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Abstract—This study proposes the novel formulation of measuring emotional similarity between speech recordings. This formulation
explores the ordinal nature of emotions by comparing emotional similarities instead of predicting an emotional attribute, or recognizing
an emotional category. The proposed task determines which of two alternative samples has the most similar emotional content to the
emotion of a given anchor. This task raises some interesting questions. Which is the emotional descriptor that provide the most suitable
space to assess emotional similarities? Can deep neural networks (DNNs) learn representations to robustly quantify emotional
similarities? We address these questions by exploring alternative emotional spaces created with attribute-based descriptors and
categorical emotions. We create the representation using a DNN trained with the triplet loss function, which relies on triplets formed
with an anchor, a positive example, and a negative example. We select a positive sample that has similar emotion content to the
anchor, and a negative sample that has dissimilar emotion to the anchor. The task of our DNN is to identify the positive sample. The
experimental evaluations demonstrate that we can learn a meaningful embedding to assess emotional similarities, achieving higher
performance than human evaluators asked to complete the same task.

Index Terms—Speech emotion recognition, ordinal affective computing, representation learning of emotion similarity, triplet loss function,

speech emotion retrieval

1 INTRODUCTION

MOTION recognition is important for a variety of prob-

lems in health, psychology, education and engineering.
Automatic emotion recognition can be used to identify
depression, schizophrenia, and other forms of mental condi-
tions [1], [2], [3], improve realism in human-robot interaction
(HRI) [4], predict learning metrics in intelligent tutoring sys-
tems (ITS) [5], [6], and monitor service quality in call centers
[7], [8]. Creating systems that can automatically understand
emotion makes it possible to deliver these services at a
much higher scale, allowing the benefits of such systems to
reach many users. Common formulations for speech emotion
recognition (SER) are regression problems [9], [10], [11] and
classification tasks [12], [13]. An alternative formulation is
preference learning where the task is to compare the emo-
tional content between two or more samples. Methods
based on preference learning offer promising solutions for
understanding emotional content in speech. These methods
are rooted on the ordinal nature of emotions [14], building
on the undenied evidences that relative emotional compari-
sons are better than absolute assessments of emotions [14],
[15] (e.g., is sentence A happier than sentence B?). Preference
learning has been explored when applied to emotional
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attributes [16], [17], [18], [19], [20] and categorical emotions
[21], [22]. This paper proposes a novel formulation in prefer-
ence learning, where the task is to identify speech samples
with emotional content as close as possible to an anchor
sentence.

Our proposed formulation in affective computing is
related to retrieval tasks, where the goal is to extract the
most emotionally-similar recording compared to an anchor
speech. This problem is important in different domains. An
algorithm that finds speech samples with similar emotions
can help in identifying related events for surveillance appli-
cations. This formulation can also be used to provide a bet-
ter emotional characterization of an input speech. For
example, the anchor speech can be used to retrieve labeled
samples in an emotional corpus. Then, the labels of the clos-
est samples in the corpus can be collectively assigned to the
anchor speech. Quantifying emotional similarity can also be
useful in tasks such as the detection of emotional changes
during a recording [23], [24] or detection of emotional hot-
spots [25], [26]. As a preference learning task, finding
speech samples with similar emotions leverages the ordinal
nature of emotions, providing direct comparisons between
samples instead of absolute emotional assessments. As far
as we are aware, the only study addressing this problem is
our preliminary study [27], which is extended in this paper.
There are important opportunities in affective computing if
we have robust algorithms that can quantify emotional sim-
ilarity between speech recordings.

We formulate the problem of choosing the most emotion-
ally-similar sample compared to an anchor as a preference
learning problem by building upon our preliminary work
[27]. We aim to find a function that maps samples from an
acoustic feature space into an emotional representation space
from where we can estimate distance between emotional
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contents. In this emotional representation, we expect that
emotionally-similar samples are closer to one another than
emotionally-dissimilar samples. We choose to represent this
function as a deep neural network (DNN), relying on the triplet
loss function [28]. The triplet loss function optimizes prefer-
ences by using an anchor, a positive sample, and a negative
sample. In this formulation, the anchor and positive sample
have very similar emotions, while the anchor and negative
sample have dissimilar emotions. The loss function aims to
create a representation where the anchor and the positive
sample are as close as possible, while increasing the distance
between the negative sample and the anchor. The key chal-
lenge is how to determine emotional similarity such that the
preferences we train our network with are meaningful with
respect to emotional content. For this study, we determine
emotional similarity based on either emotional attributes or
emotional categories. For each anchor, we estimate a ranked-
order list by estimating the emotional distance using the
annotations by individual evaluators. We choose sentences
from the top of the list as positive samples, and sentences
from lower down the list as negative samples, creating trip-
lets to train our models.

We train and evaluate our approach using the MSP-Pod-
cast corpus [29], showing that the proposed triplet loss
approach to quantify similarity between speech recordings
is a valuable tool for understanding and characterizing emo-
tions. Given an anchor speech, the task is to choose the most
emotionally-similar speech sample between two competing
recordings. A comparison is successful if the positive sample
is selected. The results demonstrate that the emotional attri-
bute space provides a more reliable space to create the trip-
lets than spaces with categorical emotional descriptors. The
similarity task is easier when the anchor has more extremes
values of arousal and valence, achieving accuracies up to
93%. The accuracy decreases for anchors with more neutral
attribute scores. The results also show better performance as
we increase the distance between the positive and negative
examples. For the categorical descriptor space, the use of sec-
ondary emotions (i.e., all the emotional traits conveyed in a
sentence in addition to the dominant emotion) is useful to
increase the accuracy of the models. The proposed triplet
loss model performs better than competitive baselines built
for this task, where the differences across conditions are
often statistically significant. The models are also compared
with human performance by using perceptual evaluations to
assess how well humans can determine emotional similarity
between speech samples. On average, our triplet loss model
leads to better accuracies than human performance. The
evaluation demonstrates how difficult this task is even for
human, and the potential of the proposed approach. The
triplet loss formulation is useful for accurately retrieving
emotionally-similar speech sentences. The main contribu-
tions of this study are:

e A novel ordinal formulation in affective computing,
where the task is to quantify emotional similarity
between speech recordings.

e A novel triplet loss approach that creates a feature
embedding to quantify emotion similarity.

e An exhaustive evaluation to determine the emotional
space that is more appropriate for this task, comparing
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the accuracy of our triplet loss approach with human
performance.

The paper is organized as follows. Section 2 presents the
related work, emphasizing studies using the triplet loss
function and preference learning. Section 3 introduces the
resources used in this study, including the database and
acoustic features used to train our models. Section 4
presents our proposed approach, describing our triplet loss
formulation. Section 5 describes the experimental setting for
this study, including the baselines used to evaluate our
models. Section 6 presents the results, describing the accu-
racy of our approach to discriminate emotional similarity.
Section 7 presents perceptual evaluations, comparing the
accuracies of our approach to human performance. Finally,
Section 8 summarizes the paper, describing its implications
and providing research direction for future work.

2 RELATED WORK

To the best of our knowledge, our preliminary study [27] is
the only paper formulating emotion recognition as a retrieval
problem, where the aim is to identify recordings with similar
emotion to a given anchor. This section discusses studies
that are related to our work, focusing on contrastive learning
framework such as the triplet loss function, especially
applied to speech tasks, and ordinal formulation for speech
emotion recognition.

