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Convex co-compact groups with one-dimensional
boundary faces

Mitul Islam and Andrew Zimmer

Abstract. In this paper, we consider convex co-compact subgroups of the projective linear group.
We prove that such a group is relatively hyperbolic with respect to a collection of virtually Abelian
subgroups of rank 2 if and only if each open face in the ideal boundary has dimension at most one.
We also introduce the “coarse Hilbert dimension” of a subset of a convex set and use it to charac-
terize when a naive convex co-compact subgroup is word hyperbolic or relatively hyperbolic with
respect to a collection of virtually Abelian subgroups of rank 2.

1. Introduction

In this paper, we consider the class of (naive) convex co-compact subgroups of PGL; (R),
as defined in [13]. In earlier work [19], we proved a general, geometric characterization
of when such a group is relatively hyperbolic with respect to a (possibly empty) collec-
tion of virtually Abelian subgroups of rank at least 2. In this paper, we specialize to the
case of virtually Abelian subgroups of rank exactly 2 and provide a very simple (to state)
characterization in terms of the ideal boundary of the associated convex hull. There are
many examples of such convex co-compact groups coming from Coxeter groups and also
from deformations of hyperbolic structures on certain cusped 3-manifolds followed by a
doubling construction (see [2,4], and [13, Section 12.2]).

To state our results precisely, we need to introduce some terminology. Given a properly
convex domain Q C ]P’(Rd), the automorphism group of Q2 is defined to be

Aut(Q) := {g e PGL;(R) : g = Q}.
Then for a subgroup I' C Aut(2), the full orbital limit set of T" in Q2 is defined to be

o) = J(T-p\T:p).

PEQ

Next, let €q(I") denote the convex hull of £o(I') in . Then, convex co-compact
subgroups can be defined as follows.
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Definition 1.1 ([13, Definition 1.10]). (1) Suppose 2 C ]P’(Rd) is a properly con-
vex domain, then an infinite discrete subgroup I' C Aut(2) is called convex
co-compact when €q(T") is non-empty and I" acts co-compactly on €q(I).

(2) A subgroup I' C PGL; (R) is convex co-compact if there exists a properly convex
domain Q C ]P”(Rd) where I' C Aut(2) is a convex co-compact subgroup.

When I' is word hyperbolic there is a close connection between this class of dis-
crete groups in PGLy4 (R) and Anosov representations (see [13] for details and [12,24] for
related results). Further, by adapting an argument of Benoist [3], Danciger—Guéritaud—
Kassel established a characterization of hyperbolicity in terms of the geometry of € (T").
To state their result, we need some more definitions.

Definition 1.2. A subset S C P(Rd) is a simplex if there exist g € PGLy(R) and
0 <k <d — 1 such that

gS ={[x1 i ixpg1: 0010l € P(RY) 1 xy > 0,...,xk41 > O}

Then the dimension of S, denoted dim(S), is k (notice that S is homeomorphic to R¥)
and the (k + 1) points

g H[1:0:-:01,[0:1:0:---:0],...,[0:---:0:1:0:---:0]} C3S
are the vertices of S.

Definition 1.3. Suppose A C B C ]P’(Rd). Then, A is properly embedded in B if the
inclusion map A < B is a proper map (relative to the subspace topology).

Finally, given a properly convex domain 2 C P (Rd), let dg denote the Hilbert metric
on 2 (see Section 2.2 for the definition).

Theorem 1.4 (Danciger—Guéritaud—Kassel [13, Theorem 1.15]). Suppose 2 C ]P’(]Rd) is
a properly convex domain, I' C Aut(S2) is convex co-compact, and € := €q(I"). Then
the following are equivalent:

(1) Every point in € N 32 is an extreme point of 2.

(2) € does not contain a properly embedded simplex with dimension at least 2.
(3) (€,dgq) is Gromov hyperbolic.

(4) T is word hyperbolic.

Remark 1.5. In the special case when I" acts co-compactly on €2, Theorem 1.4 is due to
Benoist [3] and the proof in [13] follows similar arguments.

In this paper, we establish a similar theorem for groups, which are relatively hyperbolic
with respect to a collection of virtually Abelian subgroups of rank 2. To state our main
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result precisely, we introduce the following notation: given a properly convex domain
QC P(Rd) and x € Q let Fq(x) denote the (open) face of x, that is

Fa(x) = {x} U {y € Q : 3 an open line segment in Q containing x and y}.

When x € 092, we say that Fg (x) is a boundary face of dS2. Notice that Fg (x) = € when
x € Q and Fgo(x) = {x} when x € 0 is an extreme point.

Theorem 1.6 (See Section 6). Suppose 2 C P(Rd) is a properly convex domain, I' C
Aut(R2) is convex co-compact, and € := €q(I'"). Then the following are equivalent:

(1) Every boundary face of Q which intersects € has dimension at most 1.

(2) The collection of all properly embedded simplices in € with dimension 2 is closed
and discrete in the local Hausdorff convergence topology induced by dg.

(3) (€,dg) is relatively hyperbolic with respect to a (possibly empty) collection of
two-dimensional properly embedded simplices.

(4) T is a relatively hyperbolic group with respect to a (possibly empty) collection of
virtually Abelian subgroups of rank 2.

Remark 1.7. The implications (2) & (3) <& (4) = (1) follow easily from the general
results in [19] and so the difficulty is showing that (1) = (2/3/4).

Remark 1.8. There are a number of other results in the literature concerning relatively
hyperbolic groups acting on properly convex domains; see, for instance, [6-8, 10, 11, 23]
(we note the authors of [11] are currently preparing an erratum for their paper). With the
exception of [23], these results consider the case when I'\ € is non-compact and T is
relatively hyperbolic with respect to the fundamental groups of the ends (under some geo-
metric assumptions on the ends and €). There is some similarity between Theorem 1.6
and the statements in [6—8], but to the best of our knowledge, there is no non-trivial
mathematical overlap between the results.

Theorem 1.6 can be viewed as an extension of the following result of Benoist.

Theorem 1.9 (Benoist [4]). If M is a closed irreducible orientable 3-manifold and M
admits a convex real projective structure, then either

(1) M is geometric with geometry R3, R x H?, or H? or

(2) M is non-geometric and every component in the geometric decomposition is
hyperbolic.

Using Benoist’s theorem, one can deduce the following special case of Theorem 1.6.

Corollary 1.10 (To Benoist’s result). Suppose @ C P(R*) is a properly convex domain
and T C Aut(R2) is a discrete group which acts co-compactly on Q2. If every boundary face
of @ has dimension at most 1, then T is relatively hyperbolic with respect to a (possibly
empty) collection of virtually Abelian subgroups of rank 2.
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In fact, using the theory of 3-manifolds and relatively hyperbolic groups, one can
deduce Benoist’s theorem from the above corollary and so Theorem 1.6 can be viewed as
an extension of this restated version of Benoist’s theorem.

Theorem 1.6 also provides a partial answer to a question asked by Choi-Lee—Marquis.

Question 1.11 ([9, Remark 1.11]). Suppose 2 C P (Rd) is a properly convex domain and
I' C Aut(?) is a discrete group which acts co-compactly on 2. If Q is irreducible and
non-symmetric, is I" relatively hyperbolic with respect to a (possibly empty) collection of
virtually Abelian subgroups of rank at least 2?

Theorem 1.6 says the answer is yes when every boundary face of 2 has dimension at
most 1.

1.1. Naive convex co-compact subgroups

We will also prove a version of Theorem 1.6 for naive convex co-compact subgroups. This
is a larger class of groups and as such the result is, by necessity, more technical.

Definition 1.12. Suppose 2 C P(R?) is a properly convex domain. An infinite discrete
subgroup I' C Aut(2) is called naive convex co-compact if there exists a non-empty
closed convex subset € C €2 such that

(1) € is I'-invariant, that is, g€ = € forall g € I.
(2) T acts co-compactly on €.

In this case, we say that (2, €, I") is a naive convex co-compact triple.

It is straightforward to construct examples where I' C Aut(£2) is naive convex co-
compact, but not convex co-compact (see, for instance, [19, Section 2.3]). In these cases,
the convex subset € in Definition 1.12 is a strict subset of €q(I").

One key difference between convex co-compact and naive convex co-compact sub-
groups is the following: If ' C Aut(2) is a convex co-compact subgroup and € (T")
intersects an open boundary face F of 02, then F C €gq(I") (see, for instance, [13,
Section 4]). However, if (2, €, ') is a naive convex co-compact triple, then it is pos-
sible for € to intersect a boundary face without containing it entirely; see the following
example.

Example. Consider € := {[x; : x5 : x3] : x1,x2,x3 >0}, € :={[x1:y:y]: x1,y > 0},
and T' := <[ § g ((1; ]> Then, (2, €, T") is a naive convex co-compact triple. Further,
Fo([0:1:1)N€ ={[0:1: 1]}, while

Fo([0:1:1]) ={[0:x3: x3]: x2,x3 >0} ¢ €.

So when studying naive convex co-compact subgroups, it is not enough to consider
the dimension of the boundary faces of €2 which intersect the closure of convex subset €,
but the “size” of € in each boundary face.
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To make “size” precise we introduce the following definition.

Definition 1.13. Suppose Q2 C P(R?) is properly convex and open in its span. Then, the
coarse dimension of a non-empty subset A C €2, denoted by c-dimg(A), is the smallest
integer k > 0 such that there exist R > 0 and a k-dimensional convex subset B C €2 such
that

ACN@(B;R):={peQ:da(p,B) <R},

where dg is the Hilbert metric on €2. In the extremal case when 2 is a point, we define
c-dimg () := 0.

