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1 Introduction

The continued study of the Higgs boson, discovered over a decade ago [1, 2], remains one of
the top priorities for high energy physics. Over the next twenty years the full data set of
the HL-LHC will allow for unprecedented glimpse at the Higgs boson’s coupling to matter,
other bosons and ultimately itself. In all instances the hope is that deviations from the
predictions of the Standard Model (SM) may be observed suggestive of new interactions which
may elucidate the origins of Electroweak symmetry breaking. In order to achieve this aim,
precision predictions for the Higgs boson will be essential. For the inclusive Higgs situation
calculations have achieved a high level of precision with N3LO predictions completed [3–5].
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At the LHC an observable of great interest is the transverse momentum of the recoiling
Higgs boson. The calculation of the production of a Higgs boson at non-zero pT has been a
successful area of research over the last ten years, with several groups pushing the accuracy to
NNLO in QCD in an effective field theory in which the top quark mass goes to infinity [6–12].
The Higgs effective theory with mt → ∞ provides, for the most part, an excellent description
of the full theory. However, results from the EFT breakdown in certain regions of phase space
(typically high-pT ) where a sensitivity to the top mass returns. The exact calculation the
Higgs production including the top-quark mass dependence is known up to NLO in QCD [13].
The EFT prediction can be improved by including sub-leading top-quark mass corrections
systematically as an expansion in the inverse top-quark mass [14, 15].

Although the SM is a beautiful quantum field theory, and the discovery of the Higgs
provided the last missing piece, there are well motivated reasons to believe it is not the
fundamental theory of nature. Leading concerns include, the lack of a dark matter candidate,
the ability to explain neutrino masses, or the amount of CP violation observed in the universe.
For these reasons and more many theories Beyond the Standard Model (BSM) have been
constructed to address and solve these problems. A common feature of a vast majority of
BSM models includes an extended Higgs sector, for instance, any type of two Higgs doublet
models or the Minimal Supersymmetric Standard Model [16–21] introduce an extra scalar
doublet. In BSM theories which introduce a second Higgs doublet, after electroweak symmetry
breaking, there are five physical scalar bosons which include two CP even Higgs states h,H,
a CP odd pseudoscalar A and two charged Higgs bosons H±. Given the SM-like nature of
(one of the) CP even Higgs bosons, extensions of the SM are naturally constrained such that
the spectrum of states is in an alignment limit with the SM.

Multiple new scalar bosons is thus a simple, and somewhat model independent, prediction
of extended Higgs sectors, and this motivated many dedicated experimental searches and
theoretical work. In this paper we are primarily interested in the psuedoscalar A boson
(focusing on the situation where the ratio between the vacuum expectation of the Higgs
doublets, tan β is small). Given the mathematical similarities between the CP even and CP odd
Higgs bosons, precision predictions for psuedoscalar bosons tend to track their CP-even Higgs
counterparts. For the effective field theory induced by taking mt → ∞ scalar Higgs production
at next to leading order [22, 23] was calculated in the early 1990s, with the corresponding
studies for the pseudoscalar Higgs production case following shortly after [24].1 Later, in the
early 2000s, the Next-to-Next-to-leading order (NNLO) predictions were completed [26–29],
immediately followed by the pseudoscalar Higgs case [30, 31]. Inclusive Higgs production
has recently been computed at N3LO [3–5], and some progress has been made towards the
full N3LO predictions for pseudoscalar production [32, 33]. The corresponding studies of the
(pseudo)scalar Higgs boson produced with an associated jet show a similar pattern. NLO
predictions can be found in refs. [34–37]. However, after a series of recent calculations of
the production of the scalar Higgs plus jet at Next-to-Next-to leading order [6–12], no such
calculation for pseudoscalar Higgs bosons is available. Addressing this gap is the primary
motivation of our paper.

The NNLO calculations of Higgs plus jet have relied on a series of breakthroughs over the
last decade. For a long time NNLO calculations at hadron colliders involving final state jets

1The exact top mass dependence for pseudo scalar Higgs is known up to NLO [25].
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(a) Virtual-Virtual. (b) Real-Virtual. (c) Real-Real.

Figure 1. Representative Feynman diagrams for the production of an A boson with an additional jet
at NNLO.

(a) f = ggg. (b) f = qq̄g.

Figure 2. Representative OJ Feynman diagrams which contribute at NNLO.

were beyond reach due to the technical complexities of infra-red (IR) limits. However, over the
last ten years dramatic improvements have been made in this regard. Two popular techniques
for dealing with IR singularities include N-jettiness slicing [38, 39] and antenna subtraction [40–
46] and these methods have led to dramatic improvements in the number of NNLO predictions
available. In our calculation, we have taken advantage of the well-established MCFM [47, 48]
framework (which uses N -jettiness slicing) that has been successfully deployed for many
calculations at NNLO, the most relevant for this work being the calculation of H + j at
NNLO [12] and bottom induced Higgs plus jet production [49].

Our paper proceeds as follows. In section 2 we give a general overview of the calculation,
while a detailed discussion of our two-loop hard function calculation is presented in section 3,
and the calculation of A+ 2j at NLO is discussed in section 4. We discuss the results of our
Monte Carlo implementation of MCFM in section 5 including the phenomenology for this
process at the 13 TeV LHC. Then, lastly, we draw our conclusions in section 6. A series of
useful formulae, and a detailed comparison with the H+ j calculation, as well as a description
of ancillary files make up a series of appendices.

2 Overview of the calculation

In this paper we consider the production of a pseudoscalar Higgs boson (A) and an additional
jet up to NNLO in QCD. Representative Feynman diagrams for this process at NNLO are
shown in figure 1 and figure 2. In each diagram the A boson couples to partons through an
effective Lagrangian. The effective Lagrangian describing the coupling of the A boson to gluons
(and massless quarks) arises from integrating out the top quark and can be written as [50],2

LA
eff = −A

[
CGOG(x) + CJOJ(x)

]
, (2.1)

where the operators are defined as

OG(x) = Gµν
a G̃a,µν ≡ ϵµνρσG

µν
a Gρσ

a , OJ(x) = ∂µ

(
ψ̄γµγ5ψ

)
. (2.2)

2Note we factored 1
8 and 1

2 in the each Wilson coefficients respectively. See eq. (2.2) in [51].
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The Wilson coefficients CG and CJ are obtained by integrating out the top quark loops
and are defined as follows:

CG = −αs

2π
1
v

(1
8

)
, when tan β ∼ 1 (2.3)

CJ = −
[(

αs

2π

)
CF

4

(
3
2 − 3 ln µ

2
R

m2
t

)
+
(
αs

2π

)2
C

(2)
J + · · ·

]
CG . (2.4)

The Adler-Bardeen theorem [52] constraints the higher order corrections to CG, in our
calculation we need CJ expanded to O(α2

s). The CJ operator is one order higher in αs than
CG and as such the contributions from this operator are simpler and correspond to one-loop
boxes. The full complexities of the NNLO calculation are therefore felt in the CG piece of
the calculation. It is interesting to note that the tree-level contribution from the CJ pieces
(i.e. the right hand diagram in figure 2 without the loop gluon) enter at O(ϵ). Therefore as
ϵ → 0 there is no contribution from CJ at O(α4

s), but these pieces do play a role in correctly
performing the renormalization at NNLO.

The topologies presented in figure 1 are examples of double-virtual (2-loop), real-virtual
(1-loop) and real-real (tree-level) corrections which appear at O(α2

s) in perturbation theory.
Each topology individually contains copious infra-red (IR) singularities which cancel only
upon combinations of the sub-topologies into IR-safe observables. Over the last decade
significant progress has been achieved on regulating IR divergences. In our calculation we
will employ the N -jettiness slicing method [38, 39]. This proceeds by defining the 1-jettiness
observable as follows:

τ1 =
∑

j=1,m

min
i

{2qi · pj

Qi

}
, (2.5)

where the index j runs over the momenta of all partons pj while qi represents a momenta of
the jet-clustered phase space. For small values of τ1 (defined by τ cut

1 ) a factorization theorem
exists from Soft-Collinear-Effective-Theory (SCET) [53, 54]:

σ(τ1 ≤ τ cut
1 ) =

∫ τcut
1

0
dτ1

S ⊗ J ⊗
∏

a=1,2
Ba ⊗ H

+ F(τ cut
1 ). (2.6)

The above equation is valid up to power corrections (denoted by the F(τ cut
1 ) term), which

vanish in the limit τ cut
1 → 0. At NLO the leading power corrections are well described

by the form τ cut
1 log(τ cut

1 /Q), and at NNLO the leading power corrections have the form
τ cut

1 log3(τ cut
1 /Qi) (where in both cases Qi is a hard scale associated with the process). The

factorization theorem contains the universal soft (S, which describes the emission of soft
radiation (for three partons in our case)) jet (J ), and beam (B) functions which both describe
collinear radiation of final/initial state particles. Calculations accurate to O(α2

s) needed
for our calculation can be found in refs. [55–60]. Specific formulae for the jet and beam
functions can be found, for instance in appendix A of ref. [38], for the soft function we use
the results of ref. [55], for further details we refer the reader to the implementation in MCFM
described in refs. [47, 48]. The process-specific hard function H must be calculated on a
case-by-case basis and is obtained from the double-virtual type topologies in figure 1.In our
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calculation we can therefore recycle much of the results presented for H + j at NNLO [12],
which given the similarity to our final state of interest, differs only by the hard function.
We describe the calculation of the hard function in detail at O(α2

s) in section 3. Finally, we
note that there are various options regarding the choice of the hard scale Qi, appearing in
the definitions above. The most common choice of Qi is Qi = 2Ei which is the so-called
geometric measure [61, 62], which we will use in this paper. One has a freedom to choose in
which Lorentz frame to evaluate τ , of which the lab frame is an obvious choice. However in
ref. [12], for higher order corrections to Higgs plus jet it was shown that a boosted frame, in
which τ is evaluated in the frame at which the final-state (Higgs plus jet) system is at rest,
resulted in a smaller impact of power corrections, in particular this choice is less sensitive
to power corrections at higher rapidities (see discussion in refs. [38, 63]). Based on these
works we use the boosted definition throughout this paper.

