Check for
Updates

Parameterized Inapproximability Hypothesis
under Exponential Time Hypothesis’

Venkatesan Guruswami Bingkai Lin Xuandi Ren
Simons Institute for the Theory of State Key Laboratory for Novel Department of EECS
Computing, and Departments of Software Technology UC Berkeley
EECS and Mathematics Nanjing University Berkeley, USA

UC Berkeley
Berkeley, USA
venkatg@berkeley.edu

Yican Sun
School of Computer Science
Peking University
Beijing, China
sycpku@pku.edu.cn

ABSTRACT

The Parameterized Inapproximability Hypothesis (PIH) asserts that
no fixed parameter tractable (FPT) algorithm can distinguish a
satisfiable CSP instance, parameterized by the number of variables,
from one where every assignment fails to satisfy an ¢ fraction of
constraints for some absolute constant ¢ > 0. PIH plays the role of
the PCP theorem in parameterized complexity. However, PIH has
only been established under Gap-ETH, a very strong assumption
with an inherent gap.

In this work, we prove PIH under the Exponential Time Hypoth-
esis (ETH). This is the first proof of PIH from a gap-free assumption.
Our proof is self-contained and elementary. We identify an ETH-
hard CSP whose variables take vector values, and constraints are
either linear or of a special parallel structure. Both kinds of con-
straints can be checked with constant soundness via a “parallel PCP
of proximity” based on the Walsh-Hadamard code.

CCS CONCEPTS

« Theory of computation — Fixed parameter tractability;
Problems, reductions and completeness.

KEYWORDS

Fixed-parameter algorithms and complexity, Hardness of approxi-
mations, PCP theorems

ACM Reference Format:
Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu.
2024. Parameterized Inapproximability Hypothesis under Exponential Time

“Research supported in part by NSF grants CCF-2228287, CCF-2211972, a Simons In-
vestigator award, a Sloan Research Fellowship and NSF CAREER Award CCF-2145474.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649771

Nanjing, China
lin@nju.edu.cn

24

xuandi_ren@berkeley.edu

Kewen Wu
Department of EECS
UC Berkeley
Berkeley, USA
shlw_kevin@hotmail.com

Hypothesis. In Proceedings of the 56th Annual ACM Symposium on Theory
of Computing (STOC °24), June 24-28, 2024, Vancouver, BC, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649771

1 INTRODUCTION

A comprehensive understanding of NP-hard problems is an ev-
erlasting pursuit in the TCS community. Towards this goal, re-
searchers have proposed many alternative hypotheses as strength-
enings of the classic P # NP assumption to obtain more fine-grained
lower bounds for NP-hard problems, for example, Exponential
Time Hypothesis (ETH) [42], Strong Exponential Time Hypothesis
(SETH) [15, 42], Gap Exponential Time Hypothesis (Gap-ETH) [24].

Besides a richer family of hypotheses, approximation and fixed
parameter tractability (FPT) are also two orthogonal approaches to
cope with NP-hardness.

In the approximation setting, we consider optimization problem,
where input instances are associated with a cost function and the
goal is to find a solution with cost value close to the optimum.

In the fixed parameter tractability (FPT) setting, every instance
is attached with a parameter k indicating specific quantities (e.g.,
the optimum, the treewidth) of the instance. This setting treats
k as a parameter much smaller than the instance size n, i.e., 1 <
k < n. Thus, the required runtime of the algorithm is relaxed from
n9M to f(k) - n9W for any computable function f. The class
FPT is the set of parameterized problems that admit an algorithm
within this running time. The seminal studies in this setting built
up parameterized complexity theory [28, 29, 34]. In this theory, there
are also alternative hypotheses as a strengthening of P # NP. For
example, W[1] # FPT, which is equivalent to the statement that
k-Cr1QUE has no f(k) - n°(1)-time algorithm.

Recently, there has been an extensive study at the intersection
of these two settings: the existence (or absence) of approximation
algorithms that solve NP-hard problems in FPT time.

On the algorithmic side, FPT approximation algorithms have
been designed for various NP-complete problems. Examples include
VERTEX-COLORING [22, 61], MIN-k-CuUT [37, 38, 48, 58], k-PATH-
DELETION [49], k-CLUSTERING [1], k-MEANS / k-MEDIANS [2, 14,

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

17, 21, 44, 50], Max k-HYPERGRAPH VERTEX COVER [59, 63], FLow
TIME SCHEDULING [65].

In terms of computational hardness, the existence of such algo-
rithms for certain NP-complete problems has also been ruled out
under reasonable assumptions: k-SETCOVER [16, 20, 46, 47, 52, 55],
k-SETINTERSECTION [13, 51], k-STEINER ORIENTATION [66], MAX-
k-CoVERAGE [60], k-SVP, k-MDP and related problems [10, 11, 60].
An exciting recent line of work [16, 18, 45, 53, 54, 56] shows that
approximating k-CLIQUE is not FPT under Gap-ETH, ETH, and
W[1] # FPT. We refer to the survey by Feldmann, Karthik, Lee, and
Manurangsi [32] for a detailed discussion.

The Quest for Parameterized PCP-Type Theorems. Despite all the
recent progress in the study of parameterized inapproximability, the
reductions presented in these papers are often ad-hoc and tailored to
the specific problems in question. Obtaining a unified and powerful
machinery for parameterized inapproximability, therefore, becomes
increasingly important.

A good candidate is to establish a parameterized PCP-type theorem.
The PCP theorem [6, 7, 23], a cornerstone of modern complexity
theory, gives a polynomial time reduction from an NP-hard problem
like 3SAT to a gap version of 3SAT where the goal is to distinguish
satisfiable instances from those for which every assignment fails
to satisfy a y fraction of clauses for some absolute constant y > 0.
This then serves as the starting point for a large body of inapprox-
imability results for fundamental problems, including constraint
satisfaction, graph theory, and optimization.

As discussed in [32], the current situation in the parameterized
world is similar to that of the landscape of the traditional hardness of
approximation before the celebrated PCP theorems was established.
Given the similarity, the following folklore open problem has been
recurring in the field of parameterized inapproximability:

Can we establish a PCP-type theorem in the parameterized
complexity theory?

Inlight of its rising importance, Lokshtanov, Ramanujan, Saurabh,
and Zehavi [57] formalized and entitled the above question as Pa-
rameterized Inapproximability Hypothesis (PIH). Here we present
the following reformulation! of PIH due to [32]:

HyroTHESIS 1.1 (PARAMETERIZED INAPPROXIMABILITY HYPOTH-
Esis). There is an absolute constant’ ¢ > 0, such that no fixed pa-
rameter tractable algorithm which, takes as input a 2CSP G with k
variables of size-n alphabets, can decide whether G is satisfiable or at
least ¢ fraction of constraints must be violated.

Similar to the PCP theorem, PIH, if true, serves as a shared be-
ginning for results in parameterized hardness of approximation:
k-CLIQUE, k-SETCOVER, k-EXACTCOVER [41], SHORTEST VECTOR
[10, 11], DirecT ODD CYCLE TRANSVERSAL [57], DETERMINANT MAX-
1M1ZATION and GRrID TILING [62], Baby PIH [41], k-MaxCoOVER [46],
and more.

Prior to our work, PIH was only proved under the Gap-ETH
assumption, the gap version of ETH. Since there is an inherent gap
in Gap-ETH, the result can be obtained by a simple gap-preserving

!The original statement of PIH in [57] replaces the runtime bound by W/[1]-hardness,
and the reformulation by [32] suffices for applications.

2The exact constant here is not important. Starting from a constant £ > 0, one can
boost it to 1 — # for any constant > 0 by standard reductions.

25

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

reduction (see, e.g., [32]). Indeed, it is often recognized that gap-
preserving reductions are much easier than gap-producing reduc-
tions [31]. A more desirable result is, analogous to the PCP theorem,
to create a gap from a gap-free assumption:

Can we prove PIH under an assumption without an inherent gap?

1.1 Our Results

We answer the above question in the affirmative by proving the first
result to base PIH on a gap-free assumption. We consider the famous
Exponential Time Hypothesis (ETH) [42], a fundamental gap-free
hypothesis in the modern complexity theory and a weakening of
the Gap-ETH assumption®.

HyproTHEsIs (EXPONENTIAL TiME HyroTHESIS (ETH), INFORMAL).
Solving 3SAT needs 22" time.

Our main theorem can be stated concisely as:
THEOREM 1.2 (MAIN). ETH implies PIH.

In Theorem 3.1, we provide a quantitative version of Theorem 1.2

o ViogTeF)

that presents an explicit runtime lower bound of f(k)-n
for the problem in Hypothesis 1.1 under ETH.

As a byproduct of the above quantitative bound, we have the
following probabilistic checkable proof version of the main theorem
(see Theorem 3.2 for the full version). This can be seen as a PCP
theorem in the parameterized world where the prooflength depends
only on k (which is supposed to be a small growing parameter),
but the alphabet size is the significantly growing parameter. The
runtime of the PCP verifier is in FPT.

THEOREM 1.3. For any integer k > 1, 3SAT has a PCP verifier
which can be constructed in time f (k) - |z|0M for some computable

2
unction f, makes two queries on a proof with length 220(k) and
fi f q p g
alphabet size |%| = 200"/%) | and has completeness 1 and soundness

1
1= 5600

As mentioned, PIH serves as a unified starting point for many
parameterized inapproximability results. Below, we highlight some
new ETH-hardness of approximation for fundamental parameter-
ized problems obtained by combining our result and existing reduc-
tions from PTH.

