2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) | 979-8-3503-1894-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/FOCS57990.2023.00026

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

Efficient Algorithms for Semirandom Planted CSPs
at the Refutation Threshold

Venkatesan Guruswami
Department of EECS

Jun-Ting Hsieh

Computer Science Department

UC Berkeley Carnegie Mellon University
Berkeley, USA Pittsburgh, USA
venkatg @berkeley.edu juntingh@cs.cmu.edu

Abstract—We present an efficient algorithm to solve semiran-
dom planted instances of any Boolean constraint satisfaction
problem (CSP). The semirandom model is a hybrid between
worst case and average case input models, where the input
is generated by (1) choosing an arbitrary planted assignment
", (2) choosing an arbitrary clause structure, and (3) choosing
literal negations for each clause from an arbitrary distribution
“shifted by z*” so that x* satisfies each constraint. For an n
variable semirandom planted instance of a k-arity CSP, our
algorithm runs in polynomial time and outputs an assignment
that satisfies all but a o(1)-fraction of constraints, provided that
the instance has at least O(n"/?) constraints. This matches, up
to polylog(n) factors, the clause threshold for algorithms that
solve fully random planted CSPs [23], as well as algorithms that
refute random and semirandom CSPs [1], [4]. Our result shows
that despite having worst case clause structure, the randomness in
the literal patterns makes semirandom planted CSPs significantly
easier than worst case, where analogous results require O(n")
constraints [7], [26].

Perhaps surprisingly, our algorithm follows a significantly
different conceptual framework when compared to the recent
resolution of semirandom CSP refutation. This turns out to be
inherent and, at a technical level, can be attributed to the need
for relative spectral approximation of certain random matrices
— reminiscent of the classical spectral sparsification — which
ensures that an SDP can certify the uniqueness of the planted
assignment. In contrast, in the refutation setting, it suffices to
obtain a weaker guarantee of absolute upper bounds on the
spectral norm of related matrices.

Index Terms—Semirandom CSPs, Expander Decomposition,
Spectral Sparsification

I. INTRODUCTION

Four decades of work in computational complexity has
uncovered strong hardness results for constraint satisfaction
problems (CSPs) such as k-SAT that leave only a little room
for non-trivial efficient algorithms in the worst-case. Strong
hardness of approximation [30] essentially rule out (unless
P = NP) any improvement over simply returning a uniformly
random assignment when the input instance is sparse (i.e.,
has m = O(n) constraints on n variables). While there
is a polynomial time approximation scheme (PTAS) [7] for
maximally dense instances (e.g., with m = O(n*) constraints
for k-SAT), under the exponential time hypothesis [32], we can
already rule out polynomial time algorithms for o(n*) dense
instances and more generally, 27" time algorithms for any
§ > 0 for o(n*~1) dense instances [26].

Pravesh K. Kothari Peter Manohar

Computer Science Department Computer Science Department
Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, USA
pmanohar @cs.cmu.edu

Pittsburgh, USA
praveshk@cs.cmu.edu

Search and refutation in the average-case. In sharp
contrast, in well-studied average-case settings, there appears
to be significant space for new algorithms and markedly
better guarantees for CSPs. CSPs can be studied as two
natural problems in such average-case settings: the problem of
refutation — where we focus on efficiently finding witnesses
of unsatisfiability for models largely supported on unsatisfiable
instances, and the problem of search — where our goal is to
find an assignment that the model guarantees is planted in the
instance.

The refutation problem has been heavily investigated in the
past two decades. For fully random k-CSPs with uniformly
random clause structure (i.e., which variables appear in each
clause) and “literal pattern” (i.e., which variables appear
negated in each clause), there is a polynomial-time algorithm
that, with high probability over the instance, certifies that the
instance is unsatisfiable, provided that m is at least O(nk/ 2)
[4], [9], [18], [27], [44]. This threshold is far below the ~ n*
hardness threshold of [26]. Furthermore, there is lower bounds
in various restricted models [8], [13], [20], [24], [36], [39],
[43] provide some evidence that this threshold might be tight
for polynomial time algorithms.

The search problem for planted models of CSPs has also
received a fair bit of attention. The setting naturally arises
in the investigation of local one-way functions and pseudo-
random generators in cryptography. Indeed, the security of
the well-known one-way function proposed by Goldreich [28]
(also conjectured to be a pseudorandom generator [6], [42]) is
equivalent to the hardness of recovering a satisfying assign-
ment planted (via a carefully chosen procedure) in a random
CSP instance with an appropriate predicate. This has led to
significant research on solving fully random planted CSPs [11],
[15], [17], [23], [33]. Specifically, Feldman, Perkins and Vem-
pala [23] showed that for fully random planted k-CSPs with
planted assignment x*, there is a polynomial-time algorithm
that, with high probability over the instance, recovers the
planted assignment x* exactly, provided that the instance has
at least O(n*/2) constraints. That is, the refutation and search
versions have the same clause threshold.

Beyond the average-case: semirandom instances The phe-
nomenal progress in average-case algorithm design notwith-

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

DOI 10.1109/FOCS57990.2023.00026
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

307

standing, there is a nagging concern that the algorithms so
developed rely too heavily on “brittle” properties of a specific
random model. That is, our methods may have “overfitted” to
the specific setting thus offering algorithms that only apply
in a limited setting. Unfortunately, this fear turns out to be
rather well-founded — natural spectral algorithms for refuting
random £-CSPs and solving the natural planted variants break
down under minor perturbations such as the introduction of a
vanishingly small fraction of additional clauses.

Motivated by such concerns, Blum and Spencer [14] and
later Feige and Kilian [21], [22] introduced semirandom
models for optimization problems. In semirandom models, the
instances are constructed by a combination of benign average-
case and adversarial worst-case choices. Algorithms that suc-
ceed for such models are naturally “robust” to perturbations
of the input instance.

For CSPs, a semirandom instance is generated by first
choosing a “worst-case” clause structure and then choosing the
literal negation patterns in each clause via some sufficiently
random (and thus “benign”) process. Recent work [1], [29],
[31] has shown that in the case of refutation, there are indeed
more resilient algorithms that succeed in refuting semirandom
instances at the same O(n*/2) threshold as the fully random
case. These developments have added new general-purpose
new spectral methods based on Kikuchi matrices [29], [48]
to our algorithmic arsenal.

Semirandom planted problems. In this work, we make the
first step in obtaining algorithms for the search variant of CSPs
in the semirandom setting. Our main result gives an efficient
algorithm for solving semirandom planted CSPs that succeeds
in finding the planted assignment whenever the number of
constraints exceeds O(n*/?) — the same threshold at which
polynomial time algorithms exist for the refutation problem
for random (and semirandom) instances.

Theorem 1 (Main result, informal Theorem 2). There is an
efficient algorithm that takes as input a k-CSP V and outputs
an assignment x with the following guarantee: if V is a
semirandom planted k-CSP with m > O(n*/?) constraints,
then with high probability over WU, the output x satisfies
1 — o(1)-fraction of the constraints in V.

We note that in the semirandom setting, it is not possible to
efficiently recover an assignment that satisfies all of the con-
straints without being able to do so even when m = O(n),!.
This is because it is easy to construct a semirandom instance)
that is the “union” of two disjoint instances 11 and 1), where
11 and 15 use disjoint sets of n/2 variables, but 1); only has
mq ~ O(n) clauses (and 1o, therefore, contains almost all of
the m ~ nk/2 clauses). Thus, the guarantee in Theorem 1 of
satisfying a 1 — o(1)-fraction of constraints is qualitatively the
best we can hope for.

! Achieving this would break a hardness assumption for the search problem
analogous to Feige’s random 3-SAT hypothesis for the refutation prob-
lem [20].

Search vs. refutation. It is natural to compare Theorem 1 to
the recent resolution of the problem of refuting semirandom
CSPs [1], [29], [31]. For average-case optimization problems,
techniques for refuting random instances can typically be
adapted to solving the search problem in the related planted
model. This can be formalized in the proofs to algorithms
paradigm [10], [25] where spectral/SDP-based refutations can
be transformed into “simple” (i.e., “captured” within the low-
degree sum-of-squares proof system) efficient certificates of
near-uniqueness of optimal solution — that is, every optimal
solution is close to the planted assignment. Unfortunately,
this intuition breaks down even in the simplest setting of
semirandom 2-XOR where there can be multiple maximally
far-off solutions that satisfy as many (or even more) constraints
as the planted assignment. Such departure from uniqueness
also breaks algorithms for recovery [23] that rely on the top
eigenvector of a certain matrix built from the instance being
correlated with the planted assignment. In the semirandom
setting, one can build instances where the top eigenspace of
such matrices is the span of the multiple optimal solutions and
has dimension w(1) (searching for a Boolean vector close to
the subspace is, in general, hard in super-constant dimensional
subspaces).

Our Kkey insight. Our starting point is a new, efficiently
checkable certificate of the unique identifiability of the planted
solution for noisy planted k£-XOR (i.e., where each equation in
a satisfiable k-sparse linear system is corrupted independently
with some fixed constant probability) whenever the constraint
hypergraph satisfies a certain weak expansion property. For
random graphs in case of 2-XOR (and generalizations to mul-
tiple community stochastic block models), such certificates (in
the form of explicit dual solutions to a semidefinite program)
were shown to exist by Abbe and Sandon [2].

Our certificate naturally yields an efficient algorithm for
exactly recovering the planted assignment in noisy k-XOR
instances whenever the constraint hypergraph satisfies a de-
terministic weak expansion property and has size exceeding
the refutation threshold ~ n*/2. Finally, we use expander
decomposition procedures to decompose the input constraint
hypergraph into pieces that satisfy the above condition. This
is done in a manner that further allows us to find a good
assignment via a consistent patching scheme to combine
solutions across all the pieces in our decomposition.

A. Our semirandom planted model and results

Before formally stating our results, we define the semiran-
dom planted model that we work with and explain some of the
subtleties in the definition. Our model is the natural one that
arises if we wish to enforce independent randomness (for each
clause) in the literal negations, while still fixing a particular
satisfying assignment.

Definition I.1 (k-ary Boolean CSPs). A CSP instance
U with a k-ary predicate P: {—1,1}} — {0,1} is a
set of m constraints on variables x1,...,x, of the form

— —

P(€(5)1151,6(0)2x52, o U(CO)gzg,) = 1. Here, C ranges

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

over a collection H of scopes® (a.k.a. clause structure) of k-
tuples of n variables and /(C) € {—1,1}* are “literal nega-
tions”, one for each C in . We let valy () denote the fraction
of constraints satisfied by an assignment = € {—1,1}", and we
define the value of W, val(¥), to be max,e(_1,1}» valy ().

Definition 1.2 (Semirandom planted k-ary Boolean CSPs).
Let P: {—1,1}* — {0,1} be a predicate. We say that a
distribution Q over {—1,1}"* is a planting distribution for P
if Pry o[P(y) =1] =1

We say that an instance ¥ with predicate P is a semirandom
planted instance with planting distribution @) if it is sampled
from a distribution \11(7-_[7 x*, Q) where

(1) the scopes H C [n]* and planted assignment z* €
{—=1,1}"™ are arbitrary, and

2) \Il(?—Lx*,Q) is defined as follows: for each C €
H, sample literal negations £(C) « Q({(C) © :1%)
where “®” denotes the element-wise product of two
vectors. That is, Pr[¢(C) = ¢ = QU © 3%)
for each ¢ € {~1,1}*. Then, add the constraint
P(E(C)lxcﬂ’é(c)?x@’ R J(C)kmék) =1to V.

Notice that because () is supported only on satisfying assign-

ments to P, it follows that if U <« \If(ﬁ,m*,Q), then x*

satisfies ¥ with probability 1.

A (fully) random planted CSP, e.g., as defined in [23], is
generated by first sampling H [n]* uniformly at random,
and then sampling ¥ < \I/(’]-_i, z*, Q). The difference in the
semirandom planted model is that we allow H to be worst
case.

Notice that in Definition 1.2, there are some choices of
for which the planted instance becomes easy to solve. In the
case of, e.g., 3-SAT, one could set the planting distribution
@ to be uniform over all 7 satisfying assignments, which
results in the literal negations in each clause being chosen
uniformly conditioned on z* satisfying the clause. However,
by simply counting how many times the variable x; appears
negated versus not negated and taking the majority vote, we
recover x* with high probability [11], [33] (see Section C).

Instead of sampling clauses uniformly from all those satis-
fied by x*, one can create more challenging distributions, e.g.,
ones where true and false literals appear in equal proportion.
Such distributions are termed “quiet plantings” and have been
studied extensively [17], [33], [37], [38]. Our semirandom
model follows definitions in [23], [24] and is a general planted
model with respect to a planting distribution (), which unifies
various plantings studied in the past.

Unlike in the case of random planted CSPs, we cannot
hope to recover the planted assignment x* exactly in the
semirandom setting. Indeed, the scopes H may not use some
variable x; at all, and so we cannot hope to recover z;!
Thus, our goal is instead to recover an assignment x that has
nontrivially large value, ideally value 1 —¢ for arbitrarily small

2We additionally allow 7 to be a multiset, i.c., that multiple clauses can
contain the same ordered set of variables.

€. Our main result, stated formally below, gives an algorithm
to accomplish this task.

Theorem 2 (Formal Theorem 1). Let k € N be constant. There
is a polynomial-time algorithm that takes as input a k-CSP ¥
and outputs an assignment x with the following guarantee. If
U is a semirandom planted k-CSP with m > ckpk/2. 105#
constraints drawn from \If(ﬁ,m*,Q), then with probability
1 — 1/poly(n) over W, the output x of the algorithm has
valy (z) > 1 —e. Here, ¢ is a universal constant.

In particular, setting ¢ = 1/polylog(n), if m > O(n¥/?),
then with high probability over VU < \11(7-_[, x*,Q), the
algorithm outputs x with valyg(x) > 1 — o(1).

Theorem 2 shows that one can nearly solve a semirandom
planted k-CSP at the same O(n*/?) threshold as done in the
random case [23], matching the same O(nk/ 2) threshold as for
semirandom refutation [1], [29], [31]. However, as explained
earlier (and will be discussed further in Section II), there
are several unanticipated technical hurdles to overcome in
the semirandom planted setting that are not present in the
semirandom refutation setting, and this causes many of the
natural approaches that “springboard off” the refutation case
to fail. Curiously enough, for the special case of k = 2 there
is a simple reduction from search to refutation for the case of
2-XOR, which we will describe in Section II-A, but the same
approach for k-XOR encounters a hardness barrier for k > 3,
as we will discuss in Section II-B.

