
Efficient Algorithms for Semirandom Planted CSPs

at the Refutation Threshold

Venkatesan Guruswami
Department of EECS

UC Berkeley

Berkeley, USA

venkatg@berkeley.edu

Jun-Ting Hsieh
Computer Science Department

Carnegie Mellon University

Pittsburgh, USA

juntingh@cs.cmu.edu

Pravesh K. Kothari
Computer Science Department

Carnegie Mellon University

Pittsburgh, USA

praveshk@cs.cmu.edu

Peter Manohar
Computer Science Department

Carnegie Mellon University

Pittsburgh, USA

pmanohar@cs.cmu.edu

Abstract—We present an efficient algorithm to solve semiran-
dom planted instances of any Boolean constraint satisfaction
problem (CSP). The semirandom model is a hybrid between
worst case and average case input models, where the input
is generated by (1) choosing an arbitrary planted assignment
x
∗, (2) choosing an arbitrary clause structure, and (3) choosing

literal negations for each clause from an arbitrary distribution
“shifted by x

∗” so that x
∗ satisfies each constraint. For an n

variable semirandom planted instance of a k-arity CSP, our
algorithm runs in polynomial time and outputs an assignment
that satisfies all but a o(1)-fraction of constraints, provided that

the instance has at least Õ(nk/2) constraints. This matches, up
to polylog(n) factors, the clause threshold for algorithms that
solve fully random planted CSPs [23], as well as algorithms that
refute random and semirandom CSPs [1], [4]. Our result shows
that despite having worst case clause structure, the randomness in
the literal patterns makes semirandom planted CSPs significantly
easier than worst case, where analogous results require O(nk)
constraints [7], [26].

Perhaps surprisingly, our algorithm follows a significantly
different conceptual framework when compared to the recent
resolution of semirandom CSP refutation. This turns out to be
inherent and, at a technical level, can be attributed to the need
for relative spectral approximation of certain random matrices
— reminiscent of the classical spectral sparsification — which
ensures that an SDP can certify the uniqueness of the planted
assignment. In contrast, in the refutation setting, it suffices to
obtain a weaker guarantee of absolute upper bounds on the
spectral norm of related matrices.

Index Terms—Semirandom CSPs, Expander Decomposition,
Spectral Sparsification

I. INTRODUCTION

Four decades of work in computational complexity has

uncovered strong hardness results for constraint satisfaction

problems (CSPs) such as k-SAT that leave only a little room

for non-trivial efficient algorithms in the worst-case. Strong

hardness of approximation [30] essentially rule out (unless

P = NP) any improvement over simply returning a uniformly

random assignment when the input instance is sparse (i.e.,

has m = O(n) constraints on n variables). While there

is a polynomial time approximation scheme (PTAS) [7] for

maximally dense instances (e.g., with m = O(nk) constraints

for k-SAT), under the exponential time hypothesis [32], we can

already rule out polynomial time algorithms for o(nk) dense

instances and more generally, 2n
1−δ

time algorithms for any

δ > 0 for o(nk−1) dense instances [26].

Search and refutation in the average-case. In sharp

contrast, in well-studied average-case settings, there appears

to be significant space for new algorithms and markedly

better guarantees for CSPs. CSPs can be studied as two

natural problems in such average-case settings: the problem of

refutation — where we focus on efficiently finding witnesses

of unsatisfiability for models largely supported on unsatisfiable

instances, and the problem of search — where our goal is to

find an assignment that the model guarantees is planted in the

instance.

The refutation problem has been heavily investigated in the

past two decades. For fully random k-CSPs with uniformly

random clause structure (i.e., which variables appear in each

clause) and “literal pattern” (i.e., which variables appear

negated in each clause), there is a polynomial-time algorithm

that, with high probability over the instance, certifies that the

instance is unsatisfiable, provided that m is at least Õ(nk/2)
[4], [9], [18], [27], [44]. This threshold is far below the ∼ nk

hardness threshold of [26]. Furthermore, there is lower bounds

in various restricted models [8], [13], [20], [24], [36], [39],

[43] provide some evidence that this threshold might be tight

for polynomial time algorithms.

The search problem for planted models of CSPs has also

received a fair bit of attention. The setting naturally arises

in the investigation of local one-way functions and pseudo-

random generators in cryptography. Indeed, the security of

the well-known one-way function proposed by Goldreich [28]

(also conjectured to be a pseudorandom generator [6], [42]) is

equivalent to the hardness of recovering a satisfying assign-

ment planted (via a carefully chosen procedure) in a random

CSP instance with an appropriate predicate. This has led to

significant research on solving fully random planted CSPs [11],

[15], [17], [23], [33]. Specifically, Feldman, Perkins and Vem-

pala [23] showed that for fully random planted k-CSPs with

planted assignment x∗, there is a polynomial-time algorithm

that, with high probability over the instance, recovers the

planted assignment x∗ exactly, provided that the instance has

at least Õ(nk/2) constraints. That is, the refutation and search

versions have the same clause threshold.

Beyond the average-case: semirandom instances The phe-

nomenal progress in average-case algorithm design notwith-

307

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00026

2
0
2
3
 I

E
E

E
 6

4
th

 A
n
n
u
al

 S
y
m

p
o
si

u
m

 o
n
 F

o
u
n
d
at

io
n
s

o
f

C
o
m

p
u
te

r
S

ci
en

ce
 (

F
O

C
S

)
| 9

7
9
-8

-3
5
0
3
-1

8
9
4
-4

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/F

O
C

S
5
7
9
9
0
.2

0
2
3
.0

0
0
2
6

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

standing, there is a nagging concern that the algorithms so

developed rely too heavily on “brittle” properties of a specific

random model. That is, our methods may have “overfitted” to

the specific setting thus offering algorithms that only apply

in a limited setting. Unfortunately, this fear turns out to be

rather well-founded — natural spectral algorithms for refuting

random k-CSPs and solving the natural planted variants break

down under minor perturbations such as the introduction of a

vanishingly small fraction of additional clauses.

Motivated by such concerns, Blum and Spencer [14] and

later Feige and Kilian [21], [22] introduced semirandom

models for optimization problems. In semirandom models, the

instances are constructed by a combination of benign average-

case and adversarial worst-case choices. Algorithms that suc-

ceed for such models are naturally “robust” to perturbations

of the input instance.

For CSPs, a semirandom instance is generated by first

choosing a “worst-case” clause structure and then choosing the

literal negation patterns in each clause via some sufficiently

random (and thus “benign”) process. Recent work [1], [29],

[31] has shown that in the case of refutation, there are indeed

more resilient algorithms that succeed in refuting semirandom

instances at the same Õ(nk/2) threshold as the fully random

case. These developments have added new general-purpose

new spectral methods based on Kikuchi matrices [29], [48]

to our algorithmic arsenal.

Semirandom planted problems. In this work, we make the

first step in obtaining algorithms for the search variant of CSPs

in the semirandom setting. Our main result gives an efficient

algorithm for solving semirandom planted CSPs that succeeds

in finding the planted assignment whenever the number of

constraints exceeds Õ(nk/2) — the same threshold at which

polynomial time algorithms exist for the refutation problem

for random (and semirandom) instances.

Theorem 1 (Main result, informal Theorem 2). There is an

efficient algorithm that takes as input a k-CSP Ψ and outputs

an assignment x with the following guarantee: if Ψ is a

semirandom planted k-CSP with m ≥ Õ(nk/2) constraints,

then with high probability over Ψ, the output x satisfies

1− o(1)-fraction of the constraints in Ψ.

We note that in the semirandom setting, it is not possible to

efficiently recover an assignment that satisfies all of the con-

straints without being able to do so even when m = O(n),1.

This is because it is easy to construct a semirandom instance ψ
that is the “union” of two disjoint instances ψ1 and ψ2, where

ψ1 and ψ2 use disjoint sets of n/2 variables, but ψ1 only has

m1 ∼ O(n) clauses (and ψ2, therefore, contains almost all of

the m ∼ nk/2 clauses). Thus, the guarantee in Theorem 1 of

satisfying a 1−o(1)-fraction of constraints is qualitatively the

best we can hope for.

1Achieving this would break a hardness assumption for the search problem
analogous to Feige’s random 3-SAT hypothesis for the refutation prob-
lem [20].

Search vs. refutation. It is natural to compare Theorem 1 to

the recent resolution of the problem of refuting semirandom

CSPs [1], [29], [31]. For average-case optimization problems,

techniques for refuting random instances can typically be

adapted to solving the search problem in the related planted

model. This can be formalized in the proofs to algorithms

paradigm [10], [25] where spectral/SDP-based refutations can

be transformed into “simple” (i.e., ”captured” within the low-

degree sum-of-squares proof system) efficient certificates of

near-uniqueness of optimal solution — that is, every optimal

solution is close to the planted assignment. Unfortunately,

this intuition breaks down even in the simplest setting of

semirandom 2-XOR where there can be multiple maximally

far-off solutions that satisfy as many (or even more) constraints

as the planted assignment. Such departure from uniqueness

also breaks algorithms for recovery [23] that rely on the top

eigenvector of a certain matrix built from the instance being

correlated with the planted assignment. In the semirandom

setting, one can build instances where the top eigenspace of

such matrices is the span of the multiple optimal solutions and

has dimension ω(1) (searching for a Boolean vector close to

the subspace is, in general, hard in super-constant dimensional

subspaces).

Our key insight. Our starting point is a new, efficiently

checkable certificate of the unique identifiability of the planted

solution for noisy planted k-XOR (i.e., where each equation in

a satisfiable k-sparse linear system is corrupted independently

with some fixed constant probability) whenever the constraint

hypergraph satisfies a certain weak expansion property. For

random graphs in case of 2-XOR (and generalizations to mul-

tiple community stochastic block models), such certificates (in

the form of explicit dual solutions to a semidefinite program)

were shown to exist by Abbe and Sandon [2].

Our certificate naturally yields an efficient algorithm for

exactly recovering the planted assignment in noisy k-XOR

instances whenever the constraint hypergraph satisfies a de-

terministic weak expansion property and has size exceeding

the refutation threshold ∼ nk/2. Finally, we use expander

decomposition procedures to decompose the input constraint

hypergraph into pieces that satisfy the above condition. This

is done in a manner that further allows us to find a good

assignment via a consistent patching scheme to combine

solutions across all the pieces in our decomposition.

A. Our semirandom planted model and results

Before formally stating our results, we define the semiran-

dom planted model that we work with and explain some of the

subtleties in the definition. Our model is the natural one that

arises if we wish to enforce independent randomness (for each

clause) in the literal negations, while still fixing a particular

satisfying assignment.

Definition I.1 (k-ary Boolean CSPs). A CSP instance

Ψ with a k-ary predicate P : {−1, 1}k → {0, 1} is a

set of m constraints on variables x1, . . . , xn of the form

P (�(�C)1x�C1
, �(�C)2x�C2

, . . . , �(�C)kx�Ck
) = 1. Here, �C ranges

308

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

over a collection �H of scopes2 (a.k.a. clause structure) of k-

tuples of n variables and �(�C) ∈ {−1, 1}k are “literal nega-

tions”, one for each �C in �H. We let valΨ(x) denote the fraction

of constraints satisfied by an assignment x ∈ {−1, 1}n, and we

define the value of Ψ, val(Ψ), to be maxx∈{−1,1}n valΨ(x).

Definition I.2 (Semirandom planted k-ary Boolean CSPs).

Let P : {−1, 1}k → {0, 1} be a predicate. We say that a

distribution Q over {−1, 1}k is a planting distribution for P
if Pry←Q[P (y) = 1] = 1.

We say that an instance Ψ with predicate P is a semirandom

planted instance with planting distribution Q if it is sampled

from a distribution Ψ(�H, x∗, Q) where

(1) the scopes �H ⊆ [n]k and planted assignment x∗ ∈
{−1, 1}n are arbitrary, and

(2) Ψ(�H, x∗, Q) is defined as follows: for each �C ∈
�H, sample literal negations �(�C) ← Q(�(�C) � x∗

�C
),

where “�” denotes the element-wise product of two

vectors. That is, Pr[�(�C) = �] = Q(� � x∗
�C
)

for each � ∈ {−1, 1}k. Then, add the constraint

P (�(�C)1x�C1
, �(�C)2x�C2

, . . . , �(�C)kx�Ck
) = 1 to Ψ.

Notice that because Q is supported only on satisfying assign-

ments to P , it follows that if Ψ ← Ψ(�H, x∗, Q), then x∗

satisfies Ψ with probability 1.

A (fully) random planted CSP, e.g., as defined in [23], is

generated by first sampling �H ← [n]k uniformly at random,

and then sampling Ψ ← Ψ(�H, x∗, Q). The difference in the

semirandom planted model is that we allow �H to be worst

case.

Notice that in Definition I.2, there are some choices of Q
for which the planted instance becomes easy to solve. In the

case of, e.g., 3-SAT, one could set the planting distribution

Q to be uniform over all 7 satisfying assignments, which

results in the literal negations in each clause being chosen

uniformly conditioned on x∗ satisfying the clause. However,

by simply counting how many times the variable xi appears

negated versus not negated and taking the majority vote, we

recover x∗ with high probability [11], [33] (see Section C).

Instead of sampling clauses uniformly from all those satis-

fied by x∗, one can create more challenging distributions, e.g.,

ones where true and false literals appear in equal proportion.

Such distributions are termed “quiet plantings” and have been

studied extensively [17], [33], [37], [38]. Our semirandom

model follows definitions in [23], [24] and is a general planted

model with respect to a planting distribution Q, which unifies

various plantings studied in the past.

Unlike in the case of random planted CSPs, we cannot

hope to recover the planted assignment x∗ exactly in the

semirandom setting. Indeed, the scopes �H may not use some

variable xi at all, and so we cannot hope to recover x∗
i !

Thus, our goal is instead to recover an assignment x that has

nontrivially large value, ideally value 1−ε for arbitrarily small

2We additionally allow �H to be a multiset, i.e., that multiple clauses can
contain the same ordered set of variables.

ε. Our main result, stated formally below, gives an algorithm

to accomplish this task.

Theorem 2 (Formal Theorem 1). Let k ∈ N be constant. There

is a polynomial-time algorithm that takes as input a k-CSP Ψ
and outputs an assignment x with the following guarantee. If

Ψ is a semirandom planted k-CSP with m ≥ cknk/2 · log3 n
ε9

constraints drawn from Ψ(�H, x∗, Q), then with probability

1 − 1/poly(n) over Ψ, the output x of the algorithm has

valΨ(x) ≥ 1− ε. Here, c is a universal constant.

In particular, setting ε = 1/polylog(n), if m ≥ Õ(nk/2),
then with high probability over Ψ ← Ψ(�H, x∗, Q), the

algorithm outputs x with valΨ(x) ≥ 1− o(1).

Theorem 2 shows that one can nearly solve a semirandom

planted k-CSP at the same Õ(nk/2) threshold as done in the

random case [23], matching the same Õ(nk/2) threshold as for

semirandom refutation [1], [29], [31]. However, as explained

earlier (and will be discussed further in Section II), there

are several unanticipated technical hurdles to overcome in

the semirandom planted setting that are not present in the

semirandom refutation setting, and this causes many of the

natural approaches that “springboard off” the refutation case

to fail. Curiously enough, for the special case of k = 2 there

is a simple reduction from search to refutation for the case of

2-XOR, which we will describe in Section II-A, but the same

approach for k-XOR encounters a hardness barrier for k ≥ 3,

as we will discuss in Section II-B.

Theorem 2 also breaks Goldreich’s candidate pseudorandom

generators [28] and its variants [6],3 when they have Ω̃(nk/2)
stretch and any k-hypergraph (not just a random one). In fact,

not only does Theorem 2 break the PRG, it also gives an

algorithm that nearly inverts it.

Noisy planted k-XOR. Similar to work on random planted

CSPs [23] and the refutation setting [1], [4], [29], [31], [44],

our proof of Theorem 2 goes through a reduction to noisy

k-XOR. Our algorithm achieves very strong guarantees in the

noisy k-XOR case, as we now explain. We define the noisy

k-XOR model below and then state our result.

Definition I.3 (Noisy planted k-XOR). Let H ⊆
(
[n]
k

)
be

a k-uniform hypergraph on n vertices, let x∗ ∈ {−1, 1}n,

and let η ∈ [0, 1/2). Let ψ(H, x∗, η) denote the distribution

on k-XOR instances over n variables x1, . . . , xn ∈ {−1, 1}
obtained by, for each C ∈ H, adding the constraint

∏
i∈C xi =∏

i∈C x∗
i with probability 1 − η, and otherwise adding the

constraint
∏

i∈C xi = −∏
i∈C x∗

i . In the latter case, we say

that the constraint C is corrupted or noisy.