Application Highlight: k-ExactCover. k-ExacTCOVER (also known
as k-UNI1QUE SET COVER) is a variant of the famous k-SETCOVER
problem. In the p-approximation version of this problem, denoted
by (k, p-k)-ExAcTCOVER, we are given a universe U and a collection
S of subsets of U. The goal is to distinguish the following two cases.

e There exists k disjoint subsets that cover the whole universe.
e Any p - k subsets of S cannot cover U.

Here, the parameter is the optimum k. Note that k-ExacTCOVER
is an easier problem than k-SETCOVER due to the additional dis-
jointness property, proving computational hardness even harder.
On the positive side, this additional structure also makes (k, p - k)-
ExAcTCOVER an excellent proxy for subsequent reductions. We
refer interested readers to previous works for details [4, 60].

3We thank Benny Applebaum for pointing his work [3] to us, which shows that

smooth-ETH, a strengthening of ETH, implies Gap-ETH (and thus PIH). In contrast,
we prove PIH directly from ETH, completely bypassing Gap-ETH.

Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis

For constant p > 1, the hardness of (k, p - k)-ExacTCOVER was
only proved under assumptions with inherent gaps [41, 60], imi-
tating the reduction in the non-parameterized world [30]. It was
still a mystery whether we could derive the same result under a
weaker and gap-free assumption. Combining its PIH hardness (see
e.g., [41]*) with our main theorem (Theorem 1.2), we prove the first
inapproximability for k-ExacTCovER under a gap-free assumption.

COROLLARY 1.4. Assuming ETH, for any absolute constant p > 1,
no FPT algorithm can decide (k, p - k)-EXacTCOVER.

Application Highlight: Directed Odd Cycle Transversal. Given a
directed graph D, its directed odd cycle transversal, denoted by
DOCT(D), is the minimum set S of vertices such that deleting
S from D results in a graph with no directed odd cycles. The p-
approximating version of the directed odd cycle transversal prob-
lem, denoted by (k, p - k)-DOCT, is to distinguish directed graphs
D with DOCT(D) < k, from those with DOCT(D) > p - k. The
parameter of this problem is the optimum k. This problem is a gen-
eralization of several well studied problems including DIRECTED
FEEDBACK VERTEX SET and OpD CyCLE TRANSVERSAL. For a brief
history of this problem, we refer to the previous work [57]. In their
work, the authors prove the following hardness of (k, p - k)-DOCT.

THEOREM 1.5 ([57]). Assuming PIH, for some p € (1,2), no FPT
algorithm can decide (k, p - k)-DOCT.

Combining the theorem above with Theorem 1.2, we establish
the first hardness of (k, p - k)-DOCT under a gap-free assumption.

COROLLARY 1.6. Assuming ETH, for some p € (1,2), no FPT algo-
rithm can decide (k, p - k)-DOCT.

1.2 Overview of Techniques

To prove our main theorem (Theorem 1.2), we present an efficient
reduction from 3SAT formulas to parameterized CSPs of k variables
with a constant gap.

To construct such a reduction, we follow the widely-used par-
adigm for proving PCP theorems [6, 7, 40]. Via this approach, we
first arithmetize 3SAT into an intermediate CSP (usually a constant-
degree polynomial system in the literature) with k variables and
alphabet 2. Then, we decide on a locally testable and correctable
code C: Zlf — 212" (e.g., the quadratic code [6], the Reed-Muller
code [7], or the long code [40]), and treat the proof 7 as an encoding
of some assignment o: [k] — X to the intermediate CSP (viewed
as a vector in 2’1‘), Leveraging the power of the local testability and
correctability of C, we will check whether the input proof is (close
to) the encoding of an assignment that satisfies the intermediate
CSP.

Our Plan. To follow the outline above and also factor in the
runtime and the parameter blowup, our plan is as follows:

(1) First, we need to design an appropriate intermediate param-
eterized CSP problem, which has some runtime lower bound
under ETH. In the parameterized setting, the number of vari-
ables is a small parameter k, while the alphabet |21| holds
the greatest order of magnitude.

4[41] proves the hardness of (k, p - k)-ExacTCOVER under a weaker version of PIH,
namely, Average Baby PIH with rectangular constraints.

26

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

(2) Second, we need to construct an error correcting code C,
which can be used to encode a solution of the intermediate
CSP, and allows us to locally check its satisfiability. Here
codeword length must be independent of |21].

However, the plan above confronts the following basic obstacle.
The constructions in proving the PCP theorems usually require the
proof length || = |21|Q(k). On the other hand, as illustrated in
Item 2 above, we must eliminate |21 in the proof length to make
sure that the reduction is FPT.

Vectorization. We bypass this obstacle by applying vectorization,
an idea also used in [56]. In detail, we enforce the alphabet 31 to
be a vector space Fd, where F is a field of constant size. In this
way, an assignment o € Zlf = (F%)k can be viewed as d parallel
sub-assignment in FX. Thus, if we have a good code C: Fk — F¥
that tests the validity of a sub-assignment, we can encode o by
separately encoding each sub-assignment and combining them as
an element in (F¥')4 = (F9)¥’. Since |F| is a constant, this makes
k’ dependent only on k but not on the whole alphabet =; = F4.

Guided by the vectorization idea, we aim to design an ETH-hard
intermediate CSP problem where the alphabet is a vector space.
Furthermore, to facilitate the construction of the error correcting
code C in the second step, we also hope that there are appropriate
restrictions on the constraints of this intermediate CSP problem.
The constraints should be neither too restrictive (which loses the
ETH-hardness) nor too complicated (which hinders an efficient test-
ing procedure). Following these intuitions, we define the following
Vector-Valued CSPs as our intermediate problem.

Vector-Valued CSPs. Vector-Valued CSPs (Definition 3.3) are CSPs
with some additional features. We emphasize that vector-valued
CSPs will become fixed parameter tractable if all constraints are
linear (resp., parallel). In detail, one can handle linear constraints by
efficiently solving a system of linear equations, or handle parallel
constraints by brute force enumeration individually for each coordi-
nate. However, due to our reduction, one cannot solve vector-valued
CSPs with both constraint types efficiently under ETH.

3SAT to Vector-Valued CSPs. In Theorem 3.4, we establish the
ETH-hardness of vector-valued CSP instances by a series of stan-
dard transformations.

First, we partition the clauses and variables of a 3SAT formula
respectively into k parts. Each of the 2k parts is then built as a CSP
variable, which takes assignments of that part of clauses/variables.
The alphabet is therefore a vector space.

Then, we impose constraints between clause parts and variable
parts. Each constraint is a conjunction of clause validity and clause-
variable consistency. These constraints ensure that the 2k partial
assignments correspond to a global satisfying assignment to the
original 3SAT formula.

However, the constraints above are neither parallel nor linear.
To make them parallel, we first appropriately split constraints, then
duplicate each variable into several copies and spread out its con-
straints. After this procedure, each variable is related to exactly one
constraint, and each constraint is the same sub-constraint applied in
a matching way on the d coordinates of the related vector-variables.
We can thus permute the d coordinates of each variable accord-
ingly and obtain the parallel constraint form we desire. In addition,

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

we also need to check the (permuted) consistency between differ-
ent duplicates. These checks can be done using permuted equality
constraints, which are special forms of linear constraints.

Vector-Valued CSPs to Constant-Gap CSPs. In Theorem 3.5, we
construct another FPT reduction from a vector-valued CSP to a
general constant-gap parameterized CSP in three steps.

First, we split the vector-valued CSP instance into two by parti-
tioning the constraints into a linear part and a parallel part.

Next, for each of the two sub-instances, we construct a random-
ized verifier to check whether all constraints in it are satisfied. The
verifier takes as input a parallel encoding of a solution. It then
flips random coins, makes a constant number of queries based on
the randomness, and decides whether to accept the input proof or
not based on the query result. The verifier will have a constant
soundness and a constant proximity parameter. In the traditional
complexity theory, such verifiers are also known as Probabilistic
Checkable Proof of Proximity (PCPP) verifiers.

In our proof, the verifier is designed separately for linear con-
straints and parallel constraints. The consistency of the two verifiers
is guaranteed via a unified parallel Walsh-Hadamard encoding of
the solution, shared by both verifiers.

Finally, we obtain a constant-gap CSP instance by a standard
reduction from probabilistic checkable proof verifiers to CSPs.

The proof is then completed by combining the two reductions
above. The crux of our proof is the design of the PCPP verifiers.
Below, we present high-level descriptions of this part.

PCPPs for Vector-Valued CSPs with Parallel Constraints. Fix a
vector-valued CSP instant G with parallel constraints only. The
key observation in designing PCPPs for G is that, though the par-
allel sub-constraints can be arbitrary, different coordinates of the
vector-variables are independent. Let k be the number of variables
in G and let d be the dimension of the vector-variables.

Following the observation above, we can split G into d sub-
instances Gy, . .., G4 with respect to the d coordinates. Each G; is
a CSP instance with k variables and alphabet F. A vector-valued
assignment o satisfies G iff the sub-assignment of o on the i-th
coordinate satisfies G; for each i € [d].

After splitting, the alphabet of each G; is only F. We can thus fol-
low the classical construction [5, 6] of PCPPs to construct a verifier
A; to efficiently and locally check the satisfiability of G;. In addition,
since every vector-variable is related to at most one parallel con-
straint in G, the number of distinct sub-instances among Gy, ..., G4
depends only on k, not on d. This allows us to combine A, ..., Ay
into a single verifier A that works over the original alphabet F¢ with
blowup dependent only on k, not on d. See Section 5 for details.

PCPPs for Vector-Valued CSPs with Linear Constraints. To design
a verifier for linear constraints, we leverage the power of the Walsh-
Hadamard code to decode any linear combinations of the messages.
Fix a vector-valued CSP instance G with linear constraints only.
For each linear constraint e = (ue, ve) € E, we further denote its
form by 1, -p,0, -

To test the conjunction of all linear constraints, it is natural
to consider the linear combination of these constraints. In detail,
we pick independently random 1y, ..., 4|g| € F, and test whether:
DecE AelUe = DecE Ae - Meve. By the random subsum principle [5],

27

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

if any one of the linear constraints is violated, the equation above
does not hold with high probability.