2.1 Contrastive Learning Framework

Learning a similarity space has been actively researched in
the field of contrastive learning [30]. Contrastive learning is
designed to learn a discriminative representation by com-
paring the representations extracted from different samples.
The main idea of this approach is to make the representa-
tions from similar samples to be closer to each other, while
the representations from dissimilar samples to be far away.
Such comparison-based learning allows the classifier to cre-
ate more discriminative features, yielding improvements in
the classification accuracy. Siamese network is an example
of contrastive learning, which was first introduced by Brom-
ley et al. [31] to improve the accuracy in signature verifica-
tion tasks. In their study, they trained two separate time-
delay neural networks (TDNNSs) that share the weight param-
eters. Each TDNN extracts the hidden representations from
signature images, and the distance metric is calculated by
comparing the two hidden representations. If two signature
images are written by the same person, the model is trained
to minimize the distance metric. The trained representations
can be directly used to verify the similarity between two dif-
ferent images [31]. The representation can also be used as an
input for the output layer [32]. This learning scheme also
showed good performance in face verification [33] and gait
recognition [34] tasks.

Instead of using the representations from two different
samples, comparison-based learning can be performed with a
single sample by using data augmentation. Chen et al. [35]
proposed a simple framework for contrastive learning of visual rep-
resentations (SimCLR). In this approach, the system first
applies simple transformations to the input images, including
color distortion, cropping, and blurring. Since those transfor-
mations do not affect the class information of input images,
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the feature encoder is trained to minimize the distance
between the representations from two distorted image cre-
ated by applying different transformation to one original
image. The feature encoder can generate more discrimina-
tive input for the following classification network by using
this contrastive learning method, leading to the improve-
ment of classification performance. This approach also yields
a performance improvement in speech recognition and
speech emotion recognition [36], implying that the contras-
tive learning framework can also be successfully applied to
the speech processing field.

Studies in this field have used various functions to mea-
sure the distance between representations, including cosine
distance [31], normalized temperature-scaled cross entropy loss
(NT-Xent loss) [35], and noise contrastive estimation (NCE)
[37]. In our study, we use the triplet loss function to com-
pare the distance between different representations. We
will describe the details of the triplet loss function in
Section 2.2

2.2 Triplet Loss

The triplet loss function was introduced in Schroff et al. [28],
where the authors showed its potential for face recognition.
The triplet loss function takes three samples that are proc-
essed by a function that is often implemented with DNN.
One of the samples is the anchor sample. The other two sam-
ples are the positive example, which is supposed to be simi-
lar to the anchor, and a negative example, which is supposed
to be different from the anchor. Schroff et al. [28] noted that
the embeddings created by the triplet loss network were use-
ful to determine the similarity between faces. Since then, the
triplet loss function has been successfully used in several
tasks including object tracking [38], person re-identification
[39], face verification [40], intention detection in a dialogue
system [41] and anomaly driving detection [42].

The triplet loss function has also been used in speech
tasks including speaker verification [43], [44], speaker iden-
tification [45], speaker diarization [46], sleepiness detection
[47] and noise classification [48]. Novoselov ef al. [45] used
the cosine-similarity metric learning (CSML) to identify speak-
ers, which was trained with the triplet loss function. They
showed that the approach was accurate and robust com-
pared to alternative methods. Li et al. [43] used the triplet
loss function to create embeddings for speaker verification
and speaker identification tasks. The authors used convolu-
tional neural networks (CNN) and recurrent neural networks
(RNN) to extract features at the frame level, which were
pooled to form an utterance-level vector used to predict the
speaker identity. Bredin et al. [46] used a triplet loss function
to train a deep neural network for speaker change detection.
Mel-frequency cepstral coefficients (MFCCs), energy features,
and their derivatives are used as input of a DNN imple-
mented with bidirectional long short-term memory (BLSTM)
cells. These examples show that the triplet loss function is
effective for speech tasks.

The triplet loss function has been used before in other
SER studies. However, the goals, and the problem formula-
tions in previous work are radically different from the ones
used in our study. Huang et al. [49] used the triplet loss
function to create a discriminative embedding for a SER
task. The embedding was then used to train a support vector

machine (SVM). The triplet loss function aims to reduce
intra-class variability, and increase inter-class variability
between emotional classes. The loss function also consid-
ered a supervised term to discriminate between emotional
classes. Kumar et al. [50] presented a similar approach using
the residual neural network (ResNet) architecture that com-
bines the triplet and cross entropy losses. The triplet loss
function increases the distance between different emotions
and reduces the distance between similar emotions. Their
approach can be trained end-to-end without the need for a
SVM. Han et al. [51] also followed a similar approach. Han
et al. [52] used a triplet loss function incorporating both
audio and video features to improve emotion prediction.
Feng and Chaspari [53] applied the triplet loss to the prob-
lem of transfer learning (fine-tuning) in emotion recognition
with limited data. Notice that the conventional approach to
use the triplet loss function in SER is to improve the feature
embedding such that sentences with similar emotions are
close and sentences with different emotions are far. Our for-
mulation does not aim to recognize a given emotional class
or predict an emotional attribute. Instead, we aim to quan-
tify emotional similarity, representing a novel contribution
in affective computing.

2.3 Ordinal Nature of Emotions

There are strong evidences that emotions are better compu-
tationally represented with ordinal methods. Methods that
provide comparative assessments are often more robust
and more reliable than methods that assign an absolute
score or an emotional category (e.g., is sentence one more
aroused or happier than sentence two? ). Yannakakis et al.
[14], [15] presented a complete study with evidences across
domains about the ordinal nature of emotions. In this sec-
tion, we briefly describe some of the ordinal formulations
that have been considered by previous studies.

An emerging formulation in affective computing is prefer-
ence learning, where the task is to establish preferences
between samples with respect to a given dimension. After
establishing preferences, it is straightforward to rank samples
according to the given criterion. If needed, rankings can be
later transformed into ratings [54]. For example, Cao et al. [22]
proposed to rank emotions with respect to emotional catego-
ries (e.g., happiness, anger, sadness). A similar formulation
was proposed by Lotfian and Busso [21], where the individ-
ual evaluations between multiple annotators were used to
establish preference between sentences. Preference learning
has also been used to rank samples with respect to emotional
attributes (e.g., valence, arousal, dominance) [16], [17], [18],
[19], [20]. Martinez et al. [17] showed that transformations of
ratings into rankings resulted in a better approach than trans-
formations of ratings into discrete classes. Parthasarathy et al.
[20] established preferences between samples using time-
continuous annotations. They relied on the qualitative agree-
ment (QA), which looks for trends across multiple evalua-
tions. This approach was later extended for sentence level
annotations of emotional attributes [16]. Many other studies
have also capitalized on the ordinal nature of emotions and
use a ranking approach to represent emotion. Lopes et al. [55]
explored a ranking formulation for determining affect in hor-
ror soundscapes. Yang and Chen [56], [57] used a ranking for-
mulation to retrieve music pieces with similar emotions.



Soleymani et al. [58] demonstrated a relationship between
emotion rankings of movie scenes predicted from physiologi-
cal signals and user self-assessment valence and arousal
rankings. Mariooryad ef al. [59] demonstrated that preference
learning is an appealing approach to retrieve sentences with
target emotional content, using this approach to build a data-
base. This approach was a building block used to create the
MSP-Podcast corpus [29], described in Section 3.1. Liang et al.
[60] relied on relative and absolute models to create a multi-
modal emotion recognition system. The approach compared
pairs of frames (audio and visual modalities) creating local
rankings, which were combined to create a global ranking.
The final prediction combines the absolute and rank-based
models. A key reason for the success of rank-based models is
that the ground truth labels are more reliable. Yannakakis
et al. [61] used a rank-based annotation formulation for
modeling affect. They found that an ordinal labeling system
led to greater inter-rater agreement compared to an absolute
annotation formulation. Yannakakis and Hallam [62] com-
pared ranking and rating self-reporting methodologies for
determining affect, demonstrating higher inter-evaluation
agreement when using ranking methods. Holmgard et al. [63]
demonstrated superiority of ranking-based approaches com-
pared to class-based approaches of stress annotation for the
purpose of determining stress in PTSD patients.