The SCET-factorization theorem describes the cross section in region below the cut,
leaving the above-cut region τ1 > τ cut

1 to be determined. The primary advantage of the
slicing method resides in the fact that in the above-cut region there is at least one resolved
emission, and therefore the phase space contains only NLO IR-singularities. Therefore in
order to describe this region, a NLO calculation of A+ 2j is all that is required. We discuss
this calculation in detail in section 4.

3 Hard function for A → ggg and A → qqg at NNLO

3.1 Overview

In this section we describe the calculation of the hard function for the process A → ggg and
A → qqg at NNLO accuracy (O(α5

s)) in the mt → ∞ limit. We begin by considering the
decay of an A boson to partons. At LO these reactions can be denoted as follows:

A → g(p1) g(p2) g(p3) and A → q(p1) q̄(p2) g(p3) .

We define Mandelstam invariants for this process as

s = (p1 + p2)2 > 0 , t = (p1 + p3)2 > 0 , u = (p2 + p3)2 > 0 ,

and from momentum conservation these satisfy s+ t+ u = m2
A, where mA denotes the mass

of the pseudoscalar boson. We also introduce the dimensionless quantities

x = s

m2
A

, y = t

m2
A

, z = u

m2
A

, (3.1)

which satisfy 0 < x < 1, 0 < y < 1, 0 < z < 1, and x + y + z = 1 (for decay kinematics).
In order to obtain predictions for the collider production of an A boson with an additional
jet, the decay amplitudes must be crossed to generate the relevant partons in the initial
state, this alters the allowed regions in (x, y, z) space, which we will discuss shortly. We
note that the calculation for the decay kinematics A → 3 partons has been considered in
the literature [51]. Although to allow for an efficient mechanism of generating the crossed
process we have re-calculated the 2-loop amplitudes independently. However, where possible
we try to maintain the notation from [51] to facilitate an easy comparison, whenever we
deviate from the notation in the literature we will mention it.3

3For instance, we note that t ↔ u and y ↔ z in [51].
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3.2 Calculation

We now discuss the calculation of the amplitudes up to two-loop order. The effective
Lagrangian contains both ϵµνρσ and γ5 which are inherently four-dimensional objects. Care
must therefore be taken when calculating using the dimensional regulator d = 4 − 2ϵ. We
proceed as follows, γ5 is defined as

γ5 = i

4!εµνρσγ
µγνγργσ , (3.2)

εµ1ν1ρ1σ1 ε
µ2ν2ρ2σ2 =

∣∣∣∣∣∣∣∣∣∣
δµ2

µ1 δν2
µ1 δρ2

µ1 δσ2
µ1

δµ2
ν1 δν2

ν1 δρ2
ν1 δσ2

ν1

δµ2
ρ1 δν2

ρ1 δρ2
ρ1 δσ2

ρ1

δµ2
σ1 δν2

σ1 δρ2
σ1 δσ2

σ1

∣∣∣∣∣∣∣∣∣∣
(3.3)

where all the Lorentz indices are d-dimensional [64]. This is commonly referred to as the Larin
prescription. While being straightforward to implement in d dimensions, the above definition
fails to satisfy the Ward identities, and therefore an additional, finite, renormalization of
γ5 is required in order to restore the Ward Identity.

Aside from the issues with γ5 there are additional complications arising from operator
mixing. The essential details of the UV renormalization procedure are well summarized
in refs. [51, 65], here for brevity we provide a brief overview and we refer the reader to
the literature for further details. We renormalize the bare strong coupling constant by
performing the replacement

α̂s → αs Sϵ Zα , (3.4)

with Sϵ = exp (ϵγE)
(4π)ϵ , αs ≡ αs(µR) at the renormalization scale µR which keeps the coupling

constant dimensionless in d = 4 − 2ϵ. The renormalization factors are given by

Zα = 1 +
(
αs

2π

)
r1 +

(
αs

2π

)2
r2 + O(α3

s) , (3.5)

where explicit formula for the terms r1, r2 are defined in appendix A. After coupling
renormalization the sub-amplitudes for the two operators OΛ=G and OΛ=J for each process
f = ggg, qq̄g are written as,

MΣ,(0)
f = M̂Σ,(0)

f , (3.6)

MΣ,(1)
f = SϵM̂Σ,(1)

f + r1
2 M̂Σ,(0)

f , (3.7)

MΣ,(2)
f = S2

ϵ M̂Σ,(2)
f + 3r1

2 SϵM̂Σ,(1)
f

+
(
r2
2 − r2

1
8

)
M̂Σ,(0)

f , (3.8)

where Σ = G, J . Next, applying the renormalization of γ5 and operator mixing described
previously we define

MΛ
f =

∑
Σ=G,J

ZΛΣ

(
MΣ,(0)

f +
(
αs

2π

)
MΣ,(1)

f +
(
αs

2π

)2
MΣ,(2)

f + O(α3
s)
)
, (3.9)
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all the necessary renormalization coefficients can be found in [64, 66] and we just simply
present them with our notation here,

ZGG = 1 +
(
αs

2π

)
zGG,1 +

(
αs

2π

)2
zGG,2 + O(α3

s) (3.10)

ZGJ =
(
αs

2π

)
zGJ,1 +

(
αs

2π

)2
zGJ,2 + O(α3

s) (3.11)

ZJG = 0 (3.12)

ZJJ = 1 +
(
αs

2π

)
zJJ,1 +

(
αs

2π

)2
zJJ,2 + O(α3

s), (3.13)

where zΛ,Σ can be found in appendix A. After applying the prescription defined above we
finally obtain UV-finite amplitudes. These amplitudes can be written as

Af = (4παs)1/2 ∑
Λ=G,J

CΛ(αs)MΛ
f . (3.14)

Such that, with (3.9) and (3.14), we obtain all the necessary ingredients to define the squared
amplitudes. For f = ggg,

AgggA∗
ggg = (4παs)

(
αs

2π

)2(
C

(1)
G

)2
[
MG,(0)

ggg MG,(0)∗
ggg +

(
αs

2π

)
2Re

(
MG,(1)

ggg MG,(0)∗
ggg

)
(3.15)

+
(
αs

2π

)2 [
2Re

(
MG,(2)

ggg MG,(0)∗
ggg

)
+MG,(1)

ggg MG,(1)∗
ggg +2C(1)

J Re
(
MJ,(1)

ggg MG,(0)∗
ggg

)]]
and for f = qq̄g,

Aqq̄gA∗
qq̄g = (4παs)

(
αs

2π

)2(
C

(1)
G

)2
[
MG,(0)

qq̄g MG,(0)∗
qq̄g

+
(
αs

2π

)[
2Re

(
MG,(1)

qq̄g MG,(0)∗
qq̄g

)
+2C(1)

J MG,(0)
qq̄g MJ,(0)∗

qq̄g

]
+
(
αs

2π

)2 [
2Re

(
MG,(2)

qq̄g MG,(0)∗
qq̄g

)
+MG,(1)

qq̄g MG,(1)∗
qq̄g

+2C(1)
J

(
MG,(1)

qq̄g MJ,(0)∗
qq̄g +MG,(0)

qq̄g MJ,(1)∗
qq̄g

)
+
(
C

(1)
J

)2
MJ,(0)

qq̄g MJ,(0)∗
qq̄g +2C(2)

J MG,(0)
qq̄g MJ,(0)∗

qq̄g

]]
, (3.16)

where

C
(1)
G = −1

v

(1
8

)
, C

(1)
J = −CF

4

(
3
2 − 3 ln µ

2
R

m2
t

)
. (3.17)

The sum over the polarization states of the external gluons is defined by the complete-
ness relation ∑

pol
ϵµ(pi)ϵν∗(pi) = −gµν + pµ

i q
ν + qµpν

i

q · pi
(3.18)

where q is an auxiliary vector. In our calculation we choose q = p2, p3, p1 for pi = p1, p2, p3
respectively.

– 7 –



J
H
E
P
0
8
(
2
0
2
4
)
0
4
2

The workflow of our calculation proceeds in the following manner. Initially we generated
the tree-level, one-loop, and two-loop Feynman diagrams using FeynArts [67]. We confirmed
the results using an independent implementation using QGRAF [68]. For the FeynArts model
file generation we have used FeynRules [69, 70]. The Feynman rules have been implemented
using FeynCalc [71, 72]. The resulting one-loop and two-loop amplitudes can be written
in terms of scalar loop integrals. These integrals are then further reduced to a smaller
set of Master Integrals (MIs). The reduction to MI’s was performed using LiteRed [73]
and KIRA [74]. At the one-loop level all the integrals are reduced to the bubble and box
integral which can be found in appendix A of ref. [75]. At the two-loop level all integrals
can be expressed in terms of MIs which occur in the similar H → 3 partons process, which
are presented in refs. [76, 77]. All of the MIs are expressed in terms of HPLs [78] and
two-dimensional HPLs (2dHPLs) [76, 77]. We also use GiNaC [79] and HandyG [80] to
numerically evaluate the HPLs and 2dHPLs for checking purposes.

