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ABSTRACT 

Ultrafast two-dimensional infrared (2DIR) spectroscopy is a relatively new methodology, which 

has now been widely used to study the molecular structure and dynamics of molecular processes 

occurring in solution. Typically, in 2DIR spectroscopy the dynamics of the system is inferred from 

the evolution of 2DIR spectral features over waiting times. One of the most important metrics 

derived from the 2DIR is the frequency-frequency correlation function (FFCF), which can be 

extracted using different methods, including center and nodal line slope. However, these methods 

struggle to correctly describe the dynamics in 2DIR spectra with multiple and overlapping 

transitions. Here, a new approach, utilizing pseudo-Zernike moments, is introduced to retrieve the 

FFCF dynamics of each spectral component from complex 2DIR spectra. The results show that 

this new method not only produces equivalent results to more established methodologies in simple 

spectra, but also successfully extracts the FFCF dynamics of individual component from very 

congested and unresolved 2DIR spectra. In addition, this new methodology can be used to locate 

the individual frequency components from those complex spectra. Overall, a new methodology for 

analyzing the 2D spectra is presented here, which allows us to retrieve previously unattainable 

spectral features from the 2DIR spectra.  
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INTRODUCTION 

Two-dimensional infrared (2DIR) spectroscopy is a powerful and well-established time resolved 

laser spectroscopy. 2DIR spectroscopy retrieves the dynamics of the thermal motions occurring in 

liquid systems at picosecond timescales. To this end, the spectroscopy, by means of femtosecond 

infrared pulses, creates and follows the vibrational coherences in the sample in order to obtain the 

time scale of the decorrelation of the coherences.1 Different molecular processes can cause the 

observed decorrelations, with spectral diffusion being one of the most important. Spectral diffusion 

is defined as the change in vibrational energy level of an oscillator due to fluctuations in its 

molecular environment.1 Hence, the spectral diffusion process provides insights into the time-

dependent molecular interactions exerted by the surroundings on the molecular system.1 This 

process is usually modeled in terms of the so-called frequency-frequency correlation function 

(FFCF), which contains the amplitude and characteristic time of the frequency fluctuations.1 

Experimentally, the FFCF dynamics is obtained either by fitting the 2DIR spectra2-4 or by 

measuring different 2DIR spectral metrics as function of waiting time.  

Several FFCF extraction methods based on different 2DIR spectral features and time components 

(i.e., center line slope (CLS),5, 6 nodal line slope (NLS),7, 8 slope of the phase,9 inhomogeneity 

index,9, 10 eccentricity,11 peak shift,12-14 ellipticity,15, 16 and dynamic line width17, 18) have been 

previously used for this purpose. The vast majority of these methods utilize specific spectral 

features of the 2DIR peak to retrieve the dynamics of the FFCF. However, each technique has its 

own practical applications, advantages and limitations in the analysis of 2DIR spectra. For 

instance, most methods efficiently extract the FFCF characteristic times from spectra containing a 

single transition within the investigated IR region. In this case, the CLS and NLS analysis have 

been proven to be the most consistent, reliable and simple among all methods for obtaining the 
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FFCF dynamics for 2DIR spectra with a single transition.5-8 However, most methods either fail or 

require a more complex analysis when dealing with complex 2DIR spectra containing multiple 

transitions within the studied window.19 

The complexity of 2DIR spectra containing multiple transitions increases significantly due to 

differences in vibrational anharmonicities of the transitions, overlap of the vibrational bands and 

the presence of cross peaks. In this complex scenario, even established methods like CLS and NLS 

are not particularly useful to retrieve the FFCF dynamics of system.7, 19 Note that the CLS method 

can be used to extract the FFCF dynamics from the 2DIR spectra containing two transitions, but 

prior knowledge of the FFCF dynamics for one of the components is required.19 Finally, the results 

of the CLS method strongly depend on the modeling used for retrieving the metric, as well as the 

quality of the data.5  

In this article, a new method based on pseudo-Zernike moments (PZM)20, 21 is introduced to 

analyze the underlying dynamics from the 2DIR spectra. PZM is based on the description of 2D 

data using pseudo-Zernike polynomials (PZP).22  The main properties of PZM are rotation 

nvariance, and  translation/scale variance.20, 21 In particular, PZMs have shown to suffer from less 

redundancy and noise sensitivity when analyzing 2D functions due to their orthogonality property 

of the PZPs in the unit circle.23 Hence, PZMs have been successfully used for feature extraction 

methodology in pattern recognition.24, 25 Examples of the applications of PZMs are the 

characterization of the wave front aberration of both human eyes and optical systems.26, 27 In 

addition, the time evolution of PZMs has been previously used for studying the time progression 

of eye diseases, such as age-related macular degeneration.28 Hence, the similarity of the 

circular/oval nature of PZP components when compared to the 2DIR spectral features provides a 

suitable framework for the description of the 2DIR spectra and their waiting time evolution. The 
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adequacy of the method to reproduce the 2DIR spectra is demonstrated by applying the PZP 

decomposition to a 2DIR spectrum (Figure 1). Graphically, the recovered 2DIR spectra as a 

function of the PZP order show that the first 15th orders are sufficient to reproduce a 2DIR 

spectrum in agreement with the error of the modeling from the RMSD (see Supplemental 

Material). 

  
Figure 1. Recovered 2DIR spectra using PZPs up to 1st, 5th, 10th, 15th, and 20th order PZM 

represented with panel (a), (b), (c), (d) and (e) respectively. Panel (f) corresponds to the original 

2DIR spectrum. 