There are other alternative ordinal formulations investi-
gated in previous studies. For example, Huang and Epps [23],
[24] investigated the problem of detecting changes of emo-
tions within a conversation. Another related formulation is to
detect emotionally-salient regions in speech over time [25],
[26] (e.g., emotional hotspots). The task in this study is related,
and complementary, to these formulations. Our approach
aims to quantify emotional similarities, which is a powerful
and novel research direction in affective computing.

3 RESOURCES

3.1 MSP-Podcast Corpus

We train and evaluate our approach with the MSP-Podcast
corpus [29]. This corpus is a collection of speech sentences
taken from publicly-available podcasts with Creative Com-
mons licenses. The protocol follows the ideas presented by
Mariooryad et al. [59], which uses speech emotion recognition
(SER) systems to retrieve target segments to be annotated
with emotional labels. The approach prioritizes samples that
are more likely to be emotional, offering the tools to balance
the emotional content in the corpus (e.g., finding samples
with positive emotions). The sentences range in length from
2.75-11 seconds and cover a wide range of emotions. The sen-
tences in the corpus are annotated using an improved ver-
sion of the crowdsourcing protocol presented in Burmania
et al. [64]. The approach tracks in real time the quality of the
workers, stopping the evaluation when the performance
drops below an acceptable level. The corpus is evaluated
with interval (e.g., attributes) or nominal (e.g., categorical)
emotional descriptors, where each speaking turn was anno-
tated by five or more workers.

Valence, Arousal, and Dominance (VAD). We consider the
emotional attributes valence (negative versus positive),
arousal (calm versus active), and dominance (weak versus
strong). Each worker assigned a score in the range of 1 to 7.
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Fig. 1. Histograms describing the emotional content of the MSP-Podcast
corpus (release 1.2), for (a) emotional attributes, and (b) emotional
categories.

The consensus labels are the average scores provided to a
speaking turn across workers. Fig. 1a illustrates the histo-
grams of the consensus dimensional emotion attribute
labels, which show the expected distributions centered
around the center of the axes (value 4). While less samples
are included in the extremes, the figures show that samples
in the corpus are indeed labeled with extreme values for the
emotional attributes. In this study, we consider the annota-
tions in the VAD space as a vector in a three-dimensional
space, where each axis represents an attribute.

Primary Emotion (PE). We also consider categorical emo-
tions. Each worker was asked to select the most prominent
emotion perceived in the speaking turn. The list includes
nine possible options: anger, contempt, disgust, fear, happi-
ness, sadness, surprise, neutral state and other. Fig. 1b illus-
trates the histogram of the consensus primary emotion
labels, where the class neutral is the prominent emotion.
Most of the emotional classes have at least 798 samples. The
only exception is fear, which only has 239 samples in this
version of the corpus. In this study, we ignore “other,” cre-
ating an eight-dimensional space where each axis corre-
sponds to one emotion. The consensus label for a speaking
turn is the emotional category selected by most of the work-
ers (i.e., plurality rule).

Secondary Emotion (SE). Spontaneous interactions often
include ambiguous emotional content, where more than
one emotion may be perceived from the speech (e.g., anger
and frustration). The data collection also includes secondary
emotions to capture these emotional trails. The workers
were able to select multiple emotional categories. In addi-
tion to the classes included for the primary emotions, the
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list was extended to include more subtle emotions:
amused, frustrated, depressed, concerned, disappointed,
excited, confused, and annoyed. The primary emotion is
always considered as one of the secondary emotions. The
SE creates a 16-dimensional space, where each axis repre-
sents an emotion.

One important goal of this study is to analyze and com-
pare the effectiveness of the emotional attributes and the
emotional categories (e.g., PE and SE) in being able to rank
samples in a meaningful way such that triplets created from
these rankings can train reliable DNNs to identify sentences
with similar emotions.

We use the release 1.2 of the corpus, containing a total of
29,440 sentences. We have manually identified the speaker
identity of 21,489 sentences (346 speakers). We use speaker
information to set partitions that aims to have speaker inde-
pendent sets. The test set has 7,341 sentences from 50 speak-
ers. The development set has 2,861 sentences from 20
speakers. The train set has the remaining samples (19,238
speaking turns). To report the inter-evaluator agreement,
we use the Fleiss” Kappa for primary emotion. The level of
agreement for primary emotions is « = 0.234. We use the
Krippendorff’s alpha for emotional attributes. The level of
agreement for valence is o, = 0.484, for arousal is ag, =
0.411, and for dominance is ag,, = 0.322. These levels of
agreements are similar to the ones observed in other emo-
tional databases with spontaneous speech and with a simi-
lar number of emotional classes.

3.2 Acoustic Features

The set of acoustic features used for this study comes from
the Interspeech 2013 Computational Paralinguistic Challenge
(ComParE-13) [65]. First, this feature set extracts a set of
low-level descriptors (LLDs) such as energy, fundamental fre-
quency and several spectral features. Second, high-level
descriptors (HLDs) or functional are extracted from the LLDs
for each sentence (e.g., mean of energy). The set defines a
6,373-dimensional vector for each speech sentence, regard-
less of its duration. This vector is the feature input used to
train and evaluate our DNN. We use the OpenSMILE toolkit
[66] to extract this feature set.

4 PROPOSED APPROACH

The purpose of this study is to develop a system that
retrieves emotionally-similar speech samples to an anchor
recording. For a given anchor, we formulate this problem as
a pairwise comparison between two samples, where the
task is to identify which of them has emotional content that
is the closest to the emotional content of the anchor. The
most similar sample is chosen by comparing distances in
the emotional label space between the anchor and each
respective sample, and choosing the sample that has the
shortest distance between itself and the anchor. With this
approach, it is straightforward to use a sort algorithm to
rank-order recordings as a function of the distance in emo-
tional content from the anchor. The emotional label space is
assumed to be unknown during inference, and the goal in
this formulation is to automatically learn representations
that capture this space. For this purpose, we train a deep
neural network with a triplet loss function. The purpose of

this function is to make embeddings of emotionally-similar
samples close together and embeddings of emotionally-dis-
similar samples far apart.

4.1 Triplet Loss Function

A DNN trained with the triplet loss function creates a non-
linear function f that maps acoustic features to a d-dimen-
sional feature space. Therefore, f(z) € R%. After applying
this function, we want samples that are emotionally similar
to the anchor (i.e., positive samples) to be mapped close to
one another, and samples that are emotionally dissimilar
(i.e., negative samples) to be mapped farther apart in this
d-dimensional feature space. Equation (1) shows the ideal
scenario,

1) = FEDIl + B < [1f(af) = FiI "
Vi (), fa]), f(a7) €T,

where z{ is the acoustic features of the anchor, 2! is the
acoustic features of the positive sample, and =7 is the acous-
tic features of the negative sample. The parameter g is a
margin to push apart positive and negative samples, and T’
is the set of all possible triplets in the training set. Equa-

tion (2) shows the triplet loss function.

.
£=max|0, > (@) = F@) = 1) = F@l+ ) |-

2)

Our results demonstrate that the use of the triplet loss
function creates a representation that is effective to repre-
sent emotional content for this formulation. While the triplet
loss is not novel, the formulation, and the use of this loss to
solve this problem are important contributions of this study.