As a cross check of our calculation we calculated both the desired A → 3 parton process
and H → 3 partons, the later of which has been studied extensively in the literature. We
also checked the various crossings of our amplitudes to the physical kinematic regions in
the same way. While the (re-)calculation of H + j is not the primary focus of this paper or
discussion herein we provide a detailed summary of our Higgs calculation (and comparison
to the literature) in appendix D.

3.3 IR subtraction and conversion to MS scheme

In order to define the hard function utilized in the SCET factorization theorem, the amplitudes
must be converted to a suitable form. In order to obtain the hard function we remove the
explicit soft and collinear divergences from the UV-renormalized coefficients. The IR structure
of one-loop and two-loop QCD amplitudes is universally known [81] and can be written using
Catani’s subtraction operators I(ℓ)(ϵ). The finite coefficients MΛ,fin

f are defined as

MΛ,(0),fin
f = MΛ,(0)

f , (3.19)

MΛ,(1),fin
f = MΛ,(1)

f − I
(1)
f (ϵ)MΛ,(0)

f , (3.20)

MΛ,(2),fin
f = MΛ,(2)

f − I
(1)
f (ϵ)MΛ,(1)

f − I
(2)
f (ϵ)MΛ,(0)

f . (3.21)

We confirmed the IR-singularities in our amplitude cancel after this operation as desired.
The explicit expressions of the subtraction operators for A → ggg, qḡg can be found in
appendix A. In appendix C, we provide full results for the tree and one-loop expressions for
MΛ,fin

f for a quick comparison for readers. The full results for the two-loop matrix elements
can be obtained from the attached supplementary material. The description of the files
can be found in appendix E.

Finally, following the discussion in ref. [82], we obtain the MS-renormalized coefficients
MΛ,ren

f in the following way:

MΛ,(0),ren
f = MΛ,(0),fin

f , (3.22)

MΛ,(1),ren
f = MΛ,(1),fin

f +
(
I

(1)
f (ϵ) + Z

(1)
f (ϵ)

)
MΛ,(0),fin

f , (3.23)
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MΛ,(2),ren
f = MΛ,(2),fin

f +
(
I

(1)
f (ϵ) + Z

(1)
f (ϵ)

)
MΛ,(1),fin

f

+
[
I

(2)
f (ϵ) +

(
I

(1)
f (ϵ) + Z

(1)
f (ϵ)

)
I

(1)
f (ϵ) + Z

(2)
f (ϵ)

]
MΛ,(0),fin

f , (3.24)

where Z
(1)
f and Z

(2)
f for f = ggg, qq̄g are presented in appendix A.

As mentioned previously, in order to evaluate the amplitude in a kinematic region relevant
for scattering at the LHC the amplitudes must be crossed to ensure the correct partons are in
the initial state. The detailed procedure on how to achieve this can be found in refs. [83, 84].
In this article, on the other hand, we followed coproduct method [85, 86] as outlined in
ref. [87]. We have confirmed the consistency of our crossed MI’s using a numerical evaluation
of the MI’s in the scattering region using the package AMFlow [88].

In the following we present numerical results of hard functions at each channel using
the parameters defined in eq. (D.5) with mA = 0.1 TeV:

• gg-channel:

Re
(
MG,ren

gg→Ag MG∗,ren
gg→Ag

)
= 4.85921 + (38.5429)αs

+ (187.3091)α2
s ,

Re
(
MJ,ren

gg→Ag MG∗,ren
gg→Ag + MG,ren

gg→Ag MJ∗,ren
gg→Ag

)
= 0 + (0)αs + (1.23085)α2

s ,

(3.25)

• qq̄-channel:

Re
(
MG,ren

qq̄→Ag MG∗,ren
qq̄→Ag

)
= 0.50810 + (1.38529)αs

+ (3.67559)α2
s ,

Re
(
MJ,ren

qq̄→Ag MG∗,ren
qq̄→Ag + MG,ren

qq̄→Ag MJ∗,ren
qq̄→Ag

)
= 0 + (0)αs + (0.12870)α2

s ,

Re
(
MJ,ren

qq̄→Ag MJ∗,ren
qq̄→Ag

)
= (0) + (0)αs + (0)α2

s ,

(3.26)

• qg-channel:

Re
(
MG,ren

qg→Ag MG∗,ren
qg→Ag

)
= −1.96610 + (−16.4889)αs

+ (−77.2028)α2
s ,

Re
(
MJ,ren

qg→Ag MG∗,ren
qg→Ag + MG,ren

qg→Ag MJ∗,ren
qg→Ag

)
= 0 + (0)αs + (−0.49802)α2

s ,

Re
(
MJ,ren

qg→Ag MJ∗,ren
qg→Ag

)
= (0) + (0)αs + (0)α2

s . (3.27)

We note that the above results have not been normalized by the leading order results.

3.4 Factorization properties of the two-loop amplitude

As this section has detailed, the calculation of the second order hard function is quite
intricate and involves several distinct stages. Through diagram generation, reduction to MI’s,
the definition of a UV finite amplitude, extraction of IR poles, evaluation and analytically
continuing the decay amplitudes to the scattering region. Therefore it is natural to search for
methods of validating the correctness of our approach. In this section we outline the checks
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Coefficient y C
(2)
ggg y M̂G,(2)

ggg M̂G,(0)∗
ggg xC

(2)
qq̄g xM̂G,(2)

qq̄g M̂G,(0)∗
qq̄g

ϵ−4 1.20981960 · 106 1.20981960 · 106 4.05026555 · 102 4.05026555 · 102

ϵ−3 1.58228295 · 107 1.58228295 · 107 −2.59019027 · 103 −2.59019027 · 103

ϵ−2 2.36283980 · 108 2.36283980 · 108 −1.20976857 · 104 −1.20976857 · 104

ϵ−1 2.58965014 · 109 2.58966527 · 109 5.16726263 · 104 5.16726262 · 104

ϵ0 2.19247701 · 1010 2.19253448 · 1010 2.38532152 · 105 2.38475465 · 105

Table 1. Numerical comparison between our two-loop results and the known collinear limit at
phase space points (y, z) = (10−10, 0.23) and (x, z) = (10−10, 0.23) for f = ggg, qq̄g respectively with
µR = mA = 125 GeV. For readability here we have only presented the real part, although we note
that we have found excellent agreement for the imaginary part also.

which we have performed on our result, which correspond to testing the IR singular limits
of our calculation against the know factorization properties of QCD [83, 89].

A particularly good test is the collinear limit [89], we consider the two cases for f =
ggg, qq̄g separately. For the f = ggg case, we consider a phase space point in which one of
the gluons (g = g(p3)) becomes collinear to an another gluon (g = g(p1)), as a result of which
the invariant t vanishes which means y → 0 while x, z ̸= 0. For the f = qq̄g case, we consider
phase space point where the qq pair becomes collinear, and as such the invariant s vanishes
which means x → 0 while y, z ̸= 0. The collinear limit at two loops reads:

M̂G,(2)
f M̂G,(0)∗

f → C
(2)
f = P

(0)
f · M̂G,(2)

A→ggM̂G,(0)∗
A→gg

+ P
(1)
f · M̂G,(1)

A→ggM̂G,(0)∗
A→gg

+ P
(2)
f · M̂G,(0)

A→ggM̂G,(0)∗
A→gg . (3.28)

The splitting functions P (ℓ)
f (y, z) and required amplitudes MG,(ℓ)

A→ggMG,(0)∗
A→gg for ℓ = 0, 1, 2 are

given in appendix B. We compared our result for M̂G,(2)
f M̂G,(0)∗

f as a series in ϵ with C
(2)
f .

We multiply both expressions by a factor of x or y to remove the leading divergence. The
numerical results are displayed in table 1. We observe excellent agreement between our
result and the known collinear limit. Additionally we also investigated the soft limit p3 → 0
for f = ggg by following the procedure outlined in section 8. of ref. [89] finding excellent
agreement, we note this check is much more intricate for f = qq̄g case due to the effective
operator structure, so we did not pursue it here.

3.5 Comparison with existing results

As a further check of our results, we can compare our calculation for the squared amplitudes
for MΛ,(ℓ),fin

f up to ℓ = 2 with the existing results in the literature [51], for decay kinematics.
We have performed this check and we have found that at tree- and one-loop level our two
calculations are perfectly in agreement. The two-loop level comparisons are non-trivial. We
begin by taking account of the following differences in notation;

SG,(2)
q Eq. (2.32) in [51] ↔

(1
8

)−2 (1
2

)−2
[
2 Re

(
MG,(2)

qq̄g MG,(0)∗
qq̄g

)
+ MG,(1)

qq̄g MG,(1)∗
qq̄g

]
(3.29)
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SG,(2)
g Eq. (2.30) in [51] ↔

(1
8

)−2 (1
2

)−2
[
2 Re

(
MG,(2)

ggg MG,(0)∗
ggg

)
+ MG,(1)

ggg MG,(1)∗
ggg

]
(3.30)

where the factors (1/8)−2 and (1/2)−2 are due to the different definitions of the La-
grangian (2.1) and expansion in units of αs/2π versus of αs/4π as in [51]. Our results
should be expanded with a factor (−1)−2ϵ before comparison due to our convention µ2

R = m2
A

as opposed to the choice µ2 = −m2
A in the literature result. Also, note that we normalized

the amplitudes by Born color factor CACF , 2C2
ACF for f = qq̄g, ggg respectively as in

the literature. After making these adjustments we have found perfect agreement with the
literature results for the case f = qq̄g, and for the case f = ggg we found perfect agreement
after a couple of minor typographical errors were fixed in ref. [51].4

3.6 Summary

In this section we have presented the calculation of the hard function required to construct
the τ1 < τ cut

1 part of our NNLO calculation. We have verified that our expressions reproduce
the known IR limits at this order, and were able to reproduce a known result in the literature
for decay kinematics. Further we used our methodology to recompute the known processes
for H → 3 partons. As a result of these checks we are therefore confident in using our results
for the phenomenology presented in the subsequent sections of this paper.