Following this idea, we introduce auxiliary variables z,, for
each variable v and constraint e, which is supposed to be Mev. We
set up the parallel version of the Walsh-Hadamard code over the
assignments to the variables in G and the auxiliary variables z .
In this way, we can decode both the LHS and RHS of the equation
above by two queries on the Walsh-Hadamard code, and then check
whether the equation holds. We need extra testing procedures to
ensure z, ¢ equals Meo. See Section 6 for details.

1.3 Related Works and Discussions

Related Works. As mentioned above, prior to our work, PTH was
only known to hold under Gap-ETH [16, 26]. The techniques there
do not apply here since their proofs rely on an inherent gap from
the assumption, which ETH does not have.

Using a different approach, Lin, Ren, Sun, and Wang [54, 56]
proposed to prove PIH via a strong lower bound for constant-gap
k-CriQuE. This is reminiscent of [8], where the NP-hardness of
constant-gap CLIQUE leads to a free-bit PCP. However, the construc-
tion in [8] does not apply in the parameterized setting since the
proof length will be too long. In addition, the framework of [56]
only designs a weaker variant of PCPP, which can only locally test
the validity of a single constraint rather than the conjunction of all
constraints. Moreover, the boosting from weak PCPPs to standard
PCPPs seems to meet an information-theoretic barrier from locally
decodable codes. In contrast, we successfully design PCPPs for spe-
cial CSPs in this work, which is based on a key observation that
CSPs remain ETH-hard even when the variables are vector-valued
and the constraints are either parallel or linear.

Furthermore, a recent work by Guruswami, Ren, and Sandeep
[41] established a weaker version of PIH called Baby PIH, under
W[1] # FPT. However, they also gave a counterexample to show
that the basic direct product approach underlying their reduction
is not strong enough to establish PTH.

Future Directions. First, starting from PIH and by our work, many
previous parameterized hardness of approximation results can now
be based on ETH (see Corollary 1.4 and Corollary 1.6 as repre-
sentatives). However, there are still many basic problems whose
parameterized inapproximability remains unknown, e.g., MAX k-
COVERAGE and k-BALANCED BICLIQUE [16, 32].

Can we discover more ETH-based parameterized inapproxima-
bility results? Since there is already a gap in PIH, we expect that
reducing PTH to other parameterized problems would be easier than
reducing directly from gap-free 35AT.

Seond, we have presented a gap-producing reduction from ETH
to PIH. It is natural to ask whether we can prove PIH under the
minimal hypothesis W[1] # FPT.

Our paper constructs an FPT reduction from vector-valued CSPs
to gap CSPs. In light of this, all we need is to establish the W[1]-
hardness for the exact version of vector-valued CSPs. We remark
that our vector-valued CSP instances are closely related to an M[1]-
complete problem MINI-3SAT [33] where M[1] is an intermediate
complexity class between FPT and W[1]. Thus, unless M[1] =
W/[1], our proof may not be directly generalized to prove PIH under

Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis

W/[1] # FPT. We refer interested readers to [19] for a detailed
discussion of these complexity classes and hierarchies.

Paper Organization. In Section 2, we define necessary notation
and introduce useful tools from the literature. Then, the paper is
organized in a modular manner. First, in Section 3, we present
the proof of our main result with the proofs of technical lemmas
deferred to later sections. Then, in Section 4, we show how to
obtain a vector-valued CSP instance with desired structures from
3SAT as needed in Section 3. Next, in Section 5, we design the
probabilistic verifier for parallel constraints in the CSP instance,
another building block needed in Section 3. Finally, in Section 6,
we give the probabilistic verifier for linear constraints in the CSP
instance, the last missing piece of Section 3.

Due to space limitations, we relegate the detailed proof into the
full version [39].

2 PRELIMINARIES

For a positive integer n, we use [n] to denote the set {1,2,...,n}.
We use log to denote the logarithm with base 2. For an event &,
we use 1g as the indicator function. For disjoint sets S and T, we
use SUT to denote their union while emphasizing SN T = 0. For a
prime power q = p! where p is a prime and ¢ > 1 is an integer, we
use Fy to denote the finite field of order p! and characteristic p.

We use superscript T to denote vector and matrix transpose. For
two vectors u,v € Fd, we use (u,v) to denote their inner product
which equals u"v (or o u). For two matrices A, B € FdXd, we use
(A, B) = % je[d] Ai,jBi,j to denote their inner product.

Throughout the paper, we use O(-), ©(+), Q(+) to hide absolute
constants that do not depend on any other parameter.

2.1 (Parameterized) Constraint Satisfaction
Problems

CSP. In this paper, we only focus on constraint satisfaction prob-
lems (CSPs) of arity two. Formally, a CSP instance G is a quadruple
(V,E, 3,{Il¢ }ecE), where:

e V is for the set of variables.

e E is for the set of constraints. Each constraint e = {ue, ve} €

E has two distinct variables ue, v, € V.
The constraint graph is the undirected graph on vertices V'
and edges E. Note that we allow multiple constraints between
a same pair of variables and thus the constraint graph may
have parallel edges.

e X is for the alphabet of each variable in V. For convenience,
we sometimes have different alphabets for different variables
and we will view them as a subset of a grand alphabet ¥ with
some natural embedding.

o {Ilc}eck is the set of constraint validity functions. Given
a constraint e € E, the validity function IT¢(+,-): EX ¥ —
{0, 1} checks whether the constraint e between u, and v, is
satisfied.

We use |G| = (V| + |E|) - |2] to denote the size of a CSP instance G.
Assignment and Satisfiability Value. An assignment is a function

o: V — ¥ that assigns each variable a value in the alphabet. We use
val(G,o0) = ﬁ Yeck He(o(ue), 0(ve)) to denote the satisfiability

28

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

value for an assignment o. The satisfiability value for G is val(G) =
maXx,. vy val(G, o). We say that an assignment o is a solution to
a CSP instance G if val(G, o) = 1, and G is satisfiable iff G has a
solution. When the context is clear, we omit ¢ in the description of
a constraint, i.e., IT¢ (e, ve) stands for II(o(ue), o(ve)).

e-Gap k-CSP. We mainly focus on the gap version of the param-
eterized CSP problem. Formally, an e-Gap k-CSP problem needs to
decide whether a given CSP instance (G, |V|) with |V| = k satisfies
val(G) =1orval(G) <1-e.

We refer to [35] for the backgrounds on fixed parameter tractabil-
ity and FPT reductions. In this paper, for convenience, we use the
following variant due to the sparsification lemma [43] and Tovey’s
reduction [64], which gives 3SAT additional structure.

HypotHEsis 2.1 (ETH). No algorithm can decide 3SAT within
runtime 2°") | where each variable is contained in at most four clauses
and each clause contains exactly three distinct variables.

2.2 Parallel Walsh-Hadamard Code

As mentioned in Subsection 1.2, the key step to bypass the obstacle
in previous constructions is vectorization and parallel encoding
of an error correcting code. In this paper, we only consider the
parallelization of the famous Walsh-Hadamard code, a classic error
correcting code that is locally testable and correctable.

Definition 2.2 (Parallel Walsh-Hadamard Code). Let F be a finite
field and (ay,as,...,a;) € (IFfd)’C be a tuple of k vectors in F9. We
view it as a matrix A = (aj,a,...,a;) € F9%k where the i-th
column is the vector q;.

The parallel Walsh-Hadamard encoding PWH(A) of A is a code-
word indexed by FX where each entry is a vector in F%. Alternatively,
PWH(A) is a function mapping FK to F? that enumerates linear com-
binations of the column vectors of A. Formally, for each b € Fk , we
have PWH(A)[b] = Ab.

Note that the parallel Walsh-Hadamard code is also known as
interleaved Hadamard code and linear transformation code [25, 36].

When d = 1, the parallel Walsh-Hadamard code coincides with
the standard Walsh-Hadamard code. It is clear that PWH has the
relative distance § = 1 — ﬁ which is at least % since |F| > 2.

Local Testability and Correctability. Fix a word w € (Fd)Fk and
treat it as a map from FK to F?. To test whether w is close to a
codeword of PWH, we perform the famous BLR test [12], which
samples uniformly random a, b € F* and accept if w[a] + w[b] =
w(a + b] by three queries to w. The following theorem establishes
the soundness of this test.

Tueorem 2.3. IfPr, ,cpk [wla] + w[b] = wla+b]] = 1—¢, then
A(x,Im(PWH)) < 6¢.

Assume w is n-close to an actual codeword w* of PWH. To obtain
the value of w*[x] for some x € F¥, we can draw a uniform a € F¥
and compute w[x + a] — w[a] by two queries. The following fact
concerns the soundness of this procedure.

Fact 2.4. Ifw is n-close to some w* € Im(PWH), then
Pr [w[x+a] —wla] = w*[x]] >1-2n.
acFk

SWe say a variable x is contained in a clause C if the literal x or —x appears in C.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

2.3 Probabilistic Checkable Proofs with
Proximity

Probabilistic Checkable Proofs of Proximity (PCPP, also known as

assignment testers) [9, 27] are essential gadgets when proving the

PCP theorem [5, 7, 23]. There, the gadget is used to verify whether

a set of Boolean variables is close to a solution of a formula given

by a circuit.

In this paper, we reformulate PCPP under the parameterized
regime. Our reformulation is compatible with the parallel encoding.
To conveniently combine different PCPPs, we specialize PCPPs into
their PWH-based constructions.® Formally, we define the following
parallel probabilistic checkable proofs with proximity (PPCPP).

