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Abstract

This paper concentrates on a priori error estimates of two
monolithic schemes for Biot’s consolidation model based
on the three-field formulation introduced by Oyarzuia et al.
(SIAM J Numer Anal, 2016). The spatial discretizations
are based on the Taylor—Hood finite elements combined
with Lagrange elements for the three primary variables.
We employ two different schemes to discretize the time
domain. One uses the backward Euler method, and the
other applies the combination of the backward Euler and
Crank-Nicolson methods. A priori error estimates show
that both schemes are unconditionally convergent with
optimal error orders. Detailed numerical experiments are
presented to validate the theoretical analysis.
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1 | INTRODUCTION

Biot’s consolidation model [1,2] is a valuable tool for understanding the interaction between fluid flow
and mechanical deformation in a porous medium, which is a solid structure with pores. This model has
widespread applications in various fields, including biomechanics [14], petroleum engineering [15],
and others. However, obtaining an exact analytic solution is difficult, so various methods have been
developed to approximate numerical solutions for the system. These methods include finite volume
methods [20], virtual element methods [7], and mixed finite element methods [8,16], and so forth.

In [24], it is pointed out that standard finite element methods for solving the classical two-field
Biot’s model may suffer from Poisson locking and pressure oscillations. Therefore, various reformu-
lations of Biot’s model are proposed to overcome these numerical difficulties. For example, fluid flux
arising from the inherent Darcy law is introduced as a new variable to obtain a three-field formula-
tion of Biot’s model in [13,24]. A new four-field formulation is proposed in [25]. Another three-field
model is established in [10] by introducing two pseudo-pressures. In [18,22], an intermediate variable,
called “total pressure”, is introduced to derive a three-field reformulation of Biot’s model. The advan-
tages of such a three-field reformulation exist in that it avoids using H (diV) space and the classical
inf-sup stable Stokes finite elements combined with Lagrange elements can be applied for the spatial
discretization. By taking the advantage of such a three-field formulation, some relevant algorithms and
analyses are carried out. For instance, Qi et al. [23] derive optimal-order error estimates. A second
order unconditionally convergent algorithm is proposed in [17].

In this work, we introduce two fully discrete monolithic schemes for solving the three-field for-
mulation of Biot’s model. Method 1 utilizes the backward Euler method [7,14,22,23] for the time
discretization, which only achieves first-order convergence in time. To overcome this limitation, we
propose Method 2 applying the combination of the backward Euler and Crank-Nicolson methods,
drawing inspiration from [17]. This approach employs a unified scheme for all time steps and achieves
second-order convergence in time. It is noteworthy that a special case with the Biot-Willis constant
a = 1 and specific storage coefficient ¢y = 0 is addressed in [23]. In comparison, we present rigor-
ous analyses for both Methods 1 and 2 that are applicable to more general physical parameters a > 1
and co > 0. Instead of providing cumulative H' error estimates or rough H' error estimates for pres-
sure [7,10], our research presents rigorous H'! error estimates of pressure at the final time, drawing
inspiration from [16,23]. Furthermore, the unconditional convergence of Method 2 suggests that such
a second order method can also be applied to iterative schemes for Biot’s model [3,4,11], significantly
enhancing computational efficiency. We comment here that the theoretical framework in this work can
be extended to provide a novel perspective for analyzing decoupled schemes [14,17] that offer high
efficiency and superconvergence.

The rest of the paper is organized as follows. In Section 2, we present a three-field formulation of
Biot’s consolidation model and the corresponding weak formulation. In Section 3, we introduce finite
element spaces, projection operators, two monolithic schemes, and some useful propositions. A priori
estimates of Methods 1 and 2 are given in Section 4. Numerical experiments are carried out to validate
the theoretical results in Section 5. Conclusions and outlook are given in Section 6.

2 | MATHEMATICAL FORMULATIONS
Let Q ¢ R? (d = 2 or 3) be a bounded polygonal domain with boundary Q. The classical Sobolev

spaces are denoted by H*(Q) with norm || - || H©)- We denote HS’F(Q) for the subspace of H*(Q) with
the vanishing trace on I C 99, and use (-, -) and (-, -) to denote the standard L*(Q2) and L*(0Q) inner
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products, respectively. In this paper, we use C to denote a generic positive constant independent of
mesh sizes, and use x < y to denote x < Cy. The governing equations describing the quasi-static Biot
system are given as follows

—dive (u) + aVp =, (D

0, (cop + adivu) — divK (Vp — prg) = O, @)
where
o(u) = 2pe(u) + A(divu)l, e(u) = 2 [Vu+ (Vu)'] .

Here, the primary unknowns are the displacement vector of the solid u# and the fluid pressure p,
the coefficient @ > 0 is the Biot-Willis constant which is close to 1, f is the body force, ¢y > 0O is the
specific storage coefficient, K represents the hydraulic conductivity, py is the fluid density, g is the
gravitational acceleration, Qy is a source or sink term, I is the identity matrix, and Lamé constants A
and p are computed from the Young’s modulus £ and Poisson ratio v:

Ev E

Suitable boundary and initial conditions should be provided to complete the system. Assuming that
0Q=T,UTl;=T,Ul} with [[’;| > 0and |T',| > 0, for the simplicity of presentation, we consider
the following boundary conditions:

u=0 only, €

(c(u) —apl)n=h onT,, )
p=0 onl,, )

K(Vp—pg) -n=g only, (6)

where n is the unit outward normal to the boundary. We comment here that the discussion can
be easily extended to nonhomogeneous boundary condition cases. For the initial conditions, we
consider

u(0) =u’, p(0) =p°. 7
Next, we introduce an intermediate variable called “total pressure":
& = ap — Adivu.

Then, (1) and (2) can be rewritten as the following three-field formulation of Biot’s consolidation
model

—2udiv(e(u)) + VE =, ®)
divu + %g‘ — %p =0, )

o? a . _
co+ - op — ;d,é—dvi(Vp—pfg) = Q.. (10)

After the reformulation, we can still apply the boundary conditions (3)—(6) and initial conditions (7)
with 5(0) = ap” — Adivu® here. For ease of presentation, we assume g = 0 in the rest of the paper.
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LetV = H(l),rd (Q),W=L*Q)and M = H&Fp (€2), and define the bilinear forms
ar(w,v)=2pu / e) : ev), bv,p)= / ¢ divy,
Q Q

W (e §) = % /Q £, o) =4 /Q b,

2
az(p,y) = <60+0;>/pw, d(p,w)=K/Vp‘Vl//-
Q Q

Multiplying (8)—(10) by test functions, integrating by parts, and applying boundary conditions (3)—(6)
lead to the following variational problem: for a given ¢ > 0, find (u, &, p) € V X W X M such that

aj(,v) —b,&) = (f,v) + (h,v)r, Wwev, an
b(u, )+ ax(&, ) — c(p,p) =0, VpeWw, (12)
az(0p, W) — c(w,0:8) + d(p,w) = (Qs, ) + (g2, ¥)r,,  Vw EM. (13)

The well-posedness of problem (11)—(13) is established in [22]. We note that the Korn’s inequality
[21] holds on V, that is, there exists a constant C; = C(2,1°;) > 0 such that

Vil @ < ClleEMlzg), YweV. (14)

Furthermore, the following inf-sup condition [5] holds: there exists a constant f# > 0 depending only
on Q and I'; such that
sup b(v, ¢)
vev Ve @)

2 flldllzg, YVoeWw.