4 The τ1 > τ cut
1 contribution

The remaining part of our calculation corresponds to the above cut piece where τ1 > τ cut
1 .

This piece corresponds to the NLO calculation of the process A+ 2j, allowing for a very soft
jet requirement on the second jet to probe the regions with small τ1. The one-loop amplitude
for the virtual part of the A+ 2j process can be readily obtained from the literature by virtue
of how the Higgs plus 4 parton one-loop amplitudes have been calculated. The Higgs plus 4
parton one-loop amplitudes have been presented in a compact form several years ago [90–94].
One of the reasons that the results are written so compactly is due to the amplitudes being
calculated in terms of the following complex fields;

ϕ = H + iA

2 , ϕ† = H − iA

2 , (4.1)

such that the amplitude for a Higgs plus parton amplitude is the sum of ϕ and ϕ† amplitudes

M(1)(H; {pk}) = M(1)(ϕ; {pk}) + M(1)(ϕ†; {pk}). (4.2)

On the other hand we can generate pseudoscalar amplitudes from the difference of ϕ and
ϕ† components,

M(1)(A; {pk}) = 1
i

(
M(1)(ϕ; {pk}) − M(1)(ϕ†; {pk})

)
. (4.3)

4We thank the authors of [51] for assistance with this comparison.
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The simplicity arises from the observation that the ϕ field couples only to the self-dual part
of the (trace of) the Gluon field strengths and the ϕ† couples only to the anti-self dual
components. Due to this the helicity amplitudes for ϕ (ϕ†) plus partons are considerably
simpler than the corresponding H or A equivalents [90]. By taking advantage of this fact, we
have implemented the virtual part of the A+2j process in MCFM with slight modifications of
the scalar Higgs case. Specifically, for the NMHV helicity configurations in the literature only
the H amplitude has been defined and not the individual ϕ and ϕ† components. However (as
a result of the helicity arguments discussed above) for an NMHV configuration only one of
the amplitudes is complicated, the other being a simple rational function. We were therefore
able to modify the results of the literature to extract the ϕ and ϕ† pieces separately and
construct the A + 4 parton amplitudes accordingly.

The double-real part of our NNLO calculation requires the tree-level amplitudes for
A → 5p, which we have calculated using the BCFW recursion relations [95], obtaining compact
analytic expressions. All the amplitudes present in the calculation have been checked against
Madgraph [96] and GOSAM [97] at random phase space points, finding excellent agreement.

The regularization of IR singularities present in the above-cut region has been performed
using the dipole subtraction method [98]. In the dipole method there are user-defined “α
parameters” [99] which determine the amount of (non-singular) phase space integrated over
by the subtraction counter-terms. An advantage of the method is that each type of dipole
has a unique unphysical parameter which can be varied individually. If the cancellation has
proceeded correctly the individual real and virtual phase spaces depend on this choice of α
but the combined physical predictions do not. Therefore following the procedure described
in ref. [12] we define the following quantities

ϵab = σ(αab = 1) − σ(αab = 0.01)
σ(αab = 1) , (4.4)

where a and b are drawn from the set of initial and final {I, F} type dipoles. We then proceed
to calculate the cross sections using the following phase space requirements

LHC,
√
s = 13 TeV, µR = µF = mA = 125 GeV,

pjet
T > 20 GeV, ∆R = 0.4

anti−kT , no explicit cut on rapidities . (4.5)

Our results for the α-(in)dependence are presented in figure 3, where we have broken down
cross sections into individual partonic sub-channels and investigated each type of dipole
separately. In all cases excellent agreement is obtained with ϵab = 0 within the (sub)per-mille
level MC uncertainty.

In summary we have calculated all helicity amplitudes at one-loop level for A+ 4 partons
and tree-level for A+ 5 partons and implemented the results into MCFM. We have checked
the validity of the individual amplitudes against Madgraph, and performed intricate tests of
the dipole cancellation. We are therefore in position to put the above cut pieces together with
the below cut pieces discussed in the previous section and test our full NNLO calculation.
We do this in the next section.
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αII αIF αFI αFF

gg flux, σ(α=1)=7.68771 pb
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0.000

0.005

ϵ i
j

αII αIF αFI αFF

qqb flux, σ(α=1)=60.5352 fb

-0.005

0.000

0.005

ϵ i
j

αII αIF αFI αFF

qg flux, σ(α=1)=1.49729 pb

-0.005

0.000

0.005

ϵ i
j

αII αIF αFI αFF

qbg flux, σ(α=1)=472.909 fb

-0.005

0.000

0.005

ϵ i
j

αII αIF αFI αFF

qq flux, σ(α=1)=122.366 fb

-0.005

0.000

0.005

ϵ i
j

αII αIF αFI αFF

qbqb flux, σ(α=1)=17.4485 fb

-0.005

0.000

0.005

ϵ i
j

Figure 3. The dependence of the A+ 2j cross-section on the α parameters, for each partonic channel.
The points represent the deviation from αab = 1 to 10−2. The cross-sections obtained at default
parameters (αab = 1), are indicated in the plots. The horizontal lines represent the uncertainty on a fit
of the results to a constant. The plots show excellent α-independence within the MC uncertainty range.

5 Results

The cross-section expanded to NNLO accuracy can be defined as follows,

σNLO = σLO + δσNLO , (5.1)
σNNLO = σLO + δσNLO + δσNNLO . (5.2)

In the following section we will present and discuss results at NLO and NNLO. We have
taken the calculations described in sections 3 and 4, and implemented them into the parton
level Monte Carlo code MCFM, making use of the existing implementation of the H + j

process [12] where possible. In order to facilitate a comparison with the production of a
scalar Higgs we introduce the following phase space selection requirements;

LHC,
√
s = 13 TeV, µR = µF = mA = 125 GeV ,

pjet
T > 30 GeV, anti−kT algorithm, ∆R = 0.4 , (5.3)

PDF set : PDF4LHC15_nnlo_30 . (5.4)

We note that these cuts match those used to study various NNLO calculations of H + j at
NNLO in refs. [7, 11, 12, 100]. We will use these cuts throughout this section.
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Figure 4. τ -dependence of the total NLO cross section, σNLO. The plot is made in the boosted frame.
The blue solid line corresponds to the fitted curve from in eq. (5.6), with the blue zone representing
the errors from the fitted result. The dipole subtraction is shown as the black dashed line.

5.1 Validation

We begin by validating our calculation. Since the SCET-based factorization theorem for
the below cut pieces neglects power suppressed terms, a natural check is to ensure that the
Monte Carlo code can be run in a manner within the on-set of asymptotic behavior. We
use the same definition for τ cut

1 as ref. [12] namely:

τ cut
1 = ϵ×

√
m2

A +
(
pj1

T

)2
. (5.5)

Typically we will draw values of ϵ from the range, 2.5 × 10−5 ≤ ϵ ≤ 5 × 10−4. It has
been shown [12] that if the N -jettiness variable is evaluated in the so-called boosted frame
(corresponding to the rest frame of the Higgs-jet final state system) the resulting dependence
on the unphysical parameter τ cut

1 is softened, and asymptotic behavior is reached sooner.
Therefore in this paper we evaluate the 1-jettiness in the boosted frame.

The parametric form of the leading power corrections are well known and have the
following structure

σNLO(ϵ) = σ0
NLO + c0ϵ log(ϵ) + · · · , (5.6)

δσNNLO(ϵ) = δσ0
NNLO + c0ϵ log3(ϵ) + · · · , (5.7)

where ϵ is defined through eq. (5.5). In figure 4 we present the results for the A + j cross
section at NLO using the default set of cuts. Shown in the figure is the result obtained using
dipole subtraction (as the dashed line), the results from our calculation, and a fit to the
results as described above. Using our parametric fit one can extract the following results

σ0
NLO = 31.674 ± 0.022 pb , (5.8)

σdipole
NLO = 31.675 ± 0.031 pb , (5.9)
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Figure 5. τ -dependence of δσNNLO using our default set of cuts. The blue solid line corresponds to
the fit form in eq. (5.7), with the shaded blue color band representing the fitting errors.

which show the excellent agreement between the two methodologies at NLO accuracy. We
turn our attention to the NNLO coefficient in figure 5. Again the results from our calculation
are well modelled by the parametric fit (eq. (5.7)). Performing the fit described above allows
to extract the coefficient in the τ cut

1 → 0 limit, obtaining:

δσ0
NNLO = 6.435 ± 0.083 pb . (5.10)

The general τ cut
1 dependence of the NNLO coefficient is unsurprisingly almost identical

to that reported in the calculation of H + j [12]. While the asymptotic limit is harder to
reach due to the more intricate NNLO phase space, as ϵ ∼ 2 − 3 × 10−5 the results agree
with the limit within the reported uncertainties. We therefore take these values as within
the asymptotic region and used ϵ = 2.5 × 10−5 as our default value for the phenomenological
studies in the next section.

5.2 Phenomenology

In this section we explore the phenomenology of pseudoscalar Higgs plus jet production at
NNLO. We keep the same fiducial selection criteria described in the previous section. NNLO
predictions shown in this section are calculated using ϵ = 2.5 × 10−5 with the boosted τ defi-
nition. In our predictions we take µF = µR = mA as a central scale choice. We then perform
a six-point scale variation i.e. we compute distributions taking the extremeums from the set
(µR/mA, µF /mA) = (α, β) where (α, β) ∈ {(1, 2), (1, 1/2), (1/2, 1), (2, 1), (2, 2), (1/2, 1/2)}
and we exclude choices in which the scales are increased and decreased in opposite directions.

