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Abstract

This paper concentrates on a priori error estimates of two

monolithic schemes for Biot’s consolidation model based

on the three-field formulation introduced by Oyarzúa et al.

(SIAM J Numer Anal, 2016). The spatial discretizations

are based on the Taylor–Hood finite elements combined

with Lagrange elements for the three primary variables.

We employ two different schemes to discretize the time

domain. One uses the backward Euler method, and the

other applies the combination of the backward Euler and

Crank-Nicolson methods. A priori error estimates show

that both schemes are unconditionally convergent with

optimal error orders. Detailed numerical experiments are

presented to validate the theoretical analysis.
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1 INTRODUCTION

Biot’s consolidation model [1,2] is a valuable tool for understanding the interaction between fluid flow

and mechanical deformation in a porous medium, which is a solid structure with pores. This model has

widespread applications in various fields, including biomechanics [14], petroleum engineering [15],

and others. However, obtaining an exact analytic solution is difficult, so various methods have been

developed to approximate numerical solutions for the system. These methods include finite volume

methods [20], virtual element methods [7], and mixed finite element methods [8,16], and so forth.

In [24], it is pointed out that standard finite element methods for solving the classical two-field

Biot’s model may suffer from Poisson locking and pressure oscillations. Therefore, various reformu-

lations of Biot’s model are proposed to overcome these numerical difficulties. For example, fluid flux

arising from the inherent Darcy law is introduced as a new variable to obtain a three-field formula-

tion of Biot’s model in [13,24]. A new four-field formulation is proposed in [25]. Another three-field

model is established in [10] by introducing two pseudo-pressures. In [18,22], an intermediate variable,

called “total pressure”, is introduced to derive a three-field reformulation of Biot’s model. The advan-

tages of such a three-field reformulation exist in that it avoids using H
(
div

)
space and the classical

inf-sup stable Stokes finite elements combined with Lagrange elements can be applied for the spatial

discretization. By taking the advantage of such a three-field formulation, some relevant algorithms and

analyses are carried out. For instance, Qi et al. [23] derive optimal-order error estimates. A second

order unconditionally convergent algorithm is proposed in [17].

In this work, we introduce two fully discrete monolithic schemes for solving the three-field for-

mulation of Biot’s model. Method 1 utilizes the backward Euler method [7,14,22,23] for the time

discretization, which only achieves first-order convergence in time. To overcome this limitation, we

propose Method 2 applying the combination of the backward Euler and Crank-Nicolson methods,

drawing inspiration from [17]. This approach employs a unified scheme for all time steps and achieves

second-order convergence in time. It is noteworthy that a special case with the Biot-Willis constant

𝛼 = 1 and specific storage coefficient c0 = 0 is addressed in [23]. In comparison, we present rigor-

ous analyses for both Methods 1 and 2 that are applicable to more general physical parameters 𝛼 > 1

and c0 ≥ 0. Instead of providing cumulative H1 error estimates or rough H1 error estimates for pres-

sure [7,10], our research presents rigorous H1 error estimates of pressure at the final time, drawing

inspiration from [16,23]. Furthermore, the unconditional convergence of Method 2 suggests that such

a second order method can also be applied to iterative schemes for Biot’s model [3,4,11], significantly

enhancing computational efficiency. We comment here that the theoretical framework in this work can

be extended to provide a novel perspective for analyzing decoupled schemes [14,17] that offer high

efficiency and superconvergence.

The rest of the paper is organized as follows. In Section 2, we present a three-field formulation of

Biot’s consolidation model and the corresponding weak formulation. In Section 3, we introduce finite

element spaces, projection operators, two monolithic schemes, and some useful propositions. A priori

estimates of Methods 1 and 2 are given in Section 4. Numerical experiments are carried out to validate

the theoretical results in Section 5. Conclusions and outlook are given in Section 6.

2 MATHEMATICAL FORMULATIONS

Let Ω ⊂ R𝑑 (𝑑 = 2 or 3) be a bounded polygonal domain with boundary 𝜕Ω. The classical Sobolev

spaces are denoted by Hk(Ω) with norm || ⋅ ||Hk(Ω). We denote Hk
0,Γ(Ω) for the subspace of Hk(Ω) with

the vanishing trace on Γ ⊂ 𝜕Ω, and use
(
⋅, ⋅
)

and ⟨⋅, ⋅⟩ to denote the standard L2(Ω) and L2
(
𝜕Ω

)
inner
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products, respectively. In this paper, we use C to denote a generic positive constant independent of

mesh sizes, and use x ≲ y to denote x ≤ Cy. The governing equations describing the quasi-static Biot

system are given as follows

−div𝜎
(
u
)
+ 𝛼∇p = f, (1)

𝜕t

(
c0p + 𝛼divu

)
− divK

(
∇p − 𝜌f g

)
= Qs, (2)

where

𝜎
(
u
)
= 2𝜇𝜀

(
u
)
+ 𝜆

(
divu

)
I, 𝜀

(
u
)
=

1

2

[
∇u +

(
∇u

)T
]
.

Here, the primary unknowns are the displacement vector of the solid u and the fluid pressure p,

the coefficient 𝛼 > 0 is the Biot-Willis constant which is close to 1, f is the body force, c0 ≥ 0 is the

specific storage coefficient, K represents the hydraulic conductivity, 𝜌f is the fluid density, g is the

gravitational acceleration, Qs is a source or sink term, I is the identity matrix, and Lamé constants 𝜆

and 𝜇 are computed from the Young’s modulus E and Poisson ratio 𝜈:

𝜆 =
E𝜈(

1 + 𝜈
)(

1 − 2𝜈
) , 𝜇 =

E

2
(
1 + 𝜈

) .

Suitable boundary and initial conditions should be provided to complete the system. Assuming that

𝜕Ω = Γ𝑑 ∪ Γt = Γp ∪ Γf with |Γ𝑑| > 0 and |Γp| > 0, for the simplicity of presentation, we consider

the following boundary conditions:

u = 0 on Γ𝑑 , (3)

(
𝜎
(
u
)
− 𝛼pI

)
n = h on Γt, (4)

p = 0 on Γp, (5)

K
(
∇p − 𝜌f g

)
⋅ n = g2 on Γf , (6)

where n is the unit outward normal to the boundary. We comment here that the discussion can

be easily extended to nonhomogeneous boundary condition cases. For the initial conditions, we

consider

u
(
0
)
= u0, p

(
0
)
= p0. (7)

Next, we introduce an intermediate variable called “total pressure":

𝜉 = 𝛼p − 𝜆divu.

Then, (1) and (2) can be rewritten as the following three-field formulation of Biot’s consolidation

model

−2𝜇div
(
𝜀
(
u
))

+ ∇𝜉 = f, (8)

divu +
1

𝜆
𝜉 −

𝛼

𝜆
p = 0, (9)

(
c0 +

𝛼2

𝜆

)
𝜕tp −

𝛼

𝜆
𝜕t𝜉 − divK

(
∇p − 𝜌f g

)
= Qs. (10)

After the reformulation, we can still apply the boundary conditions (3)–(6) and initial conditions (7)

with 𝜉
(
0
)
= 𝛼p0 − 𝜆divu0 here. For ease of presentation, we assume g = 0 in the rest of the paper.
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Let V = H1
0,Γ𝑑

(Ω), W = L2(Ω) and M = H1
0,Γp

(Ω), and define the bilinear forms

a1(u, v) = 2𝜇 ∫Ω

𝜀(u) ∶ 𝜀(v), b(v, 𝜙) = ∫Ω

𝜙 divv,

a2(𝜉, 𝜙) =
1

𝜆 ∫Ω

𝜉𝜙, c(p, 𝜙) =
𝛼

𝜆 ∫Ω

p𝜙,

a3(p, 𝜓) =

(
c0 +

𝛼2

𝜆

)

∫Ω

p𝜓, 𝑑(p, 𝜓) = K ∫Ω

∇p ⋅ ∇𝜓.

Multiplying (8)–(10) by test functions, integrating by parts, and applying boundary conditions (3)–(6)

lead to the following variational problem: for a given t ≥ 0, find (u, 𝜉, p) ∈ V × W × M such that

a1(u, v) − b(v, 𝜉) = (f, v) + ⟨h, v⟩Γt
, ∀v ∈ V, (11)

b(u, 𝜙) + a2(𝜉, 𝜙) − c(p, 𝜙) = 0, ∀𝜙 ∈ W, (12)

a3(𝜕tp, 𝜓) − c(𝜓, 𝜕t𝜉) + 𝑑(p, 𝜓) = (Qs, 𝜓) + ⟨g2, 𝜓⟩Γf
, ∀𝜓 ∈ M. (13)

The well-posedness of problem (11)–(13) is established in [22]. We note that the Korn’s inequality

[21] holds on V, that is, there exists a constant Ck = Ck(Ω,Γ𝑑) > 0 such that

||v||H1(Ω) ≤ Ck||𝜀(v)||L2(Ω), ∀v ∈ V. (14)

Furthermore, the following inf-sup condition [5] holds: there exists a constant 𝛽 > 0 depending only

on Ω and Γ𝑑 such that

sup
v∈V

b(v, 𝜙)

||v||H1(Ω)

≥ 𝛽||𝜙||L2(Ω), ∀𝜙 ∈ W.