3 | FINITE ELEMENT DISCRETIZATION AND NUMERICAL SCHEMES

Let 7}, be a partition of the domain Q into triangles in R? or tetrahedra in R?, and & be the maximum
diameter over all elements in the mesh. We define finite element spaces on 7y,

Vi 1= {vy € Hyr (Q) N C°(Q); vyl € Pu(E), VE € Ty},

Wy 1= {¢n € L*(Q N CUQ); dule € Pt (E), VE € T1},

M, i= {yi € Hyr (0 C(Q); wile € Pi(E), VE € Th),
where k > 2 and [ > 1 are two integers. In this work, the Taylor-Hood element, which consists of the
pair (V,, W;,), and Lagrange finite element are adopted to the pair (u, &) and p, respectively. Based
on the three-field formulation (8)—(10) and discrete spaces V;, Wj,, and M), we define two projection

operators [19, 23]. First, we introduce the Stokes projection operator R, X R : VX W — V;, X W,
which is defined by

a (Ruu,vh) - b(vh,Rfé‘) =a (u,vh) — b(vh,f), Y, € Vy, (15)
b(Ruu, ¢y) = b(u, dp), Yo, € W (16)

Second, we define the elliptic projection operator R, : M — M, as follows
d(Rop,yn) = d(p,yn), Vi, € My, 17

Ifu € Hﬁ?ld (Q), & € H(Q), and p € H(I)J'Fl (©2), then the following error estimates hold true for the
) T,
Stokes projection operator and the elliptic projection operator [6].
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llu — Ryl + 1€ = Re€lliz) < CH (lullmen @) + 1€l ) (13)

lp = Roplliney < CHlIplli - (19)

Under the assumption that the domain Q has the full elliptic regularity, there holds

lp = Roplliz) < CHMIpll g - (20)

As we use a stable Stokes element pair, the corresponding finite element spaces satisfy the fol-
lowing discrete inf-sup condition, that is, there exists a positive constant ﬁ independent of 4 such
that

b(vi, dn)

sup ————= > Blignlliz@)y Vo € Wi 1)
eV, IValla @)

An equidistant partition 0 = #p < #; < --- < ty4; = T with a step size At is considered for the
time discretization. For simplicity, we introduce the notations u" = u(t,,), g =¢ (t”) and p" = p(tn).
Suitable approximation of initial conditions u) = R,u°, &) = R:£°, and pY = R,p" is considered here.
Following [7, 14,22, 23], we present the first monolithic scheme using the backward Euler method for
the time discretization as follows.

Method 1: Given (u, &}, p}) € Vi X W), X My, find (u)*', &%, pi*!) € V), X W), X M), such that

ar (it ) = b &) = (Fw) + (v, Y €V (22)
b( n+l1 d)h) +a2(§z+l’¢h) — C([JZ-H,(l’h) = 0, V(l)h (S Wh, (23)
(= o -
3 At s Wh Yh, Ar
+d Py wn) = (05 wn) + (g5* 7ll/h>r, Yy, € M), 24

The second monolithic scheme considers the combination of the backward Euler and
Crank-Nicolson methods for time discretization, which is inspired from [17]. In the entire time interval,
we solve the problem as follows.

Method 2: Given (u, &, p}) € Vi X W), X My, find (u)*', &%, pit!) € V), X W), X M, such that

ar (', vy) = b(vp. &) = (}‘"“,vh) + (hnH,Vh)r,, Vv, € Vy, (25)
b(up™, dn) +ax (&, dn) — c(pit'. dn) = Ve € Wy, (26)
n+1 n n+1 n+1 n
Py — Py & _fh Pyt
(E) (S e
(Q"+l + 0% wn) + 5 <g”+1 + 85, wir, Yy, € My, @7

We note that the computational cost for implementing Method 2 is nearly identical to that of
Method 1, as the only change required is the substitution of (24) with (27). Furthermore, in practice,
we have observed that the runtime overheads of both Methods 1 and 2 for solving each step are almost
indistinguishable. Therefore, Method 2 is as efficient as Method 1, while providing more accurate
numerical solutions without significantly increasing the computational burden.
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Next, we state the following basic propositions.

Proposition 3.1. Letf : R — R be a function that has k + 1 continuous derivatives on
an open interval (a, b). For any ty,t € (a, b), there holds
FAR))

F@O =fto) +f (to)(t —to) + -+ + - 1) + % / FED@E)(E - s)ds.

Then, the following estimate for the L*>-norm of the last term holds true.
t

/ |V(k+l)||iz(g)ds
ly

2

< (b —a**! . (28)

N / FEDs) - s)ds

L2(Q)

Proof. The first part of the conclusion comes from the Taylor expansion theorem. Using
the Cauchy-Schwarz inequality, we have

2 t t
2
S/ |t—s|2kds/ lf(k“)(s)) ds
f0 I

< (t _ l0)2k+1 t|f(k+1)(s)|2ds
2%+l J, :

/ FED$)(t - s)kds

which implies (28) directly. n
Proposition 3.2. Let B be a symmetric bilinear form, there holds

2B(u,u —v) = Bu,u) = B(v,v) + B(u—v,u—v), (29)

B(u+v,u—v) =B(u,u)—B<v,v), (30)

which immediately implies the following inequality
2B(u,u—v) ZB(u,u)—B(v,v). (31)

Instead of relying on Gronwall’s inequality, we utilize an alternative lemma, which is valuable in
estimating errors related to long-time stability. Further details can be found in [7, 16, 17, 19].

