comparisons

As discussed before, the data-driven voltage sensitivity esti-
mation includes two main parts: the bus-selection process and
the DNN-based voltage sensitivity estimation, where the op-
erating statuses of these selected buses are used as the input
of DNN for voltage sensitivity prediction.

To evaluate the impact of the number of selected buses on
the prediction accuracy, the mean average error (MAE) is cho-
sen as the evaluation metric, which can be expressed as fol-

0.15 q

0.1 q

MAE

0.05 1

0 I I I I I
20 40 60 80 100 120

Number of Buses Selected by BDS

Fig. 5. MAE versus the number of selected buses.

lows:

1 Ne R
MAE o Zl |z — 2] (19)
where n. is the number of entries of the predicted voltage
sensitivities, x; represents the real voltage sensitivity and &;
is the estimated voltage sensitivity. The number of features to
be selected by the bidirectional search process is an important
hyperparameter, since it reflects the number of buses whose
operation statuses are included in the voltage sensitivity esti-
mation. Setting different numbers of features to be selected by
the bidirectional search method and comparing the correspond-
ing MAE on the validation set, Figure 5 shows the relationship
of MAE versus the value of buses selected by BDS. As can be
seen Fig. 5, MAE first decreases sharply as the number of se-
lected buses increases, then MAE shows slight fluctuations as
the number of selected buses is greater than 20. It shows that
after the number of selected buses reaches 30, incorporating
operating statuses of more buses does not contribute much to
improving the prediction accuracy of voltage sensitivity. This
phenomenon indicates there is redundant information behind
the operating status of all the buses.

In this case, the number of selected buses to perform volt-
age sensitivity estimation is set to 30. The results of the bus-
selection process for the modified IEEE-123 bus test system,
selected by the proposed rule-based voltage sensitivity in Sec-
tion IV, are depicted as red dots in Fig.4. Those selected buses
are distributed across the distribution network. It indicates in-
formation coming from almost all parts of the distribution net-
work is incorporated in those selected buses. This might shed
light on the reason why using the operating status of part of
buses is enough to achieve the accurate voltage sensitivity es-
timation.

Taking bus 7 as an example, Fig. 6 shows the actual and
estimated voltage sensitivities of each bus ¢ € A with re-
spect to the active and reactive power injection at bus 7, i.e.,
dV;/dp7 and dV;/dq; for Vi € N. The actual voltage sensi-
tives are calculated by inverting the Jacobian matrix, which
are regarded as the benchmark, and the estimated voltage sen-
sitivities are calculated from the proposed data-driven voltage
sensitivity estimation method. As shown in Fig. 6, the val-
ues of the estimated and actual voltage sensitivities are very
close. It validates that the proposed data-driven voltage sen-
sitivity estimation method provides accurate prediction of the
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Fig. 6. Actual and estimated voltage sensitivities with respect to active and
reactive power injections at bus 7

voltage sensitivities by only making use of the information
from the selected buses.

B. Performance of the Distributed Consensus-Based AARVVC

As important parameters, the voltage sensitivities with re-
spect to bus power injections, to decide the slope of the affine
‘P-Q’ rule «y, it has been validated in subsection V-A that
the proposed data-driven voltage sensitivity estimation method
can accurately predict voltage sensitivities. We further test
the performance of our proposed Algorithm 2: Distributed
Consensus-Based AAARVC.

Once the estimated voltage sensitivities are given, the slope
«; of the affine ‘P-Q’ rule for each PV inverter can be deter-
mined by our proposed Algorithm 2: Distributed Consensus-
Based AAARVC. Taking PV inverters at buses 7, 23, 50 and
107 as an example, the adjustment slopes for those PV invert-
ers, determined by the distributed consensus-based AAARVC,
are shown in Fig. 7. The adjustment slopes for those PV in-
verters solved by the centralized optimization, i.e., the AARC
problem (12) and (13) is solved in a centralized manner, are
depicted in Fig. 7 as the benchmark. It can be observed from
Fig. 7 that all those slopes, determined by the distributed
consensus-based AAARVC, can converge to the benchmark,
the slopes determined by the centralized optimization. It means
that the optimal ‘P-Q’ rules can be accurately calculated by
our proposed distributed consensus-based AAARVC in a hi-
erarchical distributed manner.

