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Climate-driven disturbances amplify forest 
drought sensitivity

Meng Liu    1,2  , Anna T. Trugman    3, Josep Peñuelas    4,5 & 
William R. L. Anderegg    1,2

Forests are a major terrestrial carbon sink, but the increasing frequency 
and intensity of climate-driven disturbances such as droughts, !res and 
biotic agent outbreaks is threatening carbon uptake and sequestration. 
Determining how climate-driven disturbances may alter the capacity of 
forest carbon sinks in a changing climate is crucial. Here we show that 
the sensitivity of gross primary productivity to subsequent water stress 
increased signi!cantly after initial drought and !re disturbances in the 
conterminous United States. Insect outbreak events, however, did not have 
signi!cant impacts. Hot and dry environments generally exhibited increased 
sensitivity. Estimated ecosystem productivity and terrestrial carbon 
uptake decreased markedly with future warming scenarios due to the 
increased sensitivity to water stress. Our results highlight that intensifying 
disturbance regimes are likely to further impact forest sustainability and 
carbon sequestration, increasing potential risks to future terrestrial carbon 
sinks and climate change mitigation.

Terrestrial vegetation stores 450 Pg carbon (C) and sequesters 
∼1.9 PgC yr–1 (ref. 1) (net carbon sink), which counterbalances approxi-
mately 20% of global carbon emissions from fossil-fuel burning. As the 
primary driver of the terrestrial carbon sink, forests have a key role in 
regulating terrestrial ecosystems and the carbon cycle. Forests in the 
conterminous United States (CONUS) sequester 173 TgC yr–1 (ref. 2), and 
offset 9.7% of anthropogenic carbon emissions annually. Forest-based 
strategies to mitigate climate change, such as reforestation, improved 
forest management and avoidance of forest loss, have been proposed 
as potentially impactful ‘nature-based climate solutions’ alongside dra-
matic reductions in fossil-fuel emissions3,4. However, disturbances that 
are sensitive to climate, such as droughts, fires and insect outbreaks, 
decrease forest productivity, increase tree mortality and decrease 
carbon storage, at least at short timescales5–8. At regional scales and 
over longer timescales, changes in disturbance regimes (for example, 
more-frequent and/or more-severe disturbances) impair forest resist-
ance (the capacity of the ecosystem to maintain its state and function9) 
and increase the risk of decreasing long-term carbon storage, which 
is crucial for mitigating climate change10. The frequency and intensity 

of prevalent disturbances, particularly droughts, fires and those from 
biotic agents (for example, insect outbreaks), are projected to increase 
in response to global warming11–13 and will probably play a pivotal role 
in future forest carbon sink. Identifying the changes and dynamics of 
forest gross primary production (GPP) and how forests respond to 
environmental stressors after disturbances is paramount in system-
atically managing terrestrial ecosystems and effectively mitigating 
climate change.

Climate-driven disturbances have both direct and indirect effects 
on forest GPP. Direct effects often involve a concomitant decrease in 
GPP during disturbances. For example, the severe heat and drought 
event in 2003 led to a 30% decrease in ecosystem GPP in Europe14, 
resulting in a strong anomalous net forest carbon source. However, 
these direct effects are typically short-lived for droughts, with forest 
GPP rebounding to pre-disturbance levels within a few months to a 
year15. Although, if trees die during fires and insect outbreaks, forest 
GPP recovery may take multiple years or longer. Indirect effects refer 
to changes in the sensitivity of forest GPP to climate stressors after dis-
turbances, which can persist for several years. The sensitivity of forest 
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indirect effects of disturbances on forest GPP is currently lacking. It 
remains unknown whether forest GPP becomes more or less sensitive 
to water stress after disturbances. Quantifying the long-term changes 
in the sensitivity of GPP to water stress in response to disturbances is 
crucial for enhancing our understanding and modelling the impacts 
of climate change on forest carbon cycling in the twenty-first century.