Definition 2.5 ((g, d, ¢, f, g)-PPCPPs). Let f and g be two com-
putable functions. Given a finite field F and a CSP instance G =
(V,E,3,{ll¢}ecE) wWhere 3 = F. Its (g0, ¢, f,g)-PPCPP is a ran-
domized verifier A with the following workflow: Recall that k = |V|
is the parameter of the CSP instance G.

o A takes as input two blocks of proofs 71 o 73 with alphabet
Fd, where:

— 71 has length |F|¥ with entries indexed by vectors in F,
which is supposed to be the parallel Walsh-Hadamard
encoding of some assignment to V.

— 1 has length at most f(k). It is an auxiliary proof enabling
an efficient verification procedure.

e A chooses a uniform r € [R4], where Ry is at most g(k),
queries at most g positions in 771 o 2 based on r, and decides
to accept or reject the proof after getting the query result.

o The list of queries made by A can be generated in time at
most h(k) - |G|O(1) for some computable function h.

The verifier A has the following properties.

e COMPLETENESS. For every solution o of G, there exists a
such that Pr[A accepts PAWH(o) o m2] = 1, where we treat an
assignment o: V — F9 as a vector in (F¥)V1.

e SOUNDNESS. If Pr[A accepts 71 o m2] > 1 — ¢, there exists
some solution o of G such that A(sm1,PWH(0)) < 4.

Intuitively, PPCPPs check whether 7 is close to the Walsh-
Hadamard encoding of some solution of G. Like the traditional
PCPP, parallel PCPPs are also tightly connected with CSPs. The
following standard reduction establishes the connection.

Definition 2.6. Given a (q, 9, ¢, f, g)-PPCPP verifier A for a CSP
G=(V,E,Z, {llg}ecp) withX = F9, we define a CSP instance G’ =
(V/,E', 3 {Il}}¢cp'), where V/ = V/UVJ UV and 3/ = (F%)9, by
the following steps:

o First, for i = 1, 2, we treat each position of 7; as a single variable
in V/ with alphabet F4. Note that V)| = |F|¥ and V)| < f(k).

® Then, for each randomness r € [R4], let S, be the set of query
positions over 71 o 72 under randomness r; and we add a supernode
zr to V; whose alphabet is (F)I5r1 ie., all possible configurations
of the query result. Note that |V;| < g(k).

e Finally, we add constraints between z, and every query po-
sition i € S,. The constraint checks whether z, is an accepting
configuration, and the assignment of the position i is consistent
with the assignment of z,.

The choice of encoding is typically abstracted out in standard definitions of PCPPs.

29

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

By construction, we can see that the completeness and soundness
are preserved up to a factor of q under this reduction, where the
loss comes from the construction where we split g queries into
q consistency checks. In addition, since |71 o 3| < |[F|* + f(k),
Ra < g(k), and the list of queries made by A can be generated in
time h(k) - |G|O(1), the reduction from G to G’ is a FPT reduction.

FacT 2.7. The reduction described in Definition 2.6 is an FPT re-
duction. Recall that k = |V| is the parameter of G and % = F¥ is the
alphabet of G. We have the following properties for G':

e ALPHABET. The alphabet of G’ is 3/ = F44.

e PARAMETER BLowup. The parameter of G’ is |[V'| < [FIF +
FO) +g(k).

o COMPLETENESS. For every solution o of G, there exists a solution
o’ of G’ assigning PWH(o) to V/.

e SOUNDNESs. For any assignment o’ satisfying 1 — flfraction
of the constraints in G’, there exists a solution o of G such that
Ao’ (V]),PWH(0)) < 6.

3 PROOF OF THE MAIN THEOREM

In this section, we prove the following quantitative version of our
main theorem (Theorem 1.2).

THEOREM 3.1. Assuming ETH, no algorithm can decide %IW—GAP
k-CSP in f (k) - n°(V108108K) time for any computable function f.

As a byproduct of the quantitative analysis, we also have the fol-
lowing PCP-style theorem, which can be viewed as a parameterized
PCP theorem.

THEOREM 3.2. For any integer k > 1, 3SAT has a PCP which

o can be constructed in time f (k) - |2|O(l) for some computable
function f,

O(k?
e makes two queries on a proof of length 22 “ and alphabet
size |3 = 20(n/k),
o has perfect completeness and soundness 1 — ﬁ.

Our proof relies on an intermediate structured CSP, termed
Vector-Valued CSPs (VecCSP for short).

Definition 3.3 (Vector-Valued CSP). A CSP instance G = (V,E, 2,
{Ile}ecE) is a VecCSP if the following additional properties hold.

e 3 = F4 is a d-dimensional vector space over a finite field F
with characteristic 2.

e For each constraint e = {u, v} € E where u = (ug,up, ..., uyg)
and v = (v1,02, ...,vg), the constraint validity function IT,
is classified as one of the following forms in order”:

— LINEAR. There exists a matrix® M, € F4%d guch that
e (u,0) = 1y=M, o-

— ParaLLEL. There exists a sub-constraint II3*? : F x F —
{0, 1} and a subset of coordinates Q. C [d] such that IT,
checks Hﬁ,“b for every coordinate in Q,, i.e., ¢ (u,0) =
Aieo, T (u, 7).

e Each variable is related to at most one parallel constraint.

7A constraint can be both linear and parallel (e.g., equality constraint). In this case, we

classify it as linear instead of parallel, consistent with the order defined here.
81n the instance reduced from 3SAT, M, is always a permutation matrix.

Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis

Our reduction is accomplished by combining two separate sub-
reductions. First, in Subsection 3.1, we provide a reduction from
3SAT to VecCSPs. Second, in Subsection 3.2, we provide another
reduction from VecCSPs to parameterized CSPs of constant gap.
Finally, we can prove Theorem 3.1 and Theorem 3.2 by combining
the two steps above.

3.1 Reduction from 3SAT to VecCSPs

In this step, we reduce 3SAT to VecCSPs. By Hypothesis 2.1, we
may assume 3SAT has some additional structure.

THEOREM 3.4 (PROVED IN SECTION 4). There is a reduction algo-
rithm such that the following holds. For any positive integer £ and
given as input a SAT formula ¢ of n variables and m clauses, where
each variable is contained in at most four clauses and each clause con-
tains exactly three distinct variables, the reduction algorithm produces
a VecCSP instance G = (V,E, 2, {Ilo }eeg) where:

(S1) VARIABLES AND CONSTRAINTS. |V| = 4802 and |E| = 72¢2.

(S2) RUNTIME. The reduction runs in time ¢9(1) . 20(n/0).

(83) ALPHABET. 3. = Fsd whered = max {[m/t],[n/€]}.

(84) ComPLETENESS AND SOUNDNESS. G is satisfiable iff ¢ is satisfi-
able.

3.2 Reduction from VecCSPs to Gap CSPs

Now we present our gap-producing reduction from VecCSPs to
instances of e-Gap k-CSP.

L

THEOREM 3.5. Fix an absolute constant £ = gz55. There is a
reduction algorithm such that the following holds. Given as input a
VecCSP instance G = (V,E, % = F4, {e}ecE) where

o k =|V| is the parameter of G,

o |F| = 2! < h(k) for some computable function h,

e |E| < m(k)? for some computable function m with m(k) > 1,
the reduction algorithm produces a CSP instance G* = (V*,E*,3* =
F {IT%} oc) where:

e FPT REDUCTION. The reduction from G to G* is an FPT reduc-

tion.

o PARAMETER. The parameter of G* is |V*| < 22t-m(k)-[F100)

e CoMPLETENESS. If G is satisfiable, then G* is satisfiable.

e SOUNDNESsS. If G is not satisfiable, then val(G*) < 1 — ¢*.

Below, we present our reduction and proof for Theorem 3.5. Fix
a VecCSP instance G = (V, E, %, {Il¢ }ccg) satisfying the conditions
in Theorem 3.5. Our reduction is achieved in three steps.

3.2.1 Step a: Instance Splitting. Recall that G has two kinds of
constraints: linear and parallel constraints. In this step, we par-
tition the constraint set E into two parts Ef UEp, where E; and
Ep consist of all linear and parallel constraints of E, and define
G = (V,EL, %, {Ile}ecg,) and Gp = (V,Ep, 2, {Ile}ecEp) as the
sub-CSP instance where the constraint set is Ey and Ep, respectively.
Note that Gy and Gp are still VecCSPs with the same parameter
k = |V|. Furthermore, we have the simple observation as follows.

FacT 3.6. For every assignment o overV, o is a solution of G if
and only if it is the solution of both G, and Gp.

Note that we allow multiple constraints between a same pair of variables. Hence in
general |E| may not be bounded by a function of k.

30

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

3.2.2 Step b: Designing Parallel PCPPs for Sub-Instances. In this
step, we construct PPCPP verifiers A; and Ap in FPT time to test
whether all constraints in Gy and Gp are satisfied, respectively. We
first handle parallel constraints and obtain Ap.

ProrosITION 3.7 (PPCPP FOR PARALLEL CONSTRAINTS. PROVED
IN SECTION 5). Let h be a computable function. Let G be a VecCSP
instance with k variables where (1) the alphabet is F? and |F| = 2! <
h(k), and (2) all constraints are parallel constraints. Then for every e €
(0, 5), there is a (4,48¢,¢, f (k) = 22" FI7" g(k) = 22 IFI1°0).
PPCPP verifier for G, where f (k) is the length of the auxiliary proof,
and g(k) is the number of random choices.

Recall that the alphabet of G is F¥ where |F| = 2¢, and Gp consists
of parallel constraints of G only. Thus, by plugging ¢ = Tloo into
the proposition above, we can obtain a (gp = 4,5p = 2—15,51: =
s, fo(k) = 22 IFI9Y gp(k) = 22 IFI°C) _pPCPP verifier Ap
for Gp. Now, we turn to linear constraints and obtain Aj .