The PZM decomposition provides a unique representation of the 2DIR spectral features, such as 

2D peak shape, in terms of orthogonal pseudo-Zernike polynomials.20 This PZP, or equivalent 

PZM, representation can be applied to the retrieval of temporal and spectral information from of 

the waiting time evolution of the 2DIR spectra even in complex situations, such as those created 

by the presence of overlapping and unresolved transitions. In addition, the PZM methodology does 

not require any prior knowledge of the contributions from individual components in the 2DIR 

spectra. Overall, the new PZM method is a complementary approach to CLS and NLS for in-depth 

analysis of 2DIR spectra, especially when the 2DIR spectra contain information from multiple 

vibrational components. 



6 

 

THEORY 

Pseudo-Zernike Moments 

The Pseudo-Zernike polynomials (PZP) are based on the polynomials first introduced by Frits 

Zernike in 1934.29 PZPs comprise a set of linearly independent polynomials arising from complex-

valued exponential and real-valued radial polynomial functions in polar coordinates.21 

Mathematically, the PZPs are expressed as: 

Vnm(x,y)=Vnm(r,θ)=Rnm(r)eimθ (1) 

where n and m are integers that fulfil |m| ≤ n, and r and  are normalized polar coordinate variables 

(i.e., |r| ≤ 1 and 0 ≤ ≤ 2). Due to the completeness and orthogonality nature of the PZPs, these 

polynomials can be used to represent 2D functions (i.e., f(x, y)) by projecting the function into the 

PZP basis set, such that the function is represented as 

𝑓(𝑥, 𝑦)= ∑ ∑ AnmVnm(r,θ)mn   (2) 

where the Anm are the coefficients. The coefficients (Anm) of the PZP projection, so-called Pseudo-

Zernike moments (PZM), are calculated as follows: 

Anm=
n+1

π
∑ ∑ f(x,y) Vnm

* (r,θ)yx , x2+y2≤1 (3) 

It is important to note that the orthogonality of the PZPs results in almost zero redundancy in their 

moments resulting in a direct correspondence between the different moments and the distinct 

features of the 2D function.21  

 The PZP basis set is large since for up to an nth degree, the PZP basis have (n+1)2 polynomials. 

The large size of this basis sets is advantageous for image representation due to their high feature 
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extraction capability and robustness in the presence of noise.20 However, the large number of PZPs 

also restricts the computation of PZMs to small sections of the space due to its high computational 

cost.30  

Similarity Measure 

The large dimensionality of the PZP space provides an intractable number of PZMs (coefficients) 

when describing any arbitrary 2D function. In particular, for the case of the 2DIR spectra, each 

spectrum, corresponding to a given waiting time, can require a large set of PZMs for their accurate 

representation. Moreover, it is expected that the time evolution of the 2DIR spectra directly relates 

to changes of the PZMs. However, individual PZMs cannot be easily associated to the time 

evolution of the specific spectral features of the 2DIR spectra due to the large number of 

coefficients typically needed for their representation. For example, in the previously reproduced 

spectra (Figure 1) 256 PZPs are need. To overcome this issue, the cosine similarity (CS) measure 

among PZPs is used here. The CS represents the angle between two vectors in the inner product 

space and is one of the most common similarity measures for high dimensional vector spaces.31-33 

The CS between two vectors, p1 and p2, is mathematically defined as follows: 

cos θ =
p

1
⋅p

2

‖p
1
‖‖p

2
‖

  

where  is the angle between the two vectors in the inner product space. Physically, the CSs 

represent how similar two data sets (spectra) are. For example, two vectorized data sets containing 

the same information will have a CS close to one showcasing their strong similarity. In contrast, 

data sets with CS values close to zero are considered to be very dissimilar (i.e., contain very 
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different information). Hence, the calculation of the CS can be used to quantify the similarity of 

the PZMs when describing two different 2DIR spectra.  

Inherently, the CS provides a relative comparison of the analyzed vectors Hence, the PZMs derived 

for the 2DIR spectrum of a given waiting time have two possible similarity factors arising from its 

comparison with the PZMs of either the initial waiting time (t0), which is typically Tw=0 ps, or 

the final waiting time (tf) corresponding to 2DIR spectrum of the longest waiting time used for the 

time dependence analysis. The first similarity factor, CStw, relates to the angle changes of the 

cosine projection with respect to the PZMs of the initial 2DIR spectrum, and the second, cosine 

distance (CDtw), to the 2DIR spectrum at final waiting time. The CStw and CDtw are expressed as 

follows: 

CStw
= cos 𝜃 =

𝑷𝒁𝑴𝑡0
⋅ 𝑷𝒁𝑴𝑡𝑤

‖𝑷𝒁𝑴𝑡0
‖‖𝑷𝒁𝑴𝑡𝑤

‖
 

CDtw
=1- cos 𝜃 =1-

𝑷𝒁𝑴𝑡𝑓
⋅ 𝑷𝒁𝑴𝑡𝑤

‖𝑷𝒁𝑴𝑡𝑓
‖ ‖𝑷𝒁𝑴𝑡𝑤

‖
 

where tw represents the waiting of the similarity factor between either the initial waiting time (t0 

for CStw) or the final time (tf for CDtw) considered in the analysis. Note that these two similarity 

factors are defined such that their limits are 1 and 0 for the initial and final times of CStw and 

CDtw, respectively, since they represent how similar the analyzed 2DIR spectrum is with respect 

to its corresponding waiting time spectrum.  It is important to note that the 2DIR spectra are very 

similar to each other regardless of their origin. It is therefore unlikely to see that the similarity 

factors between a pair of 2DIR spectra will be zero. In summary, the CSs only quantify how similar 

the two spectra are, not how much they can possibly be as the CS is not absolute, but relative. 
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Therefore, dynamics on much longer time scales than the investigated window will not be captured 

from the 2DIR spectra by either CS due to the relative nature of the analysis. 