We aimed to investigate whether the sensitivity of ecosystem 
GPP to water stress changes after severe droughts, fires and insect 
outbreaks. We examined the factors driving these changes and assessed 
their implications for carbon uptake. Leveraging long-term remotely 
sensed GPP data in CONUS, we performed regression analysis to 

GPP to water stress, particularly water availability, is a critical measure 
of response that indicates the ‘resistance’ of forests to environmental 
variability and their capacity to sequester carbon. High sensitivity 
(low resistance) to water stress often signifies a high vulnerability to 
water deficits and climatic extremes, frequently preceding an increase 
in forest mortality16. The sensitivity of forest productivity, including 
GPP, tree-ring width, basal area growth and greenness, to drought can 
be influenced by various factors, such as environmental conditions 
(soil, topography and climate), stand composition (species and age), 
plant functional traits (wood density and hydraulic traits) and human 
management9,17–24. However, a comprehensive understanding of the 
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Fig. 1 | The sensitivity of GPP to water stress in CONUS changed notably after 
severe disturbances. a,b, GPP anomalies (detrended) and PDSI (a) and change 
in sensitivity due to disturbances (b). c–e, The change in sensitivity after severe 
drought (c), fire (d) and insect outbreak (e). Asterisks indicate significance at 
the 0.05 level (two-sided) based on the GLS model. Multiple comparisons are 

not applicable. The distribution maps (4 km) for fires and insect outbreaks were 
aggregated to 20 km for visual display. f–h, The change in sensitivity in climate 
space (mean annual temperature (MAT) versus mean annual precipitation (MAP) 
after drought (f), fire (g) and insect outbreak (h); 1 °C × 100 mm grid).
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understand the response of plant productivity to variations in water 
stress, as indicated by widely used drought indices such as the Palmer 
drought severity index (PDSI)25 and the standardized precipitation–
evapotranspiration index (SPEI)26. We calculated the sensitivity of 
forest GPP to water stress (referred to as ‘drought sensitivity’) and 
compared it before and after disturbances. Machine-learning mod-
els, specifically random forest regression, were used to uncover the 
drivers and potential mechanisms underlying changes in drought 
sensitivity. We sought to answer the following research questions. (1) 
How does drought sensitivity change after severe disturbances across 
CONUS? (2) How do changes in drought sensitivity vary across differ-
ent land-cover and ecosystem types? (3) What are the major factors 
influencing changes in drought sensitivity? (4) How might the observed 
changes in drought sensitivity affect vegetation carbon uptake under 
future warming scenarios?

Change in drought sensitivity at the continental 
scale
The drought sensitivity across CONUS changed significantly after 
severe droughts and fires. We illustrated how to calculate the change 
in GPP drought sensitivity with schematics (Fig. 1a,b). The sensitivity 
increased significantly after severe droughts and fires (Fig. 1c,d and  
Supplementary Table 1), where the means of the changes in sensitivity 
(∆k) were 3.80 ± 0.95 gC m–2 (mean ± s.e.m.; P = 0.0001, generalized 
least squares (GLS)) and 3.83 ± 0.73 gC m–2 (P = 0, GLS), respectively. 
Most pixels (59.12%) indicated increased sensitivity after severe 
droughts, but some pixels in eastern and northwestern CONUS mani-
fested decreased sensitivity (Fig. 1c). Fewer pixels were available for 
analysing the effects of fires, but the increase in sensitivity after fires 
was still significant (Fig. 1d), with 58.64% of the available pixels indi-
cating increased sensitivity. The sensitivity, however, did not change 
significantly after insect outbreaks, −0.79 ± 1.23 gC m–2 (P = 0.52, GLS) 
(Fig. 1e). Forests in the northwest had decreased sensitivity after insect 
outbreaks, whereas those in the Rocky Mountains had increased sensi-
tivity. The results were similar when using SPEI to represent water stress 
(Extended Data Fig. 1a–c), where the sensitivity increased significantly 
across CONUS after severe droughts and fires, at 5.68 ± 2.06 gC m−2 
(P = 0.0058, GLS) and 3.95 ± 1.73 gC m−2 (P = 0.023, GLS), respectively, 
and decreased significantly after insect outbreaks, −6.22 ± 2.73 gC m−2 
(P = 0.022, GLS). We note as well that the patterns were robust when con-
sidering only pixels with significant GPP–PDSI relationships (Extended 

Data Fig. 2 and Supplementary Table 2). In summary, disturbances 
clearly altered GPP drought sensitivity, but the directions of the change 
in sensitivity diverged among disturbances and regions.