Example. Suppose 2 and € are as in the previous example. Then, for any r > 0,
c-dimg (N q(€;r)) = 1 and

C-dimpg([o;l;l])(ﬂg(f; r)N Fo(0:1: l])) = 0.

We will show that the coarse dimension of boundary faces can be used to characterize
word hyperbolic naive convex co-compact subgroups.

Theorem 1.14 (See Section 5). Suppose (2, €, T") is a naive convex co-compact triple.
Then the following are equivalent:

(1) c-dimpy () (€ N Fo(x)) = 0 forall x € € N 0.

(2) € does not contain a properly embedded simplex with dimension at least 2.
3) (€,dgq) is Gromov hyperbolic.

@) T is a word hyperbolic group.

Remark 1.15. Recall, if x € dQ is an extreme point, then Fg(x) = {x} and so
dim Fg(x) = 0. Hence, Theorem 1.14 is a naive convex co-compact analog of Theo-
rem 1.4.

For naive convex co-compact subgroups, we also prove the following analog of
Theorem 1.6.

Theorem 1.16 (See Section 7). Suppose (2, €, T") is a naive convex co-compact triple.
Then the following are equivalent:

(1) c-dimpy (€ N Fa(x)) < 1 forall x € €N Q.

(2) (€,dg) is relatively hyperbolic with respect to a (possibly empty) collection of
two-dimensional properly embedded simplices.

(3) T is a relatively hyperbolic group with respect to a (possibly empty) collection of
virtually Abelian subgroups of rank 2.
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2. Preliminaries

2.1. Convexity

In this section we recall some standard definitions related to convexity in real projective
space.

Definition 2.1. (1) AsubsetC C ]P’(]Rd) is convex if there exists an affine chart A of
P(Rd) where C C A is a convex subset.

(2) AsubsetC C P (Rd) is properly convex if there exists an affine chart A of P (Rd)
where C C A is a bounded convex subset.

(3) When C is a properly convex set which is open in P(Rd), we say that C is a
properly convex domain.

Notice that if C C P(Rd) is convex, then C is a convex subset of every affine chart
that contains it.

A line segment in P(Rd) is a connected subset of a projective line. Given two points
X,y € P(Rd) there is no canonical line segment with endpoints x and y, but we will use
the following convention: If C C P (]Rd) is a properly convex set and x, y € C, then (when
the context is clear) we will let [x, y] denote the closed line segment joining x to y which is
contained in C. In this case, we will also let (x, y) = [x, y] \ {x, v}, [x.y) =[x, y] \ {¥},
and (x, y] = [x, ]\ {x}.

Along similar lines, given a properly convex subset C C P(Rd) and a subset X C C,
we will let

ConvHull¢ (X)

denote the smallest convex subset of C which contains X .

If ¥ c R? is a non-zero linear subspace, we will let P (V) C ]P’(Rd) denote its pro-
jectivization. For a non-empty set X C P(RY), P (Span(X)) is the projectivization of the
linear span of X .

We also make the following topological definitions.

Definition 2.2. Suppose C C P(Rd) is a properly convex set. The relative interior of C,
denoted by relint(C), is the interior of C in P(Span C). In the case that C = relint(C),
then C is said to be open in its span. The boundary of C is dC := C \ relint(C), and the
ideal boundary of C is

9,C :=dC \ C.

Finally, we define dim C to be the dimension of relint(C) (notice that relint(C) is
homeomorphic to R4 ),
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Recall from Definition 1.3 that a subset A C B C P(R%) is properly embedded if the
inclusion map A < B is proper. If B is a properly convex set, then we have another char-
acterization of properly embedded subsets using the notation in Definition 2.2: A C B is
properly embedded if and only if 9; A C 0; B.

2.2. The Hilbert metric and faces

Suppose 2 C P(Rd) is a properly convex domain. For distinct points x, y € 2, let Xy
be the projective line containing them and let a, b be the two points in Xy N 2 ordered
a,x,y,b along Xy. Then, the Hilbert distance between x and y is defined to be

1
do(x,y) = EIOg[a,x,y,b],

where

_blly —
[a,x,y’b]zw
|x —ally — bl

is the projective cross ratio. It is a complete Aut(£2)-invariant proper metric on £2 generat-
ing the standard topology on 2. Moreover, if x, y € €, the projective line segment [x, y]
is a geodesic joining x and y.

For x € @ we will let

Balxir):={y € Q:da(y.x) <r},
and for A C @ we will let
Na(A;r) :={y € Q:da(y,A) <r}.

Recall (from the introduction) that given a properly convex domain 2 C ]P’(Rd) and
x € Q the open face of x is

Fq(x) = {x} U {y € Q : 3 an open line segment in  containing x and y}.
Given a subset X C €2, we then define

Fo(X):= | Fa(x).

xeX
The following observations follow immediately from convexity and the definitions

(also see Appendix A).

Observation 2.3. Suppose 2 C P(Rd) is a properly convex domain.
(1) Fg(x) is convex and open in its span.
(2) y € Fa(x) ifand only if x € Fo(y) if and only if Fa(x) = Fa(y).
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3) If y € 0Fq(x), then Fq(y) C 0Fq(x).
@) Ifx,y € Q, ze (x,y), p € Fo(x), and q € Fg(y), then
(p.q) C Fa(2).
In particular, (p,q) C Q if and only if (x,y) C Q.
Directly from the definition of the Hilbert metric, one obtains the following.

Proposition 2.4. Suppose Q C ]P’(Rd) is a properly convex domain, (Xp)p>1 is a

sequence in Q, and limp oo Xp = X € Q. If (Yu)n>1 is another sequence in 2,
limy 0o Yy =y € Q, and

liminfdg (x,, yn) < +00,

n—oo

then y € Fq(x) and

dro ) (x,y) < liminfdg (x,, ya).
n—>oo

2.3. The center of mass of a compact subset

It is possible to define a “center of mass” for a compact set in a properly convex domain.
Let K 4 denote the set of all pairs (2, K) where @ C P (Rd) is a properly convex domain
and K C 2 is a compact subset.

Proposition 2.5. There exists a function
(Q,K) € X4+ CoMg(K) € P(RY)

such that

(1) CoMgq(K) € ConvHullg (K),

(2) CoMgq(K) = CoMg (ConvHullg (K)), and

(3) if g € PGL4(R), then gCoMgq(K) = CoM,q(gK),
for every (2, K) € Kg.

Proof. There are several constructions of such a center of mass (see, for instance, [20,
Lemma 4.2] or [18, Proposition 4.5]). The approach in [18] is based on an argument of
Frankel [16, Section 12] in several complex variables. [

2.4. The Hausdorff distance

Recall that when (X, d) is a metric space, the Hausdorff pseudo-distance between two
subsets A, B C X is defined by

dHa“S(A, B) = max{sup inf d(a, b), sup inf d(a, b)}
acAbeB beB a€A
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when A and B are both non-empty, and d"®(4, B) = oo otherwise.

The Hausdorff pseudo-distance is very useful when considering compact subsets:
When (X, d) is a complete metric space, d% is a complete metric on the set of non-
empty compact subsets of X . This pseudo-distance is less useful when dealing with closed
sets, as the next example demonstrates.

Example 2.6. Consider R? with the Euclidean distance. Let B, := Bpr2((0,n);n) be
the closed ball of radius n centered at (0,n) and let H := {p = (x,y) €e R> : y > 0}
be the closed upper half plane. In any reasonable topology on closed sets one would
like the sequence B, to converge to H. Unfortunately, with respect to the Hausdorff
pseudo-distance one has, for all #,

d"s(B,, H) = .

2.5. Local Hausdorff convergence topology

In this section we recall a useful topology on the set of non-empty closed subsets of a met-
ric space. This can be interpreted as a localization of the Hausdorff pseudo-distance that
we discussed above. The topology we describe is a natural extension of the topology on
compact subsets determined by the Hausdorff distance and has been used extensively in
different areas of mathematics (e.g., see Hruska—Kleiner’s [17] work in CAT(0) geometry
or Frankel’s work in several complex variables [16]).

Let €(X) denote the set of all non-empty closed subset of a metric space (X, d). For
any x € X and r > 0, we will denote the metric r-neighborhood of x by

Bx(x;r)={y e X :dx,y) <r}.

Definition 2.7. For a closed set Cy C X, a base point xo € X, and rg, &9 > O define the
set U(Cy, xo, Ig, €9) to consist of all closed subsets C C X where

d12s(Co N By (x0:70), C N By (x0:70)) < €o.

The local Hausdorff convergence topology on € (X) (induced by the metric d on X) is the
topology generated by the sets U(-, -, -, ).

When the metric space (X, d) is clear from context, we will often simply refer to this
as the local Hausdorff topology induced by d for brevity.

Remark 2.8. There are other well-known topologies on the space of non-empty closed
subsets of a metric space, for instance the Chabauty topology [1, 5].

Example 2.9. Assume the same set-up and notation as in Example 2.6. Then, B, con-
verges to H in the local Hausdorff convergence topology on € (R?) (see Corollary 2.12
below).
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We note that when the metric space (X, d) is proper, the local Hausdorff convergence
topology is second countable.

Observation 2.10. If (X, d) is a proper metric space, then the local Hausdorff conver-
gence topology on €(X) is second countable.

Proof. Since (X, d) is proper, it has a countable dense subset A C X . Fix an enumeration
Q N(0,00) = {ry}. Then, for eachn € N and a € A, the set

Cpa:=1{K: K compactand K C By(a;r,)}

endowed with the Hausdorff distance is a compact metric space. Hence, €, , has a
countable dense subset By ,. Then,

{U(C,a,r,,,m_l) cacA,nmeN, C e B, q)
is a countable basis for the local Hausdorff convergence topology. ]
Based on the definition of the topology, one might expect that C;,, — C if and only if

lim d"%(C, N Br(xo:7),C N Br(x0;7)) =0
n—>0oo

for all xo € X and r > 0. However, the next example demonstrates that one has to be
careful with the choice of xo € X and r > 0.

