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1 | INTRODUCTION

Anosov representations were introduced by Labourie [31], and further developed by Guichard-
Wienhard [22], as a generalization of convex cocompact representations into the isometry group
of real hyperbolic space. Informally speaking, an Anosov representation is a representation of a
word-hyperbolic group into a semisimple Lie group that has an equivariant boundary map into a
flag manifold with good dynamical properties.

This is the second in a series of two papers whose purpose is to develop a theory of relatively
Anosov representations, extending the theory of Anosov representations to relatively hyperbolic
groups, using the original “contracting flow on a bundle” definition of Labourie and Guichard-
Wienhard. The general theory was developed in the first paper. In this paper, we will focus
on examples.

Throughout the paper, we will let K denote either the real numbers R or the complex
numbers C.

1.1 | Some results from the first paper

We briefly recall some of the results from the first paper. Relatively Anosov representations are per-
haps most naturally defined using the following boundary map definition (which is equivalent to
being “asymptotically embedded” in the sense of Kapovich-Leeb [26] and “relatively dominated”
in the sense of [43], see [45, Sec. 4] for details).

Definition 1.1. Suppose that (T, P) is relatively hyperbolic with Bowditch boundary o(T, P).
A representation p: T — SL(d,K) is P-Anosov relative to P if there exists a continuous
map

£ =5 8970 8T, P) - Gr(KY) X Gry_ (KD,

which is

(1) p-equivariant:ify € T, then p(y)o§ = oy,

(2) transverse: if x,y € o(T', P) are distinct, then §k(x) [} §d_k(y) = K4,

(3) strongly dynamics-preserving: if (y,,),>; is asequence of elements in I'where y, — x € d(T', P)
andy,! — y € 8T, P), then

lim p(y,)V = £(x)

forallV € Grk(Kd) transverse to £47K(y).
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One of the main results in the first paper shows that the definition above can be recast in terms
of a contracting flow on a certain vector bundle associated to the representation.

Given a relatively hyperbolic group (T, P), we can realize I as a subgroup of Isom(X) where X is
aproper geodesic Gromov-hyperbolic metric space such that every point in X is within a uniformly
bounded distance of a geodesic, I" acts geometrically finitely on the Gromov boundary 6 X of X,
and the stabilizers of the parabolic fixed points are exactly the conjugates of P. Following the
terminology in [6], we call such an X a weak cusp space for (T, P).

Givensuch an X, let G(X) denote the space of parametrized geodesic linesin X and for o € G(X),
let o* :=1lim,_,, o(t) € d,X. The space §(X) has a natural flow ¢’ given by ¢'(c) = o(- + )
which descends to a flow, which we also denote by ¢', on the quotient G(X) : = I'\ G(X).

Given a representation p : I - SL(d, K), let

EX) :=¢X)xK? and E,(X):=T\EX),

where I' acts on E(X) by y - (0,Y) = (yoo, p(y)Y). The flow ¢! extends to a flow on E(X), which
we call ¢!, which acts trivially on the second factor. This, in turn, descends to a flow on EP(X )
which we also call ¢'.

Given a continuous, p-equivariant, transverse map

£ = (EF 9751 8T, P) - Gry(K) X Gry_p (KD,

we can define vector bundles ©F, 24k — ¢(X) by setting O%(0) := £¥(o+) and B4 k(o) :=
£4-k(g™). Since £ is transverse, we have E(X) = 0% @ 297X, Since £ is p-equivariant, this descends
to a vector bundle decomposition EP(X ) = 0k @ B4k, Also, by construction, these subbundles
are @'-invariant. We can then consider the bundle Hom(E%*, ®) - G(X) and, since the sub-
bundles are ¢'-invariant, we can define a flow on Hom(E~, ) by ¥!(f) : = ¢'ofop~". Finally,
we note that any metric on Ep X)) - C(X ) induces, via the operator norm, a continuous family of
norms on the fibers of Hom(E4*, &) - ¢(X).

Definition 1.2. With the notation above, we say that p is P, -Anosov relative to X if there exists
a metric ||-]] on the vector bundle EP(X) — G(X) such that the flow 3! on Hom(8%k, ©%) is
exponentially contracting (with respect to the associated operator norms).

In [45], we proved that these two definitions are equivalent, and indeed, one can always make
a particular choice of weak cusp space. These are what are often called Groves—-Manning cusp
spaces and they are formed by attaching so-called combinatorial horoballs to a Cayley graph of
the group (see Definition 2.3). These spaces are perhaps the most canonical choice of weak cusp
space, see [6, 21].

Theorem 1.3 [45, Th. 1.3]. Suppose that (T, P) is relatively hyperbolic and p: T — SL(d,K) is a
representation. Then the following are equivalent:

(1) pisP-Anosov relative to P,
(2) thereis a weak cusp space X for (T, P) such that p is P,-Anosov relative to X,
(3) if X is any Groves—-Manning cusp space of (T', P), then p is P,.-Anosov relative to X.

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

SULID)/WO0Y" KA IM”

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



4 of 61 | ZHU and ZIMMER

Remark 1.4. Theorem 1.3 leaves open the question if the above conditions are equivalent to p is
being P.-Anosov relative to any weak cusp space. Using a different flow space (which is equivalent
to ours when X is CAT(—1)), Wang showed that this is the case [40].

Asa consequence of Theorem 1.3, standard dynamical arguments can be used to prove a relative
stability result. Given a representation p, : (I, P) — SL(d, K), we let Hom,, (T, SL(d, K)) denote
the set of representations p : I' —» SL(d, K) such that for each P € P, the representations p|p and
Polp are conjugate.

Theorem 1.5 [45, Th. 1.6]. Suppose that (T, P) is relatively hyperbolic and X is a weak cusp
space for (T, P). If p, : T — SL(d, K) is P,,-Anosov relative to X, then there exists an open neigh-
borhood O of p, in Hompo(l“, SL(d, K)) such that every representation in O is P,-Anosov relative
to X.

Remark 1.6. In recent work, Weisman [41] introduces a new class of representations of relatively
hyperbolic groups, called extended geometrically finite representations which includes the class
of relatively Anosov representations. For this class of representations, Weisman proves a general
stability result which implies, in the context of Theorem 1.5, that being P, -Anosov relative to P is
an open condition in Hompo(l“, SL(d, K)).

In the relatively hyperbolic case, the space C(X) will be noncompact, and thus, it is possible for
a metric on the vector bundle EP(X ) = G(X) to be quite badly behaved. In [45], we introduced
a subclass of relatively Anosov representations where the metric is assumed to have additional
regularity properties and proved that this special class has nicer properties. This class is defined
as follows.

Definition 1.7. Suppose that (T, P) is relatively hyperbolic, X is a weak cusp space for (T, P), and
p: I' » SL(d, K) is a representation.

* Ametric||-|| on EP(X ) = G(X)is locally uniform ifits lift to G(X) x K¢ — G(X) has the following
property: For any r > 0, there exists L, > 1 such that

1
lHllo, < Illg, < Lell-llo,
"
for all 0,, 0, € G(X) with dy(o,(0),0,(0)) < r.
* p is uniformly P,-Anosov relative to X if it is P, -Anosov relative to P and there exists a locally
uniform metric ||| on E,(X) — G(X) such that the flow ¢ on Hom(E~*, &) is exponentially
contracting (with respect to the associated operator norms).

In [45], we proved that uniformly relatively Anosov representations are very nicely behaved.
In particular, one can construct an equivariant quasi-isometric map of the entire weak cusp
space into the symmetric space associated to SL(d, K), and the boundary map is Holder relative
to any visual metric on the Bowditch boundary and Riemannian distance on the Grassmanian
[45, Th. 1.13]. We also proved that the uniformly Anosov representations form an open set in the
constrained space of representations considered in Theorem 1.5.
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1.2 | Results of this paper

The main aim of this paper is to produce classes of examples of relatively Anosov representa-
tions. Just as Anosov representations can be thought of as a generalization of convex cocompact
representations, so relatively Anosov representations can be thought of as a generalization of
geometrically finite representations into rank-one semisimple Lie groups.

In fact, essentially by definition, these two notions coincide for rank-one semisimple Lie groups.
More precisely, in [45, Sec. 13], we extended Definition 1.1 to relatively Anosov representations into
general semisimple Lie groups and with that definition, we have the following observation.

Observation1.8. Suppose that X is a negatively curved symmetric space and P*, P~ is a pair of oppo-
site parabolic subgroups in Isom,(X), the connected component of the identity in the isometry
group of X.

If (T, P) is relatively hyperbolic and p : T — Isom,(X) is a representation, then the following
are equivalent.

(1) pis P*-Anosov relative to P (in the sense of [45, Def. 13.1]).
(2) kerpisfinite, p(T) is geometrically finite, and p(P) is a set of representatives of the conjugacy
classes of maximal parabolic subgroups in p(T').

Proof. This follows directly from the “F2” definition in [8] of geometrically finite subgroups in
Isom(X) and [45, Def. 13.1]. O

Remark 1.9. Isom(X) only contains one conjugacy class of opposite parabolic subgroups and so
by definition (see [45, Def. 13.1]) a representation is P¥-Anosov relative to P if and only if it is
Q*-Anosov relative to P for any choice of opposite parabolic subgroups in Q* < Isom,(X).

Motivated by this observation, we construct additional examples of relatively Anosov represen-
tations. The first set of examples come from considering representations of geometrically finite
subgroups of rank-one semisimple Lie groups.

The second set of examples are motivated by the Klein-Beltrami model of hyperbolic geometry.
In particular, this model realizes real hyperbolic n-space as a convex domain of P(R"*!) in such
a way that the hyperbolic metric coincides with the Hilbert metric on the convex domain. We
observe that one can consider “geometrically finite” subgroups acting on more general convex
domains to construct additional examples of relatively Anosov representations.

We also consider additional classes of examples, described in Section 1.2.3.

1.2.1 | Geometric finiteness in rank one

For the rest of this subsection, suppose that X is a negatively curved symmetric space and let
G := Isom(X) denote the connected component of the identity in the isometry group of X. Let
J.,X denote the geodesic boundary of X. Then, given a discrete group I' < G, let Ax(T') € 3, X
denote the limit set of T" and let Cx (') denote the convex hull of the limit set in X.

When T < G is geometrically finite, we will let P(I') denote a set of representatives of the con-
jugacy classes of maximal parabolic subgroups in I'. Then, (T, P(I")) is relatively hyperbolic and
Cx(T) is a weak cusp space for (T, P(I)).
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‘We will observe that restricting a proximal linear representation of G to a geometrically finite
subgroup produces a uniformly relatively Anosov representation.

Proposition 1.10 ((See Proposition 4.2). Suppose that 7: G — SL(d, K) is P,.-proximal (i.e., the
image of T contains a Py-proximal element). If T’ < G is geometrically finite, then t| is uniformly
P.-Anosov relative to Cx(I).

Remark 1.11. A version of Proposition 1.10 also holds for representations into general semisim-
ple Lie groups, in fact using [45, Proposition 13.4] the general case follows immediately from the
SL(d, K) case.

In the context of Proposition 1.10, we can obtain additional examples by starting with the rep-
resentation p, := 7|y and deforming it in Hom, (T, SL(d, K)). By Theorem 1.5, any sufficiently
small deformation will be a uniformly relatively Anosov representation.

Using Proposition 1.10, we will also construct the following example.

Example 1.12 (see Section 7). Let X := I]-I]f: denote complex hyperbolic 2-space. There exists a geo-
metrically finite subgroup I" < Isom,(X) and a representation p : I' — SL(3, C) that is uniformly
P,-Anosov relative to Cx(I"), but not uniformly P,-Anosov relative to any Groves-Manning cusp
space associated to (T, P(I)).

We remark that the example makes crucial use of the fact that for horoballs in complex hyper-
bolic space, distances decay at different exponential rates as we approach the cusp. In fact, in real
hyperbolic geometry, one can show that the convex hull of the limit set of a geometrically finite
group is quasi-isometric to the associated Groves—Manning cusp space.

This example shows that there is value in studying bundles associated to general weak cusp
spaces and not just the Groves-Manning cusp spaces. In future work, we will further explore how
to select the “best” weak cusp spaces to study a given relatively Anosov representation.

We can relax the condition in Proposition 1.10 to only assuming that the representation extends
on each peripheral subgroup. More precisely, if ' < G is geometrically finite and p : T — SL(d, K)
is P-Anosov relative to P(T'), then we say that p has almost homogeneous cusps if there exists a
finite cover 7: G — G such that for each P € P(I), there is a representation Tp . G - SL(d, K)
where

{tp(@)pon) ()™ : g € 7' (P)}

isrelatively compact in SL(d, K). This technical definition informally states that the representation
restricted to each peripheral subgroup extends to a representation of G.

Theorem 1.13 (See Theorem 6.1). Suppose that ' < G is geometrically finite and p : T — SL(d, K)
is P;.-Anosov relative to P(T). If p has almost homogeneous cusps, then p is uniformly P, -Anosov
relative to Cx(T').

Proposition 3.6 in [16] implies that every relatively Anosov representation of a geometrically
finite Fuchsian group has almost homogeneous cusps and hence is uniform. This also follows
directly from the construction of canonical norms in [16, Sec. 3.1].
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Corollary 1.14. If X = I]-I]é is real hyperbolic 2-space, T < Isomy(X) is geometrically finite, and
p: I' - SL(d, K) is P, -Anosov relative to P(T'), then p is uniformly P, -Anosov relative to Cx(I').

Allowing representations of finite covers in the definition of almost homogeneous cusps is
motivated by the following examples.

Example 1.15. Identify Isomo([H]%R) with PSL(2,R) and let 7 : SL(2,R) — PSL(2, R) denote the
double cover. Let P < PSL(2, R) be the cyclic subgroup generated by the projection of

w = ((1) 1) € SL2,R)

to PSL(2, R). Also, let 75 : SL(2,R) — SL(d, R) denote the standard irreducible representation.

* The representation p; : P — SL(5, R) defined by

pr([]) = (7, @ 73)()

does not extend to a representation of PSL(2, R) since (7, @ 75)(—id,) # ids. However,
{(, @ 1:)(9) - (prom)(g9) ™" & g € 771 (P)} = {(—id,) @ id;}

is compact.
* The representation p, : P — SL(4, R) defined by

po([w]) = (—=1(w)) ® 7,(w)
also does not extend to a representation of PSL(2, R). However,
{1, ®1)(9) - (p0m) ()" 1 g € 7 '(P)} = {(—id,) @ id,}

is compact.

1.2.2 | Geometric finiteness in convex projective geometry

We will also apply our general results to the setting of convex real projective geometry.

Given a properly convex domain Q c P(R?), the automorphism group of Q, denoted as Aut(Q),
is the subgroup of PGL(d, R) that preserves Q. Such a domain also has a natural Aut(Q)-invariant
metric, the Hilbert metric d, (see Section 8.1 for the definition). The limit set of a subgroup I' <
Aut(Q) is defined to be

Ag(D) 1= 80N U T-p.
pPEQ

Following [17], we say that T is a projectively visible subgroup of Aut(Q) if

(1) forall p,q € Ag(T) distinct, the open line segment in Q joining p to q is contained in Q, and
(2) every point in Ag(T) is a C'-smooth point of 3Q.
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Example 1.16. The Klein-Beltrami model identifies real hyperbolic n-space with the properly
convex domain

B:= {[1 Dxp el x,] €P(R™T) ijz < 1}

endowed with its Hilbert metric dp. The domain B is strictly convex and has C*°-smooth boundary,
so any discrete subgroup in Aut(B) is a projectively visible subgroup.

A projectively visible subgroup acts as a convergence group on its limit set and if, in addition,
the action on the limit set is geometrically finite, then the inclusion representation is relatively
P,-Anosov. These assertions follow from [17, Prop. 3.5], see Proposition 8.6 below.