Lemma 3.3. Let {X,}_, {D,}\, and {G,}\_, be finite sequences of functions, and C,

n=1’ n=1 n=1

C) be non-negative constants such that
n

X3 < CoXg+ CiXo+ Dy + ). GX; forall1 <n<N.
j=1

Then, there holds

n

X2 < X2 + max {C%+ ZG?,Dn} forall1 <n<N.
j=1

4 | MAIN RESULTS
In this section, we present our main results describing a priori error estimates of the proposed schemes.
Here, we decompose error terms as
ép=u"—uj = (u"—Ru") + (Ru" —uj) =: et g el
.l h,
l=E"—& = (&"—R") + (ReE" = &) =: " + €,

e=p" —ph=(p"—Rp") + (Rp" —pp) =: & +ep".
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We also define

+1 ._ hn+l h.n +1 . hn+1 h,n +1 . hn+1 hn
DI i=e," — ey, Dg = -, D} ep ey
Then, we present a priori error estimates for both schemes. The proof of each method consists of three

parts. In the first part, we focus on the H' norm of e;*', L2 norm of ¢2""*', and L? norm of ;"""

In the second part, we complete the H'! norm estimate of eh N+

conclusions describing the error bound.

. In the thlrd part, we draw our main

4.1 | A priori error estimates for method 1

Theorem 4.1. Let (u,:f,p) and (uh+l el "+l) be the solutions of Equations
(11)~(13) and (22)~(24), respectively. Assume that u € L*(0,T;HG (Q)), du €
L*(0,T; Hii (Q)), ou € L*(0,T;Hyr,(Q), ¢ € L®(0,T; HYQ)), 9¢ € L*(0,T;
HYQ)), 0s € L2(0.T:LX(Q)), p € L*(0.T:HGY (@), dp € L*(0.T: Hof (),
oup € L? (0, T, LZ(Q)). There holds

N

h,N+1 h,N+1 h,N+1 hn+l1
”5( )”LZ(Q) + ||€ “LZ(Q) + ”e ”LZ(Q) + AIZHVe " “LZ(Q)
n=0

T
2
< (A1) /0 (10l + 190E Iy + 1P ) s

T T
+ i / (101121 + 10,E 120 qy) ds + I / 9P 1700y - (32)
0 0

Proof. Setting t = "*! in (11), (12), (13), and letting the test functions be the discrete
test functions, then subtracting (22), (23), and (24) from these equations, we immediately
derive the following error equations.

al( n+1 Vh) —b(vh,eg“) = O,
b( n+1 ¢h) +a2( n+1 ¢h) —C( n+1 d)h)

n+1 ph _ph n+1 §n+1_§h n+1 _
as <(7r19Jr —At,ll/h>—0<ll/h,ar€+ Al +d(ept yn) =0.

By using the assumptions of the projection operators (15), (16), and (17), the above
equations can be rewritten as

ay (e ) = b(vy.el™") =0, (33)

b(ew™", dn) +az (et dn) —c(ept'. dn) = (34)
(Dn+lsWh) _C(Wh9Dn+1) + Atd( hn+l,ll/h)
= a3(Ryp™" = Ryp" — At0p" ' yny) — c(wn, ReE™' — Re&" — A10,6™"). 35)

Differentiating (12) with respect to ¢ at the (n + 1)—th time step, then multiplying the
resulted equation by A¢, we derive that

b(Atou™", d) + az (A10,E™, py) — c(A1dp™ ", i) = 0. (36)
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For (34), we write out the schemes for # = t,,,; and ¢ = t,,, then take a difference between
the two resulted equations, we see that

(DL, ) +a2( n+l _ e’g,dm) — (et — e ¢y) = 0. (37)

Using the definitions of Dg“ and Dﬁ“, we can reformulate (37) as follows

b(D™ ¢n) + ax (D™ ¢n) = (D5 ¢n)
=—ay (& =& ¢y) + c(p™! = p". bn)
+ ay (Re&™" = Re&", ) — c(Ryp"™*' = Ryp". n). (38)
After using the (n + 1)-th and n-th time steps of (12) to obtain b(u'“rl - u”,¢>;,) =
—ay (& = &, ¢y) + c(p"t! = p", ), we combine (36) and (38) to get
b(Dit' n) + ax (DL u) — (Dt n) = b(w"™! —u" — Arou™", )
+ ar (Re&™" = Re&E" — A1, £, ) — c(Ryp™™' — Rpp" — Atop™", by). (39)

Choosing v, = D! in (33), ¢y, = €™ in (39), and y, = ;""" in (35), we derive

al( h,n+1 Dn+1) b(Dn+1 hn+l) =O, (40)

b(Dn+] hn+1) (Dn+l hn+1) (D;+1 hn+1)
=b(u" —u" — Ao, ") + ay (ReE™! — Re£" — A19, &, el
—c(Ryp™" = Ryp" — Atogp™, ek, (41)

(Dn+1 hn+1) C( h,n+1 Dn+1) +Atd( hn+1’ez,n+1)
= a3 (R,p™! — Ryp" — Atop™!, ep™")
—c(ey" ReE™! — RE" — Aro,£m). (42)

Taking the summation of (40), (41), and (42) over the index n from O to N yields
N
LHS, := Z [611 (€Z’n+l,DZ+l) (Dn+l hn+l) (Dﬁ“ hn+l)

+a3(Dn+l hn+1) c( hnt1 Dn+1) +Atd( hntl e}f;n+l)] _ ZEi’ (43)
where

N
= Yb(u™! —u" - Argu!, "),
n=0

N

E2 — ZaZ(R§§n+l _ R/:én _ Atat§n+l’elg,n+l)’
n=0
N

E3 — ZC(A[();}?”-H R pn+l +Rpp hn+])’
n=0
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N

Ey= ) as(Ryp"™" = Ryp" — Atop™, &™),
n=0
N

Es = Zc(eﬁ’"“, At0, & — R:E™! + R:E").
n=0

Using the definitions of a,(-, -), as(:, -), and c(+, -), we can simplify LHS; by the identity

az(Dg+l 21n+1) (Dz+1 hn+1) (Dn+1 hn+1) C(@Z’n+1,Dg+l)

=%/(aDZ+1_Dg+1)(aeﬁn+1 2n+1)+cO/(eZn+1 eg,n)ez,nﬂ. (44)
Q Q

Applying (31) and (44), we obtain the following lower bound estimate for LHS;

1
> (2ulle(@™™ ) e = 20l (el [y + colleh™ 1oy

—Co||€ ”LZ(Q)+ 7”0( AN+L hN+1||L2(Q)

1 n
— 2 llar® = el )) +KAtZ||V B |12, ) < LHS. 45)

Next, we bound the terms E; fori = 1,2,- - - ,5. We use the Cauchy-Schwarz inequal-
ity, the Young’s inequality, (18), (20), and (28) to estimate E|, E,, and E3 with an ¢; > 0
as follows.