Example. Consider R with the Euclidean distance. Let C,, :={1/n} C R and C := {0}.
One can show that C,, — C in the local Hausdorff convergence topology (see Corol-
lary 2.12); however, if xo = 1 and r = 1, then

dHaUS(Cn a) 0{[3R('X0; r), CnN BR(Xo; V)) = dHauS(Cn, 0) =0
foralln > 1.

The next observation makes this naive characterization of convergence precise.

Observation 2.11. Suppose (X, d) is a proper metric space and (Cp)n>1 is a sequence
of closed sets in X. Then, C,, — C in the local Hausdorff convergence topology if and
only if

lim d"(C, N Bx(xo:7),C N Bx(x0;r)) =0

n—>00

forallxg € X andr > 0, where C N Bx (xo,r) # 0.

Proof. (<): Fix xg € X and r > 0 such that C N By (xg,r) # @. Then fix ¢ > 0. Since

C e U(C,xp,r1,8),
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there exists N > 1 such that C,, € U(C, xq,r,¢) foralln > N. Then,

lim sup d™(C,, N By (xo;7), C N Bx(x0:7)) < ¢

n—-oo

by the definition of U(C, x¢, r, €). Since ¢ > 0 was arbitrary, we see that
lim d™(C, N By (xo:7),C N Bx(xo;r)) = 0.
n—>0o0

(=): Fix an open set U, in the local Hausdorff convergence topology, that contains C.
Then, by the definition of the topology, there exist xo € X and rg, &g > 0 such that

C e U(C,xgp,r9,80) C U.
In particular, C N By (xo;ro) # @. Thus, by hypothesis,
Jim d"s(C, N Bx (x0:70), C N Bx (x0:70)) = 0.
Then for n sufficiently large, we have
C, e U(C,x9,r9,80) C U.
Thus, C,, — C. [

As a corollary to this observation, we have the following.

Corollary 2.12. Suppose (X, d) is a proper metric space and C, — C in the local
Hausdorff convergence topology. If p € X, then the following are equivalent:

() peC.

(2) There exists a sequence (pn)n>1 in X such that p, € C, for all n and p, — p.
Proof. Fixr > 0such that C N Bx (p,r) # 0. Then, by Observation 2.11,
lim d"™(C, N Bx(p;r),C N Bx(p;r)) =0,
n—o0

which implies the desired equivalence. ]

Besides the properties mentioned above, the only other property of the local Hausdorff
convergence topology we will use in this paper is the following.

Proposition 2.13. Suppose Q2 C P(Rd) is a properly convex domain. Then, the set of
properly embedded simplices in Q2 of dimension at least 2 is closed in the local Hausdorff
convergence topology induced by dg.
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Proof. This follows from [19, Observation 3.20], but we provide a proof for the reader’s
convenience.

Suppose (S,)n>1 is a sequence of properly embedded simplices in €2 of dimension at
least 2 which converges to a closed subset S in the local Hausdorff convergence topology
induced by dg. Passing to a subsequence we can suppose that dim S,, = k for all n.

Let vi"), e v,(c") be the vertices of S,,. Passing to a subsequence we can suppose that
v](.") — vj for all j. To show that S is a properly embedded simplex of dimension k it

suffices to show that
(a) vi,..., v are linearly independent.
(b) S = relint ConvHullg({vy, ..., vk}).
(©) QNP(Span{vi,...,vj—1,Vj41,...,0}) =@ foral j =1,... k.

First, we verify (c). Since each S, is a properly embedded simplex,

Qn ]P(Span {vY’), ) ..,v](-n_)l,vj(-'jr)l,...,v](:’)}) =
forall j = 1,...,k andn > 1. So sending n — oo and using the fact that €2 is open, we
see that
Q N P(Span{vy,...,v;—1,Vj41,...,0}) =0 D

forall j = 1,...,k. This verifies (c).
Since each S, is a properly embedded simplex,

S, = relint Coanullg({vin), o v,(cn) })

So taking limits and using Corollary 2.12, we see that

S = Q N ConvHullg({vy, ..., vg}). 2)
Next, we verify (a). Suppose vy, ..., vx are not linearly independent. Then, v; €
P(Span{vy,...,vj—1,Vj+1,..., V¢ }) for some j. Then, using equations (1) and (2), we

have
S C ConvHullg({v1,...,v}) C P(Span{vy, ..., vj—1,Vj41,...,v}) C P(RY)\ Q,

which is a contradiction. Thus, (a) is true.
Finally, we verify (b). By equation (2), it suffices to show that

relint ConvHullg ({vy, ..., v¢}) C Q.
Suppose not. Then, there exists
X € (relint Coanullﬁ({vl, e, vk})) \ Q.

Since €2 is convex, there exists a projective hyperplane H such that x € H and
H N Q =0. Equation (2) implies that H intersects P (Span{vy, ..., vg}) transversally, that
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is, P(Span{vy, ..., vt }) ¢ H (otherwise S C P(Span{vy,...,vt}) C H C P(RY) — Q,
a contradiction).

On the other hand, v](.") — vj, the lines vy, ..., v are linearly independent, and
x € relint ConvHullg{v1, ..., vg} N H. Thus, the hyperplane H non-trivially intersects

Sy = relintConVHullﬁ({vY‘)’ L vl(cn)})

for n large. This is impossible since S, C €2 and thus (b) is true. ]

2.6. Properly embedded simplices

In this section we record some basic facts about properly embedded simplices in a properly
convex domain.

The following result is a simple consequence of any of the explicit formulas for the
Hilbert metric on a simplex (see [21, Proposition 1.7], [14], or [22]).

Proposition 2.14. If Q C ]P’(]Rd) is a properly convex domain and S C Q is a properly
embedded simplex, then (S, dg) is quasi-isometric to RE™ S,

The faces of a properly embedded simplex are themselves properly embedded
simplices in the boundary faces that contain them.

Observation 2.15. Suppose Q C }P’(Rd) is a properly convex domain and S C Q2 is a
properly embedded simplex. If x € 0S, then

(a) Fs(x) is a properly embedded simplex in Fg(x).
(b) Fs(x) =S N Fa(x).

Proof. See, for instance, [19, Observation 5.4]. [

Definition 2.16. Suppose Q2 C P (Rd) is a properly convex domain. Two properly embed-
ded simplices S, S> C Q2 are called parallel if dim S7 = dim S, and there is a labeling
V1, ..., Vp of the vertices of S7 and a labeling wy, ..., w, of the vertices of S, such that
Fo(vg) = Fo(wg) foralll <k < p.

The following lemma allows us to “wiggle” the vertices of a properly embedded
simplex and obtain a new parallel properly embedded simplex.

Lemma 2.17. Suppose Q@ C P(R?) is a properly convex domain and S C S is a properly
embedded simplex with vertices vy, ..., vp. If w; € Fq(vj) for1 < j < p, then

S":= Q@ NP(Span{wy, ..., wp}) = relint ConvHullg(wy, ..., wp,)
is a properly embedded simplex with vertices wy, . .., wp. Moreover,

dias(s, 8%y < 1I<nja§p dFg (v (V) > w)).

Proof. See, for instance, [19, Lemma 3.18]. [
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3. Relative hyperbolic convex co-compact groups

In this section we recall some properties of general relatively hyperbolic spaces/groups
and also recall some of the results from [19].

3.1. General relatively hyperbolic groups

We define relative hyperbolic spaces and groups in terms of Drutu and Sapir’s tree-graded
spaces (see [15, Definition 2.1]).

Definition 3.1. (1) A complete geodesic metric space (X, d) is relatively hyperbolic
with respect to a collection of subsets § if all its asymptotic cones, with respect
to a fixed non-principal ultrafilter, are tree-graded with respect to the collection of
ultralimits of the elements of §.

(2) A finitely generated group G is relatively hyperbolic with respect to a family of
subgroups {Hy, ..., Hi} if the Cayley graph of G with respect to some (hence
any) finite set of generators is relatively hyperbolic with respect to the collection
of leftcosets {gH; : g € G,i =1,...,k}.

Remark 3.2. These are one among several equivalent definitions of relatively hyperbolic
spaces/groups; see [15] and the references therein for more details.

If (X, d) is a metric space, we will use the following notation for metric tubular
neighborhoods: if A C X and r > 0, then

Nx(A;r):={x € X :d(x,A) <r}.
We will frequently use the following property of relatively hyperbolic spaces.

Theorem 3.3 (Drutu—Sapir [15, Corollary 5.8]). Suppose (X, d) is relatively hyperbolic
with respect to S. Then, forany A > 1 and B > 0, there exists M = M (A, B) such that if
k>2and f : R*¥ - X isan (A, B)-quasi-isometric embedding, then there exists some
S € 8§ such that

f(RF) c Nx(S; M).

3.2. Convex co-compact relatively hyperbolic groups

Next we recall some of the results in [19] describing the structure of (naive) convex co-
compact groups which are relatively hyperbolic with respect to a collection of virtually
Abelian subgroups of rank at least 2.

In the convex co-compact case we have the following characterization and structural
results.
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Theorem 3.4 ([19, Theorems 1.7 and 1.8]). Suppose Q C ]P’(Rd) is a properly convex
domain, I' < Aut(2) is convex co-compact, and S . is the family of all maximal prop-
erly embedded simplices in €q(I') with dimension at least 2. Then the following are
equivalent:

(1) 8 max is closed and discrete in the local Hausdorff convergence topology induced
by dq.