Theorem 2 also breaks Goldreich’s candidate pseudorandom
generators [28] and its variants [6],> when they have Q(n*/?)
stretch and any k-hypergraph (not just a random one). In fact,
not only does Theorem 2 break the PRG, it also gives an
algorithm that nearly inverts it.

Noisy planted k-XOR. Similar to work on random planted
CSPs [23] and the refutation setting [1], [4], [29], [31], [44],
our proof of Theorem 2 goes through a reduction to noisy
k-XOR. Our algorithm achieves very strong guarantees in the
noisy k-XOR case, as we now explain. We define the noisy
k-XOR model below and then state our result.

Definition 1.3 (Noisy planted k-XOR). Let H C (I]) be
a k-uniform hypergraph on n vertices, let z* € {—1,1}",
and let n € [0,1/2). Let ¢(H,x*,n) denote the distribution
on k-XOR instances over n variables x1,...,z, € {—1,1}
obtained by, for each C' € H, adding the constraint Hl coTi =
[l;ccx; with probability 1 — 5, and otherwise adding the
constraint [[;c~ i = —[[;cc ;. In the latter case, we say
that the constraint C' is corrupted or noisy.

We call ¢ a noisy planted k-XOR instance if it is sampled
from ¢(H, z*,n), for some H, =*, and n; the hypergraph H
is the constraint hypergraph, z* is the planted assignment, and
7 is the noise parameter. Furthermore, we let £, C H denote
the (unknown) set of corrupted constraints.

3Goldreich’s original PRG is essentially a planted k-CSP with a Boolean
predicate P on a random hypergraph, containing both P and —P constraints.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Theorem 3 (Algorithm for noisy k-XOR). Let n € [0,1/2),
let k,n €N, and let € € (0,1). Let m > cn*/?- % Sfor
a universal constant c. There is a polynomial-time algorithm
A that takes as input a k-XOR instance 1 with constraint
hypergraph H and outputs two disjoint sets A1 (H), Az(¢) C
H with the following guarantees: (1) for any instance 1 with
m constraints, | Ay (H)| < em and A, (H) only depends on H,
and (2) for any x* € {—1,1}" and any k-uniform hypergraph
H with at least m hyperedges, with probability at least 1 —
1/poly(n) over i < (H,x*,n), it holds that Az () = EypN
(H\ AL(H)).

In words, the algorithm discards a small number of con-
straints, and among the constraints that are not discarded,
correctly identifies all (and only) the corrupted constraints.
In particular, the subinstance obtained by discarding the
< (e + n)m constraints A;(H) U Az(¢) is satisfiable (and
a solution can be found by Gaussian elimination). Thus,
Theorem 3 immediately implies that for £-XOR, the NP-hard
task of deciding if ¢ has value > 1 —7n or < % +n is actually
easy if 1 has ~ n*/2 constraints (far below the ~ n*-hardness
of [26]), provided that the n-fraction of corrupted constraints in
the “yes” case are a randomly chosen subset of the otherwise
arbitrary constraints.

Exact vs. approximate recovery. As alluded to above,
the guarantees of Theorem 3 are much stronger: not only
can we find a good assignment to ¢, we can break the
constraints into two parts, a small fraction, A; (), where we
are unable to determine the corrupted constraints,* and a large
fraction, 7\ .A; (H), where we can determine exactly all of the
corrupted constraints, A5 (1)). Moreover, this partition depends
only on the hypergraph H and is independent of the noise. We
remark that it is not immediately obvious that this guarantee
is achievable even for exponential-time algorithms, as x*
may not be the globally optimal assignment with constant
probability. This strong guarantee of Theorem 3 is in fact
required for the reduction from Theorem 2 to Theorem 3; the
weaker (and more intuitive) guarantee of approximate recovery
— obtaining an assignment of value 1 —7—o(1) for the noisy
XOR instance — is insufficient for the reduction.

One can view Theorem 3 as an algorithm that extracts
almost all the information about the planted assignment x*
encoded by the instance . Indeed, notice that even if n = 0,
the instance 1 only determines z* “up to a linear sub-
space.”> Namely, if we let y € {—1,1}" be any solution
to the system of constraints [[,..y; = 1 for C € #H,
then y @ x* is also a planted assignment for : formally,
Y(H,z*,n) = Y(H,y©xz*,n) as distributions. So, aside from
the em constraints that are discarded, with high probability
over ¢ the algorithm determines the uncorrupted right-hand

“Note that discarding a small fraction of constraints is necessary in the
semirandom setting, as ¢ may contain many disconnected constant-size
subinstances where it is not possible, even information-theoretically, to exactly
identify the corrupted constraints with 1 — o(1) probability.

SA k-XOR constraint xc, ---xc, = bc € {—1,1} can be equivalently
written as a linear equation m’cl 44 ;z:’ck = bl over Fa, where we map
+1to 0 and —1 to 1.

sides [;. «; for every remaining constraint, which is all the
information about the planted assignment 2* encoded in the
remaining constraints.

The importance of relative spectral approximation. As
a key technical ingredient in the algorithm, we uncover a
deterministic condition — relative spectral approximation of
the Laplacian of a graph (associated with the input instance)
by a certain correlated random sample from it — which when
satisfied implies uniqueness of the SDP solution (Lemma IL.5).
In Lemma II.6 and Lemma VI.7, we establish such spectral
approximation guarantees.

This spectral approximation property is the key ingredient
in our certificate of unique identifiability of the planted assign-
ment in a noisy k-XOR instance (see Section II-D for details)
and allows us to exactly recover the planted assignment for 2-
XOR instances where the constraint graph G is a weak spectral
expander (i.e., spectral gap > 1/poly log n) (Lemma IL.5), and
forms the backbone of our final algorithm. We note that our
spectral approximation condition can be seen as an analog of
(and is, in fact, stronger than) the related spectral norm upper
bound property that underlie the refutation algorithm of [1].

This process of extracting a “deterministic property of
random instances sufficient for the analysis” is an important
conceptual theme underlying recent progress on semirandom
optimization, and manifests as, e.g., the notion of “butterfly
degree” in [1], “hypergraph regularity” or spreadness in [29]
in the context of semirandom CSP refutation, and biclique
number bounds in the context of planted clique [16].

II. TECHNICAL OVERVIEW

In this section, we give an overview of the proof of Theo-
rem 3 and our algorithm for noisy planted k-XOR. We defer
discussion of the reduction from general k-CSPs to k-XOR
used to obtain Theorem 2 to Section IV. There, we explain
the additional challenges encountered in the semirandom case
as compared to the random case [23, Section 4]. Somewhat
surprisingly, the reduction is complicated and quite different
from the random planted case or even the semirandom refu-
tation setting, where the reduction to XOR is straightforward.

We now explain Theorem 3. As is typical in algorithm
design for k-XOR, the case when k is even is considerably
simpler than when £ is odd. For the purpose of this overview,
we will focus mostly on the even case, and only briefly discuss
the additional techniques for odd k in Section II-E.

Notation. Throughout this paper, given a k-XOR instance
v on hypergraph H C ([Z]) with m = |H| and right-hand
sides {bc}cen, we define ¥(x) == > ncqy bo [1;cc % to be
a degree-k polynomial mapping {—1,1}" — [-m,m]. We
note that valy(z) = § + 5=(x) € [0,1] is the fraction of
constraints in ¢ satisfied by x. Moreover, we will write ¢ =
[Licc -

Unless otherwise stated, we will use ¢ to denote a 2-XOR
instance and v to denote a k-XOR instance for any k& > 2.

We note that for even arity k-XOR, we have valy(z) =
valy (—x), and so it is only possible for the optimal solution

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

to be unique up to a global sign. We will abuse terminology
and say that x* is the unique optimal assignment if +x* are
the only optimal assignments, and we will say that we have
recovered z* exactly if we obtain one of +x*.

A. Approximate recovery for 2-XOR from refutation

First, let us focus on the case of k = 2, the simplest case,
and let us furthermore suppose that we only want to achieve
the weaker goal of recovering an assignment of value 1 —
n — o(1). (Note that we do need the stronger guarantee of
Theorem 3 to solve general planted CSPs in Theorem 2.)

For 2-XOR, this goal is actually quite straightforward to
achieve using 2-XOR refutation as a blackbox. Let us represent
the 2-XOR instance ¢ as a graph G on n vertices, along with
right-hand sides b;; for each edge (,j) € E. Recall that we
have b;; = xjz} with probability 1 —n, and b;; = —zjz}
otherwise. Note that by concentration, val,(z*) = 1—n=+o(1)
with high probability.

We now make the following observation. Let us suppose that
we sample the noise in two steps: first, we add each (i,j) € E
to a set F’ with probability 27 independently; then for each
(i,7) € E' we set b;; to be uniformly random from {—1,1}.
Using known results for semirandom 2-XOR refutation, it is
possible to certify, via an SDP relaxation, that no assignment
 can satisfy (or violate) more than 1 + o(1) fraction of the
constraints in F’.

Thus, we can simply solve the SDP relaxation for ¢
and obtain a degree-2 pseudo-expectation E in the variables
Z1,...,x, over {—1,1}" that maximizes ¢(x). Let ¢p be
the subinstance containing only the constraints in £’, and let
¢ g\ ke be the subinstance containing only the constraints in £\
E’, which are uncorrupted. We have E[valy(z)] > 1—n—o(1),
and the guarantee of refutation implies that E[val¢E, (2)] <
140(1). As valy(z) = (} —2n) valy,, ., (z)+2n-valy,, ($)~,
we therefore have that E[valy,, ., (z)] > 1 —o(1), ie, E
satisfies 1 — o(1) fraction of the constraints in £\ E’. Then,
applying the standard Gaussian rounding, we obtain an z that
satisfies 1 — /o(1) fraction of the constraints in £\ E’ and
thus has value valy(z) > 1 —n —o(1) (as any = must satisfy
at least £ — o(1) fraction of the constraints in E’, with high
probability over the noise).

One interesting observation is that in the above discussion,
we can additionally allow E’ to be an arbitrary subset of
FE of size 2nm. Indeed, this is because the rounding only
“remembers” that I~E[val¢E\E, ()] has value 1 — o(1). As we
shall see shortly, this is the key reason that the reduction breaks
down for k-XOR.

B. The challenges for k-XOR and our strategy

Unfortunately, the natural blackbox reduction to refutation
given in Section II-A does not generalize to k-XOR for
k > 3. Following the approach described in the previous
section, given a k-XOR instance ¢, one can solve a sum-
of-squares SDP and obtain a pseudo-expectation E where
Efvaly(z)] > 1 —n — 4 and E[vale\E, ()] > 1 —0 as
before, where & ~ 1/polylog(n) when m > n*/2, due to

the guarantees of refutation algorithms [1]. However, unlike
2-XOR where we have Gaussian rounding, for k-XOR there is
no known rounding algorithm that takes a pseudo-expectation
E with I~E[val¢E\ . (x)] > 1 -6 and outputs an assignment x
such that valy, , (z) > 1 — f(6), for some f(-) such that
f(0) — 0 as § — 0. In fact, if we only “remember” that
Y\ g has value 1 — 4, then it is NP-hard to find an = with
value > 1/2+ 9 even when 6 = n~¢ for some constant ¢ > 0,
assuming a variant of the Sliding Scale Conjecture [12]° (see
e.g. [40], [41] for more details).

As we have seen, while semirandom k-XOR refutation
allows us to efficiently approximate and certify the value of
the planted instance, the challenge lies in the rounding of the
SDP, where the goal is to recover an assignment x. This is a
technical challenge that does not arise in the context of CSP
refutation, as there we are merely trying to bound the value
of the instance. As a result, new ideas are required to address
this challenge.

Reduction from k£-XOR to 2-XOR for even k. One could
still consider the following natural approach. For simplicity,
let £ = 4. Given a 4-XOR instance 1), we can write down a
natural and related 2-XOR instance ¢, as follows.

Definition II.1 (Reduction to 2-XOR). Let 1) be a 4-XOR
instance, and let ¢ be the 2-XOR defined as follows. The
variables of ¢ are yy; ;3 and correspond to pairs of variables
{x;,2;}, and for each constraint x;z;xy2; = b; ;4 5 in 1,
we split {4, 7,4, 7'} into {4, 4} and {¢’, j'} arbitrarily and add
a constraint y;) ygir, 513 = bi g t0 ¢. See Fig. 1 for an
example. This reduction easily generalizes to k-XOR for any
even k.

Fig. 1: An example of the 2-XOR instance ¢ from a 4-XOR
instance).

By following the approach for 2-XOR described in Sec-
tion II-A, we can recover an assignment y that satisfies
1 —1n — o(1) fraction of the constraints in ¢. However, we
need to recover an assignment x to the original k-XOR 1,
and it is quite possible that while y is a good assignment to ¢,
it is not close to z®2 for any x € {—1,1}". If this happens,
we will be unable to recover a good assignment to the 4-XOR
instance).

The key reason that this simple idea fails is because, unlike
for random noisy XOR, the assignment y recovered is not
necessarily unique, and we cannot hope for it to be in the

%Note that we do need the Sliding Scale Conjecture, as the hardness shown
in [41] is not strong enough; it only proves hardness for § > (loglogmn)~—¢,
whereas we have § ~ 1/polylog(n).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

semirandom setting! For random noisy XOR, one can argue
that with high probability, y will be equal to z*®2 and then
we can immediately decode and recover z* up to a global
sign, i.e., we recover +z*. But for semirandom instances, the
situation can be far more complex.

Approximate 2-XOR recovery does not suffice for 4-XOR.
When constructing the 2-XOR instance ¢ from the 4-XOR
(Definition II.1), it may be the case that ¢ can be partitioned
into multiple disconnected clusters (or have very few edges
across different clusters), even when the hypergraph H of ¢ is
connected; see Fig. 1 for example. By the algorithm described
in Section II-A, we can get an assignment y that satisfies 1 —
n — o(1) fraction of the constraints within each cluster.

The main challenge is to combine the information gathered
from each cluster to recover an assignment z for the original
4-XOR 7. Unfortunately, we do not know of a way to obtain
a good assignment = based solely on the guarantee that y
satisfies 1—7—o(1) fraction of constraints in each cluster. The
issue occurs because the same variable ¢ € [n] can appear in
different clusters, e.g., y¢1 2y and yyo 3} lie in different clusters
in Fig. 1, and the recovered assignments in each cluster may
implicitly choose different values for x; because of the noise.
Indeed, even if the local optimum is consistent with z*, there
can still be multiple “good” assignments that achieve 1 —n —
o(1) value on the subinstance restricted to a cluster. So, unless
the SDP can certify unique optimality of x*, standard rounding
techniques such as Gaussian rounding will merely output a
“good” y, which may be inconsistent with x* and thus can
choose inconsistent values of x; across the different clusters.

