
Robust Model Predictive Techno-Economic Control
of Active Distribution Networks

Salish Maharjan, Prashant Tiwari, Rui Cheng, Zhaoyu Wang
Iowa State University, Iowa, U.S.A.

salish@iastate.edu, ptiwari@iastate.edu, ruicheng@iastate.edu, and wzy@iastate.edu

Abstract—Stochastic controllers are perceived as a promising
solution for techno-economic operation of distribution networks
having higher generation uncertainties at large penetration of
renewables. These controllers are supported by forecasters capa-
ble of predicting generation uncertainty by means of lower/upper
bounds rather than by probability density function (PDF). Hence,
the stochastic controller assumes a suitable PDF for scenario
creation and optimization, requiring validation of the assumption.
To effectively bridge the forecaster’s capability and resolve the
assumption issues, the paper proposes a robust model prediction-
based techno-economic controller, which essentially utilizes only
the lower/upper bounds of the forecast, eliminating the neces-
sity of PDF. Both discrete and continuous control resources
such as tap-changers and DERs are utilized for regulating
the lower/upper bounds of the network states and robustly
minimizing the cost of energy import. The proposed controller is
implemented for UKGDS network and validated by comparing
performance at various confidence levels of lower/upper bound
forecast.

Index Terms—Distributed PVs, DigSILENT, model predictive
control, prediction interval, Robust control, uncertainty.

I. INTRODUCTION

The growing integration of renewable Distributed Energy
Resources (DERs) has devolved the distribution system with
many technical challenges (e.g., regulating voltage, line cur-
rent, and reverse power flow) and evolved opportunities for
more economical operation (e.g., optimizing the energy im-
port and delivering ancillary services). Resolving technical
challenges and achieving cost-efficient operation (referred to
as techno-economic operation) is the desirable objective of
network controllers at high penetration of renewable DERs;
however, their large uncertainties oppress the objective by
inducing uncertainty to network states (e.g., voltage and line
current). In literature, the techno-economic operation of the
distribution networks is studied considering the uncertainty of
renewable DERs as a day-ahead optimization problem [1], [2],
multi-timescale control problem [3], [4], and single-timescale
control problem [5], [6].

A day-ahead scheduling-based techno-economic operation
is usually popular in active distribution networks that do not
have advanced communication infrastructure. Integrated two-
stage stochastic scheduling is studied in [1] where the slow-
acting (switches)/time-coupled(storage system) and all fast-
acting decision variables are optimized in the first and second
stages respectively, considering the uncertainty of renewable
DERs. A similar problem is studied in [2] using a single-stage
chance-constrained optimization by employing only the key
scenarios generated by grouping probability density functions
(PDF) of renewable DERs. The day-head stochastic scheduling
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method is prone to deviate from optimal operation at a higher
degree of uncertainty and during unplanned contingencies.
Hence closed-loop controllers [3]–[6] are generally preferred
for techno-economic optimization, albeit they demand com-
plex communication infrastructure.

Stochastic closed-loop techno-economic control is designed
as a recourse action [3], [4] by the continuous acquisition of
measurements and optimization of fast-acting decision vari-
ables over multiple scenarios, whereas slow-acting controllers
are optimized in slower timescale. Although multi-timescale
techno-economic controls are efficient, their implementation
would require both short/long-term forecasters, and hence
may not be cost-effective. In contrast, single-timescale control
requires only a short-term forecaster, which is designed using
the concept of model predictive control (MPC) for techno-
economic operation in [5], [6]. As MPC could be designed for
various control horizons, they could be optimally designed for
controlling both slow/fast-acting controllers in one timescale.
A stochastic MPC-based techno-economic controller is de-
signed in [5] considering a normal distribution of genera-
tion/load uncertainty. However, their PDF of uncertainty for
the short-term mainly for renewables is not certainly known
and is debatable as the forecasters essentially forecast the
lower/upper bounds (prediction intervals) not the PDF [7].
This issue is highlighted in [6], and hence it proposes a
robust MPC, which does not require scenario generation using
the PDF. The robust MPC in [6] utilizes only the prediction
interval for robust voltage regulations.