(2) T is a relatively hyperbolic group with respect to a collection of virtually Abelian
subgroups of rank at least 2.

3) (€q(I),dg) is a relatively hyperbolic space with respect to S max.

@) (€q('),dg) is relatively hyperbolic with respect to a collection of properly
embedded simplices of dimension at least 2.

Moreover, when $ wax is closed and discrete in the local Hausdorff convergence topology
induced by dg, then:

(a) T has finitely many orbits in 8 .

(b) If S € Syax, then Stabr(S) acts co-compactly on S and contains a finite index
subgroup isomorphic to Z* where k = dim S.

(¢) If {S1,...,Sm} are representatives of the T'-orbits in § ., then T is a relatively
hyperbolic group with respect to {Stabr (S1), ..., Stabr(S;,)}.

(d) If A < T is an infinite Abelian subgroup with rank at least 2, then there exists a
unique S € 8 nax with A < Stabr(S).

() If S € Syax and x € 0S8, then Fq(x) = Fs(x).
f) If S1, S € Smax are distinct, then #(S1 N S3) < 1 and 0S; N 4SS, = 0.
(g) Foranyr > 0 there exists D(r) > 0 such that if S1, S2 € 8 max are distinct, then

diamg (N (S1:r) N Na(S2:7)) < D(r).

(h) If £ C 0; €q(I") is a non-trivial line segment, then there exists S € §pax with
£ CaS.

In the naive convex co-compact case, we established a similar characterization and
structural results. However, they are much more technical. The main issue is that there
can exist bounded families of parallel properly embedded simplices (see, for instance,
[19, Section 2.3]). So the group being relative hyperbolic with respect to a family of vir-
tually Abelian subgroups of rank at least 2 is not equivalent to the set of all properly
embedded simplices being closed and discrete. Instead, it is equivalent to the existence
of a I'-invariant family of properly embedded simplices which is closed, discrete, and
which coarsely contains every properly embedded simplex. This is made precise in the
next definition.
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Definition 3.5 ([19, Definition 1.11]). Suppose (€2, €, I') is a naive convex co-compact
triple. A family § of maximal properly embedded simplices in € of dimension at least 2
is called:

(1) Isolated, if S is closed and discrete in the local Hausdorff convergence topology
induced by dg.

(2) Coarsely complete, if any properly embedded simplex in € is contained in a
uniformly bounded tubular neighborhood of some properly embedded simplex
ins.

(3) T-invariant,ifg-S € S forall S e Sandg €T

We say that (2, €, I') has coarsely isolated simplices if there exists an isolated, coarsely
complete, and I"-invariant family of maximal properly embedded simplices.

We then have the following characterization of relative hyperbolicity (with respect to
a family of virtually Abelian subgroups of rank at least 2) in the naive convex co-compact
case.

Theorem 3.6 ([19, Theorem 1.13]). Suppose (2, €, ') is a naive convex co-compact
triple. Then the following are equivalent:

(1) (2,€,T) has coarsely isolated simplices.

(2) (€,dg) is a relatively hyperbolic space with respect to a family of properly
embedded simplices in € of dimension at least 2.

(3) T is a relatively hyperbolic group with respect to a family of virtually Abelian
subgroups of rank at least 2.

The naive convex co-compact case has one more delicate point: If (2,€, I') is a naive
convex co-compact triple and S is a family of properly embedded simplices satisfying
Definition 3.5, then it is not always true that (€, dg) is relatively hyperbolic with respect
to § (see [19, Observation 2.10] for examples).

Instead one requires an even stricter isolation property: We say that a family of sim-
plices § in a properly convex domain £2 is strongly isolated, if for every r > 0, there exists
D(r) > 0 such that if S1, S, € § are distinct, then

diamg (N o (S1:7) N Na(S2:7)) < D(r).

It is straightforward to see that a strongly isolated family of simplices is indeed isolated.
However, the converse is not true in general (see Section 2.3, mainly Observation 2.10, in
[19]). But we proved in [19] that one can modify a coarsely isolated family of simplices
to construct a strongly isolated family of simplices.

Theorem 3.7 ([19, Theorem 1.17]). Suppose (2, €, ') is a naive convex co-compact
triple with coarsely isolated simplices. Then, there exists a strongly isolated, coarsely
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complete, and T'-invariant collection of properly embedded simplices in € of dimension
at least 2.

We also proved the following.

Theorem 3.8 ([19, Theorems 1.18 and 1.19]). Suppose (2,€, ") is a naive convex
co-compact triple with coarsely isolated simplices. If S is a strongly isolated, coarsely
complete, and T -invariant collection of properly embedded simplices in € of dimension
at least 2, then

(1) (€,dgq) is relatively hyperbolic with respect to S.

) If S € 8, then Stabr(S) acts co-compactly on S and contains a finite index
subgroup isomorphic to Z* where k = dim S.

(3) T has finitely many orbits in §.

@) If {S1, ..., Sm} are representatives of the T"-orbits in S, then T is a relatively
hyperbolic group with respect to {Stabr (S1), ..., Stabr(S;;)}.

5) If A < T is an Abelian subgroup with rank at least 2, then there exists a unique
S € § with A < Stabr(S).

(6) There exists D > 0 such that if S € § and x € 3S, then
e (€ N Fa(x), Fs(x)) < D.
(7) If S1, S € S are distinct, then #(S1 N S3) < 1 and

( g Fg(x))ﬁ( ¥ Fg(x)) = .

anSl anSZ

4. Properties of coarse dimension

In this section we make some basic observations about the coarse dimension (see
Definition 1.13).

Observation 4.1. Suppose Q2 C ]P’(]Rd) is a properly convex domain. If S C Q is a
properly embedded simplex, then

c-dimp,, (x)(Fs(x)) = dim Fs(x)
forallx € S.

Proof. If Fg(x) is a point, then there is nothing to prove. So we can assume dim Fs(x) =
k > 0. Then, Fs(x) is a properly embedded simplex in Fg (x) by Observation 2.15.
Suppose D C Fgq(x) is a convex subsets with

Fs(x) C N pom)(D: R)
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for some R > 0. Let vy, ..., vk+1 € 0Fs(x) denote the vertices of S in Fs(x). Then, by
Proposition 2.4, for each j € {1,...,k + 1} there exists

w; € Fq(vj) N D.
By Lemma 2.17,
S’ := relint ConvHullg (w1, ..., wk4+1) C D
is a k-dimensional properly embedded simplex in Fg (x) and so
dim D > dim S’ > k = dim Fg(x). ]

Observation 4.2. Suppose Q C ]P’(Rd) is a properly convex domain and € C Q is a
convex subset. If 0; € # @, then

c-dimg(€) > 1 + max c-dimpg (x) (0i € NFq(x)).
X €0

Proof. Suppose D C 2 is a convex subset with dim D = c-dimg (€) and
€ C Nqg(D;R)
for some R > 0. Fix x € 0; € and let D, := D N Fq(x). Proposition 2.4 implies that
i €NFQ(x) C NFrym)(Dx: R+ 1)
and hence, by definition,
c-dimp, (x)(0i € NFQ(x)) <dim Dy < -1 +dim D = —1 + c-dimg(€). [

Observation 4.3. Suppose Q@ C P (Rd) is a properly convex domain and € C Q2 is a con-
vex subset. If there exist X1, X, X3 € 0; € such that Fo(x1), Fa(x2), Fo(x3) are pairwise
distinct, then

c-dimg (€) > 2.
Proof. Suppose not. Then, there exists a convex subset D C 2 where dim D < 1 and
€ CNg(D;R)
for some R > 0. Then, by Proposition 2.4, for each j € {1, 2, 3} there exists
y; € Fo(x;)N'D C &; D

By assumption y;, y», y3 are pairwise distinct. However, since dim D < 1 the set d; D
contains at most two points. So we have a contradiction. ]
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Next we show that a certain configuration of points in the ideal boundary of a naive
convex co-compact triple implies that the boundary contains a face with coarse dimension
at least 2.

Proposition 4.4. Suppose (2,€, ") is a naive convex co-compact triple. If there exist
distinct points x, y1, ¥2, y3 € 0; € such that

[x, y1] U [x, y2] U [x, y3] C 9
and
(1, y2) U (y2,y3) U (y3. 1) C 2,
then there exists w € 0; € with
c-dim pg, (1) (3 € NFg(w)) > 2.

Proof. Fix u € relint ConvHullg(y1, y2,¥3),a € (¥1,¥2), b € (y2,y3), and ¢ € (y3, y1).
Then, we can find sequences u, € (x,u), a, € (x,a), b, € (x,b), and ¢, € (x,c) all
converging to x such that

dQ(ul’l’ an) S dQ(u’a)* dQ(unabn) S dQ(u,b), and dQ(una Cn) f dQ(uaC)

for all n.
By passing to a subsequence we can find y,, € T" such that y,u, — & € € and

Ynlns Ynbn, YnCn, YnX, Yn Y1, ¥nY2, Yny3 = 4, b,C. X, Y1, Y2, 3.
Then
[X, 1] U[X, 2] U [X, 35] C 0i €
and by our choice of sequences a, 5, ¢ € €. Also, since u,, — x € 02, we have
lim dg (un, 2 N ConvHullg(y1. y2, y3)) = 00
n—->oo
and so
COHVHullﬁ(j)\l, )/1\2, )/1\3) Cco €.

Fix w € relint ConvHullg(y1, y2, y3) C 9; €.

Claim 1. (X,w) C Q.
Since

u € Q N ConvHullg(X, ¥1, y2, V3)

convexity implies that (X, w) C Q.
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Claim 2: 51\1, 51\2, 5/\3 S aFQ (U))
By construction, ¥y, J», y3 € Fo(w). Fix j € {1, 2, 3}. Since (X, w) C  and
[X, ¥;] C 02, Observation 2.3 part (4) implies that ; ¢ Fo(w). So J; € dFq(w).