ProrosITION 3.8 (PPCPP FOR LINEAR CONSTRAINTS. PROVED IN
SECTION 6). Let h and m be two computable functions. Let G be a
VecCSP instance with k variables where (1) the alphabet is F4 and

|E| < h(k), (2) all constraints are linear constraints, and (3) there

1
> 400

(4, 24¢, ¢, f (k) = |[F|Fm0) g(k) = |F|8k-m(K))_PPCPP verifier for G.

By plugging ¢ = ﬁ into the proposition above, we can derive a
(qr = 4.6 = g5.e1 = g5, fi (k) = [F[F™®), gp (k) = [FPem).
PPCPP verifier Ay, for Gy.

Now, we combine Ay and Ap into a single PPCPP A for the
general VecCSP G from Theorem 3.5. A executes Ay and Ap as in
a black-box way where A takes 71 o 7 o 7p as a proof and with
equal probability, A invokes Ay with proof 7 o 7 or invokes Ap
with proof 71 o zp.

Intuitively, 71 serves as a unified encoding of a solution of G
via the parallel Walsh-Hadamard code PWH, and 7y and 7p are
auxiliary proofs to convince Ay, and Ap respectively. The following
proposition shows that A is a PPCPP that efficiently checks all the
constraints in G.

are at most m(k) constraints. Then for every ¢ € (0) there is a

ProPOSITION 3.9 (CoMBINED PCPP). Given a VecCSP instance G
satisfying the preconditions in Theorem 3.5, the verifier A described
aboveisa(q=4,06= %,e = ﬁ,f(k) = 22k'm(k)'|F|o(l>,g(k) =
22t-m(k)-[F|O)-PPCPP verifier for G.

3.2.3 Step c: Reducing Parallel PCPPs to Gap CSPs. Finally, we
complete the proof of Theorem 3.5 by converting the verifier A
into a constant-gap parameterized CSP G*. In detail, set G* =
(V*,E*, 2%, {II}}ccp*) to be the CSP instance obtained by applying
the reduction in Definition 2.6 on the verifier A. Then the claimed
runtime of the reduction, as well as the alphabet size, complete-
ness and soundness of G*, follow immediately from combining
Proposition 3.9 and Fact 2.7. Putting everything together, we can
prove Theorem 3.1 and Theorem 3.2 by combining Theorem 3.4
and Theorem 3.5.

4 FROM 35AT TO VECTOR-VALUED CSP

This section is devoted to the proof of Theorem 3.4 which shows
how to obtain a VecCSP from a 3SAT instance.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Fix ¢ and ¢ from Theorem 3.4. For each variable, we fix an arbi-
trary order of its (at most four) appearances in clauses. The order
is used to construct parallel constraints.

We partition m clauses of ¢ into Cy, . .., Cp where each C; con-
tains at most [m/¢] clauses. Similarly we partition n variables
of ¢ into Vi,...,V, where each V; contains at most [n/¢] vari-
ables. For each clause C € CyU---UCy, we identify Fs = {0, 133
as the set of partial assignments to the clause C, For each vari-
able x € VU --- UV}, we also treat its assignment € {0, 1} as an
element of Fg.

Now we define six tests as sub-constraints to be used later. For
j€[3]andb € {0,1}, we define IT; , : Fs XFg — {0, 1} that checks:
(1) the variable assignment is binary, (2) the clause assignment is
satisfying, and (3) the clause assignment and variable assignment
are consistent.

Vertices and Alphabets. We first define the vertices and the al-
phabet of G. In detail, for each p € [¢f],q € [¢],j € [3].s €

[4],b € {0,1}, we put into V a vertex Zp,q.j.s.b with alphabet Figc‘”l,

. V. s
and a vertex wy, 4 ;s , With alphabet Fz‘s ql. Intuitively, each vec-

tor entry of z;, 4 ; s corresponds to the assignment of a clause
€ Cp, and each vector entry of w,, 4 ;¢ corresponds to the as-
signment of a variable € V. Thus, we index entries of z;, 4 5.5
by clauses in Cp and entries of w, 4 ; s by variables in V. Since
d = max{[m/f], [n/€]} = max{|Cpl,|V4|}, some entries may be
left unused.

At a high level, the vertices z,, ¢ ; s, and wy, 4 ; ¢ 5 are duplicates
of assignments to Cp and V respectively. Note that since we as-
sume that every variable in ¢ is contained in at most four clauses,
we can safely restrict the range of s to be [4].

Constraints. Below, we describe the constraints in the VecCSP
G. At the beginning, we add parallel constraint between z, 4 s
and wy, 4 ; s p- For simplicity, in this paragraph, we use { to denote
a choice of p € [¢],q € [£],j € [3],s € [4]. Below, we enumerate
every { € [¢] x [£] X [3] x [4] and b € {0,1}. We first define Ty o
(and Ty 1) as all pairs (C,x) € Cp X Vg where the s-th appearance
of variable x is the j-th literal in clause C as x (and —x, resp.).

Then, for every (C,x) € Ty, we put a sub-constraint IT; 5, (j is
encapsulated in { = (p, g, j, s)) between the C-th entry of z; , and
the x-th entry of wy p, which checks whether the assignment of
literals in C is consistent with the assignment of x. Observe that
between entries of z;;, and w; p, we only put the sub-constraint
I1; p. In addition, Ty ;, forms a (not necessarily perfect) matching
over Cp X Vg C [d] x [d] as any two distinct (C, x), (C',x") € Ty,
satisfy C # C’ and x # x’. Thus, we can rearrange entries of
Wy so that the sub-constraints between z;j, and w p, is parallel.
We use k;p: [d] — [d] to denote the permutation applied in the
rearrangement, i.e., k;(C) = x for all (C,x) € Ty ;. Specifically,
wy p is rearranged in such a way that its new C-th entry takes the
value of its old x5 (C)-th entry.

Finally, we remark that each variable w; ;, only need to be rear-
ranged once according to k; . Thus, the constraint between z; 5,
and wy p, is well-defined.

After adding constraints for “clause-variable” consistency, we
need to further establish consistency check to ensure z_.,. ... corre-
sponds to the same assignment over Cj. Similarly, we also need a

31

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

consistency check to ensure that w. 4. ... corresponds to the same
assignment for V. Thus, we need constraints as follows.

First, for each p € [¢], we connect {2z, jsp 1 q € [¢],j € [3],5 €
[4],0 € {0,1}} in the constraint graph G by an arbitrary cycle, for
every two vertices Z = z,, g j o, and Z = zj, v i+ jy o+ connected in
the cycle of Cp, we impose the linear constraint that 1;_z, which is
a linear constraint.

Next, similarly, for each q € [¢], we also connect {wy g i
p € [tl,j € [3],s € [4],b € {0,1}} in the constraint graph G
by an arbitrary cycle. Note that we have rearragned wy, 4 ; s », by
the permutation x4 ; s » to ensure the constraint between z and
w is parallel. Thus, we add the permutated equality between two
connected vertices w and w in the cycle. In detail, we impose the
linear constraint that 15y _5 where Mg 5 € {0, 1}9%4 s the
permutation matrix of the permutation x; o K‘:vl, which is also a
linear constraint.

5 PARALLEL PCPPS FOR VECTOR-VALUED
CSPS WITH PARALLEL CONSTRAINTS

This section is devoted to proving Proposition 3.7. The construction
of PPCPP in this section is a generalization of an assignment tester
used in the proof of the classic exponential length PCP showing
result NP € PCP[poly(n),0(1)] [6].

5.1 An Exposition of the QUADEQ Problem

In the following, we give a brief exposition of QUADEQ for referenc-
ing purpose in our actual construction.

Definition 5.1 (QUADEQ). An instance I' of the QUADEQ problem
consists of q quadratic equations on ¢ binary variables, written
concisely as Dy, ...,Dq € ngc and by, ..., bq € F. The goal of the
QUADEQ problem is to decide whether there exists a solution u € FF§
such that ™ D;u = b; holds for all i € [q].

The benefit of using the QUADEQ problem is that any Boolean
circuit satisfiability problem can be efficiently reduced to QUADEQ
by introducing dummy variables. The QUADEQ problem also admits
a constant-query PCPP based on the Walsh-Hadamard Code. We
refer to [5] for details.

5.2 The Parallel QuaDEQ Problem

We will generalize the PCP verifier for QUADEQ to the parallel
setting to prove Proposition 3.7. To this end, we first need to convert
the parallel constraints into the QUADEQ form. Here, we will have
parallel QUADEQ since the alphabet of VecCSP is a vector space of
d coordinates.

Recall that we are given a VecCSP instance G from Proposition 3.7
with k variables and alphabet 4, where |F| = 2! and all constraints
are parallel constraints. We use V = {xi,...,x;} to denote the
variables in G, and use E = {ey, ..., em } to denote the constraints
in G. Recall the definition of VecCSP (Definition 3.3). We know
that each variable is related with at most one parallel constraint,
which implies m < k/2. By rearranging, we assume without loss of
generality that e, connects x27—1 and xyp for each £ € [m]. We also
recall that a parallel constraint ey checks a specific sub-constraint
II;: FXF — {0,1} on all coordinates in Q; C [d] simultaneously
between xgp—1 and xg9p.

Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis

We will need the following additional notations:

o Let y: F— Fg be a one-to-one map that flattens elements
in F into ¢ bits. The map y preserves the addition operator,
ie., y(a) + y(b) = y(a+b). _

e For each sub-constraint ITp: FXF — {0, 1}, define IT,: F; X
Fg — {0, 1} by setting Te(a,b) = e(x~1(a), y~1 (b)) for
alla b € IF; In other words, we map sub-constraints with
field inputs to sub-constraints with binary bits as input.
Note that we can represent each II; as a Boolean circuit of
size 20(*) in time 20(t).

e For each j € [d], we define k(j) = {¢ € [m]: j € Q¢} as the
set of sub-constraints applied on the j-th coordinate.

e For each S C [m], we build a Boolean circuit Cs to compute
the conjunction of the sub-constraints II, for £ € S.
Formally, Cs is the Boolean function mapping Flg T to {0,1}
such that

Cs(yns o) = N\ Me(zer, 920) = A\ e (x7 (ue-), X7 (w20)),
teS teS

where each y; € Fg is the binary representation of a coordi-
nate of the original x; via additive isomorphism .
By adding dummy gates, we assume each Cs has exactly ¢ =
k.20 = k. |Fjo0(M gates, since the circuit representation
of each TI; has size 20() . In addition, by rearranging indices,
we assume the first k - t gates are input gates corresponding
to (Y1, - . ., yx)- The construction of each Cs can also be done
in time k - [F|O(1).
We remark that the reason why we convert F into binary bits is
that QUADEQ can only handle binary circuits and sticking with
F will require equation systems of higher degree to preserve the
satisfiability, which complicates the analysis.

Now the satisfiability of the VecCSP instance G is equivalent
to the satisfiability of the Boolean circuits Cs’s. This is formalized
in Claim 5.2. For convenience, for each assignment o: V — P4
of G and each coordinate j € [d], we define o/: V — F as the
sub-assignment of o on the j-th coordinate of all variables in V.
Note that ¢ and o/ can be equivalently viewed as vectors in (Fd)k
and Fk respectively.

Claim 5.2. Let 6: V — F? be an assignment of V. Then o is a
solution of G iff CK(j)(y{, . yi) = 1 holds for every j € [d],
where each y{ = (0’ (x;)) is the binary representation of o/ (x;).

At this point, we appeal to the QUADEQ problem to further en-

code the satisfiability of each Cs as the satisfiability of a quadratic
equation system, which is formalized in Claim 5.3.

Claim 5.3. Let ¢ be an assignment of V. Recall that ¢/ is the sub-
assignment of o on the j-th coordinate. Let (Dg 1, . . ., Ds,q, bsi,...,
bs,q) be the QuaDEQ instance I for Cs.

Then o is a solution of G iff (uj)TDK(j)’,»uj = by(j),i holds for
all j € [d] and i € [q], where each u/ € [is some vector with the
first k - t bits equal to o/.

Moreover, u/ represents the values of gates in Ci(j) given as
input the first k - ¢ bits of u/.

We remark that the computation so far is very efficient and runs
in FPT time since |F| < h(k).

32

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

5.3 Parallel PCPPs for Parallel QuapEQ

In light of Claim 5.3, we now aim to generalize the PCP verifier
of QUADEQ to the parallel setting to verify the computation on d
coordinates simultaneously. The key observation is that, there are
only 2™ = 20(K) many different QUADEQ instances in Claim 5.3
since m < k/2. Thus, by tensoring up the proofs for different
instances, we can access different positions in different proofs at
the same time while still in FPT time.

Recall that for every j € [d], the set k(j) C [m] is the set of sub-
constraints applied on the j-th coordinate. We abuse the notation to
view each S C [m] as an integer in [2™] by some natural bijection.
For each S € [2™], we recall that (Dg 1, ..., Ds,q, bs,1, .- -, bs,q) is
the QUADEQ instance I's (see Claim 5.3) reduced from circuit Cg
(see Claim 5.2). We also recall that o/ (x;) € F is the j-th entry of
o(x;) € F%. For clarity, we use PWH; to denote the parallel Walsh-
Hadamard encoding with field F, and reserve PWH for the parallel
Walsh-Hadamard encoding with field F.

The verifier A is defined as follows.

Input of A. The verifier A takes as input 71 o w2, where:

e 1 has length |F|¥ and alphabet F¢.
It is supposed to be PWH(o) for an assignment o to the vari-
ables of G.

e 1y consists of two parts: a 22m'c-length string 7; with alpha-
bet Fg anda 22"¢ -length string 7 with alphabet F‘zj
71 and 77 are supposed to be PWH2 (7) and PWHz (w) for some
u e (IF’g)Zm'C and w € (IF?)Zm'82 constructed as follows:
for each j € [d], we use u/ € Fs, wl e F‘;X” to denote
the proof!® that the binary representations of ¢/ satisfy the
circuit Cy(). For u (resp., w), we place w (resp., w/) on the
j-th coordinate and at the x(j)-th length-c (resp., length-c?)
part, and leave all remaining parts zero.

We remark that the alphabet of the verifier A here has different
alphabets (F4 and IF‘;) for 71 and 7. This is convenient for stating
the tests and the analysis. To make it consistent with the definition
of PPCPP (Definition 2.5), we can simply perform a black-box re-
duction that equips with alphabet F? as well but rejects if any
query result during the test is not from {0, 1}4 = F‘g

Verification Procedure of A. The verifier A selects one of the fol-
lowing eight tests with equal probability. For ease of understanding,
we group the tests according to their functions.

(P1) Pick uniformly random , f € F¥ and check if 1 [a] +
m1[B] = m1[a +] with three queries.

(P2) Pick uniformly random «, § €]F'%m'c and check if 71 [a] +
71[f] = 71 [+ B] with three queries.

(P3) Pick uniformly random «, §§ € Fgm'cz and check if 7y [a] +
2[f] = m[a + B] with three queries. These three tests ensure
that sy, 71, 7o are close to PWH(o), PWH2 (%) and PWH, (w) for some
o€ (FHk 7 e (FH?™"¢ and w € (FI)?" <.

(P4) Take a random subset T of [2"], generate a random a; € Fj
for each i € T and set a; = 0 for each i ¢ T. Then pick uniformly
random f,. .., fom € Fg and obtain v := 71 [f1, ..., fom | + 111 +

OTechnically this proof is for QUADEQ instance Tic(j)- But due to Claim 5.3, we view it
as a proof for the satisfiability of Cyj). In fact, u/ is the values of gates in Cy(;) and
w/ = ul (u)7.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Bi,...,agm + fam] by two queries. Reject if for some j € [d], we
have k(j) ¢ T but the j-th coordinate of v is non-zero.

(P5) Take a random subset T of [2™], generate a random «; €
IS¢ for each i € T and set a; = 0 for each i ¢ T. Then pick uni-
formly random fy, ..., fom € F§*¢ and obtaino := 2 [f1, ..., fam]+
|1+ p1, - . ., agm + Pam] by two queries. Reject if for some j € [d],
we have k(j) ¢ T but the j-th coordinate of v is non-zero.

These two tests ensure that u and w are of the forms we want, i.e.,
for every S € [2™], the S-th length-c part (respectively, length-c?
part) has non-zero values on the j-th coordinate only if x(j) = S.

(P6) Pick uniformly random ry,...,rem,ry,. ,.,rém € Fj and
Y1,...,y2m € F5¢, and check whether

ni[r,..., rom] O T[r,..., rym] = o[Z1] + 12[Z2] (1)

with four queries, where Z; = y1,...,yom,Zy = y1+r1r{T, o Yamt

rom rél, © is the bit-wise multiplication. This simultaneously per-
forms the TENSOR TEST of QUADEQ on all d coordinates.

(P7) Pick a random subset H of [q] and uniformly random
B1,..., Pom € F§*C. For each S € [2™], define a5 = ¥ ;e Ds,z €
nga. Obtain Y:=1 [ﬂl, .. ,ﬂzm] + 79 [0(1 + ﬁl, s, 0m + ﬁzm] by
two queries and reject if for some j € [d], the j-th coordinate does
not equal to 3 ¢ i byc(jy,z- This performs the CoNsTRAINT TEST of
QUADEQ on all d coordinates simultaneously, where on the j-th
coordinate we check the constraints with respect to Cy).

(P8) Pick a random subset D of [k] and a uniformly random
B € F¥. Pick a random linear function i:]F; — Fy and uniformly
random ¢y, ..., &m € F. Define a € FX to be the indicator vector
of D,i.e.,aj=1fori € Dand ; =0 fori ¢ D. Let

y=W(1,0,...,0),¥(0,1,...,0),...,%(0,0,...,1)) € F and

ifi € D,
n=. .. Yk 0,..., 0) €F; wherey; = Yt i
- _ 0° otherwise.
k of ¢t bits remaining c—kt bits
Then check if

Yox(ml[Bl+mla+p]) =nlé,..., Em+ri[n+éy, ..., n+&ml, (2)

where / o y: F — Fj is applied coordinate-wise. This test checks
if for every j € [d], the first k - ¢ bits in u/ equal to the binary
representations of ¢/ specified by the isomorphism y.

5.4 Analysis of Parallel PCPPs

In this part, we prove Proposition 3.7 with the following three
lemmas (Lemma 5.4, Lemma 5.5, and Lemma 5.6), which are devoted
to bound the parameters, and show completeness and soundness.

LEMMA 5.4 (PARAMETERS). The verifier A takes as input two proofs
1 and 72, where 1 has length |]F|k and 7ty has length at most f (k) =
22IF1°Y A then uses at most g(k) = 22" |F|O® randomness, and
queries at most four positions of the proofs. Furthermore, the list of
queries made by A can be generated in FPT time.

LEMMA 5.5 (COMPLETENESS). If G has a solution o : V. — F¢,
then there is a proof my o 71 o 2 which A accepts with probability 1.

LEMMA 5.6 (SOUNDNESS). Suppose there is a proof w1 © 71 © T3
which A accepts with probability at least 1 — ¢, then there is a solution
o to G such that A(mr1,PWH(0)) < 48¢.