Conversely, we characterize exactly when the image of a relatively P, -Anosov representation is
a projectively visible subgroup that acts geometrically finitely on its limit set. This characterization
is in terms of a lifting property of the Anosov boundary map, see Definition 9.1 below.

Proposition 1.17 (See Proposition 9.2). Suppose that (T, P) is relatively hyperbolic and p: T —
PGL(d, R) is P,-Anosov relative to P. Then the following are equivalent:

(1) p has the lifting property (in the sense of Definition 9.1),

(2) there exists a properly convex domain Q, C P(RY) where p(T) < Aut(Q),

(3) there exists a properly convex domain Q C P(R?) where p(I') < Aut(Q) is a projectively visible
subgroup that acts geometrically finitely on its limit set.

We will also prove that the lifting property is an open and closed condition in the following
sense.

Proposition 1.18 (See Proposition 10.1). Suppose that (T, P) is relatively hyperbolic and p,: T —
PGL(d, R) is a representation. Let A,(p,) denote the set of representations in Hompo(F, PGL(d, R))
that are P,-Anosov relative to P. Then the subset A (p,) C A;(p,) of representations with the lifting
property is open and closed in A, (p,).

Remark 1.19. In the case when P = @ (i.e., T is word hyperbolic), the above proposition follows
from [37, Prop. 1.2]. In fact, in [37], they consider lifting properties for Anosov representations into
general semisimple Lie groups. It seems likely that some version of their result should hold in the
relative case as well.

As a corollary to [45, Cor. 13.6] and Proposition 1.18, we obtain the following stability result.

Corollary 1.20. Suppose that T < Aut(Q) is a projectively visible subgroup acting geometrically
finitely on its limit set and ¢ : T < PGL(d, R) is the inclusion representation. Then there is an open
neighborhood © C Hom,(T', PGL(d, R)) of t such that: if p € O, then there exists a properly convex
domain Q, C P(R%) where p(T) < Aut(Q,) is a projectively visible subgroup acting geometrically
finitely on its limit set.

Remark 1.21. For other stability results in the context of convex real projective geometry, see [4,
12,13, 29, 33].

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

PUB-SULIA)/WOD" K[ 1M

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



RELATIVELY ANOSOV REPRESENTATIONS | 9 of 61

Using the methods in [18] and [44], we will construct the following examples, which brings the
examples in Sections 1.2.1 into the convex real projective setting.

Proposition 1.22 (See Propositions 11.1 and 11.3). Suppose that X is a negatively curved symmetric
space that is not isometric to real hyperbolic 2-space and G : = Isom,(X). Ift: G — PGL(d,R)isP;-
proximal, then there exists a 7(G)-invariant properly convex domain Q C P(RY) such that: if T < G
is geometrically finite, then

(1) () is a projectively visible subgroup of Aut(Q) and acts geometrically finitely on its limit set.
(2) If Cp := C(z (1)), then (Cr,dg) is Gromov-hyperbolic.

Remark 1.23. We also characterize the P, -proximal representations of Isomo(ﬂ-ﬂé) that satisfy the
conclusion of Proposition 1.22, see Proposition 11.2 below.

In the context of Proposition 1.22, we can obtain additional examples in the convex real projec-
tive setting by starting with the representation p, := 7| and deformingitin Hom, (T, PGL(d, R)).
By Corollary 1.20, any sufficiently small deformation will be a projectively visible subgroup of
some properly convex domain that acts geometrically finitely on its limit set.

1.2.3 | Examples beyond geometric finiteness

We also describe three more families of examples that do not clearly fit within either of the two
geometric finiteness frameworks above.

In Section 12, we use a ping-pong argument to show that certain free products of linear discrete
groups give rise to relatively Anosov representations. This effort is motivated by the following
question: which linear discrete groups appear as the image of a peripheral subgroup under a rel-
atively P, -Anosov representation? Delaying definitions until later, it follows fairly easily from the
definition that any such linear group is

(1) weakly unipotent,
(2) Py-divergent, and
(3) has (k,d — k)-limit set consisting of a single point

(see Proposition 2.6 and Observation 12.1). Using a ping-pong argument, we will show that these
properties are essentially the only constraints. More precisely, we have the following.

Proposition 1.24 (See Proposition 12.2). Suppose that U < SL(d, K) is a discrete group that is
weakly unipotent, P, -divergent, and whose (k, d — k)-limit set is a single point. Then there is a rela-
tively hyperbolic group (T, P), a P,-Anosov representation p : I' — PSL(d, K), and P € P such that
p(P) < U has finite index.

This allows us to construct new examples of relatively Anosov representations where the
peripherals are non-abelian nilpotent groups, for instance, using the linear representation of the
integer Heisenberg group constructed in [14].

In Section 13, we show that certain representations of PSL(2, Z) into PGL(3,R) constructed
by Rich Schwartz [36] are P;-Anosov relative to certain cyclic subgroups. Schwartz’ beauti-
ful construction comes from iterating Pappus’s theorem [36], and he also showed that these
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10 of 61 | ZHU and ZIMMER

representations have many of the properties that relatively Anosov representations (not yet
defined at the time) have. We should also note that Barbot-Lee-Valério proved that these
representations are limits of families of Anosov representations of word hyperbolic groups [7].

Finally, in Section 14, we show that if a representation p : T — SL(d, K) is P;-Anosov relative
to P, then so is any semisimplification p% : T' — SL(d, K) of p. On the other hand, we exhibit a
counterexample to the statement that if some semisimplification p* of p is P, -Anosov relative to
P, then p is P;-Anosov relative to . In particular, the notion of relative Anosovness is not well
defined on the level of the character variety of I in SL(d, K), which can be viewed as the quotient
of Hom(T', SL(d, K)) by the relation “having the same semisimplification.” One can ask if there is
some finer equivalence relation on the space of representations, such that the notion of relative
Anosovness is well defined with respect to this equivalence relation.

2 | PRELIMINARIES
2.1 | Ambiguous notation

Here, we fix any possibly ambiguous notation.

 We let ||-||, denote the standard Euclidean norm on K¢.

* A metric ||-]| on a vector bundle V' — B is a continuous varying family of norms on the fibers
each of which is induced by an inner product.

* Given a metric space X, we will use By(p,r) to denote the open ball of radius r centered at
p € X and N x (A, r) to denote the r-neighborhood of a subset A C X.

* Given functions f,g: S — [0, 00), we write f < g or equivalently g > f if there exists a
constant C > 0 such that f(s) < Cg(s)foralls € S.If f S gand g S f, then we write f =< g.

* Except where otherwise specified, all logarithms are taken to base e.

* Note that constants often carry over between statements in the same section, but not across
sections.

2.2 | Weak cusp spaces

Here, we recall facts about weak cusp spaces that are used in the paper. For a more in-depth
discussion of relative hyperbolicity using the same notation/perspective, we refer the reader to
Section 3 in [45].

Definition 2.1. Suppose that (T, P) is relatively hyperbolic and I acts properly discontinuously
and by isometries on a proper geodesic Gromov-hyperbolic metric space X. If

(1) T acts on 0, X as a geometrically finite convergence group and the maximal parabolic
subgroups are exactly {yPy~! : P € P,y €T},
(2) every point in X is within a uniformly bounded distance of a geodesic line,

then X is a weak cusp space of (T, P).

The main result in [42] implies that any relatively hyperbolic group has a weak cusp space.
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RELATIVELY ANOSOV REPRESENTATIONS | 11 of 61

By work of Bowditch [9] (also see the exposition in [6, Sec. 3]), one can alternatively define
weak cusp spaces in terms of the action of I" on X.

A relatively hyperbolic group can have non-quasi-isometric weak cusp spaces, see [23]. Per-
haps, the most canonical is the construction due to Groves-Manning, obtained by attaching
combinatorial horoballs to a standard Cayley graph. The precise construction is described as
follows.

Definition 2.2. Suppose that Y is a graph with the simplicial distance dy.. The combinatorial
horoball H(Y) is the graph, also equipped with the simplicial distance, that has vertex set Y(® x N
and two types of edges:

* vertical edges joining vertices (v, n) and (v, n + 1),

* horizontal edges joining vertices (v, n) and (w, n) when dy (v, w) < 21,

Definition 2.3. Let (I, P) be a relatively hyperbolic group. A finite symmetric generating set
S Cc T'isadapted if S N P isa generating set of P for every P € P. Givensuchan S, welet C(T', S) and
C(P, S n P) denote the associated Cayley graphs. Then the associated Groves—Manning cusp space,
denoted as Cg,,(T, P, S), is obtained from the Cayley graph C(T', S) by attaching, for each P € P
and y €T, a copy of the combinatorial horoball H(y C(P, S n P)) by identifying y C(P, S N P) with
the n = 1 level of H(y C(P, S N P)).

Theorem 2.4 [21, Th. 3.25]. If (T, P) is relatively hyperbolic and S is an adapted finite generating
set, then Cg, (T, P, S) is a weak cusp space for (', P).

2.3 | The geometry of the Grassmanians

Throughout the paper, we will let dp 4y denote the angle distance on P(KY), that is, if (-, -) is the
standard Euclidean inner product on K9, then

o ww)
dpeay([V], = T
pac)([v], [w]) = cos (W\/W)

for all nonzero v, w € K9.
Using the Pliicker embedding, we can view Gr, (%) as a subset of P(AF K%). Let dP( Ak i) denote
the angle distance associated to the inner product on A¥ K¢ that makes

fe, Ao ne Tl < <0}

I
an orthonormal basis. We then let d, ) denote the distance on Gry(K%) obtained by restricting
dP( AR k)

2.4 | The singular value decomposition

Given g € SL(d, K), we let

wi(g) = - = ug(g)

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

PUB-SULIA)/WOD" K[ 1M

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



12 of 61 | ZHU and ZIMMER

denote the singular values of ¢. By the singular value decomposition, we can write ¢ = ma# where
m, ¢ € SUi(d) and a is a diagonal matrix with u;(g) > --- > uy(g) down the diagonal. In general,
this decomposition is not unique, but when u; (g) > 1, (g) the subspace

Ui (g) :=mleq,...,ex)

is well defined. Geometrically, U, (g¢) is the subspace spanned by the k largest axes of the ellipse
g-{x ek x|l = 1}
We will frequently use the following observation.

Observation 2.5. Suppose that (g,),-; is a sequence in SL(d,K), V, € Grk([K.d), and W, €
Gr,_,(K%). Then the following are equivalent:

1) g,(V) - V, uniformly on compact subsets of

{V € Gr (k%) : V transverse to W, }.

(2) %(gn) — o0, Uy (g,) = V,, and Ud_k(gn_l) - W,.

(3) There exist open sets O C Gr;(K%) and @ C Gry_,(K%) such that g,(V) —» V, forall V € ©
and g '(W) - Wy forall W € ©'.

Proof. See, for instance, Appendix A in [45]. O

2.5 | Eigenvalues and proximal/weakly unipotent elements
Given g € SL(d, K), we let

(g) = - = A4(9)

denote the absolute values of the eigenvalues of g.

An element g € SL(d,K) is Py-proximal if 4;(g) > A;,1(g). In this case, g has a unique
attracting fixed point V; € Gr;(K%), namely, the space corresponding to 4,(g), ..., 4,(g), and a
unique repelling point W € Gry_i(K%), namely, the space corresponding to A;_1(g), ..., 14(g)-
By writing ¢ is its normal form, it is easy to see that

9" V)->Vvy

for all V € Gr; (k%) transverse to W . Further, V;; oW, = K9,

An element g € SL(d, K) is weakly unipotent if 1;(g) = 1 for all j and a subgroup U < SL(d, K)
is weakly unipotent if every element in U is weakly unipotent.

In [45], we observed the following.

Proposition 2.6 [45, Prop. 4.2]. Suppose that (T, P) is relatively hyperbolicand p : T — SL(d, K) is
P, -Anosov relative to P.
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RELATIVELY ANOSOV REPRESENTATIONS 13 of 61

(1) IfP € P, then p(P) is weakly unipotent.
(2) Ify € Tis non-peripheral and has infinite order, then p(y) is P.-proximal.

Remark 2.7. Recall that an element y € T of a relatively hyperbolic group (T, P) is non-peripheral
if it is not contained in {J,cr Upep ¥Pr "
2.6 | The symmetric space associated to the special linear group

We will consider the symmetric spaces M := SL(d, K)/ SU(d, K) normalized so that the distance
is given by

d
dyy (9. SU(d, K), hSU(d, ) = | D' (log (9™ M), )
j=1

see [5, Chap. I1.10] for more details.

2.7 | Dominated splitting and contraction on Hom bundles

In this section, we observe that the exponential contraction of the flow on the Hom bundle
described in Section 1.1 can be recast in terms of a dominated splitting condition. This is well
known in the word-hyperbolic case [2, 10] and the same arguments work in the relative case
as well.

Suppose, for the rest of this section, that (T, P) is a relatively hyperbolic group, p : T — SL(d, K)
is a representation, X is a weak cusp space for (T, P), and ||| is a metric on the vector bundle
E (X) - CX).

Ifv,wc Ep(X) are subbundles, we can consider the bundle Hom(V, W) — E(X ) with the
associated family of operator norms defined by

I£1ly 2= max {|[f(N]l; : Y € VI, IYll, =1}
when f € Hom(V, W)|,. In particular, given a continuous p-equivariant transverse map
£: (T, P) = Grp(KY) x Gry_, (K9)
let Ok, 84k c E p(X ) denote the subbundles defined in Section 1.1 and endow
Hom (@d_k, @k) - C(X)

with the operator norm. We then have the following connection between the dynamics on these
bundles.

Proposition 2.8. With the notation above and c, C > 0 fixed, the following are equivalent.
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14 of 61 | ZHU and ZIMMER

(1) Forallt >0,0 € ¢(X),Y € ©F|_, and Z € E4k| _ nonzero,
g

|U’

(X6 ] P < ce—ct¥lls
19" @] o) 1Zll,

(2) Forallt > 0,0 € §(X), and f € Hom (E4F,8F) |,
||¢t(f)||¢t(g) < Ce_Ct”f”cr-

Proof. One can argue exactly as in Proposition 2.3 in [2]. O

PART 1. REPRESENTATIONS OF GEOMETRICALLY FINITE GROUPS
IN NEGATIVELY CURVED SYMMETRIC SPACES

3 | REMINDERS ON NEGATIVELY CURVED SYMMETRIC SPACES

Suppose that G is a connected simple non-compact Lie group with rank one and finite center. Fix
a maximal compact subgroup K < G, then the quotient manifold X = G/K is simply connected
and has a G-invariant negatively-curved symmetric Riemannian metric. The possible spaces X
are described in [35, Chap. 19].

Since X is simply connected and has pinched negative curvature, it is Gromov-hyperbolic, and
we will let 3., X denote the Gromov boundary of X. We will also let T'X denote the unit tan-
gent bundle of X and let 7 : T'X — X denote the natural projection. We will use ¢* to denote
the geodesic flow on TX. Also, forv € T'X, we let v, v~ € 0,,X denote the forward/backward
endpoint of the geodesic line tangent to v, equivalently

v* = lim 7(¢'(0)).

By construction, G acts isometrically on X. The induced homomorphism ®: G — Isom(X)
maps onto Isom(X), the connected component of the identity, and has kernel Z(G), the center of
G. Given a sequence (g,,),,»; and x € 9, X, we write

Gn = X 2

if g,(p) — x for some (any) p € X.
An element of G is either

* elliptic, that is, it fixes a point in X,
* parabolic, that is, it is not elliptic and fixes exactly one point in d_ X, or
* loxodromic, that is, it is not elliptic and fixes exactly two points in d, X.