Hence, this paper extends the concept of robust MPC for
techno-economic control in the distribution network consider-
ing the uncertainties in renewable DERs (essentially PVs) and
load demands. Both the discrete (OLTC) and continuous (P/Q
injections from renewable DERs and Battery Energy Storage
(BES)) resources are optimized in a single timescale not only
to robustly regulate node voltage, line currents, and reverse
power flow but also robustly minimize the cost of active power
import from the external grid with variable tariff. This is
accomplished by using the sensitivity-based linear model of
the distribution network, which can integrate both discrete and
continuous variables to form a mixed-integer convex problem.
The proposed RMPC is implemented to achieve closed-loop
control of the UKGDS network. The closed-loop control is
designed by co-simulation of a python-based RMPC controller
and RMS model of UKGDS in DigSILENT PowerFactory.
Additionally, the performance of RMPC is evaluated for the
prediction interval forecast at various confidence levels.

II. MODELING OF ACTIVE DISTRIBUTION NETWORK

A. Linear Model of Distribution Network
The linear model of the distribution network is developed to

characterize the network response to changes in control inputs



(∆U ) and disturbances (∆D) as:

V(t) = V(t− 1) +
∑
j∈IU

[
∂V
∂Uj

]
∆Uj(t) +

∑
j∈ID

[
∂V
∂Dj

]
∆Dj(t) (1)

I(t) = I(t− 1) +
∑
j∈IU

[
∂I
∂Uj

]
∆Uj(t) +

∑
j∈ID

[
∂I
∂Dj

]
∆Dj(t) (2)

L(t) = L(t− 1) +
∑
j∈IU

[
∂L
∂Uj

]
∆Uj(t) +

∑
j∈ID

[
∂L
∂Dj

]
∆Dj(t) (3)

The node voltages (V), line currents (I), and network losses
(L) are projected along future time horizon (t ∈ T ), with
reference to current measurements (i.e., at time t− 1) in (1),
(2), and (3) respectively. The projections are made using the
network’s sensitivity matrices for V, I, and L with respect to
control (U ) and disturbances variables (D), estimated using
enhanced Z-bus method [8]. The control resources comprise
reactive power injections from curtaiable/non-curtailable PV
sources ([Qj |Tj∈IPV , Qj |j∈ICPV ]), power curtailment of cur-
tailable PV sources (Pmax

j |j∈ICPV ), active/reactive power in-
jection from BES ([Pj |j∈IES , Qj |j∈IES ]T ), and discrete con-
trol variables of tap-changers (tapij |i, j ∈ IOLTC ). Whereas
PV power generation (

[
Pj |j∈IPV , Pj |j∈ICPV

]
) and loads

(
[
Pj |j∈IL , Qj |j∈IL

]T
) are treated as stochastic disturbances

whose upper and lower bounds are provided by forecasted
prediction intervals. The loss matrix in (3) comprises of active
and reactive power loss, i.e., L = [Ploss, Qloss]

T .

B. Model for PV sources and loads
The PVs and loads are modeled by a time series ob-

tained from a short-term forecaster, capable of predicting the
lower/upper bounds (p̂lo/p̂up) and the average values (p̂ave).
The PV short-term forecaster is assisted with sky-camera
and satellite weather data for generating accurate prediction
intervals as explained in [7], and are modeled as:

PPV
j (t) =f(p̂loj , p̂upj , p̂avej , t) j ∈ (IPV ∪ ICPV ), t ∈ T (4)

We assume, the non-curtailable PVs are privately owned
and comply with IEEE 1547-2018 standard [9]. Hence, their
reactive power capability for inverter rating of (SPV ) is
defined as:

−0.44SPV
j ≤ QPV

j (t) ≤ 0.44SPV
j j ∈ IPV , t ∈ T (5)

We assume the curtailable PVs are owned by DSO, who could
utilize the full Q-margin of curtailable PV inverters whenever
the active power generation is lower than the rated power
(SPV ). If Pmax

j ∈ [0, p̂upj ] is the maximum power set point of
curtailable PV (j ∈ ICPV ), then the corresponding reactive
power margin is defined as:

(QPV
j (t))2 ≤ (SPV

j )2 − (Pmax
j (t))2, j ∈ ICPV , t ∈ T (6)

Similar to non-curtailable PV resources, the loads are modeled
by predicted time series defining their demand over a horizon
(T ) as:

PL
j (t) =f(p̂loj , p̂upj , p̂avej , t) j ∈ IL, t ∈ T (7)

C. Model for battery energy storage (BES)

During the charging and discharging process, the State of
Charge (SoC) dynamics is defined as:

SoC(t) = SoC(t− 1) +
η∆TPES(t)

Bcap
. (8)

Here Bcap, PES , and ∆T are the battery capacity (in MWhr),
power exchanged from BES, and time-step, respectively. The
efficiency (η) is defined as:

η =

{
1/ηd, if PES > 0 (discharging mode)
ηc, otherwise (charging mode)

(9)

The charging and discharging efficiencies (ηc and ηd) account
for the losses during respective events. PES is defined as
positive for discharging power and negative for charging
power. The standard approach to convert the if/else condition
(9) into a set of mixed integer linear constraints by introducing
an auxiliary variable z(t) = δ(t)PES(t) and binary variable
δ(t) is detailed in [10], using which (8) and (9) is reformulated
with a set of linear equations defined by (10) and (11) as:

SoC(t) = SoC(t− 1) + (ηc − 1/ηd)z(t)− ηcPES(t), (10)

E1δ(t) +E2z(t) ≤ E3P
ES(t) +E4, where (11)

E1 = [PES,max,−(PES,max + 0.1), PES,max, PES,max]T (12)

E2 = [0, 0, 1,−1,−1,−1]T , E3 = [1,−1, 0, 0, 1,−1]T (13)

E4 = [PES,max,−0.1, 0, 0, PES,max, PES,max]T (14)

Here, PES,max is the maximum charge/discharge rate of
BES. The SoC constraint (15) limits the over-charging and
over-discharging of the battery whereas (16) limits the power
exchange under the safe boundary. (18) limits the maximum
rate of charging/discharging (∆P ch,max/∆P disch,max). Finally,
the last constraint (19) is defined from IEEE 1547-2018 [9].

SoClo ≤ SoC(t) ≤ SoCup (15)

−PES,max ≤ PES(t) ≤ PES,max (16)

∆PES(t) = PES(t)− PES(t− 1) (17)

−∆P ch,max ≤ ∆PES(t) ≤ ∆P disch,max (18)

−0.44SES
inv ≤ QES(t) ≤ 0.44SES

inv(t) (19)

1) Battery degradation model: Factors that accelerate the
battery aging are temperature, high power rate, and charg-
ing/discharging cycle of the battery. It is well known that the
aging process due to all these factors is highly nonlinear,
and they interact in a multiplicative way with each other
[11]. However, for operational optimization, the degrada-
tion cost can be modeled fairly in quadratic form by only
considering the significant loss factor, which is due to the
charging/discharging cycle, as in [12] as:

JBat = Jc/d(SoC(t)− SoC(t− 1))2 (20)

where Jc/d degradation cost for unit change in SoC.

D. On-load tap changer (OLTC)
The OLTC is commanded for unity change and is a discrete

control resource. If ∆tap(t) is the change in tap value between
time t and t− 1, then its operation limits are defined as:

−1 ≤∆tapij(t) ≤ 1 (21)

Tapmin ≤tapij(t) ≤ Tapmax, i, j ∈ IOLTC , t ∈ T (22)

Here, the Tapmin and Tapmax are the minimum and maxi-
mum tap positions available in the OLTC, and ∆tapij is an
integer variable.



III. ROBUST MODEL PREDICTIVE DISTRIBUTION
NETWORK CONTROLLER

The linear model of the distribution network (1)-(3) provides
the evolution of node voltage, line current, and loss along
the control/prediction horizon (T ) to the temporal transition
of PV generations and load demands. The network controller
dispatches the control set-points for achieving optimal oper-
ation of the network. However, the controller does not have
exact information on PV and load transition along T , rather
it has to make an optimal decision based on their prediction
intervals. Hence, the paper proposes a robust model predictive
control approach for achieving robust operation utilizing the
prediction intervals of disturbance variables such as PVs and
loads.

A. Estimation of lower/upper bounds of network states sub-
jected to bounded disturbances

The lower/upper bound of the network’s state variable (X =
{V, I,L}) subjected to the prediction interval of PVs and loads
along the T could be estimated by:

Xlo/up(t) =Xlo/up(t− 1) +∆Xlo/up(t), where (23)

∆Xup(t) =
∑
j∈ID

(
∂X
∂Pj

)[
∆Pmax

j (t)sgn

(
∂X
∂Pj

)
+

∆Pmin
j (t)

{
1 − sgn

(
∂X
∂Pj

)}]
(24)

∆Xlo(t) =
∑
j∈ID

(
∂X
∂Pj

)[
∆Pmax

j (t)

{
1 − sgn

(
∂X
∂Pj

)}
+

∆Pmin
j (t)sgn

(
∂X
∂Pj

)]
(25)