Claim 3: Fq(V1), Fa(32), Fa(33) are pairwise distinct.
By symmetry it is enough to show that Fq(y;) and Fq(¥,) are distinct. If not, then
(V1. 321 C Fa(y2).
Since [X, y1] C 9K, Observation 2.3 part (4) then implies that
ConvHullg(X, y1, y2) C 0Q.

However, a € € C Q is contained in this convex hull and hence we have a contradiction.

Claim 4: c-dim g () (0 € NFq(w)) > 2.
This follows immediately from Claim 2, Claim 3, and Observation 4.3. [

5. Proof of Theorem 1.14

In this section we prove the following extension of Theorem 1.14.

Theorem 5.1. Suppose (2,€,T') is a naive convex co-compact triple. Then the following
are equivalent:

(1) There exists R > 0 such that diam g, (x)(0; € NFq(x)) < R forall x € 9; €.
(2) c-dimp,(x) (0 € NFq(x)) =0 forall x € 9; €.

(3) € does not contain a properly embedded simplex with dimension at least 2.
@) (€,dgq) is Gromov hyperbolic.

(5) T is a word hyperbolic group.

By definition (1) = (2), by Observation 4.1 (2) = (3), by Proposition 2.14 (4) = (3),
and by the Svarc-Milnor lemma (4) < (5). We will complete the proof by showing that
3)= (1) and (2) = (4).

In the convex co-compact case, it is well known that a line segment in the ideal bound-
ary implies the existence of a properly embedded simplex. This is given explicitly in [13,
Lemma 6.2] using a proof nearly identical to [3, Proposition 2.5] and [4, Lemma 3.9].
Unfortunately, simple examples show that this observation fails in the naive co-convex co-
compact case (see [19, Section 2.3]). The next lemma uses Benoist’s argument to establish
a more technical condition to guarantee that the existence of a properly embedded simplex.

Lemma 5.2 ((3) = (1)). If (R, €, ) is a naive convex co-compact triple and

sup diampg, (x)(0; € NFq(x)) = +o00, 3)
xX€0; €

then € contains a properly embedded two-dimensional simplex.
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Remark 5.3. In the convex co-compact case, one can show that if d; € N Fq(x) # @, then
Fq(x) C 0; € (see, for instance, [13, Section 4]). So in this special case, equation (3) is
equivalent to the condition that d; € contains a line segment.

Proof. Fix a sequence (x,),>1 in d; € such that
diamp (x,)(0; € NFq(x,)) > n
for all n. Then fix a,, b, € 0; € NFgq(x,) with
dFg(x,) (@n, bp) > n.

We can assume that x,, is the midpoint of [a,, b,] relative to the Hilbert distance d g, (x,)-
Also fix some pg € €.

Claim: For each n there exists y, € [po, X,) C € such that
mln{dQ (Yn, [va an))» dQ (Yn, [va bn))} > n/2

Fix n and suppose not. Then, we can find X, m € [po, Xn), dn.m € [Po, an), and
bn,m € [po, by) such that lim,; 00 X4,m = X, and

do (xn,m.{an,m, bum}) <n/2 forallm.
By passing to a subsequence and possibly relabeling a,, b,,, we can assume that
do (Xn,m. {an,m, bn,m}) = de(Xn,m,anm) <n/2 forall m.
Then, we must have lim,;,— o an,m = a, and by Proposition 2.4

n/2 > limsupd (Xn,m, Anm) = dFg(x,) (Xn,an) > n/2.
m—00

So we have a contradiction and hence the claim is established.
Next let (yn)n>1 be a sequence in I" such that {y,y, : n > 1} is relatively compact
in €. By passing to subsequences, we can suppose that

YnYn:YnGn. Ynbn.Ynpo — y.a.b. p € €.
Then y € €, by construction [a, b] C 9; €, and by the claim
[b,plU[p,al C%C.
So a, b, p are the vertices of a properly embedded simplex S C € which contains y. =

To show that (2) = (4), we will use the following sufficient condition for a metric to
be Gromov hyperbolic.



M. Islam and A. Zimmer 22

Proposition 5.4. Suppose (X,d) is a proper geodesic metric space, § > 0, and there exists
a map

(x,9) € X x X > 0y, € C([0,d(x, )], X).

where oy is a geodesic joining x to y. If for every x,y,z € X distinct, the geodesic
triangle formed by ox.y, 0y 5,05 x is 8-thin, then (X, d) is Gromov hyperbolic.

Proof. This proposition is a straightforward and well-known consequence of the Gromov
product definition of Gromov hyperbolicity (see, for instance, [24, Proposition 2.2] for a
detailed proof). ]

Lemma 5.5 ((2) = (4)). Suppose (2, €, T') is a naive convex co-compact triple. If
c-dimpg () (0i € NFq(x)) =0
for all x € 0; €, then (€,dg) is Gromov hyperbolic.

Proof. By Proposition 5.4 it suffices to show that there exists 6 > 0 such that every
geodesic triangle in (€, dg) whose sides are line segments is §-thin. Suppose not. Then,
for every n > 0, there exist a,, b,, ¢, € €, and u,, € [a,, by] such that

do(un, [an, cn] U [cn, br]) > n. 4)
By translating by I" and passing to a subsequence, we can suppose that u, — u € € and
an. by, cn > a,b,ce €.
By equation (4) we must have
[a,c]U[c,b] C 0; €

and by construction we have u € [a, b]. Then, (a,b) C Q2 since u € Q.
Since [a, c] U [c, b] C dQ2 and (a, b) C 2, Observation 2.3 part (4) implies that
¢ € 0Fg(a). Then, Observation 4.2 implies that

c-dim g ) (8 € NFg(a)) > 1

and we have a contradiction. [

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6 which we restate here.

Theorem 6.1. Suppose Q2 C P(Rd) is a properly convex domain, I' C Aut(S2) is convex
co-compact, and € := €q(T"). Then the following are equivalent:
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(1) Every boundary face of Q which intersects € has dimension at most 1.

(2) The collection of all properly embedded simplices in € with dimension 2 is closed
and discrete in the local Hausdorff convergence topology induced by dg.

3) (€,dq) is relatively hyperbolic with respect to a collection of two-dimensional
properly embedded simplices.

(4) T is a relatively hyperbolic group with respect to a collection of virtually Abelian
subgroups of rank 2.

For the rest of the section suppose that Q C P(Rd) is a properly convex domain,
I' C Aut(Q2) is convex co-compact, and € := €q(I").
The implications (2) = (3) = (4) = (2) are easy applications of Theorem 3.4.

6.1. Proof of implication (2) = (3)

Suppose that the collection of all properly embedded simplices in € with dimension 2 is
closed and discrete in the local Hausdorff convergence topology induced by dg.

Then, every properly embedded simplex in € has dimension at most 2. So the col-
lection of all properly embedded simplices in € with dimension at least 2 coincides
with the collection of all properly embedded simplices in € with dimension 2. So The-
orem 3.4 implies that (€, dg) is relatively hyperbolic with respect to a collection of
two-dimensional properly embedded simplices.

6.2. Proof of implication (3) = (4)

Suppose that (€, dg) is relatively hyperbolic with respect to a collection § of two-
dimensional properly embedded simplices.

We claim that every properly embedded simplex in € has dimension at most 2. Sup-
pose that S C € is a properly embedded simplex with dimension at least 2. Then, (S, dg)
is quasi-isometric to RY™S (see Proposition 2.14). So by Theorem 3.3 there exist S’ € §
and R > 0 such that S C N q(S’; R). Since (S, dg) is quasi-isometric to R? we must
have dim S = 2.

Then, by Theorem 3.4 part (c), I' is a relatively hyperbolic group with respect to a
collection of virtually Abelian subgroups of rank 2.

6.3. Proof of implication (4) = (1)

Suppose that I' is a relatively hyperbolic group with respect to { Hy, ..., Hp,} where each
Hj is a virtually Abelian subgroup of rank 2.

Let S max denote the family of all maximal properly embedded simplices in €q (") of
dimensional at least 2.

Fix w € 0; €. We will show that dim Fg(w) < 1. It suffices to consider the case when
dim Fg(w) > 0. Then, Theorem 3.4 parts (¢) and (h) imply that there exists a simplex
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S € Smax such that Fo(w) C dS. Notice that dim S > 1 + dim Fg(w) and (S, dg) is
quasi-isometric to RIS see Proposition 2.14.

Fix some p € €. By the Svarc—Milnor lemma and Theorem 3.3, there exists a coset
gHj such that S is contained in a bounded neighborhood of gH; - p in (€, dg). Since H;
is virtually isomorphic to 72, we must have dim S = 2. Thus,

dim Fo(w) < —1+4+dimS = 1.

Since w was an arbitrary point in 9; €, every boundary face of € which intersects €
has dimension at most 1.

6.4. Proof of implication (1) = (2)

Suppose that every boundary face of € which intersects € has dimension at most 1.

Then, € does not contain any properly embedded simplices with dimension 3 or
more. Hence, using Theorem 3.4, it is enough to show that the collection of all properly
embedded two-dimensional simplices in € is closed and discrete in the local Hausdorff
convergence topology induced by dg.

Lemma 6.2. [f{ C 0; € is a line segment, S C € is a properly embedded two-dimensional
simplex, and £ N dS # @, then £ C 0S.

Proof. Suppose for a contradiction that there exists a line segment £ C 9; € and a properly
embedded two-dimensional simplex S C € such that £ N dS # @, but £ is not contained
in 5. By replacing £ with a subinterval we can suppose that £ intersects dS at a single
point x.