3 FINITE ELEMENT DISCRETIZATION AND NUMERICAL SCHEMES

Let h be a partition of the domain Ω into triangles in R2 or tetrahedra in R3, and h be the maximum

diameter over all elements in the mesh. We define finite element spaces on h

Vh ∶= {vh ∈ H1
0,Γ𝑑

(Ω) ∩ C0(Ω); vh|E ∈ Pk(E), ∀E ∈ h},

Wh ∶= {𝜙h ∈ L2(Ω) ∩ C0(Ω); 𝜙h|E ∈ Pk−1

(
E
)
, ∀E ∈ h},

Mh ∶= {𝜓h ∈ H1
0,Γp

(Ω) ∩ C0
(
Ω
)
; 𝜓h|E ∈ Pl

(
E
)
, ∀E ∈ h},

where k ≥ 2 and l ≥ 1 are two integers. In this work, the Taylor-Hood element, which consists of the

pair
(
Vh,Wh

)
, and Lagrange finite element are adopted to the pair

(
u, 𝜉

)
and p, respectively. Based

on the three-field formulation (8)–(10) and discrete spaces Vh, Wh, and Mh, we define two projection

operators [19, 23]. First, we introduce the Stokes projection operator Ru × R𝜉 ∶ V × W → Vh × Wh,

which is defined by

a1

(
Ruu, vh

)
− b

(
vh,R𝜉𝜉

)
= a1

(
u, vh

)
− b

(
vh, 𝜉

)
, ∀vh ∈ Vh, (15)

b
(
Ruu, 𝜙h

)
= b

(
u, 𝜙h

)
, ∀𝜙h ∈ Wh. (16)

Second, we define the elliptic projection operator Rp ∶ M → Mh as follows

𝑑
(
Rpp, 𝜓h

)
= 𝑑

(
p, 𝜓h

)
, ∀𝜓h ∈ Mh. (17)

If u ∈ Hk+1
0,Γ𝑑

(Ω), 𝜉 ∈ Hk(Ω), and p ∈ Hl+1
0,Γp

(Ω), then the following error estimates hold true for the

Stokes projection operator and the elliptic projection operator [6].
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||u − Ruu||H1(Ω) + ||𝜉 − R𝜉𝜉||L2(Ω) ≤ Chk
(
||u||Hk+1(Ω) + ||𝜉||Hk(Ω)

)
, (18)

||p − Rpp||H1(Ω) ≤ Chl||p||Hl+1(Ω). (19)

Under the assumption that the domain Ω has the full elliptic regularity, there holds

||p − Rpp||L2(Ω) ≤ Chl+1||p||Hl+1(Ω). (20)

As we use a stable Stokes element pair, the corresponding finite element spaces satisfy the fol-

lowing discrete inf-sup condition, that is, there exists a positive constant 𝛽 independent of h such

that

sup
vh∈Vh

b
(
vh, 𝜙h

)

||vh||H1(Ω)

≥ 𝛽||𝜙h||L2(Ω), ∀𝜙h ∈ Wh. (21)

An equidistant partition 0 = t0 < t1 < · · · < tN+1 = T with a step size Δt is considered for the

time discretization. For simplicity, we introduce the notations un = u
(
tn
)
, 𝜉n = 𝜉

(
tn
)

and pn = p
(
tn
)
.

Suitable approximation of initial conditions u0
h = Ruu0, 𝜉0

h = R𝜉𝜉
0, and p0

h = Rpp0 is considered here.

Following [7, 14, 22, 23], we present the first monolithic scheme using the backward Euler method for

the time discretization as follows.

Method 1: Given
(
un

h, 𝜉
n
h , p

n
h

)
∈ Vh × Wh × Mh, find

(
un+1

h , 𝜉n+1
h , pn+1

h

)
∈ Vh × Wh × Mh such that

a1

(
un+1

h , vh

)
− b

(
vh, 𝜉

n+1
h

)
=
(
f
n+1

, vh

)
+ ⟨hn+1

, vh⟩Γt
, ∀vh ∈ Vh, (22)

b
(
un+1

h , 𝜙h

)
+ a2

(
𝜉n+1

h , 𝜙h

)
− c

(
pn+1

h , 𝜙h

)
= 0, ∀𝜙h ∈ Wh, (23)

a3

(
pn+1

h − pn
h

Δt
, 𝜓h

)
− c

(
𝜓h,

𝜉n+1
h − 𝜉n

h

Δt

)

+ 𝑑
(
pn+1

h , 𝜓h

)
=
(
Qn+1

s , 𝜓h

)
+ ⟨gn+1

2 , 𝜓h⟩Γf
, ∀𝜓h ∈ Mh. (24)

The second monolithic scheme considers the combination of the backward Euler and

Crank-Nicolson methods for time discretization, which is inspired from [17]. In the entire time interval,

we solve the problem as follows.

Method 2: Given
(
un

h, 𝜉
n
h , p

n
h

)
∈ Vh × Wh × Mh, find

(
un+1

h , 𝜉n+1
h , pn+1

h

)
∈ Vh × Wh × Mh such that

a1

(
un+1

h , vh

)
− b

(
vh, 𝜉

n+1
h

)
=
(
f
n+1

, vh

)
+ ⟨hn+1

, vh⟩Γt
, ∀vh ∈ Vh, (25)

b
(
un+1

h , 𝜙h

)
+ a2

(
𝜉n+1

h , 𝜙h

)
− c

(
pn+1

h , 𝜙h

)
= 0, ∀𝜙h ∈ Wh, (26)

a3

(
pn+1

h − pn
h

Δt
, 𝜓h

)
− c

(
𝜓h,

𝜉n+1
h − 𝜉n

h

Δt

)
+ 𝑑

(
pn+1

h + pn
h

2
, 𝜓h

)

=
1

2

(
Qn+1

s + Qn
s , 𝜓h

)
+

1

2
⟨gn+1

2 + gn
2, 𝜓h⟩Γf

, ∀𝜓h ∈ Mh. (27)

We note that the computational cost for implementing Method 2 is nearly identical to that of

Method 1, as the only change required is the substitution of (24) with (27). Furthermore, in practice,

we have observed that the runtime overheads of both Methods 1 and 2 for solving each step are almost

indistinguishable. Therefore, Method 2 is as efficient as Method 1, while providing more accurate

numerical solutions without significantly increasing the computational burden.
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Next, we state the following basic propositions.

Proposition 3.1. Let f ∶ R → R be a function that has k + 1 continuous derivatives on

an open interval (a, b). For any t0, t ∈ (a, b), there holds

f (t) = f (t0) + f ′(t0)(t − t0) + · · · +
f (k)(t0)

k!
(t − t0)

k +
1

k!∫
t

t0

f (k+1)(s)(t − s)k𝑑s.

Then, the following estimate for the L2-norm of the last term holds true.

‖‖‖‖‖
1

k!∫
t

t0

f (k+1)(s)(t − s)k𝑑s
‖‖‖‖‖

2

L2(Ω)

≲ (b − a)2k+1
|||||∫

t

t0

||f (k+1)||2L2(Ω)𝑑s
|||||
. (28)

Proof. The first part of the conclusion comes from the Taylor expansion theorem. Using

the Cauchy-Schwarz inequality, we have

|||||∫
t

t0

f (k+1)(s)(t − s)k𝑑s
|||||

2

≤ ∫
t

t0

|t − s|2k
𝑑s∫

t

t0

|||f
(k+1)(s)

|||
2

𝑑s

≤ (t − t0)
2k+1

2k + 1 ∫
t

t0

|||f
(k+1)(s)

|||
2

𝑑s,

which implies (28) directly. ▪

Proposition 3.2. Let B be a symmetric bilinear form, there holds

2B(u, u − v) = B(u, u) − B
(
v, v

)
+ B

(
u − v, u − v

)
, (29)

B
(
u + v, u − v

)
= B

(
u, u

)
− B

(
v, v

)
, (30)

which immediately implies the following inequality

2B
(
u, u − v

) ≥ B
(
u, u

)
− B

(
v, v

)
. (31)

Instead of relying on Grönwall’s inequality, we utilize an alternative lemma, which is valuable in

estimating errors related to long-time stability. Further details can be found in [7, 16, 17, 19].