In figure 6 we present the total cross section for A+ j as a function of the mass of the
pseudoscalar Higgs with mA taken in the range 0–1 TeV. As is expected from the analogous
case in which the scalar Higgs is considered, the NNLO K-factor (the ratio of the NNLO to
NLO cross sections) is sizable, around a factor of 1.2. The K-factor is reasonably flat across
the mass range (with a gentle decrease as the mass increases). Going from NLO to NNLO
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Figure 6. Total cross sections and ratios of the cross sections across various pseudoscalar Higgs
masses, using the our default cuts. The error bands are obtained via variations of the renormalization
and the factorization factor as described in the text.

significantly improves the scale variation, for instance at mA = 125 GeV the scale variation
at NLO is 38 %, which drops to 22 % at NNLO. We also remind the reader that the PDF
choice is the same across all predictions, larger differences are to be expected if lower order
predictions matched to the relevant PDF set are used. It should be noted that in the region
mA > 2mt the effective field theory prescription becomes unreliable due to the resolved top
quark. Significant work has been undertaken in the case of the scalar Higgs, and it has
been shown that, if the cross section is weighted by the ratio of exact LO results including
the mass, then the combined prediction does a good job of incorporating mass effects and
higher order QCD corrections. Since a prediction resolving the top quark mass requires
a (model dependent) definition of the Att vertex, we do not include such a re-weighting
in this work (where we are primarily interested in the technical applications of the NNLO
calculation). When performing a more detailed study of LHC phenomenology this is worth
bearing in mind, but we leave this interesting study to future work. In the remainder of
this section we will choose two representative masses to study the NNLO corrections to
differential observables, specifically mA = 125 GeV and mA = 700 GeV. The first allows
for a straightforward comparison to the predictions for a scalar Higgs boson. The second
choice, while out of range of the EFT, provides an interesting region to study the pattern
of QCD radiation against a much heavier (pseudo)-scalar. Although we stress that for the
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Figure 7. pA
T distribution of the pseudoscalar Higgs (mA = 125 GeV) produced in association with

an additional jet up to NNLO using our standard selection criteria. The green, blue, and red colored
histograms represent the LO, NLO, and NNLO predictions respectively. The middle subplot shows
K-factors which are the ratios of NLO over LO and NNLO over NLO, scale uncertainties are computed
using a 7 point variation described in the text. For each ratio the scale choice in the denominator is
fixed at µR = µF = mA. The bottom panel shows the relative impact of the pieces proportional to
the CJ operator.

second mass choices a more complete phenomenological predictions would need to include
top mass corrections as discussed above.

Figures 7–8 show distribution of the transverse momentum of the pseudoscalar Higgs
up to NNLO for two different mass choices mA = 125 and 700 GeV. Including the NNLO
corrections reduce the scale dependence compared the NLO prediction as expected. For
instance, in the bulk phase space (pA

T > 30 GeV) the typical scale variation at NLO is around
44 %, reduced to 13 % at NNLO. We also note that the Sudakov shoulder effect [101] is
observed around pA

T = 30 GeV from the distribution as in the scalar Higgs case [9]. In the
region below pA

T < pj
T only the real-virtual and real-real parts of the NNLO calculation

contribute, so here the prediction is effectively NLO with the corresponding large K-factor
and scale variation associated with predictions at this level. Finally in the lowest sub-plot
we isolate the contributions sensitive to the CJ operator. We recall that these pieces arise
first at NNLO and contribute via an interference effect with the LO amplitude. As such,
they reside in the 2 → 2 phase space. These pieces are a small part of the total NNLO
cross-section (around 0.5% across the differential distribution), and they soften slightly at
higher transverse momentum, which can be understood as an increasing relevance of the
higher multiplicity phase spaces.
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Figure 8. pA
T distribution of the pseudoscalar Higgs evaluated with a mass of mA = 700 GeV. The

remaining parameters are same as in figure 7.

Finally in figures 9 and 10 we present the rapidity distribution of the pseudoscalar Higgs at
the same mass choices (125 and 700 GeV). The NNLO distribution is obtained in the same way
as the pA

T distribution. Whilst the effect the NLO and the NNLO corrections are approximately
constant in rapidity as in the standard Higgs case [9, 12], the NNLO correction significantly
reduces the scale dependence as desired. Again the CJ pieces represent a reasonably flat
correction across the distribution, at around 0.5% of the total NNLO prediction.

6 Conclusions

This paper presents the NNLO calculation of a psuedoscalar Higgs boson in association with
an additional jet. The calculation of a psuedoscalar (or scalar) Higgs boson in association
with a jet at this order is rather intricate, requiring a delicate combination of loop calculations
and IR regulation. We have performed the calculation by independently re-calculating
all components, including a recalculation of Higgs plus jet at this order to validate our
psuedoscalar Higgs calculation at every stage. We calculated the two-loop amplitude for
A(H) → 3 partons and the relevant crossings for LHC physics. We performed several checks
of our calculation against both the literature and known IR limits of QCD amplitudes.

In order to regulate the IR divergences present in the NNLO calculation we used the
N -jettiness slicing method. Here one imposes a cut on the 1-jettiness variable to separate the
calculation into two regions. When the 1-jettiness variable is sufficiently large the calculation
has maximally one unresolved emission and resembles a traditional NLO calculation. Below
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Figure 9. The rapidity distribution of the pseudoscalar Higgs (mA = 125 GeV) produced in association
with an additional jet up to NNLO. The green, blue, and red colored histograms represent the LO,
NLO, and NNLO respectively, scales are varied as described in the text. The middle subplot shows
K-factors which are the ratios of NLO over LO and NNLO over NLO. The bottom subplot shows the
relative impact of the CJ operator.

the cut a factorization theorem from SCET allows the amplitude to be written in a convenient
form (up to suppressed power corrections).

We validated our calculation in several ways including; comparing to the literature
results where appropriate, checking the dipole cancellation in the NLO A+ 2j calculation
and finally investigating the slicing dependence at NLO and NNLO to ensure asymptotic
behaviour. We implemented the results of calculation into MCFM and used the code to
produce phenomenological results at 13 TeV LHC. In particular we studied the transverse
momentum and rapidity distribution of the pseudoscalar focusing on two representative
masses. A natural extension of the work presented here is to include decays of the boson and
investigate the impact on constraints on current searches at the LHC.
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Figure 10. The rapidity distribution of the pseudoscalar Higgs with mA=700 GeV, all other
parameters are the same as figure 10.

A Formulae for renormalization and IR subtraction

The renormalization coefficients of eqs. (3.5) and (3.10)–(3.13) are defined as

r1 = −β0
ϵ
, (A.1)

r2 = β2
0
ϵ2

−β1
2ϵ , (A.2)

zGG,1 = −11CA

6ϵ +NF

3ϵ , (A.3)

zGG,2 = 1
4ϵ2

(
121C2

A

9 − 44CANF

9 + 4N2
F

9

)
+ 1

4ϵ

(
−17C2

A

3 + 5CANF

3 +CFNF

)
, (A.4)

zGJ,1 = 6CF

ϵ
, (A.5)

zGJ,2 = 1
2ϵ2 (−22CACF +4CFNF )+ 1

2ϵ

(71CACF

3 −21C2
F − 2

3CFNF

)
, (A.6)

zJJ,1 = −2CF , (A.7)

zJJ,2 = 1
4ϵ

(22CACF

3 + 5CFNF

3

)
+ 1

4

(
22C2

F − 107CACF

9 + 31CFNF

18

)
, (A.8)

with

β0 = 11CA − 2NF

6 , (A.9)

β1 = 17C2
A − 10CATRNF − 6CFTRNF

6 , (A.10)

and TR = 1
2 , CA = Nc, CF = N2

c −1
2Nc

.
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The subtraction operators I
(ℓ)
f (ϵ) for generic QCD processes can be found in ref. [81]. For

completeness, we show here the explicit expressions for the subtraction operators in CDR.
For the process A → ggg, qq̄g at the one-loop order:

I(1)
ggg(ϵ) = −eϵγE

2Γ(1−ϵ)

(
−m2

H

µ2

)−ϵ [
NC

( 1
ϵ2

+ β0
ϵNC

(
x−ϵ+y−ϵ+z−ϵ))] , (A.11)

I
(1)
qq̄g(ϵ) = −eϵγE

2Γ(1−ϵ)

(
−m2

H

µ2

)−ϵ [
NC

( 1
ϵ2

+ 3
4ϵ+ β0

2ϵNC

)(
y−ϵ+z−ϵ)− 1

NC

( 1
ϵ2

+ 3
2ϵ

)
x−ϵ

]
.