We call ψ a noisy planted k-XOR instance if it is sampled

from ψ(H, x∗, η), for some H, x∗, and η; the hypergraph H
is the constraint hypergraph, x∗ is the planted assignment, and

η is the noise parameter. Furthermore, we let Eψ ⊆ H denote

the (unknown) set of corrupted constraints.

3Goldreich’s original PRG is essentially a planted k-CSP with a Boolean
predicate P on a random hypergraph, containing both P and ¬P constraints.

309

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Theorem 3 (Algorithm for noisy k-XOR). Let η ∈ [0, 1/2),

let k, n ∈ N, and let ε ∈ (0, 1). Let m ≥ cnk/2 · k4 log3 n
ε5(1−2η)4 for

a universal constant c. There is a polynomial-time algorithm

A that takes as input a k-XOR instance ψ with constraint

hypergraph H and outputs two disjoint sets A1(H),A2(ψ) ⊆
H with the following guarantees: (1) for any instance ψ with

m constraints, |A1(H)| ≤ εm and A1(H) only depends on H,

and (2) for any x∗ ∈ {−1, 1}n and any k-uniform hypergraph

H with at least m hyperedges, with probability at least 1 −
1/poly(n) over ψ ← ψ(H, x∗, η), it holds that A2(ψ) = Eψ∩
(H \ A1(H)).

In words, the algorithm discards a small number of con-

straints, and among the constraints that are not discarded,

correctly identifies all (and only) the corrupted constraints.

In particular, the subinstance obtained by discarding the

� (ε + η)m constraints A1(H) ∪ A2(ψ) is satisfiable (and

a solution can be found by Gaussian elimination). Thus,

Theorem 3 immediately implies that for k-XOR, the NP-hard

task of deciding if ψ has value ≥ 1− η or ≤ 1
2 + η is actually

easy if ψ has ∼ nk/2 constraints (far below the ∼ nk-hardness

of [26]), provided that the η-fraction of corrupted constraints in

the “yes” case are a randomly chosen subset of the otherwise

arbitrary constraints.

Exact vs. approximate recovery. As alluded to above,

the guarantees of Theorem 3 are much stronger: not only

can we find a good assignment to ψ, we can break the

constraints into two parts, a small fraction, A1(H), where we

are unable to determine the corrupted constraints,4 and a large

fraction, H\A1(H), where we can determine exactly all of the

corrupted constraints, A2(ψ). Moreover, this partition depends

only on the hypergraph H and is independent of the noise. We

remark that it is not immediately obvious that this guarantee

is achievable even for exponential-time algorithms, as x∗

may not be the globally optimal assignment with constant

probability. This strong guarantee of Theorem 3 is in fact

required for the reduction from Theorem 2 to Theorem 3; the

weaker (and more intuitive) guarantee of approximate recovery

— obtaining an assignment of value 1−η−o(1) for the noisy

XOR instance — is insufficient for the reduction.

One can view Theorem 3 as an algorithm that extracts

almost all the information about the planted assignment x∗

encoded by the instance ψ. Indeed, notice that even if η = 0,

the instance ψ only determines x∗ “up to a linear sub-

space.”5 Namely, if we let y ∈ {−1, 1}n be any solution

to the system of constraints
∏

i∈C yi = 1 for C ∈ H,

then y � x∗ is also a planted assignment for ψ: formally,

ψ(H, x∗, η) = ψ(H, y�x∗, η) as distributions. So, aside from

the εm constraints that are discarded, with high probability

over ψ the algorithm determines the uncorrupted right-hand

4Note that discarding a small fraction of constraints is necessary in the
semirandom setting, as ψ may contain many disconnected constant-size
subinstances where it is not possible, even information-theoretically, to exactly
identify the corrupted constraints with 1− o(1) probability.

5A k-XOR constraint xC1
· · ·xCk

= bC ∈ {−1, 1} can be equivalently
written as a linear equation x′

C1
+ · · ·+ x′

Ck
= b′C over F2, where we map

+1 to 0 and −1 to 1.

sides
∏

i∈C x∗
i for every remaining constraint, which is all the

information about the planted assignment x∗ encoded in the

remaining constraints.

The importance of relative spectral approximation. As

a key technical ingredient in the algorithm, we uncover a

deterministic condition — relative spectral approximation of

the Laplacian of a graph (associated with the input instance)

by a certain correlated random sample from it — which when

satisfied implies uniqueness of the SDP solution (Lemma II.5).

In Lemma II.6 and Lemma VI.7, we establish such spectral

approximation guarantees.

This spectral approximation property is the key ingredient

in our certificate of unique identifiability of the planted assign-

ment in a noisy k-XOR instance (see Section II-D for details)

and allows us to exactly recover the planted assignment for 2-

XOR instances where the constraint graph G is a weak spectral

expander (i.e., spectral gap � 1/poly log n) (Lemma II.5), and

forms the backbone of our final algorithm. We note that our

spectral approximation condition can be seen as an analog of

(and is, in fact, stronger than) the related spectral norm upper

bound property that underlie the refutation algorithm of [1].

This process of extracting a “deterministic property of

random instances sufficient for the analysis” is an important

conceptual theme underlying recent progress on semirandom

optimization, and manifests as, e.g., the notion of “butterfly

degree” in [1], “hypergraph regularity” or spreadness in [29]

in the context of semirandom CSP refutation, and biclique

number bounds in the context of planted clique [16].

II. TECHNICAL OVERVIEW

In this section, we give an overview of the proof of Theo-

rem 3 and our algorithm for noisy planted k-XOR. We defer

discussion of the reduction from general k-CSPs to k-XOR

used to obtain Theorem 2 to Section IV. There, we explain

the additional challenges encountered in the semirandom case

as compared to the random case [23, Section 4]. Somewhat

surprisingly, the reduction is complicated and quite different

from the random planted case or even the semirandom refu-

tation setting, where the reduction to XOR is straightforward.

We now explain Theorem 3. As is typical in algorithm

design for k-XOR, the case when k is even is considerably

simpler than when k is odd. For the purpose of this overview,

we will focus mostly on the even case, and only briefly discuss

the additional techniques for odd k in Section II-E.

Notation. Throughout this paper, given a k-XOR instance

ψ on hypergraph H ⊆
(
[n]
k

)
with m = |H| and right-hand

sides {bC}C∈H, we define ψ(x) :=
∑

C∈H bC
∏

i∈C xi to be

a degree-k polynomial mapping {−1, 1}n → [−m,m]. We

note that valψ(x) = 1
2 + 1

2mψ(x) ∈ [0, 1] is the fraction of

constraints in ψ satisfied by x. Moreover, we will write xC :=∏
i∈C xi.

Unless otherwise stated, we will use φ to denote a 2-XOR

instance and ψ to denote a k-XOR instance for any k ≥ 2.

We note that for even arity k-XOR, we have valψ(x) =
valψ(−x), and so it is only possible for the optimal solution

310

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

to be unique up to a global sign. We will abuse terminology

and say that x∗ is the unique optimal assignment if ±x∗ are

the only optimal assignments, and we will say that we have

recovered x∗ exactly if we obtain one of ±x∗.

A. Approximate recovery for 2-XOR from refutation

First, let us focus on the case of k = 2, the simplest case,

and let us furthermore suppose that we only want to achieve

the weaker goal of recovering an assignment of value 1 −
η − o(1). (Note that we do need the stronger guarantee of

Theorem 3 to solve general planted CSPs in Theorem 2.)

For 2-XOR, this goal is actually quite straightforward to

achieve using 2-XOR refutation as a blackbox. Let us represent

the 2-XOR instance φ as a graph G on n vertices, along with

right-hand sides bij for each edge (i, j) ∈ E. Recall that we

have bij = x∗
i x

∗
j with probability 1 − η, and bij = −x∗

i x
∗
j

otherwise. Note that by concentration, valφ(x
∗) = 1−η±o(1)

with high probability.

We now make the following observation. Let us suppose that

we sample the noise in two steps: first, we add each (i, j) ∈ E
to a set E′ with probability 2η independently; then for each

(i, j) ∈ E′ we set bij to be uniformly random from {−1, 1}.

Using known results for semirandom 2-XOR refutation, it is

possible to certify, via an SDP relaxation, that no assignment

x can satisfy (or violate) more than 1
2 + o(1) fraction of the

constraints in E′.
Thus, we can simply solve the SDP relaxation for φ

and obtain a degree-2 pseudo-expectation Ẽ in the variables

x1, . . . , xn over {−1, 1}n that maximizes φ(x). Let φE′ be

the subinstance containing only the constraints in E′, and let

φE\E′ be the subinstance containing only the constraints in E\
E′, which are uncorrupted. We have Ẽ[valφ(x)] ≥ 1−η−o(1),
and the guarantee of refutation implies that Ẽ[valφE′ (x)] ≤
1
2 +o(1). As valφ(x) = (1−2η) ·valφE\E′ (x)+2η ·valφE′ (x),

we therefore have that Ẽ[valφE\E′ (x)] ≥ 1 − o(1), i.e., Ẽ

satisfies 1− o(1) fraction of the constraints in E \ E′. Then,

applying the standard Gaussian rounding, we obtain an x that

satisfies 1 −
√

o(1) fraction of the constraints in E \ E′ and

thus has value valφ(x) ≥ 1− η − o(1) (as any x must satisfy

at least 1
2 − o(1) fraction of the constraints in E′, with high

probability over the noise).

One interesting observation is that in the above discussion,

we can additionally allow E′ to be an arbitrary subset of

E of size 2ηm. Indeed, this is because the rounding only

“remembers” that Ẽ[valφE\E′ (x)] has value 1 − o(1). As we

shall see shortly, this is the key reason that the reduction breaks

down for k-XOR.

B. The challenges for k-XOR and our strategy

Unfortunately, the natural blackbox reduction to refutation

given in Section II-A does not generalize to k-XOR for

k ≥ 3. Following the approach described in the previous

section, given a k-XOR instance ψ, one can solve a sum-

of-squares SDP and obtain a pseudo-expectation Ẽ where

Ẽ[valψ(x)] ≥ 1 − η − δ and Ẽ[valψE\E′ (x)] ≥ 1 − δ as

before, where δ ∼ 1/polylog(n) when m � nk/2, due to

the guarantees of refutation algorithms [1]. However, unlike

2-XOR where we have Gaussian rounding, for k-XOR there is

no known rounding algorithm that takes a pseudo-expectation

Ẽ with Ẽ[valψE\E′ (x)] ≥ 1 − δ and outputs an assignment x
such that valψE\E′ (x) ≥ 1 − f(δ), for some f(·) such that

f(δ) → 0 as δ → 0. In fact, if we only “remember” that

ψE\E′ has value 1 − δ, then it is NP-hard to find an x with

value > 1/2+δ even when δ = n−c for some constant c > 0,

assuming a variant of the Sliding Scale Conjecture [12]6 (see

e.g. [40], [41] for more details).

As we have seen, while semirandom k-XOR refutation

allows us to efficiently approximate and certify the value of

the planted instance, the challenge lies in the rounding of the

SDP, where the goal is to recover an assignment x. This is a

technical challenge that does not arise in the context of CSP

refutation, as there we are merely trying to bound the value

of the instance. As a result, new ideas are required to address

this challenge.

Reduction from k-XOR to 2-XOR for even k. One could

still consider the following natural approach. For simplicity,

let k = 4. Given a 4-XOR instance ψ, we can write down a

natural and related 2-XOR instance φ, as follows.

Definition II.1 (Reduction to 2-XOR). Let ψ be a 4-XOR

instance, and let φ be the 2-XOR defined as follows. The

variables of φ are y{i,j} and correspond to pairs of variables

{xi, xj}, and for each constraint xixjxi′xj′ = bi,j,i′,j′ in ψ,

we split {i, j, i′, j′} into {i, j} and {i′, j′} arbitrarily and add

a constraint y{i,j}y{i′,j′} = bi,j,i′,j′ to φ. See Fig. 1 for an

example. This reduction easily generalizes to k-XOR for any

even k.

Fig. 1: An example of the 2-XOR instance φ from a 4-XOR

instance ψ.

By following the approach for 2-XOR described in Sec-

tion II-A, we can recover an assignment y that satisfies

1 − η − o(1) fraction of the constraints in φ. However, we

need to recover an assignment x to the original k-XOR ψ,

and it is quite possible that while y is a good assignment to φ,

it is not close to x⊗2 for any x ∈ {−1, 1}n. If this happens,

we will be unable to recover a good assignment to the 4-XOR

instance ψ.

The key reason that this simple idea fails is because, unlike

for random noisy XOR, the assignment y recovered is not

necessarily unique, and we cannot hope for it to be in the

6Note that we do need the Sliding Scale Conjecture, as the hardness shown
in [41] is not strong enough; it only proves hardness for δ ≥ (log logn)−c,
whereas we have δ ∼ 1/polylog(n).

311

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

semirandom setting! For random noisy XOR, one can argue

that with high probability, y will be equal to x∗⊗2, and then

we can immediately decode and recover x∗ up to a global

sign, i.e., we recover ±x∗. But for semirandom instances, the

situation can be far more complex.

Approximate 2-XOR recovery does not suffice for 4-XOR.

When constructing the 2-XOR instance φ from the 4-XOR ψ
(Definition II.1), it may be the case that φ can be partitioned

into multiple disconnected clusters (or have very few edges

across different clusters), even when the hypergraph H of ψ is

connected; see Fig. 1 for example. By the algorithm described

in Section II-A, we can get an assignment y that satisfies 1−
η − o(1) fraction of the constraints within each cluster.

The main challenge is to combine the information gathered

from each cluster to recover an assignment x for the original

4-XOR ψ. Unfortunately, we do not know of a way to obtain

a good assignment x based solely on the guarantee that y
satisfies 1−η−o(1) fraction of constraints in each cluster. The

issue occurs because the same variable i ∈ [n] can appear in

different clusters, e.g., y{1,2} and y{2,3} lie in different clusters

in Fig. 1, and the recovered assignments in each cluster may

implicitly choose different values for xi because of the noise.

Indeed, even if the local optimum is consistent with x∗, there

can still be multiple “good” assignments that achieve 1− η−
o(1) value on the subinstance restricted to a cluster. So, unless

the SDP can certify unique optimality of x∗, standard rounding

techniques such as Gaussian rounding will merely output a

“good” y, which may be inconsistent with x∗ and thus can

choose inconsistent values of xi across the different clusters.

Exact 2-XOR recovery implies exact 4-XOR recovery.

This leads to our main insight: if the subinstance of φ
admits a unique local optimal assignment y∗ (restricted to the

cluster) that matches the planted assignment up to a sign, i.e.,

y∗{i,j} = ±x∗
i x

∗
j , then for each edge in the cluster we know

y∗{i,j}y
∗
{i′,j′} = x∗

i x
∗
jx

∗
i′x

∗
j′ , and so the local constraints that

are violated must be exactly the corrupted ones. Moreover,

if the SDP can certify the uniqueness of the local optimal

assignment for a cluster, then the SDP solution will be a

rank 1 matrix y∗y∗�, and so we can precisely identify which

constraints in φ are corrupted. By repeating this for every

cluster, we can identify all corrupted constraints in the original

4-XOR ψ (except for the small number of “cross cluster”

edges), and thus achieve the guarantee stated in Theorem 3.

The general algorithmic strategy. The above discussion

suggests that given a k-XOR instance ψ, we should first

construct the 2-XOR φ, and then decompose the constraint

graph G of φ into pieces in some particular way so that the

induced local instances have unique solutions. Namely, the

examples suggest the following algorithmic strategy.

Strategy II.2 (Algorithm Blueprint for even k). Given a

noisy k-XOR instance ψ with planted assignment x∗ and

m constraints, we do the following:

(1) Construct the 2-XOR instance φ as in Definition II.1,

which is a noisy 2-XOR on nk/2 variables with

planted assignment y∗. Moreover, there is a one-to-

one mapping between constraints in φ and ψ.

(2) Let G be the constraint graph of φ. Decompose G
into subgraphs G1, . . . , GT while only discarding a

o(1)-fraction of edges such that each subgraph Gi

satisfies “some property”. For each subgraph Gi, we

define φi to be the subinstance of φ corresponding

to the constraints in Gi. The goal is to identify a

local property that the Gi’s satisfy so that (1) we

can perform the decomposition efficiently, and (2) for

each subinstance φi, we can “recover y∗ locally”, i.e.,

we can find an assignment y(i) to the 2-XOR instance

φi that is consistent with the planted assignment y∗.

(3) As each y(i) is consistent with y∗, the constraints in

φi violated by y(i) must be precisely the corrupted

constraints in φi. Hence, for the constraints that

appear in one of the φi’s, we have determined exactly

which ones are corrupted.

(4) We have thus determined, for all but o(m) con-

straints, precisely which ones are corrupted in the

original k-XOR instance ψ. (Note that this is the

stronger guarantee that we achieve in Theorem 3.)