The time evolution of the 2DIR spectra as a function of waiting time produces a gradual change in 

both similarity factors (CStw and CDtw). The high (low) values for CStw (CDtw) showcases the 

correlation of 2D spectral features seen in the 2D spectrum at given waiting time with respect to 

the initial (final) spectral features. Therefore, one can use these two CS measures to extract the 

FFCF and its dynamical time scale from the 2DIR spectra. However, both similarity factors are 

biased due to significant dependence on the individual PZMs to the reference PZM vector. To 

minimize bias, a linear combination of the similarity factors (CStw and CDtw) is introduced, which 

is referred here as pseudo-Zernike similarity (PZS). The computation of PZSs is carried out within 

the cosine subspace, where CStw and CDtw are assumed to be orthogonal. This assumption is 

consistent with the observation that neither the initial nor the final 2DIR spectra in the time series 

are sufficient to represent the waiting time evolution of the 2DIR spectra. The mathematical form 

of PZS is: 

PZStw
= (𝑐𝑜𝑠 45°)CStw

+(1 − 𝑐𝑜𝑠 45°)CDtw
 

where the two scalar parameters (i.e., (𝑐𝑜𝑠 45°) and (1 − 𝑐𝑜𝑠 45°)) arise from assuming that there 

is equal contribution of the similarity factors representing the initial and final 2DIR spectra, or 

mathematically, midpoint between orthogonal vectors. Unlike the CStw or CDtw, the PZS as 

function of waiting time (PZStw) provides a metric that directly estimates the dynamics of the 

FFCF from the 2DIR spectrum (see Supplementary Material). 
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METHODS 

Software 

The analysis of the data was performed using MATLAB 2022.34 The PZS analysis code is based 

on the publicly available code of Pseudo-Zernike Functions.35 The PZS analysis code can be found 

free of charge at https://github.com/dkurodalab/PZSanalysis.   

PZS analysis 

The PZS analysis is performed in three different ways: the total spectrum analysis (TPZS), the 

frequency resolved analysis (FR-PZS), and the PZS analysis along the center line (CL-PZS).  

I. Total PZS (TPZS) 

The TPZS analysis is performed by selecting a particular region of the 2DIR spectra and computing 

the PZS at each waiting time (i.e., PZStw). Hence, the TPZS is aimed at analyzing the most 

important region of the 2DIR around the maximum with low spectral resolution. In particular, this 

analysis involves using the circular area positioned around the overall maximum of the 2DIR 

spectrum at initial and final waiting time. To this end, a circle, along both ωτ and ωt directions, 

with a radius containing the full width half maximum of the diagonal trace at the initial waiting 

time is selected for doing the analysis. It is important to note that the peaks in the 2DIR spectra 

can undergo spectral shift as function of waiting time due to the presence of other signals (such 

non-resonant from the solvent or cell materials) or other experimental uncertainties. Therefore, the 

effect is removed by centering the analysis area with respect to the maximum of the peak at any 

given waiting time. There are many nth-order PZMs that can generate a feature vector accurately 

describing the unique features of the selected region. Hence, the feature vector comprised of 0 

through nth order PZMs is derived from a convergence plot computed during PZS calculations (see 
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Supplementary Material). For consistency, the size of feature vector is kept fixed at 15th order 

PZM on all studied presented in this work. 

II. Frequency resolved PZS (FR-PZS) 

Another approach to analyze the 2DIR spectra is by frequency resolving the PZS analysis (FR-

PZS). Unlike TPZS, the FR-PZS utilizes a rectangular spectral region with small  and large t 

frequency window enclosed within a circle that contain the selected spectral region. Hence, this 

approach is suitable for frequency resolving the PZS analysis within a section of the 2DIR spectra 

at the expense of experiencing greater uncertainty in the dynamics. Application of this 

methodology leads to a scan of the PZS along the excitation frequency (). Due to the number of 

PZS time evolutions produced in this analysis, the changes in the PZS dynamics for each  

window are modeled with a function of the form: y
0

+ Ae–
tw
τ , where y0 is the PZM similarity factor 

at high waiting times, and A is the amplitude of the decay time and τ is the characteristic time of 

the decay function. However, in systems with known biexponential decays, an average of the 

correlation time is used.36  

III. PZS through center line (CL-PZS) 

CL-PZS analysis is performed by centering the TPZS analysis at frequencies along the center line, 

where the CLS at a given excitation frequency () acts as a centroid for analysis area in 2DIR 

spectrum. The TPZS and CL-PZS analysis differ because the latter analyzes a significantly larger 

frequency window along  than the former, but the TPZS is the particular case of the CL-PZS at 

the maximum. The large window investigated in the CL-PZS analysis gives weight to different 

spectral regions than those considered in the TPZS analysis, which is particularly important when 

using the method on 2DIR spectra with more than one transition. This is particularly important 
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because, even in complex 2DIR spectra, the different spectral regions have the same waiting time 

evolution, which provides redundancy to validate PZS methodology. 

DATA SETS 

Two different data sets were selected for the analysis: simulated and experimental 2DIR spectra. 

Representative 2DIR spectra for each data set can be found in the Supplementary section. 

I. Simulated 2DIR spectra 

The 2DIR spectra was simulated using the response function approach previously described in the 

literature.37 For a single component system, the parameters are similar to those derived from 

benzonitrile38 and include: central peak frequency (ω0), anharmonicity (∆ω), vibrational lifetime 

(T10), transition dipole moment (μ), and a FFCF containing a single Kubo function with an 

amplitude of the frequency fluctuation (∆) and time decay (τ). The specific parameters of different 

single component systems studied here are shown in Table 1. In addition, cases where the 2DIR 

spectra have more than one component were also simulated. Since most 2DIR spectra containing 

more than one transition can be reduced to a system of two components, the simulation of 

multicomponent contained only two components with different frequencies (ω1 and ω2) and 

different FFCF dynamics (τ1 and τ2). Two cases were studied where the selected center frequencies 

lead to either resolved or unresolved peaks in the 2DIR spectra (Table 1). 