If x is in a one-dimensional boundary face F of S, then the convex hull of £ and F
provides a face in d; € with dimension at least 2. So x must be a vertex of S.

Let F, F, C 0S be the edges adjacent to x. Then, pick y; € Fy, y, € F,, and
y3 €relint(£). Then, (y1, y2) C S C Q.If we had [y, y3] C €2, then the convex hull o F;
and £ provides a face in d; € with dimension at least 2. So (y1, y3) C Q2. For the same
reasons, (y2, y3) C 2. Then, Proposition 4.4 implies that there exists a face 0; € with
dimensional at least 2. So we have a contradiction. ]

Lemma 6.2 has the following consequences.

Lemma 6.3. If S1, S C € are distinct properly embedded two-dimensional simplices,
then 081 N 0S, = @.

Lemma 6.4. If S C € is a properly embedded two-dimensional simplex, then

08 = | J Fa®).

x€dS

We complete the proof of (1) = (2) by showing the following.
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Lemma 6.5. The collection of properly embedded two-dimensional simplices in € is
closed and discrete in the local Hausdorff convergence topology.

Proof. By Proposition 2.13 the collection of properly embedded two-dimensional sim-
plices in € is closed in the local Hausdorff convergence topology. So we just have to
verify discreteness.

Suppose that S,, — S in the local Hausdorff convergence topology. We need to show
that S, = S for n sufficiently large. Suppose not, then by passing to a subsequence we
can assume that S,, # S for all n.

Fix pg € §. Then forn > 0 let

Ry :=sup{r = 0:8 N Ba(po;r) C m}
If R, = oo for some n, then
S C Na(Sy:1).
So by Proposition 2.4 and Lemma 6.4,

s ¢ | J Fal(x) =0S,.
X€S,

So Lemma 6.3 implies that S = S,,. Thus, we can assume that R, < oo for all n. Further,
since S, — S in the local Hausdorff convergence topology, we see that R, — oo (see
Observation 2.11).

Then, there exists a sequence (g, ),>1 in S such that

(1) limy—o0 d@(gn, po) = o0.

() [gn, pol C Na(Sn: D).

(3) da(gn. Sn) = 1.

Next pick y, € T such that {y,q, : n > 0} is a relatively compact set in €. Then, by
passing to a subsequence we can suppose that y,g,, — g € € and y,, po — p € 0; €. Using
Proposition 2.13 and passing to another subsequence, we can suppose that y,, S, — S’ and

vnS — S where S’ and S” are both properly embedded two-dimensional simplices in €.
Further,

[q.p) CS"NNa(S";1).

Then, Proposition 2.4 implies that p € 0S” N Jycysr Fa(s'). Then, p € S” N 9S’ by
Lemma 6.4. So S” = S’ by Lemma 6.3. However, by construction ¢ € S and

da(g,S") = 1.

So we have a contradiction. [
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7. Proof of Theorem 1.16

In this section we prove Theorem 1.16 which we restate here.

Theorem 7.1. Suppose (2,€,T') is a naive convex co-compact triple. Then the following
are equivalent:

(1) c-dimp,(x)(0; € NFq(x)) < 1 forall x € 9; €.

(2) (€,dg) is relatively hyperbolic with respect to a collection of two-dimensional
properly embedded simplices.

(3) T is a relatively hyperbolic group with respect to a collection of virtually Abelian
subgroups of rank 2.

The proof is similar in structure to the proof of Theorem 1.6 in the previous section,
but extending the argument to the naive convex co-compact case introduces a number of
technicalities, especially in the proof that (1) = (2).

Suppose for the rest of the section that (€2, €, I") is a naive convex co-compact triple.
We also recall a notation that will be used frequently below: If X C Q is a subset, then

Fo(X) = | Fa().

xeX

7.1. Proof of implication (2) = (3)

Suppose that (€, dg) is relatively hyperbolic with respect to a collection § of two-
dimensional properly embedded simplices.

We claim that every properly embedded simplex in € has dimension at most 2. Sup-
pose that S C € is a properly embedded simplex with dimension at least 2. Then, (S, dg)
is quasi-isometric to RI™S (see Proposition 2.14). So by Theorem 3.3 there exist S’ € §
and R > 0 such that S C N q(S’; R). Since (S, dg) is quasi-isometric to R? we must
have dim S < 2.

Then, by Theorem 3.8 part (4), I" is a relatively hyperbolic group with respect to a
collection of virtually Abelian subgroups of rank 2.

7.2. Proof of implication (3) = (2)

Suppose that I' is a relatively hyperbolic group with respect to { Hy, ..., Hp,} where each
H; is a virtually Abelian subgroup of rank 2. Then, Theorem 3.6 implies that (€,dg) is a
relatively hyperbolic space with respect to a family S of properly embedded simplices of
dimension at least 2. Thus, it is enough to show that if § € §, then dim(S) = 2.

Fix S € §. Then, Proposition 2.14 implies that (S, dg) is quasi-isometric to REmS),
Next fix some p € €. By the Svarc—Milnor lemma and Theorem 3.3, there exists a coset
gH; such that S is contained in a bounded neighborhood of gH; - p in (€, dg). Since H;
is virtually isomorphic to Z?2, we must have dim § = 2.
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7.3. Proof of implication (2) = (1)

Suppose (€, dg) is relatively hyperbolic with respect to a collection § of two-dimensional
properly embedded simplices. By Theorems 3.6 and 3.7, there exists a strongly isolated,
coarsely complete, and I'-invariant collection §¢ of properly embedded simplices in €
of dimension at least 2. By Proposition 2.14 and Theorem 3.3, each simplex in Sy is
contained in a bounded neighborhood of a simplex in §. Hence, each simplex in §¢ is
two-dimensional.

Fix w € 9; €. We will show that c-dim g, () (0; € N Fg(w)) < 1. It suffices to consider
the case when c-dim g, ) (0i € NFo(w)) > 0. Then,

diam g, (4 (0; € NFg(w)) = 400
which implies that there exists
w’ € 0; € NIFg(w).

WEe first prove the following lemma showing that if we approach points on (w, w’) non-
tangentially (i.e., along a projective geodesic ray), then we are close to some properly
embedded simplex. This can be viewed as a quantitative version of [3, Proposition 2.5] or
[4, Lemma 3.9].

Lemma 7.2. Foranyr,s >0, and p € €, there exist wo € (w,w’) and py € [p, wo) such
that if x € [po, wo), then there exists a properly embedded simplex Sy in € of dimension
at least 2 such that

P(Span{w,w’, p}) N Ba(x;r) C Na(Sx;é).
Proof. Since w’ € dFgq(w), for each n we can find w, € (w, w’) such that

drg ) (W, w,) = n.

Then w, — w’. Fix r,& > 0, and p € €. Suppose that the lemma fails. So, in particular, it
fails for each w,. Then, for each n > 1, there exists a sequence (¢, ,m)m=>1 in [p, wy,) with
limyy— 00 gn,m = Wy and

P(Span{w, w’, p}) N Ba(Gn.m:7) € Na(S;e) 5)
for any properly embedded simplex S in € of dimension at least 2. By Proposition 2.4,
liminf dg (gn,m, [P, w) U [p, w")) = dpgw)(Wn, w) = n.
Then for each n, we choose m,, large enough such that

dSZ(qn,mns [P, U)] U [pv w/]) 2 }’l/2 (6)
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Set g, '= qn.m, -
Since I" acts co-compactly on €, we can pass to a subsequence and choose y, € T’
such that y,q,, — g5, € €. Up to passing to another subsequence, we can assume that

YaW', YnW, Yn P —> Wi, Weo, Poo € €.
By construction and by equation (6),
[Poos wéo] U [wéo» Woo] U [Woo, Poo] C 0 €.
Thus,
S := relint(ConvHullg{Weo, Wy, Poo})
is a properly embedded two-dimensional simplex in € which contains g/ . Then,
P(Span{w, w’, p}) N Ba(gy,:r) C Na(y, 'Sie)

for n sufficiently large, which contradicts equation (5) and concludes the proof of this
lemma. ]

We will now use Lemma 7.2 to show that there exists Sg € §¢ such that w € Fq(3Sy).

Since S is coarsely complete, there exists Ry > 0 such that any properly embedded
simplex of dimension at least 2 in € is contained in the Ry-tubular neighborhood of a
simplex in §g. Fix ¢ > 0. Since § is strongly isolated, there exists D, > 0 such that if
S1, 82 € §y are distinct, then

diamg (N (S1:€ + Ro) N Na(S2:¢ + Ro)) < Ds. O

Fix r := D, 4+ 1 and any point p € €. Apply Lemma 7.2 to r, &, and p to get
wp € (w, w’) and pg € [p, w) satisfying the conclusions of the lemma. Then pick a
sequence (x,),>1 in [po, Wo) such that x, — wp and

do(Xp, Xpt1) =71

for alln > 1. By Lemma 7.2 and our choice of Ry > 0, for each n there exists a properly
embedded simplex S, € §¢ such that

P(Span{w, w’, p}) N Ba(xx:7) C Na(Suie + Ro).
Then, ifn > 1,

(Xn,Xn+1) C Ba(xn;r) N Ba(xpt1;r) NP (Spanf{w, w’, p})
C Na(Snie+ Ro) N Na(Sht1:6 + Ro).

Thus,

diamg (N @(Spie + Ro) N N (Shr1:e + Ro)) = do(xn, xnt11) =7 > Dy
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Then, equation (7) implies that S, = S, 41 =: Sp for all n > 1. Then, {x, : n € N} C
N (So; € + Rp) and so by Proposition 2.4,

Wy = nll)rgo X, € Fq(0Sp).