4.2 Emotional Label Space

We must first quantify the concept of emotional similarity to
make comparisons between emotional contents in speech
sentences. Our approach relies on comparing sentences
using the emotional label space, obtained from the annota-
tions. Since it is not clear which is the best emotional
descriptor to achieve our goal of retrieving sentences with
similar emotions, we consider categorical and attribute-
based annotations.

For attribute-based descriptors, we use the three dimen-
sional space defined by the VAD scores (Section 3.1). The
score for each emotional attribute is the average value
assigned for the sentence across evaluators.

For categorical descriptors, we use the primary and sec-
ondary emotions defined in Section 3.1. Instead of using a
one hot vector with the consensus label, we use a soft label
including the annotations from all the evaluators. We use
labels from multiple annotators to create normalized histo-
grams, providing a richer and dense representation of the
emotional content in each sentence. This study evaluates
three different approaches to consider and combine primary
and secondary emotional labels, aiming to identify the most
discriminative space for our formulation.

e The first method only uses the primary emotions for
our histogram. Therefore, the histogram only has



eight dimensions. We refer to this method as the PE
representation.

e The second method weighs the primary and second-
ary emotions, creating a combined representation.
We only use secondary emotions that overlap with
the eight emotions considered for the primary emo-
tion set. Therefore, the histogram also has eight
dimensions. We refer to this method as the PSE(S)
representation. We weigh the primary emotions
twice as much as the secondary emotions. Equa-
tion (3) illustrates the formulation used for the PSE
(8) space, where PSE(8), denotes the ith dimension
of the PSE(8) representation, P, denotes the ith
dimension of the primary emotion distribution, S;
denotes the ith dimension of the secondary emotion
distribution, and « denotes the weight assigned to
the primary emotion, which is set to o = 2.

aB-i—S,-

PO =T P15

3)

e  The third method uses all of the secondary emotions in
addition to the primary emotions, creating a 16 dimen-
sional histogram. We also weigh the primary emotions
twice as much as the secondary emotions (o = 2). We
refer to this method as the PSE(16) representation.
Equation (4) illustrates the formulation used for the
PSE(16) representation, where PSE(16), denotes the
ith dimension of the PSE(16) representation.

PSE(16)7-/ = concat( 7 oF, S — Si )
2ol +85) 35 o(aP;+5))

)

All the histograms are normalized so the sum of their val-
ues is one. Before the normalization, we add a small offset to
have non-zero values for all the dimensions. This step stabil-
izes the use of Kullbach-Liebler Divergence (KLD) (Section 4.3)

4.3 Triplet Generation
We need to provide meaningful preferences as input in the
form of triplets to train and evaluate our models. A triplet
consists of an anchor, positive, and negative samples. The
anchor and positive sample should have very similar emo-
tions. The anchor and negative sample should have very dis-
similar emotions. We sort samples based on the annotation
data with respect to an anchor to determine similarity. For
the VAD representation, we sort with respect to the euclid-
ean distance in the three dimensional VAD space. For the cat-
egorical emotional label representations (PE, PSE(8), PSE
(16)), we sort using the KLD between the histograms of the
respective sentences. We create a sorted list for every sample
in the respective partition for which we are generating trip-
lets. For each representation, we create 19,238 lists for the
train set, 7,341 for the test set, and 2,861 lists for the develop-
ment set, since we wish to use each sentence as an anchor.
Fig. 2 illustrates the method to generate the triplets from
the sorted list. We randomly draw one of the top 20 senten-
ces on the list to choose the positive sentence for a given
anchor. We randomly choose from 20 sentences centered
around a certain percentile in the list to choose the negative
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Fig. 2. Process to generate the triplet consisting of an anchor, the positive
(similar emotion) and the negative (dissimilar emotion) examples. The
process uses a sorted list with the distance from the anchor, where the
percentile to select the negative example is varied during the evaluation.

sentence. The percentile is varied in our evaluation to assess
how different the emotion should be for the models to dis-
tinguish between the positive and negative samples. We
consider drawing negative examples from the 10th, 20th,
25th, 40th, 60th, and 90th percentiles in the list. Intuitively,
negative sentences chosen from the 90th percentile of the
list should be easier to properly discriminate than those
from the 10th percentile of the list, since their emotional
content is more dissimilar from the anchor.

We did not make an effort to ensure that all the positive,
negative and anchor samples in a triplet come from differ-
ent speakers. However, we checked the triplets used in our
study, finding that less than 8.8% of the triplets for each of
the four spaces include positive and anchor samples coming
from the same speaker (VAD, PE, PSE(8) and PSE(16)). Fur-
thermore, we found that there are no statistically significant
differences in the performance when these triplets are
removed from the test set, indicating that our experimental
results are not affected by the speaker information.

4.4 Ensemble Using Multiple Models During Training
Due to local optimization during training, the performance
over batches in the development set is noisy. There are
points throughout the training when the model can perform
well on the development set, while being stuck in a local
optimal. Using a single model can be unreliable, especially
using an early stopping criterion. Instead, we build an
ensemble with the top models in the development set dur-
ing training. We save the model weights for every 500
batches. After the training is complete, we choose the five
best performing models. To increase the diversity in the
ensemble, we do not consider models from nearby batches.

During inferences, we find the euclidean distance in the
triplet loss embedding between the anchor and one of the
competing samples, and between the anchor and the other
competing sample for each of the five models. The corre-
sponding distances are added, choosing the sample with
the smallest distance. In our preliminary analysis, we find
that the ensemble with the five best models has slightly bet-
ter performance than simply using the best model.

5 EXPERIMENTAL SETTINGS

5.1 Network Structure and Training Settings

We model function f in Equation (1) with a fully con-
nected DNN implemented with seven layers. The model
is implemented with batch normalization for the first three
layers. The input of the function is the 6,373 dimensional
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vector with acoustic features from the speech recording (Sec-
tion 3.2). The first three layers contain 2,048 nodes, and the
next three layers contain 1,024 nodes. The activation function
is implemented with rectified linear unit (ReLU). The first five
layers are implemented with dropout with a rate of p=0.2.
The seventh layer is the output embedding, which has 512
nodes, mapping the 6,373 acoustic features into a 512-dimen-
sional emotional representation space. We use this embed-
ding as the output of f to estimate the emotional distance
between recordings. The distance in the embedding is mea-
sure with the euclidean distance. The value for the variable 8
in Equations (1) and (2) was empirically set to 0.6. The mod-
els are trained in Keras with ADAM optimizer and a learning
rate of 0.001. We use Glorot uniform initializer.

To train our networks, we create test sets for VAD, PE,
PSE(8) and PSE(16) at the 40th, 60th, and 90th percentiles
with 10 triplets per anchor, resulting in 192,380 training trip-
lets per condition. We train the models using each training
triplet twice (i.e., two epochs). We noticed that the valida-
tion loss flattened after two epochs so we did not add more
epochs. The training batch size is an important hyperpara-
meter for maximizing the performance on the validation
set. Based on the findings of Wilson and Martinez [67], we
experimented with small batch sizes setting the batch size
to 10. A small batch size adds a regularization due to the
noise in the estimation of the gradient. This approach cre-
ates 38,476 batches. We stop training at this point and
choose the models that produced the five best validation
performances.

5.2 Baselines

The goal of our proposed approach is to take a set of acous-
tic features from speech samples and map them into an
emotional representation space that can be used to deter-
mine emotional similarity. To demonstrate the benefits of
our method, we compare the results with different base-
lines. There is no direct method proposed by other studies
that we can compare our models given that this is a novel
formulation. Instead, we use three general approaches to
indirectly solve our novel formulation.