Lemma 3.3. Let {Xn}
N
n=1, {Dn}

N
n=1 and {Gn}

N
n=1 be finite sequences of functions, and C0,

C1 be non-negative constants such that

X2
n ≤ C0X2

0 + C1X0 + Dn +

n∑

j=1

GjXj for all 1 ≤ n ≤ N.

Then, there holds

X2
n ≲ X2

0 + max

{
C2

1 +

n∑

j=1

G2
j ,Dn

}
for all 1 ≤ n ≤ N.

4 MAIN RESULTS

In this section, we present our main results describing a priori error estimates of the proposed schemes.

Here, we decompose error terms as

en
u = un − un

h =
(
un − Ruun

)
+
(
Ruun − un

h

)
=∶ e

I,n
u + e

h,n
u ,

en
𝜉 = 𝜉n − 𝜉n

h =
(
𝜉n − R𝜉𝜉

n
)
+
(
R𝜉𝜉

n − 𝜉n
h

)
=∶ e

I,n
𝜉 + e

h,n
𝜉 ,

en
p = pn − pn

h =
(
pn − Rppn

)
+
(
Rppn − pn

h

)
=∶ e

I,n
p + e

h,n
p .
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We also define

Dn+1
u ∶= e

h,n+1
u − e

h,n
u , Dn+1

𝜉 ∶= e
h,n+1
𝜉 − e

h,n
𝜉 , Dn+1

p ∶= e
h,n+1
p − e

h,n
p .

Then, we present a priori error estimates for both schemes. The proof of each method consists of three

parts. In the first part, we focus on the H1 norm of e
h,N+1
u , L2 norm of e

h,N+1
𝜉 , and L2 norm of e

h,N+1
p .

In the second part, we complete the H1 norm estimate of e
h,N+1
p . In the third part, we draw our main

conclusions describing the error bound.

4.1 A priori error estimates for method 1

Theorem 4.1. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations

(11)–(13) and (22)–(24), respectively. Assume that u ∈ L∞
(
0,T;Hk+1

0,Γ𝑑
(Ω)

)
, 𝜕tu ∈

L2
(
0,T;Hk+1

0,Γ𝑑
(Ω)

)
, 𝜕ttu ∈ L2

(
0,T;H1

0,Γ𝑑
(Ω)

)
, 𝜉 ∈ L∞

(
0,T;Hk(Ω)

)
, 𝜕t𝜉 ∈ L2

(
0,T;

Hk(Ω)
)
, 𝜕tt𝜉 ∈ L2

(
0,T;L2(Ω)

)
, p ∈ L∞

(
0,T;Hl+1

0,Γp
(Ω)

)
, 𝜕tp ∈ L2

(
0,T;Hl+1

0,Γp
(Ω)

)
,

𝜕ttp ∈ L2
(
0,T;L2(Ω)

)
. There holds

||𝜀
(
e

h,N+1
u

)
||2L2(Ω) + ||eh,N+1

𝜉 ||2L2(Ω) + ||eh,N+1
p ||2L2(Ω) + Δt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω)

≲
(
Δt

)2

∫
T

0

(
||𝜕ttu||2H1(Ω) + ||𝜕tt𝜉||2L2(Ω) + ||𝜕ttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (32)

Proof. Setting t = tn+1 in (11), (12), (13), and letting the test functions be the discrete

test functions, then subtracting (22), (23), and (24) from these equations, we immediately

derive the following error equations.

a1

(
en+1

u , vh

)
− b

(
vh, e

n+1
𝜉

)
= 0,

b
(
en+1

u , 𝜙h

)
+ a2

(
en+1
𝜉 , 𝜙h

)
− c

(
en+1

p , 𝜙h

)
= 0,

a3

(
𝜕tp

n+1 −
pn+1

h − pn
h

Δt
, 𝜓h

)
− c

(
𝜓h, 𝜕t𝜉

n+1 −
𝜉n+1

h − 𝜉n
h

Δt

)
+ 𝑑

(
en+1

p , 𝜓h

)
= 0.

By using the assumptions of the projection operators (15), (16), and (17), the above

equations can be rewritten as

a1

(
e

h,n+1
u , vh

)
− b

(
vh, e

h,n+1
𝜉

)
= 0, (33)

b
(
e

h,n+1
u , 𝜙h

)
+ a2

(
en+1
𝜉 , 𝜙h

)
− c

(
en+1

p , 𝜙h

)
= 0, (34)

a3

(
Dn+1

p , 𝜓h

)
− c

(
𝜓h,D

n+1
𝜉

)
+ Δt𝑑

(
e

h,n+1
p , 𝜓h

)

= a3

(
Rppn+1 − Rppn − Δt𝜕tp

n+1, 𝜓h

)
− c

(
𝜓h,R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1
)
. (35)

Differentiating (12) with respect to t at the
(
n + 1

)
-th time step, then multiplying the

resulted equation by Δt, we derive that

b
(
Δt𝜕tu

n+1, 𝜙h

)
+ a2

(
Δt𝜕t𝜉

n+1, 𝜙h

)
− c

(
Δt𝜕tp

n+1, 𝜙h

)
= 0. (36)
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For (34), we write out the schemes for t = tn+1 and t = tn, then take a difference between

the two resulted equations, we see that

b
(
Dn+1

u , 𝜙h

)
+ a2

(
en+1
𝜉 − en

𝜉 , 𝜙h

)
− c

(
en+1

p − en
p, 𝜙h

)
= 0. (37)

Using the definitions of Dn+1
𝜉 and Dn+1

p , we can reformulate (37) as follows

b
(
Dn+1

u , 𝜙h

)
+ a2

(
Dn+1

𝜉 , 𝜙h

)
− c

(
Dn+1

p , 𝜙h

)

= −a2

(
𝜉n+1 − 𝜉n, 𝜙h

)
+ c

(
pn+1 − pn, 𝜙h

)

+ a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n, 𝜙h

)
− c

(
Rppn+1 − Rppn, 𝜙h

)
. (38)

After using the
(
n + 1

)
-th and n-th time steps of (12) to obtain b

(
un+1 − un, 𝜙h

)
=

−a2

(
𝜉n+1 − 𝜉n, 𝜙h

)
+ c

(
pn+1 − pn, 𝜙h

)
, we combine (36) and (38) to get

b
(
Dn+1

u , 𝜙h

)
+ a2

(
Dn+1

𝜉 , 𝜙h

)
− c

(
Dn+1

p , 𝜙h

)
= b

(
un+1 − un − Δt𝜕tu

n+1, 𝜙h

)

+ a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1, 𝜙h

)
− c

(
Rppn+1 − Rppn − Δt𝜕tp

n+1, 𝜙h

)
. (39)

Choosing vh = Dn+1
u in (33), 𝜙h = e

h,n+1
𝜉 in (39), and 𝜓h = e

h,n+1
p in (35), we derive

a1

(
e

h,n+1
u ,Dn+1

u

)
− b

(
Dn+1

u , e
h,n+1
𝜉

)
= 0, (40)

b
(
Dn+1

u , e
h,n+1
𝜉

)
+ a2

(
Dn+1

𝜉 , e
h,n+1
𝜉

)
− c

(
Dn+1

p , e
h,n+1
𝜉

)

= b
(
un+1 − un − Δt𝜕tu

n+1, e
h,n+1
𝜉

)
+ a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1, e
h,n+1
𝜉

)

− c
(
Rppn+1 − Rppn − Δt𝜕tp

n+1, e
h,n+1
𝜉

)
, (41)

a3

(
Dn+1

p , e
h,n+1
p

)
− c

(
e

h,n+1
p ,Dn+1

𝜉

)
+ Δt𝑑

(
e

h,n+1
p , e

h,n+1
p

)

= a3

(
Rppn+1 − Rppn − Δt𝜕tp

n+1, e
h,n+1
p

)

− c
(
e

h,n+1
p ,R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1
)
. (42)

Taking the summation of (40), (41), and (42) over the index n from 0 to N yields

LHS1 ∶=

N∑

n=0

[
a1

(
e

h,n+1
u ,Dn+1

u

)
+ a2

(
Dn+1

𝜉 , e
h,n+1
𝜉

)
− c

(
Dn+1

p , e
h,n+1
𝜉

)

+ a3

(
Dn+1

p , e
h,n+1
p

)
− c

(
e

h,n+1
p ,Dn+1

𝜉

)
+ Δt𝑑

(
e

h,n+1
p , e

h,n+1
p

)]
=

5∑

i=1

Ei, (43)

where

E1 =

N∑

n=0

b
(
un+1 − un − Δt𝜕tu

n+1, e
h,n+1
𝜉

)
,

E2 =

N∑

n=0

a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1, e
h,n+1
𝜉

)
,

E3 =

N∑

n=0

c
(
Δt𝜕tp

n+1 − Rppn+1 + Rppn, e
h,n+1
𝜉

)
,
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E4 =

N∑

n=0

a3

(
Rppn+1 − Rppn − Δt𝜕tp

n+1, e
h,n+1
p

)
,

E5 =

N∑

n=0

c
(
e

h,n+1
p ,Δt𝜕t𝜉

n+1 − R𝜉𝜉
n+1 + R𝜉𝜉

n
)
.