Table 1. Parameters used in the simulated 2DIR spectra. 

Number of components Case ω0 

(cm-1) 

∆ω 

(cm-1) 

T10 

(ps) 

μ ∆ 

(cm-1) 
FFCF

(ps) 

1 I 2225 22 4.2 1 2 3 

1 II 2225 22 4.2 1 2 6 

2 III 2215 

2235 

22 4.2 1 2 6 

3 

2 IV 2220 

2230 

22 4.2 1 2 6 

3 
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II. Experimental 2DIR Spectra 

Five different experimental datasets are used in this study. The first three cases represent simple 

2DIR spectra containing a single vibrational transition in the investigated window, while the other 

two cases correspond to more complex 2DIR spectra arising from multiple vibrational transitions. 

For the single transition, the selected 2DIR spectra datasets correspond to those probing the 

asymmetric stretch of aqueous azide ion,39, 40 as well as the nitrile stretch of benzyl thiocyanate 

(BzSCN) in a deep eutectic solvent (DES).41, 42 While the two systems contain a single vibrational 

transition in the different spectral regions, the nitrile stretch in the organic thiocyanate has 

considerably larger anharmonicity,43 which allow us to study the effect of anharmonicity on the 

PZS analysis. Finally, the third system also consisted of investigating the N3 asymmetric of the 

azide ion, but in a very diluted solution allowing us to investigate the effect of noise in PZS 

analysis. 

The other two set of dataset correspond to those probing the amide I mode of an aqueous solution 

of N-isopropyl propionamide and the nitrile stretch of the thiocyanate ion in an amide-based 

DES.43, 44 While the first case correspond to a system with two well-resolved vibrational transitions 

in the 2DIR spectra, the second case provide an example of unresolved in which the presence of 

two transition is only derived from the shape of the 2DIR spectra due to the presence of crosspeaks. 

Therefore, these two sets of complex 2DIR spectra are useful cases for studying the viability of 

PZS analysis in the presence of intricate and time dependent 2D spectral features. 

RESULTS AND DISCUSSION 

Single Transition 
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Due to the possible complexity of the PZS analysis, the suitability of the PZS method for extracting 

the FFCF dynamics out of the waiting time evolution of the 2DIR spectra was first investigated 

using single component systems in both experimental and simulated 2D spectra. In the simulated 

case, the 2DIR spectra consisted of a single transition with a FFCF having a single exponential 

decay function with two possible decay times (case I and II of Table 1). The TPZS analysis on 

either case produces a CS factor with a time dependence (Figure 2), which is well described by an 

exponential decay of the form: y
0

+ Ae
–

tw
τ𝐹𝐹𝐶𝐹 , where y0 is the minimum PZS factor, A is the 

amplitude of the decay time and τFFCF is the characteristic time of the FFCF decay function. The 

FFCF time constants retrieved from the modeling of the time dependent PZS for case I and II are 

in very good agreement with the values used for the simulation (Table 2). This last result is very 

important because it demonstrates the applicability of the TPZS analysis to retrieve the FFCF 

dynamics from the time evolution of the 2DIR analysis. 

A comparison between TPZS analysis and any of the two most traditional methods (i.e., NLS and 

CLS) shows that the new methodology performs comparable to the other two more established 

methods. Specifically, the error associated with τFFCF from TPZS analysis is similar or lower than 

CLS, but slightly higher than NLS. A better view of the TPZS performance versus other more 

established methods is obtained from the correlation plot between the similarity factor (PZStw) and 

the metrics derived from the traditional methods (insets of Figure 2), because it does not require 

modeling the data. As expected, both plots show a strong linear correlation (R2 > 0.99 for any of 

the cases), which further support the usability of TPZS analysis for retrieving the FFCF dynamics 

from the 2DIR spectra. It also observed from the TPZS analysis that there is non-zero offset, which 

does not match that of the CLS or NLS analysis. This offset in the TPZS analysis arises from the 
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use of CS factors (see methods section) and hinders the possibility of determining the presence of 

a static inhomogeneous contribution in the 2DIR spectra with the TPZS method alone. 

 
Figure 2. Comparison among FFCF retrieval methods for simulated data. Panels (a) and (b) show 

analysis of case I (t=3ps) and case II (t=6ps) of the simulations using CLS (solid blue square), NLS 

(solid green triangle) and TPZS (hollow red circle). 

Table 2. PZS, CLS and NLS analysis of simulated data. Characteristic time of the dynamics 

derived from the analysis of simulated 2DIR spectra containing one or two vibrational 

components.  

Components 
τ (ps) 

Theory TPZS FR-PZS CL-PZS CLS NLS 

One 
3.00 3.28 ± 0.06 3.48 ± 0.08 -- 3.27 ± 0.03 3.11 ± 0.01 

6.00 6.2 ± 0.1 6.8 ± 0.2 -- 6.38 ± 0.06 6.08 ± 0.01 

Two 

(resolved) 

τ1 = 6.00 

τ2 = 3.00 

-- 

-- 

5.89 ± 0.02 

3.28 ± 0.05 

6.6 ± 0.3 

3.6 ± 0.1 

10.4 ± 1.2 

4.5 ± 0.3 

7.6 ± 0.4 

4.7 ± 0.2 

Two 

(unresolved) 

τ1 = 6.00 

τ2 = 3.00 

-- 

-- 

6.8 ± 0.2 

3.60 ± 0.02 

6.4 ± 0.3 

3.3 ± 0.1 4.49 ± 0.06* 4.09 ± 0.02* 

* These results are average values because neither analysis method can separate the two 

components. 