(A.12)

At the two-loop order for each f = ggg, qq̄g:

I
(2)
f (ϵ) = −1

2I
(1)
f (ϵ)I(1)

f (ϵ) − β0
ϵ

I
(1)
f (ϵ) + e−ϵγE

Γ(1 − 2ϵ)
Γ(1 − ϵ)

(
β0
ϵ

+K

)
I

(1)
f (2ϵ) + H

(2)
f (ϵ) ,

(A.13)

where

K =
(

67
18 − π2

6

)
CA − 10

9 TRNF , (A.14)

H(2)
ggg(ϵ) = eϵγE

4ϵΓ(1 − ϵ)
[
3H(2)

g

]
, (A.15)

H
(2)
qq̄g(ϵ) = eϵγE

4ϵΓ(1 − ϵ)
[
2H(2)

q +H(2)
g

]
, (A.16)

with

H(2)
g =

(
ζ3
2 + 5

12 + 11π2

144

)
N2

C + 5
27N

2
F +

(
−π2

72 − 89
108

)
NCNF − NF

4NC
, (A.17)

H(2)
q =

(
7ζ3
4 + 409

864 − 11π2

96

)
N2

C +
(

−ζ3
4 − 41

108 − π2

96

)

+
(

−3ζ3
2 − 3

32 + π2

8

)
1
N2

C

+
(
π2

48 − 25
216

)
(N2

C − 1)NF

NC
. (A.18)

In these formula and those appearing later ζi defines the Riemann zeta function ζi = ∑∞
n=1 n

−i

and γE is the Euler-Mascheroni constant γE = 0.57721566 . . ..
Lastly, we present the expressions for Z

(1)
f and Z

(2)
f in eqs. (3.23) and (3.24).

For f = qq̄g:

Z
(1)
qq̄g = 1

ϵ2

(
NC − 1

2NC

)
+ 1
ϵ

[
NC

6 (−3L(y) − 3L(z) + 10) + 1
4NC

(2L(x) − 3) − NF

6

]
,

(A.19)

Z
(2)
qq̄g = 1

ϵ4

[
N2

C

2 + 1
8N2

C

− 1
2

]

+ 1
ϵ3

[
N2

C

24

(
− 12L(y) − 12L(z) + 7

)
+ 1
N2

C

(
3 − 2L(x)

)
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+ 1
48

(
24L(x) + 12L(y) + 12L(z) − 43

)
+ NCNF

12 − NF

24NC

]

+ 1
ϵ2

[
N2

C

24

(
L(y)(6L(z) − 9) + 3L(y)2 + 3L(z)2 − 9L(z) − π2 + 19

)

+ 1
32N2

C

(
3 − 2L(x)

)2
+ NCNF

72 + 5NF

72NC
− N2

F

72

+ 1
144

(
− 18L(x)(2L(y) + 2L(z) − 3) + 54L(y) + 54L(z) + 3π2 − 148

)]

+ 1
ϵ

[
N2

C

1728

(
− 1728ζ3 + 24

(
3π2 − 67

)
L(y) + 24

(
3π2 − 67

)
L(z) + 24π2 + 4771

)

+ 1
64N2

C

(
48ζ3 − 4π2 + 3

)
+ 1

864

(
108ζ3 +

(
804 − 36π2

)
L(x) + 9π2 − 1042

)

+ NCNF

216

(
30L(y) + 30L(z) − 3π2 − 110

)
+ NF

432NC

(
− 60L(x) + 9π2 + 92

)]
,

(A.20)

and for f = ggg:

Z(1)
ggg = 1

ϵ2

(3NC

2

)
+ 1
ϵ

(
NC

4 (−2L(x) − 2L(y) − 2L(z) + 11) − NF

2

)
, (A.21)

Z(2)
ggg = 1

ϵ4

[
9N2

C

8

]

+ 1
ϵ3

[
−3N2

C

16

(
4L(x) + 4L(y) + 4L(z) − 11

)
− 3

8NCNF

]

+ 1
ϵ2

[
N2

C

96

(
8L(x)(3L(y) + 3L(z) − 11) + 12L(x)2 + 8L(y)(3L(z) − 11)

+ 12L(y)2 + 12L(z)2 − 88L(z) − 6π2 + 255
)

+ NCNF

6 (L(x) + L(y) + L(z) − 4) + N2
F

24

]

+ 1
ϵ

[
N2

C

288

(
− 108ζ3 + 4

(
3π2 − 67

)
L(x) + 4

(
3π2 − 67

)
L(y)

+ 12π2L(z) − 268L(z) − 33π2 + 1384
)

+ NCNF

144

(
20L(x) + 20L(y) + 20L(z) + 3π2 − 155

)
+ 3NF

16NC

]
, (A.22)

where for brevity L(a) = ln
(

−m2
A

µ2

)
+ ln a.
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B Formulae for soft and collinear limits

We list the unrenormalized A → gg (Λ = G) matrix elements that are needed for the collinear
limit checks of the two-loop A → ggg, qq̄g (Λ = G) amplitudes. The matrix elements in
CDR in which D = 4 − 2ϵ and µ2

R = m2
A read:

M̂G
A→ggM̂G∗

A→gg = CACF (CG)2m2
A

[
M̂G,(0)

A→ggM̂G,(0)∗
A→gg +

(
αs

2π

)
(−1)ϵSϵM̂G,(0)

A→ggM̂G,(1)∗
A→gg

+
(
αs

2π

)2
(−1)2ϵS2

ϵ M̂G,(0)
A→ggM̂G,(2)∗

A→gg

]
, (B.1)

where

M̂G,(0)
A→ggM̂G,(0)∗

A→gg = 1−3ϵ+2ϵ2 , (B.2)

M̂G,(1)
A→ggM̂G,(0)∗

A→gg =NC

[
−1
ϵ2

+ 3
ϵ

+π2

12 +ϵ
(

7ζ3
3 −π2

4

)
+ϵ2

(
47π4

1440 −7ζ3

)]
+O(ϵ3) , (B.3)

M̂G,(2)
A→ggM̂G,(0)∗

A→gg = N2
C

2ϵ4 + 1
ϵ3

[
NCNF

12 − 47N2
C

24

]

+ 1
ϵ2

[
−NCNF

9 +N2
C

(
−5

9 −π2

24

)]

+ 1
ϵ

[
N2

C

(
−25ζ3

12 + 17π2

48 + 811
216

)
+NCNF

(
−161

108 −π2

24

)
+ 3NF

4NC

]

+
[
N2

C

(59ζ3
9 +π2

36 − 7π4

240 + 5941
324

)
+NCNF

(
− 19ζ3

18 +π2

18 − 3965
648

)

+NF

NC

(71
24 −ζ3

)]
+O(ϵ) , (B.4)

which also can be found from ref. [65] and Sϵ = exp (ϵγE)
(4π)ϵ . The collinear functions in eq. (3.28)

are for f = ggg,

P (0)
ggg(y, z) =

(
z2 − z + 1

)2
(1 − z)z , (B.5)

P (1)
ggg(y, z) = 1

(1 − z)zSp(1)
ggg,1(ϵ) +

(
z3

(1 − z) + (1 − z)3

z

)
Sp(1)

ggg,2(ϵ) , (B.6)

P (2)
ggg(y, z) = 1

(1 − z)zSp(2)
ggg,1(ϵ) +

(
z3

(1 − z) + (1 − z)3

z

)
Sp(2)

ggg,2(ϵ) , (B.7)

where Sp(1)
ggg,n(ϵ) at µ2

R = m2
A are defined as(see section 5 in [89].)

Sp(1)
ggg,1(ϵ) = (4π)ϵcΓ(ϵ)(−y)−ϵ

[
NC

2ϵ2

{
−Γ(1−ϵ)Γ(1+ϵ)

(
z

1−z

)ϵ

+
∞∑

m=1
2ϵ2m−1Li2m−1

(1−z
−z

)}
+ z(1−z)

(1−2ϵ)(2−2ϵ)(3−2ϵ)(NC −NCϵ−NF )
]
,

(B.8)
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Sp(1)
ggg,2(ϵ) = (4π)ϵcΓ(ϵ)(−y)−ϵ

[
NC

2ϵ2

{
−Γ(1−ϵ)Γ(1+ϵ)

(
z

1−z

)ϵ

+
∞∑

m=1
2ϵ2m−1Li2m−1

(1−z
−z

)}]
. (B.9)

For f = qq̄g,

P
(0)
qq̄g(x, z) = 1 − 2(1 − z)z

1 − ϵ
, (B.10)

P
(1)
qq̄g(x, z) =

(
1 − 2(1 − z)z

1 − ϵ

)
Sp(1)

qq̄g,1(ϵ) , (B.11)

P
(2)
qq̄g(x, z) =

(
1 − 2(1 − z)z

1 − ϵ

)
Sp(2)

qq̄g,1(ϵ) , (B.12)

where Sp(1)
qq̄g,1(ϵ) at µ2

R = m2
A is defined as(see section 6. in [89].)

Sp(1)
qq̄g,1(ϵ) = (4π)ϵcΓ(ϵ)(−x)−ϵ

[
NC

2ϵ2

{
1−Γ(1−ϵ)Γ(1+ϵ)

(
z

1−z

)ϵ

+
∞∑

m=1
2ϵ2m−1Li2m−1

(1−z
−z

)}

+NC

( 13
12ϵ(1−2ϵ) + 1

6(1−2ϵ)(3−2ϵ)

)
+ 1
NC

( 1
2ϵ2 + 3

4ϵ(1−2ϵ) + 1
2(1−2ϵ)

)

+NF

( −1
3ϵ(1−2ϵ) + 1

3(1−2ϵ)(3−2ϵ)

)]
. (B.13)

The two-loop splitting functions Sp(2)
f,n(ϵ) in CDR are defined as:

Sp(2)
f,n(ϵ) = 1

2
(
Sp(1)

f,n(ϵ)
)2

+ e−ϵγE cΓ(ϵ)
cΓ(2ϵ)

(
β0
ϵ

+K

)
Sp(1)

f,n(2ϵ) +Hf (ϵ) + Sp(2),fin
f,n + O(ϵ) ,

(B.14)
where

Hggg(ϵ) = e−ϵγE cΓ(ϵ)
4ϵ (4π)2ϵ (−y)−2ϵ [z(1 − z)]−2ϵ

(
H(2)

g − β0K + β1
)
, (B.15)

Hqq̄g(ϵ) = e−ϵγE cΓ(ϵ)
4ϵ (4π)2ϵ (−x)−2ϵ [z(1 − z)]−2ϵ

(
2H(2)

q −H(2)
g − β0K + β1

)
, (B.16)

cΓ(ϵ) = Γ(1 − ϵ)2 Γ(1 + ϵ)
Γ(1 − 2ϵ) , (B.17)

with H(2)
g , H

(2)
q and K as defined in appendix A. Finally, the functions Sp(2),fin

f,n correspond to
eqs. (5.18)–(5.20) and (6.8) of ref. [89] respectively with the replacement w → z.