By discarding the corrupted constraints along with

the o(m) constraints where we “give up”, we thus

obtain a system of k-sparse linear equations with

m(1 − η − o(1)) equations that has at least one

solution (namely x∗), and so by solving it we obtain

an x with valψ(x) ≥ 1− η − o(1).

C. Information-theoretic exact recovery from relative cut ap-

proximation

Following Strategy II.2, the first technical question to now

ask is: given a noisy 2-XOR instance φ with n variables,

m � n constraints, and planted assignment x∗, what con-

ditions do we need to impose on the constraint graph G so

that we can recover x∗ (up to a sign) exactly? As a natural

first step, we investigate what conditions are required so that

we can accomplish this information-theoretically.

Fact II.3. Let G = (V,EG) be an n-vertex graph, and

let H = (V,EH) be a subgraph of G where EH ⊆ EG.

Let LG, LH be the unnormalized Laplacians of G and H .

Consider a noisy planted 2-XOR instance φ on G with planted

assignment x∗ ∈ {−1, 1}n (Definition I.3), and suppose

EH is the set of corrupted edges. Suppose that for every

x ∈ {−1, 1}n \ {�1,−�1}, it holds that x�LHx < 1
2x

�LGx.

Then, x∗ and −x∗ are the only two optimal assignments to φ.

Note that the condition x�LHx < 1
2x

�LGx for x /∈
{�1,−�1} implies that G is connected, as otherwise LG has

a kernel of dimension ≥ 2, which would contradict this

assumption.

Proof. Let x ∈ {−1, 1}n be any assignment. We wish to

show that φ(x) is uniquely maximized when x = x∗,−x∗.

312

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

We observe that

φ(x) =
∑

(i,j)∈EG

xixjbij

=
∑

(i,j)∈EG

xixjx
∗
i x

∗
j − 2

∑

(i,j)∈EH

xixjx
∗
i x

∗
j .

Hence, by replacing x with x� x∗, without loss of generality

we can assume that x∗ = �1. Now, let DG, DH and AG, AH

be the degree and adjacency matrices of G and H , so that

LG = DG −AG and LH = DH −AH . We thus have that

2φ(x) = x�AGx− 2x�AHx

= x�(DG − 2DH)x− x�(LG − 2LH)x

= 2(|EG| − 2|EH |)− x�(LG − 2LH)x .

By assumption, if x ∈ {−1, 1}n and x
= �1,−�1, then we have

that x�(LG − 2LH)x > 0, which implies that φ(x) < φ(�1),
and finishes the proof.

Fact II.3 shows that if we can argue that x�LHx <
1
2x

�LGx for every x ∈ {−1, 1}n \ {�1,−�1}, then at least

information-theoretically we can uniquely determine x∗. Ob-

serve that if we view x as the signed indicator vector of a

subset S ⊆ [n], then x�LGx = EG(S, S̄), the number of

edges in G crossing the cut defined by S, and similarly for

x�LHx. So, one can view the condition in Fact II.3 as saying

that the subgraph H needs to be a (one-sided) cut sparsifier of

G, i.e., it needs to roughly preserve the size of all cuts in G.

The following relative cut approximation result of Karger [35]

shows that this will hold with high probability when H is a

randomly chosen subset of G, provided that the minimum cut

in G is not too small.

Lemma II.4 (Relative cut approximation [35]). Let η ∈ (0, 1).
Suppose an n-vertex graph G has min-cut cmin ≥ 12 logn

η , and

suppose H is a subgraph of G by selecting each edge with

probability η. Then, with probability 1− o(1),

(1−δ)x�LGx ≤ 1

η
·x�LHx ≤ (1+δ)x�LGx , ∀x ∈ {−1, 1}n

for δ =
√

12 logn
ηcmin

.

With Lemma II.4 and Fact II.3 in hand, we now have at least

an information-theoretic algorithm with the same guarantees

as in Theorem 3. We follow the strategy highlighted in Strat-

egy II.2. To decompose the graph G, we recursively find a min

cut and split if it is below the threshold in Lemma II.4. Notice

that this discards at most O(n log n) = o(m) constraints (for

m � n log n), and these are precisely the constraints that we

“give up” on and do not determine which ones are corrupted.

Then, with high probability the local optimal assignment is

consistent with x∗, and so locally we have learned exactly

which constraints are corrupted. Hence, we have produced two

sets of constraints: E1, the o(1)-fraction of edges discarded

during the decomposition, and E2 = (G \ E1) ∩ Eφ, which

is exactly the set of corrupted constraints after discarding E1.

We note that it is a priori not obvious that this is achievable

even for an exponential-time algorithm, as even though the

2n-time brute force algorithm will find the best assignment x
to φ, it may not necessarily be x∗, and so the set of constraints

violated by the globally optimal assignment might not be Eφ.

D. Efficient exact recovery from relative spectral approxima-

tion

Information-theoretic uniqueness implies that the planted

assignment x∗ is the unique optimal assignment. But can we

efficiently recover x∗? One natural approach is to simply solve

the basic SDP relaxation of φ: for X ∈ Rn×n, maximize

φ(X) :=
∑

(i,j)∈G Xijbij subject to X � 0, X = X�,

and diag(X) = I. If the optimal SDP solution is simply

X = x∗x∗�, then we trivially recover x∗ from the SDP

solution. We thus ask: does the min cut condition of Fact II.3

and Lemma II.4 imply that x∗x∗� is the unique optimal solu-

tion to the SDP? Namely, is the min cut condition sufficient for

the SDP to certify that x∗ is the unique optimal assignment?
Unfortunately, it turns out that this is not the case, and we

give a counterexample in Section A. We thus require a stronger

condition than the min cut one in order to obtain efficient

algorithms. Nonetheless, an analogue of Fact II.3 continues to

hold, although now we require a stronger version that holds

for all SDP solutions X , not just x ∈ {−1, 1}n. This stronger

statement shows the SDP can certify that x∗ is the unique

optimal assignment if and only if a certain relative spectral

approximation guarantee holds for the corrupted edges.

Lemma II.5 (SDP-certified uniqueness from relative spectral

approximation). Let G = (V,EG) be an n-vertex connected

graph, and let H = (V,EH) be a subgraph of G where EH ⊆
EG. Let LG, LH be the unnormalized Laplacians of G and H .

Consider a noisy planted 2-XOR instance φ on G with planted

assignment x∗ ∈ {−1, 1}n (Definition I.3), and suppose EH

is the set of corrupted edges.

The SDP relaxation of φ satisfies

max
X�0, X=X�, diag(X)=I

φ(X) = φ(x∗) = |EG| − 2|EH | ,

where X = x∗x∗� is the unique optimum if and only if G and

H satisfy

〈X,LH〉 < 1

2
〈X,LG〉 ,

∀X � 0, X = X�, diag(X) = I, X
= �1�1� .

Proof. Recall that each e = {i, j} ∈ E corresponds to a

constraint xixj = be where be = x∗
i x

∗
j if e ∈ EG \ EH

and be = −x∗
i x

∗
j if e ∈ EH , meaning that φ(X) =∑

{i,j}∈G\E Xijx
∗
i x

∗
j − ∑

{i,j}∈E Xijx
∗
i x

∗
j . Without loss of

generality, we can assume that x∗ = �1 and that φ(X) =
1
2 〈X,AG − 2AH〉, where AG, AH are the adjacency matrices

of G and H .
Note that LG = DG − AG and LH = DH − AH , and

tr(DG) = 2|EG|, tr(DH) = 2|EH |. For any X � 0 with

diag(X) = I,

〈X,AG − 2AH〉 = 〈X, (DG − LG)− 2(DH − LH)〉
= 2(|EG| − 2|EH |) + 〈X, 2LH − LG〉 .

313

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Suppose 〈X,LH〉 < 1
2 〈X,LG〉 for all X
= �1�1�. Since

〈�1�1�, LG〉 = 〈�1�1�, LH〉 = 0, we have that the maximum

of 1
2 〈X,AG − 2AH〉 is |EG| − 2|EH | and X = �1�1� is the

unique maximum.

For the other direction, suppose there is an X
= �1�1� such

that 〈X,LH〉 ≥ 1
2 〈X,LG〉. Then, φ(X) ≥ |EG| − 2|EH | =

φ(�1�1�), meaning that �1�1� is not the unique optimum.

Relative spectral approximation from uniform subsamples.

We now come to a key technical observation. Suppose that

H is a spectral sparsifier of G, so that v�(1ηLH)v is (1 ±
δ)v�LGv for any v ∈ Rn. Then clearly 〈X,LH〉 < 1

2 〈X,LG〉
if η < 1/2 and δ = o(1), as we can write X =

∑n
i=1 λiviv

�
i ,

and

〈X,LH〉 =
n∑

i=1

λiv
�
i LHvi ≤ η(1 + δ)

n∑

i=1

λiv
�
i LGvi

= η(1 + δ) · 〈X,LG〉 <
1

2
〈X,LG〉 .

Furthermore, note that above we only required that LH �
η(1 + δ)LG, i.e., we only use the upper part of the spectral

approximation.

We are now ready to state the key relative spectral approxi-

mation lemma. We observe that when H is a uniformly random

subsample of G and G has a spectral gap and minimum degree

polylog(n), then with high probability LH � η(1 + δ)LG.

We note that, while we do not provide a formal proof, the

same argument using the lower tail of Matrix Chernoff can

also establish a lower bound on LH , which proves that H is

indeed a spectral sparsifier of G.

Lemma II.6 (Relative spectral approximation from uniform

subsamples). Let η ∈ (0, 1). Suppose G = (V,E) is an n-

vertex graph with minimum degree dmin (self-loops allowed)

and spectral gap λ2(L̃G) = λ such that dminλ > 18
η log n,

where L̃G := D
−1/2
G LGD

−1/2
G is the normalized Laplacian.

Let H be a subgraph of G obtained by selecting each edge

with probability η. Then, with probability at least 1−O(n−2),

LH � η(1 + δ) · LG

for δ =
√

18 logn
ηdminλ

.

Proof. First, note that �1 lies in the kernel of both LG and LH ,

and because of the spectral gap of G, dim(ker(LG)) = 1.

Therefore, recalling that LG = D
1/2
G L̃GD

1/2
G , it suffices to

prove that
∥∥∥(L̃†

G)
1/2D

−1/2
G LHD

−1/2
G (L̃†

G)
1/2

∥∥∥
2
≤ η(1 + δ) .

Here L̃†
G is the pseudo-inverse of L̃G, and ‖L̃†

G‖2 ≤
1/λ because G has spectral gap λ. We will write X :=

(L̃†
G)

1/2D
−1/2
G LHD

−1/2
G (L̃†

G)
1/2 for convenience.

Note that LG =
∑

e∈E Le, where Le � 0 is the

Laplacian of a single edge e and ‖Le‖2 = 2. Let Xe =

(L̃†
G)

1/2D
−1/2
G LeD

−1/2
G (L̃†

G)
1/2 if e is chosen in H and 0

otherwise. Then, X =
∑

e∈E Xe and ‖E[X]‖2 = η. Moreover,

each Xe satisfies Xe � 0 and ‖Xe‖2 ≤ ‖L̃†
G‖2 · ‖D−1

G ‖2 ·
‖Le‖2 ≤ 2

dminλ
. Thus, by Matrix Chernoff (Fact III.3),

Pr [‖X‖2 ≥ η(1 + δ)] ≤ n · exp
(
−δ2η

3
· dminλ

2

)
≤ O(n−2)

as long as 18 logn
ηdminλ

≤ δ2 ≤ 1.

Finishing the algorithm. By Lemmas II.5 and II.6, we

can thus recover x∗ exactly if the constraint graph G of φ
has a nontrivial spectral gap and minimum degree dmin ≥
polylog(n). To finish the implementation of Strategy II.2, we

thus need to explain how to algorithmically decompose any

graph G into subgraphs G1, . . . , GT , each with reasonable

min degree and nontrivial spectral gap, while only discarding a

o(1)-fraction of the edges in G. This is the well-studied task

of expander decomposition, for which we appeal to known

results [34], [45], [46], [49].

This completes the high-level description of the algorithm

in the even k case. Below, we summarize the steps of the final

algorithm.

Algorithm II.7 (Algorithm for k-XOR for even k).

Input: k-XOR instance ψ on n variables with m con-

straints and constraint hypergraph H.

Output: Disjoint sets of constraints A1,A2 ⊆ H such

that |A1| ≤ o(m) and only depends on H, and

A2 = (H \ A1) ∩ Eψ .

Operation:

1) Construct the 2-XOR instance φ with con-

straint graph G, as described in Defini-

tion II.1.

2) Remove small-degree vertices and run ex-

pander decomposition on G to produce ex-

panders G1, . . . , GT . Set A1 to be the set of

discarded constraints of size o(m).
3) For each i ∈ [T], solve the basic SDP on the

subinstance φi defined by the constraints Gi.

Let A(i)
2 denote the set of constraints violated

by the optimal local SDP solution.

4) Output A1 and A2 =
⋃T

i=1 A
(i)
2 .

E. The case of odd k

We are now ready to briefly explain the differences in the

case when k is odd. For the purposes of this overview, we will

focus only on the case of k = 3. Recall that we are given a

3-XOR instance ψ, specified by a 3-uniform hypergraph H ⊆(
[n]
3

)
, as well as the right-hand sides bC ∈ {−1, 1} for C ∈

H, where bC = x∗
C with probability 1 − η and bC = −x∗

C

otherwise and x∗ ∈ {−1, 1}n is the planted assignment.

We now produce a 4-XOR instance using the well-known

“Cauchy-Schwarz trick” from CSP refutation [18]. The general

idea is to, for any pair of clauses (C,C ′) that intersect, add the

“derived constraint” xCxC′ = bCbC′ to the 4-XOR instance.

Notice that if, e.g., C = {u, i, j} and C ′ = {u, i′, j′}, then xu

appears twice on the left-hand side, and thus the constraint is

314

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

xixjxi′xj′ = bCbC′ . Given this 4-XOR, we produce a 2-XOR

following a similar strategy as in Definition II.1. The above

description omits many technical details, which we handle in

Sections V and VI; we remark here that these are the same

issues that arise in the CSP refutation case, and we handle

them using the techniques in [29].

We have thus produced a 2-XOR instance φ that is noisy

but not in the sense of Definition I.3. Indeed, each edge e in

φ is “labeled” by a pair (C,C ′) of constraints in ψ, and e
is noisy if and only if exactly one of (C,C ′) is, and so the

noise is not independent across constraints. Nonetheless, we

can still follow the general strategy as in Algorithm II.7. The

main technical challenge is to argue that the relative spectral

approximation guarantee of Lemma II.6 holds even when the

noise has the aforementioned correlations, and we do this in

Lemma VI.7. This allows us to recover, for most intersecting

pairs (C,C ′), the quantity ξ(C)ξ(C ′), where ξ(C) = −1 if

C is corrupted, and is 1 otherwise, i.e., bC = x∗
Cξ(C); we

do not determine ξ(C)ξ(C ′) if and only if the pair (C,C ′)
corresponds to an edge e that was discarded during the

expander decomposition.

However, we are not quite done, as we would like to recover

ξ(C) for most C, but we only know ξ(C)ξ(C ′) for most

intersecting pairs (C,C ′). Let us proceed by assuming that we

know ξ(C)ξ(C ′) for all intersecting pairs (C,C ′), and then we

will explain how to do a similar decoding process when we

only know most pairs. Let us fix a vertex u, and let Hu denote

the set of C ∈ H containing u. Now, we know ξ(C)ξ(C ′)
for all C,C ′ ∈ Hu, and so by Gaussian elimination we can

determine ξ(C) for all C ∈ Hu up to a global sign. Now,

we know that the vector {ξ(C)}C∈Hu should have roughly

η|Hu| entries that are −1. So, choosing the global sign that

results in fewer −1’s, we thus correctly determine ξ(C) for

all C ∈ Hu. We can then repeat this process for each choice

of u to decode ξ(C) for all C.

Of course, we only actually know ξ(C)ξ(C ′) for most

intersecting pairs (C,C ′). This implies that for most choices

of u, the graph Gu with vertices Hu and edges (C,C ′) if

we know ξ(C)ξ(C ′) is obtained from the complete graph

on vertices Hu and deleting some o(1)-fraction of edges.

This implies that Gu has a connected component of size

(1−o(1))|Hu|, and again via Gaussian elimination and picking

the proper global sign, we can determine ξ(C) on this large

connected component. By repeating this process for each

choice of u, we thus recover ξ(C) for most u.

F. Organization

The rest of the paper is organized as follows. In Sec-

tion III, we introduce some notation, and recall the various

concentration inequalities and facts that we will use in our

proofs. In Section IV, we prove Theorem 2 from Theorem 3

by reducing semirandom planted CSPs to noisy XOR. In

Sections V and VI, we prove Theorem 3; Section V handles

the reduction from k-XOR to “bipartite k-XOR”, and then

Section VI gives the algorithm for the bipartite k-XOR case.