C. Algorithm Comparisons

For algorithm comparisons, four different VVC schemes are
considered:

Scheme 1-First-stage VVC: Only the first-stage VVC is con-
sidered.

Scheme 2-Centralized AARVVC with accurate voltage sen-
sitives: The AARC problem (12) and (13) is solved in a cen-
tralized manner, where the voltage sensitivities are obtained
by inverting the Jacobian matrix.

Reactive power adjustment ratio during iterations

0
‘ Distributed AARVVC
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Fig. 7. Slopes for PV inverters at buses 7, 23, 50, and 107

Scheme 3-Distributed consensus-based AARVVC with ac-
curate voltage sensitives: The AARC problem (12) and (13)
is solved in a distributed consensus-based manner, where the
voltage sensitivities are obtained by inverting the Jacobian ma-
trix.

Scheme 4-Our proposed data-driven AARVVC, i.e., dis-
tributed consensus-based AARVVC with estimated voltage
sensitives: The AARC problem (12) and (13) is solved in a
distributed consensus-based manner, where the voltage sen-
sitivities are estimated by the proposed data-driven voltage
sensitivity estimation method.

First, consider one extreme scenario, where all the PV gen-
eration is at the lowest level within the uncertainty set. The
voltage profiles of the modified IEEE-123 bus test system un-
der different schemes are presented in Fig. 8, and the number
of buses with voltage violations is given in Table. I. In Fig. §,
the blue curves are the optimal voltage profiles determined in
the first stage considering the forecast PV outputs, the yel-
low curves represent the voltage profiles in different schemes,
and the red lines are voltage limits. As shown in Fig. 8, there
are voltage violations for a considerable number of buses in
Scheme 1. It indicates that without the second-stage reactive
power adjustment, the first-stage VVC can not maintain the
voltage profiles within the acceptable range. With respect to
Scheme 2 and Scheme 3, both of them utilize the accurate
voltage sensitivities. The only difference between Scheme 2
and Scheme 3 is the implementation manner, where Scheme 2
is centralized and Scheme 3 is distributed. The outcomes for
Scheme 2 and Scheme 3 are virtually identical, it validates our
proposed distributed consensus-based AAARVC can converge
to the optimal solution solved by the centralized optimization,
but it is more scalable and practical. As shown in Table. I,
there is only one bus with voltage violations for Scheme 1
and 2, where the lowest bus voltage magnitude for Scheme
2 and Scheme 3 is 0.949 p.u., which is very close to 0.95.
For Scheme 4, its outcomes are very close to Scheme 2 and
Scheme 3. The only minor difference is the number of buses
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Fig. 8. The voltage profiles of different schemes under an extreme scenario

with voltage violations is 2 for Scheme 4, slightly larger than
Schemes 2 and 3. Such a minor difference might be caused by
the error between the accurate and estimated voltage sensitives.
The extreme scenario shows that the proposed data-driven
AARVVC can achieve a great performance in terms of voltage
regulation. To further explore the performance of our proposed

TABLE I
NUMBER OF BUSES WITH VOLTAGE VIOLATIONS UNDER ONE EXTREME
SCENARIO
Scheme 1 2 3 4
Bus with Voltage Violations 75 1 1 2
Lowest Voltage (p.u.) 0.929 0949 0949 0.949

data-driven AARVVC for voltage regulation, a Monte-Carlo
simulation is carried out to randomly generate 1500 scenar-
ios, where the PV active power output is uniformly sampled
from its respective uncertainty interval. The distributions of
bus voltage magnitudes under different control schemes are
presented in Fig. 9. As can be seen in Fig. 9, under Scheme
1, voltages can not be maintained within the pre-defined range
and the lowest voltage can be lower than 0.94. For the other
3 schemes, voltages can always be maintained within the ac-
ceptable level in most scenarios. Table. II provides the ratios
of bus voltage violation under different schemes. Without the
second-stage VVC, 7.73 % buses are operated under voltage
violations while the proposed data-driven AARVVC method
can greatly decrease the ratio to around 0.5%, which is very
close to the optimal performance of Scheme 2 and Scheme 3.