Parabolic and loxodromic elements have the following behavior.

(1) If g € Gis parabolic and x;f is the unique fixed point of g, then

lim ¢"(y) = x;r

n—+oco

forally e X ud X)\ {x;}.
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RELATIVELY ANOSOV REPRESENTATIONS | 15 of 61

(2) If g € Gisloxodromic, then it is possible to label the fixed points of ¢ as x;f, x; so that

lim ¢"(y) = x7

n—z+oo 9

forally e X ud X)\ {x'g_*}.

In both cases, the limits are locally uniform.

Given a discrete subgroup I' < G, we can consider the limit set Ayx(I') C X of all accumu-
lation points of any I'-orbit in X. We then define Cy(I") to be the convex hull of Ay(T) in X,
that is, the smallest closed geodesically convex subset of X whose closure in X U 0 X contains
Ax (D). Finally, we define U'(T') to be the subspace of the unit tangent bundle T'X consist-
ing of vectors tangent to geodesics with both endpoints in the limit set Ay(T) and let T/(T)
=T\ U @).

Example 3.1. If T is a lattice in G, then Ay (T") = X, Cx(T) = X, and U'(T) = T'X.

A discrete group I < G acts as a convergence group on d,,X and such a group is geometrically
finite if it acts its limit set Ay (T") as a geometrically finite convergence group (for definitions, see,
e.g., [45, Sec. 3.3]). There are also equivalent characterizations in terms of the action of I on X,
see [8].

In this case, if P is a set of representatives of the conjugacy classes of maximal parabolic sub-
groups in T, then (T, P) is a relatively hyperbolic group. Moreover, Cx(I') is a weak cusp space
of (T, P) (see the “F4” definition and Section 3.5 in [8]). The flow space U°(I') then naturally
identifies with the space of geodesics G(Cx(I")) in Cx(T"). When considering a relatively Anosov
representation p of T, it is more convenient to view the bundles in Definition 1.2 as having base
U (D).

4 | REPRESENTATIONS OF RANK ONE GROUPS

Let G, K, and X = G/K be as in Section 3. In this section, we will prove the following expanded
version of Proposition 1.10 from the introduction. First we present a definition.

Definition 4.1. Given a representation 7 : G — SL(d, K), we say that a continuous 7-equivariant
map ¢ : 3., X — Gr(K%) X Gry_ (k%) is

(1) transverse: if x,y € 0, X are distinct, then ¢*(x) @ ¢4k (y) = K9,
(2) strongly dynamics-preserving: if (g,),> is a sequence of elements in G where y,, — x € 9, X
and y;l — y € 0,,X (here we use the notation from Equation (2)), then

Jim 7(r,)V = ¢(x)
for all V € Gr (K<) transverse to {47K(y).

Proposition 4.2. If7: G — SL(d, K) is P, -proximal (i.e., (G) contains a P -proximal element) and
|-l ,erix is a T-equivariant family of norms on K<, then the following statements hold:
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(1) There exists a continuous t-equivariant, transverse, strongly dynamics-preserving map

¢o=(£5,¢97%) 1 8, X = Gry(?) x Gry_y (K9).

(2) ThereexistC,c > Osuchthat:ift > 0,v € T'X,Y € {X(vt), and Z € ¢{47*(v™) is nonzero, then

Yl _ opme ¥l
1211 4t0) 11,

(3) Foranyr > 0, there exists L, > 1 such that: if v,w € T'X satisfy dy(w(v), 7(w)) < r, then
Tl < ol < LI,
Lr
In particular, if T < G is geometrically finite, then p = 7| is uniformly P, -Anosov relative to Cx(T).
Remark 4.3. To be precise, a family of norms ||| ,c71x is T-equivariant if
s = 1O 0
forallv e T'X and g € G.

The rest of the section is devoted to the proof of the proposition. So, fix a representationz : G —
SL(d, K) as in the statement.

Let p, := [K] € X and notice that K = Stabg(p,). Fix a unit vector v, € TIIJ X and a Cartan
subgroup A = {a,} of G such that t — a,(p,) parametrizes the geodesic through p, with initial
velocity v,. Let M denote the centralizer of A in K.

We can conjugate 7 so that 7(A) is a subgroup of the diagonal matrices and 7(K) < SU(d, K), see,
for instance, [34].

The next two lemmas are used to define the maps in part (1) of the proposition.

Lemma 4.4. Ift > 0, then t(a,) is P, -proximal.

Proof. By hypothesis, there exists ¢ € G such that 7(g) is P,-proximal. By the Cartan
decomposition, there exist m,, ¢, € Kand t, — oo such that g" = m,a, £,. Then

Ak T | e PR |
0 <log Akﬂ(r(g)) = lim ;log - (z(¢") = lim -~ D)
= lim ))
n—oo

(the first equality follows from Gelfand’s formula for the spectral radius applied to the linear oper-
ators AF g and Ak+1 g¢; in the last equality, we use the fact that t(a,) is diagonal). So, when n is large,
/1,{(‘L'(atyl ) > /1k+1(r(atn ). Since 7(a,) is diagonal, this implies that 4, (z(a,)) > 4,4, (t(a,)) for all
t>0. O
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RELATIVELY ANOSOV REPRESENTATIONS | 17 of 61

LetVt e Grk([K.d) andV~ € Grd_k(Kd) denote the attracting and repelling fixed points of 7(a;)
when ¢t > 0. Then k¢ = V* @ V~ and

lim 7(a,)V =V* 3)
t—o0
for all V € Gr, (k%) transverse to V~. Let P* denote the stabilizer of va—' €0,XinG.
Lemma 4.5. 7(PH)V* =V
Proof. Fix g € PT. Then
g’ :=lim a_,ga,
t—o0

exists and is contained in MA, see, for instance, [19, Prop. 2.17.3]. Since M commutes with A, (M)
fixes V*. Hence, 7(¢/)V* = V. So,

tlim (a_ga )Vt =t(g )WVt =Vv",
— 00
which implies, by Equation (3), that
(V" = lim 7(a)r(a_ ga V" = V™.
— 0

Thus, t(PHV*T = VT,
Similar reasoning shows that t(P7)V™ =V . O

Since G acts transitively on X and StabG(v(;—r) = P*, the last lemma implies that the
expressions

g =1(evt and (F(guy) =1(g)V" forall g€G
define a smooth r-equivariant map ¢ = (¢¥,¢47K) 1 6, X — Grp(K?) x Gry_, (K9).
Lemma 4.6. { is transverse.

Proof. Fix x,y € 0, X distinct. Since G acts transitively on pairs of distinct points in d X, there
exists g € G such that (x,y) = g - (v],vy). Then,

¢ + ¢4 ) = (WD) + ¢ ) = TV + V) = KE. O
Lemma 4.7. ¢ is strongly dynamics-preserving.
Proof. Suppose that (g,),5; is a sequence in G such that g, - x € d,.X and g,' -y € 3. X.
By the Cartan decomposition, there exist m,, ¢, € K and ¢, — oo such that g, = m,a, ¢, Pass-

ing to a subsequence, we can suppose that m, — m and 7, — . Then m,(v]) = m(v]) = x
and f;l(v(;) - f‘l(vo_) =Y. Then, by Equation (3), if V € Grk(Kd) is transverse to £47%(y) =
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7(¢)~'V~, then 7(#,)V is transverse to 7(Z,)t(#)~'V~ and hence, for large n, to V—, and so,
lim 7(g,)V = 7(m) lim 7(a, )t(£,)V = t(m)V* = £X(x). n
n—oo n—oo n

Next, we prove parts (2) and (3). Since any two families of 7-equivariant norms are bi-Lipschitz,
it is enough to consider the norms

1 gy = 1@ Ol

where ||-||, is the standard Euclidean norm. Since 7(K) < U(d, K) and K = Stabg(p,), this is indeed
a well-defined family.
Since each 7(a,) is P, -proximal and diagonal, there exists 4 > 0 such that

Ak
Ak+1

(t(a,) = &

when t > 0.

Lemma4.8. Ift >0, 0ET'X,Y € {k(v+), and Z € Q’d_k(v_) is nonzero, then

1Y llge ) <ot Y1l
1Z1 ¢ 1z,

Proof. Fix g € G such that g(v,) = v. Then, ¢'(v) = g¢'(vy) = ga,(v,) for all t and g(V*,V™) =
¢k @™), ¢4 k™). Since T(A) is a subgroup of the diagonal matrices and V*,V~ are the
attracting, repelling spaces of 7(a,) when t > 0, then

1
Wlgey _ zaig™YN, - aG@y 7@ DY _ Yl

1Zllgtwy — |lrCarg™DZ]|, e <=z, 1zl 0

Since 7(A) = {r(a,)} is a one-parameter group of diagonal matrices, there exists u > 0 such
that

B (e = e
Hd
when t > 0.
Lemma 4.9. Ifv,,v, € T'X, then
e HEEODTCDI 1, < 1Ly, < et HEEITD Y,

Proof. Since the family of norms is 7-equivariant, it is enough to consider the case where v; = v,
and v, = g(v,). By the Cartan decomposition, there exist m,# € Kand ¢ > 0 such that g = ma,?.
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RELATIVELY ANOSOV REPRESENTATIONS 19 of 61

Notice that

dx (7 (vy), (v,)) = dx(py, ma,£(py)) = dx(py, a;(py)) = ¢

since t = a,(p,) is a unit speed geodesic. Further, ||-||U1 =|-|l, and

I lly, = I7Cg™ MO, = llztma) ™ Ol
Hence,

“ _ jZ -
= (zma) ™)y, < 1, < j(r(mat) D1l -
1 d

Since Z—;(T(mat)‘l) = Z—;(r(a_t)) = e# the lemma follows. O

Lemma 4.10. IfT < G is geometrically finite, then p = | is uniformly P -Anosov relative to Cx(I').

Proof. Recall that Cx(I') is a weak cusp space of I and U'(T") naturally identifies with the space of
geodesic lines in Cx(T"). Then Lemma 4.8, Lemma 4.9, and Proposition 2.8 imply that p = 7| is
uniformly P, -Anosov relative to Cx(T). O

5 | ALMOST HOMOGENEOUS CUSPS

Let G, K, and X = G/K be as in Section 3. In this section, we consider the following setup.

(1) T, < Gisa finitely generated discrete group that fixes a horoball H ¢ X and H N d_X = {n*}.
(2) t: G — SL(d, K) is a P,-proximal representation and

gf . aooX - Grk(Kd) X Grd_k(Kd)

is the boundary map constructed in Proposition 4.2.
(3) p: Ty = SL(d,K) is a representation where {r(g)p(g)‘1 g€ FO} is relatively compact in
SL(d, K).
(4) £ cd,X isaclosed, Ty-invariant set where the quotient I)\(£ \{#*}) is compact.
(5) &: £ — Gr(K?% x Gry_,(K?) is continuous, p-equivariant, transverse, and £(n*) = ¢ (n*).
6) U :={veTX :vtv €L}

In the next section, we will apply the results of this section to the case where I is a peripheral
subgroup in a geometrically finite group I' < G, L is the limit set of I, and U is the flow space
v (D).

The first result establishes a type of infinitesimal homogeneity of a limit curve at the fixed point
of a peripheral subgroup.

Proposition 5.1. If

* y € G is a hyperbolic element with y* = n™*, and
* (X)ps1 C 0,,X is a sequence where {y"(x,)} C L and x,, — x € 9 X,
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then
lim 7(y)™"o§oy"(x,,) = ¢ ().
n—oo
Remark 5.2. In the case when £ = 9 X, this says that 7(y) " o&oy" converges uniformly to ¢;.

The second result constructs good norms over the horoball H. It will be helpful to use the
following notation: given a subset S C X, let

. 1
Ulg:=Un|JTiX.
PES

Proposition 5.3. There exists a p-equivariant family of norms ||-|| ,er1x on K< with the following
properties.

(1) Each |||, is induced by an inner product.
(2) Foranyr > 1, thereexists L, > 1 such that: ifv,w € U’ |y satisfy dx(m(v), m(w)) < r, then

1
=l < MMl < Lell-llo-
Lr

(3) There exist C,,c, > 0 and a horoball H' C H such that: ift > 0 and v, ¢'(v) € U’ |y, then

1Y 1l o) < .y 1Y,

<Cie
1Zlgwy 121,

forallY € £X(v+) and nonzero Z € £4-K(v™).

5.1 | Proof of Proposition 5.1

The following argument is similar to the proof of [16, Prop. 5.3].

Fix a Riemannian distance d; on Gr,(K%) X Gr,_,(K%). Suppose that the proposition is false.
Then there exist x € d,,X, a sequence (X;);>; in d.,X, and a sequence (n;);;, in N such that
xj = x,n; — oo, {y"(x;)} C £, and 7(y) ™" 0§ oy (x;) does not converge to ¢ (x). After passing
to a subsequence, there exists € > 0 such that

inf dy (z()Mokoy"i(x)),¢ (X)) > €.
Notice that
t(y) Mooy i(nt) = () ol(nT) = t(y) ol (nt) = ¢ ()

and so after possibly passing to a subsequence x; # nt for all j. Then there exists a sequence
(hj)js1 inTysuchthaty; :=h jy"f (x;) is relatively compact in £ \{n*}. Passing to a subsequence,
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RELATIVELY ANOSOV REPRESENTATIONS 21 of 61

we can suppose thaty; - y € £L\{n*} and
g 1= lim 7(h))p(h))"" € SL(d, K).
Jj—ooo

Notice that
g€ = Jim w(h))p(h) " E(™) = Jim t(hEm™) = Jim t(hj)$:(n") = {(n™).

Then since £(y) is transverse to (1), we see that g £(y) is transverse to { . (n).
Also, by construction, h jy"J' (p) = n* for all p € X. By passing to a subsequence, we can
suppose that

z 1= limy™" h]._l(p) €0,.X
j—)OO

forall p € (X Ud,X)\ {»*} and the convergence is locally uniform. Since y "% h}.‘l(y ) =x;—
x, and {y;} is relatively compact in (X UJ,,X) \ {#*}, we must have z = x. So, by the strongly
dynamics-preserving property of 7,

lim (7" F = ¢.(x)
j—ooo

for all F = (F¥, F4=) € Gry(K?) x Gry_, (k%) transverse to ¢, (n*).
Finally,

lim 7() "ioEoy"i(x;) = lim (7" hye(hp(h) 1§ = ¢(0)
jo o Jj—oo J

since 7(h;)p(h j)‘l §;) = g&(y)and g §(y)is transverse to +(n1). Thus, we have a contradiction.

5.2 | Proof of Proposition 5.3

Let 5y © X — OH be the map where 745 (p) is the unique point in 0H contained in the geodesic
line passing through p and limiting to 5*.

Lemma 5.4. There exists a smooth function y : X — [0, 1] such that

(D) xomay = X,
(2) {xog}4er, is a partition of unity (ie., dero xog is a locally finite sum that equals one
everywhere).

Proof. By Selberg’s lemma, there exists a finite-index torsion-free subgroup I'; < Ty. Let n = [T, :
).
0
Consider the manifold quotient p : dH — T \dH. Fix an open cover {U,};c; of [, \0H such that
for all i € I, there is a local inverse U; — U; C 0H to p. Fix a partition of unity {¥;};c; of I )\0H
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subordinate to {U;};c;. Then for each i € I, let ¥; : H — [0, 1] be the lift of y; to U,. Finally, let

}E,XLOEBH'

lEI

By construction,

Z Z)?iwfaHOg

gergiel
is a locally finite sum that equals one everywhere. So, if {FO 915 ee s F6 gnt = I‘g\FO, then
Y xog= Z > D Fiomsnog [ogk
9€T, =1\ ger) i€l
is a locally finite sum that equals one everywhere. O
Fix v, € U" with p, := 7(v,) € H and vj = 1. By conjugating K, we may assume that
K = Stabg(p,)-

Since K is compact, there exists a 7(K)-invariant norm ||-||(°) on K¢ that is induced by an inner
product. Then

. - (0)
115 == lz(e) Ol
defines a smooth r-equivariant family of norms indexed by T'X where each norm is induced by

an inner product.
Then given v € T'X define

I, = \/ Y. Groa)m) (el

g€l

Since {yo g}gEFO is a partition of unity, ||-||,er1x iS @ smooth family of norms where each ||-||, is
induced by an inner product. One can check that it is p-equivariant. We will show that this family
of norms satisfies the remaining conditions in the proposition.