Using the definitions of a2(⋅, ⋅), a3(⋅, ⋅), and c(⋅, ⋅), we can simplify LHS1 by the identity

a2(D
n+1
𝜉 , e

h,n+1
𝜉 ) − c

(
Dn+1

p , e
h,n+1
𝜉

)
+ a3

(
Dn+1

p , e
h,n+1
p

)
− c

(
e

h,n+1
p ,Dn+1

𝜉

)

=
1

𝜆 ∫Ω

(
𝛼Dn+1

p − Dn+1
𝜉

)(
𝛼e

h,n+1
p − e

h,n+1
𝜉

)
+ c0 ∫Ω

(
e

h,n+1
p − e

h,n
p

)
e

h,n+1
p . (44)

Applying (31) and (44), we obtain the following lower bound estimate for LHS1

1

2

(
2𝜇||||𝜀

(
e

h,N+1
u

)||||
2

L2(Ω)
− 2𝜇||||𝜀

(
e

h,0
u

)||||
2

L2(Ω)
+ c0||eh,N+1

p ||2L2(Ω)

− c0||eh,0
p ||2L2(Ω) +

1

𝜆
||||𝛼e

h,N+1
p − e

h,N+1
𝜉

||||
2

L2(Ω)

−
1

𝜆
||||𝛼e

h,0
p − e

h,0
𝜉
||||

2

L2(Ω)

)
+ KΔt

N∑

n=0

||||∇e
h,n+1
p

||||
2

L2(Ω)
≤ LHS1. (45)

Next, we bound the terms Ei for i = 1, 2, · · · , 5. We use the Cauchy-Schwarz inequal-

ity, the Young’s inequality, (18), (20), and (28) to estimate E1, E2, and E3 with an 𝜖1 > 0

as follows.

E1 ≤ 𝜖1

6
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

2𝜖1

(
Δt

)2

∫
T

0

||𝜕ttu||2H1(Ω)𝑑s,

E2 ≤ 𝜖1

6
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

2𝜖1

[(
Δt

)2

∫
T

0

||𝜕tt𝜉||2L2(Ω)𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
,

E3 ≤ 𝜖1

6
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

2𝜖1

[(
Δt

)2

∫
T

0

||𝜕ttp||2L2(Ω)𝑑s + h2l+2∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

Using the Cauchy-Schwarz inequality, Young’s inequality, the Poincaré inequality, (18),

(20), and (28), we can bound E4 and E5 with an 𝜖2 > 0 as follows.

E4 ≤ 𝜖2

4
Δt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω) +

C

2𝜖2

[(
Δt

)2

∫
T

0

||𝜕ttp||2L2(Ω)𝑑s + h2l+2∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
,

E5 ≤ 𝜖2

4
Δt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω) +

C

2𝜖2

[(
Δt

)2

∫
T

0

||𝜕tt𝜉||2L2(Ω)𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
.
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Combining (43), (45), and the bounds Ei for i = 1, 2, · · · , 5, we derive that

2𝜇||𝜀
(
e

h,N+1
u

)
||2L2(Ω) − 2𝜇||𝜀

(
e

h,0
u

)
||2L2(Ω) + c0||eh,N+1

p ||2L2(Ω) − c0||eh,0
p ||2L2(Ω)

+
1

𝜆
||𝛼e

h,N+1
p − e

h,N+1
𝜉 ||2L2(Ω) −

1

𝜆
||𝛼e

h,0
p − e

h,0
𝜉 ||2L2(Ω) + 2KΔt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω)

≤ 𝜖1Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) + 𝜖2Δt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω)

+

(
C

𝜖1

+
C

𝜖2

)[(
Δt

)2

∫
T

0

(
||𝜕ttu||2H1(Ω) + ||𝜕tt𝜉||2L2(Ω) + ||𝜕ttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
. (46)

Using the inf-sup condition (21), (33), and the Korn’s inequality (14), we have

||eh,n+1
𝜉 ||2L2(Ω) ≲ sup

vh∈Vh

b
(
vh, e

h,n+1
𝜉

)

||vh||H1(Ω)

= sup
vh∈Vh

a1

(
e

h,n+1
u , vh

)

||vh||H1(Ω)

≲ ||𝜀
(
e

h,n+1
u

)
||2L2(Ω), (47)

which easily implies that

||eh,n+1
p ||2L2(Ω) ≲ ||𝛼e

h,n+1
p − e

h,n+1
𝜉 ||2L2(Ω) + ||𝜀

(
e

h,n+1
u

)
||2L2(Ω). (48)

Then, we handle (46). Considering the fact 𝜀
(
e

h,0
u

)
= 0, e

h,0
p = 0, e

h,0
𝜉 = 0, ignor-

ing the term c0||eh,N+1
p ||2

L2(Ω)
, using (47) to choose a small enough positive 𝜖1 such that

𝜖1||eh,k+1
𝜉 ||2

L2(Ω)
≤ 2𝜇||𝜀

(
e

h,k+1
u

)
||2

L2(Ω)
and setting 𝜖2 = K, we can apply Lemma 3.3 to

obtain

2𝜇||𝜀
(
e

h,N+1
u

)
||2L2(Ω) +

1

𝜆
||𝛼e

h,N+1
p − e

h,N+1
𝜉 ||2L2(Ω) + KΔt

N∑

n=0

||∇e
h,n+1
p ||2L2(Ω)

≲
(
Δt

)2

∫
T

0

(
||𝜕ttu||2H1(Ω) + ||𝜕tt𝜉||2L2(Ω) + ||𝜕ttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (49)

Finally, we come to the conclusion that the desired result (32) holds after applying (47),

(48), and (49). This completes the proof. ▪

Theorem 4.2. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations (11)–(13)

and (22)–(24), respectively. Under the assumptions of Theorem 4.1, there holds

1

Δt

N∑

n=0

(
||𝜀

(
Dn+1

u

)
||2L2(Ω) + ||Dn+1

𝜉 ||2L2(Ω) + ||Dn+1
p ||2L2(Ω)

)
+ ||∇e

h,N+1
p ||2L2(Ω)

≲
(
Δt

)2

∫
T

0

(
||𝜕ttu||2H1(Ω) + ||𝜕tt𝜉||2L2(Ω) + ||𝜕ttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (50)
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Proof. Taking the difference of the
(
n + 1

)
-th, n-th steps of (33) yields

a1

(
Dn+1

u , vh

)
− b

(
vh,D

n+1
𝜉

)
= 0, (51)

After using the definitions of a2

(
⋅, ⋅
)
, a3

(
⋅, ⋅
)
, and c

(
⋅, ⋅
)
, one has

a2

(
Dn+1

𝜉 ,Dn+1
𝜉

)
+ a3

(
Dn+1

p ,Dn+1
p

)
− 2c

(
Dn+1

p ,Dn+1
𝜉

)

=
1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω) + c0||Dh,n+1

p ||2L2(Ω). (52)

Choosing vh = Dn+1
u in (51), 𝜙h = Dn+1

𝜉 in (39), 𝜓h = Dn+1
p in (35), applying the identity

(52), and summing over the index n from 0 to N, we get

N∑

n=0

(
2𝜇||𝜀

(
Dn+1

u

)
||2L2(Ω) + c0||Dn+1

p ||2L2(Ω) +
1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

)

+ Δt

N∑

n=0

𝑑
(
e

h,n+1
p ,Dn+1

p

)
=

5∑

i=1

Ti, (53)

where

T1 =

N∑

n=0

b
(
un+1 − un − Δt𝜕tu

n+1,Dn+1
𝜉

)
,

T2 =

N∑

n=0

a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n − Δt𝜕t𝜉

n+1,Dn+1
𝜉

)
,

T3 =

N∑

n=0

c
(
Δt𝜕tp

n+1 − Rppn+1 + Rppn,Dn+1
𝜉

)
,

T4 =

N∑

n=0

a3

(
Rppn+1 − Rppn − Δt𝜕tp

n+1,Dn+1
p

)
,

T5 =

N∑

n=0

c
(
Dn+1

p ,Δt𝜕t𝜉
n+1 − R𝜉𝜉

n+1 + R𝜉𝜉
n
)
.