E,

I/\

€1 I/ 1
Atz:” hn+ ”LZ(Q) + A[ / ||0,tu||H.(Q)dS
n=0

E,

I/\

€ NG

lAtZ”eh +1||Lz(g)+ [At / 104€ 1172
T

'|'h2/<‘/0 (”atu”zkﬂ(g) + ||0,§||12L,k(9)) ds] ,

. C 5 T T
lAr2||”+‘||Lz<g>+ [(Ar) /0 10up |2 ds + 22 /0 ||a,p||§,m(g)ds].

Using the Cauchy-Schwarz inequality, Young’s inequality, the Poincaré inequality, (18),
(20), and (28), we can bound E4 and E5 with an ¢, > 0 as follows.

T T
€ n C 2
Ey < ZAanvh +1||L2(Q)+2€2[(At) / 10up 172y ds + h?'+2 / ||afp||%,,ﬂ(mds],
0 0

€2 h,n+1
AIZHVe d ”LZ(Q) + 2

At ”attglle(Q)dS
T

+ hzk/ (10221 0y + 10:€ 1 2cc) ds] ,
0



10 Wl LEY GUET AL.

Combining (43), (45), and the bounds E; fori = 1,2,-- - , 5, we derive that

nN+1 hN+1 0
2/"”'5( * )”12‘2(9) 2/4”6( )”LZ(Q) +CO|| - ||L2(Q) - COHEP ”12‘2(9)
N
L N+l hN 1 0 a1
+ ;”aeﬁ - * ”LZ(Q) ”aep ”LZ(Q)"‘ZKAIZ”VE o ”U(g)
n=0
hatl hatl
< elAtZHe e +€2AtZ|IVe e
n=0
c C ’
2 2 2
+ <€1 €2> [(At) / (“attu”HI(Q) + |I0n§||Lz(g) + ”attp”LZ(Q)) ds
0
T T
+ 1 / (1101 @ + 10113y ) ds + B2+ / ||atp||§,,+l<g)ds]. (46)
0 0

Using the inf-sup condition (21), (33), and the Korn’s inequality (14), we have

h,n+1 h,n+1
”ehn+1” Sup b(vh’efn ) _ aj (eun+ ’vh) “ ( hn+1)“2 (47)
L2(Q - ~ L2(Q)°
@~ v, il vev, IWallme “
which easily implies that
h.n+1 han+1 h +1 hn+1\ (12
” g ”L’(Q) ||ae e ||L2(Q) + ”5( g )”LZ(Q)' (48)

Then, we handle (46). Considering the fact e(eﬁ’o) =0, ¢ =0, eg,o = 0, ignor-

ing the term c0||eh N 12 2@ using (47) to choose a small enough positive €; such that

elllehk“lle(g) < 2ulle(e hk“)lle(Q) and setting e, = K, we can apply Lemma 3.3 to
obtain
N
RN+ 12 AN+ hN 1 hatl
2ulle (el™* )||L2(Q)+ llrep™* it + KA 1Vey ™ g,
n=0

T
2
S (At) / (”a”ulllz‘ll(ﬂ) + ”0”5”%2(9) + ”attp”iZ(Q)) ds
0
T T
+ / (101 riqy + 10,EN 21y ) ds + B2 / 101 . 49)
0 0

Finally, we come to the conclusion that the desired result (32) holds after applying (47),
(48), and (49). This completes the proof. [
Theorem 4.2. Let (u,&,p) and (u)*! é‘"“,pZ“) be the solutions of Equations (11)—(13)
and (22)—(24), respectively. Under the assumptions of Theorem 4.1, there holds

| &

=) (le(Dat" ) 2@y + IDE gy + 1D 1220y) + 1V 1122,

At o

T
2
p3 (At) '/0 (||atzu||12ql(9) + ”6115”%2(9) + ”attP“iZ(g)) ds

T T
+h* / (101201 + 10 12y ) s + H2+2 / 19171 5. (50)
0 0
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Proof. Taking the difference of the (n + 1)-th, n-th steps of (33) yields
ar(Dyt vy) = b(vi, DE') = 0, (51)
After using the definitions of a, (-, ) as (-, -), and c(-, -), one has

az(Dg+l’Dl§1+l) + a3 (D;17+1’D;+1) _ 2C(D;+1,Dg+1)

1 B+l
= ;HaDg“ — D172y + oDy 1 agy- (52)

Choosing v, = D! in (51), ¢y, = Dg“ in (39), y, = D5t in (35), applying the identity
(52), and summing over the index n from 0 to N, we get

N
71 71 1 71 71
> (2ulle(DE) g, + coll D Iy + 0Dy = D2l
n=0
5
+Al2d hn+1 Dn+l ZTH (53)
i=1

where

~
Il
Mz

b( n+1 —u" _Ataun+l Dn+l)

3
Il
=}

33
I
M=

az(R§§n+1 _Régn _ Atat§n+l’Dg+l>’

3
Il
=}

53
I
M=

C(Al@,p"“ _Rppn+l +Rppn’Dg+1)’

3
Il
=}

=
I
M=

as R +1 ppn _ At@tp”H,DzH),

3
Il
<)
=
A
3

M=

Ts = ) c(Dpt', Atg, & — ReE™ + R:£").

n=0

Based on our observation, we have found that

N
1 ~
T, +Ts= ZE(aDZ“ - DI Ao, & — RE + REY) =1 T,
n=0
N
a 7i 7
T34+ T4 = ZE(R”I)H] —R,p" — Ato,p"t!, aDit! — Dé“)
n=0

+ Zco (R,,p"‘L1 —Ryp" — Ata,p”H,D;H) =: T3+ T4

Next, we bound the terms Ty, T», T3, and T4. Applying the Cauchy-Schwarz inequality,
the Young’s inequality, (18), (20), and (28), we have the following estimates with
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€1,€,¢e3 > 0.
N C s [T
12 : 2
T, < €1ZI|DQ+ 2@ + ;(At) / 9t |l s,
S 1 0

N
= _ e\l +1 12
T <3 Y SllaDp = Di I,
n=0

T T
C 3
+ o [(At) / ”att§”%2(g)ds+ hzkm/ (||0,u||§,k+,(g) + ||0z§||§1k(9)) ds] ,
0 0

N
7 € 1 n+1 n+1112
T3 < = E —||laDy™ — D
3= ) nzoﬂ” 14 & ”LZ(Q)

T T
C 3
+ g |:(At) / ||attp”12‘2(g)ds+ h21+2Al/ ”afp”zlﬂ(g)ds] ,
0 0

N T T

- C 3

Ty < &) coll D (170 + < [(m) /0 10up|1320yd's + K2 At /0 ||0,p||12q,+1(g)ds] .
n=0