As advocated in [6], [10], the ∆Pmax
j and ∆Pmin

j are deter-
mined using the prediction intervals [p̂loj (t), p̂

up
j (t)] of distur-

bance variable pertaining to PVs and loads as:

∆P
min/max
j (t) = p̂

lo/up
j (t)− p̂

lo/up
j (t− 1) j ∈ ID (26)

B. Estimation of lower/upper bounds of network states sub-
jected to bounded disturbances and control variables

The expression (23) provides the open loop response of
the network to a predicted disturbance. To find the closed
loop response, (23) is augmented with perturbation of network
states due to change in control variables (∆Xctr). Unlike
disturbance, the control variable is deterministic in nature.
Hence, the closed-loop response of the network state is given
by:

Xlo/up(t) =Xlo/up(t− 1) +∆Xlo/up(t) +∆Xctr(t),where (27)

∆Xctr(t) =
∑
j∈IU

[
∂X
∂Uj

]
∆Uj(t) (28)

∆Uj(t) =Uj(t)− Uj(t− 1) (29)

C. Estimation of lower/upper bound of active power demand
from the external grid

The active power from the external grid is determined using
the active power balance equation as:∑
j∈IEG

PEG
j (t) =

∑
j∈IL

Pj(t) + Ploss(t)−
∑

j∈(IPV ∪ICPV )

Pj(t)−
∑

j∈IES

Pj(t)

(30)
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Fig. 1. Penalty function imposed against (a) voltage violation and (b) current
limit violation. The cost function for (c) power import (d) power exchanged
from BES.

As the PV sources and loads are defined by prediction
intervals, the power drawn from the external grid will also
have certain uncertainty bounds. We are interested in the
upper/lower limit of it and are estimated as:∑

j∈IEG

PEG,up
j (t) =

∑
j∈IL

P̂up
j (t) + Pup

loss(t)−
∑

j∈IPV

P̂ lo
j (t)−

∑
j∈ICPV

(
P̂ lo
j (1− δj(t)) + zj(t)

)
−

∑
j∈IES

Pj(t) (31)

∑
j∈IEG

PEG,lo
j (t) =

∑
j∈IL

P̂ lo
j (t) + P lo

loss(t)−
∑

j∈IPV

P̂up
j (t)−

∑
j∈ICPV

Pmax
j (t)−

∑
j∈IES

Pj(t) (32)

The upper/lower bounds of Ploss are given by (24) and
(25). As defined in [6], the upper/lower bounds of power
from curtailable PVs depend on the level of curtailment
(Pmax ∈ [0, P̂up]). The upper bound of curtailable PV is Pmax

j ,
whereas the lower bound (P lo

j ) will be defined as:

P lo
j (t) =

{
P̂ lo
j (t), if Pmax

j (t) ≥ P̂ lo(t)

Pmax(t), otherwise. j ∈ ICPV (33)

Again, the conditional expression (33) is reformulated with
auxiliary and binary variables in (31).

D. Robust objective function
The objective function is defined to minimize multiple

cost functions, which comprise (a) the sum of the maxi-
mum penalty for voltage and line current violations, (b) the
maximum active power purchased from the external grid,
(c) the cost of control resources (∆u), (d) penalty of PV
power curtailment, (d) cost of battery degradation and (e) cost
of power exchanged from BES. Furthermore, the controller
minimizes these objectives over a finite time horizon by
anticipating the prediction intervals of PV sources and loads.

min
∑
t∈T

( ∑
i∈Ib

max V V {Vi(t)}+
∑
i∈Ili

max IV {Ii(t)}+∑
j∈IEG

max PPC{PEG
j (t)}+ CC{u(t)}+

∑
j∈ICPV

CurPC{Pmax
j (t)}+

∑
j∈IES

DC{SoCj(t)}+
∑

j∈IES

PESC{PES
j (t)}

)
(34)

The control resources comprise of tap changes from OLTC,
reactive power injection from curtailable/non-curtailable PV
sources, and active/reactive power injections from BES, i.e.,
∆u = [∆tap,∆QPV ,∆QCPV ,∆QES ]. The active power
exchange from BES and PV active power curtailment are
other control resources whose cost functions are separately
addressed by PESC and CurPC in (34).

1) Voltage and line current violation penalty (V V {·} and
IV {·}): The node voltages and line currents are required to
be kept under a targetted limit [V lo

lim, V up
lim] and [0, Irat]. These

constraints have been defined by introducing a violation cost
which is the set of affine functions (shown in Fig. 1(a),(b)).