 

The new PZS method was also tested using experimental 2DIR spectra of the three samples having 

a single transition. In the 50mM azide aqueous solution, the FFCF evolution obtained using the 

TPZS analysis produces a decaying CS factor (Figure 3), which is well modeled with single 

exponential decay function. The characteristic time derived from CS time evolution is comparable 
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to the NLS and CLS values, and previous experimental values of the FFCF.39, 45, 46 Furthermore, a 

similar result is obtained from the TPZS analysis of the 2DIR spectra of a very diluted sample of 

azide in D2O (50 m), which does not have any appreciable photon echo or interference, but its 

2DIR spectra have significant amount of noise (see Supplementary Material). Notably, the TPZS 

analysis of the diluted azide sample (Figure 3) produces a CS factor with expected time 

dependence (i.e., exponential decay). More importantly, the derived dynamics for the dilute sample 

is comparable to the FFCF dynamics obtained from the concentrated sample. However, under these 

dilute conditions neither CLS nor NLS retrieves a reasonable FFCF dynamics due to the large 

noise as well as the presence of a water grating signal in the data (Table 2). 

 
Figure 3. Comparison among FFCF retrieval methods for experimental data. Panels (a) and (b) 

show analysis of azide samples at 50mM and 50 M (diluted), respectively, and panel (c) of the 
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BzSCN in DES using CLS (solid blue square), NLS (solid green triangle) and TPZS (hollow red 

circle). 

Table 3. PZS, CLS and NLS analysis of experimental data. Characteristic time of the dynamics 

derived from the analysis of simulated 2DIR spectra containing single and two component system.  

Sample 
τ (ps) 

TPZS FR-PZS CL-PZS CLS NLS 

Single transition 1 1 1 1 1 

N3- in D2O 1.2 ± 0.1 1.1 ± 0.2 -- 1.0 ± 0.4 0.92 ± 0.05 

N3- in D2O (dil.) 1.1 ± 0.4 -- -- 0.47 ± 0.2 0.25 ± 0.07 

BzSCN in DES 
3 ± 1 

25 ± 6 

3 ± 4 

23 ± 23 

-- 3.4 ± 0.7 

22 ± 3 
N/A 

Two transitions 1 2 1 2 1 2 1 2 1 2 

SCN- in DES 
3.1 ± 2.2* 

33 ± 8* 

1.2 ± 1.1 

24 ± 8 

12 ± 26 

66 ± 208 

8.4 ± 8.9 

55 ± 78 

3.1 ± 1.5 

60 ± 16 

1.2 ± 0.6* 

41 ± 4* 

2.2 ± 0.9* 

40 ± 14* 

NIPA in D2O 0.9 ± 0.1 0.8 ± 0.1 -- -- -- -- -- 0.96 ± 0.03 N/A 

* These results are average values because neither analysis method can separate the two 

components. 

 

The last sample having a single transition in the investigated region is the BzSCN in a DES. In this 

case, the nitrile stretch of the BzSCN molecule presents a large anharmonicity, or equivalent a 

large separation between positive and negative peaks in the 2DIR spectra, and hence, can only be 

analyzed using the CLS method. In addition, the FFCF dynamics presents a biexponential decay. 

41 The TPZS analysis on the BzSCN 2DIR spectra produces similarity factors with a clear time 

dependence (Figure 3), which in this case is well modeled with a bi-exponential decay function as 

previously described.41 The mathematical form of this modeling function is: y
0

+ ∑ 𝐴𝑖𝑒
–

𝑡𝑤
𝜏𝐹𝐹𝐶𝐹𝑖𝑖 , 

where y0 is the minimum PZS similarity factor, and Ai is the amplitude of the ith decay time and 

τFFCFi is the ith characteristic time of the decay function. The characteristic times of the decay 

functions derived from the TPZS analysis are comparable to those derived from using CLS (Table 

3). Moreover, as in the previous cases a strong linear correlation is found between the TPZS and 

CLS metrics indicating that both methods capture the same dynamics, which corroborates the 
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applicability of the method to vibrational transitions with high anharmonicity. The result is not 

surprising given that the PZS methodology can also correctly model 2DIR spectra with 

biexponential dynamics, retrieving both characteristic times and amplitudes, and with similar 

accuracy as the CLS (see Supplemental Material). Overall, the comparable FFCF dynamics 

retrieved using either the PZS method or the more traditional methodologies demonstrate that the 

TPZS method is suitable for extracting the FFCF dynamics of the 2DIR spectra of vibrational 

modes.  

It is demonstrated so far that the PZS correctly assesses the FFCF dynamics from the waiting time 

dependence of the 2DIR spectra. Notably, the method can also be used to determine the central 

frequency of the 2DIR peaks giving rise to the observed dynamics. To this end, a frequency 

resolved PZS (FR-PZS) analysis is required (see methods section). The FR-PZS analysis applied 

on the simulated 2DIR spectra with a single component (case I and II of Table 1) shows that the 

τFFCF as a function of the 2DIR excitation frequency, or equivalent the FR-PZS window frequency, 

has a minimum (Figure 4). This minimum is located at approximately the frequency position of 

the transition, which in the case I and II is 2225 cm-1 (Table 1). The appearance of a minimum in 

the FR-PZS plot is not surprising and arises from the fast initial changes with waiting times and 

lack of change afterwards in the similarity factor at maximum of the peak. In other words, the FR-

PZS analysis shows that the region comprising the 2DIR spectra maximum, or equivalent the 

center of the rotation, observes the changes that rapidly stabilizes as function of waiting time 

because is the center of the rotation. Furthermore, the characteristic time from the FR-PZS analysis 

also captures the dynamics of the system as seen on either side of the minimum (Figure 4). 