Exact 2-XOR recovery implies exact 4-XOR recovery.
This leads to our main insight: if the subinstance of ¢
admits a unique local optimal assignment y* (restricted to the
cluster) that matches the planted assignment up to a sign, i.e.,
yz‘z = +xjz}, then for each edge in the cluster we know
y"{‘iﬁj}yfi,yj,} = mfl;‘xj‘,lj‘,, and so the local constraints that
are violated must be exactly the corrupted ones. Moreover,
if the SDP can certify the uniqueness of the local optimal
assignment for a cluster, then the SDP solution will be a
rank 1 matrix y*y* ", and so we can precisely identify which
constraints in ¢ are corrupted. By repeating this for every
cluster, we can identify all corrupted constraints in the original
4-XOR 1) (except for the small number of “cross cluster”
edges), and thus achieve the guarantee stated in Theorem 3.

The general algorithmic strategy. The above discussion
suggests that given a k-XOR instance v, we should first
construct the 2-XOR ¢, and then decompose the constraint
graph G of ¢ into pieces in some particular way so that the
induced local instances have unique solutions. Namely, the
examples suggest the following algorithmic strategy.

Strategy 11.2 (Algorithm Blueprint for even k). Given a
noisy k-XOR instance 1) with planted assignment z* and
m constraints, we do the following:

(1) Construct the 2-XOR instance ¢ as in Definition II.1,

which is a noisy 2-XOR on n*/2 variables with

planted assignment y*. Moreover, there is a one-to-
one mapping between constraints in ¢ and 1.

(2) Let GG be the constraint graph of ¢. Decompose G
into subgraphs G, ..., Gr while only discarding a
o(1)-fraction of edges such that each subgraph G;
satisfies “some property”. For each subgraph G;, we
define ¢; to be the subinstance of ¢ corresponding
to the constraints in G;. The goal is to identify a
local property that the G;’s satisfy so that (1) we
can perform the decomposition efficiently, and (2) for
each subinstance ¢;, we can “recover y* locally”, i.e.,
we can find an assignment y(*) to the 2-XOR instance
¢; that is consistent with the planted assignment y*.

(3) As each (¥ is consistent with y*, the constraints in
¢; violated by v must be precisely the corrupted
constraints in ¢;. Hence, for the constraints that
appear in one of the ¢;’s, we have determined exactly
which ones are corrupted.

(4) We have thus determined, for all but o(m) con-
straints, precisely which ones are corrupted in the
original £-XOR instance 1. (Note that this is the
stronger guarantee that we achieve in Theorem 3.)
By discarding the corrupted constraints along with
the o(m) constraints where we “give up”, we thus
obtain a system of k-sparse linear equations with
m(1 — n — o(1)) equations that has at least one
solution (namely x*), and so by solving it we obtain
an = with valy(z) > 1—n—o(1).

C. Information-theoretic exact recovery from relative cut ap-
proximation

Following Strategy I1.2, the first technical question to now
ask is: given a noisy 2-XOR instance ¢ with n variables,
m > n constraints, and planted assignment z*, what con-
ditions do we need to impose on the constraint graph G so
that we can recover x* (up to a sign) exactly? As a natural
first step, we investigate what conditions are required so that
we can accomplish this information-theoretically.

Fact IL3. Let G = (V,Eqg) be an n-vertex graph, and
let H = (V,Eg) be a subgraph of G where Exg C Eg.
Let Lg, Ly be the unnormalized Laplacians of G and H.
Consider a noisy planted 2-XOR instance ¢ on G with planted
assignment z* € {—1,1}" (Definition 1.3), and suppose
FEy is the set of corrupted edges. Suppose that for every
x e {—1,1}"\ {1, -1}, it holds that =" Lyx < iaTLaw.
Then, x* and —x* are the only two optimal assignments to ¢.

Note that the condition z' Lyz < %xTLGm for z ¢
{1,—1} implies that G is connected, as otherwise L¢ has
a kernel of dimension > 2, which would contradict this

assumption.

Proof. Let x € {—1,1}" be any assignment. We wish to

show that ¢(z) is uniquely maximized when =z = z*, —z*.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

We observe that

$la) = Y wby
(i.j)€Eq
= g TT Ty — 2 E TTGTT;
(i.j)€Eq (i.j)€EHn

Hence, by replacing x with x ® z*, without loss of generality
we can assume that * = 1. Now, let Dg, Dy and Ag, Ag
be the degree and adjacency matrices of G and H, so that
Lo =Dg— Ag and Ly = Dy — Ap. We thus have that
20(x) =2 Agx — 22" Apx
= IT(DG — 2DH)$ — :L‘T(LG — 2LH)1‘
=2(|Eg| - 2|Eg|) — =" (L — 2Lg)x .
By assumption, if 2 € {—1,1}" and 2 # I, —1, then we have
that z 7 (Lg — 2Lg)x > 0, which implies that ¢(z) < ¢(1),
and finishes the proof. O

Fact IL3 shows that if we can argue that ' Lyx <
txTLga for every x € {—1,1}" \ {I,—1}, then at least
information-theoretically we can uniquely determine z*. Ob-
serve that if we view z as the signed indicator vector of a
subset S C [n], then 2" Lgx = E¢(S,S), the number of
edges in G crossing the cut defined by S, and similarly for
2" L. So, one can view the condition in Fact 1.3 as saying
that the subgraph H needs to be a (one-sided) cut sparsifier of
G, i.e., it needs to roughly preserve the size of all cuts in G.
The following relative cut approximation result of Karger [35]
shows that this will hold with high probability when H is a
randomly chosen subset of GG, provided that the minimum cut
in G is not too small.

Lemma I1.4 (Relative cut approximation [35]). Let n € (0, 1).
Suppose an n-vertex graph G has min-cut Cpin > 121%, and
suppose H is a subgraph of G by selecting each edge with

probability 1. Then, with probability 1 — o(1),

1
(1-0)z " Loz < —-a"Lyx < (146)z Lgz, Yo € {~1,1}"
n

fOI” 5= /1210gn.
7Cmin

With Lemma II.4 and Fact 11.3 in hand, we now have at least
an information-theoretic algorithm with the same guarantees
as in Theorem 3. We follow the strategy highlighted in Strat-
egy I1.2. To decompose the graph GG, we recursively find a min
cut and split if it is below the threshold in Lemma I1.4. Notice
that this discards at most O(nlogn) = o(m) constraints (for
m > nlogn), and these are precisely the constraints that we
“give up” on and do not determine which ones are corrupted.
Then, with high probability the local optimal assignment is
consistent with x*, and so locally we have learned exactly
which constraints are corrupted. Hence, we have produced two
sets of constraints: E, the o(1)-fraction of edges discarded
during the decomposition, and E; = (G \ Ey) N &y, which
is exactly the set of corrupted constraints after discarding F.
We note that it is a priori not obvious that this is achievable

even for an exponential-time algorithm, as even though the
2™-time brute force algorithm will find the best assignment x
to ¢, it may not necessarily be z*, and so the set of constraints
violated by the globally optimal assignment might not be &y.

D. Efficient exact recovery from relative spectral approxima-
tion

Information-theoretic uniqueness implies that the planted
assignment z* is the unique optimal assignment. But can we
efficiently recover 2*? One natural approach is to simply solve
the basic SDP relaxation of ¢: for X € R"™*" maximize
O(X) = X jyeq Xijbij subject to X = 0, X = XT,
and diag(X) = I. If the optimal SDP solution is simply
X = m*x*T, then we trivially recover x* from the SDP
solution. We thus ask: does the min cut condition of Fact I1.3
and Lemma IL4 imply that z*z* " is the unique optimal solu-
tion to the SDP? Namely, is the min cut condition sufficient for
the SDP to certify that z* is the unique optimal assignment?

Unfortunately, it turns out that this is not the case, and we
give a counterexample in Section A. We thus require a stronger
condition than the min cut one in order to obtain efficient
algorithms. Nonetheless, an analogue of Fact I1.3 continues to
hold, although now we require a stronger version that holds
for all SDP solutions X, not just € {—1,1}". This stronger
statement shows the SDP can certify that x* is the unique
optimal assignment if and only if a certain relative spectral
approximation guarantee holds for the corrupted edges.

Lemma IL5 (SDP-certified uniqueness from relative spectral
approximation). Let G = (V, Eg) be an n-vertex connected
graph, and let H = (V, Ey) be a subgraph of G where Er C
Eq. Let L, Ly be the unnormalized Laplacians of G and H.
Consider a noisy planted 2-XOR instance ¢ on G with planted
assignment z* € {—1,1}" (Definition 1.3), and suppose Eg
is the set of corrupted edges.
The SDP relaxation of ¢ satisfies

ma. ¢(X) = o(z") = |Eg| - 2|Enl,

X

X-0, X=XT, diag(X)=I
where X = x*2* 7 is the unique optimum if and only if G and
H satisfy

1
<X,LH>< §<X,Lg>,
VX =0, X =X, diag(X) =1, X #11".

Proof. Recall that each e = {i,j} € E corresponds to a
constraint z;z; = b, where b, = zjx} if e € Eg \ En
and b = —wjx} if e € Epy, meaning that ¢(X) =
Do irec\E XiiTiT] = D o(; iver mejjvj Without loss of
generality, we can assume that 2* = 1 and that ¢(X) =
%(X yAg —2Ag), where Ag, A are the adjacency matrices
of G and H.

Note that Lo = Dg — Ag and Ly = Dy — Ag, and
tr(Dg) = 2|Eq|, tr(Dg) = 2|Eg|. For any X > 0 with
diag(X) =1,

(X,A¢ —2Ag) =(X,(Dg — Lg) —2(Dyg — Ly))

=
=2(|Eg| - 2|Ex|) + (X,2Ln — Lg) -

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Suppose (X,Ly) < 1(X,Lg) for all X # II'. Since
(117, Lg) = (117,Ly) = 0, we have that the maximum
of 3(X,Ag — 2Ay) is |Eg| — 2|Ey| and X = 117 is the
unique maximum.

For the other direction, suppose there is an X # 117 such
that (X, Ly) > (X, L¢). Then, ¢(X) > |Eq| — 2|En| =
#(1TT), meaning that 11" is not the unique optimum. O

Relative spectral approximation from uniform subsamples.
We now come to a key technical observation. Suppose that
H is a spectral sparsifier of G, so that vT(%LH)v is (1 £
§)v " Lg for any v € R™. Then clearly (X, Ly) < (X, L¢)
if < 1/2and § = o(1), as we can write X = Y7 | \jv;v;,
and

(X,Ly) = Z)\iv;rLHvi <n(l+9) Z)\W;LGW

i=1 =1
1
=n(l1+4) (X, Lg) < §<XaLG>~

Furthermore, note that above we only required that Ly =
n(1 + d)Lg, i.e., we only use the upper part of the spectral
approximation.

We are now ready to state the key relative spectral approxi-
mation lemma. We observe that when H is a uniformly random
subsample of G and G has a spectral gap and minimum degree
polylog(n), then with high probability Ly < n(1 + J)L¢.
We note that, while we do not provide a formal proof, the
same argument using the lower tail of Matrix Chernoff can
also establish a lower bound on Ly, which proves that H is
indeed a spectral sparsifier of G.

Lemma IL.6 (Relative spectral approximation from uniform
subsamples). Let n € (0,1). Suppose G = (V, E) is an n-
vertex graph with minimum degree dyi, (self-loops allowed)
and spectral gap Mo(Lg) = X such that dpin\ > %log n,
where EG = Dal/ 2LgDC_;1/ % is the normalized Laplacian.
Let H be a subgraph of G obtained by selecting each edge
with probability 1. Then, with probability at least 1 —O(n~2),

Ly =n(1+490)- Lg
for § = ,/7;?1}:%1;.

Proof. First, note that T lies in the kernel of both Lg and Ly,
and because of the spectral gap of G, dim(ker(L¢g)) = 1.
Therefore, recalling that Lg = ch/ ngDg 2, it suffices to
prove that

@8 2Dg 2 LuDg > (TE) 2| < n(1+9).

Here ETG is the pseudo-inverse of L, and |\Eg|\2 <
1/X\ because G has spectral gap A\. We will write X =
(LE)V2D; 2Ly DG (LE)Y? for convenience.

Note that Lg =) ..pLe, where L. = 0 is the
Laplacian of a single edge e and ||L.|2 = 2. Let X, =
(Zg)1/2D81/2L€D51/2(EJrG)l/2 if e is chosen in H and 0

otherwise. Then, X = > _, X, and [|[E[X]||2 = n. Moreover,

each X, satisfies X, = 0 and || X[z < HEEHQ . HD&lHQ .

| Lell2 < ﬁ Thus, by Matrix Chernoff (Fact II1.3),

020 dpinA
Pr{|| X2 >n(1+6)] <n-exp (_?77 : T) <0(n™?)
18logn
as long as rmf])\ <6< O

Finishing the algorithm. By Lemmas II.5 and II.6, we
can thus recover x* exactly if the constraint graph G' of ¢
has a nontrivial spectral gap and minimum degree dpi, >
polylog(n). To finish the implementation of Strategy I1.2, we
thus need to explain how to algorithmically decompose any
graph G into subgraphs Gy,...,Gr, each with reasonable
min degree and nontrivial spectral gap, while only discarding a
o(1)-fraction of the edges in G. This is the well-studied task
of expander decomposition, for which we appeal to known
results [34], [45], [46], [49].

This completes the high-level description of the algorithm
in the even k case. Below, we summarize the steps of the final
algorithm.

Algorithm IL.7 (Algorithm for £-XOR for even k).

Input: £-XOR instance 1) on n variables with m con-

straints and constraint hypergraph .

Output: Disjoint sets of constraints A, A2 C H such
that |.A;| < o(m) and only depends on #, and

Az = (H\ A1) NEy.

Operation:

1) Construct the 2-XOR instance ¢ with con-
straint graph G, as described in Defini-
tion II.1.

2) Remove small-degree vertices and run ex-
pander decomposition on G to produce ex-
panders G1,...,Gp. Set Ay to be the set of
discarded constraints of size o(m).

3) For each i € [T7, solve the basic SDP on the
subinstance ¢; defined by the constraints G;.
Let Ag) denote the set of constraints violated
by the optimal local SDP solution.

4) Output A; and A; = U¢T:1 .Ag').

E. The case of odd k

We are now ready to briefly explain the differences in the
case when k is odd. For the purposes of this overview, we will
focus only on the case of k = 3. Recall that we are given a
3-XOR instance v, specified by a 3-uniform hypergraph H C
(121, as well as the right-hand sides b € {~1,1} for C €
‘H, where bc = x¢, with probability 1 — 7 and bc = —zf
otherwise and z* € {—1,1}" is the planted assignment.