The sensitivity increased significantly (∆k = 6.21 ± 1.06 gC m−2, 
P = 0, GLS; Supplementary Table 3) in hot and dry regions (for example, 
temperature (T) > 10 °C and precipitation (P) < 1,000 mm) (Fig. 1f) 
and did not change in cold and wet regions (for example, T < 10 °C 
and P > 2,000 mm) after severe droughts. The sensitivity increased 
significantly in hot and dry regions after fires (∆k = 5.33 ± 0.72 gC m−2, 
P = 0, GLS); there were almost no wet regions (only five pixels) (Fig. 1g) 
because fire was concentrated in dry regions. After insect outbreaks, 
the sensitivity did not change in hot and dry regions and decreased 
significantly in cold and wet regions (∆k = −28.49 ± 6.80 gC m−2, 
P = 0.0002, GLS) (Fig. 1h). The intercept of the GPP–PDSI model 
decreased significantly after disturbances, where the means of the 
changes in the intercept (∆b) were all significantly lower than zero: 
−7.91 ± 3.51 gC m−2 (P = 0.024, GLS), −7.73 ± 0.90 gC m−2 (P = 0, GLS) and 
−7.80 ± 1.94 gC m−2 (P = 0.0001, GLS) (Extended Data Fig. 3).

Change in drought sensitivity among land-cover 
types
The drought sensitivity of forests generally increased after severe dis-
turbances, with some notable differences among forest types. The 
sensitivity increased after severe droughts for evergreen needleleaf, 
evergreen broadleaf and deciduous broadleaf forests (Extended Data 
Fig. 4, Fig. 2a and Supplementary Table 1), with the largest increase 
in deciduous broadleaf forests (5.47 ± 2.22 gC m−2; P = 0.014, GLS). 
Evergreen and deciduous broadleaf forests were more sensitive to 
water stress after fires, and evergreen needleleaf forests were less sensi-
tive, at −0.73 ± 0.45 gC m−2 (Fig. 2b). The change in the sensitivity was 
significant only in deciduous broadleaf forests, at 6.67 ± 3.08 gC m−2 
(P = 0.031, GLS). The drought sensitivity of forests did not change 
after insect outbreaks. The changes in the sensitivity of shrubland 
and grassland were large but not always significant. The changes in 
drought sensitivity were highly unlikely to be due to long-term trends 
because undisturbed regions had different trends in sensitivity during 
1982–2018 compared with disturbed regions with the same land-cover 
type (Extended Data Fig. 5). These results confirmed that the sensitivity 
of forests was affected by severe disturbances and that the sensitivity 
tended to increase after disturbances. The results were comparable 
when using SPEI (Extended Data Fig. 1d–f), where evergreen broadleaf 
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Fig. 2 | The drought sensitivity of forests increased after severe disturbances. 
a–c, The mean changes in sensitivity (∆k) and intercept (∆b) for different land 
covers in CONUS after severe drought (left to right, N = 2,401, 414, 4,691, 1,127, 
7,719) (a), fire (N = 1,944, 178, 258, 601, 6,068) (b) and insect outbreak (N = 7,320, 

111, 548, 157, 3,904) (c). The error bars are s.e.m., and the asterisks indicate that 
the mean is significant at the 0.05 level (two-sided) based on the GLS model. 
Multiple comparisons are not applicable. DBF, deciduous broadleaf forest; EBF, 
evergreen broadleaf forest; ENF, evergreen needleleaf forest.
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and deciduous broadleaf forests exhibited significantly increased sen-
sitivity, at 23.50 ± 8.14 gC m−2 (P = 0.0041, GLS) and 16.18 ± 7.04 gC m−2 
(P = 0.022, GLS), after severe droughts.

The intercept of the GPP–PDSI model decreased in forests (Fig. 2 
and Supplementary Table 1). The decreases were due to lower biomass 
and foliar area caused by disturbances, leading to decreased forest 
productivity. The directions of the changes in the intercept were not 
consistent for grassland and shrubland. It is very intriguing that the 

intercept of shrubland increased after all three disturbances, which 
might indicate that the direct effects (GPP decrease) of disturbances 
on shrubland can recover quickly. However, the intercept change is not 
related strictly to the absolute GPP change since we used detrended 
GPP. From the perspective of vegetation structure, shrubs have smaller 
leaf area, frequent resprouting behaviours and shorter canopy heights 
than forests, which might benefit the recovery of shrubland producti-
vity after disturbances.
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Fig. 3 | Drivers of the change in GPP drought sensitivity. a–d, Drivers of the 
change in the sensitivity of GPP to water stress after severe drought: importance 
of drivers (a) and random forest partial dependence of the change in sensitivity 
on the three most important drivers: trend of soil moisture (Trend.SM) (b), 
MAT (c) and the interaction between temperature and reversed precipitation 
(Interaction.TP) (d). e–h, Drivers of the change in the sensitivity of GPP to water 
stress after severe fire: importance of drivers (e) and random forest partial 
dependence of the change in sensitivity on the three most important drivers: 