Based on our observation, we have found that

T2 + T5 =

N∑

n=0

1

𝜆

(
𝛼Dn+1

p − Dn+1
𝜉 ,Δt𝜕t𝜉

n+1 − R𝜉𝜉
n+1 + R𝜉𝜉

n
)
=∶ T̃2,

T3 + T4 =

N∑

n=0

𝛼

𝜆

(
Rppn+1 − Rppn − Δt𝜕tp

n+1, 𝛼Dn+1
p − Dn+1

𝜉

)

+

N∑

n=0

c0

(
Rppn+1 − Rppn − Δt𝜕tp

n+1,Dn+1
p

)
=∶ T̃3 + T̃4.

Next, we bound the terms T1, T̃2, T̃3, and T̃4. Applying the Cauchy-Schwarz inequality,

the Young’s inequality, (18), (20), and (28), we have the following estimates with
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𝜖1, 𝜖2, 𝜖3 > 0.

T1 ≤ 𝜖1

N∑

n=0

||Dn+1
𝜉 ||2L2(Ω) +

C

𝜖1

(
Δt

)3

∫
T

0

||𝜕ttu||2H1(Ω)𝑑s,

T̃2 ≤ 𝜖2

2

N∑

n=0

1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

+
C

𝜖2

[(
Δt

)3

∫
T

0

||𝜕tt𝜉||2L2(Ω)𝑑s + h2kΔt∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
,

T̃3 ≤ 𝜖2

2

N∑

n=0

1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

+
C

𝜖2

[(
Δt

)3

∫
T

0

||𝜕ttp||2L2(Ω)𝑑s + h2l+2Δt∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
,

T̃4 ≤ 𝜖3

N∑

n=0

c0||Dn+1
p ||2L2(Ω) +

C

𝜖3

[(
Δt

)3

∫
T

0

||𝜕ttp||2L2(Ω)𝑑s + h2l+2Δt∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

Similarly, using the inf-sup condition (21), (51), and the Korn’s inequality (14) yields

||Dn+1
𝜉 ||2L2(Ω) ≲ sup

vh∈Vh

b
(
vh,D

n+1
𝜉

)

||vh||H1(Ω)

= sup
vh∈Vh

a1

(
Dn+1

u , vh

)

||vh||H1(Ω)

≲ ||𝜀
(
Dn+1

u

)
||2L2(Ω), (54)

which directly implies

||Dn+1
p ||2L2(Ω) ≲ ||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω) + ||𝜀

(
Dn+1

u

)
||2L2(Ω). (55)

Using (31) and the fact e
h,0
p = 0, we obtain

Δt

N∑

n=0

𝑑
(
e

h,n+1
p ,Dn+1

p

) ≥ Δt

2

N∑

n=0

[
𝑑
(
e

h,n+1
p , e

h,n+1
p

)
− 𝑑

(
e

h,n
p , e

h,n
p

)]

≥ Δt

2
𝑑
(
e

h,N+1
p , e

h,N+1
p

)
. (56)

Based on (53), considering 𝜖2 =
1

2
and 𝜖3 = 1, using (54) to choose a small enough

positive 𝜖1 such that 𝜖1||Dn+1
𝜉 ||2

L2(Ω)
≤ 𝜇||𝜀

(
Dn+1

u

)
||2

L2(Ω)
, we can apply (56) and bounds of

T1, T̃2, T̃3, T̃4 to obtain

1

Δt

N∑

n=0

(
𝜇||𝜀

(
Dn+1

u

)
||2L2(Ω) +

1

2𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

)
+

K

2
||eh,N+1

p ||2L2(Ω)

≤
(

C

𝜖1

+
C

𝜖2

+
C

𝜖3

)[(
Δt

)2

∫
T

0

(
||𝜕ttu||2H1(Ω) + ||𝜕tt𝜉||2L2(Ω) + ||𝜕ttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

By using (54), (55), and the above estimate, the proof is completed. ▪
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Theorem 4.3. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations (11)–(13)

and (22)–(24), respectively. Under the assumptions of Theorem 4.1, there holds

||𝜀
(
eN+1

u

)
||L2(Ω) + ||eN+1

𝜉 ||L2(Ω) + ||eN+1
p ||L2(Ω) ≲ Δt + hk + hl+1, (57)

||∇eN+1
p ||L2(Ω) ≲ Δt + hk + hl. (58)

Proof. We start with (18), (19), and (20). Applying the triangle inequality, Theorems 4.1

and 4.2, we see that the above error estimates readily follow. ▪

4.2 A priori error estimates for method 2

Theorem 4.4. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations

(11)–(13) and (25)–(27), respectively. Assume that u ∈ L∞
(
0,T;Hk+1

0,Γ𝑑
(Ω)

)
, 𝜕tu ∈

L2
(
0,T;Hk+1

0,Γ𝑑
(Ω)

)
, 𝜕ttu ∈ L2

(
0,T;H1

0,Γ𝑑
(Ω)

)
, 𝜕tttu ∈ L2

(
0,T;H1

0,Γ𝑑
(Ω)

)
, 𝜉 ∈ L∞

(
0,T;

Hk(Ω)
)
, 𝜕t𝜉 ∈ L2

(
0,T;Hk(Ω)

)
, 𝜕tt𝜉 ∈ L2

(
0,T;L2(Ω)

)
, 𝜕ttt𝜉 ∈ L2

(
0,T;L2(Ω)

)
,

p ∈ L∞
(
0,T;Hl+1

0,Γp
(Ω)

)
, 𝜕tp ∈ L2

(
0,T;Hl+1

0,Γp
(Ω)

)
, 𝜕ttp ∈ L2

(
0,T;L2(Ω)

)
, 𝜕tttp ∈

L2
(
0,T;L2(Ω)

)
. There holds

||𝜀
(
e

h,N+1
u

)
||2L2(Ω) + ||eh,N+1

𝜉 ||2L2(Ω) + ||eh,N+1
p ||2L2(Ω) + Δt

N∑

n=0

||∇
(
e

h,n+1
p + e

h,n
p

)
||2L2(Ω)

≲
(
Δt

)4

∫
T

0

(
||𝜕tttu||2H1(Ω) + ||𝜕ttt𝜉||2L2(Ω) + ||𝜕tttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (59)

Proof. Firstly, we note that (33) and (34) still hold here. Summing up the
(
n+ 1

)
-th, n-th

steps of (33), and following a similar argument of (39), we get

a1

(
e

h,n+1
u + e

h,n
u , vh

)
− b

(
vh, e

h,n+1
𝜉 + e

h,n
𝜉

)
= 0, (60)

b
(
Dn+1

u , 𝜙h

)
+ a2

(
Dn+1

𝜉 , 𝜙h

)
− c

(
Dn+1

p , 𝜙h

)

= b

(
un+1 − un −

Δt𝜕tu
n+1 + Δt𝜕tu

n

2
, 𝜙h

)

+ a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n −

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2
, 𝜙h

)

− c

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
, 𝜙h

)
. (61)

After summing up the
(
n + 1

)
-th, n-th time steps of (13), we multiply

1

2
to get

a3

(
𝜕tp

n+1 + 𝜕tp
n

2
, 𝜓h

)
− c

(
𝜓h,

𝜕t𝜉
n+1 + 𝜕t𝜉

n

2

)
+ 𝑑

(
pn+1 + pn

2
, 𝜓h

)

=
1

2

(
Qn+1

s + Qn
s , 𝜓h

)
+

1

2
⟨gn+1

2 + gn
2, 𝜓h⟩Γf

. (62)
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Subtracting (27) from (62) yields

a3

(
𝜕tp

n+1 + 𝜕tp
n

2
−

pn+1
h − pn

h

Δt
, 𝜓h

)
+ 𝑑

(
en+1

p + en
p

2
, 𝜓h

)

= c

(
𝜓h,

𝜕t𝜉
n+1 + 𝜕t𝜉

n

2
−

𝜉n+1
h − 𝜉n

h

Δt

)
. (63)

Following the same argument as (35) in Theorem 4.1, we apply the projection operator

(17) to (63) and derive

a3

(
Dn+1

p , 𝜓h

)
− c

(
𝜓h,D

n+1
𝜉

)
+

Δt

2
𝑑
(
e

h,n+1
p + e

h,n
p , 𝜓h

)

= a3

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
, 𝜓h

)

− c

(
𝜓h,R𝜉𝜉

n+1 − R𝜉𝜉
n −

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2

)
. (64)