III. PRELIMINARIES

a) Notation.: Given a graph G = (V,E) with n vertices

and m edges (including self-loops7), we write DG ∈ Rn×n as

the diagonal degree matrix, AG ∈ Rn×n as the adjacency ma-

trix, and LG = DG−AG as the unnormalized Laplacian (note

that the self-loops do not contribute to LG). Furthermore, we

write L̃G = D
−1/2
G LGD

−1/2
G to be the normalized Laplacian,

and denote its eigenvalues as 0 = λ1(L̃G) ≤ λ2(L̃G) ≤ · · · ≤
λn(L̃G) ≤ 2.

For any subset S ⊆ V , we denote G[S] as the subgraph of

G induced by S, and G{S} as the induced subgraph G[S] but

with self-loops added so that any vertex in S has the same

degree as its degree in G.

Definition III.1 (Uniform hypergraphs). A k-uniform hyper-

graph H on n vertices is a collection H of subsets of [n] of

size exactly k. For a set Q ⊆ [n], we define deg(Q) := |{C ∈
H : Q ⊆ C}|.

A. Concentration inequalities

Fact III.2 (Chernoff bound). Let X1, . . . , Xn be independent

random variables taking values in {0, 1}. Let X =
∑n

i=1 Xi

and μ = E[X]. Then, for any δ ∈ [0, 1],

Pr [|X − μ| ≥ δμ] ≤ 2e−δ2μ/3 .

Fact III.3 (Matrix Chernoff [47, Theorem 5.1.1]). Let

X1, . . . , Xn ∈ Rd×d be independent, random, symmetric

matrices such that Xi � 0 and λmax(Xi) ≤ R almost surely.

Let X =
∑n

i=1 Xi and μ = λmax(E[X]). Then, for any

δ ∈ [0, 1],

Pr [λmax(X) ≥ (1 + δ)μ] ≤ d · exp
(
−δ2μ

3R

)
.

B. Graph pruning and expander decomposition

It is a standard result that given a graph with m edges and

average degree d, one can delete vertices such that the resulting

graph has minimum degree εd and at least (1− 2ε)m edges.

We include a short proof for completeness.

Lemma III.4 (Graph pruning). Let G be an n-vertex graph

with average degree d and m = nd
2 edges, and let ε ∈ (0, 1/2).

There is an algorithm that deletes vertices of G such that the

resulting graph has minimum degree εd and at least (1−2ε)m
edges.

Proof. The algorithm is simple: repeatedly remove any vertex

with degree < εd. First, we show by induction that each

deletion cannot decrease the average degree. Suppose there

are n′ ≤ n vertices left and average degree d′ ≥ d. Then,

after deleting a vertex u with degree du < εd, the average

degree becomes n′d′−2du

n′−1 > n′d−2εd
n′−1 = d · n′−2ε

n′−1 . Thus, for

ε < 1/2, the average degree is always at least d. Furthermore,

since the algorithm can delete at most n vertices, it can delete

at most εdn = 2εm edges.

7Each self-loop contributes 1 to the degree of a vertex.

315

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

We will also need an algorithm that partitions a graph into

expanding clusters such that total number of edges across

different clusters is small. Expander decomposition has been

developed in a long line of work [34], [45], [46], [49] and

has a wide range of applications. For our algorithm, we only

require a very simple expander decomposition that recursively

applies Cheeger’s inequality.

Fact III.5 (Expander decomposition). Given a (multi)graph

G = (V,E) with m edges and a parameter ε ∈ (0, 1), there

is a polynomial-time algorithm that finds a partition of V into

V1, . . . , VT such that λ2(L̃G{Vi}) ≥ Ω(ε2/ log2 m) for each

i ∈ [T] and the number of edges across partitions is at most

εm.

Proof. Fix λ = cε2/ log2 m for some constant c to be chosen

later. The algorithm is very simple. Given a graph G = (V,E)
(with potentially parallel edges and self-loops), if λ2(L̃G) < λ,

then by Cheeger’s inequality we can efficiently find a subset

S ⊆ V with vol(S) ≤ vol(S) such that
|E(S,S)|
vol(S) <

√
2λ.

Here vol(S) :=
∑

v∈S deg(v). Then, we cut along S, add

self-loops to the induced subgraphs G[S] and G[S] so that the

vertex degrees remain the same (each self-loop contributes 1
to the degree). This produces two graphs G{S} and G{S},

and we recurse on each. By construction, in the end we will

have partitions V1, . . . , VT where either Vi is either a single

vertex or satisfies λ2(L̃G{Vi}) ≥ λ.

We now bound the number of edges cut via a charging

argument. Consider the “half-edges” in the graph, where each

edge (u, v) contributes one half-edge to u and one to v, and

each self-loop counts as one half-edge. Then, vol(S) equals

the number of half-edges attached to S. Now, imagine we have

a counter for each half-edge, and every time we cut along S
we add

√
2λ to each half-edge attached to S (the smaller side).

Since E(S, S) <
√
2λ · vol(S), it follows that the number of

edges cut is at most the total sum of the counters. On the

other hand, each half-edge can appear on the smaller side of

the cut at most log2 2m times, as each time the half-edge is

on the smaller side of the cut, vol(S) decreases by at least

a factor of 2, and vol([n]) = 2m. So, the total sum must be

≤
√
2λ ·2m log2 2m ≤ εm for a small enough constant c.

IV. FROM PLANTED CSPS TO NOISY XOR

In this section, we show how to use Theorem 3 to prove

Theorem 2. Before we delve into the formal proof, we will

first explain the reduction given in [23]. We begin with some

definitions.

Setup. Let Ψ be sampled from Ψ(�H, x∗, Q), where x∗ ∈
{−1, 1}n, �H ⊆ [n]k, and Q is a planting distribution

for the predicate P . Let Q(y) =
∑

S⊆[k] Q̂(S)
∏

i∈S yi

be the Fourier decomposition of Q, where Q̂(S) =
1
2k

∑
y∈{−1,1}k Q(y)

∏
i∈S yi ∈ [−2−k, 2−k]. Recall (Defini-

tion I.2) that Ψ is specified by a collection �H ⊆ [n]k of scopes,

along with a vector �(�C) ∈ {−1, 1}k for each �C ∈ �H of literal

negations.

Definition IV.1. Let S ⊆ [k] be nonempty. Let ψ(S,+) be the

|S|-XOR instance obtained by, for each constraint �C in Ψ,

adding the constraint
∏

i∈S x�Ci
=

∏
i∈S �(�C)i. Similarly, let

ψ(S,−) have constraints
∏

i∈S x�Ci
= −∏

i∈S �(�C)i.

We make use of the following simple claim.

Claim IV.2. For each nonempty S ⊆ [k], ψ(S,+) is a noisy

|S|-XOR instance (Definition I.3) with planted assignment x∗

and noise η = 1
2 (1 − 2kQ̂(S)). Similarly, ψ(S,−) is a noisy

|S|-XOR instance with planted assignment x∗ and noise η =
1
2 (1 + 2kQ̂(S)).

Proof. For each �C, the literal negation �(�C) is sampled such

that Pr[�(�C) = �] = Q(��x∗
�C
), where � denotes the element-

wise product. This is equivalent to sampling y ← Q and setting

�(�C) = y � x∗
�C

. It thus follows that the probability that the

constraint �C produces a corrupted constraint in ψ(S,+) is

Pr
y←Q

[
∏

i∈S

yi = −1

]
=

1

2

(
1− Ey←Q

[
∏

i∈S

yi

])

=
1

2
(1− 2kQ̂(S)) ,

and is independent for each �C. A similar calculation handles

the case of ψ(S,−).

With the above observations in hand, we can now easily

describe the reduction in [23]. First, their reduction requires

the algorithm to have a description of the distribution Q. Given

Q, the algorithm then finds the smallest S such that Q̂(S)
is nonzero. Since they know the exact value of Q̂(S), they

can determine its sign correctly. Suppose that Q̂(S) > 0 (the

other case is similar). Then, by solving the |S|-XOR instance

ψ(S,+), they recover the planted assignment of ψ(S,+) exactly.8

But this planted assignment is precisely x∗, and so they have

also succeeded in recovering the planted assignment of ψ.

The aforementioned reduction clearly does not generalize to

the semirandom setting, as in general the subinstances ψ(S,±)

will not uniquely determine x∗. Furthermore, their reduction

additionally requires knowing Q, and while it is not too

unreasonable to assume this for random planted CSPs (as it is

perhaps natural for the algorithm to know the distribution), in

the semirandom setting this assumption is a bit strange because

we want to view semirandom CSPs as “moving towards” worst

case ones.

We now prove Theorem 2 from Theorem 3.

Proof of Theorem 2 from Theorem 3. We will present the

proof in three steps. First, like [23], we will assume that the

algorithm is given a description of Q and we will assume

that each |Q̂(S)| is either 0 or at least 2−kε > 0.9 Then, we

will remove this assumption provided that Q(y) > 2ε for all

y with Q(y) > 0, i.e., the every y in the support of Q has

8Here, they also treat |Q̂(S)| as constant, as if |Q̂(S)| � 1/n, say, then
their algorithm would not succeed in recovering the planted assignment on
the XOR instance.

9This assumption is implicit in [23]; see the previous footnote.

316

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

some minimum probability. Finally, we will remove the last

assumption.

Step 1: the proof when we are given Q. For each S where

Q̂(S)
= 0, we construct the instance ψ(S,+) (if Q̂(S) > 0)

or ψ(S,−) (if Q̂(S) < 0). We then apply10 Theorem 3 to

each such instance. Note that by Claim IV.2, the instance

has noise η = 1
2 (1 − 2k|Q̂(S)|) ≤ 1

2 (1 − ε) (because

we picked the correct sign when choosing between ψ(S,+)

and ψ(S,−), and we assume |Q̂(S)| ≥ 2−kε). Then, since

m ≥ cknk/2 · log3 n
ε9 and |S| ≤ k, by applying Theorem 3 with

noise η and parameter ε′ := 2−kε, we obtain sets �H(S,1) (the

discarded set) and �H(S,2) (the corrupted constraints) where

| �H(S,1)| ≤ ε′m and �H(S,2) = (�H \ �H(S,1)) ∩ Eψ(S) . Hence,

for every constraint �C ∈ �H \ �H(S,1), it follows that we have

learned
∏

i∈S x∗
�Ci

, where x∗ is the planted assignment for Ψ.

By setting �H′ := �H \ ∪S:Q̂(S)
=0
�H(S,1), it follows that we

know
∏

i∈S x∗
�Ci

for all �C ∈ �H′ and S with Q̂(S)
= 0, where

| �H′| ≥ (1− 2kε′)m = (1− ε)m.

We now solve the system of linear equations given by∏
i∈S x∗

�Ci
for all �C ∈ �H′ and S with Q̂(S)
= 0 to obtain

some assignment x ∈ {−1, 1}n. As x∗ is a valid solution to

these equations, such an x exists, although it may not be x∗.

The final step is to argue that for every
�C ∈ �H′, x satisfies the constraint �C, namely that

P (�(�C)1x�C1
, �(�C)2x�C2

, . . . , �(�C)kx�Ck
) = 1. Indeed, if

this is true then we are done, as x satisfies at least (1− ε)m
constraints in Ψ, and so we have obtained the desired

assignment.

Let �C ∈ �H′. We know that for every S with Q̂(S)
= 0, we

have that
∏

i∈S x�Ci
=

∏
i∈S x∗

�Ci
. Hence, it follows that

Q(�(�C)� x) =
∑

S⊆[k]

Q̂(S)
∏

i∈S

�(�C)ix�Ci

=
∑

S⊆[k]

Q̂(S)
∏

i∈S

�(�C)ix
∗
�Ci

= Q(�(�C)� x∗) > 0 ,

where the last inequality is because �(�C) was sampled from

the distribution Q(�(�C) � x∗), and so it must be sampled

with nonzero probability. As Q is supported only on satisfying

assignments to the predicate P , it thus follows that �(�C)�x∗

must also satisfy P .

Step 2: removing the dependence on Q assuming a lower

bound on Q(y). First, we observe that because k is constant,

we can, for each S, guess a symbol {0,+,−}, where 0
denotes, informally, the belief that |Q̂(S)| < 2−kε, + denotes

that Q̂(S) ≥ 2−kε, and − denotes that Q̂(S) ≤ −2−kε. For

each of the 32
k

choices of guesses, i.e., functions f : {S ⊆
[k]} → {0,+,−}, we run algorithm mentioned in the previous

step. Namely, for each S: (1) if f(S) = 0, then we ignore

S, (2) if f(S) = +, then we run Theorem 3 on ψ(S,+) to

10Note that Theorem 3 only applies when |S| ≥ 2. When |S| = 1, there
is a trivial algorithm; see Section C for details.

obtain �H(S,1) and �H(S,2), and (3) if f(S) = −, then we

run Theorem 3 on ψ(S,+) to obtain �H(S,1) and �H(S,2). As

before, we solve the system of linear equations to obtain

some assignment x(f) ∈ {−1, 1}n. By enumerating over all

possible choices of f , we obtain a list of at most 32
k

= O(1)
assignments. We then try all of them and output the best one.

It thus remains to show that at least one of the assignments

in the list has high value. As one may expect, this will be

the assignment x(f∗), where f∗ is the correct label function.

Indeed, when f = f∗, then we are precisely running the

algorithm in Step 1, and as observed, after solving the linear

system of equations we obtain an assignment x := x(f∗) with

the following property. For every �C ∈ �H′ and every S with

|Q̂(S)| ≥ 2−kε, we have that
∏

i∈S x�Ci
=

∏
i∈S x∗

�Ci
, where

�H′ ⊆ �H has size ≥ (1− ε)m.

Finally, we show that for every �C ∈ �H′,
x satisfies the constraint �C. Namely, we have

P (�(�C)1x�C1
, �(�C)2x�C2

, . . . , �(�C)kx�Ck
) = 1. Let �C ∈ �H′.

We know that for every S with |Q̂(S)| ≥ 2−kε, we have that∏
i∈S x�Ci

=
∏

i∈S x∗
�Ci

. Hence, it follows that

∣∣∣Q(�(�C)� x)−Q(�(�C)� x∗)
∣∣∣

=

∣∣∣∣∣∣

∑

S⊆[k]

Q̂(S)
∏

i∈S

�(�C)ix�Ci
−

∑

S⊆[k]

Q̂(S)
∏

i∈S

�(�C)ix
∗
�Ci

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

S⊆[k]:|Q̂(S)|<2−kε

Q̂(S)

(
∏

i∈S

�(�C)ix�Ci
−

∏

i∈S

�(�C)ix
∗
�Ci

)∣∣∣∣∣∣

≤ 2k · 2−k+1ε .

Now, if we assume that Q(y) > 2ε for every

y ∈ {−1, 1}k with Q(y) > 0, then it follows that

Q(�(�C) � x) > 0, and so x satisfies the constraint

P (�(�C)1x�C1
, �(�C)2x�C2

, . . . , �(�C)kx�Ck
) = 1.

Step 3: removing the lower bound on Q(y). In Step 2, we

assumed that Q(y) > 2ε for all y ∈ {−1, 1}k with Q(y) > 0.

However, we only used this fact in the final step, when we

argue that Q(�(�C)�x) > 0 by observing that Q(�(�C)�x) ≥
Q(�(�C) � x∗) − 2ε > 0. To remove the assumption, we will

show that for at most 2k+2ε constraints �C ∈ �H, it holds that

Q(�(�C)� x∗) ≤ 2ε. This then implies that x satisfies at least

(1− ε− 2k+2ε)m = (1−O(ε))m constraints, which finishes

the proof.

Let S denote the set of �C ∈ �H where Q(�(�C)� x∗) ≤ 2ε.

Observe that the probability, over the choice of �(�C), that �C ∈
S is at most 2k ·2ε = 2k+1ε, and moreover this is independent

for each �C ∈ �H. Thus, by a Chernoff bound, it follows that

with probability ≥ 1 − exp(−O(εm)) ≥ 1 − 1/poly(n), it

holds that |S| ≤ 2 · 2k+1ε, and so we are done.

Remark IV.3 (Tolerating fewer constraints for structured Q’s).

We have shown that the above algorithm succeeds in finding

an assignment x that satisfies at least (1−O(ε))m constraints

when m ≥ nk/2 ·poly(log n, 1/ε). However, if the distribution

Q has |Q̂(S)| < 2−kε for all S with |S| > r, then we

317

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

only need nr/2 · poly(log n, 1/ε) constraints. (If r = 0, then

for small enough constant ε, Q will be supported on all of

{−1, 1}k, and so any assignment satisfies all constraints. If

r = 1, we require O(n · logn
ε) constraints; see Lemma C.1.)