The first general approach consists of predicting or classi-
fying the emotional content, using the SER output to esti-
mate emotion similarity. For the PE, PSE(8), and PSE(16)
spaces (i.e., categorical emotions), we first train a simple
classifier to predict which of the primary emotions the
speech sentences belong to. Then, we take our trained classi-
fier and use the softmax outputs to predict which of two
sentences is most similar to an anchor sentence. The classi-
fier is a DNN with three hidden layers. The input of the net-
work is also the 6,373 dimensional feature vector described
in Section 3.2. Each layer has 1,024 nodes and uses batch
normalization. The input layer uses dropout with a rate of
p=0.2, whereas the hidden layers use a dropout rate equal to
p=0.5. The hidden layers use the exponential linear unit
(ELU) as the activation function. The output layer has eight
nodes corresponding to the eight primary emotions it pre-
dicts, using a softmax activation function. We train our clas-
sifier for 50 epochs. To predict the emotional similarity
using our classifier, we take the KLD between the softmax
outputs of the anchor and the first sample, and between the
anchor and the second sample. The smaller the KLD, the
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more similar the distributions. Therefore, the sentence with
the smallest KLD is chosen as the most emotionally-similar
sample to the anchor. For the VAD space (emotional attrib-
utes), we use the ladder networks proposed by Parthasara-
thy and Busso [11], [68] to predict valence, arousal, and
dominance (i.e., regression models). The model was trained
with the train set, optimizing performance on the develop-
ment set of the MSP-Podcast corpus (Section 3.1). This net-
work also uses the 6,373 dimensional feature vector as
input. Then, we find the euclidean distance in the predicted
VAD space between the anchor and the first sample, and
between the anchor and the second sample. We choose the
sample with the smallest distance as the most emotionally-
similar sentence to the anchor.

The second general approach estimates feature-level rep-
resentations, estimating emotional distance in the feature
space. We tested the extended version of the Geneva mini-
malistic acoustic parameter set (eGeMAPS) [69] and the Com-
ParE-13 set [65] (Section 3.2). These features sets are used
for SER tasks, so their feature representations are consid-
ered as appropriate spaces to assess emotional similarities.
All of the feature-level representations are extracted using
the OpenSMILE toolkit [66]. We used the HLDs to represent
the audio so that one speech recording has a single repre-
sentation regardless of its duration. We calculated the L2
distance of the feature representation to determine the dis-
tance between the anchor and the positive and negative
samples. We select the sample with the closest distance to
the anchor. We use this approach for the VAD, PE, PSE(8),
and PSE(16) spaces.

The third general approach consists of estimating model-
level representations, quantifying emotional similarity in
general audio representations. We tested four additional
models designed to extract general audio representations:
YAMNet [70] built upon the MobileNetV1 architecture [71],
VGGish [72], TRILL [73], and Wav2Vec 2.0 [74]. To train these
models, we used the same training set used to create our pro-
posed triplet loss model. All of these models can be trained in
an unsupervised manner. We followed the same architecture
and training procedure described in the references of these
four methods [70], [72], [73], [74]. For the VGGish, YAMNet,
and TRILL networks, the input is resampled to 16 khz mono.
The input is the log mel-spectrogram computed using the
short-time Fourier transform (STFT) with a window of 25 ms
and a hop of 10 ms. The STFT coefficients are mapped into a
normalized 64 Mel bin. According to their original imple-
mentations, we cropped the feature into 960 ms segments,
with the step size of 480 ms, 960 ms, 170 ms for YAMNet,
VGGish, TRILL, respectively. If the last segment has a dura-
tion less than 960 ms, we drop the segment. Wav2vec 2.0
takes the raw wav input for its feature encoder, which is nor-
malized to have zero mean and unit variance. The encoder
output has a receptive field of 25 ms and a stride of 20 ms. For
the VGGish, YAMNet, TRILL, and Wav2Vec 2.0 models, we
perform average pooling on the features generated by the
models to have a fixed length output. This vector is used as a
sentence-level representation of the sample. Using the same
approach used for the feature-level representation experi-
ment, we calculated the L2 distance of the sentence-level
representation to quantify emotional similarity between the
anchor and the positive and negative samples.
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Fig. 3. Global model accuracy when the models are built with emotional
attribute space (VAD) and categorical descriptor spaces (PE, PSE(8), and
PSE(16)). The results are presented when the negative examples are
drawn from the 10th, 20th, 25th, 40th, 60th or 90th percentile conditions.

6 EXPERIMENTAL EVALUATION

This section compares the performance of the proposed
model using an emotional attributes representation (VAD)
and the categorical emotion representations (PE, PSE(8),
PSE(16)). The results are evaluated over triplets created on
the test sets that are used neither to train nor optimize the
performance of the models. For a given triplet in the test set,
the binary task in our formulation is to select which of the
two recordings (i.e., positive and negative samples) is more
emotionally similar to the anchor. We measure performance
in terms of accuracy (i.e., percentage of positive samples
correctly determined across all test triplets). Performance at
chance is 50% given this formulation. We establish signifi-
cance between the models and their respective baselines by
splitting the test set into 100 sets of 734 triplets, estimating
the average performance across the 100 sets. Then, we eval-
uate the differences using the one-tailed two sample pro-
portion t-test, asserting significance at p-value < 0.025.

6.1 Global Performance
Our first evaluation is to analyze the global performance of
the proposed models as we vary the selection of the nega-
tive samples by drawing negative examples from different
percentile in the ranked list.

Fig. 3 shows the performance of our models on the entire
test set. This figure shows that representing the emotional
content using the emotional attribute space (VAD) leads to
better performance for our formulation than using categori-
cal emotion spaces (PE, PSE(8), PSE(16)). The best accuracy
is 75.9% , which is obtained using the VAD space in the 90th
percentile condition. It is interesting that the concept of
emotion similarity between speech sentences is better estab-
lished for machine-learning using acoustic features with
emotional attributes than emotional categories. As expected,
the performance increases as the emotional distance
between the positive and negative examples increases.
Selecting the negative examples from the 90th percentile in
the ranked list leads to better accuracy in our models. Our
result shows that selecting the negative samples from the
10th and 20th percentiles shows worse performance than
selecting from higher percentiles in every emotional label
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TABLE 1
Global Accuracy Using the VAD Space to Create the Triplets

Model VAD -90th [%] VAD -60th [%] VAD —40th [%]
Triplet loss 75.9* 66.2* 62.2*
Ladder 73.7 63.7 60.0
YAMN 56.7 55.0 54.8
VGGish 58.4 55.0 54.9
TRILL 55.4 55.3 55.1
Wav2Vec2 57.6 53.7 52.7
eGeMAPS 56.7 53.8 53.7
ComParE13 51.2 50.6 50.9

The results are presented when the negative examples are drawn from the 40th,
60th or 90th percentile conditions. An asterisk (*) indicates that the perfor-
mance of the triplet loss approach is significantly better than all of the baselines
(one-tailed two sample proportion t-test with p-value < 0.025).

space, indicating that the difficulty of the task increases as
the distance between the positive sample and the negative
sample gets closer. In the following experiments, we only
selected the negative samples from the 40th, 60th and 90th
percentile conditions.

Fig. 3 also shows interesting results when we use categori-
cal descriptors. Adding secondary emotions is particularly
useful, leading to consistent improvements in accuracy. There
are clear improvements when we compare the PE and PSE(8)
spaces, indicating that adding secondary emotions help in
finding better representations to assess emotional similarity.
We also observe consistent improvements by increasing the
emotional space from the 8 dimensional space in PSE(8) to the
16 dimensional space in PSE(16). As more information is
added, the representation to assess emotional similarity
improves, helping our models to become progressively more
accurate. This finding demonstrates that secondary emotions
are useful for providing a nuanced understanding of emo-
tional content in speech sentences, providing necessary infor-
mation in addition to the one provided by primary emotions.