We now produce a 4-XOR instance using the well-known
“Cauchy-Schwarz trick” from CSP refutation [18]. The general
idea is to, for any pair of clauses (C, C”) that intersect, add the
“derived constraint” zcxcr = bobor to the 4-XOR instance.
Notice that if, e.g., C' = {u,,j} and C" = {w,7’,j'}, then z,,
appears twice on the left-hand side, and thus the constraint is

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

;224 % = bcber. Given this 4-XOR, we produce a 2-XOR
following a similar strategy as in Definition II.1. The above
description omits many technical details, which we handle in
Sections V and VI; we remark here that these are the same
issues that arise in the CSP refutation case, and we handle
them using the techniques in [29].

We have thus produced a 2-XOR instance ¢ that is noisy
but not in the sense of Definition 1.3. Indeed, each edge e in
¢ is “labeled” by a pair (C,C") of constraints in v, and e
is noisy if and only if exactly one of (C,C”) is, and so the
noise is not independent across constraints. Nonetheless, we
can still follow the general strategy as in Algorithm II.7. The
main technical challenge is to argue that the relative spectral
approximation guarantee of Lemma II.6 holds even when the
noise has the aforementioned correlations, and we do this in
Lemma VL7. This allows us to recover, for most intersecting
pairs (C,C"), the quantity £(C)&(C"), where £(C) = —1 if
C' is corrupted, and is 1 otherwise, i.e., b = z5£(C); we
do not determine £(C)&(C”) if and only if the pair (C,C")
corresponds to an edge e that was discarded during the
expander decomposition.

However, we are not quite done, as we would like to recover
&(C) for most C, but we only know &(C)&(C’) for most
intersecting pairs (C, C"). Let us proceed by assuming that we
know &(C)E(C) for all intersecting pairs (C, C”), and then we
will explain how to do a similar decoding process when we
only know most pairs. Let us fix a vertex u, and let H,, denote
the set of C' € H containing u. Now, we know &(C)&(C")
for all C,C" € H,, and so by Gaussian elimination we can
determine £(C') for all C' € H,, up to a global sign. Now,
we know that the vector {{(C)}cen, should have roughly
n|H.| entries that are —1. So, choosing the global sign that
results in fewer —1’s, we thus correctly determine &(C') for
all C' € ‘H,,. We can then repeat this process for each choice
of u to decode £(C) for all C.

Of course, we only actually know &(C)E(C’) for most
intersecting pairs (C,C"). This implies that for most choices
of u, the graph G, with vertices H, and edges (C,C") if
we know £(C)&(C’) is obtained from the complete graph
on vertices H, and deleting some o(1)-fraction of edges.
This implies that G, has a connected component of size
(1—0(1))|Hy|, and again via Gaussian elimination and picking
the proper global sign, we can determine £(C') on this large
connected component. By repeating this process for each
choice of u, we thus recover &(C') for most .

FE. Organization

The rest of the paper is organized as follows. In Sec-
tion III, we introduce some notation, and recall the various
concentration inequalities and facts that we will use in our
proofs. In Section IV, we prove Theorem 2 from Theorem 3
by reducing semirandom planted CSPs to noisy XOR. In
Sections V and VI, we prove Theorem 3; Section V handles
the reduction from A-XOR to “bipartite k-XOR”, and then
Section VI gives the algorithm for the bipartite £-XOR case.

III. PRELIMINARIES

a) Notation.: Given a graph G = (V, E)) with n vertices
and m edges (including self-loops’), we write Dg € R™*™ as
the diagonal degree matrix, Ag € R™*™ as the adjacency ma-
trix, and L = Dg — Ag as the unnormalized Laplacian (note
that the self-loops do not contribute to L¢). Furthermore, we
write EG = DalngD&l/2 to be the normalized Laplacian,
and denote its eigenvalues as 0 = Al(zg) < /\Z(EG) <. <
An(Lg) < 2.

For any subset S C V, we denote G[S] as the subgraph of
G induced by S, and G{S} as the induced subgraph G[S] but
with self-loops added so that any vertex in S has the same
degree as its degree in G.

Definition IIL.1 (Uniform hypergraphs). A k-uniform hyper-
graph H on n vertices is a collection #H of subsets of [n] of
size exactly k. For a set @ C [n], we define deg(Q) := |[{C €
H:QC O

A. Concentration inequalities

Fact IIL.2 (Chernoff bound). Let X, ..., X, be independent
random variables taking values in {0,1}. Let X = > | X;
and (1 = E[X]. Then, for any § € [0, 1],

Pri|X —p| >du < 213

Fact III.3 (Matrix Chernoff [47, Theorem 5.1.1]). Let
Xi,..., X, € R¥? be independent, random, symmetric
matrices such that X; = 0 and Apax(X;) < R almost surely.
Let X = Y | X; and p = Amax(E[X]). Then, for any
d e 0,1],

0 p

2
Pr [)\max(X) > (]. + (S),U] < d- exp (—ﬁ) .

B. Graph pruning and expander decomposition

It is a standard result that given a graph with m edges and
average degree d, one can delete vertices such that the resulting
graph has minimum degree ed and at least (1 — 2¢)m edges.
We include a short proof for completeness.

Lemma II1.4 (Graph pruning). Let G be an n-vertex graph
with average degree d and m = "5 edges, and let ¢ € (0,1/2).
There is an algorithm that deletes vertices of G such that the
resulting graph has minimum degree d and at least (1—2¢)m
edges.

Proof. The algorithm is simple: repeatedly remove any vertex
with degree < ed. First, we show by induction that each
deletion cannot decrease the average degree. Suppose there
are n’ < n vertices left and average degree d’ > d. Then,
after deleting a vertex w with degree d,, < ed, the average
degree becomes ",Zl,:ﬁd“ > ":f,’ffd =d- ’;;,1215. Thus, for
€ < 1/2, the average degree is always at least d. Furthermore,
since the algorithm can delete at most n vertices, it can delete
at most edn = 2em edges. L

7Each self-loop contributes 1 to the degree of a vertex.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

We will also need an algorithm that partitions a graph into
expanding clusters such that total number of edges across
different clusters is small. Expander decomposition has been
developed in a long line of work [34], [45], [46], [49] and
has a wide range of applications. For our algorithm, we only
require a very simple expander decomposition that recursively
applies Cheeger’s inequality.

Fact IIL.S (Expander decomposition). Given a (multi)graph
G = (V, E) with m edges and a parameter ¢ € (0,1), there
is a polynomial-time algorithm that finds a partition of V' into
Vi, ...,V such that \y(Laqv,y) = Q(e2/log? m) for each
i € [T and the number of edges across partitions is at most
em.

Proof. Fix A\ = ce?/log® m for some constant ¢ to be chosen
later. The algorithm is very simple. Given a graph G = (V, E)
(with potentially parallel edges and self-loops), if Aa(L¢g) < A,
then by Cheeger’s inequality we can efficiently find a subset
S C V with vol(S) < vol(S) such that % < V2
Here vol(S) :=) .gdeg(v). Then, we cut along S, add
self-loops to the induced subgraphs G[S] and G[S] so that the
vertex degrees remain the same (each self-loop contributes 1
to the degree). This produces two graphs G{S} and G{S},
and we recurse on each. By construction, in the end we will
have partitions V1, ...,V where either V; is either a single
vertex or satisfies Aa(Lgqv,1) > A

We now bound the number of edges cut via a charging
argument. Consider the “half-edges” in the graph, where each
edge (u,v) contributes one half-edge to u and one to v, and
each self-loop counts as one half-edge. Then, vol(S) equals
the number of half-edges attached to S. Now, imagine we have
a counter for each half-edge, and every time we cut along S
we add v/2)\ to each half-edge attached to S (the smaller side).
Since F(S,S) < v/2X - vol(S), it follows that the number of
edges cut is at most the total sum of the counters. On the
other hand, each half-edge can appear on the smaller side of
the cut at most log, 2m times, as each time the half-edge is
on the smaller side of the cut, vol(S) decreases by at least
a factor of 2, and vol([n]) = 2m. So, the total sum must be
< V2X\-2m logy 2m < em for a small enough constant c¢. [

IV. FROM PLANTED CSPs TO Noisy XOR

In this section, we show how to use Theorem 3 to prove

Theorem 2. Before we delve into the formal proof, we will
first explain the reduction given in [23]. We begin with some
definitions.
Setup. Let U be sampled from \I/(’}-z,m*,Q), where x* €
{-1,1}", H C [n)*, and Q is a planting distribution
for the predicate P. Let Q(y) = ng[k]Q(S) [Licsvi
be the Fourier decomposition of @, where Q(S) =
3 Yyei 113k QW) [Lies v € [-27F,27"]. Recall (Defini-
tion 1.2) that W is specified by a collection H C [n]* of scopes,
along with a vector £(C) € {—1, 1}* for each C' € H of literal
negations.

Definition IV.1. Let S C [k] be nonempty. Let 1/(5:*) be the
|S|-XOR instance obtained by, for each constraint C' in ¥,
adding the constraint [[; .25 = [L;cs ¢(C));. Similarly, let
5= have constraints [],. gz = —[1

i€S g(é)l

We make use of the following simple claim.
Claim TV.2. For each nonempty S C [k], 5 T) is a noisy
|S|-XOR instance (Definition 1.3) with planted assignment z*
and noise 7 = 1(1 — 2¥Q(S)). Similarly, 1»*~) is a noisy
|S|-XOR instance with planted assignment * and noise 7 =

3(1+2%Q(9)).

Proof. For each C, the literal negation é(C_") is sampled such
that Pr[((C) = {] = Q({®x7;), where © denotes the element-
wise product. This is equivalent to sampling y <— () and setting

UC) =y o 7. It thus follows that the probability that the
constraint C produces a corrupted constraint in (%) is

Pr Hyi—l]—;<1EyeQ Hyl:|>
veQ [ics ics
= J(1-2(s) |

and is independent for each C. A similar calculation handles
the case of ¢(5:7). O

With the above observations in hand, we can now easily
describe the reduction in [23]. First, their reduction requires
the algorithm to have a description of the distribution (). Given
Q, the algorithm then finds the smallest S such that Q(S)
is nonzero. Since they know the exact value of Q(S), they
can determine its sign correctly. Suppose that Q(S) > 0 (the
other case is similar). Then, by solving the |S|-XOR instance
(51 they recover the planted assignment of 1(51) exactly.?
But this planted assignment is precisely «*, and so they have
also succeeded in recovering the planted assignment of .

The aforementioned reduction clearly does not generalize to
the semirandom setting, as in general the subinstances (%)
will not uniquely determine x*. Furthermore, their reduction
additionally requires knowing (), and while it is not too
unreasonable to assume this for random planted CSPs (as it is
perhaps natural for the algorithm to know the distribution), in
the semirandom setting this assumption is a bit strange because
we want to view semirandom CSPs as “moving towards” worst
case ones.

We now prove Theorem 2 from Theorem 3.

Proof of Theorem 2 from Theorem 3. We will present the
proof in three steps. First, like [23], we will assume that the
algorithm is given a description of) and we will assume
that each |Q(S)] is either 0 or at least 2~%¢ > 0.° Then, we
will remove this assumption provided that Q(y) > 2¢ for all
y with Q(y) > 0, i.e., the every y in the support of @) has

8Here, they also treat |Q(S)| as constant, as if |Q(S)| < 1/n, say, then
their algorithm would not succeed in recovering the planted assignment on
the XOR instance.

This assumption is implicit in [23]; see the previous footnote.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

some minimum probability. Finally, we will remove the last
assumption.

Step 1: the proof when we are given Q. For each S where
Q(S) # 0, we construct the instance 15 (if Q(S) > 0)
or (57) (if Q(S) < 0). We then apply'® Theorem 3 to
each such instance. Note that by Claim IV.2, the instance
has noise = (1 — 2F|Q(S))) < 1(1 — ¢) (because
we picked the correct sign when choosing between (51
and 1/)(5 , and we assume |Q(S)| > 2 %¢). Then, since
m > cFnk/2. log " and |S| <]{1 by applying Theorem 3 with
noise 7 and parameter ¢’ := 2%, we obtain sets (51 (the
discarded set) and H(S: 2) (the corrupted constraints) where
[HED| < e'm and HE?D = (H\ HED) N Eyes). Hence,
for every constraint CeH \ HSD it follows that we have
learned], ¢ :r*d_, where x* is the planted assignment for .
By setting 7/ == H \ gs:Q@)¢oﬁ(S’1)» it Afollows that we
know [, ay, for all C € H' and S with Q(S) # 0, where
|H'| > (1 —2F"ym = (1 — &)m.

We now solve the system of linear equations given by
IL Sxd for all C € H' and S with Q(S) # 0 to obtain
some assignment x € {—1,1}". As z* is a valid solution to
these equations, such an z exists, although it may not be x*

The final step is to argue that for every
C e H , x satisfies the constraint é, namely that
P(U(Chzg, 0(Clazg,, ..., l(C)eag) = 1. Indeed, if
this is true then we are done, as x satisfies at least (1 —&)m
constraints in V¥, and so we have obtained the desired
assignment.

Let C' € H'. We know that for every S with Q(S) # 0, we
have that [[,cs 25 = [es ag, - Hence, it follows that

QU oz =3 Q) [U e,
SClk] €S
-y A [0
SClk] €S

Q(é(C’)@m) >0,

where the last inequality is because ¢ (é) was sampled from
the distribution Q(£(C) ® z*), and so it must be sampled
with nonzero probability. As (is supported only on satisfying
assignments to the predicate P, it thus follows that £(C)@t
must also satisfy P.

Step 2: removing the dependence on Q assuming a lower
bound on Q(y). First, we observe that because k is constant,
we can, for each S, guess a symbol {0,+,—}, where 0
denotes, informally, the belief that |Q(S)| < 2~*¢, + denotes
that Q(S) > 2 %¢, and — denotes that Q(S) < —2 %&. For
each of the 32" choices of guesses, i.e., functions f: {S C
[k]} — {0, +, —}, we run algorithm mentioned in the previous
step. Namely, for each S: (1) if f(S) = 0, then we ignore
S, (2) if f(S) = +, then we run Theorem 3 on ¥(5%) to

'0Note that Theorem 3 only applies when |S| > 2. When |S| = 1, there
is a trivial algorithm; see Section C for details.

obtain H(5V and H(5?), and (3) if f(S) = —, then we
run Theorem 3 on ¥(5+) to obtain H(5V) and H(52). As
before, we solve the system of linear equations to obtain
some assignment (/) € {—1,1}". By enumerating over all
possible choices of f, we obtain a list of at most 32" = o(1)
assignments. We then try all of them and output the best one.