Indeed, this follows because for such Q, the true label function

f∗ will have f∗(S) = 0 for any S with |S| > r. Hence,

for this choice of f∗, we only call Theorem 3 on noisy t-
XOR instances for t ≤ r, and so we have enough constraints.

It therefore follows that the assignment x(f∗) that we obtain

for the label function f∗ will be, with high probability an

assignment that satisfies at least (1−O(ε))m constraints.

An example where this gives an improvement is the well-

studied NAE-3-SAT (not-all-equal-3SAT) predicate [3], [5],

[19]. Suppose Q is the uniform distribution over satisfying

assignments to NAE-3-SAT: Q(x1, x2, x3) =
1
6 · 14 (3−x1x2−

x2x3 − x1x3). Then, we only need m ≥ Õ(n) constraints,

even though it is a 3-CSP (k = 3).

V. FROM k-XOR TO SPREAD BIPARTITE k-XOR

In this section, we begin the proof of Theorem 3. See

Definition I.3 for a reminder of our semirandom planted k-

XOR model ψ(H, x∗, η) given a k-uniform hypergraph H,

assignment x∗ ∈ {−1, 1}n, and noise parameter η ∈ (0, 1/2).
Recall also that Eψ denotes the set of corrupted hyperedges.

We think of A1(H) as the small set of edges that we discard

(or give up on), and this will only depend on the hypergraph H.

For the rest of the graph, the algorithm will correctly identify

which edges are corrupted.

Our proof of Theorem 3 goes via a reduction to spread

bipartite t-XOR instances for t = 2, . . . , k, which are t-
XOR instances with some additional desired structure. Such

instances were introduced in [29] to study the refutation of

semirandom k-XOR instances. The reduction here is nearly

identical to the corresponding reduction in [29, Section 4].

Definition V.1 (Spread bipartite k-XOR). A p-bipartite k-

XOR instance ψ on n variables with m constraints is defined

by a collection of (k−1)-uniform hypergraphs H = {Hu}u∈[p]

on the vertex set [n], as well as “right-hand sides” bu,C for

each u ∈ [p] and C ∈ Hu. There are two sets of variables of ψ:

the “normal” variables x1, . . . , xn, and the “special” variables

y1, . . . , yp. The constraints of ψ are yu
∏

i∈C xi = bu,C for

each u ∈ [p], C ∈ Hu.

We furthermore say that ψ is τ -spread if it has the following

additional properties:

(1) |Hu| = m
p ≥ 2� 1

2τ2 � and m
p is even for each u ∈ [p],

(2) For each u ∈ [p] and set Q ⊆ [n], degu(Q) ≤
1
τ2 max(1, n

k
2−1−|Q|).

Analogously to Definition I.3, we call ψ a semirandom

planted instance with planted assignment (x∗, y∗) and noise

parameter η if the right-hand sides bu,C are generated by

setting bu,C = y∗u
∏

i∈C x∗
i with probability 1− η and bu,C =

−y∗u
∏

i∈C x∗
i otherwise, independently for each choice of

u,C. For a choice of x∗, y∗, H = {Hu}u∈[p], and η, we call

this distribution ψ({Hu}u∈[p], x
∗, y∗, η). As before, if an edge

(u,C) has bu,C = −y∗u
∏

i∈C x∗
i , we call (u,C) a corrupted

hyperedge, and we denote the set of corrupted hyperedges in

ψ by Eψ .

The main technical result of the paper is the following

lemma, which gives an algorithm to find the noisy constraints

in a semirandom planted τ -spread bipartite k-XOR instance.

Lemma V.2 (Algorithm for τ -spread bipartite k-XOR). Let

k ≥ 2, n, p ∈ N, ε ∈ (0, 1), η ∈ [0, 1/2), and let γ := 1−2η >

0. Let τ ≤ cγ√
k logn

, and let m ≥ Cn
k−1
2
√
p · (k logn)3/2

τγ2ε3/2

for some universal constants c, C. There is a polynomial-time

algorithm A that takes as input an τ -spread p-bipartite k-

XOR instance ψ with constraint hypergraph H = {Hu}u∈[p]

and outputs two disjoint sets A1(H),A2(ψ) ⊆ H with

the following guarantee: (1) for any instance ψ with m
constraints, |A1(H)| ≤ εm and A1(H) only depends on

H, and (2) for any x∗ ∈ {−1, 1}n, y∗ ∈ {−1, 1}p and

any H = {Hu}u∈[p] with |H| :=
∑

u∈[p]|Hu| ≥ m, with

probability 1 − 1
poly(n) over ψ ← ψ({Hu}u∈[p], x

∗, y∗, η), it

holds that A2(ψ) = Eψ ∩ (H \ A1(H)).

Note that as η → 1
2 , γ = 1 − 2η → 0 and τ → 0, which

blows up m. This is the expected behavior since when η = 1
2 ,

it is impossible to recover the planted assignment since the

signs of the constraints are uniformly random.

A. Proof of Theorem 3 from Lemma V.2

With Lemma V.2, we can finish the proof of Theorem 3.

The high-level idea of this proof is very simple. First, we

decompose the k-XOR instance ψ into subinstances ψ(t)

for each t = 2, . . . , k, using a hypergraph decomposition

algorithm very similar to the one used in [29], [31]. The

algorithm and its guarantees are shown in Section B. Then, we

run the algorithm in Lemma V.2 to identify a set of corrupted

constraints and a small set of discarded constraints within each

subinstance ψ(t). We then take the union of these outputs to

be the final output of the algorithm.

Proof of Theorem 3. We begin with the decomposition of ψ
into ψ(2), . . . , ψ(k) along with a set of “discarded” hyperedges

H(1), which is done using Algorithm B.1 with spread param-

eter τ := c(1−2η)√
k logn

where c is the constant in Lemma V.2.

For each t = 2, . . . , k, ψ(t) is a semirandom (with noise η)

planted τ -spread p(t)-bipartite t-XOR instance specified by

(t− 1)-uniform hypergraphs {H(t)
u }u∈[p(t)].

Let m(t) :=
∑

u∈[p(t)]|H
(t)
u |. Algorithm B.1 has the follow-

ing guarantees:

(1) The runtime is nO(k),

(2) For each t ∈ {2, . . . , k} and u ∈ [p(t)], |H(t)
u | = m(t)

p(t) =

2� 1
2τ2 max(1, nt− k

2−1)�; in particular, |H(t)
u | is even and

is at least 2� 1
2τ2 �,

(3) For each t = 2, . . . , k, the instance ψ(t) is τ -spread,

(4) The number of “discarded” hyperedges is m(1) :=
|H(1)| ≤ 1

kτ2n
k
2 ,

(5) For t ∈ {2, . . . , k}, each C ∈ H(t)
u is obtained by

removing k − (t − 1) vertices from an edge in the

318

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

original hypergraph H. Thus, there is a one-to-one map

Decomp : H → H(1) ∪ ⋃k
t=2{H

(t)
u }u∈[p(t)], such that

an edge C ∈ H is corrupted if and only if the edge

Decomp(C) is corrupted in the instance ψ(t) that it lies

in.

For convenience, we denote γ := 1 − 2η and β :=

4C · (k logn)3/2

τγ2ε3/2
= 4C

c · k2 log2 n
γ3ε3/2

where C, c are the con-

stants in Lemma V.2. The algorithm in Theorem 3 works

as follows. First, it runs Algorithm B.1 to produce the

instances ψ(2), . . . , ψ(k). Then, for each t = 2, . . . , k, if

m(t) ≥ n
t−1
2

√
p(t) · β, we run Lemma V.2 on ψ(t) and

obtain, with probability 1 − 1/poly(n), a set A
(t)
1 where

|A(t)
1 | ≤ ε

2m
(t) and A

(t)
2 = Eψ(t) \ A

(t)
1 . Otherwise, if

m(t) < n
t−1
2

√
p(t) · β, we set A

(t)
1 = H(t) and A

(t)
2 = ∅.

Finally, we output A1 := H(1) ∪ ⋃k
t=2 Decomp

−1(A
(t)
1) and

A2 :=
⋃k

t=2 Decomp
−1(A

(t)
2), where Decomp is the mapping

in property (5) of Algorithm B.1.

Note that m(t) = p(t)|H(t)
u | ≥ p(t) · 1

2τ2n
t− k

2−1, which

means p(t) ≤ 2τ2n
k
2−t+1m(t), and since

∑
t

√
m(t) ≤√

k
∑

t m
(t) ≤

√
km by Cauchy-Schwarz, we have

k∑

t=2

n
t−1
2

√
p(t) · β ≤ O(τ) · n k

4

√
km · β ≤ o(ε)m

as long as m � n
k
2 · kτ2β2/ε2. Moreover, m(1) ≤ 1

kτ2n
k
2 =

logn
c2γ2 n

k
2 ≤ o(ε)m. One can verify, by plugging in β, that the

lower bound on m in Theorem 3 suffices.

By union bound over t, it thus follows that

|A1| ≤ m(1) +
k∑

t=2

ε

2
m(t) +

k∑

t=2

n
t−1
2

√
p(t)β ≤ εm ,

and A2 = Eψ\A1. Moreover, by Lemma V.2, A1 only depends

on the hypergraph H. This completes the proof.

VI. IDENTIFYING NOISY CONSTRAINTS IN SPREAD

BIPARTITE k-XOR

In this section, we prove Lemma V.2. The proof will

be decomposed into the following steps. First, we take the

semirandom planted bipartite k-XOR instance ψ and transform

it into a 2-XOR instance φ. Second, we decompose the

constraint graph of φ into expanders. For each expander in

the decomposition, we argue that the SDP solution to this

subinstance is rank 1, and moreover agrees exactly with

the planted assignment. This allows us to identify, for each

expanding subinstance, exactly which edges in φ are errors.

Finally, we use this information to identify the set of corrupted

constraints in the original instance ψ, which finishes the proof.

A. Setup and key notation

We now introduce the key notation that shall be used

throughout this section. Let ψ be the semirandom τ -spread

p-bipartite k-XOR instance (recall Definition V.1) with m
constraints given as the input to the algorithm. Recall that

the instance ψ is specified by a collection of p hypergraphs

{Hu}u∈[p], where each Hu is a (k−1)-uniform hypergraph on

n vertices and |Hu| = m/p. Each constraint in ψ is specified

by a pair (u,C) where u ∈ [p], C ∈ Hu, and has a right-hand

side bu,C ∈ {−1, 1}, and the constraints are yu
∏

i∈C xi =
bu,C , where {yu}u∈[p] and {xi}i∈[n] are variables. Because the

instance ψ is semirandom with noise parameter η and planted

assignment (x∗, y∗), for each constraint (u,C) we have, with

probability 1 − η independently, bu,C = y∗u
∏

i∈C x∗
i , and

otherwise bu,C = −y∗u
∏

i∈C x∗
i . Our goal is to output, in

nO(k)-time, a set A1(H) of size ≤ τm to discard, and then

for the rest of the instance, identify exactly the corrupted

constraints, i.e., those for which bu,C = −y∗u
∏

i∈C x∗
i .

We now define the 2-XOR instance φ from ψ. An example

is shown in Fig. 2.

Definition VI.1 (2-XOR instance φ from bipartite k-XOR ψ).

For every u ∈ [p] and Hu, we partition Hu arbitrarily into

two sets H(L)
u and H(R)

u of equal size.

• If k is odd, then there are
(

n
k−1
2

)2
variables in φ, one

variable z(S1,S2) for each pair of sets S1, S2 ⊆ [n] where

|S1| = |S2| = k−1
2 .

• If k is even, then there are 2
(

n
� k−1

2

)(

n
� k−1

2 �
)

variables in

φ, one variable z(S1,S2) for each pair of sets S1, S2 ⊆ [n]
where either |S1| = �k−1

2 � and |S2| = �k−1
2 � or |S1| =

�k−1
2 � and |S2| = �k−1

2 �.

For each u ∈ [p], C ∈ H(L)
u and C ′ ∈ H(R)

u , we arbitrarily

partition C into sets S1 ∪ S2 and C ′ into sets S′
1 ∪ S′

2, where

|S1| = |S′
1| = �k−1

2 � and |S2| = |S′
2| = �k−1

2 �. We then add

the constraint z(S1,S′
2)
z(S2,S′

1)
= bu,Cbu,C′ to φ.

It is intuitive to think of clauses from H(L)
u and H(R)

u as

having different colors, and each variable z(S1,S′
2)

contains

roughly k/2 of each color. See Fig. 2 for an example of a

2-XOR φ constructed from a bipartite k-XOR ψ.

Observation VI.2 (Size of φ). The number of variables in φ
is at most nk−1 (for both even and odd k). Since each |Hu| =
m/p, |H(L)

u | = |H(R)
u | = m

2p , and the number of constraints

in φ is exactly p · (m2p)2 = m2

4p . In particular, when m ≥
n

k−1
2
√
p · β for β = poly(log n) as assumed in Lemma V.2,

the average degree of φ is at least 1
4β

2.

Remark VI.3 (Corrupted constraints in φ). A constraint

z(S1,S′
2)
z(S2,S′

1)
= bu,Cbu,C′ in φ is corrupted if exactly one

of bu,C and bu,C′ is corrupted in ψ. Thus, if each constraint

in ψ is corrupted with probability η ∈ (0, 1/2), then each

constraint in φ is corrupted with probability 2η(1− η) < 1/2.

Note, however, that the constraints in φ are not corrupted

independently.

We need some more definitions about the constraint graph

of φ.

Definition VI.4 (Constraint graph of φ). Let G(φ) = (V,E)
be the constraint graph of φ. Notice that each edge e ∈
E uniquely identifies u(e) ∈ [p] and CL(e) ∈ H(L)

u(e),

CR(e) ∈ H(R)
u(e). For each u ∈ [p], C ∈ H(L)

u , define

319

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

G
(L)
u,C(φ) to be the subgraph of G that C participates in, i.e.,

with edge set {e ∈ E : u(e) = u, CL(e) = C}. We similarly

define G
(R)
u,C′(φ) for C ′ ∈ H(R)

u .

Fig. 2: An example of the 2-XOR instance φ from a bipartite

4-XOR ψ (Definition VI.1). On the left, H(L)
u consists of

C1 = {1, 2, 3} and C2 = {4, 5, 6} (with green vertices), and

H(R)
u consists of C ′

1 = {1, 6, 7} and C ′
2 = {1, 8, 9} (with blue

vertices). On the right, the constraint graph G(φ) has vertices

zS1,S2
where either |S1| = 2, |S2| = 1 or |S1| = 1, |S2| = 2

(we can view S1, S2 as having green, blue vertices). Each

edge corresponds to two clauses in ψ; for example, the edge{
z{1,2},{1}, z{3},{6,7}

}
comes from the clauses C1 and C ′

1.

Corruptions. In the figure, we label a clause −1 if it is

corrupted and +1 otherwise. An edge in G is corrupted if

exactly one of the two corresponding clauses in ψ is corrupted.

Degree of G
(L)
u,C(φ). For C1 ∈ H(L)

u , the subgraph G
(L)
u,C1

(φ)
corresponds to the edges colored red, i.e., all edges that C1

participates in. The vertex z{1,2},{1} has degree 2 in G
(L)
u,C1

(φ)
because |C ′

1 ∩ C ′
2| = 1.

We next make the important observation that the degree

of a vertex in G
(L)
u,C(φ) is upper bounded by the number of

C ′ ∈ H(R)
u sharing at least �k−1

2 � vertices. See Fig. 2 also

for an illustration. Therefore, assuming that ψ is τ -spread, we

have a maximum degree bound on G
(L)
u,C(φ) and G

(R)
u,C′(φ) for

all u ∈ [p], C ∈ H(L)
u and C ′ ∈ H(R)

u .

Lemma VI.5 (Degree bounds for G
(L)
u,C , G

(R)
u,C′). Let ψ be an

τ -spread p-bipartite k-XOR instance. Then, for any u ∈ [p],

C ∈ H(L)
u and C ′ ∈ H(R)

u , the maximum degree of G
(L)
u,C(φ),

G
(R)
u,C′(φ) is at most 1/τ2.

Proof. Consider any C ∈ H(L)
u and two adjacent edges

{z(S1,S′
2)
, z(S2,S′

1)
} and {z(S1,S′′

2), z(S2,S′′
1)} in G

(L)
u,C(φ)

formed by joining C = S1 ∪ S2 with C ′ = S′
1 ∪ S′

2 and

C ′′ = S′′
1 ∪ S′′

2 ∈ H(R)
u . As the edges are adjacent, it must be

the case that either S′
1 = S′′

1 or S′
2 = S′′

2 , which means that

|C ′ ∩ C ′′| ≥ �k−1
2 �. Thus, the degree of a vertex z(S1,S′

2)
in

G is upper bounded by the maximum number of C ′ ∈ H(R)
u

that all share the same �k−1
2 � variables.