MAT (f), trend of SRAD (g) and mean annual PDSI (h). (i–l) Drivers of the change 
in the sensitivity of GPP to water stress after severe insect outbreak: importance 
of drivers (i) and random forest partial dependence of the change in sensitivity 
on the three most important drivers: mean annual SRAD (j), trend of CO2 (k) and 
trend of SRAD (l). The solid black line is the average, and the shading shows the 
range (from minimum to maximum) of the partial dependence from 100 runs of 
random forest models. LAI, leaf area index.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | July 2024 | 746–752 750

Article https://doi.org/10.1038/s41558-024-02022-1

Factors influencing the change in drought 
sensitivity
Several climatic factors play a crucial role in driving the change in 
drought sensitivity. These factors include the trend of soil moisture, 
mean annual temperature, the interaction between temperature and 
reversed precipitation and downward surface short-wave radiation 
(SRAD). For drought, the random forest model explained 67% of the 
variation (R2 = 0.67; Extended Data Fig. 6a) in the change in sensitiv-
ity, with the trend of soil moisture emerging as the most important 
driver (Fig. 3a). Mean annual temperature and the interaction between 
temperature and reversed precipitation ranked as the second and 
third most important drivers, respectively. The change in sensitivity 
increased with decreasing trends of soil moisture (Fig. 3b), indicating 
that lower soil moisture levels contributed to higher post-disturbance 
sensitivity. Similarly, the change in sensitivity increased with mean 
annual temperature (Fig. 3c), suggesting that regions experiencing 
higher temperatures were more likely to exhibit increased sensitivity 
after disturbances. The interaction between temperature and reversed 
precipitation (Fig. 3d) had similar effects to mean annual temperature, 

with higher values (indicating hot and dry regions) associated with 
increased drought sensitivity.

For fires and insect outbreaks, the random forest models explained 
37% and 28% of the variations in sensitivity change, respectively 
(Extended Data Fig. 6b,c). Mean annual temperature emerged as the 
most important driver for fires (Fig. 3e), where regions with higher 
temperatures were associated with increases in sensitivity after the 
disturbance (Fig. 3f), particularly when mean annual temperature 
exceeded approximately 15 °C. Increasing, increasing downward 
surface short-wave radiation (particularly when the trend of SRAD is 
greater than zero) and a high PDSI were linked to an increase in sensi-
tivity after fires. In the case of insect outbreaks, mean annual down-
ward surface short-wave radiation emerged as the most important 
driver (Fig. 3i), with regions experiencing high radiation (for example, 
>180 W m−2) demonstrating increased sensitivity, whereas regions with 
low radiation exhibited decreased sensitivity after the disturbance 
(Fig. 3j). This result aligns with the distribution of sensitivity change 
after insect outbreaks (Fig. 1e), where northwest regions generally 
displayed decreased sensitivity and low levels of short-wave radiation. 
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Increasing trends in CO2 and short-wave radiation also contributed to 
the increase in sensitivity after insect outbreaks (Fig. 3k,l).

Effects on carbon uptake
The change in drought sensitivity of GPP has notable implications for 
carbon uptake and loss. We quantified carbon uptake responses to 
water stress and assessed the recovery time by utilizing pixels with a 
post-disturbance period of at least 16 years (Methods). It took approxi-
mately 5 years for the sensitivity to return to the pre-disturbance level 
after severe droughts and around 6 years after fires (Extended Data 
Fig. 7b,c). Owing to the relatively short post-disturbance time (9 years: 
2010–2018), the recovery time for insect outbreaks was not calculated. 
We further estimated the potential change in carbon uptake resulting 
from the sensitivity change. As a first-order exploration, the change in 
carbon uptake was calculated as the difference in GPP when consider-
ing the changes in sensitivity and intercept (equation (2)). For drought, 
the mean annual change in carbon uptake over the 5 year period fol-
lowing the disturbance was −9.94 ± 2.99 TgC (Fig. 4a) across CONUS, 
indicating a reduction in carbon absorption. For fires, the mean annual 
change in carbon uptake over the 6 year period after the disturbance 
was −1.50 ± 0.03 TgC (Fig. 4c). To assess the effects of future warm-
ing, PDSI under the +2 °C warming scenario was used to estimate the 
change in carbon uptake in response to the sensitivity change. For 
drought, the change in carbon uptake under the +2 °C warming scenario 
was estimated to be −11.21 ± 2.42 TgC (Fig. 4b), indicating even lower 
carbon absorption than historical conditions. For fires, the change in 
carbon uptake was estimated to be −1.63 ± 0.04 TgC under the warm-
ing scenario (Fig. 4d).