However, it appears that the high frequency side produces a more accurate characteristic time. This 

last result indicates that the FR-PZS also retrieves the FFCF dynamics even when constrained to 
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small parts of the 2DIR spectra, but the accuracy of the retrieved characteristic times is 

significantly reduced when the frequency range is reduced for the PZS analysis. 

 
Figure 4. FR-PZS analysis on simulated and experimental data. Panels (a) and (b) show the FFCF 

characteristic time as a function of the 2DIR excitation frequency for simulated data (case I and I 

of Table 1), while panels (c) and (d) are for aqueous azide and BzSCN in DES, respectively. 

The retrieval of the frequency positions from the FR-PZS analysis of the 2DIR spectra is not 

limited to theoretical data. The FR-PZS analysis on experimental 2DIR spectra containing a single 

transition also shows the locations of the peak maximum (Figure 4), which in the case of the azide 

and BzSCN data corresponds to frequency positions of 2046 cm-1 and 2158 cm-1, respectively. 

These two frequency positions are in very good agreement with the experimental values derived 

from the FTIR spectra, which are 2043 cm-1 for azide ion in water and 2156 cm-1 for BzSCN in 

the DES.41 Note that the BzSCN sample has a bi-exponential dynamics in the FFCF,41 and hence, 

an average of the correlation times was used.47  

In summary, the results of this section highlight the suitability of the PZS analysis for retrieving 

the FFCF dynamics from the waiting time evolution of the 2DIR spectra of system having a single 

vibrational transition irrespective of the anharmonicities and in the presence of a significant 

amount of noise. In addition, the complementary FR-PZS analysis allow us to retrieve the central 

frequency position of the vibrational transition giving rise to the observed dynamics. These two 
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last characteristics of the PZS method provide a unique applicability in congested 2DIR spectra 

containing multiple transitions. 

Multiple transitions 

The applicability of the PZS methodology to retrieve the FFCF dynamics and the central frequency 

position in complex 2DIR spectra containing more than one vibrational transition is shown in this 

section. The analysis first focused on simulated 2DIR spectra each containing two different 

vibrational transitions with different frequency separation (unresolved and resolved peaks) and 

different FFCF dynamics (case III and IV of Table 1).  

 
Figure 5. FR-PZS and CL-PZS analysis results for simulated 2DIR spectra with two transitions. 

Panels (a) and (b) correspond to the FR-PZS analysis for 20 cm-1 and 10 cm-1 peak separation, 

respectively. Panel (c) is also FR-PZS analysis but in smaller regions. Panels (d) and (e) correspond 

to the CL-PZS analysis for 20 cm-1 and 10 cm-1 peak separation, respectively. 

The FR-PZS analysis in 2DIR spectra with spectrally resolved bands (Figure 5) shows the 

corresponding behavior to the single transition cases (Figure 4), since each band has a local 

minimum in the FFCF characteristic time as a function of the window frequency. Moreover, the 

position of the two minima (2215 cm-1 and 2236 cm-1) in the frequency resolved characteristic 
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time agree well with the frequency locations and separation of the peaks used in the simulation 

(2215 cm-1 and 2235 cm-1). In addition, the FR-PZS analysis on the spectra with two resolved 

transitions also correctly measures the individual characteristic times of the two transitions as seen 

in the low and high frequency side of the minima. More importantly, these FR-PZS results are in 

much better agreement with the simulation values than the results produced by either CLS or NLS 

metrics (Table 3). Finally, the FR-PZS analysis is independent of the dynamics assigned to each 

transition, as it produces the same result when their FFCF correlation times are reversed or in the 

presence of FFCFs with multiple decay times (see Supplementary Material). 

Notably, in the case of 2DIR spectra with unresolved bands, the frequency resolved characteristic 

time (Figure 5) shows a function with a single local minimum at the averaged peak frequency in 

agreement with the observation of a “single” 2DIR peak. However, the frequency resolved profile 

of the characteristic time is noticeably different from the one obtained for either one (Figure 4) or 

two resolved transitions (Figure 5). Specifically, there is a mismatch in the characteristic time on 

either side of the minimum and a slope is observed on the side of the minimum. These features in 

the profile of the frequency resolved characteristic time are the unequivocal signatures of the 

presence of more than one underlying transition within the unresolved peak.  

The FR-PZS analysis of the 2DIR spectra using smaller excitation frequency windows (see 

Supplementary Material) shows that the spectra contain two underlying peaks (Figure 5). The FR-

PZS analysis locates these transtions approximately at 2222 cm-1 and 2232 cm-1 with FFCF decay 

times of 6.8 ps and 3.6 ps, respectively. These results are in very good agreement with the 

parameters used for simulating the 2DIR spectra. Note that the small errors in the position of the 

transition frequencies (local minima) and their decay time are likely to arise from the strong 

overlap between the two vibrational transitions. Moreover, both NLS and CLS capture an averaged 
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FFCF dynamics when the two vibrational transitions are located very close to one another. It is 

now clear that the PZS methodology not only demonstrates unambiguously the presence of two 

transtions even when the two transitions cannot be resolved, but also determines the FFCF 

dynamics with much lower error when compared to NLS or CLS. However, the FR-PZS 

methodology is not perfect and retrieves values of the characteristic times, which have errors on 

the order of 20%.  

The redundancy of the PZS methods allows to corroborate the previous finding. For this purpose, 

the TPZS is applied along the central line (see CL-PZS in the methods section). In this case, the 

CL-PZS analysis correctly captures the characteristic time of FFCF dynamics for both resolved 

and unresolved transitions irrespective of the FFCF decay times and their corresponding 

vibrational transitions. Note that the CL-PZS analysis applied to simulated 2DIR spectra with a 

single transition also correctly captures its dynamics (see Supplementary Material). 