1Bus Voltage Distribution Under Different Control Schemes

0.93 . . . .
Scheme 1 Scheme2 Scheme3 Scheme 4

Control Schemes

0.95

0.94

Fig. 9. Distribution of system bus voltage under different control schemes

The lowest voltage for Scheme 4 is slightly lower than 0.95
p.u.. Note that Scheme 3 is also based on our proposed dis-
tributed consensus-based AARVVC. Scheme 3 and Scheme 4
are more scalable and require fewer computation burdens com-
pared to Scheme 2. Even though the performance of Scheme
4 is slightly inferior to Scheme 3, it is more computationally
efficient as it intelligently relies on the DNN to predict voltage
sensitivities.

As summarized in Table. III, the proposed AARVVC can
greatly improve the voltage issues in the system, but requires
only operation information from partial buses and no topology
information. With the hierarchical distributed solution struc-
ture, it has better scalability and information privacy.

TABLE II
PERCENTAGE OF BUSES WITH VOLTAGE VIOLATIONS UNDER 1500
SCENARIOS
Scheme 1 2 3 4
Percentage of Buses
with voltage violation (%) 773 0.47 0.47 0.53
Lowest Voltage (p.u.) 0939 0949 0949 0.949

D. Comparisons with Other Techniques

To further demonstrate the performance of our proposed
AARVVC method, comparisons with two other voltage regu-
lation strategies are conducted.

The first one is the constant power factor (CPF) strategy.
As suggested in [2], DERs’ power factor settings can be spec-
ified by the system operator. Then local DERs can adjust the
reactive power following the power factor without exceeding
the inverters’ capability. In the first stage VVC, the optimal
set points of PV inverters’ reactive power ¢Y can be obtained.
Based on p9 and ¢Y, the power factor can be calculated. Then
the second stage adjustment aims to maintain the constant
power factor as:

@@ ¢+ Ag"F

07 it Ap (20a)



TABLE III
SUMMARY OF THE 4 SCHEMES

Topology information

Operation statuses

Scheme  Second stage adjustment Voltage issues . . Scalability and Privacy Issues
required required
1 w/o Serious / / /
2 Greatly improved Yes All buses Yes
3 Greatly improved Yes All buses No
4 Greatly improved No Partial buses No
q?
AP =21 . Ap (20b) TABLE V
pY PERCENTAGE OF BUSES WITH VOLTAGE VIOLATIONS

Another technique is the fixed droop control (FDC) sug-
gested by [2] with a dead band. Under this control strategy,
the PV inverter should control its reactive power output fol-
lowing a piecewise linear relationship with voltage.

TABLE IV
COMPARISONS WITH OTHER TECHNIQUES

Percentage of Buses

Stategy with voltage violation (%) Lowest voltage (p.u.)
AARVVC 0.53 0.949
CPF 13.61 0.930
FDC 3.64 0.943

By conducting a Monte-Carlo simulation with 1500 ran-
domly generated scenarios, the performance of different volt-
age regulation strategies is summarized in Table. IV. Among
all three strategies, our AARVVC achieves the best perfor-
mance, with only 0.53% nodes experiencing voltage viola-
tions. The CPF strategy performs worst. As a result, the volt-
age support from the PV inverters gets further weakened. With
the default settings of parameters, the FDC can effectively re-
duce voltage violations, but the performance is not as good as
the proposed AARVVC.