33

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

Proposition 3.7 follows from Lemma 5.4, Lemma 5.5 and Lemma 5.6.

6 PARALLEL PCPPS FOR VECTOR-VALUED
CSPS WITH LINEAR CONSTRAINTS

This section is devoted to proving Proposition 3.8.

6.1 Construction of Parallel PCPPs

Fix a VecCSP instance G = (V, E, 3, {Il¢ }ec) from Proposition 3.8.
Recall that k = |V| and we set m = |E| < m(k). By Definition 3.3,
since all constraints are linear, for each constraint e € E we denote
e its two endpoints by u, and v,
o the matrix for this linear constraint by M, € pdxd,
e the semantics of this constraint by ITe (ue, ve) = 1y,=M, 0, -

For ease of presentation, we call u, the head of the constraint e,
and v, the tail of e, respectively.

Our construction of the PPCPP verifier A is similar to the Walsh-
Hadamard-based one in [9], with an additional introduction of some
subtle auxiliary variables.

Auxiliary Variables. Label variables V by {1,2,...,k} and con-
straints by {1,2,...,m}. For every p € V and e € E, define an
auxiliary variable zy ¢ with alphabet F9. Given an assignment o(p),
the assignment to z, e should equal zp . = Meo(p) 1

Note that we introduce an auxiliary variable for every pair
(p,e) € V X E, even if e is not adjacent to p. This way, we can
check both the inner constraints z, . = Meo(p) and the conjunc-
tion of all linear constraints o(ue) = 2y, With constant queries,
soundness, and proximity.

Below, we describe the details of the PPCPP verifier A for G.

Input of A. The verifier A takes as input 77 o 12, where:

e 7 is indexed by vectors in F¥ and has alphabet Fe. Tt is sup-
posed to be PWH(o), the parallel Walsh-Hadamard encoding
of an assignment o to V.

e 1y is indexed by vectors in Fk™ and has alphabet Fe. 1t is
supposed to be the parallel Walsh-Hadamard encoding of
the collection {zp,e}pev,eck, treated as a vector of (Fd)km,

Verification Procedure of A. Here is how A verifies whether 7 is
close to PWH(o) for some solution ¢ of G. With equal probability, A
selects one of the following four tests:

(L1) Pick uniformly random ay,az € F* and check m; [a1] +
m1[az] = m1[a1 + az] by three queries.

(L2) Pick uniformly random b1, b; € FK™ and check my[b1] +
m2[ba] = ma2[b1 + bz] by three queries.

Intuitively, these two tests ensure that both x; and x; are close
to a codeword of PWH.

(L3) Pick uniformly random A € Fk and p € F™ and set y =
My, AMpzs o Agpim) € Fk™ . Assume u is indexed by constraints
e € E and define matrix My =)¢ pte Me. Note that we can com-
pute My efficiently without any query. Then pick uniformly random
acFk peFkm, query 1 [al, w1 [a+A], m2[b], w2 [b +y], and check
if

m[b+y]| — ma[b] = Mo(m1[a+ A] — m1[a]). (3)

!"Here we abuse the notation and use z, ¢ also to denote the value assigned to it.

Parameterized Inapproximability Hypothesis under Exponential Time Hypothesis

Intuitively, this ensures that 772 encodes the collection {zp.e } pev,ecE
where all inner constraints z, ¢ = Mea(p) are satisfied.

(L4) Pick uniformly random u € F™ and assume p is indexed
by constraints e € E. Define a vector 1 € F¥ by setting Ap =
2ecE: up=p He for p € V, where we assume that 4 is indexed by
vertices p € V. In other words, A, is the sum of s for constraint

e € E whose head is p. In addition, define a vector y € Fk™ indexed
by a vertex-constraint pair (p,e) € V X E, by

He Ve =D,

Ype = 0 otherwise.

In other words, yp,e stores i if the tail of the constraint e is vertex
p. Note that the two vectors y and y can be computed efficiently
without any query. Then pick uniformly random a € Fk b e Fkm,
query 71 [a], 1 [a + A], m2[b], m2[b + y], and check if

m[b+y] —mo[b] = mila+ A] — 1 [a].

Intuitively, this ensures o(ue) = zy, ¢ for every e € E.

6.2 Analysis of Parallel PCPPs

In this part, we prove Proposition 3.8 with the following three
lemmas (Lemma 6.1, Lemma 6.2, and Lemma 6.3), which are devoted
to bounding the parameters, and establishing the completeness and
soundness of the verifier, respectively.

LEMMA 6.1 (PARAMETERS). The verifier A takes as input two proofs
71 and mwa, where 1 has length |F|* and 7 has length f (k) = |F|km,
A then uses at most g(k) = [F|3¥™ randomness, and queries at most
four positions of the proofs. Furthermore, the list of queries made by
A can be generated in FPT time.

LEmMA 6.2 (COMPLETENESS). If there is a solutiono : V — Fd of
G, then there is a proof my o my which A accepts with probability 1.

LEMMA 6.3 (SOUNDNESS). Suppose there is a proof w1 o my which
A accepts with probability at least 1 — ¢, then there is a solution o to
G such that A(mr,PWH(0)) < 24e.

Proposition 3.8 immediately follows from the combination of
Lemma 6.1, Lemma 6.2 and Lemma 6.3.

REFERENCES

[1] Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet
Gadekar, Kamyar Khodamoradi, Daniel Marx, Roohani Sharma, and Joachim
Spoerhase. 2023. Parameterized Approximation Schemes for Clustering with
General Norm Objectives. FOCS (2023).

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. 2020. Bet-
ter Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algorithms.
SIAM J. Comput. 49, 4 (2020). https://doi.org/10.1137/18M1171321

Benny Applebaum. 2017. Exponentially-hard gap-csp and local PRG via local
hardcore functions. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 836-847.

Sanjeev Arora, Laszl6 Babai, Jacques Stern, and Z. Sweedyk. 1997. The Hardness
of Approximate Optima in Lattices, Codes, and Systems of Linear Equations. 7.
Comput. Syst. Sci. 54, 2 (1997), 317-331. https://doi.org/10.1006/JCSS.1997.1472

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern
Approach. Cambridge University Press. http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
1998. Proof Verification and the Hardness of Approximation Problems. J. ACM
45, 3 (1998), 501-555. https://doi.org/10.1145/278298.278306

Sanjeev Arora and Shmuel Safra. 1998. Probabilistic Checking of Proofs: A New
Characterization of NP. J. ACM 45, 1 (1998), 70-122. https://doi.org/10.1145/
273865.273901

34

[8

[

(10]

[11

[12

[13

[14

oy
&

[16

[19

[20

[21

[27

[28

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Mihir Bellare, Oded Goldreich, and Madhu Sudan. 1998. Free Bits, PCPs, and
Nonapproximability-Towards Tight Results. SIAM J. Comput. 27, 3 (1998), 804—
915.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. 2006. Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding.
SIAM J. Comput. 36, 4 (2006), 889-974. https://doi.org/10.1137/S0097539705446810
Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and Jodo Ribeiro.
2023. Parameterized Inapproximability of the Minimum Distance Problem over
all Fields and the Shortest Vector Problem in all £, Norms. In Proceedings of the
55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, Barna Saha and Rocco A. Servedio (Eds.). ACM, 553-566.
https://doi.org/10.1145/3564246.3585214

Arnab Bhattacharyya, Edouard Bonnet, Laszl6 Egri, Suprovat Ghoshal, Karthik
C. S., Bingkai Lin, Pasin Manurangsi, and Déaniel Marx. 2021. Parameterized
Intractability of Even Set and Shortest Vector Problem. . ACM 68, 3 (2021),
16:1-16:40. https://doi.org/10.1145/3444942

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. 1993. Self-testing/correcting
with applications to numerical problems. J. Comput. System Sci. 47, 3 (1993),
549-595.

Boris Bukh, Karthik C. S., and Bhargav Narayanan. 2021. Applications of Random
Algebraic Constructions to Hardness of Approximation. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022. IEEE, 237-244. https://doi.org/10.1109/FOCS52979.2021.
00032

Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and
Khoa Trinh. 2017. An Improved Approximation for k-Median and Positive
Correlation in Budgeted Optimization. ACM Trans. Algorithms 13, 2 (2017),
23:1-23:31. https://doi.org/10.1145/2981561

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The Com-
plexity of Satisfiability of Small Depth Circuits. In Parameterized and Exact
Computation, Jianer Chen and Fedor V. Fomin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 75-85.

Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, and Luca Trevisan. 2017. From Gap-ETH to
FPT-Inapproximability: Clique, Dominating Set, and More. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, Chris Umans (Ed.). IEEE Computer Society, 743-754. https:
//doi.org/10.1109/FOCS.2017.74

Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. 2002. A
Constant-Factor Approximation Algorithm for the k-Median Problem. J. Comput.
Syst. Sci. 65, 1 (2002), 129-149. https://doi.org/10.1006/jcss.2002.1882

Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. 2023. Simple Combinato-
rial Construction of the k°(!) -Lower Bound for Approximating the Parameterized
k-Clique. CoRR abs/2304.07516 (2023). https://doi.org/10.48550/arXiv.2304.07516
arXiv:2304.07516

Yijia Chen and Martin Grohe. 2007. An isomorphism between subexponential
and parameterized complexity theory. SIAM J. Comput. 37, 4 (2007), 1228-1258.
Yijia Chen and Bingkai Lin. 2019. The Constant Inapproximability of the Pa-
rameterized Dominating Set Problem. SIAM . Comput. 48, 2 (2019), 513-533.
https://doi.org/10.1137/17M1127211

Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li.
2019. Tight FPT Approximations for k-Median and k-Means. In 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12,
2019, Patras, Greece (LIPIcs, Vol. 132), Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 42:1-42:14. https://doi.org/10.4230/LIPIcs ICALP.2019.42

Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi.
2005. Algorithmic Graph Minor Theory: Decomposition, Approximation, and
Coloring. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings. IEEE Computer
Society, 637-646. https://doi.org/10.1109/SFCS.2005.14

Irit Dinur. 2007. The PCP theorem by gap amplification. J. ACM 54, 3 (2007), 12.
Irit Dinur. 2016. Mildly exponential reduction from gap 3SAT to polynomial-gap
label-cover. Electron. Colloquium Comput. Complex. 23 (2016), 128.