Suppose ψ is τ -spread, meaning that degu(Q) ≤
1
τ2 max(1, n

k
2−1−|Q|) for Q ⊆ [n]. Since k

2 − 1−�k−1
2 � ≤ 0,

we have that G
(L)
u,c (φ) has maximum degree ≤ 1/τ2.

B. Proof outline

With the setup in Section VI-A in hand, our proof now

proceeds in three conceptual steps.

Step 1: graph pruning and expander decomposition. Sup-

pose the instance φ has average degree d. We first prune the

instance using Lemma III.4 such that the resulting constraint

graph has minimum degree ≥ εd while only removing ε
fraction of the constraints, where ε = o(1). We further apply

expander decomposition (Fact III.5) to the pruned instance

to obtain subinstances φ1, . . . , φT while discarding only a ε
fraction of the constraints of φ such that the constraint graph

of each φi has spectral gap Ω̃(ε2).

Step 2: relative spectral approximation and recovery of

corrupted pairs. We show that for each expanding subin-

stance φi, the basic SDP for the 2-XOR instance φi is equal

to x∗(x∗)�, where x∗ is the planted assignment for φ. That

is, the SDP solution is rank 1 and agrees with the planted

assignment for φ. We show this by arguing that, for each φi,

the Laplacian of the corrupted constraints in φi is a spectral

sparsifier of the Laplacian of the constraint graph of φi (see

Lemma II.5). Here, we crucially use that each such constraint

graph has large minimum degree and spectral gap.

From this, it is trivial to identify the corrupted edges in

each φi, as they are the ones violated by the SDP solution.

We are not quite done yet, however, because each constraint in

φ corresponds to a pair of constraints in the original instance

ψ.

Step 3: recovery of corrupted constraints from corrupted

pairs. The previous step shows that for all but a ε fraction of

tuples (u,C,C ′) where u ∈ [p], C ∈ H(L)
u , and C ′ ∈ H(R)

u ,

we can recover the product ξu(C)ξu(C
′), where ξu(C) = −1

if (u,C) is noisy in ψ, and is +1 otherwise. Because ε is

small, it must be the case that for most u ∈ [p], we know

the product ξu(C)ξu(C
′) (from Step 2) for most pairs (C,C ′)

with C ∈ H(L)
u and C ′ ∈ H(R)

u .

Suppose we knew ξu(C)ξu(C
′) for all (C,C ′) ∈ H(L)

u ×
H(R)

u . Then, it is trivial to decode ξu(C) up to a global

sign. Formally, we could obtain z ∈ {−1, 1}Hu where zC =
αξu(C) for some α ∈ {−1, 1}. From this, it is easy to obtain

ξu(C), as the fraction of C ∈ Hu for which ξu(C) = −1
should be roughly η < 1

2 ; so, if z has < 1
2 -fraction of −1’s,

then z = ξu(C), and otherwise −z = ξu(C). This, however,

requires |Hu| ≥ Ω
(

logn
(1−2η)2

)
for a high-probability result.

Additionally, we do not quite know ξu(C)ξu(C
′) for all

(C,C ′) ∈ H(L)
u × H(R)

u : we only know this for all but

a εu-fraction of the pairs. By forming a graph Gu where

we have an edge (C,C ′) if (C,C ′) is a pair where we

know ξu(C)ξu(C
′), we can thus obtain such a z for all C

in the largest connected component of Gu. Because Gu is

obtained by taking a complete biclique and deleting only a

εu-fraction of all edges, the largest connected component has

size (1− εu)|Hu|, and so we can recover ξu(C) for all but a

εu-fraction of constraints in Hu. We do this for each partition

u, which finishes the proof.

C. Graph pruning and expander decomposition

This step is a simple combination of graph pruning and

expander decomposition.

320

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

Lemma VI.6. Fix ε ∈ (0, 1). There is a polynomial-time al-

gorithm such that, given a 2-XOR instance φ whose constraint

graph has m edges and average degree d, outputs subin-

stances φ1, . . . , φT on disjoint variables with the following

guarantees: φ1, . . . , φT contain at least 1− ε fraction of the

constraints in φ, and for each i ∈ [T], the constraint graph

Gi of φi, after adding some self-loops, has minimum degree

at least 1
3εd and λ2(L̃Gi) ≥ Ω(ε2/ log2 m).

The self-loops in Lemma VI.6 are only for the analysis

of L̃Gi and do not correspond to actual constraints in φi.

Observe that adding self-loops to a graph G does not change

the unnormalized Laplacian LG, but as DG (the degree matrix)

increases, the spectral gap of the normalized Laplacian, i.e.

λ2(L̃G) = λ2(D
−1/2
G LGD

−1/2
G), may decrease. The expander

decomposition algorithm (Fact III.5) guarantees that each

piece, even after adding self-loops to preserve degrees, has

large spectral gap. This does not change the subinstances

φ1, . . . , φT , but in the next section, it is crucial that we use this

stronger guarantee to ensure a lower bound on the minimum

degree.

Proof of Lemma VI.6. We first apply the graph pruning al-

gorithm (Lemma III.4) such that the resulting instance has

minimum degree ≥ ε
3d and at least (1 − 2

3ε)m constraints.

Then, we apply expander decomposition (Fact III.5) that

partitions the vertices of the pruned graph G′ into V1, . . . , VT

such that the number of edges across partitions is at most
ε
3m, and for each i ∈ [T], the normalized Laplacian satisfies

λ2(L̃G′{Vi}) ≥ Ω(ε2/ log2 m). Here we recall that G′{Vi}
is the induced subgraph of G′ with self-loops such that the

vertices in G′{Vi} have the same degrees as in G′.
In total, we have removed at most εm edges. This completes

the proof.

D. Rank-1 SDP solution from expansion and relative spectral

approximation

We next show that for each subinstance φi obtained from

Lemma VI.6, its constraint graph G and the subgraph of cor-

rupted edges H satisfy LH ≺ 1
2LG. Recall from Lemmas II.5

and II.6 that this implies the basic SDP for the 2-XOR φi is

rank 1 and agrees with the planted assignment of φ.

The next lemma is analogous to Lemma II.6 but differs in

an important way: a constraint in φ is corrupted if and only

if exactly one of the two corresponding constraints in ψ is

corrupted; thus, the corruptions in φ are correlated. This is

why each constraint in φ is obtained from one clause in H(L)
u

and one clause in H(R)
u (recall Definition VI.1), so that in

the proof below we have independent randomness to perform

a “2-step sparsification” proof. It is also worth noting that

the following lemma requires not just a lower bound on the

minimum degree and spectral gap of G but also that the

original bipartite k-XOR instance ψ is well-spread, which

allows us to apply Lemma VI.5.

Same as Lemma II.6, the following lemma is a purely graph-

theoretic statement.

Lemma VI.7 (Relative spectral approximation with correlated

subsamples). Suppose G = (V,E) is an n-vertex graph with

minimum degree dmin (self-loops and parallel edges allowed)

and spectral gap λ2(L̃G) = λ > 0. Let m1,m2 ∈ N,

η ∈ [0, 1/2), and let ξ
(1)
1 , . . . , ξ

(1)
m1 , ξ

(2)
1 , . . . , ξ

(2)
m2 be i.i.d.

random variables that take value −1 with probability η and

+1 otherwise. Suppose there is an injective map that maps

each edge e �→ (c1(e), c2(e)) ∈ [m1] × [m2], and for each

i ∈ [m1] (resp. j ∈ [m2]) define G
(1)
i (resp. G

(2)
j) be the

subgraph of G with edge set {e ∈ E : c1(e) = i} (resp.

{e ∈ E : c2(e) = j}). Moreover, suppose G
(1)
i and G

(2)
j have

maximum degree ≤ Δ for all i ∈ [m1], j ∈ [m2].

Let H be the subgraph of G with edge set
{
e ∈ E :

ξ
(1)
c1(e)

ξ
(2)
c2(e)

= −1
}

. There is a universal constant B > 0 such

that if dminλ ≥ BΔ log n, then with probability 1−O(n−2),

LH � max

(
(1 + δ) · 2η(1− η),

1

3

)
· LG

for δ =
√

B∆ logn
dminλ

.

Let γ := 1 − 2η > 0 since η < 1
2 . Notice that 2η(1 −

η) = 1
2 (1 − γ2), which approaches 1

2 as η → 1
2 . Thus, if

δ ≤ γ2, then (1 + δ) · 2η(1− η) ≤ (1 + γ2) · 1
2 (1− γ2) < 1

2 ,

and LH ≺ 1
2LG suffices to conclude via Lemma II.5 that the

SDP relaxation on the expanding subinstance is rank 1 and

recovers the planted assignment, which also gives us the set

of corrupted constraints.

Proof of Lemma VI.7. First, note that by the definition of

Laplacian and the spectral gap of LG, span(�1) is exactly the

null space of LG and is contained in the null space of LH .

Therefore, recalling that LG = D
1/2
G L̃GD

1/2
G , it suffices to

prove that

∥∥∥(L̃†
G)

1/2D
−1/2
G LHD

−1/2
G (L̃†

G)
1/2

∥∥∥
2
≤ max

(
(1 + δ) · 2η(1− η),

1

3

)
.

(1)

Here L̃†
G is the pseudo-inverse of L̃G, and ‖L̃†

G‖2 ≤ 1/λ.

For simplicity, for any graph G′, we will write L̂G′ :=

(L̃†
G)

1/2D
−1/2
G LG′D

−1/2
G (L̃†

G)
1/2. Thus,

L̂H =
∑

e∈E

1
(
ξ
(1)
c1(e)

ξ
(2)
c2(e)

= −1
)
· L̂e ,

and E[L̂H] = 2η(1− η)
∑

e∈E

L̂e .

Note that
∑

e∈E L̂e = L̂G, a projection matrix, thus∥∥∑
e∈E L̂e

∥∥
2
= 1.

For each i ∈ [m1], we further define G
(1)
i,+ and G

(1)
i,− to

be (random) edge-disjoint subgraphs of G
(1)
i where G

(1)
i,+ has

edge set
{
e ∈ E : c1(e) = i, ξ

(2)
c2(e)

= +1
}

and G
(1)
i,− has

edge set
{
e ∈ E : c1(e) = i, ξ

(2)
c2(e)

= −1
}

. Note that

G
(1)
i,+, G

(1)
i,− are independent of ξ(1) = (ξ

(1)
1 , . . . , ξ

(1)
m1). By the

321

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

maximum degree bound on G
(1)
i , we have that

∥∥L
G

(1)
i,+

∥∥
2

and∥∥L
G

(1)
i,−

∥∥
2
≤

∥∥L
G

(1)
i

∥∥
2
≤ 2Δ. Thus,

∥∥∥L̂G
(1)
i,+

∥∥∥
2
,
∥∥∥L̂G

(1)
i,−

∥∥∥
2
≤

∥∥∥L̂G
(1)
i

∥∥∥
2

≤ 2Δ ·
∥∥∥L̃†

G

∥∥∥
2
·
∥∥D−1

G

∥∥
2

≤ 2Δ

dminλ
.

(2)

Similarly, for j ∈ [m2], G
(2)
j,+ and G

(2)
j,− are (random)

edge-disjoint subgraphs of G
(2)
j independent of ξ(2) =

(ξ
(2)
1 , . . . , ξ

(2)
m2) such that

∥∥L̂
G

(2)
j,+

∥∥
2

and
∥∥L̂

G
(2)
j,−

∥∥
2
≤ 2∆

dminλ
.

Now, we first fix ξ(2) ∈ {−1, 1}m2 . Observe that we can

write L̂H as

L̂H =
∑

i∈[m1]

1(ξ
(1)
i = +1)·L̂

G
(1)
i,−

+1(ξ
(1)
i = −1)·L̂

G
(1)
i,+

, (3)

and

E[L̂H |ξ(2)]
= (1− η)

∑

i∈[m1]

L̂
G

(1)
i,−

+ η
∑

i∈[m1]

L̂
G

(1)
i,+

=
∑

e∈E

(
(1− η) · 1(ξ(2)c2(e)

= −1) + η · 1(ξ(2)c2(e)
= +1)

)
· L̂e

:=
∑

e∈E

wc2(e) · L̂e .

(4)

Here wc2(e) ∈ {η, 1 − η}, thus
∥∥E[L̂H |ξ(2)]

∥∥
2

≥
η
∥∥∑

e∈E L̂e

∥∥
2
= η.

We now split the analysis into two cases. Let η0 := 1/12.

Case 1: η ≥ η0.

In light of Eq. (3), we define Xi := 1(ξ
(1)
i = +1) · L̂

G
(1)
i,−

+

1(ξ
(1)
i = −1) · L̂

G
(1)
i,+

such that L̂H =
∑

i∈[m1]
Xi. Moreover,

we have that Xi � 0 and ‖X‖2 ≤ 2∆
dminλ

almost surely from

Eq. (2). Thus, applying matrix Chernoff (Fact III.3), we get

Pr
ξ(1)

[∥∥∥L̂H

∥∥∥
2
≥ (1 + δ)

∥∥∥E[L̂H |ξ(2)]
∥∥∥
2

]

≤ n · exp
(
−1

3
δ2

∥∥∥E[L̂H |ξ(2)]
∥∥∥
2
· dminλ

2Δ

)

≤ n · exp
(
−δ2ηdminλ

6Δ

)
,

(5)

which is at most O(n−2) as long as δ2 ≥ B1∆ logn
dminλ

for a large

enough constant B1.

Next, we similarly prove concentration for
∥∥E[L̂H |ξ(2)]

∥∥
2

over ξ(2). Recalling Eq. (4),

E[L̂H |ξ(2)] =
∑

e∈E

wc2(e) · L̂e

=
∑

j∈[m2]

wj

∑

e∈G
(2)
j

L̂e =
∑

j∈[m2]

wj · L̂G
(2)
j

.

E[wj] = 2η(1 − η), and
∥∥Eξ(2)E[L̂H |ξ(2)]

∥∥
2

= 2η(1 −
η)
∥∥∑

e∈E L̂e

∥∥
2
= 2η(1− η). Since

∥∥wjL̂G
(2)
j

∥∥
2
≤ 2(1−η)∆

dminλ
,

we can apply matrix Chernoff again:

Pr
ξ(2)

[∥∥∥E[L̂H |ξ(2)]
∥∥∥
2
≥ (1 + δ′) · 2η(1− η)

]

≤ n · exp
(
−1

3
δ′2 · 2η(1− η) · dminλ

2(1− η)Δ

) (6)

which is at most O(n−2) as long as δ′2 ≥ B2∆ logn
dminλ

for a large

enough constant B2. Combining both tail bounds, by the union

bound, we have that with probability at least 1 − O(n−2),∥∥L̂H

∥∥
2
≤ (1 + δ) · 2η(1 − η) as long as δ2 ≥ B∆ logn

dminλ
for a

large enough B. This establishes Eq. (1), proving the lemma

for this case.

Case 2: η < η0. To handle this case, observe that the

exact same analysis goes through for H̃ = {e ∈ E : ξ
(1)
c1(e)

=

−1 or ξ
(2)
c2(e)

= −1} ⊇ H . Indeed, similar to Eq. (3) and (4),

we have L̂H̃ =
∑

i∈[m1]
X̃i where X̃i = 1(ξ

(1)
i = +1) ·

L̂
G

(1)
i,−

+ 1(ξ
(1)
i = −1) · L̂

G
(1)
i

(notice the 2nd term is G
(1)
i

instead of G
(1)
i,+), and

E[L̂H̃ |ξ(2)] = (1− η)
∑

i∈[m1]

L̂
G

(1)
i,−

+ η
∑

i∈[m1]

L̂
G

(1)
i

=
∑

e∈E

w̃c2(e) · L̂e =
∑

j∈[m2]

w̃j · L̂G
(2)
j

,

where w̃j = 1 if ξ
(2)
j = −1 and η if ξ

(2)
j = +1, hence E[w̃j] =

η + η(1 − η) = η(2 − η). Moreover,
∥∥Eξ(2)E[L̂H̃ |ξ(2)]

∥∥
2
=

η(2− η)
∥∥∑

e∈E L̂e

∥∥
2
= η(2− η).

First, set η = η0, and let H̃0 be the random subgraph as

defined above. Similar to Eq. (5) and (6), we apply matrix

Chernoff (Fact III.3) and get that with probability 1−O(n−2),∥∥L̂H̃0

∥∥
2
≤ (1 + δ) · η0(2 − η0) for δ =

√
B∆ logn
dminλ

≤ 1. In

particular, this means that LH̃0
� 2η0(2 − η0)LG � 1

3LG

when η0 = 1/12.