Similarly, using the inf-sup condition (21), (51), and the Korn’s inequality (14) yields

b(vy, DE) a1 (Dt vy)

12 s D (Da™ v o

1D 172y S sup —————= = sup ———— 5 |le(Di*") 72 (54)
vev, Willae  vev, IVilla@

which directly implies

D5 172 S NlaDptt = D 17y + 1l (D) 1720 (55)

Using (31) and the fact e,’§’0 = 0, we obtain

N N
AIZd(E,@’nH,DZH) > % [d(e[/;,nﬂ’eﬁ,nﬂ) _ d(eﬁ’",eﬁ’”)]
n=0 n=0
> %d(eZ,NH’eZ,NH). (56)

Based on (53), considering e, = % and e3 = 1, using (54) to choose a small enough
positive €] such that € ||D2‘Jrl ”il(g) < ;4||£(DZ+1)
T, Tz, T3, T4 to obtain

||%2(Q), we can apply (56) and bounds of

N
1

Atn:()

c C. C 2 [T
< < +—+ > [(AI) / (”att”||12-11(g) + ”att‘f“iz(g) + ”61117”%2(9)) ds
0

€1 € €3

12 1 1 12 K. nN+1y2
(lle (D) gy + 55 1005 = DE I ) + S 1™ i)

’ T
+ h2k</0 (”atu”Iz‘ﬂ”H(Q) + ”atéuik(g)) ds+ h21+2/0 ”atp”%]lﬂ(g)ds] .

By using (54), (55), and the above estimate, the proof is completed. ]
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Theorem 4.3. Let (u,&,p) and (u)*', &', pi*") be the solutions of Equations (11)~(13)
and (22)—(24), respectively. Under the assumptions of Theorem 4.1, there holds

le(ed ™ ) @ + e o + e e S Ar+ B+ (57)
Vel Ml 2 S At +K* + 1. (58)

Proof. We start with (18), (19), and (20). Applying the triangle inequality, Theorems 4.1
and 4.2, we see that the above error estimates readily follow. ]

4.2 | A priori error estimates for method 2

Theorem 4.4. Let (u,&,p) and (ujt', &', pi*') be the solutions of Equations
(11)~(13) and (25)~(27), respectively. Assume that u € L*(0,T;HGY (Q)), du €

L*(0,T; Hg} (Q)), o € L*(0,T; Hyr, (Q)), duue € L2(0, T,Ho’rd(Q)), £ e L>(0,T;
HYQ)), 0,¢ € L*(0,T;HNQ)), 9, € L*(0,T;L*(Q)), dué € L*(0,T;L*(Q)),
p € L*(0, T;H(’)}IP(Q)), op € L*(0, T;Hg}lp(sz)), owp € L*(0,T;LX(Q)), dup €
L*(0,T; L*(Q)). There holds

N

hN+1 hN+1 h.N+1 h.n+1 h, 2
”5( i )”LZ(Q) + ||€ i ”LZ(Q) + llep " ”LZ(Q) + AtE ”V m+ + epn)”LZ(Q)
n=0

T
4
S (Af) ‘/0 (||azzzu||12.11(g) + ||azzz§||1%2(g) + ||atttp||iz(g)) ds

’ T
+ it /0 (01 Fesr ) + 119 17 ) s + B2+ /0 101131 gy - (59)

Proof. Firstly, we note that (33) and (34) still hold here. Summing up the (n + 1)—th, n-th
steps of (33), and following a similar argument of (39), we get

ar(ew™ +en vy) = b(vi e+ ") =0, (60)

b(Di ¢n) + ax (D™ ¢n) = (D5 ¢n)

n+1 n
_ <u"+1 _ g Ao + Arou ’ ¢h>

2

" a At0,E 4+ Aro,E"
+ay <R4—'§ +1—R§§ _ tg 5 tg 9¢h>
u . Atop"™! + Atop"
—c (Rpp +1 —Rpp _ 4 5 4 sd)h) . (61)

After summing up the (n + 1)-th, n-th time steps of (13), we multiply % to get

an+1+an an+l+an n+1+n
a3<tp > tp,llfh>—c<llfh,t§ 2 < +d p72p,lllh

1 n n n
= 2( T+ 0hwn) + 5 (8 1+ gl wr,- (62)
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Subtracting (27) from (62) yields

o™ +op" it =i o +ep
o ) +d (2
as ( ) AL L 3 > Wh

0.6 1 9,8n "+1
=c<wh, R (©3)

Following the same argument as (35) in Theorem 4.1, we apply the projection operator
(17) to (63) and derive

a3(Dn+l ) _ C(l[/h,Dn+]) Azld( hn+1 + €p 5lllh)
n+1 n
—a ( Ryl — Ry - Ato,p"t 2+ At0,p Mh)

(64)

n+1 n
—c <Wh,R§§n+l _ ngn _ Atati + Atat: > .

2

Choosing v, = D! in (60), ¢y, = eh mly eg‘” in (61), wy = ™ + &M in (64), and
summing over the index » from O to N yield

N
LHS2 :=Z [al( hn+1+ e ’Dn+l) (Dn+1 hn+1+eg,n>
n=0
(D;H hn+1+eg,n)+a3(D;+l hn+1+ep )—C( hn+1+ p ’Dn+l)
5
+%d< hn+1+ Zn, ,})tn+1+ Zn)] =2Ji’ (65)
i

where

N
n+1
Jl — zb <un+1 —ut— Atatu 2+ Atat , 2“”—1 + 62””) ,

n=0
N
. . A10E™ 4+ At
J2=2a2 <R§f +1—R§§ _ /& 5 " , 2n+l+eg,n>’
n=0

N n+1 n
J3 — ZC <Atatp + Atatp —R pn+1 +R p hn+l + eh,n) ,
n=0 2

N n+1 n
Jy = Za3 <Rppn+1 —Ryp" - Atd;p 2+ Atd;p ,eﬁ’nH " eﬁ’") ’
n=0

N n+1
Jo— ZC< sl | nn A1E + At

+e", 3 —ReE"™ + R5§"> )

n=0

Using the definitions of az( . -), as (-, ) and c(‘, ) we can simplify LHS, by the identity

az(D"H, gn+1+ g )—C(D"+1, gn+1+ Zn)

a3(Dn+1 h,n+1 +ep ) —C( h.n+1 + 2n’Dn+l)
h,n+1 12
= <”e " “LZ(Q) - ”epn”LZ(g)>

1 hntl _ ekl hn b2
(”0{ - egn ”LZ(Q) = [laep™ = e.»;n”LZ(Q)) . (66)

+ =
A
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Applying (65) and (66), we obtain

hN+1 2 hN+1 (2
LHS; = 2ulle (e )”L%Q) 2ulle(ew”) 172 + coller™ iz

hN+1 hN+1

- CO”ep ”LZ(Q) + *”(X ”LZ(Q)

Loono 0 KAt h h,
= 2 llaes® = i) + =5 va 2 ) 120 (67)

Assuming that f is three times differentiable with respect to ¢ and f””’ is continuous in
[0, T], the Taylor expansion Theorem implies

Pt =F (1) + 51 (0) + 221" ().