Choosing vh = Dn+1
u in (60), 𝜙h = e

h,n+1
𝜉 + e

h,n
𝜉 in (61), 𝜓h = e

h,n+1
p + e

h,n
p in (64), and

summing over the index n from 0 to N yield

LHS2 ∶=

N∑

n=0

[
a1

(
e

h,n+1
u + e

h,n
u ,Dn+1

u

)
+ a2

(
Dn+1

𝜉 , e
h,n+1
𝜉 + e

h,n
𝜉

)

− c
(
Dn+1

p , e
h,n+1
𝜉 + e

h,n
𝜉

)
+ a3

(
Dn+1

p , e
h,n+1
p + e

h,n
p

)
− c

(
e

h,n+1
p + e

h,n
p ,Dn+1

𝜉

)

+
Δt

2
𝑑

(
e

h,n+1
p + e

h,n
p , e

h,n+1
p + e

h,n
p

)]
=

5∑

i

Ji, (65)

where

J1 =

N∑

n=0

b

(
un+1 − un −

Δt𝜕tu
n+1 + Δt𝜕tu

n

2
, e

h,n+1
𝜉 + e

h,n
𝜉

)
,

J2 =

N∑

n=0

a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n −

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2
, e

h,n+1
𝜉 + e

h,n
𝜉

)
,

J3 =

N∑

n=0

c

(
Δt𝜕tp

n+1 + Δt𝜕tp
n

2
− Rppn+1 + Rppn, e

h,n+1
𝜉 + e

h,n
𝜉

)
,

J4 =

N∑

n=0

a3

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
, e

h,n+1
p + e

h,n
p

)
,

J5 =

N∑

n=0

c

(
e

h,n+1
p + e

h,n
p ,

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2
− R𝜉𝜉

n+1 + R𝜉𝜉
n

)
.

Using the definitions of a2

(
⋅, ⋅
)
, a3

(
⋅, ⋅
)
, and c

(
⋅, ⋅
)
, we can simplify LHS2 by the identity

a2

(
Dn+1

𝜉 , e
h,n+1
𝜉 + e

h,n
𝜉

)
− c

(
Dn+1

p , e
h,n+1
𝜉 + e

h,n
𝜉

)

+ a3

(
Dn+1

p , e
h,n+1
p + e

h,n
p

)
− c

(
e

h,n+1
p + e

h,n
p ,Dn+1

𝜉

)

= c0

(
||eh,n+1

p ||2L2(Ω) − ||eh,n
p ||2L2(Ω)

)

+
1

𝜆

(
||𝛼e

h,n+1
p − e

h,n+1
𝜉 ||2L2(Ω) − ||𝛼e

h,n
p − e

h,n
𝜉 ||2L2(Ω)

)
. (66)
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Applying (65) and (66), we obtain

LHS2 = 2𝜇||𝜀
(
e

h,N+1
u

)
||2L2(Ω) − 2𝜇||𝜀

(
e

h,0
u

)
||2L2(Ω) + c0||eh,N+1

p ||2L2(Ω)

− c0||eh,0
p ||2L2(Ω) +

1

𝜆
||𝛼e

h,N+1
p − e

h,N+1
𝜉 ||2L2(Ω)

−
1

𝜆
||𝛼e

h,0
p − e

h,0
𝜉 ||2L2(Ω) +

KΔt

2

N∑

n=0

||∇
(
e

h,n+1
p + e

h,n
p

)
||2L2(Ω). (67)

Assuming that f is three times differentiable with respect to t and f ′′′ is continuous in

[0,T], the Taylor expansion Theorem implies

f
(
t
n+

1

2

)
= f

(
tn
)
+

Δt

2
f ′
(
tn
)
+

(
Δt

)2

8
f ′′
(
𝜂1

)
,

f
(
t
n+

1

2

)
= f

(
tn+1

)
−

Δt

2
f ′
(
tt+1

)
+

(
Δt

)2

8
f ′′
(
𝜂2

)
,

where 𝜂1 ∈
(
tn, tn+ 1

2

)
, and 𝜂2 ∈

(
t
n+

1

2

, tn+1

)
. It follows that

f
(
tn+1

)
− f

(
tn
)
−

Δtf ′
(
tn+1

)
+ Δtf ′

(
tn
)

2
=

(
Δt

)2

8

[
f ′′
(
𝜂2

)
− f ′′

(
𝜂1

)]
. (68)

Next, we bound the terms Ji for i = 1, 2, · · · , 5. Applying the Cauchy-Schwarz

inequality, the Young’s inequality, (18), (20), (68), and (28), we can bound J1, J2, and J3

with an 𝜖1 > 0 as follows

J1 ≤ 𝜖1

3
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

𝜖1

(
Δt

)4

∫
T

0

||𝜕tttu||2H1(Ω)𝑑s,

J2 ≤ 𝜖1

3
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

𝜖1

[(
Δt

)4

∫
T

0

||𝜕ttt𝜉||2L2(Ω)𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
,

J3 ≤ 𝜖1

3
Δt

N∑

n=0

||eh,n+1
𝜉 ||2L2(Ω) +

C

𝜖1

[(
Δt

)4

∫
T

0

||𝜕tttp||2L2(Ω)𝑑s + h2l+2∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

Using the Cauchy-Schwarz inequality, the Young’s inequality, the Poincaré inequality,

(18), (20), (68), and (28), we can bound E4 and E5 with an 𝜖2 > 0 as follows.

J4 ≤ 𝜖2

2
Δt

N∑

n=0

||∇
(
e

h,n+1
p + e

h,n
p

)
||2L2(Ω)

+
C

𝜖2

[(
Δt

)4

∫
T

0

||𝜕tttp||2L2(Ω)𝑑s + h2l+2∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
,

J5 ≤ 𝜖2

2
Δt

N∑

n=0

||∇
(
e

h,n+1
p + e

h,n
p

)
||2L2(Ω)

+
C

𝜖2

[(
Δt

)4

∫
T

0

||𝜕ttt𝜉||2L2(Ω)𝑑s + h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
.
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We note that (47) and (48) still hold here, then we deal with (65) next. Considering the

fact 𝜀
(
e

h,0
u

)
= 0, e

h,0
p = 0, e

h,0
𝜉 = 0, ignoring the term c0||eh,N+1

p ||2
L2(Ω)

, using (47) to choose

a small enough positive 𝜖1 such that 𝜖1||eh,k+1
𝜉 ||2

L2(Ω)
≤ 2𝜇||𝜀

(
e

h,k+1
u

)
||2

L2(Ω)
and setting 𝜖2 =

K∕4, we can apply Lemma 3.3 to derive

2𝜇||𝜀
(

e
h,N+1
u

)
||2L2(Ω) +

1

𝜆
||𝛼e

h,N+1
p − e

h,N+1
𝜉 ||2L2(Ω) +

KΔt

4

N∑

n=0

||∇
(
e

h,n+1
p + e

h,n
p

)
||2L2(Ω)

≲
(
Δt

)4

∫
T

0

(
||𝜕tttu||2H1(Ω) + ||𝜕ttt𝜉||2L2(Ω) + ||𝜕tttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (69)

Finally, applying (47) and (48) to (69) yields the desired result (59). ▪

Theorem 4.5. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations (11)–(13)

and (25)–(27), respectively. Under the assumptions of Theorem 4.4, there holds

1

Δt

N∑

n=0

(
||𝜀

(
Dn+1

u

)
||2L2(Ω) + ||Dn+1

𝜉 ||2L2(Ω) + ||Dn+1
p ||2L2(Ω)

)
+ ||∇e

h,N+1
p ||2L2(Ω)

≲
(
Δt

)4

∫
T

0

(
||𝜕tttu||2H1(Ω) + ||𝜕ttt𝜉||2L2(Ω) + ||𝜕tttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s. (70)

Proof. Firstly, we note that (33) holds here, which implies (51) can be used here. Choosing

vh = Dn+1
u in (51), 𝜙h = Dn+1

𝜉 in (61), 𝜓h = Dn+1
p in (64), summing over the index n from

0 to N, and applying the identity (52), we can deduce that

N∑

n=0

(
2𝜇||𝜀

(
Dn+1

u

)
||2L2(Ω) + c0||Dn+1

p ||2L2(Ω) +
1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

)

+ Δt

N∑

n=0

𝑑
(
e

h,n+1
p + e

h,n
p ,Dn+1

p

)
=

5∑

i=1

Li, (71)

where

L1 =

N∑

n=0

b

(
un+1 − un −

Δt𝜕tu
n+1 + Δt𝜕tu

n

2
,Dn+1

𝜉

)
,

L2 =

N∑

n=0

a2

(
R𝜉𝜉

n+1 − R𝜉𝜉
n −

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2
,Dn+1

𝜉

)
,

L3 =

N∑

n=0

c

(
Δt𝜕tp

n+1 + Δt𝜕tp
n

2
− Rppn+1 + Rppn,Dn+1

𝜉

)
,

L4 =

N∑

n=0

a3

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
,Dn+1

p

)
,

L5 =

N∑

n=0

c

(
Dn+1

p ,
Δt𝜕t𝜉

n+1 + Δt𝜕t𝜉
n

2
− R𝜉𝜉

n+1 + R𝜉𝜉
n

)
.
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From our observation, it has been discovered that

L2 + L5 =

N∑

n=0

1

𝜆

(
𝛼Dn+1

p − Dn+1
𝜉 ,

Δt𝜕t𝜉
n+1 + Δt𝜕t𝜉

n

2
− R𝜉𝜉

n+1 + R𝜉𝜉
n
)
=∶ L̃2,

L3 + L4 =

N∑

n=0

𝛼

𝜆

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
, 𝛼Dn+1

p − Dn+1
𝜉

)

+

N∑

n=0

c0

(
Rppn+1 − Rppn −

Δt𝜕tp
n+1 + Δt𝜕tp

n

2
,Dn+1

p

)
=∶ L̃3 + L̃4.