Implications for climate change mitigation
Severe disturbances, such as severe droughts, fires and insect out-
breaks, have substantial effects on forest ecosystems. They all have the 
potential to alter forest composition, leading to a shift towards early 
succession species27, and can cause physiological damage to surviving 
trees. Both effects influence the sensitivity of post-disturbance forest 
productivity to water availability. This study specifically examines 
the indirect effects of severe disturbances and highlights the changes 
in GPP drought sensitivity following these extreme events. We have 
observed that severe disturbances, such as severe droughts and fires, 
tend to increase the sensitivity of forest productivity to water avail-
ability. This is particularly notable in deciduous broadleaf forests, 
possibly due to drought legacy effects28 and disturbance-induced 
damage, such as embolism and overheating. These factors make trees 
more susceptible to subsequent water stress. In addition, for decidu-
ous trees, physiological traits such as shallow roots29 and thin bark 
probably contribute to increased susceptibility to fire and drought 
damage. By contrast, for evergreen needleleaf forests, the sensitivity 
did not change and even decreased after fires and insect outbreaks. 
This phenomenon may be attributed to decreases in stand density fol-
lowing disturbances. In general, stand density has increased in many 
evergreen needleleaf forests in the western USA due to historical fire 
suppression activities30. Disturbances can relax overstocked condi-
tions and reduce competition31 for water. This result suggests that 
thinning holds the potential to alleviate water stress in certain conifer 
forests. In addition, gymnosperm-dominated forests, mainly needleleaf 
forests in the western USA, have shown notable shifts characterized 
by decreases in P50 (water potential at which 50% of conductivity is 
lost) and increases in the hydraulic safety margin (that is, the differ-
ence between P50 and the minimum water potential experienced)32 
in response to climate-driven mortality, making these forests more  
drought tolerant.

Non-forested ecosystems, such as shrublands and grasslands, 
also exhibit heightened drought sensitivity following disturbances, 
especially after severe droughts and fires. This increased sensitivity 
may be attributed to their proximity to absolute biogeographic and 

climate thresholds. Shrubs and grasses predominantly thrive in arid 
regions characterized by high solar radiation and temperature cou-
pled with low water availability. Moreover, dry regions, particularly 
shrublands and grasslands, reveal stronger correlations between GPP 
and PDSI (Extended Data Fig. 2b). Climate emerges as a crucial factor 
influencing sensitivity changes, with hot and dry regions experienc-
ing increased sensitivity and cold and wet regions showing decreased 
sensitivity (Fig. 1). Previous research28 also indicates that plants in arid 
regions exhibit stronger drought legacy effects compared with those 
in wet regions.

Droughts, fires and insect outbreaks have varied effects on eco-
systems. In general, understory species such as grasses and herbs 
are sensitive to water availability33 and usually senesce rapidly due to 
water deficits. During droughts, both the understory and overstory 
vegetation will be constrained. The absolute GPP values of under-
story grasses might recover in the next year; however, the GPP sen-
sitivity to water (indirect effects) of the whole ecosystem, including 
both the understory and overstory vegetation, may not recover as 
quickly. The sensitivity of grasslands increased significantly (P = 0, 
GLS) after droughts (Fig. 2a), indicating that the GPP sensitivity of 
grasses may not necessarily recover at the same pace as the absolute 
GPP. For overstory trees, drought legacy effects can last for years28. 
A similar situation goes for fires, where both the understory grasses 
and overstory trees might be burned during fires. The absolute GPP 
of understory grasses can recover quickly; however, the GPP sensitiv-
ity might not (Fig. 2b). For overstory trees, fire damage, such as heat 
stress (for example, heat emboli) and biomass consumption, can cause 
a long-lasting sensitivity change. For insect outbreaks, understory 
grasses are not the target of widespread insects such as bark bee-
tles7, and thus the impacts of insects on understory vegetation will 
be small. The unchanged (or even decreased) sensitivity after insect 
outbreaks could be due to the decreases in stand density and shifts  
in composition.