We start by showing some useful compactness/cocompactness properties. Let {a,} < G be a
Cartan subgroup such that a,(v,) = ¢'(v,) for all t € R.

Lemma 5.5. The set
{r(a_)t(9)p(9) 'r(a,) : g €Ty, t >0}

is relatively compact in SL(d, K).
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Proof. By [34] and conjugating 7 and p, we may assume that
At ;
eidy,

T(at) =

A

etm+1t ldd
m+1

where 4; > .- > 4,,,,. Since t(a_,) is conjugate to 7(a, ), notice thatd, =d,,_, and 4, = -1,,_;.

Forl<n<m,letk, = Z;lzl d i Then, 7 is Pkn-proximal for all 1 < n < m. Consider the partial
flag manifold

F = {(Fkn)nm=1 : Fi ¢ ... ¢ Fkm and dim F*» = k,, forn = 1,...,m}

and let

Ft = ((e e >)m EF
- 155 €k .
n n=1

Since the boundary map constructed in Proposition 4.2 is equivariant and strongly dynamics-
preserving, 7(Ty) fixes F*, and if (g, ), is an escaping sequence in Iy, then

lim 7(g,)F = F*
n—oo
for all F € F transverse to F and the convergence is locally uniform.

We claim that p(T') fixes F*. Fix g € I'; and fix an escaping sequence (g,,),,»; in I'y. Passing to
a subsequence, we can suppose that

p(g) ' 7(g,) = hy and  7(9g,) 7" p(99,) = By
Fix F € F transverse to (hyh,)"'F* and F*. Then
p(F " = lim p(g)r(g,)F = lim (99,)7(99.)~ p(99,)P(9:) ' 7(9:)F
=F".

Since g € Iy was arbitrary, p(T) fixes F.
Finally, since p(T), 7(Iy) both fix F* and

O ORENIIYY

is relatively compact in SL(d, K), for every 1 <i < j < m + 1, there exist compact subsets K; ; of
d;-by-d; matrices such that

A - Al
{t(9)p(9)™" 1 geTy} C : DA EK ot
A

m+1,m+1
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Then
{t(a_)r(9)p(9)'7(a,) : g €Ty, t >0}
is relatively compact in SL(d, K). .

Since X is Gromov-hyperbolic, there exists § > 0 such that every geodesic triangle, including
every ideal geodesic triangle, is §-slim.

Lemma 5.6. I acts cocompactly on U" | 3.
Proof. Fix a compact subset K, C £ \{n*}such that I’y - K, = £ \{n*}. Then let
K, :={velUlsy : v €Kyand vt =n*}
and
K, :={v e U |3y : dx(7(v), m(w)) < 25 for some w € K;}.
Notice that both K; and K, are compact subsets.

We claim that 'y - K, = U’ |3. Fix v € U" |5. By our choice of §, the ideal geodesic triangle
with vertices n*,v*, v~ is §-slim. So, there exists s € {—, +} such that 7(v) is within § of the
geodesic line joining v® and 5*. Then let w € U" be the vector with 7(w) € 6H, w™ = v¥, and
wt =7n*. Fix T € R such that

dy(7(p" (w)), 7(v)) < 8.
Since w* = n* and 7(w), 7(v) € dH, then

IT| < dy(n(¢” (w)), 7(v)) < 6.

So dx(7(v), 7(w)) < 268. By our choice of K;, we have w € I - K; which implies that v € T -
K,. ]

Lemma 5.7. There exists a compact subset K C G such that
UlgcTy- {at}t>0 - K v,
Proof. By the previous lemma, there exists R > 0 such that
(U |3p) € Ty - Bx(po, R).
Then let

K :={g € G : dx(9(po), py) < R + 3}.
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Fix v € U |y. By our choice of &, the ideal geodesic triangle with vertices n*,vt, v~ is §-slim.
So, there exists s € {—, +} such that 7z(v) is within § of the geodesic line joining v* and n*. Then
let w € U be the vector with 7(w) € H, w~ = v%, and w* = n*. Fix T > 0 such that

dy((¢" (W), 7(L)) < &

and fix 8 € T, such that dy(8(p,), 7(w)) < R.
Then,

dy (o, a_rB~'m(v)) = dx (B (@" (vp)), 7(v))
< dy (B¢ (v)), (@' (w))) + dy (w(@" (), 7(V)) < dy (B(po), w(w)) + &

<R+6.

So, we can pick « € K such that a(v,) = a_;f~'v or equivalently
v = Bara(vy) € Ty -{a;}50 - K -vp. m
Lemma 5.8. There exists C > 1 such that: Ifv € U |y, then
21 < 1l < CIE.

Proof. By Lemma 5.7, there exist § € I'y, T > 0, and a € K such that v = fa;a(v,). Then,

2
Iy = [ D o) x@) ([l )

g€l

= \/ Y, Goa @) ([[rt@ea_r)e(aB) O L)

g€l

Using the compactness of £ and Lemma 5.5
- _ (0) _ (0)
[r@ (@90, = [an)rer) e,
0 0

= |t r)e(o8) ptaptareta_rp®) e@tar)e(Bary O,
= [rear ol =119

a(vg)

= |[eBan e

0

Thus,

2
11, = o)) (111 = 1119,
g;() g < ) D

We can now establish part (2) of the proposition.
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Lemma 5.9. For any r > 1, there exists L, > 1 such that: ifv,w € U’ |y and dx(n(v), 7(w)) < 1,
then

1
el < Il <Ll
r

Proof. This follows immediately from Proposition 4.2 and Lemma 5.8, since ||-||f)0) is a

T-equivariant family of norms. O

We next establish part (3) of the proposition. By Proposition 4.2, there exist C;, 4 > 0 such that:

©) 0
Myw o -al¥I @
1z1%y,, Al

forallt > 0,0 € T'X,Y € ¢¥(v™), and nonzero Z € {47k (v™).

Lemma 5.10. There exist C; > 0 and a horoball H' C H such that: ift > 0 and v,¢' (V) € U |y,
then

Y
I ”qbf(u)< 1e_gtIIYIIU
1Z11 ¢t 0 Iz,

forallY € £X(v+) and nonzero Z € £4-K(v™).

Proof. The following argument is similar to the proof of [16, Prop. 6.4]. Fix T > 0 such that
4 ir
C'Cy<ez, (5)

where C is the constant from Lemma 5.8.
We first claim that there exists a horoball H' C H such that: ift € [T, 2T] and v, ¢'(v) € U |y,
then

1Y llp ) <o iel¥ly
1Zlyro) IZIl,

for all Y € £K(v+*) and nonzero Z € £€47F(v™).
Suppose not. Then there exist sequences (v,,),5; in U, (t,),5; in [T, 2T], and (Y},) 151, (Z,) 1
in K¢ such that dy(7(v,),6H) — o, Y, € £¥(vh), Z, € £97%(v) \ {0}, and

1Yullgnn i, ¥nlle,
120l gtn 0, 1Zxll,

By scaling, we may assume that

¥ally, = 1Zall,, = 1. ©®)
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Using Lemma 5.7 and possibly replacing each v, with an I'y-translate, we can find a sequence
m, — oo and a relatively compact sequence («,,),,»; in G such that

mn
v, = a; "a,(vy).
LetY! := r(a;"” a,) 'Y, and Z) = r(a;"” a,)"'Z,. Then, by Lemma 5.8 and Equation (6),

IVl = 1Yl e e cl.

Likewise [|Z,[|{” € [C~1,C].
Passing to a subsequence, we can suppose that ¢, - t € [T,2T], o, > a € G, Y; — Y/, and
Z! — Z'. Proposition 5.1 implies that

Y =2(@)™" lim 7(a;)"™Y, € t(@)™" lim 7(ay)""E ()
=1(a)! lim t(ay) ™otk oa" (a, (V1)) = (@) ot Foa(v])
=S

Likewise, Z' € {f‘k(vg).
Then Lemma 5.8 and Equation (4) imply that

(0) 0)

/
Yl Mgy Y ||¢fn<u0>
’ Sh?l‘é}fwgc lim inf ——— = C"limin Iz
nligtn (vy) 1Zall on o, 28 [pr
(0) (0)
|| ’||¢(U0) W L4 it
- < A A .
1219, 1Z1®

A A
Then ez’ <e2' C*C, and we have a contradiction with Equation (5). So, the claim is true.
Now suppose that t > 0, v,$'(v) € U |, Y € EK(v*), and Z € £€47K(v™) \ {0}. If t < T, then

Y 1
I Ilqsz(wS TegTe_EtllYllv
121l vy (VA

by Lemma 5.9. If t > T, then we can break [0, t] into subintervals each with length between T and
2T, then apply the claim on each subinterval to obtain

Y
1Y llge ) <ot Y1l
Zls0) IZIl,

A
So, Cy = LTeET suffices. 1
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6 | REPRESENTATIONS WITH ALMOST HOMOGENEOUS CUSPS

Let G, K, and X = G/K be as in Section 3. In this section, we prove Theorem 1.13, restated in the
following form.

Theorem 6.1. Suppose that

* ' < G is geometrically finite and P is a set of representatives of the conjugacy classes of maximal
parabolic subgroups of T,

* p: ' - SL(d, K) is P,.-Anosov relative to P, and

 foreach P € P, there exists a representation 7p : G — SL(d, K) such that

{tp(9)p()™" : g € P}

is relatively compact in SL(d, K).

Then, p is uniformly P, -Anosov relative to Cx(T).

The rest of the section is devoted to the proof of theorem, so fix I', P, p, and representations
{tp : P € P}asin the statement. Let E, :=U(I)x k9 and Ep = T\(U () x K9).

For each P € P, fix an open horoball Hp centered at the fixed point of P such that: if y € T,
then yHp N Hp # @ if and only if y € P. This is possible by the “F1” definition of geometrically
finite subgroups in [8]. Let

Up :=T\{v € U(T) : n(v) € Hp},

U pin - = Upep Up,and U e := U'(D) \ Uiy Then U,;. is compact by the “F1” definition
of geometrically finite subgroups in [8].

Lemma 6.2. After possibly replacing each Hp with a smaller horoball, there exist Cy,c, > 0 and a

metric ||- ||U€17(F) on the vector bundle Ep — U'(T) such that:

@ llyegrr) is locally uniform,
) ift > 0,v € U(I), and $*(v) € Uy, for all s € [0, t], then

t
||¢ (Y)“qbf(v) < Coe_c()[ ”Y”v
19" @l gt 0 121l

forallY € ©k(v) and nonzero Z € E4-k(v).

Proof. Fix a partition of unity {y,} U{xp : P € P} of U'(T) such that supp(x,) is compact and
supp(xp) C Up forall P € P.

0 ; o 7 P :
Let ”'“velA/(F) be any metric on E, — V(). For each P € P, let “'”ueTlx be a family of p|p-
P

equivariant norms satisfying Proposition 5.3. Then ||- ||U€T] ¥ descends to a metric on the fibers of
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Ep above ﬁ'P which we denote by I-II°_ . .Then,
VEV p

2 2
s = /2@ (1) + X 2 @(IH5)
Pep
defines a metric with the desired properties. O

Lemma 6.3. There exists T, > 0 such that: if t > Ty and v, $'(v) € Ui then

le'Olgw 1 1l

o@Dl gy~ 2€2 121,

forallY € ©k(v) and nonzero Z € E4-k(v).

Proof. Lift ||-|| to a p-equivariant family of norms ||-||,e7r)- Let

velr ()
Vihick =M N 7T_1<7fthick>-

Then fix a compact set K C U"y,;, such that I' - K = U, Finally, fix some p, € 7(K) and let
R :=diamy(7(K)).

Arguing as in the proof of [45, Lem. 9.4], there exists C > 1such that:ifv € K, t > 0,and ¢'(v) €
g(K) for some g € T, then

Y1l
11,

IYllgrw)
= <0 (p(g))
1Z1l ¢ 0 Hic

for all Y € £K(v*) and nonzero Z € £€4-%(v™). Notice that in this case

dx(po, 9(py)) = t — 2R.

Also, by the strongly dynamics-preserving property and Observation 2.5, there exists T(’) >0
such that: if g € T and dy(py, 9(py)) > T}, then

Mi+1
o < .
L)< o

So T, := Ty + 2R suffices. O
Lemma 6.4. There exists T > 1 such that: ift > Tandv € 17‘(F), then

o' Wlgrwy _ 11171,

forall Y € ©%(v) and nonzero Z € 24k (v).

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

SULID)/WO0Y" KA IM”

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



30 of 61 | ZHU and ZIMMER

Proof. The following argument is similar to an argument in [16, pp. 33-35]. From Lemma 6.2(1),
there exists C, > 1 such that: ifv € U (M andt € [0, T,], then

le'llger _ 1Y

< ©)
19" Dl gy 21

for all Y € ©¥(v) and nonzero Z € £4k(v).
Fix T > 1 so that

=

COe_COT <= and Cnge_CO(T_TO) < l

[\8}
\8}

Suppose t > T and v € (). If¢’(v) € ‘lAf[hm for all s € [0, t], then Lemma 6.2(2) implies that

IOl _ e Yl _ 11V
9Dy 12 S 20z,

forall Y € ©%(v) and nonzero Z € 82-K(v). Otherwise, the set R :={s € [0,¢] : $*(v) € U pjcc}
is nonempty. Let s; := minR and s, := max R. If s, — 5; > T, then applying Lemma 6.2(2) to
the intervals [0, s1], [s,, t] and Lemma 6.3 to the interval [s;, s,] yields

IOl _ e L g 1Vl _ 11V
9Dl geey 2c2° izl S 20z,

for all Y € ©%(v) and nonzero Z € £4k(v). Otherwise, if s, —s, <T, then applying
Lemma 6.2(2) to the intervals [0, s, ], [S,, t] and Equation (7) to the interval [s;, s,] yields

17 Ollsw) ¢ ot g1 ¢ coe ool 111
lo @l 12, 1zIl, = 211,
for all Y € ©%(v) and nonzero Z € E4k(v). O

Proof of Theorem 6.1. By Lemma 6.2(1), we have locally uniform norms, and it remains only to
verify the dominated splitting condition in Proposition 2.8. Already, from Lemma 6.2(1), there
exists C; > 1 such that: ifv € U(T) and t € [0,T], then

le'®llgwy ., 171
19" Dl gy 21

forall Y € ©¥(v) and nonzero Z € £9¥(v). Lemma 6.4 then implies that:

||(pl(Y)||¢z(U)< 3e—@t“Y”v
19" )| g0 1z,

forallv e U(I), t > 0,Y € ©(v), and nonzero Z € 84~k (v). O
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7 | NOT UNIFORM RELATIVE TO THE GROVES-MANNING CUSP
SPACE

In this section, we construct the representation described in Example 1.12 above. In particular, we
construct a relatively P, -Anosov representation that is uniform relative to some weak cusp space,
but is not uniformly P, -Anosov relative to any Groves—-Manning cusp space.