Now, fix any η < η0. We can obtain a coupling between

this case and the case when η = η0 by randomly changing

ξ
(1)
i and ξ

(2)
j from +1 to −1 (while not flipping the ones with

−1). Notice that H̃ is monotone increasing as we change any

+1 to −1 (whereas H is not!), thus we must have H̃ ⊆ H̃0

in this coupling. Then, as H ⊆ H̃ , we have

LH � LH̃ � LH̃0
� 1

3
LG

with probability 1 − O(n−2). This finishes the proof of

Lemma VI.7.

E. Recovery of corrupted constraints from corrupted pairs

We have thus shown that, with probability ≥ 1−1/poly(n),
we can exactly recover the set of corrupted constraints within

each expanding subinstance φ1, . . . , φT . Recall that after prun-

ing and expander decomposition (Lemma VI.6), the expanding

subinstances contain a (1 − ε)-fraction of all edges in the

322

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

instance φ, and the set of edges removed only depends on the

constraint graph and not the right-hand sides of φ. As stated in

Observation VI.2, the instance φ has exactly m2/4p edges, and

they correspond exactly to the set {(u,C,C ′) : u ∈ [p], C ∈
H(L)

u , C ′ ∈ H(R)
u }, and moreover an edge e in φ is corrupted

if and only if exactly one of the two constraints (u,C), (u,C ′)
is corrupted in the original instance ψ, where e corresponds

to (u,C,C ′). For each u ∈ [p] and C ∈ Hu = H(L)
u ∪ H(R)

u ,

let ξu(C) = −1 if (u,C) is corrupted in ψ, and 1 otherwise.

It thus follows that we have learned, for 1− ε fraction of all

{(u,C,C ′) : u ∈ [p], C ∈ H(L)
u , C ′ ∈ H(R)

u }, the product

ξu(C) · ξu(C ′).
It now remains to show how to recover ξu(C) for most

u ∈ [p], C ∈ Hu. For each u ∈ [p], let Pu ⊆ {(C,C ′) :

C ∈ H(L)
u , C ′ ∈ H(R)

u } such that we have determined ξu(C) ·
ξu(C

′), and let P = ∪u∈[p]Pu. We know that |P | ≥ (1 −
ε)m

2

4p . Let εu be chosen so that |Pu| = (1 − εu)
m2

4p2 , i.e., εu

is the fraction of pairs in H(L)
u × H(R)

u that were deleted in

Lemma VI.6. Notice that we have

(1− ε)
m2

4p
≤ |P | =

∑

u∈[p]

|Pu| =
m2

4p2

∑

u∈[p]

(1− εu)

=⇒ 1

p

∑

u∈[p]

εu ≤ ε .

(7)

One can think of this problem as a collection of disjoint

satisfiable (noiseless) 2-XOR instances on Pu, where each Pu

is a biclique (m
2p vertices on each side) with εu fraction of

edges are removed.

Algorithm VI.8 (Recover corrupted constraints from

corrupted pairs).

Given: For each u ∈ [p], a set Pu ⊆ H(L)
u ×H(R)

u such

that |Pu| = (1 − εu)
m2

4p2 for εu ∈ [0, 1], along

with “right-hand sides” ξu(C) · ξu(C ′) for each

(C,C ′) ∈ Pu.

Output:For each u ∈ [p], disjoint subsets A(1)
u ,A(2)

u ⊆
Hu.

Operation:

1) Initialize: A(1)
u ,A(2)

u = ∅ for each u ∈ [p].
2) For each u ∈ [p]:

a) If εu ≥ 1/3, set A(1)
u = Hu and A(2)

u =
∅.

b) Else if εu < 1/3, let Gu be the graph with

vertex set Hu = H(L)
u ∪H(R)

u with edges

given by Pu, and let Su be the size of the

largest connected component in Gu.

c) As Su is connected in Gu, and we know

ξu(C)ξu(C
′) for each edge (C,C ′) in

Gu, by solving a linear system of equa-

tions we obtain z ∈ {−1, 1}Hu such that

either zC = ξu(C) for all C ∈ Su, or

zC = −ξu(C) for all C ∈ Su. That is,

zC = ξu(C) up to a global sign.

d) Pick the global sign to minimize the num-

ber of C ∈ Su for which zC = −1. Set

A(1)
u = Hu \ Su and A(2)

u = {C ∈ Su :
zC = −1}.

3) Output {A(1)
u }u∈[p], {A(2)

u }u∈[p].

We now analyze Algorithm VI.8 via the following lemma.

Lemma VI.9. Let η ∈ [0, 1/2), and let |Hu| = m
p ≥

24k
(1−2η)2 log n and |Pu| = (1−εu)

m2

4p2 with εu ∈ [0, 1] for each

u ∈ [p], and 1
p

∑
u∈[p] εu ≤ ε. The outputs of Algorithm VI.8

satisfy the following: (1)
∑

u∈[p] |A
(1)
u | ≤ 4εm, and (2) with

probability 1 − n−k over the noise {ξu(C)}u∈[p],C∈Hu
, for

every u ∈ [p] we have that A(2)
u = {C ∈ Hu : ξu(C) =

−1} \ A(1)
u .

Proof. Suppose that εu < 1/3. Observe that Gu is a graph

obtained by taking a biclique with left vertices H(L)
u and

right vertices H(R)
u , i.e., with m/2p left vertices and m/2p

right vertices. The following lemma shows that the largest

connected component Su in Gu has size at least m
p (1− εu).

Claim VI.10. Let Kn,n be the complete bipartite graph with

n left vertices L and n right vertices R. Let G be a graph

obtained by deleting εn2 edges from Kn,n. Then, the largest

connected component in G has size ≥ 2n(1− ε).

We postpone the proof of Claim VI.10 to the end of the

section, and continue with the proof of Lemma VI.9.

We now argue that we can efficiently obtain the vector

z in Step (2c) of Algorithm VI.8. Indeed, this is done as

follows. First, pick one C0 ∈ Su arbitrarily, and set zC0
= 1.

Then, we propagate in a breadth-first search manner: for

any edge (C,C ′) in Su where zC is determined, set zC′ =
zC ·ξu(C)ξu(C

′). We repeat this process until we have labeled

all of Su. Notice that as Su is a connected component, fixing

zC0 for any C0 ∈ Su uniquely determines the assignment of

all Su, thus we have obtained zC = ξu(C) up to a global sign.

Now, we observe that Su does not depend on the noise

in ψ. Indeed, this is because the pruning and expander de-

composition (and thus the graph Gu) depends solely on the

constraint graph G of the instance φ, and not on the right-hand

sides of the constraints. The following lemma thus shows that

with high probability over the noise, the number of C ∈ Su

where ξu(C) = −1 is strictly less than 1/2|Su|. Hence,

in Step (2d), by picking the assignment ±z that minimizes

the number of C ∈ Su with ξu(C) = −1, we see that

A(2)
u = {C ∈ Su : zC = −1} = {C ∈ Su : ξu(C) = −1}.

Claim VI.11. Let η ∈ (0, 1/2) be the corruption probability,

and assume that p ≤ nk and m
p ≥ 24k

(1−2η)2 log n. With

probability 1−n−k over the noise in ψ, it holds that for each

u ∈ [p] with εu < 1/3, |{C ∈ Su : ξu(C) = −1}| < 1
2 |Su|.

We postpone the proof of Claim VI.11, and finish the proof

of Lemma VI.9. We next bound
∑

u∈[p] |A
(1)
u |. By Eq. (7) we

323

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

have that 1
p

∑
u εu ≤ ε. Thus,

∑

u:εu≥1/3

|Hu| ≤
m

p

∑

u:εu≥1/3

3εu ≤ 3εm .

Moreover, by Claim VI.10 we have |Su| ≥ (1 − εu)|Hu| =
(1− εu)

m
p . Thus,

∑

u:εu<1/3

|Hu \ Su| ≤
∑

u:εu<1/3

εu · m
p

≤ εm .

Therefore, combining the two,

∑

u∈[p]

|A(1)
u | =

∑

u:εu<1/3

|Hu \ Su|+
∑

u:εu≥1/3

|Hu| ≤ 4εm ,

which finishes the proof of Lemma VI.9.

In the following, we prove Claims VI.10 and VI.11.

Proof of Claim VI.10. Let S1, . . . , St be the connected com-

ponents of G. Let �i = |Si∩L| and ri = |Si∩R|. The number

of edges in G is at most
∑t

i=1 �iri.

Now, suppose that the largest connected component of G
has size at most M . Then, we have that �i + ri ≤ M for all

i ∈ [t]. Notice that the number of edges deleted from Kn,n to

produce G must be at least n2−∑t
i=1 �iri, and this is at most

εn2. Hence, by maximizing the quantity
∑t

i=1 �iri subject to

�i + ri ≤ M for all i ∈ [t] and
∑t

i=1 �i + ri = 2n, we can

obtain a lower bound on the number of edges deleted from

Kn,n in order for the largest connected component of G to

have size at most M . We have that

t∑

i=1

�iri ≤
t∑

i=1

(
�i + ri

2

)2

≤ M

2
·

t∑

i=1

�i + ri
2

=
nM

2
,

where the first inequality is by the AM-GM inequality. Thus,

εn2 ≥ n2 − nM

2
=⇒ M ≥ 2n(1− ε) ,

which finishes the proof.

Proof of Claim VI.11. Let u be such that εu < 1/3, and let

Su be the largest connected component in Gu. Observe that

Su is determined solely by the constraint graph of φ, and in

particular does not depend on the noise in φ (and hence on

the noise in ψ). As p ≤ nk by assumption, it thus suffices to

show that for each u ∈ [p], with probability 1−n−2k it holds

that |{C ∈ Su : ξu(C) = −1}| < 1
2 |Su|. Notice that |{C ∈

Su : ξu(C) = −1}| is simply the sum of |Su| Bernoulli(η)
random variables. By Hoeffding’s inequality, with probability

≥ 1 − exp(−2δ2|Su|) it holds that |{C ∈ Su : ξu(C) =
−1}| ≤ (η + δ)|Su|. We choose δ = 1

2 (
1
2 − η) such that

η + δ < 1
2 for η ∈ (0, 1

2). Then, by noting that 2δ2|Su| ≥
2δ2(1 − εu)|Hu| ≥ 1

2 (
1
2 − η)2 · 2

3 · m
p ≥ 2k log n since m

p ≥
24k

(1−2η)2 log n, Claim VI.11 follows.

F. Finishing the proof of Lemma V.2

Proof of Lemma V.2. We are given an τ -spread p-bipartite k-

XOR instance ψ with constraint graph H = {Hu}u∈[p], where

we recall from Definition V.1 that (1) m = |H| and each

|Hu| = m
p ≥ 2� 1

2τ2 � and m
p is even, and (2) for any Q ⊆ [n],

degu(Q) ≤ 1
τ2 max(1, n

k
2−1−|Q|). For convenience, let m ≥

n
k−1
2
√
p ·β where β := C · (k logn)3/2

τγ2ε3/2
and γ := 1−2η ∈ (0, 1]

since η ∈ [0, 1
2).

First, we construct the 2-XOR instance φ defined in Defi-

nition VI.1. As stated in Observation VI.2, the average degree

is at least d := 1
4β

2, and furthermore, by Lemma VI.5, the

maximum degree of G
(L)
u,C(φ) and G

(R)
u,C′(φ) for any u ∈ [p],

C ∈ H(L)
u and C ′ ∈ H(R)

u is bounded by Δ := 1/τ2. The

algorithm then follows the steps outlined in Section VI-B.

Step 1. We apply graph pruning and expander decomposition

(Lemma VI.6) with parameter ε′ := 1
4ε, which decomposes

φ into φ1, . . . , φT such that they contain 1 − ε′ fraction

of the constraints in φ, and their constraint graphs (after

adding some self-loops due to expander decomposition) have

minimum degree dmin ≥ 1
3ε

′d = 1
48εβ

2 and spectral gap

λ ≥ Ω(ε′2/ log2 m) = Ω(ε2/(k2 log2 n)).

Step 2. We solve the SDP relaxation for each subinstance φi.

Let G be the constraint graph of φi (with at most N ≤ nk−1

vertices) and H be the corrupted edges of G. We apply

the relative spectral approximation result (Lemma VI.7) with

ξ
(1)
1 , . . . , ξ

(1)
m/2p (resp. ξ

(2)
1 , . . . , ξ

(2)
m/2p) being {−1, 1} random

variables indicating whether each C ∈ H(L)
u (resp. C ′ ∈ H(R)

u)

is corrupted. Moreover, the subgraphs G
(1)
i and G

(2)
j in

Lemma VI.7 (which are simply subgraphs of G
(L)
u,C(φ) and

G
(R)
u,C′(φ)) have maximum degree ≤ Δ = 1/τ2. Thus, we

have that with probability 1−O(N−2),

LH � max

(
(1 + δ) · 2η(1− η),

1

3

)
· LG

where δ =
√

B∆ logN
dminλ

≤ O
(√

k3 log3 n
τ2ε3β2

)
. Plugging in β (for

large enough C), we get that δ ≤ γ2 = 1 − 4η(1 − η).
Therefore, we have (1+δ)·2η(1−η) ≤ (1+γ2)· 12 (1−γ2) < 1

2 ,

hence LH ≺ 1
2LG. By union bound over all T ≤ N

subinstances, this holds for all subinstances φi with probability

1− 1
poly(n) over the randomness of the noise.

Then, by Lemma II.5, the SDP relaxation has a unique

optimum which is the planted assignment. Thus, we can

identify the set of corrupted edges in each φi.

Step 3. So far we have identified, for ≥ 1 − ε′ fraction of

all {(u,C,C ′) : u ∈ [p], C ∈ H(L)
u , C ′ ∈ H(R)

u }, the product

ξu(C) · ξu(C ′), where ξu(C) = −1 if (u,C) is corrupted in

ψ, and +1 otherwise. Let Pu ⊆ {(C,C ′) : C ∈ H(L)
u , C ′ ∈

H(R)
u } be such pairs for each u ∈ [p], and let P = ∪u∈[p]Pu.

Note that |P | ≥ (1 − ε′)m
2

4p and P depends only on H and

not on the noise.

We then run Algorithm VI.8. By the assumption that τ ≤
cγ√

k logn
for a small enough c, we have |Hu| = m

p ≥ 2� 1
2τ2 � ≥

324

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

24k
(1−2η)2 , which is the condition we need in Lemma VI.9. Thus,

with probability 1−n−k, Algorithm VI.8 outputs (1) A1 ⊆ H
which only depends on H and such that |A1| ≤ 4ε′m = εm,

and (2) A2 ⊆ H, the set of corrupted constraints in H \ A1.

This completes the proof of Lemma V.2.

REFERENCES

[1] Jackson Abascal, Venkatesan Guruswami, and Pravesh K. Kothari.
Strongly refuting all semi-random Boolean CSPs. In Proceedings of

the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,

Virtual Conference, January 10 - 13, 2021, pages 454–472. SIAM, 2021.
[2] Emmanuel Abbe and Colin Sandon. Detection in the stochastic block

model with multiple clusters: proof of the achievability conjectures,
acyclic BP, and the information-computation gap. arXiv preprint

arXiv:1512.09080, 2015.
[3] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher

Moore. The phase transition in 1-in-k SAT and NAE 3-SAT. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete

algorithms, pages 721–722, 2001.
[4] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to Refute a

Random CSP. In IEEE 56th Annual Symposium on Foundations of

Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,

2015, pages 689–708. IEEE Computer Society, 2015.
[5] Gunnar Andersson and Lars Engebretsen. Better approximation algo-

rithms for Set splitting and Not-All-Equal SAT. Information Processing

Letters, 65(6):305–311, 1998.
[6] Benny Applebaum. Cryptographic Hardness of Random Local Func-

tions: Survey. Computational complexity, 25:667–722, 2016.
[7] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time

approximation schemes for dense instances of NP-hard problems. In
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory

of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages
284–293. ACM, 1995.

[8] Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of Squares
Lower Bounds from Pairwise Independence. In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing, STOC

2015, Portland, OR, USA, June 14-17, 2015, pages 97–106. ACM, 2015.
[9] Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the

Sum-of-Squares Hierarchy. In Proceedings of the 29th Conference

on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016,
volume 49 of JMLR Workshop and Conference Proceedings, pages 417–
445. JMLR.org, 2016.

[10] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest
toward optimal algorithms. CoRR, abs/1404.5236, 2014.

[11] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico
Ricci-Tersenghi, Martin Weigt, and Riccardo Zecchina. Hiding solutions
in random satisfiability problems: A statistical mechanics approach.
Physical review letters, 88(18):188701, 2002.

[12] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell.
Efficient probabilistically checkable proofs and applications to approxi-
mations. In Proceedings of the twenty-fifth annual ACM symposium on

Theory of computing, pages 294–304, 1993.
[13] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur

Tulsiani. SDP gaps from pairwise independence. Theory of Computing,
8(1):269–289, 2012.