2) Active power purchase cost (PPC{·}): The DSO pro-
cures the demanded power from the wholesale market. The
unit cost of electricity in the wholesale market is updated every
half an hour [13]. The DSO might inject the active power to
the HV external grid if it is contracted or under coordinated
dispatch [14]. In this paper, we assume the DSO is not allowed
to inject active power into the HV grid. It means the excess
power has to be either curtailed or absorbed in case of surplus
power generation from distributed PVs. If PEG

j is the active
power demanded from the external grid, the purchase cost is
defined by a linear function shown in Fig. 1(c). Here α(t) are
the prices of active power at the wholesale market which is
defined in terms of energy.

3) Control Cost (CC{·}): The control cost is
defined as CC{u} = ∆uTR∆u. Here, ∆u =

[∆tap,∆QPV ,∆QCPV ,∆QES ]T . R is the diagonal matrix
comprising of penalty for changes in control resources.

4) PV curtailment penalty cost (CurPC{·}): The lower
and upper bound of the PV generation is provided by the
forecasting methods. The curtailable PVs could be operated
below the upper bound as required; however, this provision is
suppressed by the following penalty function.

CurPC{P cur
j } = PPC(P̂

up
j − Pmax

j ) j ∈ ICPV (35)

Here PPC is the penalty factor for active power curtailment
from curtailable PVs.

5) Battery Degradation Cost (DC{·}): The details of
battery degradation are modeled in section II-C1.

6) Cost of Power Exchange from BESS (PESC{·}): The
battery is discharged only to prevent voltage violations and
during the period of peak wholesale price of electricity. To
favor the proposed conditions, the cost of power exchange
from BES has been defined separately for charging and
discharging status with the help of the affine function shown
in Fig. 1(d) where β is the unit cost of energy discharged.

E. Max removal transformation in robust objective function
The objective involved min-max terms in (34), which is

converted to a minimization problem by introducing auxiliary
variables υ, ϵ, and γ for voltage violation penalty, line current
violation penalty, and power purchased cost from external grid
respectively. The subsequent objective after removing the max
operator is shown in (36), which is equivalent to the original
objective (34) when constrained with additional constraints
listed from (37)-(39).

min
∑
t∈T

( ∑
i∈Ib

υi(t) +
∑
i∈Ili

ϵi(t) +
∑

j∈IEG

γi(t) + CC{u(t)}+

∑
j∈ICPV

CurPC{Pmax
j (t)}+

∑
j∈IES

DC{SoCj(t)}+
∑

j∈IES

PESC{PES
j (t)}

)
subject to: (36)

υi ≥ PV V (V lo
tar − V lo

i ), υi ≥ PV V (V up
i − V up

tar), υi ≥ 0, i ∈ Ib

(37)

ϵi ≥ PIV (Iupi − Irat), and ϵi ≥ 0. i ∈ Ili (38)

γj ≥ α(t)∆TPEG,up
j , j ∈ IEG (39)

The resulting optimization problem results in the form of
Quadratic Constraint Mixed-Integer Quadratic Programming
(QCMIQCP).

TABLE I
PARAMETERS OF RCMPC BASED CONTROLLER

Item Value Item Value Item Value

PV V 1000000$/pu2 Np 4 rQPV 1$/MVAR2

PIV 1000000$/pu2 ηc,ηd 0.92,0.92 rQCPV 1$/MVAR2

PPC 10000 $/MW2 SOC [0.2, 0.8] rQES 1$/MVAR2

Bcap 100 MWh β 90$/MWh Jc/d 10e6/5000$
rtap 250 $/tap2 ∆T 15 min

R = diag{rtap,rQPV ,rQCPV ,rQES}

IV. SIMULATION RESULTS

The UKGDS network is considered for study (refer to Fig. 2
in [15]). It has 22 distributed PVs whose aggregated installed
capacity is 80% of the substation capacity (52.8 MVA). The
additional DER introduced in this study is the BES which is
connected to node 1100. The BES has an inverter capacity of
15 MVA with a battery capacity of 100 MWh. The proposed
RMPC is implemented to achieve closed-loop control of the
UKGDS network. The closed-loop control is designed by
co-simulation of a python-based RMPC controller and RMS
model of UKGDS in DigSILENT PowerFactory. The PV and
load prediction interval are considered with 100% CL unless
specified in the case studies presented below, and their daily
base profile is adopted from [6]. The prediction horizon of
RMPC is taken to be an hour which comprises four time-
steps of 15 minutes. All required parameters for the presented
simulation results are listed in Table I.