Then w € Fq(3Sy) as wy € Fo(w). By Theorem 3.8 part (6), there exists D’ > 0 such
that

3 € NFo(w) C N py(w)(Fs,(w); D),
that is,
c-dim g () (3; € NFq(w)) < dim Fs,(w) < dimSp — 1 = 1.
This proves that for any w € 0; €,

c-dim g () (0; € NFg(w)) < 1.

7.4. Proof of implication (1) = (2)

Suppose c-dim g, (x) (0i € NFg(x)) < 1forall x € 9; €.

Let S denote the collection of all properly embedded simplices in € with dimension
at least 2. By Observation 4.1, € does not contain any properly embedded simplices with
dimension 3 or more. Hence, S consists of two-dimensional simplices.

We will construct a collection § C §¢ of properly embedded two-dimensional sim-
plices which are isolated, coarsely complete, and I'-invariant (see Definition 3.5). Then,
Theorem 3.6 will imply that (€, dg) is relatively hyperbolic with respect to a family of
properly embedded simplices in €.

We note that it is possible for §¢ to have non-discrete families of parallel maximal
properly embedded simplices (see Lemma 2.17 and [19, Section 2.3]) and hence the chal-
lenge in constructing § is to identify a “canonical” simplex in each family of parallel
simplices. This is accomplished by using a center of mass construction, which is similar
to the construction of § .y in the proof of Theorem 10.1 of [19].

Since the proof is lengthy, we provide a short outline of the steps involved. First we
prove a technical result, Lemma 7.3, which implies that each family of parallel simplices
is uniformly bounded (also see Lemma 2.17). This uniformity is key in the center of mass
construction in equations (11) and (12). As mentioned above, this construction identifies
one “canonical” simplex in each family of parallel simplices. Once this “canonical” set of
simplices is constructed, the rest of the section (Lemmas 7.4-7.8) is devoted to verifying
that this family is indeed isolated, coarsely complete, and I'-invariant. These lemmas are
analogs in the naive convex co-compact case of Lemma 6.2 through Lemma 6.5. The for-
mer lemmas play a similar role here as the latter lemmas did in the proof of (1) = (2) of
Theorem 1.6.

We now being our proof. The key idea behind the proof of the next lemma is the
following. If the lemma fails, we can use a re-scaling argument to construct a properly
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embedded two-dimensional simplex S with a vertex a such that c-dimpg, ) Fa(a) N
0; € = 1. We can then construct a boundary face of coarse dimension 2 and reach a
contradiction.

Lemma 7.3. There exists R > 0 such that if S € S¢ and a € 3S is a vertex of S, then
diamFQ(a)(Bi € NFg ((l)) <R.

Proof. Suppose not. Then, for each n > 1, there exists a properly embedded two-
dimensional simplex S, C € with a vertex a, € dS,, where

diam g, (4,)(0i € NFq(as)) > n.
So there exists a),, a;, € 9; € NFq(a,) with
dFa(an) @y ay) = n.
Using Lemma 2.17 we can assume that a, is the df,(4,) Hilbert distance midpoint of
[} a].
Let by, ¢, € S, be the other vertices of Sj,. Then, Lemma 2.17 implies that
S,, := relint ConvHullg(a},, by, cn)
and
S, := relint ConvHullg (a,,, by, cp)
are properly embedded simplices in € with
dG" (Sn, Sy) < drg(ay) (@n. a})
and
de™ (Su, S)) < dFg(an) (an, ay).
Claim: For each n > 1 there exists p, € S, with

min{de (pn. S,).de(pn. S;)} = n/2 - 1. ®)

Fix n and a point x,, € (b, c,). Then fix a sequence (¢m)m>1 in (an, Xn) converging
to a,. For each m, fix ¢, € S;, with

Since d3™(S,, S))) < dFg(a,) (@n, a,), we have

do (qms 61;,,) =< ng(a,,)(any a;,)
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forallm > 1.

Since ¢, — an, the above estimate and Proposition 2.4 imply that any limit
point of (q,,)m>1 is in Fg(a,) N 3S, = {a,}. Thus, up to passing to a subsequence,
limy,— o ¢,, = @,,. Then, Proposition 2.4 implies that

3= dFg(an) (@n, @y) < liminfdo(gm, q;,) = liminfdg (gm. S,,)-

So for m sufficiently large 5 — 1 < d@(¢m. S/). The same reasoning shows that 5—1<
dg(gm, S;)) when m is large. So p, = ¢, for m large enough satisfies the claim. This
finishes the proof of this claim.

By passing to a subsequence and translating by I', we can assume that p,, — p € €.
Passing to further subsequences we can suppose that

An, Ay, dy, by, cn > a,a’,a" b,c € 3,€.
By construction [a, b] U [b,c] U [c,a] C d; € while p € relint ConvHullg(a, b,c) N €. So
S := relint ConvHullg(a, b, ¢) C @ ©)
is a properly embedded simplex in €. Equation (8) implies that
ConvHullg(a’, b, ¢) U ConvHullg(a”, b,¢) C 9, €. (10)

i 4

By construction, a, € [a),,a,] for all n and so a € [a’, a”]. Observation 2.3 part (4)

and equations (9) and (10) imply that @’ # a” € dFq(a). So L := (a’,a”) is a properly
embedded one-dimensional simplex in d; € N Fq(a). Thus, Observation 4.1 implies that
c-dimp,, (4)(0i € NFq(a)) > c-dimpyq) (L) = dim(L) = 1.

Now fix a point x € 0.5 in the relative interior of an edge adjacent to a, then a € dFg(x)
by Observation 2.15. So Observation 4.2 applied to 0; € N Fqo(x) C Fq(x) yields

c-dimp, (x) (0i € NFq(x))

%

1+ C'dimFFQ(x)(a) (0 € NIFQ(x) N Fryx)(a))
= 1 + c-dimp, (4)(0; € NFq(a))
> 2.

This is a contradiction to our hypothesis that c-dimpg,(x)(d; € NFg(x)) < 1 for all
X € 81€ n

Next we define a map @ : §¢g — §¢ which maps parallel simplices to a single simplex.
Suppose S € §¢ has vertices vq, V3, v3. By the above lemma, d; € N Fq(v;) is a compact
subset of Fq(v;) for i = 1,2, 3. Then, using the center of mass from Proposition 2.5,
define

wj := CoMFg ) (8 € NFa(v;)) (1
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and
®(S) := relint ConvHullg (w1, w, w3). (12)

Then ®(S) is a properly embedded two-dimensional simplex in € by Lemma 2.17. Then
define

S :={P(S):S €S0}
The next two lemmas verify that § is I"-invariant and coarsely complete.
Lemma 7.4. The set S is I'-invariant.

Proof. Since §¢ is I'-invariant, this follows from the equivariance of the center of
mass. [

Lemma 7.5. If S1, S2 C € are properly embedded two-dimensional simplices and
q)(Sl) = q)(Sz), then

dgaus(sl, Sz) < R.
In particular, § is coarsely complete.

Proof. Note that ®(S7) = ®(S,) implies that S; and S, are parallel simplices. The first
assertion then follows immediately from Lemmas 7.3 and 2.17. For the in particular part,
suppose S C € is a properly embedded two-dimensional simplex. Then, ®(S) = ®(P(S))
and so by the first part

dams (S, ®(S)) < R.
Thus, S C No(D(S); R). [

The proof that § is isolated is more involved and requires two preliminary lemmas.

Lemma 7.6. If { C 0; € is a line segment, S is a properly embedded two-dimensional
simplex, and £ N Fo(dS) # @, then { C Fgo(dS).

Proof. Tt is enough to consider the case where { = [x, y] C 0; € and S is a properly
embedded two-dimensional simplex S C € with x € Fq(dS). Using Observation 2.3 we
may assume that x € dS. Indeed, by definition there exists xo € d.S such that x € Fg(xy).
Then the projective line segment £y := [xo, y] C 9; € also satisfies our assumptions and
Observation 2.3 implies that £ C Fq(£o). Hence, without loss of generality, we will make
the simplifying assumption that x € 9S.

Now suppose, for a contradiction, that £ is not contained in Fq(dS). Since £ is not
contained in Fg(dS) we must have y ¢ Fq(0S).
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Recall that by hypothesis, c-dim g, (x) (3; € NFq(x")) < 1 for any x" € 9; €. Our proof
will be a case-by-case analysis where we arrive at a contradiction in each case by finding
a point in d; € where the above hypothesis on coarse dimension fails. Since x € 0.5, there
are two cases to consider based on whether x is a vertex of S or x is contained in an edge
of S.

Case 1: Assume x is contained in an edge of S.
In this case, fix some m € (x, y). Then, m € 9; € and there are two sub-cases to
consider depending on whether x € dFg(m) or x € Fgo(m).

Case 1 (a): Assume x € dFgq(m). In this case, we will arrive at a contradiction by showing
that the coarse dimension of d; € N Fg(m) is at least 2.

To this end, we first apply Observation 4.2 to the properly convex domain Fg(m)
in ]P)(]Rd,), where d’ := dim Fg(m), and the non-empty convex subset d; € NFgq(m) C
Fq(m). Note that in this case, 0;(0; € NFq(m)) = 9; € NdFgq(m). Thus, Observation 4.2
yields

C-dimpg(m)(ai € NFo (m)) >14+ C-dimFFQ(m)(x)(ai € NoFg (m)n FFQ(m)(X)). (13)
We now claim that
Fs(x) C 0; € NoFq(m) N Frgm)(x).

To prove the claim, first observe that Fr,(m)(x) = Fq(x). Then, the only non-trivial
part in the claim is to show that Fs(x) C d0Fq(m). Indeed, since x € dFg(m), Obser-
vation 2.3 part (3) implies that Fg(x) C dFq(m). Since § C € is properly embedded,
Fs(x) C Fg(x) and thus Fs(x) C dFq(m).