We consider the Siegel model of complex hyperbolic 2-space

2
HE = {[z1 D zy 1 1] 1 Im(z)) > |z, } c P(CY).
Then Isom,(H?) coincides with the subgroup of PSL(3, C) that preserves HZ. Let G — Isomy(HZ)
denote the preimage in SL(3, C).
For m,n € Z, define
1 m %mz +in
u(m,n) ;=10 1 m € SL(3,0).
0 0 1

Thenlet P := {u(m,n) : m,n € Z} < G. Notice that
(m,n) € 2> » u(m,n) € P

is a group isomorphism. Using ping-pong, we can find a hyperbolic element &7 € Gsuch thatT :=
(h) * P is a geometrically finite subgroup of G isomorphic to Z % Z2.

Let A(T) C 0, IH]% denote the limit set of I" and let C(T") denote the convex hull of A(T) in [H]é.
Then by Proposition 4.2, the inclusion representation p: I' & SL(3, C) is uniformly P,-Anosov
relative to C(T).

LetP? :={P}and S :={h,h~1,u(1,0),u(—1,0),u(0,1),u(0, —1)}. Then consider the associated
Groves-Manning cusp space X := Cg, (T, P, S).

The main result of this section is the following.

Proposition 7.1. There does not exist a p-equivariant quasi-isometric embedding of X into M : =
SL(3,C)/ SU(3,0).

When combined with results in [45], this yields the following corollary.
Corollary 7.2. p is not uniformly P,-Anosov relative to any Groves—Manning cusp space.

Proof of Corollary. Suppose for a contradiction that p is uniformly P,-Anosov relative to some
Groves-Manning cusp space Y. By [45, Th. 1.12], there exists a p-equivariant quasi-isometric
embedding of F : Y — M. However, the identity map on vertices extends to a I'-equivariant quasi-
isometry G : X — Y, see [6, Th.1.1], and so, we obtain a p-equivariant quasi-isometric embedding
FoG : X — M. Hence, we have a contradiction. O

The rest of the section is devoted to the proof of the proposition. Suppose for a contradiction that
there exists a p-equivariant quasi-isometric embedding F : X — M. Let d;, denote the standard
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symmetric distance on M defined in Equation (1) and let K := SU(3, C). Then

M
dp(gK, K) = log =2 (g)
M3

for all ¢ € SL(3,C).
Using the Iwasawa decomposition, for every n € N, we can write

F((idp,n)) = w,e,K

where <, is a diagonal matrix with positive diagonal entries and «,, is upper triangular matrix
with ones on the diagonal. Then, for all ¢ € P and n € N, we have

dy (F((g,m), F((idp, n))) = dp; (p(g9)evry 2K, 2022, K)
-1 - M, g
=dy (e, 'w; p(9)w, e, K K) < log #(@nlwnlp(g)wnan).
3
Further, since F : X — M is a quasi-isometric embedding, there exist « > 1,8 > 0 such that: if
g € Pand n € N, then

Lay (g, Gidpo ) — B <log P2 (w7 o p(g)ess )
a M3 (8)

S a dX ((gr I’l), (idP’ n)) + ﬁ

Suppose
A O 0 1 s, r,
a,=1 0 Z,, O and «,=|0 1 ¢,]|.
0 0 Ay3 0 0 1

We will obtain a contradiction by estimating /1;11/1,1,3 in two ways.
We start with the following distance estimate in the Groves—Manning cusp space.

Lemma 7.3. There exists n, > 0 such that: if k > n > n, then
2k —2n — 2 < dy ((w(0,25), n), (idp, n)).
Proof. For L > 1, let H(L) C X denote the induced subgraph of X with vertex set
{(9n) 1 geP,n>LL
By [21, Lem. 3.26], there exists § > 1 such that H(6) is geodesically convex in X.
Fix k > n > 8. By [21, Lem. 3.10], there exists a geodesic in H(5) joining (u(0, 2X), n) to (idp, n)
which consists of m vertical edges, followed by no more than three horizontal edges, followed by

m vertical edges. Then

2k — |u(0, 2k)|SnP < 3. 2n+m—1 < 2n+m+1

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

PUB-SULIA)/WOD" K[ 1M

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



RELATIVELY ANOSOV REPRESENTATIONS 33 of 61

and since H(9) is geodesically convex

dX ((U(O, 2k)7 I’l), (idP’ n)) = dH(a) ((u(o’ 2k)7 n)7 (idP’ n)) > 2m

>2k —2n-—2.
So n, := ¢ suffices. 1
In the arguments that follow, given a matrix g € GL(d, C), let

.= max P
llgll lsi’jgdlgldl

Then,
91l < H1(9) < dllglles ©)
for all ¢ € GL(d, C).

22 "

Lemma7.4. 111,32

Proof. For every n > ng, let
1
k, := [Ea(ﬁ+6)+n+ 1]

and let g, := u(0,2%n). Then

1 0 +i2%2-12,,
ay w ! o(g) wpa, =10 1 0
0 0 1
Hence, by Equation (9),
W - - _
log Iu_l(a/nlwnlp(gn)wnﬁ’n) = log (:ul (a’nlwnlp(gn)wn@n)lul (a’nlwnlp(g’l) 1w”a’”))
3

<max {0,6l0g (22;11,5 ) |-
So, by Lemma 7.3 and Equation (8),
6 < —(2k, =20 =2) = f < = dy (g, ) (idp, ) — § < max {0, 6 log (222,14, ) }.
Then

1
1 < log <2kn/l;’llln,3> < 10g <2§a(ﬁ+6)+n+ll;,llln,3>,
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or equivalently,

e _ _
— 27T .
S La@+6)+1 17,3 0

sS4

Lemma7.5. 1. 14,5 <

Proof. Let g, :=u(2""1,0). Then

dX ((gn’ n)’ (idp, Vl)) =1.

Further,
L 1 A 4,20 *
@, w, p(g)w,a, =0 1 /1;’12/1”’32"_1 .
0 0 1

So, by Equations (9) and (8),
max {log </1;,11/1n,22”_1>, log (/1;’12/1”’32”_1> } <logpy (e, w oy, w, e ,)
< adyg ((g,,n),(dp,n))+ B =a+ B,
which implies that
12,11/1}1,3 = /1;,11/1n,2/1y_1,121n,3 s 4—}’1‘ D
Then by Lemmas 7.4 and 7.5, we obtain the estimate 27" < 47", which is impossible. Hence,
there does not exist a p-equivariant quasi-isometric embedding of X into M.
PART 2. GEOMETRICALLY FINITE GROUPS IN CONVEX REAL
PROJECTIVE GEOMETRY
8 | CONVEX REAL PROJECTIVE GEOMETRY
In this expository section, we recall the definitions and results in convex real projective geometry
that we will need in Sections 9-11. We also briefly discuss relatively Anosov representations into
the projective linear group.
8.1 | Convexity and the Hilbert metric
A subset of P(RY) is called convex if it is a convex subset of some affine chart of P(R%) and called
properly convex if it is a bounded convex subset of some affine chart P(R%). A properly convex
domain is an open properly convex subset of P(R%).

A subset H C P(R?) is called a projective hyperplane if it is the image of some codimension-
one linear subspace W c R¢ under the map R? \{0} — P(R?). Given a properly convex domain
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Q c P(R%) and x € 99, there always exists at least one projective hyperplane H ¢ P(R%) with x €
H and H N Q = @. In this case, H is called a supporting hyperplane of 6Q at x. When a boundary
point x € 4Q has a unique supporting hyperplane, we say that x is a C!-smooth point of Q and
let T,.0Q denote this unique supporting hyperplane.

Given a properly convex domain Q c P(R%) and p,q € Q, we will let [p,qly denote the
closed projective line segment in Q that contains p and g. Then define [p, q)q := [p.qlg \ {g},

(P.qlq :=[p,qlo \ {p}, and (p,@)q :=[p.qla \ {p.q}.
The automorphism group of a subset S ¢ P(R?) is the group

Aut(S) :={g € PGL(d,R) : g-S = S}.
Given a properly convex domain Q ¢ P(R?) and a subgroup I' < Aut(Q), the limit set of T is

Ag(D) 1= 80N U T-p,
peEQ

where the closure is taken in P(R?). Equivalently, Aq(I) is the set of boundary points x € Q
where there exist p € Q and a sequence (y,,),,»; in I such that y,,(p) — x. The convex hull of T,
denoted as C(I), is the closed convex hull of Aq(T) in Q.

Given a properly convex domain Q ¢ P(R?), the dual domain is

Q :={f e PR¥) : f(x)#0forall x € Q}.

It is straightforward to show that Q* is a properly convex domain of P(R%*) and under the natural
identification PGL(d, R) = PGL(R%*), we have Aut(Q) = Aut(Q*).

A properly convex domain Q C P(R?) has a natural distance, called the Hilbert distance, which
is defined by

1
do(p.q) = 5 logla. p.q.bl,
where L is a projective line containing p, g, {a, b} = L n dQ with the ordering a, p,q,b along L,
and [a, p, q, b] is the standard projective cross ratio. Then (Q, d, ) is a proper geodesic metric space
and Aut(Q) acts on (Q, d,) by isometries. Further, the line segment [p, q], joining p,q € Q can
be parametrized to be a geodesic in (Q, dg).

We recall that given two subsets A, B C Q, the Hausdorff distance with respect to d, between A
and B is defined as

dgauS(A, B) := max {sup dg(a,B),supdg(b, A) }
acA beB

We will use the following well-known estimate on the Hausdorff distance between two line
segments with respect to the Hilbert metric d,.

Observation 8.1. Suppose that Q c P(R?) is properly convex. If p;, p,,q;,q, € Q, then

dgaus ([p1, q11as [P2s @210) < max{dqo(py, p2), da(qs, 92)}

Proof. See, for instance, [25, Prop. 5.3]. O

1]u0//:5d1y) SUORIPUOD) PUE SWIR, 31 338 “[$Z0T/S0/E 1] U0 ATeIqrT AUIUQ KBTI “676T 1 SWIIZT [ 1°01/10p/wi00" K31 KIBIqI2UI[UO"20SYIRWPUO//:SANY WOy Papeofumod ‘9 *+T0T ‘0SLLEIY ]

SULID)/WO0Y" KA IM”

Asu20I'T suowwo)) aanear)) dqedrjdde ay) Aq pauIaA0S AIe SA[INIE () (asn JO I[N 10§ AIRIQIT UI[UQ) AJ[IAY UO (¢



36 of 61 | ZHU and ZIMMER

8.2 | Convex hulls

A general subset of P(R%) has no well-defined convex hull, for instance, if X = {x1, x,}, then there
is no natural way to choose between the two line projective line segments joining x; and x,. How-
ever, it was observed in [24] that for certain types of subsets, one can define a convex hull. We
recall these observations here.

Given a subset X c P(RY) that is contained in some affine chart A c P(RY), let
ConvHull,(X) C A denote the convex hull of X in A. For a general set (e.g., two points),
this convex hull depends on the choice of A but when X is connected we have the following.

Observation 8.2 [24, Lem. 5.9]. Suppose that X C P(RY) is connected. If A, and A, are two affine
charts that contain X, then

ConvHull, (X) = ConvHull Nz(X ).
This leads to the following definition.

Definition 8.3. If X C P([R{d) is connected and contained in some affine chart, then let
ConvHull(X) denote the convex hull of X in some (any) affine chart that contains X.

As a consequence of the definition, we have the following.

Observation 8.4. Suppose that X ¢ P(R?) is connected and contained in some affine chart. If
g € PGL(d, R), then

ConvHull(¢X) = g - ConvHull(X).

8.3 | Relatively Anosov representations into the projective linear
group

In the context of convex real projective geometry, it is more natural to consider representations
into PGL(d, R). It is also helpful to identify Gr; (R?) = P(R¢) and Gr,_;(R%) = P(R%*) and assume
that the boundary map of a relatively P,-Anosov representation has image in P(R?) x P(R%*). This
leads to the following analogue of Definition 1.1.

Definition 8.5. Suppose that (T, P) is relatively hyperbolic with Bowditch boundary d(T, P).
A representation p: I' - PGL(d,R) is P,-Anosov relative to P if there exists a continuous
map

£=(E: 4T, P) - P(RY) x P(RT),

which is

(1) p-equivariant: ify € T, then p(y)o§ = oy,
(2) transverse: if x,y € d(T, P) are distinct, then £1(x) @ ker £9-1(y) = RY,
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(3) strongly dynamics-preserving: if (y,,),>; is a sequence of elementsinI"where y,, — x € o(T', P)
andy, ! — y € (T, P), then

Jim p(y,)o = &'(x)

for all v € P(RY) \ P(ker €471 (y)).

8.4 | Relatively Anosov representations from visible subgroups

As mentioned in the introduction, a projectively visible subgroup (see Section 1.2.2 for the defini-
tion) acts as a convergence group on its limit set [17, Prop. 3.5]. Further, if the action on the limit
set is geometrically finite, then the inclusion representation is relatively P;-Anosov.

Proposition 8.6. Suppose that Q C P(R?) is a properly convex domain and T’ < Aut(Q) is a projec-
tively visible subgroup. If T acts on Aq(T') as a geometrically finite convergence group and P is a set of
conjugacy representatives of the stabilizers of bounded parabolic points in Aq(T'), then the inclusion
representation I' - PGL(d, R) is P,-Anosov relative to P.

Proof. By definition, there exists an equivariant homeomorphism &' : 3(T', P) — Aq(D), see [42].
By the visibility property, each pointin Ao (I') is a C'-smooth point of dQ. So, for every x € (T, P),
there exists a unique £9-1(x) € P(R%*) such that

P(ker £971(x)) = T1(,)0Q.

Then let & := (£1,£971). Then ¢ is continuous and equivariant. By the visibility property, if
x,y € 3(T, P) are distinct, then the open line segment in Q joining £!(x) to £'(y) is in Q. Since
P(ker £971(y)) N Q = @, we must have £1(x) ¢ P(ker £971(y)), and so,

E'(x) @ ker £71(y) = RY.

Thus, £ is transverse. Finally, by [17, Prop. 3.5], £ is strongly dynamics-preserving. O

9 | RELATIVELY ANOSOV REPRESENTATIONS WHOSE IMAGES
PRESERVE A PROPERLY CONVEX DOMAIN

In this section, we prove a converse to Proposition 8.6 and characterize the relatively P;-Anosov
representations that preserve a properly convex domain. This builds upon work in [17] and extends
results in [18, 44] from the classical Anosov case to the relative one.

Let [|-]|, denote both the Euclidean norm on R4 and the associated dual norm on R?*. Then
let S ¢ RY and S* ¢ R?* denote the unit balls relative to these norms. Also, let SL*(d,R) = {g €
GL(d,R) : det g = +1}. The group SL*(d, R) acts on S and S* by

1 1
= d . = ———fo -1
T, " 9 = e,

g-v
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Definition 9.1. Suppose that (T, P) is relatively hyperbolic, p : T — PGL(d, R) is P;-Anosov rela-
tive to 2, and & : 4(T, P) — P(RY) x P(R%¥) is the Anosov boundary map, then we say that p has
the lifting property if there exist lifts &€ = (£1,£4-1): (I, P) » SxS*and p: I » SLE(d,R) of &
and p with the following properties:

(1) € is continuous and F-equivariant,
(2) ¢ is positive in the following sense: if x,y € 3(T, P) are distinct, then

ETM(E (X)) > 0.

Proposition 9.2. Suppose that (T, P) is relatively hyperbolic and p : T' - PGL(d, R) is P,-Anosov
relative to P. Then the following are equivalent:

(1) p has the lifting property,

(2) there exists a properly convex domain €, C P(RY) where p(T) < Aut(Q),

(3) there exists a properly convex domain Q C P(R?) where p(I') < Aut(Q) is a projectively visible
subgroup.

Remark 9.3. The equivalence (2) < (3) follows from general results in [17] and the implication
(2) = (1) is elementary. So, the new content of Proposition 9.2 is the implication (1) = (2).