A
Atf’ ([t+1) + (7.}(”(7]2),

f(t,H.%) =f(tn+1) )

where 5y € (ty.1,,1), and n; € (tn+ s tns1 ). It follows that
2

2
Atf' (t,41) + Atf' (1, At
Fltnr) =) = 2L 280D Ay priy. o)
Next, we bound the terms J; for i = 1,2,--- ,5. Applying the Cauchy-Schwarz
inequality, the Young’s inequality, (18), (20), (68), and (28), we can bound Ji, J>, and J3
with an €; > 0 as follows

T
€] B+l C 4
Jl S AIZH " ”LZ(Q) + E(At) A ”atttu”?{l(g)dsa

I < ‘AzZII h”*‘IILZ(gﬁ [At /Ilamfllwmds
T
+ hz"/ (N0l Fpeor ) + 11966 17 ) ds] ’
0

T T
C 4
IAIZ” hn+1”L2(Q) + g [(At) /() ||0mp||iz(g)d5 + h21+2/0 ”atpll%-[lﬂ(g)ds] .

Using the Cauchy-Schwarz inequality, the Young’s inequality, the Poincaré inequality,
(18), (20), (68), and (28), we can bound E4 and E5 with an e, > 0 as follows.

€ hn+1 h, 2
Ji < AIZHV ) 12
n=0

T T
C 4
+[(Az) / 1Pl ds + 12 / ||a,p||§,,+m)ds],
€2 0 0
N
JS €2A[2”V hn+1+e[i;n)”12‘2(g)

T
4
(At) / “atttglliz(g)ds + th/ (”atu”i{kﬂ(g) + ”azgllquk(g)) ds] .
0 0
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We note that (47) and (48) still hold here, then we deal with (65) next. Considering the

fact e(eﬁ’o) =0, eZ'O =0, e}g’o = 0, ignoring the term co||eZ’N +1 ||%2(Q), using (47) to choose

a small enough positive €] such that e, ||e2”kJrl ||i2(Q) < Zylle(eﬁ’k“) ||i2(9) and setting e, =
K /4, we can apply Lemma 3.3 to derive

N

nN+1Y 12 L aN+l  WN+1 2 KAt hatl | a2
2,u||6<eu )||L2(Q)+ llaep™™ = N2 g + S PV (e + ) g

n=0
o [T
2 2 2
S (A[) / (”atttu”[-ﬂ(g) + ”amgny(g) + ”atttp”LZ(Q)) ds
0

! T
+ /0 (N0 llFeor ) + 1108 17 ) s + 122 /0 10D 117141 - (69)
Finally, applying (47) and (48) to (69) yields the desired result (59). .

Theorem 4.5. Let (u,&,p) and (u)*', &', pi*") be the solutions of Equations (11)~(13)
and (25)—(27), respectively. Under the assumptions of Theorem 4.4, there holds

N
1

1\12 102 112 h,N+1 2
Zl‘ (llg(DZJr )”LZ(_Q) + ”D2+ ”LZ(Q) + ”DZ+ ”Lz(g)) + ”Vep * ”LZ(Q)
n=0

T
4
3 (Al) /0 (||azzzu||12m(g) + ”01115”12‘2(9) + ”atttp”%}(g)) ds

’ T
+ i / (10l gy + 19:E N3 qy) ds + 12 / 101 . 70)
0 0

Proof. Firstly, we note that (33) holds here, which implies (51) can be used here. Choosing
vp = DIl in (51), ¢ = Dg“ in (61), y;, = Di*! in (64), summing over the index n from
0 to N, and applying the identity (52), we can deduce that

N
1
2 (2/'4”8(DZ+1) ”12‘2(9) + CO”DZ_'—l ”12‘2(Q) + ;”(XD;V;H - Dg+l ”1%2(9))
n=0
N 5
+ArY d (e + ey Dptt) = Y L, (71)
n=0 i=1

where

N
n=0

2
< ' A1OE™ + AOE" s
Ly=Ya <R§§"+ —Re&" — 5 D > :
n=0
N n+1 n
Ly = ZC <Atazp 2+ Ato,p _ Rppn+l +Rppn’Dg+l> ,
n=0
N
Atd,p"t! + Atop"
Ly = Zas <R,,p’“rl —R,p" — P 5 P i),
n=0

N n+1 n
5= Ye (D;H,Araté 2+ AOE" _ p enst R§§n>.
n=0



GUET AL. WI LEY 17

From our observation, it has been discovered that

Lot lee i ! apgt - g, AL E0L gy o,
n=0
N n+1 n
L3 tha= Z}%(Rppn"'l _Rppn _ Atatp 2+ Atafp ,(XD;+1 _ Dg+l)
=
N n+1 n
+ ZCO(Ran+] —Rp" - Atd,p 2+ Atd,p ’D;H) = Iy + L.
n=0

Next, we bound the terms L;, L,, L3, and Ly. Applying the Cauchy-Schwarz inequality,
the Young’s inequality, (18), (20), (68), and (28), we obtain the following estimates with

€1, 62,63 > 0.
N C s T
12 2
L <¢ Z“DEH— ”LZ(Q) + ;(Al‘) / ”amu“Hl(g)ds’
=0 1 0

N
i,<eyl +1 +12
L < 5 2 Ie05" = Dl

C s [T T

+ :2 [(Al) / ”6112‘5”12‘2(Q)ds + hzkA[/ (”atu”?{kﬂ(g) + ||at§||[2-lk(g)) ds] N
0 0

< 1
i, <& +1 +1)2
Ls < E;E”aDﬁ _Dg ||L2(g)

T T
C 5
+[(Ar) [ 10upl s + 252 [ ||azp||§,,+l(g)ds],
0 0

€
_ N C s [T T
Ly<es ZCoIIDZ“IIiz(Q) + - [(AI) / ”atttp”12‘2(g)ds + hZHZAI/ ||azP||12.11+1(Q)dS] .
n=0 3 0 0