  
Figure 6. FR-PZS and CL-PZS analysis results for experimental 2DIR spectra with two unresolved 

transitions. Panels (a) and (b) correspond to characteristic time as a function of the 2DIR excitation 

frequency derived from the FR-PZS and CL-PZS analysis, respectively, while panel (c) correspond 

to the FR-PZS analysis in smaller regions. Panel (d) contains the time traces for the low (blue 

squares) and high (red triangles) frequency transition of the similarity factors derived from the FR-

PZS analysis. 
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Finally, the validity of the PZS methodology in complex 2DIR spectra was demonstrated in 

experimental data containing two unresolved vibrational transitions. The FR-PZS analysis is first 

applied to the thiocyanate ion in amide-based DES. This system is particularly complicated 

because the 2DIR spectra in the nitrile stretch region present two unresolved vibrational transitions 

that can only be identified from the rhombus-like shape of the 2D peaks at a later waiting time.43 

The FR-PZS analysis on the DES sample (Figure 6) confirms the underlying complexity of the 

2DIR spectra as evidenced by the frequency resolved characteristic time does not resemble one 

with a single transition (Figure 4). Moreover, FR-PZS analysis on sections with smaller excitation 

frequency ranges reveals the presence and location of two underlying transitions (Figure 6). The 

analysis also shows that the signatures of the low and high frequency components are observed at 

2050 cm-1 and 2058 cm-1, respectively. In addition, the modeling of time evolution of the similarity 

factors derived from FR-PZS shows that each of the two underlying transitions has a bi-

exponential dynamics (Figure 6), each with its own time constants (Table 3). Note that the large 

errors observed in the time constants are associated to the FR-PZS analysis because of the small 

frequency window used in the spectral region where the signal to noise ratios are likely to be low. 

Given the resolving power of the FR-PZS analysis, it is not surprising that these newly derived 

time constants differ significantly from the previously reported CLS modeling.43 To corroborate 

the dynamical behavior of the system derived from the FR-PZS, the CL-PZS analysis is performed. 

This latter analysis corroborates the previous characterizations of the dynamics, as it also shows a 

faster average dynamic for the low frequency transition when compared to its high frequency 

counterpart. The reasonable agreement between FR-PZS and CL-PZS analysis further supports the 

correct determination of the FFCF dynamics from the PZStw factor using the PZS methodology 
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and highlights the applicability of the method for complex 2DIR spectra containing overlapping 

vibrational transitions.  

Another example of complex 2DIR spectra correspond to the amide I band of N-

isopropylacrylamide (NIPA) in D2O.48 In this case, the 2DIR spectra contain two transitions from 

two vibrational states arising from amide having two different solvation shells that interconvert 

with ultrafast time scales. The two transitions are fairly well resolved in the spectra, but the 

appearance and growth of cross peaks with waiting time from the chemical exchange hinders the 

determination of the FFCF dynamics for the high frequency transition. As in the previous cases, 

the TPZS analysis on the spectral regions containing each peak (see Supplementary Material) 

allows us to derive their FFCF dynamics in this complex scenario. The similarity factors derived 

from TPZS analysis show explicitly a decay in their time evolution (Figure 7). Furthermore, a 

correlation plot between the CLS and PZS metrics (inset of Figure 7) demonstrate a strong linear 

correlation between the two metrics (R2=0.93) indicating that the two methods retrieve essentially 

the same dynamics. The modeling of the PZS with a single decay function produces similar decay 

times of 0.9 ± 0.1 ps and 0.8 ± 0.1 ps for time traces corresponding to the 1608 cm-1 and 1618 cm-

1 peaks, respectively. Although it is not possible to evaluate how precise is the value of the FFCF 

dynamics for the high frequency transition from this analysis, the obtained characteristic times is 

in agreement with vibrational transition being a NIPPA hydrated state, since most molecules 

observed FFCF characteristic times close to 1ps in aqueous environments.48 
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Figure 7. Normalized PZS values as function of waiting times for the low (left) and the high (right) 

frequency peaks of NIPA 2DIR spectra. Insert shows the correlation plot between the NLS and the 

PZS for the low frequency transition.  

CONCLUSIONS 

A new method to analyze 2DIR spectra based on pseudo-Zernike moments (PZM) was developed 

and studied for retrieving dynamical and spectral information from the 2DIR spectra. The new 

method is based on using a PZM similarity factor (PZS) to retrieve the information. The 

practicality of the PZS method was validated with simulated and experimental 2DIR spectra. In 

the case of a single transition, the PZS method is shown to be capable of obtaining not only the 

dynamics of spectral diffusion, but also frequency location of the transitions. Notably, the 

dynamics extracted with this new method are very similar to that obtained by CLS and NLS 

analysis. In addition, the application of the analysis to more complex 2DIR spectra having two 

transitions results in the retrieval of the individual dynamics and the center frequency of the 

transitions even when the two transition result in unresolved spectra. Overall, it is demonstrated in 

this work that the new PZS analysis method is reliable and can be used in conjunction with standard 

methods for in-depth analysis of complex 2DIR spectra.  

SUPPLEMENTARY MATERIAL 

See supplementary material for RMSE plot of simulated 2DIR spectrum as function of PZP order, 

similarity factors (CStw, CDtw and PZStw) as a function of waiting time and their characteristic 
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decay times, characteristic decay time convergence as a function of nth order PZM, simulated 2DIR 

spectra of one, CL-PZS analysis on simulated 2DIR spectra with a single transition, PZS vs CLS 

for simulated 2DIR spectra with biexponential decay, simulated 2DIR spectra with two 

components with both resolved and unresolved transition as well as single and biexponential 

decays, FR-PZS and CL-PZS analysis for two component 2DIR spectra with reversed correlation 

time, FR-PZS analysis for two component 2DIR spectra with biexponential dynamics, 2DIR 

spectra of all five experimental datasets, and comparison between CLS and TPZS for the amide-

based DES 2DIR spectra. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge financial support from the National Science Foundation 

(CHE-175135). 