The rest of the section is devoted to the proof of Proposition 9.2. So, fix (T, P) and p as in the
proposition, and let & : 3(T, P) — P(R?) x P(R%*) denote the Anosov boundary map of p.

Lemma94. (2) < (3).

Proof. Using the language in [17], [45, Prop. 4.4] implies that p(T) is a Py 4_-transverse group.
Then the equivalence of (2) and (3) follows from [17, Prop. 4.4]. O

Lemma 9.5 ((2) = (1)). Ifthere exists a properly convex domain Q, C P(R%) where p(T') < Aut(Q,),
then p has the lifting property.

Proof. We first observe that the strongly dynamics-preserving property implies that £! has image
in Q. Fix x € d(T', P) and a sequence (¥,,),,»; in I' with y,, — x. Passing to a subsequence, we
can assume that y,;! — y € (T, P). Then

p(r)v = £1(x)

for all v € P(RY) \ P(ker £4-1(y)). Since Q, is open, there exists v € Q \ P(ker £€9-1(y)) and
hence £1(x) € 50. Since p(T) acts properly on Q, we must have £!(x) € Q. So, ! has image in
3Q,. The same argument shows that £~ has image in 9Q;.

The rest of the argument is identical to the proof of Case 1in [44, Th. 3.1]. Let 7 : R%\{0} —
P(R?) denote the projection map. Since Q, is properly convex, 7~1(Q,) has two connected com-
ponents C; and C,. Moreover, both components are properly convex cones in R? and C, =
-C;.

For x € (T, P),let E1(x) € Sdenote the uniquelift of £1(x) in C; N Sand let £4-1(x) denote the
unique lift of £4-1(x) such that £4-1(x) € $* and £%~(x)|¢, > 0. Fory € T, let 5(y) € SL*(d,R)
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denote the unique lift of p(y) that preserves C,. Then 5 is a homomorphism and £ = (€', £4-1) is

continuous, g-equivariant, and positive. So, p has the lifting property. O
For the other direction, we closely follow the arguments in Section 5 of [24].

Lemma 9.6 (1) = (2)). If p has the lifting property, then there exists a properly convex domain

Q, C P(RY) where p(T) < Aut(Q).

Proof. Let £, 5 denote lifts of £, p satisfying the lifting property. Then define
N
Cy = { lZ/ljé'l(xj)] N 224, .,y > 0; xq, ..., x5y €0, P) distinct}.
j=1

Since £ is g-equivariant, P)Cy = C, for every y € I'. Since € is positive,

Co N U P(ker¢471(y)) = @. (10)
yed(T,P)

Also, if we fix x;, x, € 8(T, P) distinct, then the positivity of £ implies that C, is bounded in the
affine chart

A = {[v] € PRY) : (E*7'(x) + £ (xy))(v) # 0}

Fix p € C,. We claim that there exists a connected neighborhood U of p in P(R?) such that

p(DU = | p()U

yer

is bounded in A. Suppose not. Then there exist sequences (p,),>; in P(R%) and (y,,),,5; in T such
that p, — p and p(y,)p, leaves every compact subset of A. Passing to a subsequence, we can
suppose thaty, — x € (I, P)andy, ' — y € 8(T, P). Then, by the strongly dynamics-preserving
property,

p(ra)g = £'(x)

for all ¢ € P(R?) \ P(ker £9-1(y)) and the convergence is locally uniform. Equation (10) implies
that p € P(RY) \ P(ker £471(y)) and so p(y,,)p, = &' (x). However, £!(x) lies in the closure of C,,
and C, is bounded in A. This contradicts our assumption and hence such a set U exists.

Finally, the set

X :=Cyu Up(y)U
yer

is connected (since each of the sets in the union is path-connected, and p(y)U N C,, # @ for each
y € I'), bounded in A, and preserved by p(T"). So, Observation 8.4 implies that

Q, := ConvHull(X)

is a properly convex domain where p(I") < Aut(Q,). O
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10 | STABILITY OF THE LIFTING PROPERTY
In this section, we prove Proposition 1.18 which we restate here.

Proposition 10.1. Suppose that (T, P) is relatively hyperbolic and p, : T — PGL(d, R) is a repre-
sentation. Let A,(p,) denote the set of representations in Hompo(l", PGL(d, R)) that are P;-Anosov
relative to P. Then the subset Af(po) C A,(py) of representations with the lifting property is open
and closed in A, (py).

10.1 | Lifting maps

In this subsection, we record some basic observations about lifting maps to covering spaces. Sup-
pose that M is a compact Riemannian manifold and 7 : M — M is a Riemannian cover (i.e., M
is a Riemannian manifold and 7 is a covering map which is a local isometry). Fix € > 0 so that
every metric ball of radius € in M is normal.

Observation10.2. If p € M, then

(1) m induces a diffeomorphism between metric balls By (p, €) — By (7(p), €),
(2) 77X(q) n By;(p, ) is a single point for any q € By, (7(p), €).

Proof. For part (1), see, for instance, the proof of [11, Lem. 1.38]. Part (2) follows immediately from
part (1). O

Observation 10.3. Suppose that N is a compact topological space and f, g : N — M are continuous
maps. If

max dy (f(x), g(x)) <e

and f admits a continuous lift f : N — M, then ¢ admits a unique continuous lift j: N - M
with

max dg; (00, 5) < e.

Proof. By Observation 10.2, for each x € N, there is a unique §(x) € 77 (g(x)) such that
i (f(0), 3(x)) < e. By uniqueness, j is continuous. O

10.2 | Proof of Proposition 10.1

Suppose that (T, P) is relatively hyperbolic and p, : T' = PGL(d, R) is a representation.
For p € A,(py), let & ,» denote the Anosov boundary map. We will use the following stability
result from [45].
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Theorem 10.4 [45, Cor. 13.6]. The map
A;1(po) X 8(T, P) 3 (p,x) > £,(x) € P(RY) X P(R?)
is continuous.

Fix Riemannian metrics on S x S* and P(RY) x P(R%*) so that S x S* — P(R?) x P(R%*) is a
Riemannian cover. We will let d denote the associated distance on both spaces. Then fix € > 0
satisfying Observation 10.3 with M = P(R?) x P(R?).

Lemma 10.5. A} (o) is closed in A, (o).
Proof. Suppose that p,, — p in A;(p,) where {p,} C A (o). Let £, (respectively, &) denote the
Anosov boundary map of p,, (respectively, p) and let £, g, denote lifts of £,, p,, satisfying the

lifting property.
Theorem 10.4 implies that &, — & uniformly. So, for n sufficiently large, we have

hax d(§,(x),§(x)) <e.

So, by our choice of € > 0, there exists a unique continuous lift £ of & such that

max )d (£,(x), &) <€

x€d(T,P
for n sufficiently large. Further, f ,, converges pointwise to f . Then
FI)E () = lim 1 0)EL) > 0
for all x,y € 4(T, P). So, by transversality, we see that
ETNE (x>0 )
for all distinct x,y € d(T, P).

Finally, we construct the lift of p. Since T is finitely generated and SL*(d, R) — PGL(d,R) is a
finite cover, by passing to a further subsequence, we can suppose that

p(y) = lim p,(y)

exists for all y € T. Since & , converges pointwise to £, we see that £ is 5-equivariant. Hence, o has
the lifting property. O

Lemma 10.6. A (o) is open in A;(py).

Proof. It suffices to assume that p, € Af(,oo) and show that there exists an open neighborhood
of py in A;(p,) that is contained in .47 (o). Let § 4, denote the Anosov boundary map of p, and

let € 0o Po denote lifts of £, , oy satisfying the lifting property.
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By Theorem 10.4 and our choice of € > 0, we can find a neighborhood O of p, in A, (p,) such
thatif p € O, then the associated boundary map & ,» admits a unique continuous lift 13 5 O, P) —
S X S$* with

dna(Eyr€) 1= max d(E,, (0, &) <. (12)

Fix a finite generating set S C I'. Then we can find a subneighborhood @' C @ where for each
y € Sand p € (@, there exists a lift 5(y) of p(y) such that

max_d(5o()v, BV < €/2.
VES* XS
By replacing @' with a relatively compact subset, we can also assume that there exists C > 1

such that: ify € S and p € @@, then g(y) acts as a C-Lipschitz map on S X S*. Finally, by possibly
replacing @' with a smaller neighborhood and using Theorem 10.4, we can assume that

s (G, £0) < 52

forallp € O'.
Now, if p € @ and y € S, then (since & 00 18 Po-equivariant)

(G PIZp07 ) = max d(Bo(r)o8y,0r ™ (), B 0r ™ ()

5N E  qy—l 2o E ay—l
<e/2+ max d(p()oE,or ™ (0. 600801 ()
<€/2+4 Cdpy(€, 077 E oy ™) = €/2+ Cdpp (€. €,) <e.
So, by uniqueness of the lift € , satisfying Equation (12), we have B(y)oé poy_l =£ o Since at most
one lift j € SL*(d, R) of an element p(y) € p(T') can satisfy the equation Foé oyt = £ 5> We then

see that 5 extends to a homomorphism of I" and & , is p-equivariant.
It remains to verify positivity. Fix a compact set K C {(x,y) € (T, P)?> : x # y}such that

I K={(xy) e€dl, P’ :x#y} (13)
(such a compact set exists by [39, Th. 1C]). By shrinking (@', we may assume that
Fd—1 £1
E)(8) > 0 (14)

for all p € @ and (x,y) € K. Fix p € @'. Since & » is p-equivariant, Equation (13) implies that
Equation (14) holds for all distinct x, y € d(T, P). Hence, we see that p € Af(po). O

11 | REPRESENTATIONS OF RANK ONE GROUPS REVISITED

For the rest of the section, let G, K, and X = G/K be as in Section 3. Then suppose thatt: G -
PGL(d, R) is a P;-proximal representation.
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In this section, we prove three propositions. The first two characterize exactly when 7(G) pre-
serves a properly convex domain and the third proposition establishes a structure theorem in the
case it does. The first and third propositions imply Proposition 1.22.

Proposition 11.1. If X is not isometric to real hyperbolic 2-space (equivalently, G is not locally
isomorphic to SL(2, R)), then t(G) preserves a properly convex domain.

Proposition 11.2. Suppose that X is isometric to real hyperbolic 2-space and

is a decomposition into t(G)-irreducible subspaces. Then, T(G) preserves a properly convex domain
ifand only if max, (., dim V; is odd.

Proposition 11.3. Suppose that t(G) preserves some properly convex domain. Then there exists
a ©(G)-invariant properly convex domain Q C P(R?) such that: if T < G is a geometrically finite
subgroup, then

(1) () is a projectively visible subgroup of Aut(Q) and acts geometrically finitely on its limit set.
(2) If Cp := Cq(z(D)), then (C, dg) is Gromov-hyperbolic.

Arguing exactly as in the proof of Proposition 4.2, there exists a continuous 7-equivariant,
transverse, strongly dynamics-preserving map

¢ =(N¢4 1 8. X = P(RY) x PRY).
Arguing as in the first step of the proof of Lemma 9.5, we obtain the following.
Observation 11.4. If 7(G) preserves a properly convex domain Q ¢ P(R?), then

¢l@.X)caq and ¢971(8X) caQr.

11.1 | Proof of Proposition 11.1

Suppose that X is not isometric to hyperbolic 2-space. Then J X is a sphere with dimension at
least two and in particular is simply connected.

As in Section 9, let S ¢ R? and S* c R%* denote the unit spheres relative to the Euclidean
norms. Then, since S — P(RY) is a covering map and 9, X is simply connected, we can lift ¢?
to a continuous map ¢! : d_X — S. For the same reasons, we can lift ¢4~ to a continuous map
¢d=1: 5 _X — S*. By transversality,

F (S 0) #0 (15)
for all distinct x,y € 0 X. Since 0 X minus any point is connected, Equation (15) has the same

sign for all distinct x,y € d.X. So, by possibly replacing £d-1 py —£4-1 we may assume that
Equation (15) is positive for all distinct x,y € 0 X.
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Since 9., X is connected, ¢! has exactly two continuous lifts to S. So, if g €G and h €
SLE(d, R) is a lift of 7(g), then either hoflog™! = &1 or hollog=! = —&1. So, for every g € G,
there exists a unique lift #(¢g) € SL*(d,R) of 7(g) such that #(g)oflog~! = £1. By uniqueness,
7 is a representation.

Then arguing as in the proof of Lemma 9.6, we see that 7(G) preserves a properly
convex domain.

11.2 | Proof of Proposition 11.2

Suppose that X is isometric to real hyperbolic 2-space and R¢ = @;”: 1 Vj is a decomposition into
7(G)-irreducible subspaces. Then G is locally isomorphic to SL(2,R) and hence 7 induces a Lie
algebra representation dz : 81(2,R) — 3[(d, R). Since every such Lie algebra representation inte-
grates to a representation SL(2,R) — SL(d,R) and G is connected, there exists a representation
7: SL(2,R) — PSL(d, R) with the same image as 7. So, by possibly replacing t with £, we can
assume that G = SL(2, R).

Let dj :=dim V; and let Tj: SL(2,R) — PSL(Vj) be the restriction of 7 to V. By possibly rela-
beling, we can assume d; > d, > --- > d,,,. Recall that V j is isomorphic to the vector space of
homogeneous polynomials in two variables with degree d; — 1 where 7; acts by 7;(g)f = fo g L.

Then one can check that
AT (9)) = Ay (@)U

for all g € SL(2, R). Then, since 7 is P,-proximal, we must have d; > d,.
Lett;: V; & R? be the inclusion map and let 7 je RY - V; be the projection relative to the
decomposition R? = @', V. Then the adjoint 77 : V7 — R%* of 7;, which is given by

7(f) = for),

defines an inclusion. Since 7, is P;-proximal, the proof of Proposition 4.2 implies that there exists
a boundary map ¢ : 0,,X — P(V;) X P(V}) associated to 7;. Then, by the strongly dynamics-
preserving property

¢ =(y,my)od;. (16)

Lemma 11.5. 7(SL(2, R)) preserves a properly convex domain in P(R%) if and only if t,(SL(2, R))
preserves a properly convex domain in P(V).

Proof. First, suppose that 7(SL(2,R)) preserves a properly convex domain Q c P(R?). By
Observation 11.4 and Equation (16),

{1(05X) = ¢1(8,,X) C 0Q.
Hence,C := QN P(V,)is a nonempty 7, (SL(2, R))-invariant properly convex closed set in P(V;).

Since 7, is irreducible, C must have nonempty interior in P(V;). So, 7,(SL(2, R)) preserves a
properly convex domain in P(V;).
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Next, suppose that 7;(SL(2,R)) preserves a properly convex domain in Q, C P(V;). By
Observation 11.4 applied to 7,

¢971(0,,X) C 00,
Then, Equation (16) implies that
Pker ¢4l (x)NQ, = @
forall x € 0 X.

Fix a point p, € Q; and an affine chart A C P(R) that contains Q, as a bounded set. Arguing
as in the proof of Lemma 9.6, there exists a connected neighborhood U of p, in P(R?) such that

SLRYU = ] w(9U
g€SL(2,R)

isbounded in A. Then the set X := Q,; U t(SL(2, R)) U is connected, bounded in A, and preserved
by 7(SL(2, R)). So, by Observation 8.4

Q := ConvHull(X)
is a properly convex domain where 7(SL(2, R)) < Aut(Q). O
Lemma 11.6. 7,(SL(2, R)) preserves a properly convex domain in P(V,) if and only if d; is odd.