Next, we bound the terms L1, L̃2, L̃3, and L̃4. Applying the Cauchy-Schwarz inequality,

the Young’s inequality, (18), (20), (68), and (28), we obtain the following estimates with

𝜖1, 𝜖2, 𝜖3 > 0.

L1 ≤ 𝜖1

N∑

n=0

||Dn+1
𝜉 ||2L2(Ω) +

C

𝜖1

(
Δt

)5

∫
T

0

||𝜕tttu||2H1(Ω)𝑑s,

L̃2 ≤ 𝜖2

2

N∑

n=0

1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

+
C

𝜖2

[(
Δt

)5

∫
T

0

||𝜕ttt𝜉||2L2(Ω)𝑑s + h2kΔt∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s

]
,

L̃3 ≤ 𝜖2

2

N∑

n=0

1

𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

+
C

𝜖2

[(
Δt

)5

∫
T

0

||𝜕tttp||2L2(Ω)𝑑s + h2l+2Δt∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
,

L̃4 ≤ 𝜖3

N∑

n=0

c0||Dn+1
p ||2L2(Ω) +

C

𝜖3

[(
Δt

)5

∫
T

0

||𝜕tttp||2L2(Ω)𝑑s + h2l+2Δt∫
T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

Here, we note that (54) and (55) still hold true. Then, we handle (71). Using the fact

e
h,0
p = 0, choosing 𝜖2 =

1

2
and 𝜖3 = 1, using (54) to choose a small enough positive 𝜖1

such that 𝜖1||Dn+1
𝜉 ||2

L2(Ω)
≤ 𝜇

2
||𝜀

(
Dn+1

u

)
||2

L2(Ω)
, we obtain

1

Δt

N∑

n=0

(
𝜇||𝜀

(
Dn+1

u

)
||2L2(Ω) +

1

2𝜆
||𝛼Dn+1

p − Dn+1
𝜉 ||2L2(Ω)

)
+ K||∇e

h,N+1
p ||2L2(Ω)

≤
(

C

𝜖1

+
C

𝜖2

+
C

𝜖3

)[(
Δt

)4

∫
T

0

(
||𝜕tttu||2H1(Ω) + ||𝜕ttt𝜉||2L2(Ω) + ||𝜕tttp||2L2(Ω)

)
𝑑s

+ h2k∫
T

0

(
||𝜕tu||2Hk+1(Ω) + ||𝜕t𝜉||2Hk(Ω)

)
𝑑s + h2l+2∫

T

0

||𝜕tp||2Hl+1(Ω)𝑑s

]
.

Applying (54) and (55) to the above equation, we claim that (70) holds true. The proof is

completed. ▪

Theorem 4.6. Let
(
u, 𝜉, p

)
and

(
un+1

h , 𝜉n+1
h , pn+1

h

)
be the solutions of Equations (11)–(13)

and (25)–(27), respectively. Under the assumptions of Theorem 4.4, there holds
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||𝜀
(
eN+1

u

)
||L2(Ω) + ||eN+1

𝜉 ||L2(Ω) + ||eN+1
p ||L2(Ω) ≲

(
Δt

)2
+ hk + hl+1, (72)

||∇eN+1
p ||L2(Ω) ≲

(
Δt

)2
+ hk + hl. (73)

Proof. We start with (18), (19), and (20). Applying the triangle inequality, Theorems 4.4

and 4.5, we see that the above error estimates readily follow. ▪

5 BENCHMARK TESTS

In this section, we present numerical experiments in two dimensions to validate the theoretical pre-

dictions described in Section 4. All computations are implemented by using the open-source software

FreeFEM++ [12].

Example 1. Let the domain Ω = [0, 1]2 and the final time is T = 1.0. We choose the

body force f, the source/sink term Qs, initial conditions and Dirichlet boundary data on

𝜕Ω = Γ𝑑 = Γp such that the exact solution is as follows:

u1 =
1

10
et
(
x + y3

)
, u2 =

1

10
t2
(
x3 + y3

)
, p = 10e

x+y

10

(
1 + t3

)
.

Following [9], the physical parameters are:

𝜇 = 1.0, 𝜆 = 1.0, c0 = 1.0, 𝛼 = 1.0, K = 1.0.

We apply a small mesh size h =
1

64
and take polynomial orders k = 3, l = 2 for the spatial

discretization so that the spatial error is not dominant. To check the orders of convergence

in time, we only refine the time step size Δt. In Tables 1 and 2, we present the results of

errors and convergence rates for Methods 1 and 2, respectively. We observe that the orders

of H1 error of u, L2 error of 𝜉, L2 and H1 errors of p are all around 1 in Table 1, and are

all around 2 in Table 2. The results in both tables illustrate that the time error order based

on Method 1 is (Δt
)

and the time error order based on Method 2 is ((Δt
)2)

, which

verify the theoretical predictions of error analyses in Theorems 4.3 and 4.6.

Example 2. Let the domain Ω = [0, 1]2 with Γ1 = {
(
1, y

)
; 0 ≤ y ≤ 1}, Γ2 = {

(
x, 0

)
; 0 ≤

x ≤ 1}, Γ3 = {
(
0, y

)
; 0 ≤ y ≤ 1}, Γ4 = {

(
x, 1

)
; 0 ≤ x ≤ 1} and the final time is T = 1.0.

The Neumann boundary Γt = Γf = Γ1 ∪Γ3 and the Dirichlet boundary Γ𝑑 = Γp = Γ2 ∪Γ4

are considered in this example. We take the body force f, the source/sink term Qs, and

initial and boundary conditions such that the exact solution is as follows:

u1 = e−t

(
sin

(
2𝜋y

)(
cos

(
2𝜋x

)
− 1

)
+

1

𝜇 + 𝜆
sin

(
𝜋x

)
sin

(
𝜋y

))
,

u2 = e−t

(
sin

(
2𝜋x

)(
1 − cos

(
2𝜋y

))
+

1

𝜇 + 𝜆
sin

(
𝜋x

)
sin

(
𝜋y

))
,

p = e−t sin
(
𝜋x

)
sin

(
𝜋y

)
.

TABLE 1 Errors and convergence rates of method 1 for Example 1.

�t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 5.219e-02 2.754e-01 2.971e-01 & 1.386e+00

1/8 2.735e-02 0.93 1.443e-01 0.93 1.557e-01 & 7.263e-01 0.93 & 0.93

1/16 1.399e-02 0.97 7.381e-02 0.97 7.963e-02 & 3.715e-01 0.97 & 0.97

1/32 7.076e-03 0.98 3.732e-02 0.98 4.026e-02 & 1.878e-01 0.98 & 0.98
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TABLE 2 Errors and convergence rates of method 2 for Example 1.