AUTHOR DECLARATIONS 

Conflict of Interest 

The authors have no conflicts to disclose. 

Author Contributions 

Anit Gurung: Data curation (lead); Formal analysis (lead); Investigation (equal); Methodology 

(equal); Validation (equal); Writing - original draft (supporting); Writing – review & editing 

(supporting). Daniel G. Kuroda: Conceptualization (lead); Investigation (equal); Methodology 

(equal); Project administration (lead); Supervision (lead); Validation (supporting); Writing – 

original draft (equal); Writing – review & editing (lead). 

DATA AVAILABILITY 



27 

 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 

REFERENCES 

1 P. Hamm, and M. Zanni, Concepts and methods of 2D infrared spectroscopy (Cambridge 

University Press, 2011),   
2 D. C. Urbanek et al., J. Phys. Chem. Lett. 1, 3311 (2010). 
3 K. C. Robben, and C. M. Cheatum, J. Phys. Chem. B 125, 12876 (2021). 
4 T. Brinzer et al., J. Chem. Phys. 142, (2015). 
5 K. Kwak, D. E. Rosenfeld, and M. D. Fayer, J. Chem. Phys. 128, (2008). 
6 K. Kwak et al., J. Chem. Phys. 127, 124503 (2007). 
7 K. Kwac, and M. H. Cho, J. Chem. Phys. 119, 2256 (2003). 
8 J. D. Eaves et al., Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005). 
9 S. T. Roberts, J. J. Loparo, and A. Tokmakoff, J. Chem. Phys. 125, 084502 (2006). 
10 R. Duan et al., J. Chem. Phys. 154, 174202 (2021). 
11 I. J. Finkelstein et al., Proc. Natl. Acad. Sci. U.S.A. 104, 2637 (2007). 
12 M. Cho et al., The Journal of Physical Chemistry 100, 11944 (1996). 
13 W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 253, 53 (1996). 
14 A. Piryatinski, and J. Skinner, J. Phys. Chem. B 106, 8055 (2002). 
15 C. Fang et al., Proc. Natl. Acad. Sci. U.S.A. 105, 1472 (2008). 
16 D. Kraemer et al., Proc. Natl. Acad. Sci. U.S.A. 105, 437 (2008). 
17 J. B. Asbury et al., J. Chem. Phys. 121, 12431 (2004). 
18 J. B. Asbury et al., J. Phys. Chem. A 108, 1107 (2004). 
19 E. E. Fenn, and M. Fayer, J. Chem. Phys. 135, 074502 (2011). 
20 C.-H. Teh, and R. T. Chin, IEEE Trans. Pattern Anal. Mach. Intell. 10, 496 (1988). 
21 A. Khotanzad, and Y. H. Hong, IEEE Trans. Pattern Anal. Mach. Intell. 12, 489 (1990). 
22 C.-W. Chong, P. Raveendran, and R. Mukundan, Int. J. Pattern Recognit. Artif. Intell. 17, 1011 

(2003). 
23 L. Li et al., Appl. Opt. 57, F22 (2018). 
24 H. Gorji, and J. Haddadnia, Neuroscience 305, 361 (2015). 
25 J. Haddadnia, M. Ahmadi, and K. Faez, EURASIP J. Adv. Signal Process 2003, 1 (2003). 
26 K. Rahbar, K. Faez, and E. A. Kakhki, J. Opt. Soc. Am. A 30, 1988 (2013). 
27 M. Bueeler, and M. Mrochen, J Refract Surg 21, 28 (2005). 
28 P. Allen et al., PLoS One 14, e0217265 (2019). 
29 v. F. Zernike, Physica 1, 689 (1934). 
30 C.-W. Chong, P. Raveendran, and R. Mukundan, Pattern Anal. Appl. 6, 176 (2003). 
31 R. C. Spiers, and J. H. Kalivas, J. Chem. Inf. Model 61, 2220 (2021). 
32 A. Gurung, and J. H. Kalivas, J. Chemom. 34, e3245 (2020). 
33 W. Fu, and W. S. Hopkins, J. Phys. Chem. A 122, 167 (2018). 
34 I. MathWorks,  (The MathWorks, Inc. Natick, MA, USA, 2022). 
35 P. Fricker, MATLAB Central File Exchange., 2023). 
36 I. Noda, Appl. Spectrosc. 44, 550 (1990). 
37 N. H. Ge, M. T. Zanni, and R. M. Hochstrasser, J. Phys. Chem. A 106, 962 (2002). 



28 

 

38 A. Ghosh et al., Chem. Phys. Lett. 469, 325 (2009). 
39 P. Hamm, M. Lim, and R. M. Hochstrasser, Phys. Rev. Lett. 81, 5326 (1998). 
40 S. Li et al., J. Phys. Chem. B 110, 18933 (2006). 
41 X. Chen et al., J. Phys. Chem. B 124, 4762 (2020). 
42 Y. Cui et al., J. Phys. Chem. B 123, 3984 (2019). 
43 Y. Cui et al., J. Chem. Phys. 155, 054507 (2021). 
44 Y. Cui, and D. G. Kuroda, J. Phys. Chem. A 122, 1185 (2018). 
45 X. L. Zhang, R. Kumar, and D. G. Kuroda, J. Chem. Phys. 148, (2018). 
46 Q. Guo et al., J. Chem. Phys. 142, (2015). 
47 C. J. Devereux et al., Chem. Phys. 495, 1 (2017). 
48 E. O. Nachaki, F. M. Leonik, and D. G. Kuroda, J. Phys. Chem. B 126, 8290 (2022). 

 
 