It thus remains to show that at least one of the assignments
in the list has high value. As one may expect, this will be
the assignment 2" where f* is the correct label function.
Indeed, when f = f*, then we are precisely running the
algorithm in Step 1, and as observed, after solving the linear
system of equations we obtain an assignment z := 2/") with
the following property. For every C e H' and every S with
|Q(S)| > 27*¢, we have that [, za = Ilics g, where
H - H has size >(1—e)m

Finall, we show that for every C € H/,
T szltisﬁes tlle constraint = C. Namely, we haye
P(U(Chizg, U(C)aag,s. . H(COag,) = 1. Let C € H-.
We know that for every S with |Q(S)| > 27*¢, we have that
[Liecs g, = [ies ay, - Hence, it follows that

Q) o)

2 [[eCriza, — > Q) [«Cias
€S

SClk] =

- QC) o)

SC[k]

> Q(S) (H UCyiza —] g((j)ixt)
SCIR:|Q(S)| <2 ke €S ies
<ok .7kl

Now, if we assume that Q(y) > 2 for every
y € {-1,1}* with Q(y) > 0, then it follows that
Q(E(Cj) © z) > 0, and so z satisfies the constraint
P(E(C)1x0~17€(0)2xc~2, e 7€(C)kmék) =1

Step 3: removing the lower bound on Q(y). In Step 2, we
assumed that Q(y) > 2¢ for all y € {—1,1}* with Q(y) > 0
However, we only used this fact in the final step, when we
argue that Q(£(C) ®x) > 0 by observing that Q(¢(C) ®z) >
Q(U(C) ® z*) — 2¢ > 0. To remove the assumption, we will
show that for at most 28+2¢ constraints C' € H, it holds that
Q(U(C) ® x*) < 2. This then implies that x satisfies at least
(1—¢e—2%22)m = (1 — O(e))m constraints, which finishes
the proof.

Let S denote the set of C € H where Q({(C) ® z*) < 2e.
Observe that the probability, over the choice of ¢ (5) that C €
S is at most 2% -2 = 251 and moreover this is independent
for each C' € H. Thus, by a Chernoff bound, it follows that
with probability > 1 — exp(—O(em)) > 1 — 1/poly(n), it
holds that S| < 2- 2k+1z and so we are done. O

Remark TV.3 (Tolerating fewer constraints for structured @)’s).
We have shown that the above algorithm succeeds in finding
an assignment x that satisfies at least (1 — O(e))m constraints
when m > n*/2.poly(logn, 1/¢). However, if the distribution
Q has |Q(S)| < 2% for all S with |S| > r, then we

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

only need n"/2 - poly(logn,1/¢) constraints. (If » = 0, then
for small enough constant e, () will be supported on all of
{—1,1}*, and so any assignment satisfies all constraints. If
r =1, we require O(n - 1"%) constraints; see Lemma C.1.)
Indeed, this follows because for such @, the true label function
f* will have f*(S) = 0 for any S with |S| > r. Hence,
for this choice of f*, we only call Theorem 3 on noisy t-
XOR instances for ¢ < r, and so we have enough constraints.
It therefore follows that the assignment z(f*) that we obtain
for the label function f* will be, with high probability an
assignment that satisfies at least (1 — O(g))m constraints.

An example where this gives an improvement is the well-
studied NAE-3-SAT (not-all-equal-3SAT) predicate [3], [5],
[19]. Suppose @ is the uniform distribution over satisfying
assignments to NAE-3-SAT: Q(x1,z2, x3) = % . %(3 —x1Tg —
x93 — x173). Then, we only need m > O(n) constraints,
even though it is a 3-CSP (k = 3).

V. FROM k-XOR TO SPREAD BIPARTITE k-XOR

In this section, we begin the proof of Theorem 3. See
Definition 1.3 for a reminder of our semirandom planted k-
XOR model t(H,z*,n) given a k-uniform hypergraph H,
assignment z* € {—1,1}", and noise parameter n € (0,1/2).
Recall also that £, denotes the set of corrupted hyperedges.

We think of A; () as the small set of edges that we discard
(or give up on), and this will only depend on the hypergraph .
For the rest of the graph, the algorithm will correctly identify
which edges are corrupted.

Our proof of Theorem 3 goes via a reduction to spread
bipartite t-XOR instances for ¢ = 2,...,k, which are t-
XOR instances with some additional desired structure. Such
instances were introduced in [29] to study the refutation of
semirandom k-XOR instances. The reduction here is nearly
identical to the corresponding reduction in [29, Section 4].

Definition V.1 (Spread bipartite k-XOR). A p-bipartite k-
XOR instance 1 on n variables with m constraints is defined
by a collection of (k—1)-uniform hypergraphs H = {Hu }uep)
on the vertex set [n], as well as “right-hand sides” b,, ¢ for
each u € [p] and C' € H,,. There are two sets of variables of 1):
the “normal” variables x4, ..., x,, and the “special” variables
Y1,...,Yp. The constraints of i) are y,, HieC x; = by, ¢ for
each u € [p], C € H,.

We furthermore say that v is 7-spread if it has the following

additional properties:

M) [Hal =7 = 2|55] and “ is even for each u € [p],

(2) For each u € [p|] and set Q@ C [n], deg,(Q) <
<4 max(1, ns—1-1Qh,

Analogously to Definition 1.3, we call ¢ a semirandom
planted instance with planted assignment (z*,y*) and noise
parameter 7 if the right-hand sides b, c are generated by
setting by, = ¥y, [[, @; with probability 1 —» and b, ¢ =
—yu I l;cc®j otherwise, independently for each choice of
u, C. For a choice of z*,y*, H = {Hu}uepp. and 1, we call
this distribution Y ({Hy }uepp), ©*, y*, n). As before, if an edge
(u,C) has by,c = —y; [[;cc xi, we call (u,C) a corrupted

hyperedge, and we denote the set of corrupted hyperedges in
lﬁ by &/,.

The main technical result of the paper is the following
lemma, which gives an algorithm to find the noisy constraints
in a semirandom planted 7-spread bipartite k-XOR instance.

Lemma V.2 (Algorithm for 7-spread bipartite k-XOR). Let
k>2npeN e (0,1),n€][0,1/2), and let v :=1-2n >
0. Let 7 < \/%gn, and let m > C’n%\/ﬁ- %7;)/32/2
for some universal constants c,C'. There is a polynomial-time
algorithm A that takes as input an T-spread p-bipartite k-
XOR instance 1) with constraint hypergraph H = {Hy} ey
and outputs two disjoint sets A;(H), A2(¢) C H with
the following guarantee: (1) for any instance 1 with m
constraints, |Ay(H)| < em and Ai;(H) only depends on
H, and (2) for any z* € {-1,1}",y* € {-1,1}? and
any H = {Hutuep) with [H| = 32, e Hal = m, with
probability 1 — m over ¥ < Y({Hufuep), vy n), it
holds that As(v) = Ey N (H\ A1(H)).

Note that as 7 — 2, v =1 —2n — 0 and 7 — 0, which

blows up m. This is the expected behavior since when 7 = %,
it is impossible to recover the planted assignment since the
signs of the constraints are uniformly random.

A. Proof of Theorem 3 from Lemma V.2

With Lemma V.2, we can finish the proof of Theorem 3.
The high-level idea of this proof is very simple. First, we
decompose the k-XOR instance 7 into subinstances ()
for each t = 2,...,k, using a hypergraph decomposition
algorithm very similar to the one used in [29], [31]. The
algorithm and its guarantees are shown in Section B. Then, we
run the algorithm in Lemma V.2 to identify a set of corrupted
constraints and a small set of discarded constraints within each
subinstance 1Y), We then take the union of these outputs to
be the final output of the algorithm.

Proof of Theorem 3. We begin with the decomposition of)
into), ... ¥*) along with a set of “discarded” hyperedges
H(™), which is done using Algorithm B.1 with spread param-

eter 7 = f}% where ¢ is the constant in Lemma V.2.
For each t = 2,...,k, ¥¥) is a semirandom (with noise 7)

planted 7-spread p(*)-bipartite t-XOR instance specified by
(t — 1)-uniform hypergraphs {Hq(f) Yuep®i-

Let m(*) = Zue[p(t)] |Hq(f>|. Algorithm B.1 has the follow-
ing guarantees:

(1) The runtime is n©®), "

(2) For each t € {2,...,k} and u € [p®)], 1P| = o =

2|52 max(1,nt~3~1)[; in particular, |H\| is even and
is at least 2| 515 |,

(3) For each t = 2, ..., k, the instance 1)(*) is T-spread,

(4) The number of “discarded” hyperedges is m(?) =
HD| < Lons,

(5) For t € {2,...,k}, each C € H is obtained by
removing k — (¢ — 1) vertices from an edge in the

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

original hypergraph #. Thus, there is a one-to-one map
Decomp: H — HW U Uf:2{H7(J‘t)}u€[p(t)]? such that
an edge C € H is corrupted if and only if the edge
Decomp(C) is corrupted in the instance ¥(*) that it lies
in.

For convenience, we denote v = 1 — 2p and § :
4C' - %7;)/2/ = 4C R 31°§/2” where C,c¢ are the con-
stants in Lemma V2 The algorithm in Theorem 3 works
as follows. First, it runs Algorithm B.1 to produce the
instances (® ... (*) Then, for each t = 2,... k, if
m® > n%\/p(it B, we run Lemma V.2 on tlz(t) and
obtain, with probability 1 — 1/poly(n), a set Agt) where
140 < £m® and AP = £,0, \ AY. Otherwise, if
m® < n = /p® - B, we set A1) = H® and AP = 0.
Finally, we output A; == H(M) U Uf:z Decompfl(Agt)) and
As = Uf:z Decompfl(Ag)), where Decomp is the mapping
in property (5) of Algorithm B.1.

Note that m® = p(‘)|H§f)| > pt) . #ntfgfl, which
means p(< 2725t and since >, vVm® <

\ kY, m®) < vkm by Cauchy-Schwarz, we have
k t—1
ZnTVP(” B <0(7)

niVEkm- B8 < o(e)m

as long as m > n? - k72B% /2. Moreover, m1) <
log,y"n 2 < o(e)m. One can verify, by plugging in ﬁ, that the
lower bound on m in Theorem 3 suffices.

By union bound over ¢, it thus follows that

k
O+ 0T VpWg <em,
t=2

2”2 =

k
(1) €
|A | <m +; S

and Ay = €\ A;. Moreover, by Lemma V.2, A; only depends
on the hypergraph #. This completes the proof. O

VI. IDENTIFYING NOISY CONSTRAINTS IN SPREAD
BIPARTITE k-XOR

In this section, we prove Lemma V.2. The proof will
be decomposed into the following steps. First, we take the
semirandom planted bipartite £-XOR instance 1) and transform
it into a 2-XOR instance ¢. Second, we decompose the
constraint graph of ¢ into expanders. For each expander in
the decomposition, we argue that the SDP solution to this
subinstance is rank 1, and moreover agrees exactly with
the planted assignment. This allows us to identify, for each
expanding subinstance, exactly which edges in ¢ are errors.
Finally, we use this information to identify the set of corrupted
constraints in the original instance v, which finishes the proof.

A. Setup and key notation

We now introduce the key notation that shall be used
throughout this section. Let 1 be the semirandom 7-spread
p-bipartite k-XOR instance (recall Definition V.1) with m
constraints given as the input to the algorithm. Recall that
the instance ¢ is specified by a collection of p hypergraphs

{Hu}uep), where each H,, is a (k—1)-uniform hypergraph on
n vertices and |#,,| = m/p. Each constraint in 1) is specified
by a pair (u, C') where u € [p], C' € H,, and has a right-hand
side b,,c € {—1,1}, and the constraints are y, [[;cc 2 =
bu,c» where {y, }ue[p) and {x;};c[n) are variables. Because the
instance v is semirandom with noise parameter 7 and planted
assignment (z*,y*), for each constraint (u7 C') we have, with
probability 1 — 7 independently, buc = Yy llicc i, and
otherwise b, c = —y. quc . Our goal is to output in
nO®) _time, a set A; (H) of size < 7m to discard, and then
for the rest of the instance, identify exactly the corrupted
constraints, i.e., those for which b, c = —y;, HieC T

We now define the 2-XOR instance ¢ from). An example
is shown in Fig. 2.

Definition VI.1 (2-XOR instance ¢ from bipartite k-XOR).
For every w € [p] and H,, we partition H, arbitrarily into
two sets 1\ and HP of equal size.

o If k is odd, then there are (é)2 variables in ¢, one
variable z(g, g,y for each pair of sets Sy, S5 C [n] where
[S1] = [Sa| = 551
o If k is even, then there are 2([%10 (L%J) variables in
¢, one variable z(g, s,) for each pair of sets S1, Sz C [n]
where either |S| = [%51] and |Ss| = |55] or [S1] =
[551] and |So] = [554 11
For each u € [p], C € HS and ¢ € HP, we arbitrarily
partition C' into sets S; U Sy and C” into sets S7 U S5, where
1S1] = |S7] = [551] and |Ss| = |S4| = [%51]. We then add
the constraint z(s, s1)2(s,,5;) = bu,cbu,c’ 10 .

It is intuitive to think of clauses from ’H&L) and ?—[&R) as
having different colors, and each variable z(s, s5;) contains
roughly k/2 of each color. See Fig. 2 for an example of a
2-XOR ¢ constructed from a bipartite k-XOR 1.

Observation V1.2 (Size of ¢). The number of variables in ¢
is at most n*~! (for both even and odd k). Since each |H,,| =

m/p, H’ELL)‘ = |H,R)| = 3, and the number of constraints
in ¢ is exactly p - (%)2 = T—;. In particular, when m >

n%\/ﬁ - for 5 = poly(logn) as assumed in Lemma V.2,
the average degree of ¢ is at least iBQ.

Remark V1.3 (Corrupted constraints in ¢). A constraint
2(81,54)%(82,81) = bu,cbu,cr In @ is corrupted if exactly one
of by,c and b, ¢ is corrupted in 1. Thus, if each constraint
in ¢ is corrupted with probability € (0,1/2), then each
constraint in ¢ is corrupted with probability 2n(1 —n) < 1/2.
Note, however, that the constraints in ¢ are not corrupted
independently.

We need some more definitions about the constraint graph
of ¢.