Then, the above claim and the inequality in (13) imply that

c-dimpg (m) (0 € NFq(m)) > 1 + c-dimFFQ(m)(x)(FS (x)) =1 + c-dimp, (x) (Fs (x)).
By Observation 4.1, c-dim g, (x) (Fs (x)) = dim(Fs(x)) = 1. Thus,
c-dim g, (m) (3 € NFq(m)) > 2
and we have a contradiction.

Case 1 (b): Assume x € Fg(m) or equivalently m € Fq(x). In this case again, we will
arrive at a contradiction by showing that the coarse dimension of d; € N Fg (m) is at least 2.

Recall that x € S and y ¢ Fq(9S). Since (x, y) C €2, then we must have y € dFg(x).
Let v, v, € dS be the vertices of the edge containing x. Then, by Observation 2.15

V1,V € Bi € ﬁaFQ(m)

and Fq(v1) and Fg(v;) are distinct. Further, since y ¢ Fq(9S) the faces Fq (v1), Fa(v2),
Fq(y) are all distinct.
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Finally, we will apply Observation 4.3 to the properly convex domain Fg(m) in
]P’(]R{“”), where d’ := dim Fg(m), and the non-empty convex subset d; € NFq(m) C
Fgq(m). The three points in Fg (m) that we consider are vy, vz, and y. Since Fro,om)(-) =
Fq(+) for any point in Fg(m), the faces in Fg(m) of the three points vy, v, and y are
pairwise distinct. Note that in this case, 9;(3; € NFq(m)) = 0; € NdFgq(m). Thus, by
Observation 4.3, we have

c-dim g () (35 € N Fq (m)) = 2

and hence a contradiction.

Case 2: Assume x is a vertex of S. In this case, we will arrive at a contradiction by finding
apoint w € d; € for which the coarse dimension of d; € N Fg (w) is at least 2. In particular,
we will use Proposition 4.4 to find such a point w.

Let y1, y2 € 05 be points on the edges adjacent to x. Then, (y1, y2) C 2. Then,

[X7Y1]U[XJ’2]U[X7)’] C 31\6

and (y1, y2) C Q. We claim that (y1, y) C Q2. If not, then we could apply Case 1 to the
line segment £ := [y, y] and obtain a contradiction. So we must have (y1, y) C Q. By
symmetry we also have (y2, y) C 2. But then by Proposition 4.4 there exists w € d; €
with

c-dimp, () (3 € NFq(w)) > 2.
So we have a contradiction. [

Lemma 7.7. If S1, S; C € are properly embedded two-dimensional simplices and
Fq(0S1) N Fq(0S2) # 0, then ®(S1) = ®(S,).

Proof. Lemma 7.6 implies that Fq(0S1) = Fq(0S3). Suppose vy, v2, v3 € S are the
vertices of S7. Then, there exist wy, wy, w3 € 0S5, such that Fg(v;) = Fq(w;). Then,
Lemma 7.3 and Observation 2.15 imply that wi, w,, w3 are the vertices of S,. So by
definition ®(S;) = ®(S,). |

Lemma 7.8. The set S is isolated, that is § is closed and discrete in the local Hausdorff
convergence topology.

Proof. By Proposition 2.13 the collection §¢ of all properly embedded two-dimensional
simplices in € is closed in the local Hausdorff convergence topology. So to show that §
is closed and discrete in the local Hausdorff convergence topology, it is enough to fix a
sequence (S,),>1 in § such that S, converges in the local Hausdorff convergence topol-
ogy to a properly embedded two-dimensional simplex S and then show that S, = S forn
sufficiently large.
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Suppose not, then by passing to a subsequence we can suppose that S,, # S for all n.
Fix py € S. Then, forn > 0, let

R, = sup{r >0:SNBa(po;r) C Na(Sn; R+ 1)},

where R > 0 is as in the statements of Lemmas 7.3 and 7.5. After passing to a subsequence,
we can consider the following two cases.

Case 1: Assume R, = oo for all n. Then, for any #,
SCNa(SuR+1)
and so by Proposition 2.4
S C Fq(dSy).

Then, Lemma 7.7 implies that ®(S) = ®(S,) = S, for all n. Since S,, — S, we then
have S = ®(S) = S, for all n. So we have a contradiction.

Case 2: Assume R, < oo for all n. Since S, — S in the local Hausdorff convergence
topology, we see that R, — oo (see Observation 2.11). Then, there exists a sequence
(gn)n>11n S such that

(1) limy—o0 d@(gn, po) = 0.
() [qn, Pol C Na(Su; R+ 1).
(3) da(gn,Sn) = R+ 1.

Next pick y, € T such that {y, ¢, : n > 0} is relatively compact in €. Then by pass-
ing to a subsequence, we can suppose that y,g, — ¢ € € and y, po — p € 9; €. Using
Proposition 2.13 and passing to another subsequence, we can suppose that y, S, — S’
and y, S — S” where S’ and S” are properly embedded two-dimensional simplices in €.
Further,

[g.p) CcS"NNa(S"; R+ 1).

Then Proposition 2.4 implies that p € 3S” N Fo(S’). So &(S’) = ®(S”) by Lemma 7.7.
However, by construction g € S” and dg (g, S”) = R + 1. So we have a contradiction with
Lemma 7.5. ]

Thus § is isolated, coarsely complete, and I'-invariant by Lemmas 7.4, 7.5, and 7.8.
Then, Theorem 3.6 implies that (€, dg) is relatively hyperbolic with respect to a fam-
ily §o of properly embedded simplices in € of dimension at least 2. Note that S, is not
necessarily §; see the discussion following Theorem 3.6.

Since c-dim g, (x) (3 € NFq(x)) < 1 for all x € 9; €, Observation 4.1 implies that €
does not contain any properly embedded simplices with dimension 3 or more. So each
simplex in S, is two-dimensional. Thus, (€, dg) is relatively hyperbolic with respect to a
collection of two-dimensional properly embedded simplices. This completes the proof of
this direction.
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A. Proof of Observation 2.3

At the request of one of the referees, we include a proof of Observation 2.3 which we
restate here.

Observation A.1. Suppose Q C ]P’(]Rd) is a properly convex domain.
(1) Fgq(x) is convex and open in its span
(2) y € Fa(x) ifand only if x € Fo(y) if and only if Fo(x) = Fa(y),
(3) ify € 0Fq(x), then Fo(y) C dFq(x), and
@) ifx,y € Q,ze(x,y), p€ Fq(x),andq € Fo(y), then

(p.q) C Fal(z).
In particular, (p,q) C Q if and only if (x, y) C Q (see Figure 1).
For the rest of the section, fix a properly convex domain 2 C P(Rd).
Lemma A.2. Ifx € Q and y € Fq(x), then Fo(x) = Fa(y).

Proof. We start by showing that Fgo(x) C Fg(y). To that end, fix z € Fg(x) and let
V := Span{x, y, z}. If dim VV < 2, then it is clear that z € Fqo(y). So suppose that
dim V' = 3. Then we can fix coordinates on V so that

x=[1:0:0, y=[1:1:0], z=[1:0:1].
Since y, z € Fq(x), there exists ¢ > 0 such that

[1:—e:0,[1:14&:0],[1:0:—¢,[1:0:1+¢] €.

i

p»\q

-

Figure 1. Figure for the proof of part (4) Case 4, when the convex hull of £; U £5 is a two-
dimensional 4-gon.
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Since the convex hull of these points is in €, we see that z € Fq(y). Hence, Fq(x) C

Fa(y).
Then, x € Fq(x) C Fq(y) and so the above argument implies that Fq(y) C
Fo(x). L]

Proof of (1). We first show that Fq(x) is convex. Fix y,z € Fgo(x). Then by the lemma,
z € Fo(y) and so [y, z] C Fq(y) = Fq(x). So Fg(x) is convex. Then by definition
Fq(x) is open in its span. |

Proof of (2). This follows immediately from the lemma. ]

Proof of (3). Since Fq(y) N Fa(x) = @, it suffices to show that Fq(y) C Fq(x). To that
end, fix z € Fq(y) and let V := Span{x, y,z}. f dim V < 2, then z = y € Fq(x). So
suppose that dim V' = 3. Then, we can fix coordinates on V' so that

x=[1:0:0, y=[1:1:0], z=[1:1:1].

Since Fg(x) is open in its span and z € Fq(y), there exists ¢ > 0 such that
[1:—e:0],[1:1:—¢l,[1:1:1+¢] €.

Since the convex hull of these points is in 2, we see that z € Fq(x). Hence, Fo(y) C
Fo(x). |

Proof of (4). By symmetry it suffices to consider the following cases.

Case 1: Assume Fq(x) = Fq(y). In this case, (p,q) C Fq(x) and z € Fq(x). So by

part (2), (p.q) C Fa(x) = Fa(2).
Then, for the rest of the cases, we may assume that Fo(x) N Fo(y) = 0.

Case 2: Assume x = p and y = ¢q. Then, z € (x,y) = (p,q) and so (p,q) C Fq(z).

Case 3: Assume x = p and y # g. In this case, fix an open line segment £ C Q with
y,q € L. Then, the convex hull of {x} U { in Q is a two-dimensional simplex whose
relative interior contains (p, ¢) and z. Hence, (p,q) C Fq(2).

Case 4: Assume x # p and y # g. In this case, fix open line segments £, £, C Q with
x,p €ly,and y,q € £,. Then, the convex hull of Zl U Zz in € is either a two-dimensional
4-gon or a three-dimensional simplex. In either case, the relative interior of this convex
hull contains (p, ¢) and z. Hence, (p, q) C Fq(2). [
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