A. Centralized implementation of proposed RMPC

The simulation results with the proposed control scheme are
shown in Fig. 2. Here, it can be seen that all the node voltages
and line currents are completely under the required limit even
in the presence of uncertainty in predictions of PVs and
loads. The active power from the distribution network started
flowing back to the transmission grid at around 6:00 and
lasted intermittently till 14:00 in the simulation without any
centralized control. However, the proposed RMPC prevented
it by allowing BES to absorb the excess generation whenever
the aggregate PV production tends to exceed the load demand.
The BES also aids to nullify the PV power curtailment. During
the period of intermittent reverse power flow, the BES is
charged non uniformly which gradually raise the SOC of the
battery units. The stored energy in BES is allowed to discharge
only when the electricity price exceeds the unit cost of BES
discharge. This phenomenon is seen around 15:00 to 18:00 in
Fig. 2. The reactive power utilization is 169.14 MVAR and
the PV curtailment is 0, which is 42.4% and 100% lower than
the case without BES. The OLTC is utilized only for a single
time which was being used 36 times without any centralized
control. The reverse power flow is completely eliminated, as
shown in the last subplot in Fig. 2.

B. Performance of proposed RMPC at various confidence
levels of short-term interval predictions

All the simulation results presented in the previous subsec-
tions were obtained with PV prediction interval computed for
100% CL. As 100% CL includes all the samples at the tail
of the uncertainty distribution, the control resource utilization
required for robust control would be higher, however, it guar-
antees the ideal performance. The ideal technical requirement
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Fig. 2. RMPC results in UKGDS network under volatile weather conditions.

for voltage limit violation (VLV), line current violation (LCV),
and reverse power flow (RPF) would be absolutely zero.
However, minor violations are accepted by DSO in practice.
While seeking further saving in control resource utilization,
this subsection studies the performance of the proposed RMPC
at lower CL of PV prediction and calculates the resource uti-
lization while compromising violations. The obtained results
are tabulated in Table II.

At 100% CL of prediction, there is no violation of the
voltage and line current limit. Moreover, the reverse power
flow is completely ceased with negligible PV curtailment.
The reactive and active resource usage accounted for 169.14
MVARh and 69.16 MWh, respectively. At 90% CL of predic-
tion, the reverse power flow lasted for only 1.33 minutes with
only a small peak of 0.51 MW. The total active and reactive
resources have been reduced by only 3% to the previous
case; however, the active resource utilization is significantly
reduced by 19.12%. The PV curtailment is still lower, and
the tap operation is completely reduced to 0. At lower CL
of PV prediction, the total control resources requirement
kept reducing; however, the duration and peak value of RPF
increased. Depending on the network tolerance for RPF, the
suitable value of CL for PV prediction has to be chosen for
control in practice.

TABLE II
PERFORMANCE VS RESOURCE UTILIZATION OF RMPC AT VARIOUS CL OF

PREDICTION INTERVAL

CL of duration (min) max Q P curtail tap
PI VLV LCV RPF RPF(MW) MVARh MWh MWh

100% 0 0 0 0 169.14 69.16 0.0001 1

90% 0 0 1.33 0.51 175.09 55.93 0.0023 0

80% 0 0 6.23 2.16 145.52 48.06 0.0073 0

70% 0 0 14.2 3.85 147.3 40.63 0.0267 0

V. CONCLUSIONS

This paper formulates an RMPC for achieving real-time
techno-economic operation of the distribution network consid-
ering the uncertainties of PVs and loads. Distributed resources
such as battery energy storage (BES) and curtailable/non-
curtailable PVs along with tap-changers are utilized as control

resources in the proposed controller. The proposed RMPC was
tested for closed-loop control of the UKGDS network. Even at
80% PV penetrating, the RMPC was able to achieve regulation
of voltage, line current, reverse power flow, and economic op-
eration in a robust manner considering the prediction interval
forecast of PVs and loads. Specifically, the RMPC was able
to utilize BES for reducing the curtailment of curtailable PVs
and discharging/charging based on the time-varying electricity
price of the grid. Furthermore, the performance of RMPC was
found to be dependent on the prediction interval (PI) of PVs.
Case studies conducted at various confidence levels (CL) of the
PI revealed that the control resource utilization gets reduced at
lower CL, however, violation mainly in the reverse power flow
increases. The case studies infer to select a suitable value of
CL for PI forecast of PVs which trade-off acceptable violation
limits and control resources.
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