Definition VL4 (Constraint graph of ¢). Let G(¢) = (V, E)
be the constraint graph of ¢. Notice that each edge e G
E uniquely identifies u(e) € [p] and Cp(e) € ’Hu(e),

Cr(e) € H<() For each u € [p], C € H) | define

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

G(L) ¢(¢) to be the subgraph of G that C' participates in, i..,
Wlth edge set {e € E: u(e) = u, Cr(e) = C}. We similarly
define ch)w(qﬁ) for ¢" € HP

Fig. 2: An example of the 2-XOR instance ¢ from a bipartite
4-XOR ¢ (Definition VL1). On the left, H\" consists of
Cy = {1,2,3} and Cy = {4,5,6} (with green vertices), and
1Y consists of €} = {1,6,7} and C} = {1,8,9} (with blue
vertices). On the right, the constraint graph G(¢) has vertices
zs,,s, Where either |S1| =2, |S2| =1 or |Si| =1, |S2| =2
(we can view Sy, S as having green, blue vertices). Each
edge corresponds to two clauses in 1); for example, the edge
{z(1,2y.111, 2(3}.{6,7} } comes from the clauses Cy and Cj.
Corruptions. In the figure, we label a clause —1 if it is
corrupted and +1 otherwise. An edge in G is corrupted if
exactly one of the two corresponding clauses in ¢ is corrupted.
Degree of Gi%é(d)) For C; € H", the subgraph GEIf/éI ()
corresponds to the edges colored red, i.e., all edges that Ch
participates in. The vertex z(; 2y (1} has degree 2 in Gu Kan (¢)
because |C] NCY| = 1.

We next make the important observation that the degree
of a Vertex in Gu C(QS) is upper bounded by the number of
¢ € HY sharing at least | 2511 vertices. See Fig. 2 also
for an illustration. Therefore, assuming that v is 7-spread, we
have a maximum degree bound on G;%(@ and Gz(f%, (¢) for

all u e [pl, C € HE and ¢ € 1.

Lemma VL5 (Degree bounds for foé ELRé,) Let 1) be an
T-spread p-bipartite k-XOR instance. Then, for any u € [p],
CeHP and ¢ € HE, the maximum degree of GiLé(@
Gfl}%,(qzﬁ) is at most 1/72.

Proof. Consider any C' € 7 and two adjacent edges
{2555 2(s5p} and {25, 57, 25,90} 0 Gl (0)
formed by joining C = Sy U Sy with ¢' = S U S} and
Cr=57usY e H | As the edges are adjacent, it must be
the case that either S] = S7 or S, = S, which means that
|c'nC”| > L’“Q;lj Thus, the degree of a vertex z(g, g in
G is upper bounded by the maximum number of C’ € ’H&R
that all share the same [%51 | variables.

Suppose ¢ is T-spread, meaning that deg,, (Q)
T—émax(l,ng‘l_@‘) for @ C [n]. Since & —1— Lk L
we have that Gq(fc)

DSDI/\

(¢) has maximum degree <1/7%

B. Proof outline

With the setup in Section VI-A in hand, our proof now
proceeds in three conceptual steps.

Step 1: graph pruning and expander decomposition. Sup-
pose the instance ¢ has average degree d. We first prune the
instance using Lemma III.4 such that the resulting constraint
graph has minimum degree > ed while only removing ¢
fraction of the constraints, where € = o(1). We further apply
expander decomposition (Fact IIL.5) to the pruned instance
to obtain subinstances ¢1,..., ¢ while discarding only a ¢
fraction of the constraints of ¢ such that the constraint graph
of each ¢; has spectral gap Q(£?).

Step 2: relative spectral approximation and recovery of
corrupted pairs. We show that for each expanding subin-
stance ¢;, the basic SDP for the 2-XOR instance ¢; is equal
to x*(z*) T, where x* is the planted assignment for ¢. That
is, the SDP solution is rank 1 and agrees with the planted
assignment for ¢. We show this by arguing that, for each ¢;,
the Laplacian of the corrupted constraints in ¢; is a spectral
sparsifier of the Laplacian of the constraint graph of ¢; (see
Lemma IL.5). Here, we crucially use that each such constraint
graph has large minimum degree and spectral gap.

From this, it is trivial to identify the corrupted edges in

each ¢;, as they are the ones violated by the SDP solution.
We are not quite done yet, however, because each constraint in
¢ corresponds to a pair of constraints in the original instance
.
Step 3: recovery of corrupted constraints from corrupted
pairs. The previous step shows that for all but a ¢ fraction of
tuples (u, C,C") where u € [p], C' € HE, and ¢ e 1P,
we can recover the product &,(C)&,(C"), where &,(C) = —1
if (u,C) is noisy in 1), and is +1 otherwise. Because ¢ is
small, it must be the case that for most u € [p], we know
the product &, (C)&,(C") (from Step 2) for most pairs (C, C")
with C € " and €7 € H[

Suppose we knew &, (C)&,(C’) for all (C,C") € H x

(). Then, it is trivial to decode &u(C) up to a global
sign. Formally, we could obtain z € {—1,1}« where zc =
a&,,(C) for some o € {—1,1}. From this, it is easy to obtain
&.(C), as the fraction of C € H, for which £,(C) = —1
should be roughly 1 < 3; so, if z has < f-fractlon of —1’s,
then z = &,(C), and 0therw1se —z = §u(). This, however,
requires |H,| > Q((112%:;)2) for a high-probability result.

Additionally, we do not quite know &,(C)&,(C”) for all
(c,c" e HgL) X ’Hq(tR): we only know this for all but
a g,-fraction of the pairs. By forming a graph G, where
we have an edge (C,C’) if (C,C") is a pair where we
know &,(C)&,(C"), we can thus obtain such a z for all C
in the largest connected component of G,. Because G, is
obtained by taking a complete biclique and deleting only a
g, -fraction of all edges, the largest connected component has
size (1 —ey)|[Hul, (C) for all but a
g, -fraction of constraints in H,,. We do this for each partition
u, which finishes the proof.

C. Graph pruning and expander decomposition

This step is a simple combination of graph pruning and
expander decomposition.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Lemma VL.6. Fix ¢ € (0,1). There is a polynomial-time al-
gorithm such that, given a 2-XOR instance ¢ whose constraint
graph has m edges and average degree d, outputs subin-
stances ¢1,...,¢r on disjoint variables with the following
guarantees: ¢1,...,¢r contain at least 1 — € fraction of the
constraints in ¢, and for each i € [T), the constraint graph
G of ¢i, after adding some self-loops, has minimum degree
at least ed and \5(Lg,) > Q(e2/log? m).

The self-loops in Lemma VI.6 are only for the analysis
of Lg, and do not correspond to actual constraints in ¢;.
Observe that adding self-loops to a graph GG does not change
the unnormalized Laplacian L¢, but as D (the degree matrix)
increases, the spectral gap of the normalized Laplacian, i.e.
)\Q(Eg) = /\g(Dél/QLgDél/Z), may decrease. The expander
decomposition algorithm (Fact III.5) guarantees that each
piece, even after adding self-loops to preserve degrees, has
large spectral gap. This does not change the subinstances
¢1,..., ¢, but in the next section, it is crucial that we use this
stronger guarantee to ensure a lower bound on the minimum
degree.

Proof of Lemma VI.6. We first apply the graph pruning al-
gorithm (Lemma II1.4) such that the resulting instance has
minimum degree > £d and at least (1 — 2¢)m constraints.
Then, we apply expander decomposition (Fact IIL5) that
partitions the vertices of the pruned graph G’ into Vi,..., Vp
such that the number of edges across partitions is at most
£m, and for each i € [T], the normalized Laplacian satisfies
Az(EG/{Vi}) > Q(2/log® m). Here we recall that G'{V;}
is the induced subgraph of G’ with self-loops such that the
vertices in G’{V;} have the same degrees as in G'.

In total, we have removed at most em edges. This completes

the proof. L

D. Rank-1 SDP solution from expansion and relative spectral
approximation

We next show that for each subinstance ¢; obtained from
Lemma VL6, its constraint graph G and the subgraph of cor-
rupted edges H satisfy Ly < %Lg. Recall from Lemmas IL.5
and II.6 that this implies the basic SDP for the 2-XOR ¢; is
rank 1 and agrees with the planted assignment of ¢.

The next lemma is analogous to Lemma II.6 but differs in
an important way: a constraint in ¢ is corrupted if and only
if exactly one of the two corresponding constraints in v is
corrupted; thus, the corruptions in ¢ are correlated. This is
why each constraint in ¢ is obtained from one clause in H&L)
and one clause in H&R) (recall Definition VI.1), so that in
the proof below we have independent randomness to perform
a ‘“2-step sparsification” proof. It is also worth noting that
the following lemma requires not just a lower bound on the
minimum degree and spectral gap of G but also that the
original bipartite k-XOR instance) is well-spread, which
allows us to apply Lemma VLS.

Same as Lemma II.6, the following lemma is a purely graph-
theoretic statement.

Lemma V1.7 (Relative spectral approximation with correlated
subsamples). Suppose G = (V, E) is an n-vertex graph with
minimum degree dyin (self-loops and parallel edges allowed)
and spectral gap Xo(Lg) = N > 0. Let my,ms € N,
n € [0,1/2), and let €V . &) ¢ €2 pe iid.
random variables that take value —1 with probability 1 and
+1 otherwise. Suppose there is an injective map that maps
each edge e — (ci(e),ca(e)) € [ma] x [ma], and for each
i € [mq] (resp. j € [m2]) define Gl(-l) (resp. GS.Z)) be the
subgraph of G with edge set {e € E : ci(e) = z; (resp.
{e € E: ca(e) = j}). Moreover, suppose Ggl) and Gj2> have
maximum degree < A for all i € [my], j € [ma).

Let H be the subgraph of G with edge set {e € FE :
Eiize)ﬁgze) = 71}. There is a universal constant B > 0 such
that if dminA > BAlogn, then with probability 1 — O(n=2),

Ly =< max <(1 +9)-2n(1 —n), %) e

BAlogn
dmin A °

for § =

Let v := 1 — 2 > 0 since n < L. Notice that 2n(1 —
n) = 3(1 —~?), which approaches £ as n — 3. Thus, if
§ <~? then (146)-2n(1—n) < (1+19%)-5(1-7°) < 3,
and Ly < %LG suffices to conclude via Lemma II.5 that the
SDP relaxation on the expanding subinstance is rank 1 and
recovers the planted assignment, which also gives us the set
of corrupted constraints.

[V

Proof of Lemma VI.7. First, note that by the definition of
Laplacian and the spectral gap of L, span(1) is exactly the
null space of L and is contained in the null space of L.
Therefore, recalling that Lg = Dg 2ngé/ 2, it suffices to
prove that

1
3

- - - (
Here Lg is the pseudo-inverse of L, and ||Lg||2 < 1/A

For simplicity, for any graph G’, we will write Lo =
(LE)2DG " Le DG ?(LE)/2. Thus,

Lp=) 1 (éiiie>fifie) = ‘1) Le,

|(E6y205 2L pg 62, < s 11+ 2000),
2

N—

~

eel
and E[Ly] = 2n(1 —) Z L..
eekr
Note that ZeeE Ee = Eg, a projection matrix, thus
| X eer Lell, = 1.

For each ¢ € [my], we further define Ggll and G£12 to
be (random) edge-disjoint subgraphs of GZ(-l) where Gglj_ has
edge set {e € E : ci(e) = i,ﬁgze) = +1} and Gglz has
edge set {e € E : c¢i(e) = i,£(2> = —1}. Note that
Gg}l, GV are independent of £ = (59), .., Em)). By the

cale)
i,—

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

maximum degree bound on GO) we have that HLGm H2 and
i+
2wl < [gooll, < 28 Thus,
Y Ry e e e
<2a-[ZL], - Ipc'l. @
2A
< .
a dmin)\

Similarly, for j € [ma], ngl and G§21 are (random)
edge-disjoint subgraphs of G(Q) independent of £ =

(5(2) . 7(,2) such that H o) H2 and HLGm H2 %

Now, we first fix €2 ¢ {—1,1}m=, Observe that we can
write I H as

Lp= Y 1¢" =+1) Ly +1(5 = *1)@@%’ 3)
1€[m1] ' '
and
[EH|£(2)}
n Y Lew +n Y0 Lao
i€[mq] i€[mq]
= ((1- 5(2(5) =-1+n- 1(5(2(5) +1)> L
ecE
= Z Wey(e) * L
ecE

“4)

Here wcz(e) € {7771 - 77}’ thus ”E[EHK(Q)]HQ =

0 Zeer Lell, = -
We now split the analysis into two cases. Let 19 := 1/12.

Case 1: n > no.
In light of Eq. (3), we define X; == 1(¢\”

(5(1) - _) L (1) such that LH = Z1€[m

we have that X; >- 0 and [| X2 < 5 almost surely from
Eq. (2). Thus, applying matrix Chernoff (Fact 1IL.3), we get

&y (124, 2

<n-exp (30 [BLalc®|

= +1)-EG52 +

] X;. Moreover,

(1+0) HE[LH €@ H]

dmin)\
2 2A)

<n-e 52ndmin)\
coxp [= 2 1%minA
- P 6A ’
which is at most O(n~2) as long as §2 > Z18len f}lﬂogn for a large

enough constant Bj. N
Next, we similarly prove concentration for ||E[Lg|¢@]|,
over £(2), Recalling Eq. (4),

E[EH|£(2)] = Z Wey(e) - E

eckE
B SR ST SEE N
J€[ma] eGG(z) J€[m2] ‘

Efw;] = 2n(1 - n), and |Ee E[LH|§(2>}H = 2p(1 -
—nA
M Seep Lell, = 2001 =). Since [lw; Lo, < 25252,
we can apply matrix Chernoff again:
Pr [|[EZal®]|, > 1 +9)-2n(1 -)]
¢ 2
(0)
1 Amin A
<n- —Z82 . 9p(1 —) . —n?
<n eXP< 3 n(1—n) 2(1—77)A>
which is at most O(n~2) as long as 62 > M for a large

enough constant Bs. Combining both tail bounds by the union
bound, we have that with probability at least 1 — O(n~2),
|Zxl, < (1+6)-2n(1 —n) as long as 62 > Balogn for g
large enough B. This establishes Eq. (1), proving the lemma
for this case.

Case 2: 7 < mo. To handle this case, observe that the
exact same analysis goes through for H = {e€ E: fcl(e)

—~1or g‘Q(, =—1} D H. Indeed, similar to Eq. (3) and (4),
we have L = Yic [ml]X where X; = 1(5(1) = +1) -
ZG@ + 1(52-(1> =-1)- o (notice the 2nd term is G(l)
ins;ead of G’El)), and

E[L €@ = (1-1n) Z LGu) +n Z LG<1>
ze[ml] ZE[M1
=D Wesiey Le= D @y Lo,
ecE j€[ma]

where w; = 1 1f§(2> =—landn 1f§(2)
n+n(1—n) = 77(2—77)
02 =)| Leep Lell, = n@ -).