Tables 1 and 2 shows the results when we compare the
models with the baseline methods. We highlight higher accu-
racies in bold, adding an asterisk (*) when the differences in
performance achieved by the proposed triplet loss method
and the baseline methods are statistically significance. For
the VAD space, Table 1 shows significant improvements by
using our proposed method over the baselines for all the per-
centile conditions. The ladder network baseline is a state-of-
the-art framework for predicting emotional attributes, lead-
ing to a competitive baseline for this novel task. It is interest-
ing that our models are able to improve performance over the
baselines, where our models can more robustly discriminate
easier triplets. For harder triplets (i.e., 40th percentile condi-
tion), the proposed approach achieves 62.2%, which is signifi-
cantly better than chance.

Table 2 shows the accuracy of the triplet loss methods
and baseline approach for the categorical emotional spaces.
The overall performances are not as good as the ones
reported for the VAD space. Our result shows that the trip-
let loss model shows the best performance among the base-
lines for the PSE(8), and PSE(16) conditions. For the PE
space, our model shows the best performance for the 90th
percentile condition. The exception in these results is for the
40th and 60th percentile conditions, where our model
achieves lower performance. The evaluation with the



HARVILL ET AL.: QUANTIFYING EMOTIONAL SIMILARITY IN SPEECH

TABLE 2
Global Accuracy Using the Categorical Description
Spaces to Create the Triplets

TABLE 3
Accuracy of the Triplet Loss Model When the Anchor Belongs to
the Regions in the VAD Space Defined in Fig. 4

PE PSE(8) PSE(16)

Model 90th 60th 40th 90th 60th 40th 90th 60th  40th

[%] (%] [%] [%] (%] %] [%] [%] [%]
Tripletloss 61.5* 54.7 52.4 61.9* 57.2* 55.2* 62.8% 58.1* 57.0*
Classifier 493 49.2 50.7 51.2 50.8 510 51.8 510 513
YAMN 55.7 535 53.0 56.1 538 528 558 542 54.0
VGGish 55.5 55.7* 545 549 536 528 545 531 52.6
Trill 53.6 543 53.0 538 535 529 540 53.6 53.1
Wav2Vec2 554 542 582* 544 527 522 555 528 528
eGeMAPS 540 512 51.8 538 521 521 53.7 529 520
ComParE13 49.3 49.8 50.8 514 50.6 51.1 523 51.1 514

The results are presented when the negative examples are drawn from the 40th,
60th or 90th percentile conditions. An asterisk (*) indicates that one approach
is significantly better than all of the other models (one-tailed two sample pro-
portion t-test with p-value < 0.025).

similarity metrics in the feature/model representation
spaces demonstrate the benefits of the proposed triplet
model approach. The performances of the baseline are
slightly above chance, indicating the difficulty of this task.
The proposed triplet loss framework is able to reach up to
62.8% accuracy (PSE(16); 90th percentile condition).

6.2 Performance per Region With VAD Space

We examine the results of our models on triplets with
anchors from different regions in the VAD space to demon-
strate that the performance is highly contingent upon the dif-
ficulty of the triplets. The regions we evaluate for the
emotional attributes are specific volumes in the VAD space.
As mentioned in Section 3.1, each emotional dimension was
rated in a scale from one to seven. We split each dimension
into low (1-3), medium (3-5) and high (5-7) scores creating a
3 x 3 x 3 cube. We only consider five regions within this
cube, which we visualize in Fig. 4. Regions 1, 2, 3 and 4 are
the corners of this cube in the arousal-valence space, regard-
less of the dominance value. We consider these regions since
arousal and valence are the most common dimensions used
in previous studies [75]. The fifth region is the center of the
space, where most of the sentences with neutral emotions

Arousal

7

Dominance

Valence

Fig. 4. Regions in the VAD space considered to analyze the perfor-
mance of the proposed model as a function of the location of the
anchors. Regions 1 to 4 include the extreme values for valence and
arousal. Region 5 include samples in the middle of the VAD space.

Performance by region in VAD space

Region 40th [%] 60th [%] 90th [%]
1 68.0 71.5 81.6
2 68.1 68.4 81.0
3 77.7 85.9 93.0
4 79.0 85.0 89.5
5 57.9 62.1 714

The results are presented when the negative examples are drawn from the 40th,
60th or 90th percentile conditions.

are located (e.g., all the sentences with all the attributes in the
range 3-5).

Table 3 shows the performance of our models for each of
the regions in the VAD space. We notice that the perfor-
mance is around 90% for regions 3 and 4 in the 90th percen-
tile condition (e.g., low arousal). We also observe high
accuracy when the anchor is located in regions 1 and 2
(high arousal). These results show that our models are fairly
accurate at discriminating different emotional content when
the anchor conveys clear emotional information. While trip-
lets with anchors from more extreme regions in the arousal
and valence space are fairly easy to discriminate, the triplets
from region 5 achieve the worst performance for each per-
centile condition. Region 5 represents the most difficult trip-
lets, because the anchors come from the center of the VAD
space. This location holds triplets with anchors that are
fairly neutral in all three dimensions. Since the distribution
of the corpus is centered in this region, the actual separation
between the positive and negative samples in the emotional
space is less than the distance observed when the anchor is
in other regions. In fact, the distance in the VAD space
between the anchor and a negative sample in an extreme
region can theoretically be twice as much as the distance
between the anchor and negative sample in the center. The
global averages in Table 1 are closer to the performance on
region 5 than the performances of regions 1-4, since the data
concentrates in the center of the VAD space.

6.3 Performance per Emotion With Categorical
Spaces

This section analyzes the performance of our models in fur-
ther details by grouping the sentences, as a function of their
consensus emotional categories (primary emotion). Table 4
shows the results for each categorical emotion by percentile
condition. The PSE(16) space is generally the best space for
this retrieval task, although the trend is not always consistent
across all the emotions and conditions. In the 90th percentile
condition, we observe performance over 65% for sadness,
surprise and neutral speech. Fear is the emotional class with
the worst performance, which is the emotion with the least
samples in the corpus (Fig. 1b). The lack of representation in
the corpus might explain its poor performance. Across emo-
tional classes, we observe worse performance than models
trained in the VAD space, which provides evidences of the
superiority of emotional attributes over categorical descrip-
tors for ordinal tasks.
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TABLE 4
Accuracy of the Triplet Loss Model When the Anchor
Belongs to Each of the Primary Emotions

PE PSE(8) PSE(16)

Emo 40th 60th 90th 40th 60th 90th 40th  60th  90th

[%] (%] (%] [%] [%] (%] [%] [%] [%]
Ang 551 59.7 614 614 639 632 612 65.1 61.4
Hap 523 551 614 570 594 60.6 60.3 60.2 62.1
Sad 614 641 699 612 546 616 619 56.7 69.8
Con 538 547 598 539 594 582 574 59.3 59.7
Dis 51.1 542 582 565 562 574 565 58.9 58.9
Fear 513 523 570 539 523 564 502 50.2 53.6
Sur 533 579 634 584 579 59.1 577 61.0 65.7
Neu 496 529 627 531 558 668 544 55.8 65.3
Avg 535 564 617 569 574 604 575 58.4 62.1

The results are presented when the negative examples are drawn from the 40th,
60th or 90th percentile conditions.