Here, we note that (54) and (55) still hold true. Then, we handle (71). Using the fact
eZ’O = 0, choosing €, = % and €3 = 1, using (54) to choose a small enough positive ¢

such that e || D} ||%2(Q) < glls(Dﬁ“ ) ||%2(Q), we obtain

N
1

At =

c,Cc. cC s [T
< < +—+ ) [(Af) / (”amu”ip(g) + ||azrt§||iz(g) + ||azzzP||12‘z(Q)) ds
0

1 hN+1
(lle (D) + 55 105" = DI gy ) + KNIV g

€1 €2 €3
T T
e / (10t + 10 2 qy) s + 122 / ||afp||,2,,+l(mds] |
0 0

Applying (54) and (55) to the above equation, we claim that (70) holds true. The proof is
completed. [

Theorem 4.6. Let (u,&,p) and (u)*', &', pi*") be the solutions of Equations (11)~(13)
and (25)—(27), respectively. Under the assumptions of Theorem 4.4, there holds
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2
le(ed™ )z + e e + ey il S (A1) + A+ B, (72)

IVl Nl S (A1) + K+ 1. (73)

Proof. We start with (18), (19), and (20). Applying the triangle inequality, Theorems 4.4
and 4.5, we see that the above error estimates readily follow. ]

5 | BENCHMARK TESTS

In this section, we present numerical experiments in two dimensions to validate the theoretical pre-
dictions described in Section 4. All computations are implemented by using the open-source software
FreeFEM++ [12].

Example 1. Let the domain Q = [0, 1]? and the final time is T = 1.0. We choose the
body force f, the source/sink term Qy, initial conditions and Dirichlet boundary data on
0Q =T'y =T, such that the exact solution is as follows:
U = %e’(x+y3), Uy = itz(x‘% +y3), p= IOe%(l + t3).
0 10
Following [9], the physical parameters are:

=10, 1=10, ¢=10, a=10, K=1.0.

We apply a small mesh size h = é and take polynomial orders k = 3, [ = 2 for the spatial
discretization so that the spatial error is not dominant. To check the orders of convergence
in time, we only refine the time step size At. In Tables 1 and 2, we present the results of
errors and convergence rates for Methods 1 and 2, respectively. We observe that the orders
of H' error of u, L2 error of & L2 and H' errors of p are all around 1 in Table 1, and are
all around 2 in Table 2. The results in both tables illustrate that the time error order based
on Method 1 is O(At) and the time error order based on Method 2 is O((At)z), which
verify the theoretical predictions of error analyses in Theorems 4.3 and 4.6.

Example 2. Let the domain Q = [0, 1]? with 'y = {(1,y);0 <y < 1},I3 = {(x,0);0 <
x<1},T3={(0,y);0 <y <1}, Ty ={(x,1);0 <x < 1} and the final time is 7 = 1.0.
The Neumann boundary I', = I’y = I'; UT'5 and the Dirichlet boundary I'y = I, =, UT}
are considered in this example. We take the body force f, the source/sink term Q;, and
initial and boundary conditions such that the exact solution is as follows:

L in (e2) sin (77y)> ,

o+
sin () sin (ﬂy)) ,

u = e <sin (27y) ((cos (27x) — 1) +

u, = e’ (sin (27rx) (1 — COs (2”)’)) + I _1|.

p = e sin (zx) sin (xy).

TABLE 1  Errors and convergence rates of method 1 for Example 1.

At H! errors of u Orders L2 errors of & Orders L>& H! errors of p Orders

1/4 5.219e-02 2.754e-01 2.971e-01 & 1.386e+00

1/8 2.735e-02 0.93 1.443e-01 0.93 1.557e-01 & 7.263e-01 0.93 & 0.93
1/16 1.399¢-02 0.97 7.381e-02 0.97 7.963e-02 & 3.715¢-01 0.97 & 0.97

1/32 7.076e-03 0.98 3.732e-02 0.98 4.026e-02 & 1.878e-01 0.98 & 0.98
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TABLE 2 Errors and convergence rates of method 2 for Example 1.

At H! errors of u Orders L? errors of & Orders L*& H" errors of p Orders

1/4 2.630e-03 1.266e-02 1.385e-02 & 6.333e-02

1/8 6.426e-04 2.03 3.296e-03 1.94 3.570e-03 & 1.653e-02 1.96 & 1.94
1/16 1.587e-04 2.02 8.278e-04 1.99 8.944e-04 & 4.159¢-03 2.00 & 1.99
1/32 3.959¢-05 2.00 2.071e-04 2.00 2.237e-04 & 1.041e-03 2.00 & 2.00

TABLE 3  Errors and convergence rates of method 1 for Example 2 using k =2 and / = 1 with v =0.3 and K = 1.0.

h At H! errors of u Orders L? errors of & Orders L*& H! errors of p Orders

1/4 1/4 4.582¢-01 3.657e-02 1.858e-02 & 2.919e-01

1/8 1/16 1.252e-01 1.87 7.262e-03 2.33 5.258e-03 & 1.531e-01 1.82 & 0.93
1/16 1/64 3.237e-02 1.95 1.677e-03 2.11 1.361e-03 & 7.766e-02 1.95 & 0.98
1/32 17256 8.191e-03 1.98 4.084e-04 2.04 3.437e-04 & 3.900e-02 1.99 & 0.99

TABLE 4 Errors and convergence rates of method 1 for Example 2 using k = 3 and / = 2 with v =0.3 and K = 1.0.

h At H' errors of u Orders  L? errors of & Orders L*& H! errors of p Orders

1/4 1/8 6.283e-02 4.146e-03 2.841e-03 & 3.325¢-02

1/8 1/64 8.465e-03 2.89 6.203e-04 2.74 3.502e-04 & 8.398e-03 3.02 & 1.99
1/16 1/512 1.054¢-03 3.01 7.839¢-05 2.98 4.397e-05 & 2.146e-03 2.99 & 1.97
1/32 1/4096 1.312e-04 3.01 9.789¢-06 3.00 5.520e-06 & 5.433e-04 2.99 & 1.98

The fixed physical parameters are:
E=10, ¢=10, a=10.

Other physical parameters will vary to test the robustness of our numerical schemes.
Numerical results for this example are summarized in Tables 3—10. Among them, we
examine Method 1 in Tables 3,4,7,8, and Method 2 in Tables 5,6,9,10. Since we have
already verified the error orders in time for both schemes in Example 1, our focus here is
the verification of the spatial error orders. To verify the spatial error orders as analyzed in
Theorem 4.3, we take At of an order O(h?) (Tables 3 and 7) or O(h*) (Tables 4 and 8)
for Method 1. Similarly, to verify the spatial error orders as analyzed in Theorem 4.6, we
take At of order O(h) (Tables 5 and 9) or (9(h2) (Tables 6 and 10) for Method 2.