Proof. As described above, we can identify V; with the vector space of homogeneous polynomials
in two variables x,, x, with degree d; — 1. Under this identification, one can check that

¢1(la 1 b]) = [(ax, + bx)h 7],

where we identify X = P(R?).
Case 1: Assume that d; is odd. Then

Q :={[f]: f € V,isconvexand f > 0 on R?\{0}}
is a properly convex domain in P(V;) preserved by 7,(SL(2, R)). (Notice that this set is properly
convex since any polynomial representing a point in (2 must have nonzero x’lil_1 coefficient.).
Case 2: Assume that d; is even. Suppose for a contradiction that 7;(SL(2,R)) preserves a
properly convex domain Q C P(V,). Then, by Observation 11.4,
¢10,,X) Cc0Q and ¢971(0,.X) C oQ*.

However,

_ -1 dy—2 1 dy—1
SHIL D) = ey + tx)B 7Y = [le + 15 g e 1T ]
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and, since d; — 1 is odd, the curve t — ¢ %([1 : t]) passes through the hyperplane

H :=P(ker¢{'([1:0]) = P(<xg1_1,x;il_2x1,...,xzxf1_2>).

So, H cannot be a supporting hyperplane of Q, but this contradicts Observation 11.4. O

11.3 | Proof of Proposition 11.3

Now suppose that 7(G) preserves a properly convex domain Q, C P(R?).
Lemma 11.7. There exists a properly convex domain Q C P(R?) such that:

@1 Q,cQ,

(2) 7(G) < Aut(Q),

(3) ¢1(0,X) c Q and ¢4-1(8, X) C 0Q*,

4) ifx,y € (M3, X), then (x,y)q C Q,

(5) ifx € 0 X, then {'(x) is a C'-smooth point of Q and T1(x)0Q = P(ker ¢a=1(x)),
(6) if (gn)ns1 is a sequence in G with g, —» x € 8, X and g.' — y € 8, X, then

t(7)(p) = ¢'(x)

forallp € Q.

Proof. This is nearly identical to the proof of [17, Prop. 4.4]. We sketch the proof here
for completeness.

Fix a compact subset K C Qf with nonempty interior. Then let D be the convex hull of 7(G) - K
in Q. Notice that D is a properly convex domain since K C D C Q; and K has nonempty interior.
Then let Q :=D*. Then Q is a properly convex domain, Q, C Q, and 7(G) < Aut(Q). Obser-
vation 11.4 implies that {1(d.,X) € dQ and ¢9-1(dX) C dQ*. It remains to verify (4), (5), and
(6).

Let C be a connected component of the preimage of Q in R¢. Then C is a properly convex cone.
Also, by the strongly dynamics-preserving property,

7(G) - K = 7(G) - K U ¢471(3 X).
(4): Fixx,y € ¢1(8,X) and p € (x,y)q. Also fix lifts &, § € C ofx,y. Then p=[A%+ (1 -]
forsome 4 € (0, 1). Suppose for a contradiction that p € Q. Then there exists f € dQ* = dD such
that f(p) = 0. We can write f = [Z;”:lfj] where f; € Rd*,fj|c > 0, and

[fj] € 7(G) - K.

Case I: Assume [f;] € 7(G) - K. Since 7(G) - K C Q and ¢H(0.,X) C 39y, then f,(%) > 0 and
f1(3) > 0. So,

3

J

[i@x+ A =3) > f4x+ (1 - 1)F) > 0
1

and hence f(p) # 0. Contradiction.
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Case 2: Assume [f,] € ¢471(3X). Then by transversality, f,(x) and f;(y) cannot both be zero.
Hence,

[iAx+1A-D9) = fL(Ax+ (A -D)9) >0

M

1

J

and hence, f(p) # 0. Contradiction.
(5): Fix x € 9., X and fix a supporting hyperplane H at ¢{1(x). Then H = P(ker f) for some f €
0Q* = 0D. We can then write f = [ZTzl fjlwhere f; € R, fjlc > 0,and

[fj] € 7(G) - K.

Arguing as in the proof of (4), we see that m = 1 and [ f;] = {¢~!(x). Hence, H = P(ker ¢4~1(x)).
Since H was an arbitrary supporting hyperplane at ¢!(x), we see that ¢1(x) is a C'-smooth point
of 6Q and Ty, 0Q = P(ker ¢41(x)).

(6): Suppose that g, - x € 9., X and g, ! -y €9, X. By the strongly dynamics-preserving
property

7(g)() = ¢1(x)
for all v € P(RY) \ P(ker ¢9=1(y)). Part (5) of this lemma implies that
Plker (') nQ =0
and so 7(g,)(p) — ¢1(x) for all p € Q. O

Let C denote the convex hull of ¢{1(8,,T') in Q. We will show that 7(G) acts cocompactly on C.
To do this, we will use Lemma 8.7 in [18], which is based on a result and argument of Kapovich-
Leeb-Porti (namely, Theorem 1.1 in [27] and Proposition 5.26 in [28]). Alternatively, it is possible
to give an elementary, but longer, argument following the proof of [44, Prop. 3.6].

Lemma 11.8. 7(G) acts cocompactly on C.

Proof. Fix a cocompact lattice I' < G. Then p = 7| is P;-Anosov and, if we identify 6 T = 0 X,
then p has Anosov boundary map ¢.

Let C be a connected component of the preimage of Q in R, Then C is a properly convex cone.
Following the notation in [18, Sec. 8], let

Ay i=1{f€ R% @ fle > 0and [f] € ¢4 (0,X)}
and

Q. = {[v] eP(RY) : f(v)> 0forall f € [\;(F)}.
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Then Q C Q,,,, and so Q,, # @. Further, Lemma 11.7(4) implies that C coincides with the
convex hull of {1(8,,T) in Q.. So, Lemma 8.7 in [18] implies that p(T') = 7(T') acts cocompactly
on C. Thus, 7(G) acts cocompactly on C. I

Lemma 11.9. (C,dg) is Gromov-hyperbolic.

Proof. Since G contains uniform lattices, Lemma 11.8 and the fundamental lemma of geometric
group theory imply that (C, dg) is quasi-isometric to X. O

We may now conclude the proof of our proposition.

Proof of Proposition 11.3. Suppose that I' < G is geometrically finite.

We first observe that {1(Ay(T)) = Ag(7(D)). Fix x € Ag(z(I)). Then there exists p € Q and a
sequence (y,,),>; in T such that 7(y,)(p) — x. Passing to a subsequence, we can suppose that
Yn = xt € Ay(D) and y; ' — x~ € Ay(T). Then Lemma 11.7 part (6) implies that x = {*(x*) €
(A (T)). Conversely, fix x € ¢1(Ay(T)). Then there exists a sequence (Yn)ns1 in T such that
¥, — Xx. Passing to a subsequence, we can suppose that y;l — y. By Lemma 11.7 part (6),

T(7)(p) = ¢'(x)

forall p € Q. So x € Ag(7()). Thus (A4 (D)) = Ag(z(D)).

Then Lemma 11.7 parts (4) and (5) imply that 7(T') is a projectively visible subgroup of Aut(Q).
Since ¢! induces a homeomorphism Ay (T) — Ag(z(T)), we see that 7(T') acts geometrically
finitely on its limit set.

The inclusion (Cy,dg) © (C,dg) is isometric and hence Lemma 11.9 implies that (Cr,dg) is
Gromov-hyperbolic. O

PART 3. MISCELLANEOUS EXAMPLES
12 | PING-PONG WITH UNIPOTENTS IN PROJECTIVE SPACE
In this section, we show that certain free products are relatively P,-Anosov. Before stating the
result, we need to introduce some terminology.

Fork <d/2,letFy 4y = Fk’d_k(Kd) denote the space of partial flags of the form F¥ ¢ Fé=* ¢
K? where dim F/ = j. A subgroup I < SL(d, K) is P-divergent if lim,,_, ., M”—“(yn) = oo for every

k+1
escaping sequence (¥,,),,»; in T. Such a group has well-defined limit set in 7 ;_, defined by
N - (@) :={F : 3(y,)ys1 iIn T with y,, — coand F = lim(Uy, Uy_ )(¥,,)}-

For relatively Anosov groups, the following holds.

Observation 12.1. If (T, P) is relatively hyperbolic and p : T — SL(d, K) is P;-Anosov relative to P
with Anosov boundary map &, then p(I') is P -divergent and & induces a homeomorphism

(I, P) = A g-r(p(I)).

In particular, if P € P, then Ay ;_; (0(P)) consists of a single point.
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Proof. The strongly dynamics-preserving property and Observation 2.5 imply that p(T) is
Py-divergent and £ induces a homeomorphism o(T, P) — Ay 4 (o(I)). O

Recall that an element g € SL(d, K) is P;-proximal if 1,(g) > 4,(g¢). In this case, let f; e P(k%)
denote the eigenline corresponding to 4,(g). Then there exists a unique g-invariant codimension-
one subspace H € Gr,_,(K%) such that z,”g+ ®H, = K.

An element g € SL(d, K) is P,-biproximal if both g and g~! are P,-proximal. In this case, we
let f; = f;_] and H; = H;_l. Notice that in this case, f; C H; and L"g‘ C H. Moreover, by
writing a P;-biproximal element ¢ in Jordan normal form, one can show that

-+
g"(F) —— (1, HY)

forall F € 4, transverse to (£, H ).

Proposition 12.2. Suppose that y € SL(d, K) is P,-biproximal, U < SL(d, K) is a P,-divergent dis-
crete weakly unipotent group where A 4(U) = {Fy} is a single element, and Fy; is transverse to the
ﬂagsF;r = (f;,H;r) andF; = (fy_,H;).

Then there exist N > 1 and a finite-index subgroup U’ < U such that the group T generated by
yN and U’ is naturally isomorphic to the free product (yN ') s U’ and the inclusion T < SL(d, K) is
P1-Anosov relative to {U’ }.

Remark 12.3. 1t is possible to add more P;-biproximal elements or weakly unipotent groups, as
long as their limit flags are transverse. We skip this more general case as the proof is the same,
just with more notation.

The rest of the section is devoted to the proof of Proposition 12.2, so fix y and U as in

the statement.
Let F :=F 4_;(K%) and let d be the distance on F defined by

1 1 d-1 pd-1
dp(F, Fy) = dP(Kd) (F1’F2) + dGrd,l(u«d) (F1 B )
Fix € > 0 such that the metric balls

BF(FU92€)’ BT(F;—,ZG), B;{F;,Ze)

are disjoint and any two flags in different balls are transverse. Let

Zy =Nz ({F € F : Fisnot transverse to F},€)

and

Zf = Ny ({F € F : Fis not transverse to F },¢).

After possibly shrinking € > 0, we may also assume that
O:=F\ZyuZ;uZzZ;

is open and nonempty.
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Lemma 12.4. By replacing y by a sufficiently large power, we may assume that y*! is e-Lipschitz on
F\Z7 and yEU(F \Z7) € Bp(F;,e).

Proof. By conjugating, we can assume that
FJ =((e).(e1,-e4-1)) and F, = ((eg), ey, ... €4))-

Then,

where 1,,4, € K, A € GL(d — 2,K), and

|21] > 4,(A) = 15_,(4) > |4,].

Since
— 1 ny\l/n _ —n\1/n
A(A) = lim u,(A™) and L) Jim 1, (A7),
the result follows from a straightforward calculation in affine charts. O

Lemma 12.5. By replacing U with a finite-index subgroup, we may assume that: if u € U \ {id},
then u is e-Lipschitz on F\Zy and u (F\Zy) C Br(Fy,¢€).

Proof. By conjugating, we can assume that

Fy = ((er), (€1, - €q-1))-

Since U is Py-divergent and A, 4_,(U) = {Fy}, for any escaping sequence (u,,),»; in U, we have

lim u, = e;(-,e,) € End(R%),

n=eo ity (uy,
where (-, -) is the standard Euclidean inner product. Then a straightforward calculation in affine
charts provides a finite subset K C U such that: ifu € U \ K, then u is e-Lipschitz on 7 \ Z;; and
u(F\Zy) C Bp(Fy,¢).
By [45, Th. 8.1(2)], U is finitely generated. Then, U is residually finite by a theorem of
Malcev [32]. So there exists a finite-index subgroup U’ < U with U’ n K = {id}. O

Lemma 12.6. The group I generated by y and U is naturally isomorphic to the free product (y) = U.

Proof. Lett: (y)* U — I be the obvious homomorphism. It is clearly onto and so we just have
to show that it is one-to-one. Suppose that w is a nontrivial word in (y) % U. Fix F € O. Then
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Lemmas 12.4 and 12.5 imply that
T(wW)F € BP(F;, U Br(F, ) U Br(Fy,e).
So, 7(w)F ¢ O and hence t(w) # id. N

For the arguments that follow fix a finite symmetric generating set of U and let |u| denote the
associated word length of an element u € U.

Next, we describe the Bowditch boundary of T. Let S :={y,y"1}Ju U \ {id}and let W := {x =
X1X, ---} be the set of all finite and infinite reduced words in S (i.e., no letter is followed by its
inverse) such that

* x has no consecutive elements in U, and
e xdoesnotendin U.

We assume that the empty word @ is an element of W. Also, let W_ C W denote the subset of
infinite-length words. Informally, finite-length words correspond to parabolic boundary points;
this will be made more precise presently.

Since T is naturally isomorphic to the free product (y) * U, W admits a natural action of T,
where T' acts on nonempty words by left multiplication, y*!' - @ = y*!, and U - @ = @. Notice
thatif x = x; --- x,,, € W\ W, then

Stabr(x) = (x; -+ X, U -+ x,) 7"

Further, W has a natural topology that can be described as follows. For x = x;x, - € W, and
N >1,let

By(x) :={y 1y, €Wy, =x,foralln <N}
For x = x; -+ x,, € W\ W, and N > 1, let
By(x) i={x}u{y;y, - €W 1y, =x,foralln<m, y, ., €U, and |y, .| > N}.
Then {By(x) : x € W,N > 1} generates a topology on W.
With this topology, one can check that I' acts as a convergence group on W, the points in W
are conical limit points, and the points in W \ W, are bounded parabolic points. So, T is relatively

hyperbolic with respect to P := {U} and we can identify 6(T', P) = W.
Next, we define boundary maps for the inclusion I & SL(d, K).

Lemma 12.7. Ifx = x;x, - € W and F € O, then the limit
F, := nli_)ngoxl e x,(F)
exists and does not depend on F € O.
Proof. If F € O, then Lemmas 12.4 and 12.5 imply that
dp(xy -+ X1 (F)y xq -+ x,(Fp)) < " diam F,

and so, (x; --- x,(F)),; is a Cauchy sequence and hence the limit exists.
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Further, if F, F, € O, then Lemmas 12.4 and 12.5 imply that
dp(x - x,(Fp), xp - x,(F,)) < " diam F .

So, the limit does not depend on F € O. [

Define ¢ : (T, P) - F by

E(x) = {Fx ifxew,

(%1 = X)Fy X = X X € W\ Wy

Notice that
g(x) = (xl xm)g(xm+1 )

for all x = x;x, --- € W and hence £ is p-equivariant.

Lemma 12.8. £ is continuous.

Proof. Fix a converging sequence y,, — x in W.
Case I: Assume X = X;X; -+ € W,. Suppose y, = ¥, 1Y, -+ Then forany j > 1, y, ; = x; for
n sufficiently large (depending on j). So, for any m > 1, Lemmas 12.4 and 12.5 imply that

lim sup d»(§(x), §(¥,,)) = limsupdy (xl X E X1 ) X1 X EQpman ))

n—oo n—oo

<e™diamF.

Since m > 1 was arbitrary and € € (0, 1), we have §(y,,) — §(x).