E. Extension to Load Uncertainty

It is worth mentioning that our proposed AARVVC can be
easily extended to consider load uncertainties by making some
minor modifications. See Appendix A for more details about
it.

In this subsection, to make our proposed AARVVC more
generally applicable to various scenarios, the uncertainty of
nodal active and reactive power loads is considered. For the
second stage VVC, in addition to the PV uncertainty, a 10%
percent uncertainty interval of both active and reactive power
loads is considered for each bus.

A Monte-Carlo simulation with 1500 randomly generated
scenarios is carried out to test the performance of the ex-
tended AARVVC under the uncertainty of both loads and PV
generation. The PV active power outputs, as well as active
and reactive power loads are uniformly sampled from their
uncertain interval. For comparison, a base case without any
second-stage adjustment is conducted.

Second stage Percentage of Buses

Lowest voltage (p.u.)

adjustment with voltage violation (%)
w/o 20.74 0.927
w 1.59 0.948

As can be seen in Table. V, our proposed AARVVC can also
effectively mitigate voltage issues with considerations of both
load and PV uncertainties. For the base case, the percentage of
bus voltage violations increases greatly to 20.74%, meanwhile
the lowest bus voltage can be as low as 0.927 p.u.. In con-
trast, after the extended form of the AARVVC is carried out,
the occurrence of voltage violations is drastically reduced to
1.59% and the lowest bus voltage can be maintained at 0.948.
The results validate the capability of the extended AARVVC
to deal with the load uncertainty.

VI. CONCLUSION

This paper introduces a data-driven AARVVC strategy for
voltage regulation against PV and load uncertainties. The data-
driven AARVVC strategy includes two parts: the data-driven
voltage sensitivity estimation and the distributed consensus-
based AARVVC, which are performed in a distributed manner
with the estimated voltage sensitivities. The voltage sensitiv-
ities are efficiently predicted by the DNN with the operating
statuses of selected buses as the input. The effectiveness and
superiority of the proposed data-driven AARVVC strategy are
tested on the modified IEEE-123 bus test system. The results
show it can accurately and efficiently estimate voltage sensi-
tivities and achieve a good voltage regulation performance in
a distributed consensus-based manner. In the future, we will
take into account the network topology change.
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APPENDIX A

Extension to load uncertainties:

The proposed AARVVC method can be further extended to
take the load uncertainty into consideration. Let Ap' and Ag!
denote the active and reactive power load uncertainty, respec-
tively. The voltage deviations in (7) can be further expressed
as follows:

AV, =) Kl - (Ap] — Ap)) + K - (Aq) — Ad)),
j=1

=D Kl (Apf = Apy — 1+ Ad)) + K Ag]
j=1 i

=3 Kl Apr + K- A¢d Vi, j €N
j=1
21

. K% .
Let Ap}* = Apg — Apé— — Kfj * Aqé-, then equation (21) can

be written as:
AV; = KP - Apl + Kf - Ag!, Vi, j € N (22)
=1

Note that AV; considers the influences from both PV and load
uncertainties here, instead of only PV uncertainties. The for-
mulation in (12) and (13) can be reformulated as:

n
min Z yoaur 23)

i=1

subject to:
Ap; € [Ap}', ApF] Vi € N (24)
‘/ia,uz 2 Z (sz; + a; - Kg?) . Ap;*’V%j (S N (24b)
j=1
youe > 72 (KP +a; - KL) - Apy Vi j € N (24c)
j=1

Then the corresponding affinely adjustable robust counterpart
can be written as:

min Z yaue (25)
=1

for Vi, j € N, subject to:

Ve > S (0 A + 01 - Apt) (26a)
j=1

Ve > =37 (0 Ayt + 0 Bpy)  (2sb)

j=1
0, >0 (26¢)

0;; <0 (26d)
0;; > Ki; +a; - K (26e)
0;; < Kj; +a; - K (26f)

Similarly, this problem can be solved by our proposed
AARVVC strategy to determine the ‘P-Q’ rule.
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