C IR-finite squared amplitudes and hard functions for A → ggg, qq̄g

In this appendix we present the IR-finite squared amplitudes for f = ggg, qq̄g with µ2
R = m2

A.5
We normalized the amplitudes by Born color factor 2C2

ACF for f = ggg and CACF for qq̄g.
The results for the one-loop and two-loop hard functions in each kinematic region are also

5Note the results presented in ref. [51] are with the set µ2
R = −m2

A.
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available in the attached auxiliary Mathematica files. To save space, we only present up
to the one-loop order for quick comparisons in this appendix. The higher order that the
two-loop and the one-loop self interference amplitudes are provided in the attached auxiliary
files. The formula are written in terms of harmonic polylogarithms H(a, x) for which detailed
definitions can be found in ref. [78].

C.1 f = ggg case

The tree and one-loop results are given by

MG,(0),fin
ggg MG,(0),fin∗

ggg = − 2C1,g , (C.1)

Re
(
MG,(1),fin

ggg MG,(0),fin∗
ggg

)
= NC

[
C1,g

{
H(0, y)H(0, z) −H(0, y)H(1, z) − 11

6 H(1 − z, y)

−H(0, z)H(1 − z, y) + 2H(1, z)H(z, y) −H(0, 1 − z, y)

−H(1 − z, 0, y) + 2H(z, 1 − z, y) + 11
6 H(0, y) + 2H(1, 0, y)

+ 11
6 H(0, z) − 11

6 H(1, z) +H(0, 1, z) +H(1, 0, z) + π2

6 − 4
}

+ C2,g

6

]
+NF

[
C1,g

6

{
2H(1 − z, y) − 2H(0, y) − 2H(0, z)

+ 2H(1, z)
}

− C2,g

6

]
, (C.2)

Im
(
MG,(1),fin

ggg MG,(0),fin∗
ggg

)
= C1,g

(
−11π

2 NC

)
+ C1,gNFπ , (C.3)

Re
(
MJ,(1),fin

ggg MG,(0),fin∗
ggg

)
= − 2C1,gNF , (C.4)

Im
(
MJ,(1),fin

ggg MG,(0),fin∗
ggg

)
= 0 , (C.5)

and the hard functions are given by

MG,(0),ren
ggg MG,(0),ren∗

ggg = − 2C1,g , (C.6)

Re
(
MG,(1),ren

ggg MG,(0),ren∗
ggg

)
= NC

[
C1,g

{
H(0, y)H(0, z) −H(0, z)H(1 − z, y)

−H(0, y)H(1, z) +H(1, z)H(1 − z, y) + 2H(1, z)H(z, y)
−H(0, 1 − z, y) −H(1 − z, 0, y) +H(1 − z, 1 − z, y)
+ 2H(z, 1 − z, y) +H(0, 0, y) + 2H(1, 0, y) +H(0, 0, z)

+H(0, 1, z) +H(1, 0, z) +H(1, 1, z)
}

− 19π2

12 C1,g

− C3,g

6

{
24y4 + 48y3z − 48y3 + 72y2z2 − 143y2z + 71y2

+ 48yz3 − 143yz2 + 142yz − 47y + 24z4 − 48z3 + 71z2

− 47z + 24
}]

− NF

6 C2,g , (C.7)

Im
(
MG,(1),ren

ggg MG,(0),ren∗
ggg

)
= C1,gNC

[
H(1 − z, y) −H(0, y) −H(0, z) +H(1, z)

]
π , (C.8)
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Re
(
MJ,(1),ren

ggg MG,(0),ren∗
ggg

)
= − 2C1,gNF , (C.9)

Im
(
MJ,(1),ren

ggg MG,(0),ren∗
ggg

)
= 0 , (C.10)

where the constants Ci,g, i = 1, 2, 3 are defined as

C1,g = m2
A

y4 + 2y3(z − 1) + 3y2(z − 1)2 + 2y(z − 1)3 +
(
z2 − z + 1

)2
yz(y + z − 1) , (C.11)

C2,g = m2
A

(1 − y)(1 − z)(y + z)
yz(−y − z + 1) , (C.12)

C3,g = m2
A

yz(y + z − 1) . (C.13)

The amplitudes at NNLO (two-loop and one-loop2) from the operator OG are decompose
as following color terms:

MG,(2(1))
ggg MG,(0(1))∗

ggg =N2
C

(
MG,(2(1))

ggg MG,(0(1))∗
ggg

)N2
C +NF

NC

(
MG,(2(1))

ggg MG,(0(1))∗
ggg

)NF
NC

+NFNC

(
MG,(2(1))

ggg MG,(0(1))∗
ggg

)NF NC +N2
F

(
MG,(2(1))

ggg MG,(0(1))∗
ggg

)N2
F
.

(C.14)
Explicit expressions of the IR-finite amplitudes and the hard functions for each term can
be found in the attached Mathematica files.

C.2 f = qq̄g case

The tree and one-loop results are given by

MG,(0),fin
qq̄g MG,(0),fin∗

qq̄g = − C1,q , (C.15)

MG,(0),fin
qq̄g MJ,(0),fin∗

qq̄g = 0 , (C.16)

MJ,(0),fin
qq̄g MJ,(0),fin∗

qq̄g = 0 , (C.17)

Re
(
MG,(1),fin

qq̄g MG,(0),fin∗
qq̄g

)
= NC

[
C1,q

36

{
− 18H(0, y)H(1, z) − 18H(0, z)H(1 − z, y)

− 39H(1 − z, y) + 36H(1, z)H(z, y) − 18H(0, 1 − z, y)
− 18H(1 − z, 0, y) + 36H(z, 1 − z, y) + 30H(0, y)

+ 18H(1, 0, y) + 30H(0, z) − 39H(1, z) + 18H(0, 1, z)
}

− C2,q

36

{
143y2 − 18yz + 9y + 143z2 + 9z

}]

+ 1
NC

[
C1,q

2

{
−H(0, y)H(0, z) −H(1, 0, y) −H(1, 0, z)

}

− C2,q

12

{
π2
(
y2 + z2

)
+ 21y2 − 6yz + 3y + 21z2 + 3z

}]

+ C1,q

36 NF

[
12H(1 − z, y) − 3H(0, y) − 3H(0, z)

+ 12H(1, z) + 20
]
, (C.18)

– 26 –



J
H
E
P
0
8
(
2
0
2
4
)
0
4
2

Im
(
MG,(1),fin

qq̄g MG,(0),fin∗
qq̄g

)
= −11π

4 C1,qNC + π

2C1,qNF , (C.19)

Re
(
MG,(1),fin

qq̄g MJ,(0),fin∗
qq̄g + MJ,(1),fin

qq̄g MG,(0),fin∗
qq̄g

)
= −C1,qNF , (C.20)

Im
(
MG,(1),fin

qq̄g MJ,(0),fin∗
qq̄g + MJ,(1),fin

qq̄g MG,(0),fin∗
qq̄g

)
= 0 , (C.21)

and the hard functions are given by

MG,(0),ren
qq̄g MG,(0),ren∗

qq̄g = −C1,q , (C.22)

MG,(0),ren
qq̄g MJ,(0),ren∗

qq̄g = 0 , (C.23)

MJ,(0),ren
qq̄g MJ,(0),ren∗

qq̄g = 0 , (C.24)

Re
(
MG,(1),ren

qq̄g MG,(0),ren∗
qq̄g

)
=NC

C1,q

12

[
−6H(0,y)H(1,z)+12H(1,z)H(z,y)

−6H(0,z)H(1−z,y)−13H(1−z,y)−6H(0,1−z,y)
−6H(1−z,0,y)+12H(z,1−z,y)+6H(0,0,y)+6H(1,0,y)

−13H(1,z)+6H(0,0,z)+6H(0,1,z)−7π2− 143
3 +3C3,q

]

+ 1
NC

C1,q

4

[
−2H(0,y)H(0,z)−2H(1,z)H(1−z,y)

−3H(1−z,y)−2H(1−z,1−z,y)−2H(1,0,y)−3H(1,z)

−2H(1,0,z)−2H(1,1,z)+ 5π2

6 −7+C3,q

]

+NF
C1,q

9

[
3H(1−z,y)+3H(1,z)+5

]
, (C.25)

Im
(
MG,(1),ren

qq̄g MG,(0),ren∗
qq̄g

)
= −C1,q

12 πNC

(
6H(0,y)+6H(0,z)+13

)
−C1,q

4 π
1
NC

(
2H(1−z,y)+2H(1,z)+3

)
+C1,q

3 πNF , (C.26)

Re
(
MG,(1),ren

qq̄g MJ,(0),ren∗
qq̄g + MJ,(1),ren

qq̄g MG,(0),ren∗
qq̄g

)
= −C1,qNF , (C.27)

Im
(
MG,(1),ren

qq̄g MJ,(0),ren∗
qq̄g + MJ,(1),ren

qq̄g MG,(0),ren∗
qq̄g

)
= 0 , (C.28)

where the constants Ci,q, i = 1, 2, 3 are defined as

C1,q = m2
A

y2 + z2

y + z − 1 , (C.29)

C2,q = m2
A

y + z − 1 , (C.30)

C3,q = 2yz − y − z

y2 + z2 . (C.31)
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The amplitudes at NNLO (two-loop and one-loop2) from the operator OG are decompose
as following color terms:

MG,(2(1))
qq̄g MG,(0(1))∗

qq̄g =N2
C

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)N2
C + 1

N2
C

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)N−2
C

+N0
C

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)N0
C +NF

NC

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)NF
NC

+NFNC

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)NF NC +N2
F

(
MG,(2(1))

qq̄g MG,(0(1))∗
qq̄g

)N2
F
.