Irit Dinur, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. 2008. Decod-
ability of group homomorphisms beyond the Johnson bound. In Proceedings of
the fortieth annual ACM symposium on Theory of computing. 275-284.

Irit Dinur and Pasin Manurangsi. 2018. ETH-Hardness of Approximating 2-
CSPs and Directed Steiner Network. In 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA (LIPIcs,
Vol. 94), Anna R. Karlin (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
36:1-36:20. https://doi.org/10.4230/LIPICS.ITCS.2018.36

Irit Dinur and Omer Reingold. 2006. Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. Comput. 36, 4 (2006), 975-1024.

Rodney G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability
and Completeness I: Basic Results. SIAM J. Comput. 24, 4 (1995), 873-921. https:
//doi.org/10.1137/S0097539792228228

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

[29

[30

[31]

[32

[33]

[34]
[35]

[36

[37]

[38

[39

[40]

[41

[42

[43]

[44

[45

[46]

[47]

[48]

[49

[50]

Rodney G Downey and Michael R Fellows. 1995. Fixed-parameter tractability
and completeness II: On completeness for W[1]. Theoretical Computer Science
141, 1-2 (1995), 109-131.

Uriel Feige. 1998. A threshold of In n for approximating set cover. Journal of the
ACM (JACM) 45, 4 (1998), 634—652.

Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy.
1996. Interactive proofs and the hardness of approximating cliques. Journal of
the ACM (JACM) 43, 2 (1996), 268-292.

Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi.
2020. A survey on approximation in parameterized complexity: Hardness and
algorithms. Algorithms 13, 6 (2020), 146.

Michael R Fellows. 2003. Blow-ups, win/win’s, and crown rules: Some new direc-
tions in FPT. In Graph-Theoretic Concepts in Computer Science: 29th International
Workshop, WG 2003. Elspeet, The Netherlands, June 19-21, 2003. Revised Papers 29.
Springer, 1-12.

Jorg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
Jorg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
https://doi.org/10.1007/3-540-29953-X

Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. 2011. List
Decoding Tensor Products and Interleaved Codes. SIAM J. Comput. 40, 5 (2011),
1432-1462.

Anupam Gupta, Euiwoong Lee, and Jason Li. 2018. Faster exact and approximate
algorithms for k-cut. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 113-123.

Anupam Gupta, Euiwoong Lee, and Jason Li. 2018. An FPT algorithm beating
2-approximation for k-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2821-2837.

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen
Wu. 2023. Parameterized Inapproximability Hypothesis under ETH.
arXiv:2311.16587 [cs.CC]

Venkatesan Guruswami, Jakub Oprsal, and Sai Sandeep. 2020. Revisiting Alphabet
Reduction in Dinur’s PCP. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 176), Jarostaw Byrka and
Raghu Meka (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Dagstuhl,
Germany, 34:1-34:14. https://doi.org/10.4230/LIPIcs. APPROX/RANDOM.2020.34
Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. 2023. Baby PIH: Parame-
terized Inapproximability of Min CSP. arXiv preprint arXiv:2310.16344 (2023).
Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k-SAT.
J. Comput. System Sci. 62 (2001), 367-375.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems
have strongly exponential complexity? J. Comput. System Sci. 63, 4 (2001), 512—
530.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. 2004. A local search approximation algorithm for
k-means clustering. Comput. Geom. 28, 2-3 (2004), 89-112. https://doi.org/10.
1016/j.comgeo.2004.03.003

CS Karthik and Subhash Khot. 2022. Almost polynomial factor inapproximability
for parameterized k-clique. In 37th Computational Complexity Conference (CCC
2022), Vol. 234.

Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. 2019. On the Param-
eterized Complexity of Approximating Dominating Set. 7. ACM 66, 5 (2019),
33:1-33:38. https://doi.org/10.1145/3325116

Karthik C. S. and Inbal Livni Navon. 2021. On Hardness of Approximation
of Parameterized Set Cover and Label Cover: Threshold Graphs from Error
Correcting Codes. In 4th Symposium on Simplicity in Algorithms, SOSA 2021,
Virtual Conference, January 11-12, 2021, Hung Viet Le and Valerie King (Eds.).
SIAM, 210-223. https://doi.org/10.1137/1.9781611976496.24

Ken-ichi Kawarabayashi and Bingkai Lin. 2020. A nearly 5/3-approximation FPT
Algorithm for Min-k-Cut. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 990-999.

Euiwoong Lee. 2019. Partitioning a graph into small pieces with applications to
path transversal. Math. Program. 177, 1-2 (2019), 1-19. https://doi.org/10.1007/
510107-018-1255-7

Shi Li and Ola Svensson. 2016. Approximating k-Median via Pseudo-
Approximation. SIAM J. Comput. 45, 2 (2016), 530-547. https://doi.org/10.
1137/130938645

35

[51

[52

[53

[54

[55

[56

[57

o
&,

[59]

[60]

=
N

[62

[63

[64

[65]

[66

Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu

Bingkai Lin. 2018. The parameterized complexity of the k-biclique problem.
Journal of the ACM (JACM) 65, 5 (2018), 1-23.

Bingkai Lin. 2019. A Simple Gap-Producing Reduction for the Parameterized
Set Cover Problem. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece (LIPIcs, Vol. 132),
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 81:1-81:15. https:
//doi.org/10.4230/LIPIcs ICALP.2019.81

Bingkai Lin. 2021. Constant approximating k-clique is W[1]-hard. In STOC *21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, Samir Khuller and Virginia Vassilevska Williams (Eds.).
ACM, 1749-1756. https://doi.org/10.1145/3406325.3451016

Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. 2022. On Lower Bounds
of Approximating Parameterized k-Clique. In 49th International Colloguium on
Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France
(LIPIcs, Vol. 229), Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 90:1-90:18. https:
//doi.org/10.4230/LIPIcs.ICALP.2022.90

Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. 2023. Constant Approx-
imating Parameterized k-SETCOVER is W[2]-hard. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM, 3305-3316.
https://doi.org/10.1137/1.9781611977554.ch126

Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. 2023. Improved Hardness
of Approximating k-Clique under ETH. FOCS (2023).

Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. 2020.
Parameterized Complexity and Approximability of Directed Odd Cycle Transver-
sal. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, Shuchi Chawla (Ed.).
SIAM, 2181-2200.

Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. 2020. A Param-
eterized Approximation Scheme for Min k-Cut. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, Sandy Irani (Ed.). IEEE, 798-809.

Pasin Manurangsi. 2019. A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller
Approximate Kernel and Improved Approximation. In 2nd Symposium on Sim-
plicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA (OASIcs,
Vol. 69), Jeremy T. Fineman and Michael Mitzenmacher (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 15:1-15:21. https://doi.org/10.4230/OASIcs.
SOSA.2019.15

Pasin Manurangsi. 2020. Tight running time lower bounds for strong inap-
proximability of maximum k-coverage, unique set cover and related problems
(via t-wise agreement testing theorem). In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 62-81.

Déniel Marx. 2008. Parameterized Complexity and Approximation Algorithms.
Comput. 3. 51, 1 (2008), 60-78. https://doi.org/10.1093/comjnl/bxm048

Naoto Ohsaka. 2022. On the Parameterized Intractability of Determinant Maxi-
mization. In 33rd International Symposium on Algorithms and Computation (ISAAC
2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Piotr Skowron and Piotr Faliszewski. 2017. Chamberlin-Courant Rule with Ap-
proval Ballots: Approximating the MaxCover Problem with Bounded Frequencies
in FPT Time. J. Artif. Intell. Res. 60 (2017), 687-716. https://doi.org/10.1613/jair.
5628

C. Tovey. 1984. A simplified NP-complete satisfiability problem. Discret. Appl.
Math. 8 (1984), 85-89.

Andreas Wiese. 2018. Fixed-Parameter Approximation Schemes for Weighted
Flowtime. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton,
N7, USA (LIPIcs, Vol. 116), Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 28:1-28:19.
https://doi.org/10.4230/LIPIcs. APPROX-RANDOM.2018.28

Michat Wlodarczyk. 2020. Parameterized Inapproximability for Steiner Ori-
entation by Gap Amplification. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik.

Received 13-NOV-2023; accepted 2024-02-11

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Overview of Techniques
	1.3 Related Works and Discussions

	2 Preliminaries
	2.1 (Parameterized) Constraint Satisfaction Problems
	2.2 Parallel Walsh-Hadamard Code
	2.3 Probabilistic Checkable Proofs with Proximity

	3 Proof of The Main Theorem
	3.1 Reduction from 3SAT to VecCSPs
	3.2 Reduction from VecCSPs to Gap CSPs

	4 From 3SAT to Vector-Valued CSP
	5 Parallel PCPPs for Vector-Valued CSPs with Parallel Constraints
	5.1 An Exposition of the Quadeq Problem
	5.2 The Parallel Quadeq Problem
	5.3 Parallel PCPPs for Parallel Quadeq
	5.4 Analysis of Parallel PCPPs

	6 Parallel PCPPs for Vector-Valued CSPs with Linear Constraints
	6.1 Construction of Parallel PCPPs
	6.2 Analysis of Parallel PCPPs

	References