Case 2: Assume x = X; -+ X,, € W\ W_. We may assume that y, # x for all n. Then passing
to a tail of (y,),>,, we may assume that y, = xy --- X,,, ¥, 119, Where y, € W, y,, .1 € U, and
|Ynm+1]| = 0. Then

§(yn) =Xy xmyn,m+1§(yn)'
The word j, has to start with either y or y !, hence Lemma 12.4 implies that £(3,,) € B(F. }T ,e)xfu
B(Fy‘ ,€). S0, by our choice of ¢ > 0, any accumulation point of (§(3,,)),,» is transverse to Fy;. Thus,
since |y, 41| = o0 and A 4 (U) = {Fy}, Observation 2.5 implies that
nh—l;Ic}o g(yn) =X Xy, r}i_)ngoyn,m+1§()_}n) =X; - X, Fy = g(x)

So, £ is continuous. O
Lemma 12.9. £ is transverse.
Proof. Fixx,y € W distinct. After possibly relabeling and translating by T', it is enough to consider

the following cases.
Case I: Assume x # @,y # @, and x; # y,. Then

§(x) = x1&(xy ) and &) =y £, ).
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So Lemmas 12.4 and 12.5 imply that

EQ).E(V) € Bp(Fy,€) U By(F} ) U By(F; .©).

Since x; # y,, they are contained in different balls, and so, by our choice of € > 0, §(x) and £(y)
are transverse.

Case 2: Assume x = @ and y # @. After possibly translating by an element of U, we may also
assume that y; ¢ U. Then

g(y) € BF(F;—’e) U BP(F;s e)y
and so, £(y) is transverse to &(x) = Fy,. O
Lemma 12.10. ¢ is strongly dynamics-preserving.

Proof. Suppose that (y,),>; is an escaping sequence in I' with y, - x € Wand y, Lsyew.
We claim that

lim y,F = £(x)
n—oo

forall F € O. To thatend fix F € O.

By Lemma 12.6, we can write y, = z,12,, *** Z,,, as a reduced word in S that has no
consecutive elements in U.

Case I: Assume x = x;X, -+ € W,. Then z, ; = x; for n sufficiently large (depending on j).
For any k > 1 and n sufficiently large (depending on k), Lemmas 12.4 and 12.5 imply that

dp(ey = X F, 7, F) = dp(ey o X4 F, X e XpZp gy Zgym, F) < ¢k diam F .

So,
lim y,F = klim X, - % F =F, = &(x).
— 00

n—oo

Case 2: Assume x = x; -+ X, € W\ W,. Then passing to a tail of y,,, we can assume that z,, ; =
xjforall1 < j<m, zy,,,, €U,andlim, o |2, mi1| = 0. Let 7, 1= 2, pin =+ Zpy - 7, = id,
then by Observation 2.5

r}glgo YnE =X Xy nh_)ngo ZpmrF = Xq - X By = §(x)

since F € O is transverse to Fy; and Ay 4_(U) = {Fy}. Otherwise, if 7, # id, then z,,, ., €
{r.v™1}. So,

7nF € Bp(F),€) U Bp(F, ,€).

In particular, any accumulation point of (7,F),; is transverse to Fy;. Then, since z, ,,,; € U,
lim o0, and A, 4, (U) = {Fy}, Observation 2.5 implies that

n— o0 |Zn,m+1| =

V}Lngo Yl = X1 Xy nlggo Znmi1 ¥k = Xq - X Fy = §(x).
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Similar reasoning shows that

lim y 1 = £(y)

for all F € ©. Thus, by Observation 2.5,
lim 3,V = £5(x)

for all V € Gr,(K?) transverse to £47K(y). O

Thus, the inclusion I' & SL(d, K) is P;-Anosov relative to P = {U}.

13 | PAPPUS-SCHWARTZ REPRESENTATIONS

In [36], certain representations of the (projectivized) modular group PSL(2, Z) into PGL(3, R) were
obtained by considering the iterated application of Pappus’s theorem, from projective geometry,
on certain configurations of points and lines in the real projective plane.

Here, we establish that these representations are relatively Anosov. This mostly involves
reformulating results in [36] in the language of (relatively) Anosov representations.

We first define the configurations of points and lines we consider. Given points p,q € P(R?),
write pq to denote the projective line containing p and q. Dually, given projective lines P,Q C
P(R?), write PQ to denote the intersection of the lines P and Q. In the discussion that follows, we
identify elements of Gr,(R*) with projective lines in P(R?).

* An overmarked box is a pair of 6-tuples ((p,q,r,s,t,b),(P,Q,R,S,T,B)) in (P(R%))°®x
(Gr,(R3))® satisfying the incidence relations required by Pappus’s theorem (shown in the
following figure)

t
q
T
S b T B
p R S Q

* A marked box is an equivalence class of overmarked boxes under the involution

((p,q,r1,s,t,b),(P,Q,R,S,T,B)) = ((q, p, s, 7,t,b),(Q,P,S,R, T, B))

(corresponding to “flipping around the central axis tb”).
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* The convex interior of a marked box is the open quadrilateral with vertices p, q,r,s (in that
order). We shall not make much direct use of convex interiors of marked boxes here, but they
are useful mental tools for thinking of these objects geometrically.

Given a marked box B, let pg3 : PSL(2,Z) — PGL(3, R) be a Pappus-Schwartz representation
as defined in [36, Th. 2.4] (see also [7]). This representation is defined as follows. First, let

-1 1 0o 1
a= [_1 0] and d= [_1 0].
Then PSL(2, Z) has presentation PSL(2,Z) = (a,d : a® = d> = 1). Then:
* pyp(d) is the projective duality that sends
% = [((p’ q’ ry S’ t’b)’ (P’ QaRa Sa TaB))]

to its “dual”/“exterior” marked box

(B) :=[((s,7,p,q,b,1),(R,S,Q,P,B,T))],

and

* pyp(a) is the 3-cycle that cycles between the original box, the dual to the “top” box produced by
an application of Pappus’s theorem to B, and the dual to the “bottom” box (see [36, Fig. 2.3]).
In symbols, pg(a) sends

B =[((p,q.r,5,t,b),(P,Q,R,S, T, B))]

to
[((PS,QR, p,q,(gs)(pr), 1), (gs, pr,Q, P, (QR)(PS), T))]
to
[((s,r, PS,QR, b, (gs)(pr)), (S, R, gs, pr, B, (QR)(PS)))]
back to B.

Next, let I]-[I%R denote real hyperbolic 2-space and identify PSL(2,R) = IsomO(H%R) via the Poincaré
upper half-plane model. If we let P denote a set of representatives for the conjugacy classes of
maximal parabolic subgroups in PSL(2, Z), then PSL(2, Z) is relatively hyperbolic with respect to
P and the Bowditch boundary naturally identifies with the Gromov boundary 0, I]-I]%R of I]-[I%R.

By [36, Sec. 3.2, 3.3] (see also [7, Sec. 5.3]), there is a continuous py-equivariant map

€y = (€. E5) T 00 Hiy = P(R) X Gry(R?).
Moreover, this map is transverse [36, Th. 3.3].

The strongly dynamics-preserving property follows from the proof of [36, Lem. 4.2.3]. For the
reader’s convenience, we will derive the property directly from the statement of [36, Lem. 4.2.3].
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Lemma 13.1 [36, Lem. 4.2.3]. If (¥,,),» is a sequence in PSL(2, Z) and € > 0, then there exist N > 1
and x,y € 8., W2 such that

s () (BR) \ Np(EL(1),€)) C Bp(Eh(x). )

(where N'p and Bp denote, respectively, an open neighborhood and an open ball with respect to the
angle metric defined on P(R3) in Section 2.3).

Proposition 13.2. &g is strongly dynamics-preserving.
Proof. Suppose that (y,,),,» is a sequence in PSL(2, Z) such thaty, — x € d, I]-I]%R and y, lsye
O I]-I]%R. It is enough to verify that every subsequence of (y,,),,»; has a subsequence that verifies the
strongly dynamics-preserving property.

So, fix a subsequence (an )j>1- Replacing (an )j>1 by a subsequence, we can suppose that for

each j > 1, there exist X,y € 0o I]-I]%R such that
P (PR \ N (R (1)), 27) € Bp(Ey(x),270).
Passing to a further subsequence, we can assume that x; — x,, and y; > y,,. Then
Pp(Yn IV = £g(Xe)
forall v € P(R3) \ §é(yoo).
Fixz € 0, I]-I]%R \{x,¥, Xo» Voo - Then by the transversality, equivariance, and continuity of the
boundary map,
Ep(Xeo) = Jim pp(Vn )Eg(2) = Jim Eprn, (2) = E(x).
By Observation 2.5 and transversality,
Epeo) = lim oy )™ ().
So, a similar argument also shows that 5%(yoo) = §%(y). Thus,

Py I = E(x)

forallv € P(R3) \ §%(y). O

Hence pg is P;-Anosov relative to P.

14 | SEMISIMPLIFICATION

A representation into SL(d, K) is called semisimple if the Zariski closure of its image is a reduc-
tive group. Associated to a representation p : I' — SL(d, K), there is a natural conjugacy class of
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semisimple representations defined as follows. Let G be the Zariski closure of p(T') in SL(d, K) and
choose a Levi decomposition G = L X U, where U is the unipotent radical of G. Let p*¥ denote the
representation obtained by composing p with the projection onto L. We call any representation
in the conjugacy class of p*¥ a semisimplification of p. Since L is unique up to conjugation, this
definition does not depend on the chosen Levi decomposition.

When T is a word-hyperbolic group, it is known that p is P,.-Anosov if and only if some (any)
semisimplifcation of p is P,.-Anosov [20, Prop. 4.13]. This is quite useful, see, for instance, the proof
of Theorem 1.2 in [15] or the proof of Proposition 1.2 in [30].

In this section, we observe that the forward direction of this statement is also true for relatively
Anosov representations, while the backward direction is false.

Proposition 14.1. There exists a representation p . T — SL(d, K) of a relatively hyperbolic group
(T, P) where every semisimplification of p is P,-Anosov relative to P, but p is not P,-Anosov relative
toP.

Proof. LetT' = (a,b) < PSL(2, R) be a discrete free group where a is hyperbolic and

=[]
0 1
Then, I'is hyperbolic relative to P = {(b)}. Fixlifts d, b € SL(2,R) ofa, b € PSL(2, R) and consider
the representation p : T’ — SL(4, R) defined by

p(a) =id, ®d@ and p(b)=b @ b.
Notice that
y}im p(BM)xy Xy T x5 i x4] =[xy :0: x4 :0]
for all [x; @ x, @ x5 : x4,] € P(R*) with x, # 0 or x, # 0. So, there cannot exist a p-equivariant
strongly dynamics-preserving map into P(R%) x Gr,;_,(R%), and so, p is not P;-Anosov relative to
P. However, the representation p% : I' - SL(4, R) defined by
p*(a) =id, ®d@ and p(b) = id, ®b
is a semisimplification of p and is P;-Anosov relative to P. O

Proposition 14.2. Suppose that (T, P) is relatively hyperbolic. If p : T — SL(d, K) is P;-Anosov
relative to P, then so is every semisimplification of p.

The rest of the section is devoted to the proof of Proposition 14.2. So fix a relatively hyperbolic
group (T, P) and a representation p : I' — SL(d, K) that is P;-Anosov relative to P. Then fix a
semisimplification p of p.

If y el is a loxodromic element (see [45, Sec. 3.2]), then let y* € (T, P) denote the
attracting/repelling fixed points of y.
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Following the proof of [20, Prop. 4.13], there exists a p%-equivariant, transverse, continu-
ous map & : 9(T, P) = Gr(K%) x Gry_, (k%) with the following property (called dynamics-
preserving in [20]): if y € T is a loxodromic element, then p%(y) is P, -proximal and §§S(y+),
£d4-k(y~) are the attracting/repelling spaces of p*(y).

It remains to show that £ is strongly dynamics-preserving. We begin by showing p* is P, -
divergent.

Lemma 14.3. lim,,_, M”—k(pss(yn)) = oo for any escaping sequence (y,,),>; inT.
k+1

Proof. By Theorem 1.3, there exists a weak cusp space X for (I, P) such that p is P, -Anosov relative
to X. Fix x, € X. Then by [45, Th. 6.1] there exist «, 8 > 0 such that

2 ady(xg, y(x) — B

for all y € T. So, for y € T, we have

(eM)") = atx(y), a7

Ay %
log 7=~ A (e ) = log 7= ylog "
+1

where £y (y) :=lim,_, % dx (xg, " (x())-
Since p** is semisimple, by [20, Th. 4.12], there exist C; > 1 and a finite set F; C " with the
following property: for every y € I', there is some f € F; such that

Ci]# (50 < LGS < Cut (=), (18)

foralll1 <j<d.
Now fix an escaping sequence (y,,),5;. It suffices to consider the case when

lim —(PSS(Vn))

n—oo M

exists in R U{oo} and show that the limit is infinite. Passing to a subsequence, we can suppose
thaty, — x and y;l — y. Pick a € T such that a~!(y) & F;(x). For each n, fix f,, € F, such that
ya.of, satisfies Equation (18). Passing to a further subsequence, we can suppose that f := f, for
all n. Then y,af — x and (y,af)™' — f~la~1(y). By our choice of «, we have f~la~1(y) # x
which implies that y,a f is a loxodromic element for n sufficiently large. Further, (y,af)* — x
and (y,af)” — y. Then, since (y,af) is escaping sequence, we must have lim,_,  Zx(y,af) =
0.
Then, by Equations (18) and (17),

. M 3 . Mic g . Ak
lim ——(p%(y,)) 2 lim ——(p*(y,af)) 2 lim ——(E*(y,af)) = c.
n—oo Uy g " n—oo Uy " n=00 Ay " u

To complete the proof that &% is strongly dynamics-preserving, we recall a few results. First,
since p* is semisimple and p%(I") contains a P, -proximal element, [1] and [3, Cor. 6.3] imply that
there exist a finite set F, C I" and some C, > 0 with the following property: for every y € I', there
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is some f € F such that p*(y f) is P, -proximal and

lul luk SS
e <. 19)

Also, by [38, Prop. 2.5(1)], there exists C; > 0 such that: if ¢ € SL(d, K) is P;-proximal and V;" S
Gr, (K9) is the attracting subspace, then

Hier1 , (M1 Mg
d vt u <C ——(9). 20
Grk(Kd)( g k(9)> T ( )/11 A (9) (20)
Finally, by [10, Lem. A.4], if g, h € GL(d, K), 1, (9) > py41(9), and w (gh) > uy41(gh), then
My M+l
dgr, ity (Uk(gh), Ui(9)) < —(h) (9)- (21)
Gr(kH\YE\G k\g 1 1 9

Lemma 14.4. £ is strongly dynamics-preserving.

Proof. Fix an escaping sequence (y,),>; in I such thaty, — xand y;; ! — y. By Lemma 14.3 and

Observation 2.5, it suffices to show that U, (0%(y,,)) — £X(x) and Uy_, (0%(y,)™1) = £ ().
For each n, fix f,, € F, such that p%(y, f,) is P,-proximal and satisfies Equation (19). Then

/%(p(yn f) = %(p”(yn fn)) > 1, and hence, by Proposition 2.6(1), each y, f,, must be a

non-peripheral element of (T', P). So, by the dynamics-preserving property, 553(()/” f)) is the
attracting k-plane of p**(y,,f,.)-

Since F, is a finite set and y,, = x, we must have y, f, — x. This, in turn, implies that
¥, f)t — x. Then, by Equations (21), (20), and (19)

limsup dg, (£X (), Up(p™ (7)) = limsup Aoy, (e (E (Gt ) U@ G f )

My M

. M
< lim sup =2 (6% (y,, 1)) 3 /lk P> @) = 0.
n—-co Mg 1Ak

So, Ur(p*(y,)) = EX(x).
The proof that Uy_, (0*(y,)™!) — £47%(y) is nearly identical. O
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