First, set 7 = no, and let Hy be the random subgraph as
defined above. Similar to Eq. (5) and (6), we apply matrix
Chernoff (Fact I11.3) and get that with probability 1 —O(n~2),
||LHO”2 < (149) n0(2—mnp) for 6 = % <1.1In
particular, thlS means that Ly = = 2n0(2 — no)La = §LG
when 1y = 1/12.

Now, fix any n < 19. We can obtain a coupling between
this case and the case when 17 = 19 by randomly changing
52(1) and §§2> from +1 to —1 (while not flipping the ones with
—1). Notice that H is monotone increasing as we change any
+1 to —1 (whereas H is not!), thus we must have H C Hy
in this coupling. Then, as H C H, we have

+1, hence E[w;] =
H‘§(2) I, =
2

1
LHijIijIO < §LG

with probability 1 — O(n~=2). This finishes the proof of
Lemma VL7. O

E. Recovery of corrupted constraints from corrupted pairs

We have thus shown that, with probability > 1—1/poly(n),
we can exactly recover the set of corrupted constraints within
each expanding subinstance ¢1, . .., ¢p. Recall that after prun-
ing and expander decomposition (Lemma VI1.6), the expanding
subinstances contain a (1 —)-fraction of all edges in the

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

instance ¢, and the set of edges removed only depends on the
constraint graph and not the right-hand sides of ¢. As stated in
Observation VI.2, the instance ¢ has exactly m? /4p edges, and
they correspond exactly to the set {(u,C,C’) : u € [p],C €
HT(LL), C' e HS,,R)}, and moreover an edge e in ¢ is corrupted
if and only if exactly one of the two constraints (u, C'), (u, C")
is corrupted in the original instance 1, where e corresponds
o (u,C,C"). For each u € [p] and C € H,, = HE o,
let £,(C) = —1if (u,C) is corrupted in 1, and 1 otherwise.
It thus follows that we have learned, for 1 — ¢ fraction of all
{(w,c,c”) :u e [p,C € HP. ' e #PY, the product
5u(0) ' §1L(C/)'

It now remains to show how to recover &,(C') for most
u € [pg, C € H,. For each u € [p], let P, C {(C,C") :
Ce ’HuL), e ’H&R)} such that we have determined &, (C') -
&u(C'), and let P = Uy,epp Py. We know that [P| > (1 —

)’”—2 Let &, be chosen so that |P,| = (1 — au)%, ie., &y
is the fraction of pairs in ’H() x HSLR) that were deleted in
Lemma VI.6. Notlce that we have

(1—5)*<|P| Z\P|_* Do (1-ew)
) u€lp] u€|p] (7)
- - Eu <€
=D
u€lp]

One can think of this problem as a collection of disjoint
satisfiable (noiseless) 2-XOR instances on P,, where each P,
is a biclique (— vertices on each side) with ¢, fraction of
edges are removed.

Algorithm VL8 (Recover corrupted constraints from
corrupted pairs).
Given: For each u € [p], a set P, C ’z’-li(LL) X HfiR) such
2
that [P, | = (1 —e,) 7z for &, € [0,1], along
with “right-hand sides” &, (C) - &,(C") for each

(C.C") € P,.

Output:For each u € [p], disjoint subsets AP, AD ¢
Ha.

Operation:

1) Tnitialize: A, A% = 0 for each u € [p].
2) For each u € [p]:

a) If e, > 1/3, set Aq(}) = H, and ./41(,@2) =
0.

b) Elseife, < 1/3,let G, be the graph with
vertex set H,, = HSLL) UH&R) with edges
given by P,, and let S, be the size of the
largest connected component in G,,.

¢) As S, is connected in GG, and we know
&u(C)€,(C") for each edge (C,C') in
G, by solving a linear system of equa-
tions we obtain z € {—1, 1}« such that
either zc = &,(C) for all C € S, or
zo = —&,(C) for all C' € §,. That is,

2o = &,(C) up to a global sign.
d) Pick the global sign to minimize the num-
ber of C e S, for Wthh zc = —1. Set
ALY = H, \ S, and AR = ={CeS,:
zZo = —1}
3) Output {.Au)}ue[p] {Au Yuem]

We now analyze Algorithm VI.8 via the following lemma.

Lemma VL9. Let n € [0,1/2), and let [H,| = 7 =
(1 2 B logn and |P,| = (1— 5u) "‘ with &,, € [0, 1] for each
u € [p), and * 52 uelp) Eu S & The outputs of Algorithm VI.8
satisfy the followmg (1) Zue |A | < 4em, and (2) with
probability 1 — n™" over the notse {6u(O) Yuepp),cen,, for
every u € [p] we have that A = {C € H, : £&,(C) =
13\ AW,

Proof. Suppose that €, < 1/3. Observe that G,, is a graph
obtained by takm%y a biclique with left vertices HELL) and
right vertices HD e, with m/2p left vertices and m/2p
right vertices. The following lemma shows that the largest
connected component S, in G, has size at least %(1 —Eu)-

Claim VI.10. Let K,, ,, be the complete bipartite graph with
n left vertices L and n right vertices R. Let G be a graph
obtained by deleting en? edges from K, ,,. Then, the largest
connected component in G has size > 2n(1 — ¢).

We postpone the proof of Claim VI.10 to the end of the
section, and continue with the proof of Lemma VI.9.

We now argue that we can efficiently obtain the vector
z in Step (2c) of Algorithm VI.8. Indeed, this is done as
follows. First, pick one Cy € S, arbitrarily, and set z¢, = 1.
Then, we propagate in a breadth-first search manner: for
any edge (C,C’) in S, where z¢ is determined, set z¢r =
20+ (C)E,(C"). We repeat this process until we have labeled
all of S,,. Notice that as .S, is a connected component, fixing
z¢c, for any Cy € S, uniquely determines the assignment of
all Sy, thus we have obtained z¢ = &,(C) up to a global sign.

Now, we observe that S, does not depend on the noise
in 7. Indeed, this is because the pruning and expander de-
composition (and thus the graph G,) depends solely on the
constraint graph G of the instance ¢, and not on the right-hand
sides of the constraints. The following lemma thus shows that
with high probability over the noise, the number of C' € S,
where &,(C) = —1 is strictly less than 1/2|S,|. Hence,
in Step (2d), by picking the assignment +2z that minimizes
the number of C € S, with &,(C) = —1, we see that

P ={CeS,:z0=-1}={C€S,:&(C)=-1}

Claim VL11. Let n € (0,1/2) be the corruption probability,
and assume that p < nF and no> (1 Y w5z logn. With

probability 1 —n~—F over the noise 1n %, it holds that for each
u € [p] with g, < 1/3, {C € Sy : &.(C) = —1}] < &[S

We postpone the proof of Claim VI.11, and finish the proof
of Lemma VL9. We next bound >,) \AE}>|. By Eq. (7) we

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

have that %Zu cu < €. Thus,

Z \HMé% Z 3e, < 3em.

wie, >1/3 wie,>1/3

Moreover, by Claim VL.10 we have |S,| > (1 — &) |Hu| =
(1- Eu)% Thus,

SooHLAS S Y e %g

uie, <1/3 uie, <1/3

Therefore, combining the two,

Z"A(l Z [Ho \ Sul + Z |Hy| < dem,

we [p] uie, <1/3 uie, >1/3

which finishes the proof of Lemma VI.9. O
In the following, we prove Claims VI.10 and VI.11.

Proof of Claim VI.10. Let Sy,...,S; be the connected com-
ponents of G. Let ¢; = |S;NL| and r; = |S; N R|. The number
of edges in G is at most Z§=1 lir.

Now, suppose that the largest connected component of G
has size at most M. Then, we have that ¢; + r; < M for all
i € [t]. Notice that the number of edges deleted from K, ,, to
produce G must be at least n? — Zzzl {;r;, and this is at most
en?. Hence, by maximizing the quantity Z§=1 {;r; subject to
li+r; < M for all i € [t] and 22:1 l; +r; = 2n, we can
obtain a lower bound on the number of edges deleted from
K, », in order for the largest connected component of G to
have size at most M. We have that

! i b +1r; 2 M Ui +r; M

i=1

where the first inequality is by the AM-GM inequality. Thus,

M
anan—nT = M >2n(l-¢),

which finishes the proof. |

Proof of Claim VI.11. Let u be such that €, < 1/3, and let
S, be the largest connected component in GG,. Observe that
S, is determined solely by the constraint graph of ¢, and in
particular does not depend on the noise in ¢ (and hence on
the noise in 1)). As p < n* by assumption, it thus suffices to
show that for each u € [p], with probability 1 —n~2* it holds
that [{C € S, : £&.(C) = —1}| < |Su|. Notice that [{C €
Syt &u(C) = —1}] is simply the sum of |S,| Bernoulli(n)
random variables. By Hoeffding’s inequality, with probability
> 1 — exp(—242|S,]) it holds that |{C € S, &u(C) =
1} < (n+ 6)|Su|. We choose § = %(3 — 1) such that

n+d < & forne (0,3) Then by noting that 262|S,,| >
262(1 —eu)|Hul > 3G =) 2.2 "+ > 2klogn since 7 >
logn, Claim VI.11 follows O

(1—2n) 277)2

F. Finishing the proof of Lemma V.2

Proof of Lemma V.2. We are given an 7-spread p-bipartite k-
XOR instance v with constraint graph H = {H, },c[,], Where
we recall from Definition V.1 that (1) m = |H| and each
Ml =5 = 2|55 and ot is even, and (2) for any Q C [n],
degu(Q) < L max(1,n2~'~12l). For convenience, let m >
n'z \f 3 where 8 :=C- (lesg;)m and v :=1-2n € (0,1]
since n € [0, 3).

First, we construct the 2-XOR instance ¢ defined in Defi-
nition VI.1. As stated in Observation VI.2, the average degree
is at least d == 3 132 and furthermore, by Lemma VL5, the

maximum degree of Gu C((b) and Gu 2 (¢) for any u € [p],

C e HgL) and C' € ’Hu ™ is bounded by A == 1/7% The
algorithm then follows the steps outlined in Section VI-B.

Step 1. We apply graph pruning and expander decomposition
(Lemma VI1.6) with parameter &’ = is, which decomposes
¢ into ¢1,...,¢r such that they contain 1 — &’ fraction
of the constraints in ¢, and their constraint graphs (after
adding some self-loops due to expander decomposition) have
minimum degree dpi, > :13 'd = 562 and spectral gap
A= Q) log? m) = Q(=/(K* log” n)).

Step 2. We solve the SDP relaxation for each subinstance ¢;.
Let G be the constraint graph of ¢; (with at most N < nF~!
vertices) and H be the corrupted edges of G. We apply
the relative spectral approximation result (Lemma VI.7) with

g”, . ,57%}21) (resp. 5%2), . ,57(2217) being {—1,1} random

variables indicating whether each C' € L (resp. C' € HS,R))
is corrupted. Moreover, the subgraphs GED and G;g) in
Lemma VL7 (which are simply subgraphs of G(L) &(¢) and

ELR(ZV,(QZ))) have maximum degree < A = 1/72. Thus, we
have that with probability 1 — O(N~2),

L < max ((1 +9)-2n(1 —n), %) -La

where § = ./M <O<

large enough C), we get that § < ~2 = 1 — 4n(1 — 7).
Therefore, we have (1+6)-2n(1—n) < (1++7)-1(1-+?) < 4,
hence Ly < éLg. By union bound over all T < N
subinstances, this holds for all subinstances ¢; with probability
1— m over the randomness of the noise.

Then, by Lemma ILS5, the SDP relaxation has a unique
optimum which is the planted assignment. Thus, we can
identify the set of corrupted edges in each ¢;.

’“;1;’?;2”2. Plugging in 3 (for

Step 3. So far we have identified, for > 1 — &’ fraction of
all {(u,C,C") :u e [p,C e HE, " e HMY, the product
& (C) - &,(C), where &,(C) = —1 if (u,C) is corrupted in
¥, and +1 otherwise. Let P, C {(C,C") : C € nH o e

(R)} be such pairs for each u € [p], and let P = Uy, ¢ P
Note that |[P| > (1 —¢)T—; and P depends only on H and
not on the noise.

We then run Algorithm VI.8. By the assumption that 7

<
— for a small enough c, we have [H,| = oz QLﬁj >

klo

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

%, which is the condition we need in Lemma VI1.9. Thus,
with probability 1 —n %, Algorithm V1.8 outputs (1) A; € H
which only depends on A and such that |A;| < 4e'm = em,
and (2) Ay C H, the set of corrupted constraints in H \ Aj.
This completes the proof of Lemma V.2. O

—

g9 R
S 2

[10]

[11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Jackson Abascal, Venkatesan Guruswami, and Pravesh K. Kothari.
Strongly refuting all semi-random Boolean CSPs. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 454-472. SIAM, 2021.
Emmanuel Abbe and Colin Sandon. Detection in the stochastic block
model with multiple clusters: proof of the achievability conjectures,
acyclic BP, and the information-computation gap. arXiv preprint
arXiv:1512.09080, 2015.

Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher
Moore. The phase transition in 1-in-k SAT and NAE 3-SAT. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 721-722, 2001.

Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to Refute a
Random CSP. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 689-708. IEEE Computer Society, 2015.

Gunnar Andersson and Lars Engebretsen. Better approximation algo-
rithms for Set splitting and Not-All-Equal SAT. Information Processing
Letters, 65(6):305-311, 1998.

Benny Applebaum. Cryptographic Hardness of Random Local Func-
tions: Survey. Computational complexity, 25:667-722, 2016.

Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of NP-hard problems. In
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages
284-293. ACM, 1995.

Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of Squares
Lower Bounds from Pairwise Independence. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 97-106. ACM, 2015.
Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the
Sum-of-Squares Hierarchy. In Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016,
volume 49 of JMLR Workshop and Conference Proceedings, pages 417—
445. JMLR.org, 2016.

Boaz Barak and David Steurer. Sum-of-squares proofs and the quest
toward optimal algorithms. CoRR, abs/1404.5236, 2014.

Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico
Ricci-Tersenghi, Martin Weigt, and Riccardo Zecchina. Hiding solutions
in random satisfiability problems: A statistical mechanics approach.
Physical review letters, 88(18):188701, 2002.

Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell.
Efficient probabilistically checkable proofs and applications to approxi-
mations. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 294-304, 1993.

Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur
Tulsiani. SDP gaps from pairwise independence. Theory of Computing,
8(1):269-289, 2012.

Avrim Blum and Joel Spencer. Coloring Random and Semi-Random
k-Colorable Graphs. J. Algorithms, 19(2):204-234, 1995.

Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s
one-way function. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques: 12th International Workshop,
APPROX 2009, pages 392—405. Springer, 2009.

Rares-Darius Buhai, Pravesh K Kothari, and David Steurer. Algorithms
approaching the threshold for semi-random planted clique. In Pro-
ceedings of the 55th Annual ACM SIGACT Symposium on Theory of
Computing, 2022.

Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse
regularity concept. SIAM Journal on Discrete Mathematics, 23(4):2000—
2034, 2010.

Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation
heuristics for random k-SAT. Combinatorics, Probability & Computing,
16(1):5, 2007.

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

[39]

Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random
regular NAE-SAT. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 814-822, 2014.

Uriel Feige. Relations between average case complexity and approx-
imation complexity. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 534-543, 2002.

Uriel Feige. Refuting Smoothed 3CNF Formulas. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, pages 407-417. IEEE
Computer Society, 2007.

Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems.
J. Comput. Syst. Sci., 63(4):639-671, 2001.

Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled
Power Iteration: a Unified Algorithm for Block Models and Planted
CSP’s. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 2836-2844,
2015.

Vitaly Feldman, Will Perkins, and Santosh S. Vempala. On the
Complexity of Random Satisfiability Problems with Planted Solutions.
SIAM Journal on Computing, 47(4):1294-1338, 2018.

Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic
Proofs and Efficient Algorithm Design. Foundations and Trends® in
Theoretical Computer Science, 14(1-2):1-221, 2019.

Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-
exponential Approximation Schemes for CSPs: From Dense to Almost
Sparse. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of
LIPIcs, pages 37:1-37:14. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2016.

Andreas Goerdt and André Lanka. Recognizing more random unsatisfi-
able 3-sat instances efficiently. Electron. Notes Discret. Math., 16:21-46,
2003.

Oded Goldreich. Candidate One-Way Functions Based on Expander
Graphs. Electron. Collogquium Comput. Complex., 2000.

Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algo-
rithms and certificates for Boolean CSP refutation: smoothed is no harder
than random. In STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 678—689.
ACM, 2022.

Johan Hastad. Some optimal inapproximability results. Journal of the
ACM (JACM), 48(4):798-859, 2001.

Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty. A simple
and sharper proof of the hypergraph Moore bound. In Proceedings of
the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 2324-2344. SIAM, 2023.
Russell Impagliazzo and Ramamohan Paturi. On the Complexity of
k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001.

Haixia Jia, Cristopher Moore, and Doug Strain. Generating Hard
Satisfiable Formulas by Hiding Solutions Deceptively. Journal of
Artificial Intelligence Research, 28:107-118, 2007.

Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM (JACM), 51(3):497-515, 2004.
David R Karger. Random sampling in cut, flow, and network design
problems. In Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing, pages 648—657, 1994.

Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer.
Sum of squares lower bounds for refuting any CSP. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 132-145.
ACM, 2017.

Florent Krzakala, Marc Mézard, and Lenka Zdeborovd. Reweighted
Belief Propagation and Quiet Planting for Random k-SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 8(3-4):149-171,
2012.

Florent Krzakala and Lenka Zdeborova.
Random Constraint Satisfaction Problems.
102(23):238701, 2009.

Ryuhei Mori and David Witmer. Lower Bounds for CSP Refutation by
SDP Hierarchies. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2016,
September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 41:1—
41:30, 2016.

Hiding Quiet Solutions in
Physical review letters,

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

[40] Dana Moshkovitz. The Projection Games Conjecture and the NP-
Hardness of Inn-Approximating Set-Cover. Theory Comput., 11:221—
235, 2015.

[41] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error.
J. ACM, 57(5):29:1-29:29, 2010.

[42] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased
generators in NCO. Random Structures & Algorithms, 29(1):56-81,
2006.

[43] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for
near-optimal polynomial stretch. In 2014 IEEE 29th Conference on
Computational Complexity (CCC), pages 1-12. IEEE, 2014.

[44] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting
random CSPs below the spectral threshold. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 121-131. ACM, 2017.

[45] Thatchaphol Saranurak and Di Wang. Expander decomposition and
pruning: Faster, stronger, and simpler. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2616—
2635. SIAM, 2019.

[46] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981-1025, 2011.

[47] Joel A Tropp. An introduction to matrix concentration inequalities.
Foundations and Trends® in Machine Learning, 8(1-2):1-230, 2015.

[48] Alexander S. Wein, Ahmed El Alaoui, and Cristopher Moore. The
Kikuchi Hierarchy and Tensor PCA. In David Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1446—
1468. IEEE Computer Society, 2019.

[49] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1130-1143,
2017.

APPENDIX A
NOTIONS OF RELATIVE APPROXIMATION

In this paper, we have encountered several notions of
relative graph approximations. Let G be an n-vertex graph,
and let H be a random subgraph of G by selecting each edge
with a fixed probability n € (0,1). We are interested in the
sufficient conditions on G for each of the following to hold
with probability 1 — o(1) (for some ¢ = o(1)):

(1) Relative cut approximation: » " Lyz < (1+8)n-2" Lgx
for all z € {—1,1}".

(2) Relative SDP approximation: (X, Ly) < (1 + d)n -
(X,Lg) for all symmetric matrices X > 0 with
diag(X) =1L

(3) Relative spectral approximation: Ly < (1+9)n - Lg.

Here, we only state one-sided inequalities, as solving noisy

XOR requires only an upper bound on L. Note also that the

above is in increasing order: relative spectral approximation

implies relative SDP approximation, which in turn implies
relative cut approximation.

Recall from Lemma II.4 that a lower bound on the min-cut
of G suffices for cut approximation to hold, while Lemma II.6
shows that lower bounds on the minimum degree and spectral
gap of G suffice for spectral approximation to hold. It is natural
to wonder whether a min-cut lower bound is sufficient for SDP
approximation as well, since it allows us to efficiently recover
the planted assignment in a noisy planted 2-XOR via solving
an SDP relaxation (see Lemma IL.5). Unfortunately, there is a
counterexample.

Separation of cut and SDP approximation. The example

is the same graph that separates cut and spectral approxi-

mation described in [46]. Let n be even and k = k(n).

Define G = (V, E) be a graph on N = nk vertices where
V ={0,1,...,n — 1} x {1,...,k} and (u,i), (v,j) € V
are connected if v = uw &= 1 mod n. Moreover, there is one
additional edge e* between (0, 1) and (n/2, 1). In other words,
G consists of n clusters of vertices of size k, where the clusters
form a ring with a complete bipartite graph between adjacent
clusters, along with a special edge e* in the middle.

Clearly, the minimum cut of G is 2k, which means that cut
approximation holds. Essentially, the special edge e* does not
play a role here.

However, we will show that e¢* breaks SDP approximation.
Define vector 7o € RY such that the (u,) entry is

xo(u,i) = min(u,n — u),

and vectors zq, ..
{0,1,...,n—1},

., Tn—1 to be cyclic shifts of zg: for w &

Ty (u,) = zo(u —w (mod n),).

We note that zg is the vector shown in [46] that breaks
spectral approximation. We now show that X = Z;’Z;t xwxg
(scaled so that X has all 1s on the diagonal) breaks SDP
approximation.

First, it is easy to see that the diagonal entries of X are all
equal due to symmetry. Thus, for some scaling ¢, cX > 0 and
diag(cX) =L

Observe that for w < § — 1, 2,,(0,1) = w and (%5, 1) =

§—w. Forw >4, 1,(0,1) =n—wand z,(%,1) =w— 3.

Thus, as @), Le« 2y = (24(0,1) — 24 (%, 1))2,

n—1
<X: Le*> = Z xq—,r;Le*xw
w=0

%*1 n—1 2
:Z(%—?w)2+z (%—Qw) =0(n%).
w=0 w:%

On the other hand, zILG\e*xw = nk? for any w, thus
(X, Lge+) = n?k?. This is o(n®), i.e. dominated by (X, Le-),
when k = o(y/n). Since e* is selected in H with probability
1, we have that with probability 7,

(X,Lg) > (X, Le<) > (1 —0(1)) - (X, Lg)
which violates the desired SDP approximation.
APPENDIX B
HYPERGRAPH DECOMPOSITION

In this section, we describe the hypergraph decomposition
algorithm used in Section V (for the proof of Theorem 3). This
algorithm is nearly identical to the hypergraph decomposition
step of [29, Section 4].

Algorithm B.1.
Given: A semirandom (with noise 77) k-XOR instance
1) with constraint hypergraph H over n vertices,
and a spread parameter 7 € (0, 1).
Output: For each ¢t = 2,...,k, a semirandom

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

(with noise 7) planted 7-spread p(*)-bipartite ¢-
XOR instance 1)) with constraint hypergraph
{H’Ef)}ue[p(t)]7 along with “discarded” hyper-
edges HD).
Operation:
1) Initialize: ¥() to the empty instance, and
p =0fort=2,... k.
2) Fix violations greedily:
a) Find a maximal nonempty violating Q).
That is, find Q C [n] of size 1 < |Q| <
k; — 1 such that deg(Q) = |{C e H:
c C} > 2max(l n2-1@Ql), and
deg(Q) < 12 max(1, ns-1Q’ 1Y for all
Q' 2Q.

b) Let ¢ = |Q|. Let u = 1 + pt1-a)
be a new “label”, and define H{*F1~9
to be an arbitrary subset of {C \ Q :
C e H,Q C C} of size exactly 2 -
| 52z max(1, nz=1)].

c) Set ptht1=a) « 1 4 pk+1-0) and H <
HA\HTD,

3) If no such @ exists, then put the remaining

hyperedges in H(1).

Lemma B.2. Algorithm B.1 has the following guarantees:

(1) The runtime is n©"),

(2) The number Of “discarded” hyperedges is m(Y) =
|[HD| < znz

(3) For each t € {2,...,k} and u € [pY),
2| 5> max(1,nt "3 1)),

(4) For each t = 2,...,k, the instance w(t) is T-spread.

) _ m® _
Ho'| = PO

Proof. The runtime of Algorithm B.1 is obvious. We now
argue that m(!) is small. By construction, H!) is the set of
remaining hyperedges when the inner loop terminates, and so

we must have deg({i}) < 2 max(1,n% 1) = inz —1 for

— 72

every i € [n]; here, deg only counts hyperedges remaining
in H. We then have >, ., deg({i}) = k[H|, as every
C € HW is counted exactly k£ times in the sum. Hence,
m® < #ng

Next, for each ¢ € {2,...,k}, by construction (Step (2b))
each 1\ has the same size, namely 2| 51> max(1, nt=2-1)|.
It then follows that m(® := Zue[p“)]ﬁ-[i(f” = p® .
1), and so [HY| = =7

P

that m® /p(®) is clearly even.

We now argue that for each ¢, the instance w(t) is 7-spread.
From Definition V.1, we need to prove that for each u € [p®]
and Q C [n], deg,(Q) < % max(1,n2 719}, To see this,

2| 5tz max(1,nt"3 - We also note

let u € [p)], and let Q,, be the set “associated” with the label
u, i.e., the set picked in Step (2a) of Algorithm B.1 when the
label « is added in Step (2b). Note that we must have |Q,| =
k+1—t. Let H’ denote the set of constraints in 7 at the time
when u and H is added to ¥(!). Namely, we have that for
every C' € ’Hq(f), Q.UC € H', and Q,,, C are disjoint. Now, let

R C [n] be a nonempty set of size at most ¢ — 1. First, observe
that if RN @), is nonempty, then we must have deg,(R) =0
(this degree is in the hyper%raph Hgf)) Indeed, this is because
CNQ, =P forall C € ’H So, we can assume that RNQ,, =
(). Next, we see that deg,,(R) < degy (Q,UR) (where deg;g
is the degree in H'), as @, UC € H' for every C' € H.
Because (), was maximal whenever it was processed in our
decomposition algorithm and @, € Q, UR as R is nonempty
and RN Q, = 0, it follows that

1 . 1 .
degy (QuUR) < = max(1,n? ~1QuURl) — = max(1,n? ~1Qul- IRl

l k 1
= — max(1, nt=3—1-1Rl) < —2Inax(l,?ﬁ_l_m‘)7
T T

IN

where the last inequality follows because ¢ — % —1—|R]
L —1—|R| always holds, as ¢ < k.
Finally, when R = (), we trivially have deg, (0
k

1P| = 2|4 gz max(1,n' 5] < Lmax(1,n'"271) <
2 max(1, nz ~1), where we use again that t — £ < L as
t < k. This finishes the proof. O

APPENDIX C
THEOREM 3 WHEN k = 1

In this section, we state and prove a variant of Theorem 3
for the degenerate case of k& = 1. The algorithm here is
straightforward, and we include it only for completeness.

Lemma C.1 (Algorithm for noisy 1-XOR). Ler n € (0,1/2)
be a constant. Let n € N and ¢ € (0,1), and let m >
O(nlogn/e). There is a polynomial-time algorithm A that
takes as input a 1-XOR instance 1 with constraint hypergraph
H and outputs two disjoint sets Ai(H), Ax(1p) C H with
the following guarantees: (1) for any instance 1 with m
constraints, |A1(H)| < em and A1(H) only depends on H,
and (2) for any x* € {—1,1}" and any k-uniform hypergraph
H with at least m hyperedges, with high probability over
Y < Y(H,z*,n), it holds that Az (¢) = Ey N (H\ A1 (H)).

Proof. First, observe that a 1-XOR instance is a degenerate
case where H is a multiset of [n] of size m. Let S C [n]
denote the set of ¢ € [n] where ¢ appears in A with multiplicity
< clogn, where c is a constant to be determined later. Let
Aj(H) denote H N S, i.e., the set of elements in H that are
in S. We clearly have that |A;(H)| < cnlogn < em.

Now, let ¢ ¢ S. Observe that for each occurrence of
¢ in H, we have a corresponding independent right-hand
side b € {—1,1} where b = z} with probability 1 — n
and —az; with probability 7. Thus, by taking the majority,
we can with high probability decode x; and thus determine
the corrupted constraints. It thus remains to show that with
probability > 1 — 1/poly(n), the fraction of corrupted right-
hand sides for i is < % Indeed, by a Chernoff bound, with
probability > 1 — exp(—262clogn), it holds that the fraction
of corrupted right-hand sides is at most (7 + §). By choosing
0 = %(% —n) and ¢ to be a sufficiently large constant,
Lemma C.1 follows. O

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