(C.32)

Explicit expressions of the IR-finite amplitudes and the hard functions for each term can
be found in the attached Mathematica files.

D Recalculation of H → ggg, qq̄g amplitudes

The NNLO QCD corrections to H + j have been well studied in the literature, and serve
as a useful cross check of our calculation. Therefore, we have checked our results for A+ j

by reproducing the relevant results for H + j at every stage of our calculation. The most
intricate cross check regards the reproduction of the two-loop amplitudes for H → ggg, qq̄g,
which were originally presented in ref. [102] and more recently expanded to higher orders
in ϵ, in ref. [103]. In refs. [102, 103], the helicity amplitudes α, β, and γ are calculated for
the H → ggg, qq̄g process up to two-loop order. These are expanded to second order in
αs in terms of Ω = α, β, γ as follows

Ω = CH

√
4παs TΩ

[
Ω(0) +

(
αs

2π

)
Ω(1) +

(
αs

2π

)2
Ω(2) + O(α3

s)
]
, (D.1)

where CH is the effective Hgg coupling [104, 105] in the mt → ∞ limit and the color factor
is Tα = Tβ = fa1a2a3 and Tγ = T a3

i1j2
. We have been able to reproduce the same IR-finite

results for α, β, and γ as presented in appendix A and B in ref. [102]. Since we do not use a
projector-based approach for our A+ j calculation a second useful check it so calculate the
squared amplitudes directly. The squared amplitudes are expanded in order of αs as

AH→f A∗
H→f = (4παs)

(
αs

2π

)2
(CH)2 Cf

[
M(0)

H→f M(0)∗
H→f +

(
αs

2π

)
2 Re

(
M(1)

H→f M(0)∗
H→f

)

+
(
αs

2π

)2 {
2 Re

(
M(2)

H→f M(0)∗
H→f

)
+ M(1)

H→f M(1)∗
H→f

}]
, (D.2)

where the Born color factor Cf is 2C2
ACF and CACF for f = ggg, qq̄g. We have made use of

the same program as described in section 3 for calculating those and could reproduce the
same IR-finite results as the squared amplitudes constructed from the α, β, and γ, which
gives us confidence in the related calculation for the pseudo Higgs amplitudes. Furthermore,
we have performed a test for soft and collinear limit behavior of the helicity amplitudes
and they all are consistent with the results from ref. [89] in which the splitting functions
have been extracted from ref. [102].
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In order to utilize the amplitudes described above for LHC scattering the partons must
be crossed to the initial state via analytic continuation. We confirmed our crossed integrals
numerically with AMFlow [88] finding perfect agreement. We have also checked our crossed
results against the literature and, found perfect agreement with the results from the recent
paper [103]. We note that there is a small typo in ref. [102] for γ(2) of the qq̄ → Hg kinematic
region (the region(2a+) as denoted in [84]). Since the results of ref. [102] have been widely
used, this discrepancy can give small modifications to some other published articles. For
example, in ref. [82], the authors assembled the two-loop hard functions for H + j. The
numerical results for the hard functions are provided in eq. (73) in section.5, which we
present again here for the reader:

Ĥgg→Hg(û, t̂, µ) = 1 + (6.02164)αs + (24.2724)α2
s ,

Ĥqq̄→Hg(û, t̂, µ) = 1 + (1.85023)αs + (8.15565)α2
s ,

Ĥqg→Hq(û, t̂, µ) = 1 + (6.63865)αs + (24.9851)α2
s , (D.3)

at the following inputs:

(ŝ, t̂) = (1 TeV2, −0.4 TeV2) ,
mH = 0.1 TeV ,

µR = 0.6 TeV . (D.4)

With our calculation we have reproduced the same numerical results for Ĥgg→Hg and Ĥqg→Hq ,
but have obtained different results for Ĥqq̄→Hg, namely,:

Ĥqq̄→Hg(û, t̂, µ) = 1 + (1.85023)αs + (7.54245)α2
s . (D.5)

A natural concern is that this difference may result in a phenomenological difference for
the various calculations of H + j@NNLO, which used this hard function. However, due to the
relative smallness of the qq initial state (as can be seen from the breakdown of the partonic
channels for instance in ref. [12]), the impact of the different hard function is negligible at the
level of the total cross section. We have assembled all the IR-finite squared amplitudes and
the hard functions for each kinematic region up to NNLO for an arbitrary renormalization
scale. These are attached as auxiliary files to the arXiv submission, which may be useful
in further comparisons of H@N3LO and H + j@NNLO.

E Descriptions of the supplementary material

In this appendix we describe the structure and the notation of the attached Mathematica
files. The IR-finite squared amplitudes for the SM Higgs are written in the files with a name
which begins with Hggg_IR and Hqqg_IR for the process f = ggg and f = qq̄g respectively.
Likewise, the hard functions for the SM Higgs are presented in the files with a name which
begins Hggg_Hard and Hqqg_Hard. For the pseudoscalar Higgs case, the files are named in a
similar manner which begins with A instead of H. We have normalized the each amplitude
for f = ggg, qq̄g processes by 2C2

ACF and CACF respectively. Then any one-loop and
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two-loop(one-loop self interference) amplitudes can be decomposed as

M(1)
f M(0)∗

f = NC

(
M(1)

f M(0)∗
f

)NC + 1
NC

(
M(1)

f M(0)∗
f

)N−1
C +NF

(
M(1)

f M(0)∗
f

)NF
,

(E.1)

M(2(1))
f M(0(1))∗

f = N2
C

(
M(2(1))

f M(0(1))∗
f

)N2
C +N0

C

(
M(2(1))

f M(0(1))∗
f

)N0
C

+ 1
N2

C

(
M(2(1))

f M(0(1))∗
f

)N−2
C + NF

NC

(
M(2(1))

f M(0(1))∗
f

)NF
NC

+NFNC

(
M(2(1))

f M(0(1))∗
f

)NF NC +N2
F

(
M(2(1))

f M(0(1))∗
f

)N2
F
. (E.2)

The evolution of the renormalization scale µR has been carried for the all orders in the
attached files. For the LHC application the squared amplitudes need to be crossed to the
appropriate kinematic regions. To do so, the required analytic continuations are from the
region(1) to the region(2) and (4)(according to the refs. [82, 84]) such as

g(p1) + g(p2) → A(H)(p4) + g(−p3) (E.3)

from f = ggg and

q(p1) + q̄(p2) → A(H)(p4) + g(−p3) , q̄(p2) + g(p3) → A(H)(p4) + q̄(−p1) (E.4)

from f = qq̄g. The dimensionless variables for the region(2) and the region(4) are defined
as [82, 84]:

u2 = −y

x
, v2 = 1

x
, (E.5)

u4 = −y

z
, v4 = 1

z
. (E.6)

The IR-finite squared amplitudes and the hard functions for the each region is attached to the
file name ends with R1, R2, and R4 respectively. The notation of the attached Mathematica
files are as follows:

NC → Nc , NF → Nf,

u2,4 → u , v2,4 → v,

ζ2, ζ3, ζ4 → zeta2, zeta3, zeta4 ,

µ2
R

m2
H

→ muSqOMH2 ,
µ2

R

m2
A

→ muSqOMA2 . (E.7)

For the convention of the 1D and 2D HPLs we followed the notation introduced in the
ref. [76]. For instance, we denote

H(0, 1, 1, 0;x) → H[0,1,1,0,x] , H(1, z, 1 − z; y) → H[1,z,1-z,y] . (E.8)

The required terms at LO(O(α3
s)), NLO(O(α4

s)), and NNLO(O(α5
s)) expanded as (D.2),

(3.15), and (3.16) for the Higgs and the pseudoscalar Higgs are written in the files for the
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each kinematic region. The notation for the terms for the Higgs case are written as:

M(0)
H→f M(0)∗

H→f → M0M0 , M(1)
H→f M(0)∗

H→f → M0M1 ,

M(1)
H→f M(1)∗

H→f → M1M1 , M(2)
H→f M(0)∗

H→f → M0M2 , (E.9)

for the both f = ggg, qq̄g. In a similar manner, the pseudo scalar Higgs amplitudes are
written as,

MG,(0)
qq̄g MG,(0)∗

qq̄g → MG0MG0 , MG,(1)
qq̄g MG,(0)∗

qq̄g → MG0MG1 ,

MG,(1)
qq̄g MG,(1)∗

qq̄g → MG1MG1 , MG,(2)
qq̄g MG,(0)∗

qq̄g → MG0MG2 ,

MG,(0)
qq̄g MJ,(0)∗

qq̄g → MG0MJ0 , MJ,(0)
qq̄g MJ,(0)∗

qq̄g → MJ0MJ0 ,

MG,(1)
qq̄g MJ,(0)∗

qq̄g + MG,(0)
qq̄g MJ,(1)∗

qq̄g → MG0MJ1plusMG1MJ0 , (E.10)

for f = qq̄g. The f = ggg amplitudes are written in the same fashion. Readers can download
the files and import the results into a Mathematica environment using Get or «.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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