Across CONUS, the increased sensitivity of GPP to water stress 
leads to substantial decreases in carbon uptake after severe droughts 
and fires. These decreases are logical as photosynthesis and carbon 
uptake tend to decline more when sensitivity increases at the same 
level of water stress, and climate change is likely to bring more-frequent 
and severe droughts in many regions. Our estimates suggest that the 
decrease in carbon uptake can persist for approximately 5–6 years 
after the disturbances. This reduction in carbon uptake hampers the 
capacity of terrestrial ecosystems to sequester anthropogenic carbon 
emissions. Furthermore, our findings highlight the accelerated decline 
in carbon uptake under warming scenarios. Less carbon would be 
absorbed in response to increased sensitivity under warming scenarios 
compared with historical conditions. Many regions in CONUS are pro-
jected to experience hotter and drier conditions under future warming 
scenarios13, leading to increased water stress on plant growth. As a 
result, ecosystems’ ability to absorb carbon would decline, exacerbated 
by increased water stress and vegetation sensitivity. Regions such as 
western North America face high risks of carbon loss and species loss 
due to climate change, as indicated by global assessments34.

Climate change is expected to increase the frequency and severity 
of disturbances in many regions. From the perspective of climate policy 
and management, relying on planting more trees to counterbalance 
carbon emissions from fossil-fuel burning can be challenging, particu-
larly when ecosystem productivity is threatened by disturbances that 
are climate dependent. Our results highlight pervasive changes in the 
drought sensitivity of GPP in forests after disturbances and indicate 
meaningful effects on carbon uptake. Increased sensitivity increases 
the vulnerability of ecosystems to drought and could lead to substantial 
decreases in ecosystem carbon uptake under future warming scenarios. 
These long-term dynamics are important for evaluating the capacity 
of terrestrial ecosystems as carbon sinks for carbon management, 
nature-based climate solutions and net-zero pledges.
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Caveats
The GPP products used in this study are based on different inputs 
and models, leading to inherent differences in results when com-
paring across different GPP datasets. To increase the robustness 
of our analysis, we used a detrended, ensemble mean approach 
when deriving GPP for our study. Although we believe that taking 
an ensemble mean strengthens the analysis above any based on a 
single product alone, caution should be exercised in interpretation 
of remote-sensing-based GPP data, which tend to overestimate veg-
etation productivity in droughts (particularly severe droughts47). To 
overcome the drought limitation in this study, we used pre-drought 
and post-drought GPP data to conduct regression analysis, rather 
than data during drought. This approach avoids the potential limita-
tions of GPP overestimation in droughts. Finally, our method used 
to estimate the impacts of drought sensitivity change on carbon 
uptake could induce uncertainties, particularly under warming sce-
narios, because other factors such as plant acclimation and climate 
change were not considered (but are currently poorly constrained in  
the literature).

Ethics and inclusion statement
This research involves collaborations of scientists in both the USA 
and Spain. All authors contributed to the study design, analysis and 
results, and their names are listed on the title page. All data are publicly 
available from online resources. This is a continental-scale study and 
no local partners or agencies are required. The authors agreed on the 
roles and responsibilities related to this study. This research is not 
restricted or prohibited in the setting of the researchers. No animals, 
discrimination, health issues or biological materials are relevant to 
this research.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
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Extended Data Fig. 1 | The drought sensitivity increased significantly after 
severe droughts and fires when using SPEI to represent water stress. (a–c) 
The change in sensitivity across CONUS after severe (a) droughts, (b) fires, 
and (c) insect outbreaks. The resolution of the distribution maps for fires and 
insect outbreaks was aggregated to 20 km for visual display. (d–f) The change 
in sensitivity among different land-cover types after severe (d) droughts (left to 

right, N=2668, 490, 5521, 1450, 8720), (e) fires (N=1944, 178, 258, 601, 6068), and 
(f) insect outbreaks (N=7320, 111, 548, 157, 3904). The error bars are standard 
errors. Asterisks indicate significance at the 0.05 level (two-sided) based on the 
GLS model. Multiple comparisons are not applicable. Definitions of disturbances 
for a pixel: droughts, SPEI < −1.2 (PDSI < ─3); fires, the proportion of burned  
area > 10%; insect outbreaks, insect caused mortality > 0.03%.
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Extended Data Fig. 2 | The best model for each pixel across CONUS. a There 
are three models employed: linear (blue), quadratic (yellow), and logistic 
(red) models. The best model is defined as the one with the minimum Akaike 
Information Criterion (AIC). The linear model is the best for 69% of pixels across 
CONUS. b-c The (b) correlation between GPP anomaly and PDSI and (c) the 