Firstly, we fix v = 0.3 and K = 1.0. The numerical results for errors and convergence orders using
k=2,1=1andk = 3, = 2 are presented in Tables 3.4,5, and 6, respectively. We refine the mesh
size (and vary the corresponding time step size) to present the numerical results. From Table 3, it is
clearly shown that the convergence ||el ™ ||, ||e]§VJr1 2> led 1l 2 () are of order O(At+ h?), and
lley ™|l z11(q) is of order O(At + h) for Method 1. Similarly, from Table 4, we see that the convergence
lew ™ - leX ™ @) lley ™ Ml are of order O(Az + h?), and |ley ™! ||1(q) is of order O(Ar +
h?). From Table 5, we see that the convergence ||en™ ||, Il 2@ 1€y ™ ll2@) are of order
(9((At)2 + %), and [ley ™! ||z1(q) is of order (9((At)2 + h) for Method 2. Moreover, from Table 6,
we see that the convergence [lel ™ |1, ||e’5VJrl 2> lley |2y are of order O((At)z + h?), and
lle}* 111 is of order O((Ar)* + h2).

Secondly, we fix v = 0.49999 and K = 107° to test the robustness of the proposed schemes with
respect to the key physical parameters. The numerical results for errors and convergence orders using
k =2,1 =1and k = 3,1 = 2 are presented in Tables 7,8,9, and 10, respectively. By checking
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TABLE 5 Errors and convergence rates of method 2 for Example 2 using k =2 and [ = 1 with v =0.3 and K = 1.0.
h At H! errors of u Orders L? errors of & Orders L*& H! errors of p Orders
1/4 172 4.584e-01 3.744e-02 2.376e-02 & 3.725e-01
1/8 1/4 1.252e-01 1.87 7.238e-03 2.37 5.259¢e-03 & 1.624e-01 2.18 & 1.20
1/16 1/8 3.237e-02 1.95 1.693e-03 2.10 1.376e-03 & 7.859¢e-02 1.93 & 1.05
1/32 1716 8.191e-03 1.98 4.142e-04 2.03 3.520e-04 & 3.910e-02 1.97 & 1.01
TABLE 6 Errors and convergence rates of method 2 for Example 2 using k =3 and [ = 2 withv=0.3 and K = 1.0.
h At H? errors of u Orders L? errors of & Orders L*& H! errors of p Orders
1/4 1/4 6.280e-02 3.891e-03 1.440e-03 & 4.175e-02
1/8 1/16 8.460e-03 2.89 5.934e-04 2.71 1.580e-04 & 9.268e-03 3.19 & 2.17
1/16 1/64 1.054e-03 3.01 7.502e-05 2.98 1.848e-05 & 2.156e-03 3.10 & 2.10
1/32 1/256 1.312e-04 3.01 9.368e-06 3.00 2.336e-06 & 5.428e-04 2.98 & 1.99
TABLE 7

Errors and convergence rates of method 1 for Example 2 using k = 2 and [ = 1 with v = 0.49999 and K = 107°.

h At H' errors of u

Orders L? errors of & Orders L*& H! errors of p Orders
1/4 1/4 4.658e-01 7.691e-02 3.411e-02 & 3.831e-01
1/8 1/16 1.252e-01 1.90 1.149e-02 2.74 9.063e-03 & 1.667¢-01 1.91 & 1.20
1/16 1/64 3.229e-02 1.96 2.412e-03 2.25 2.336e-03 & 8.027e-02 1.96 & 1.05
1/32 1/256 8.163e-03 1.98 5.709e-04 2.08 5.921e-04 & 3.953e-02 1.98 & 1.02
TABLE 8

Errors and convergence rates of method 1 for Example 2 using k = 3 and [ = 2 with v = 0.49999 and K = 107°.

h At H! errors of u Orders L? errors of & Orders L*& H! errors of p Orders
1/4 1/8 6.320e-02 8.826e-03 1.864e-02 & 9.813e-02
1/8 1/64 8.546e-03 2.89 1.176e-03 291 2.426e-03 & 1.669e-02 2.94 & 2.56
1/16 1/512 1.063e-03 3.01 1.385e-04 3.09 3.067e-04 & 3.187e-03 2.98 & 2.39
1/32 1/4096 1.323e-04 3.01 1.632e-05 3.08 3.850e-05 & 6.651e-04 2.99 & 2.26
TABLE 9  Errors and convergence rates of method 2 for Example 2 using k = 2 and [ = 1 with v = 0.49999 and K = 107%.
h At H! errors of u Orders L? errors of & Orders L*& H! errors of p Orders
1/4 12 4.658e-01 7.691e-02 7.259e-02 & 4.259¢-01
1/8 1/4 1.252e-01 1.90 1.149¢-02 2.74 1.905e-02 & 1.738e-01 1.93 & 1.29
1/16 1/8 3.229e-02 1.96 2.412e-03 2.25 4.832e-03 & 8.122¢-02 1.98 & 1.10
1/32 1/16 8.163e-03 1.98 5.709¢-04 2.08 1.214e-03 & 3.965¢-02 1.99 & 1.03
TABLE 10  Errors and convergence rates of method 2 for Example 2 using k = 3 and / = 2 with v = 0.49999 and K = 107%.
h At H? errors of u Orders L? errors of & Orders L*& H! errors of p Orders
1/4 1/4 6.320e-02 8.826e-03 3.445e-03 & 5.186e-02
1/8 1/16 8.546e-03 2.89 1.176e-03 291 3.177e-04 & 1.267e-02 3.44 &2.03
1/16 1/64 1.063e-03 3.01 1.385e-04 3.09 3.092e-05 & 2.877e-03 336 &2.14
1/32 1/256 1.323e-04 3.01 1.632¢-05 3.08 3.160e-06 & 6.425¢-04 3.29 &2.16
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the error results and convergence rates one table by one table, one can verify the theoretical analysis
provided in Section 4. From these tables, it is shown clearly that all energy norm errors decrease with
the optimal convergence orders. By comparing the results in Tables 3—6 with the corresponding results
in Tables 7-10, we conclude that our schemes are robust with respect to the Poisson ratio v and the
hydraulic conductivity K.

6 | CONCLUSIONS AND OUTLOOK

In this paper, we present a priori estimates of the two monolithic schemes for the three-field formula-
tion of Biot’s consolidation model. The theoretical results show that both schemes are unconditionally
convergent with optimal error orders. We comment here that Method 2 achieves a second-order
convergence in time without significantly increasing the computational burden. Detailed numerical
experiments are carried out to verify the predictions of error estimates. In future work, we plan to
develop some decoupled algorithms [11,14] and the corresponding analysis based on the theory studied
in this work.
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