6.4 Benefits of Using Multiple Triplets per Anchor
We use a train set consisting of 10 triplets per anchor in the
corpus. For a triplet in the train set, the anchor, the positive
sample and the negative sample all belong to the train set.
Different triplets per anchor can be easily constructed by
using different sentences as positive and negative samples,
providing more training examples to build our model. This is
one of the benefits of using ordinal formulations in affective
computing [53]. This section compares the benefits observed
by adding multiple triplets per sentence. The evaluation only
considers the VAD space, since it is the emotional space with
the best performance in previous evaluations.

Fig. 5 compares the results of models trained with either
one or ten triplets per anchor using the VAD space. When
training the model with one anchor per sample, we increase
the number of epochs to match the total number of batches
used for the models trained with ten triplets per anchor.
Fig. 5 shows consistent improvements across percentile con-
ditions. The differences between both models are statisti-
cally significant for the 40th and 60th percentile conditions.
This result indicates that adding multiple triplets per anchor
leads to improvements in the accuracy of the models.

6.5 Selection of Positive Samples

We want positive samples that are close to the anchor. We
also want some randomness so that, if we choose an anchor,
the positive sample is not deterministically defined. We
achieve this goal by randomly drawing the positive sample
from the top of list (Section 4.3). Notice that we can eventu-
ally select more than one triplet per sample if we want to
extend the triplets used to train and evaluate the results. A
larger number of samples considered in the top of the list
increases the probability of selecting triplets with different
anchor-positive examples. In this paper, we consider 20
samples in the top of the lists. Given the size of the corpus,
this threshold is not very important. We expect that even
the top 30 samples will be very close to the anchor given the
density of the emotional content in the corpus. To demon-
strate this point, we compare the performance of the pro-
posed method by using different thresholds to choose the
positive samples for the VAD space. We draw the positive
sample from the list with the top 10, 15, 20, 25, and 30
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Fig. 5. Evaluation of the benefits in using multiple triplets per anchor. The
results are presented when the negative examples are drawn from the
40th, 60th or 90th percentile conditions.

similar samples to the anchor. We estimate the accuracies
on the development set to avoid using the test set to pick
this threshold. Table 5 shows the results in the VAD space.
In most of the conditions, changing the threshold for select-
ing positive samples does not make significant differences
in the accuracy of our proposed approach.

6.6 Computational and Memory Requirements

We denote by M the number of model ensembles (Sec-
tion 4.4). Our proposed model requires approximately M
times more space to store the parameters and approxi-
mately M times more computations during inference than
the regression and classification baselines. Without using
ensembles, our model can have a similar complexity and
memory requirement than the baselines. The only difference
is in the number of nodes in the output layer, where our
model has 512 nodes, while the baseline for the categorical
emotion has eight nodes (primary emotions), and the base-
line for emotional attributes (ladder network) has three
nodes (arousal, valence and dominance). To confirm our
analysis, we checked the actual inference time and number
of parameters of our model and the classification baseline.
Since there are differences in the number of nodes and
layers between the triplet loss models and the classification
baseline, we set them to the same value for this analysis.
The baseline implemented with this modified architecture
led to very similar performance than the ones reported in
Table 2. With this setting, our classification baseline model
has 25,683,410 parameters. The triplet loss model has
131,000,050 parameters with the ensembles, and 26,200,010

TABLE 5
Global Accuracies of the Triplet Loss Model in the VAD Space
as a Function of the Number of Samples in the Top
of the List to Select the Positive Sample

Threshold VAD -90th [%] VAD-60th [%] VAD -40th [%]

10 74.1 66.1 62.6
15 75.1 66.5 61.2
20 75.9 66.2 62.2
25 75.1 65.9 61.4
30 75.5 66.6 62.3
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Listen to the anchor first. Then

listen to option 1 and option 2.

Please answer all 10 questions
before submitting. The question will
only appear after listening to all the
audio clips (till the end).
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Fig. 6. Interface for the perceptual evaluation using AMT. The worker lis-
ten to the anchor and two competing recordings, selecting the file that is
more emotionally similar to the anchor.

parameters without the ensembles. For inference time, the
classification baseline model takes 0.14ms to compare the
similarity for one triplet, and the triplet loss model takes
0.50 ms with ensembles, and 0.11 ms without ensembles.
This analysis confirms that our method can achieve similar
complexity and memory requirements if we do not include
the ensembles. With the ensembles, these values are approx-
imately M times higher.

7 ComMPARISON WITH HUMAN PERFORMANCE

As a new formulation in affective computing, we ask how
hard is this task for human evaluators? Can people reliably
predict which sample is more emotionally similar to a given
anchor? How does human performance compare with the
accuracy obtained by our models? This section evaluates
these questions by using perceptual evaluations, where we
ask annotators to perform the task of selecting the more
emotionally-similar sentence to an anchor.

The task in the perceptual evaluation is to listen to an
anchor audio and two competing audios. They are asked to
choose the competing audio that is the most emotionally-
similar audio to the anchor. We use Amazon Mechanical Turk
(AMT) for the evaluation. Fig. 6 shows the interface used
for the evaluation. Each human intelligent task (HIT) includes
ten triplets, which are presented one after the other. To
avoid unreliable answers, the option to submit the survey is
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Fig. 7. Global comparison of model and human performance for each of
the emotional spaces. We denote with an asterisk (*) on top of the bar
when the difference between conditions is statistically significant.

only activated after a worker has listened to the three sen-
tences (anchor and two competing sentences). For workers
to qualify for this task, they need to live in the United States
and have a history of acceptance rate above 95% on AMT.

The data considered for this evaluation uses the VAD
space and the PE, PSE(8), and PSE(16) spaces. For emotional
attributes, we select 10 triplets for each of 19 different cubes
that form the VAD space (see Fig. 8), and for each of the 40th,
60th, and 90th percentile conditions. These triplets are cho-
sen randomly from the subset of triplets belonging to each
cube. In eight of the 27 cubes, we do not have enough senten-
ces to form the triplets, so we exclude them from our study
(i.e., black cubes without numbers in Fig. 8). Therefore, we
evaluate 570 triplets for the emotional attributes (10 triplets
x 19 cubes x 3 percentile conditions). For the categorical
emotions, we randomly choose 20 triplets per each of the pri-
mary emotions (i.e., the consensus label of the anchor
belongs to the primary emotions). We select 20 triplets at the
40th, 60th, and 90th percentile conditions for the PE, PSE(8),
and PSE(16) spaces. In total, we evaluate 1,440 triplets for cat-
egorical emotions (20 sentences x 8 emotions x 3 percentile
conditions x 3 emotional spaces). Our perceptual evaluation
is conducted by 262 workers in total. We asked three inde-
pendent workers to evaluate each triplet. We measured
inter-evaluator agreement between workers by using the
Fleiss’ Kappa metric. The agreement is « = 0.07. We also
observed low agreement in the perceptual evaluation
reported in our preliminary study [27], which was con-
ducted in controlled laboratory environment (k = 0.15). The
low agreement shows the difficulty of this task for humans.
We evaluate the differences between human and model per-
formance using a one-tailed two sample proportion t-test,
asserting significance at p-value < 0.025.

7.1 Global Performance of Perceptual Evaluations

We first evaluate the global comparison between human and
model performance when using triplets created in the VAD,
PE, PSE(8) and PSE(16) spaces. Fig. 7 shows the perceptual
evaluation results, which aggregates the results across the
40th, 60th, and 90th percentile conditions. We also include
side-by-side the global performance from the models for
comparison. Similar to the results observed from our models,
creating the triplets in the VAD space leads to better human
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Fig. 8. Detailed results for the accuracy of perceptual evaluations in the VAD space. The number in each cube gives the average accuracy for triplets
with anchors in the respective cube. Black cubes without numbers are areas in the VAD space without enough samples in release 1.2 of the MSP-

Podcast corpus.

performance. The performance is higher than the accuracy
achieved by the triplets created with categorical emotions.
Contrary to our models, we do not observe clear improve-
ments by adding secondary emotions. The accuracies using
the PE, PSE(8) and PSE(16) spaces are very similar.