corresponding significance (p < 0.05, two-sided t test). 60% of the available pixels 
present significant correlations between GPP anomaly and PDSI. d-f The change 
in sensitivity (∆k) for severe (d) droughts, (e) fires, and (f) insect outbreaks using 
the significant pixels in panel c. The results are comparable to those using all 
available pixels shown in Fig. 1.
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Extended Data Fig. 3 | The intercept of the GPP–PDSI model decreased 
significantly after severe disturbances. (a–c) The changes in the intercept (∆b) 
across CONUS after severe (a) droughts, (b) fires, and (c) insect outbreaks. The 

resolution of the distribution maps for fires and insect outbreaks was aggregated 
to 20 km for visual display. Asterisks indicate significance at the 0.05 level  
(two-sided) based on the GLS model.
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Extended Data Fig. 4 | Land-cover map from the MCD12Q1 Type 5 classification in 2001. ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; and DBF, 
deciduous broadleaf forest.
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Extended Data Fig. 5 | Changes in drought sensitivity in undisturbed regions. 
(a) The distribution of undisturbed regions in 1982–2018. (b) The trend of 
sensitivity (k) in undisturbed regions, where the trend was derived using an eight-
year moving window, with k calculated for each window. The trend of sensitivity 
(Trend of k) is the slope of sensitivity vs year. (c) The mean trend of sensitivity for 

the land-cover types (left to right, N=258, 99, 2344, 228, 980), where the asterisks 
indicate significance (p = 0.002 and 0.003, respectively, two-sided) based on 
the GLS model. The error bars are standard errors. Multiple comparisons are not 
applicable. (d) The distribution of the trend of sensitivity (Trend of k) in climate 
space (mean annual temperature (MAT) vs mean annual precipitation (MAP)).
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Extended Data Fig. 6 | Correlation of the observed change in sensitivity 
and the Random Forest model estimated change in sensitivity. (a–c) The 
scatterplots for severe (a) droughts, (b) fires, and (c) insect outbreaks. The red 

lines are the y = x lines, and orange color indicates high point density. The R2, 
slope, and p values (two-sided t test) are from linear regression: observed vs 
preidcted ∆k. Multiple comparisons are not applicable.
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Extended Data Fig. 7 | Recovery time for the sensitivity to revert to its pre-
disturbance level. (a) A schematic to illustrate the definition of recovery time, 
where each circle means the sensitivity in an eight-year moving window, and 
the red dotted line indicates the identified recovery time (that is 5 years post-
disturbance). (b–c) The distribution of recovery time derived from pixels with 

long post-distrubance time for severe (b) droughts and (c) fires. Pixels never 
recovered (gray color; ∼30% of pixels) are removed when calculating the mean 
recovery time. The resolution of the distribution map for fire was aggregated to 
20 km for visual display.
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Extended Data Fig. 8 | Comparison of coefficients (sensitivity) of PDSI from different models. Simple linear regression (SLR: GPPanomaly ~ PDSI) and multiple linear 
regression (MLR: GPPanomaly ~ Sradanomaly + Tanomaly + SManomaly + PDSI) are used based on data from 1982 to 2018. Each point in the figure indicates a pixel. The p value is from 
two-sided t test, and multiple comparisons are not applicable.
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Extended Data Fig. 9 | Comparisions of drought and fire return intervals 
and different thresholds as the minimum number of years for regression. 
(a–b) The histograms of return intervals of severe (a) droughts and (b) fires in 
CONUS, where the bin width is one year. The red lines indicate return intervals of 
eight years. (c–d) The change in sensitivity when using (c) six years (left to right, 

N=3336, 591, 8500, 2012, 12744) and (d) ten years (N=1847, 228, 4167, 886, 4831) 
as the minimum for regression. The error bars are standard errors. Asterisks 
indicate significance at the 0.05 level (two-sided) when using the GLS model. 
Multiple comparisons are not applicable.
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Extended Data Fig. 10 | Changes in drought sensitivity using the four remotely sensed GPP products (NTSG, GLASS, EC-LUE and NIRv GPP) separately with PDSI 
representing water stress. The asterisks indicate p < 0.05 (two-sided) based on the GLS model.
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