[14] Avrim Blum and Joel Spencer. Coloring Random and Semi-Random
k-Colorable Graphs. J. Algorithms, 19(2):204–234, 1995.

[15] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s
one-way function. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques: 12th International Workshop,

APPROX 2009, pages 392–405. Springer, 2009.
[16] Rares-Darius Buhai, Pravesh K Kothari, and David Steurer. Algorithms

approaching the threshold for semi-random planted clique. In Pro-

ceedings of the 55th Annual ACM SIGACT Symposium on Theory of

Computing, 2022.
[17] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse

regularity concept. SIAM Journal on Discrete Mathematics, 23(4):2000–
2034, 2010.

[18] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation
heuristics for random k-SAT. Combinatorics, Probability & Computing,
16(1):5, 2007.

[19] Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random
regular NAE-SAT. In Proceedings of the forty-sixth annual ACM

symposium on Theory of computing, pages 814–822, 2014.

[20] Uriel Feige. Relations between average case complexity and approx-
imation complexity. In Proceedings of the thiry-fourth annual ACM

symposium on Theory of computing, pages 534–543, 2002.

[21] Uriel Feige. Refuting Smoothed 3CNF Formulas. In 48th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2007), October

20-23, 2007, Providence, RI, USA, Proceedings, pages 407–417. IEEE
Computer Society, 2007.

[22] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems.
J. Comput. Syst. Sci., 63(4):639–671, 2001.

[23] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled
Power Iteration: a Unified Algorithm for Block Models and Planted
CSP’s. In Advances in Neural Information Processing Systems 28:

Annual Conference on Neural Information Processing Systems 2015,

December 7-12, 2015, Montreal, Quebec, Canada, pages 2836–2844,
2015.

[24] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. On the
Complexity of Random Satisfiability Problems with Planted Solutions.
SIAM Journal on Computing, 47(4):1294–1338, 2018.

[25] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic
Proofs and Efficient Algorithm Design. Foundations and Trends® in

Theoretical Computer Science, 14(1-2):1–221, 2019.

[26] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-
exponential Approximation Schemes for CSPs: From Dense to Almost
Sparse. In 33rd Symposium on Theoretical Aspects of Computer Science,

STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of
LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

[27] Andreas Goerdt and André Lanka. Recognizing more random unsatisfi-
able 3-sat instances efficiently. Electron. Notes Discret. Math., 16:21–46,
2003.

[28] Oded Goldreich. Candidate One-Way Functions Based on Expander
Graphs. Electron. Colloquium Comput. Complex., 2000.

[29] Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algo-
rithms and certificates for Boolean CSP refutation: smoothed is no harder
than random. In STOC ’22: 54th Annual ACM SIGACT Symposium on

Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 678–689.
ACM, 2022.

[30] Johan Håstad. Some optimal inapproximability results. Journal of the

ACM (JACM), 48(4):798–859, 2001.

[31] Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty. A simple
and sharper proof of the hypergraph Moore bound. In Proceedings of

the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,

Florence, Italy, January 22-25, 2023, pages 2324–2344. SIAM, 2023.

[32] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of
k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001.

[33] Haixia Jia, Cristopher Moore, and Doug Strain. Generating Hard
Satisfiable Formulas by Hiding Solutions Deceptively. Journal of

Artificial Intelligence Research, 28:107–118, 2007.

[34] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM (JACM), 51(3):497–515, 2004.

[35] David R Karger. Random sampling in cut, flow, and network design
problems. In Proceedings of the twenty-sixth annual ACM symposium

on Theory of computing, pages 648–657, 1994.

[36] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer.
Sum of squares lower bounds for refuting any CSP. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 132–145.
ACM, 2017.

[37] Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Reweighted
Belief Propagation and Quiet Planting for Random k-SAT. Journal

on Satisfiability, Boolean Modeling and Computation, 8(3-4):149–171,
2012.

[38] Florent Krzakala and Lenka Zdeborová. Hiding Quiet Solutions in
Random Constraint Satisfaction Problems. Physical review letters,
102(23):238701, 2009.

[39] Ryuhei Mori and David Witmer. Lower Bounds for CSP Refutation by
SDP Hierarchies. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, APPROX/RANDOM 2016,

September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 41:1–
41:30, 2016.

325

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

[40] Dana Moshkovitz. The Projection Games Conjecture and the NP-
Hardness of lnn-Approximating Set-Cover. Theory Comput., 11:221–
235, 2015.

[41] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error.
J. ACM, 57(5):29:1–29:29, 2010.

[42] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased
generators in NC0. Random Structures & Algorithms, 29(1):56–81,
2006.

[43] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for
near-optimal polynomial stretch. In 2014 IEEE 29th Conference on

Computational Complexity (CCC), pages 1–12. IEEE, 2014.
[44] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting

random CSPs below the spectral threshold. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

Montreal, QC, Canada, June 19-23, 2017, pages 121–131. ACM, 2017.
[45] Thatchaphol Saranurak and Di Wang. Expander decomposition and

pruning: Faster, stronger, and simpler. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2616–
2635. SIAM, 2019.

[46] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981–1025, 2011.

[47] Joel A Tropp. An introduction to matrix concentration inequalities.
Foundations and Trends® in Machine Learning, 8(1-2):1–230, 2015.

[48] Alexander S. Wein, Ahmed El Alaoui, and Cristopher Moore. The
Kikuchi Hierarchy and Tensor PCA. In David Zuckerman, editor, 60th

IEEE Annual Symposium on Foundations of Computer Science, FOCS

2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1446–
1468. IEEE Computer Society, 2019.

[49] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with
improved worst-case update time. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, pages 1130–1143,
2017.

APPENDIX A

NOTIONS OF RELATIVE APPROXIMATION

In this paper, we have encountered several notions of

relative graph approximations. Let G be an n-vertex graph,

and let H be a random subgraph of G by selecting each edge

with a fixed probability η ∈ (0, 1). We are interested in the

sufficient conditions on G for each of the following to hold

with probability 1− o(1) (for some δ = o(1)):

(1) Relative cut approximation: x�LHx ≤ (1+δ)η ·x�LGx
for all x ∈ {−1, 1}n.

(2) Relative SDP approximation: 〈X,LH〉 ≤ (1 + δ)η ·
〈X,LG〉 for all symmetric matrices X � 0 with

diag(X) = I.

(3) Relative spectral approximation: LH � (1 + δ)η · LG.

Here, we only state one-sided inequalities, as solving noisy

XOR requires only an upper bound on LH . Note also that the

above is in increasing order: relative spectral approximation

implies relative SDP approximation, which in turn implies

relative cut approximation.
Recall from Lemma II.4 that a lower bound on the min-cut

of G suffices for cut approximation to hold, while Lemma II.6

shows that lower bounds on the minimum degree and spectral

gap of G suffice for spectral approximation to hold. It is natural

to wonder whether a min-cut lower bound is sufficient for SDP

approximation as well, since it allows us to efficiently recover

the planted assignment in a noisy planted 2-XOR via solving

an SDP relaxation (see Lemma II.5). Unfortunately, there is a

counterexample.

Separation of cut and SDP approximation. The example

is the same graph that separates cut and spectral approxi-

mation described in [46]. Let n be even and k = k(n).

Define G = (V,E) be a graph on N = nk vertices where

V = {0, 1, . . . , n − 1} × {1, . . . , k} and (u, i), (v, j) ∈ V
are connected if v = u ± 1 mod n. Moreover, there is one

additional edge e∗ between (0, 1) and (n/2, 1). In other words,

G consists of n clusters of vertices of size k, where the clusters

form a ring with a complete bipartite graph between adjacent

clusters, along with a special edge e∗ in the middle.

Clearly, the minimum cut of G is 2k, which means that cut

approximation holds. Essentially, the special edge e∗ does not

play a role here.

However, we will show that e∗ breaks SDP approximation.

Define vector x0 ∈ RV such that the (u, i) entry is

x0(u, i) = min(u, n− u) ,

and vectors x1, . . . , xn−1 to be cyclic shifts of x0: for w ∈
{0, 1, . . . , n− 1},

xw(u, i) = x0(u− w (mod n), i) .

We note that x0 is the vector shown in [46] that breaks

spectral approximation. We now show that X =
∑n−1

w=0 xwx
�
w

(scaled so that X has all 1s on the diagonal) breaks SDP

approximation.

First, it is easy to see that the diagonal entries of X are all

equal due to symmetry. Thus, for some scaling c, cX � 0 and

diag(cX) = I.

Observe that for w ≤ n
2 − 1, xw(0, 1) = w and xw(

n
2 , 1) =

n
2 −w. For w ≥ n

2 , xw(0, 1) = n−w and xw(
n
2 , 1) = w− n

2 .

Thus, as x�
wLe∗xw =

(
xw(0, 1)− xw(

n
2 , 1)

)2
,

〈X,Le∗〉 =
n−1∑

w=0

x�
wLe∗xw

=

n
2 −1∑

w=0

(n
2
− 2w

)2

+
n−1∑

w=n
2

(
3n

2
− 2w

)2

= Θ(n3) .

On the other hand, x�
wLG\e∗xw = nk2 for any w, thus

〈X,LG\e∗〉 = n2k2. This is o(n3), i.e. dominated by 〈X,Le∗〉,
when k = o(

√
n). Since e∗ is selected in H with probability

η, we have that with probability η,

〈X,LH〉 ≥ 〈X,Le∗〉 ≥ (1− o(1)) · 〈X,LG〉 ,
which violates the desired SDP approximation.

APPENDIX B

HYPERGRAPH DECOMPOSITION

In this section, we describe the hypergraph decomposition

algorithm used in Section V (for the proof of Theorem 3). This

algorithm is nearly identical to the hypergraph decomposition

step of [29, Section 4].

Algorithm B.1.

Given: A semirandom (with noise η) k-XOR instance

ψ with constraint hypergraph H over n vertices,

and a spread parameter τ ∈ (0, 1).
Output: For each t = 2, . . . , k, a semirandom

326

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

(with noise η) planted τ -spread p(t)-bipartite t-
XOR instance ψ(t) with constraint hypergraph

{H(t)
u }u∈[p(t)], along with “discarded” hyper-

edges H(1).

Operation:

1) Initialize: ψ(t) to the empty instance, and

p(t) = 0 for t = 2, . . . , k.

2) Fix violations greedily:

a) Find a maximal nonempty violating Q.

That is, find Q ⊆ [n] of size 1 ≤ |Q| ≤
k − 1 such that deg(Q) = |{C ∈ H :
Q ⊆ C}| > 1

τ2 max(1, n
k
2−|Q|), and

deg(Q′) ≤ 1
τ2 max(1, n

k
2−|Q′|) for all

Q′ � Q.

b) Let q = |Q|. Let u = 1 + p(k+1−q)

be a new “label”, and define H(k+1−q)
u

to be an arbitrary subset of {C \ Q :
C ∈ H, Q ⊆ C} of size exactly 2 ·
� 1
2τ2 max(1, n

k
2−q)�.

c) Set p(k+1−q) ← 1 + p(k+1−q), and H ←
H \H(k+1−q)

u .

3) If no such Q exists, then put the remaining

hyperedges in H(1).

Lemma B.2. Algorithm B.1 has the following guarantees:

(1) The runtime is nO(k),

(2) The number of “discarded” hyperedges is m(1) :=
|H(1)| ≤ 1

kτ2n
k
2 ,

(3) For each t ∈ {2, . . . , k} and u ∈ [p(t)], |H(t)
u | = m(t)

p(t) =

2� 1
2τ2 max(1, nt− k

2−1)�,

(4) For each t = 2, . . . , k, the instance ψ(t) is τ -spread.

Proof. The runtime of Algorithm B.1 is obvious. We now

argue that m(1) is small. By construction, H(1) is the set of

remaining hyperedges when the inner loop terminates, and so

we must have deg({i}) ≤ 1
τ2 max(1, n

k
2−1) = 1

τ2n
k
2−1 for

every i ∈ [n]; here, deg only counts hyperedges remaining

in H. We then have
∑

i∈[n] deg({i}) = k|H(1)|, as every

C ∈ H(1) is counted exactly k times in the sum. Hence,

m(1) ≤ 1
kτ2n

k
2 .

Next, for each t ∈ {2, . . . , k}, by construction (Step (2b))

each H(t)
u has the same size, namely 2� 1

2τ2 max(1, nt− k
2−1)�.

It then follows that m(t) :=
∑

u∈[p(t)]|H
(t)
u | = p(t) ·

2� 1
2τ2 max(1, nt− k

2−1)�, and so |H(t)
u | = m(t)

p(t) . We also note

that m(t)/p(t) is clearly even.

We now argue that for each t, the instance ψ(t) is τ -spread.

From Definition V.1, we need to prove that for each u ∈ [p(t)]
and Q ⊆ [n], degu(Q) ≤ 1

τ2 max(1, n
k
2−1−|Q|). To see this,

let u ∈ [p(t)], and let Qu be the set “associated” with the label

u, i.e., the set picked in Step (2a) of Algorithm B.1 when the

label u is added in Step (2b). Note that we must have |Qu| =
k+1− t. Let H′ denote the set of constraints in H at the time

when u and H(t)
u is added to ψ(t). Namely, we have that for

every C ∈ H(t)
u , Qu∪C ∈ H′, and Qu, C are disjoint. Now, let

R ⊆ [n] be a nonempty set of size at most t−1. First, observe

that if R ∩Qu is nonempty, then we must have degu(R) = 0

(this degree is in the hypergraph H(t)
u). Indeed, this is because

C∩Qu = ∅ for all C ∈ H(t)
u . So, we can assume that R∩Qu =

∅. Next, we see that degu(R) ≤ degH′(Qu∪R) (where degH′

is the degree in H′), as Qu ∪ C ∈ H′ for every C ∈ H(t)
u .

Because Qu was maximal whenever it was processed in our

decomposition algorithm and Qu � Qu∪R as R is nonempty

and R ∩Qu = ∅, it follows that

degH′(Qu ∪R) ≤ 1

τ2
max(1, n

k
2−|Qu∪R|) =

1

τ2
max(1, n

k
2−|Qu|−|R|)

=
1

τ2
max(1, nt− k

2−1−|R|) ≤ 1

τ2
max(1, n

t
2−1−|R|) ,

where the last inequality follows because t − k
2 − 1 − |R| ≤

t
2 − 1− |R| always holds, as t ≤ k.

Finally, when R = ∅, we trivially have degu(∅) =

|H(t)
u | = 2� 1

2τ2 max(1, nt− k
2−1)� ≤ 1

τ2 max(1, nt− k
2−1) ≤

1
τ2 max(1, n

t
2−1), where we use again that t − k

2 ≤ t
2 as

t ≤ k. This finishes the proof.

APPENDIX C

THEOREM 3 WHEN k = 1

In this section, we state and prove a variant of Theorem 3

for the degenerate case of k = 1. The algorithm here is

straightforward, and we include it only for completeness.

Lemma C.1 (Algorithm for noisy 1-XOR). Let η ∈ (0, 1/2)
be a constant. Let n ∈ N and ε ∈ (0, 1), and let m ≥
O(n log n/ε). There is a polynomial-time algorithm A that

takes as input a 1-XOR instance ψ with constraint hypergraph

H and outputs two disjoint sets A1(H),A2(ψ) ⊆ H with

the following guarantees: (1) for any instance ψ with m
constraints, |A1(H)| ≤ εm and A1(H) only depends on H,

and (2) for any x∗ ∈ {−1, 1}n and any k-uniform hypergraph

H with at least m hyperedges, with high probability over

ψ ← ψ(H, x∗, η), it holds that A2(ψ) = Eψ ∩ (H \ A1(H)).

Proof. First, observe that a 1-XOR instance is a degenerate

case where H is a multiset of [n] of size m. Let S ⊆ [n]
denote the set of i ∈ [n] where i appears in H with multiplicity

≤ c log n, where c is a constant to be determined later. Let

A1(H) denote H ∩ S, i.e., the set of elements in H that are

in S. We clearly have that |A1(H)| ≤ cn log n ≤ εm.

Now, let i /∈ S. Observe that for each occurrence of

i in H, we have a corresponding independent right-hand

side b ∈ {−1, 1} where b = x∗
i with probability 1 − η

and −x∗
i with probability η. Thus, by taking the majority,

we can with high probability decode x∗
i and thus determine

the corrupted constraints. It thus remains to show that with

probability ≥ 1 − 1/poly(n), the fraction of corrupted right-

hand sides for i is < 1
2 . Indeed, by a Chernoff bound, with

probability ≥ 1− exp(−2δ2c log n), it holds that the fraction

of corrupted right-hand sides is at most (η + δ). By choosing

δ = 1
2 (

1
2 − η) and c to be a sufficiently large constant,

Lemma C.1 follows.

327

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 13,2024 at 19:39:36 UTC from IEEE Xplore. Restrictions apply.