�t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 2.630e-03 1.266e-02 1.385e-02 & 6.333e-02

1/8 6.426e-04 2.03 3.296e-03 1.94 3.570e-03 & 1.653e-02 1.96 & 1.94

1/16 1.587e-04 2.02 8.278e-04 1.99 8.944e-04 & 4.159e-03 2.00 & 1.99

1/32 3.959e-05 2.00 2.071e-04 2.00 2.237e-04 & 1.041e-03 2.00 & 2.00

TABLE 3 Errors and convergence rates of method 1 for Example 2 using k = 2 and l = 1 with 𝜈 = 0.3 and K = 1.0.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/4 4.582e-01 3.657e-02 1.858e-02 & 2.919e-01

1/8 1/16 1.252e-01 1.87 7.262e-03 2.33 5.258e-03 & 1.531e-01 1.82 & 0.93

1/16 1/64 3.237e-02 1.95 1.677e-03 2.11 1.361e-03 & 7.766e-02 1.95 & 0.98

1/32 1/256 8.191e-03 1.98 4.084e-04 2.04 3.437e-04 & 3.900e-02 1.99 & 0.99

TABLE 4 Errors and convergence rates of method 1 for Example 2 using k = 3 and l = 2 with 𝜈 = 0.3 and K = 1.0.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/8 6.283e-02 4.146e-03 2.841e-03 & 3.325e-02

1/8 1/64 8.465e-03 2.89 6.203e-04 2.74 3.502e-04 & 8.398e-03 3.02 & 1.99

1/16 1/512 1.054e-03 3.01 7.839e-05 2.98 4.397e-05 & 2.146e-03 2.99 & 1.97

1/32 1/4096 1.312e-04 3.01 9.789e-06 3.00 5.520e-06 & 5.433e-04 2.99 & 1.98

The fixed physical parameters are:

E = 1.0, c0 = 1.0, 𝛼 = 1.0.

Other physical parameters will vary to test the robustness of our numerical schemes.

Numerical results for this example are summarized in Tables 3–10. Among them, we

examine Method 1 in Tables 3,4,7,8, and Method 2 in Tables 5,6,9,10. Since we have

already verified the error orders in time for both schemes in Example 1, our focus here is

the verification of the spatial error orders. To verify the spatial error orders as analyzed in

Theorem 4.3, we take Δt of an order (h2
)

(Tables 3 and 7) or (h3
)

(Tables 4 and 8)

for Method 1. Similarly, to verify the spatial error orders as analyzed in Theorem 4.6, we

take Δt of order (h
)

(Tables 5 and 9) or (h2
)

(Tables 6 and 10) for Method 2.

Firstly, we fix 𝜈 = 0.3 and K = 1.0. The numerical results for errors and convergence orders using

k = 2, l = 1 and k = 3, l = 2 are presented in Tables 3,4,5, and 6, respectively. We refine the mesh

size (and vary the corresponding time step size) to present the numerical results. From Table 3, it is

clearly shown that the convergence ||eN+1
u ||H1(Ω), ||eN+1

𝜉 ||L2(Ω), ||eN+1
p ||L2(Ω) are of order (Δt+h2

)
, and

||eN+1
p ||H1(Ω) is of order (Δt + h

)
for Method 1. Similarly, from Table 4, we see that the convergence

||eN+1
u ||H1(Ω), ||eN+1

𝜉 ||L2(Ω), ||eN+1
p ||L2(Ω) are of order (Δt + h3

)
, and ||eN+1

p ||H1(Ω) is of order (Δt +

h2
)
. From Table 5, we see that the convergence ||eN+1

u ||H1(Ω), ||eN+1
𝜉 ||L2(Ω), ||eN+1

p ||L2(Ω) are of order

((Δt
)2

+ h2
)
, and ||eN+1

p ||H1(Ω) is of order ((Δt
)2

+ h
)

for Method 2. Moreover, from Table 6,

we see that the convergence ||eN+1
u ||H1(Ω), ||eN+1

𝜉 ||L2(Ω), ||eN+1
p ||L2(Ω) are of order ((Δt

)2
+ h3

)
, and

||eN+1
p ||H1(Ω) is of order ((Δt

)2
+ h2

)
.

Secondly, we fix 𝜈 = 0.49999 and K = 10−6 to test the robustness of the proposed schemes with

respect to the key physical parameters. The numerical results for errors and convergence orders using

k = 2, l = 1 and k = 3, l = 2 are presented in Tables 7,8,9, and 10, respectively. By checking



20 GU ET AL.

TABLE 5 Errors and convergence rates of method 2 for Example 2 using k = 2 and l = 1 with 𝜈 = 0.3 and K = 1.0.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/2 4.584e-01 3.744e-02 2.376e-02 & 3.725e-01

1/8 1/4 1.252e-01 1.87 7.238e-03 2.37 5.259e-03 & 1.624e-01 2.18 & 1.20

1/16 1/8 3.237e-02 1.95 1.693e-03 2.10 1.376e-03 & 7.859e-02 1.93 & 1.05

1/32 1/16 8.191e-03 1.98 4.142e-04 2.03 3.520e-04 & 3.910e-02 1.97 & 1.01

TABLE 6 Errors and convergence rates of method 2 for Example 2 using k = 3 and l = 2 with 𝜈 = 0.3 and K = 1.0.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/4 6.280e-02 3.891e-03 1.440e-03 & 4.175e-02

1/8 1/16 8.460e-03 2.89 5.934e-04 2.71 1.580e-04 & 9.268e-03 3.19 & 2.17

1/16 1/64 1.054e-03 3.01 7.502e-05 2.98 1.848e-05 & 2.156e-03 3.10 & 2.10

1/32 1/256 1.312e-04 3.01 9.368e-06 3.00 2.336e-06 & 5.428e-04 2.98 & 1.99

TABLE 7 Errors and convergence rates of method 1 for Example 2 using k = 2 and l = 1 with 𝜈 = 0.49999 and K = 10−6.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/4 4.658e-01 7.691e-02 3.411e-02 & 3.831e-01

1/8 1/16 1.252e-01 1.90 1.149e-02 2.74 9.063e-03 & 1.667e-01 1.91 & 1.20

1/16 1/64 3.229e-02 1.96 2.412e-03 2.25 2.336e-03 & 8.027e-02 1.96 & 1.05

1/32 1/256 8.163e-03 1.98 5.709e-04 2.08 5.921e-04 & 3.953e-02 1.98 & 1.02

TABLE 8 Errors and convergence rates of method 1 for Example 2 using k = 3 and l = 2 with 𝜈 = 0.49999 and K = 10−6.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/8 6.320e-02 8.826e-03 1.864e-02 & 9.813e-02

1/8 1/64 8.546e-03 2.89 1.176e-03 2.91 2.426e-03 & 1.669e-02 2.94 & 2.56

1/16 1/512 1.063e-03 3.01 1.385e-04 3.09 3.067e-04 & 3.187e-03 2.98 & 2.39

1/32 1/4096 1.323e-04 3.01 1.632e-05 3.08 3.850e-05 & 6.651e-04 2.99 & 2.26

TABLE 9 Errors and convergence rates of method 2 for Example 2 using k = 2 and l = 1 with 𝜈 = 0.49999 and K = 10−6.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/2 4.658e-01 7.691e-02 7.259e-02 & 4.259e-01

1/8 1/4 1.252e-01 1.90 1.149e-02 2.74 1.905e-02 & 1.738e-01 1.93 & 1.29

1/16 1/8 3.229e-02 1.96 2.412e-03 2.25 4.832e-03 & 8.122e-02 1.98 & 1.10

1/32 1/16 8.163e-03 1.98 5.709e-04 2.08 1.214e-03 & 3.965e-02 1.99 & 1.03

TABLE 10 Errors and convergence rates of method 2 for Example 2 using k = 3 and l = 2 with 𝜈 = 0.49999 and K = 10−6.

h �t H1 errors of u Orders L2 errors of 𝝃 Orders L2& H1 errors of p Orders

1/4 1/4 6.320e-02 8.826e-03 3.445e-03 & 5.186e-02

1/8 1/16 8.546e-03 2.89 1.176e-03 2.91 3.177e-04 & 1.267e-02 3.44 & 2.03

1/16 1/64 1.063e-03 3.01 1.385e-04 3.09 3.092e-05 & 2.877e-03 3.36 & 2.14

1/32 1/256 1.323e-04 3.01 1.632e-05 3.08 3.160e-06 & 6.425e-04 3.29 & 2.16
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the error results and convergence rates one table by one table, one can verify the theoretical analysis

provided in Section 4. From these tables, it is shown clearly that all energy norm errors decrease with

the optimal convergence orders. By comparing the results in Tables 3–6 with the corresponding results

in Tables 7–10, we conclude that our schemes are robust with respect to the Poisson ratio 𝜈 and the

hydraulic conductivity K.

6 CONCLUSIONS AND OUTLOOK

In this paper, we present a priori estimates of the two monolithic schemes for the three-field formula-

tion of Biot’s consolidation model. The theoretical results show that both schemes are unconditionally

convergent with optimal error orders. We comment here that Method 2 achieves a second-order

convergence in time without significantly increasing the computational burden. Detailed numerical

experiments are carried out to verify the predictions of error estimates. In future work, we plan to

develop some decoupled algorithms [11,14] and the corresponding analysis based on the theory studied

in this work.
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