The perceptual evaluation results show that finding emo-
tional similarly is a hard task for human workers. In gen-
eral, we observe that human performance is not as good as
the model performance for this task. The accuracies of our
models are significantly better than human performance for
the VAD, PSE(8) and PSE(16) spaces. Fig. 7 shows that
human performance is only better in the PE space.

7.2 Human Performance per Region in VAD Space

This section analyzes human performance for anchors belong-
ing to different regions in the VAD space. Fig. 8 shows the
results of the perceptual evaluations on an expanded cube.
The numbers on each cube are the average human accuracies
for all the anchors belonging to the cubes in the VAD space.
Lighter areas indicate higher performance. The general trend
is that areas farther from the center of the cube have higher
human accuracies. It also appears that dominance is the
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Fig. 9. Global comparison between model and human performances for
triplets where the anchor belong to each of the primary emotions. We
denote with an asterisk (*) on top of the bar when the difference between
conditions is statistically significant.

attribute with the least influence in the results. In contrast,
cubes with extreme arousal and valence scores generally have
better performance. The best accuracy is 68.9% for the cube
with high valence, low arousal, medium dominance. These
results match the trends observed in Table 3, confirming that
triplets with anchors from expressive regions are easier to dis-
criminate than those from neutral regions, even for human.

7.3 Human Performance in Categorical Spaces

This section further analyzes human performance when the
consensus label for the anchor belong to one of the eight pri-
mary emotions. Fig. 9 shows the aggregated results across all
percentile conditions (40th, 60th and 90th), and emotional cat-
egory spaces (PE, PSE(8), and PSE(16)). For comparison, we
also include the triplet loss model performance. We add an
asterisk on top of the bar when one of the conditions is signifi-
cantly better than the other. For five of the eight emotions, the
triplet loss function achieves better results than human per-
formance. The exceptions are only fear, disgust, and con-
tempt. In the human evaluations, we observe that anger has
the highest performance, and neutral speech has one of the
lowest performances. Anger is a more extreme emotion than
neutral speech. Since this emotion is often identified with low
valence, high arousal and high dominance, this result further
support the consistent observations found with emotional
attributes where regions in the extreme of the VAD space
have higher performance than the central region.

7.4 Human Performance for Percentile Conditions
This section analyzes the human performance in our emo-
tional similarity task on the triplets when the negative samples
are drawn from the 40th, 60th or 90th percentiles in the ranked
lists of the anchors. Fig. 10a shows the results from the percep-
tual evaluations. For comparison, we also include the equiva-
lent results for the performance of the triplet loss model in
Fig. 10b. Fig. 10a does not show a clear pattern in the accuracies
by human performance observed across percentile conditions.
The accuracies of the 90th percentile condition are only slightly
higher for the VAD and PSE(16) spaces. However, the trend is
not as clear as the one observed in Fig. 10b for the accuracies of
our triplet loss models when the emotional separation between
positive and negative samples increases in the triplet.
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Fig. 10. Global comparison between model and human performances
when the negative examples are drawn from the 40th, 60th or 90th per-
centile conditions.

8 CONCLUSION

This paper proposed a new formulation in affective comput-
ing aiming to identify emotional similarity between speech
sentences. The proposed task chooses between two compet-
ing speech samples the one that is more emotionally-similar
to an anchor. The paper proposed a novel solution based on
the triplet loss function that creates a feature embedding that
reduces the distance between speech recordings that are emo-
tionally similar, and increases the distance between speech
with different emotions. We used an ensemble of DNNs
trained with the triplet loss function. The triplets, consisting
of an anchor, a positive sample and a negative sample, were
created using alternative emotional spaces including emo-
tional attributes and categorical descriptors. The results dem-
onstrated that our proposed triplet loss model outperforms
competitive baselines, obtaining improvements in accuracy
that were often statistically significant. The experimental eval-
uation demonstrated that creating the triplets using the emo-
tional attribute space leads to better performance than using
spaces created with categorical descriptors. For categorical
emotions, we evaluated the benefits of using secondary emo-
tions, finding clear improvements when this information was
considered. We also examined the performance of our triplet
loss models by region in the VAD space. We observed that
triplets where the anchor is more emotional are easier to dis-
criminate than those with anchors in neutral regions of the
VAD space.

We performed perceptual evaluations to evaluate and
compare how well humans can perform this task. We
observed similar trends to those exhibited by our triplet loss
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models. Humans perform better on triplets created using the
emotional attribute space than those created using the cate-
gorical descriptor spaces. We also observed that humans per-
form better on triplets with anchors from more expressive
regions on the VAD space, as well as more expressive primary
emotions. Interestingly, the triplet loss models showed better
accuracies than human performance for this difficult task
across conditions, showing the potential of our proposed
models. These observations are important as they give
grounding to the fact that our models are perceiving emo-
tional content for this task in ways similar to that of humans.
It demonstrates that such a representation is meaningful and
should be expanded upon in further research.

The novel formulation and proposed framework represent
important contributions in the area of affective computing.
The study provides further evidences of the benefits of using
ordinal methods in speech emotion recognition [14], [15]. The
ability to quantify emotional similarity opens important
research opportunities enabling exciting applications. For
example, we can describe the emotional samples by aggregat-
ing the emotional descriptors of samples that are similar to a
recording. This type of characterization is richer than assign-
ing a single emotional category or a single score per emo-
tional attribute. While our ensemble method improves the
performance reported in our preliminary study [27], there is
still room for improvement in terms of accuracy. One possi-
ble research direction is to use additional acoustic features or
add other modalities for training our networks.

REFERENCES

[11 L.A.Low, N.C. Maddage, M. Lech, L. B. Sheeber, and N. B. Allen,
“Detection of clinical depression in adolescents speech during
family interactions,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp.
574-586, Mar. 2011.

[2] J.Edwards, H.]. Jackson, and P. E. Pattison, “Emotion recognition
via facial expression and affective prosody in Schizophrenia: A
methodological review,” Clin. Psychol. Rev., vol. 22, no. 6, pp. 789—
832, Jul. 2002.

[3] A. Rosenfeld et al., “Big data analytics and Al in mental health-
care,” 2019, arXiv:1903.12071.

[4] P.Rani, C. Liu, N. Sarkar, and E. Vanman, “An empirical study of
machine learning techniques for affect recognition in human-robot
interaction,” Pattern Anal. Appl., vol. 9, no. 1, pp. 58-69, May 2006.

[5] S.K.D'Mello, S. D. Craig, B. Gholson, S. Franklin, R. Picard, and
A. C. Graesser, “Integrating affect sensors in an intelligent tutor-
ing system,” in Proc. Int. Conf. Intell. User Interfaces Affect. Interact.,
2005, pp. 7-13.

[6] A. De Vicente and H. Pain, “Informing the detection of the
students’ motivational state: An empirical study,” in Proc. Int.
Conf. Intell. Tutoring Syst., S. A. Cerri, G. Gouarderes, and F. Para-
guacu, Eds., 2002, pp. 933-943.

[7] L. Devillers, C. Vaudable, and C. Chastagnol, “Real-life emotion-
related states detection in call centers: A cross-corpora study,” in
Proc. Interspeech , Sep. 2010, pp. 2350-2353.

[8] C. M. Lee and S. S. Narayanan, “Toward detecting emotions in
spoken dialogs,” IEEE Trans. Speech Audio Process., vol. 13, no. 2,
pp- 293-303, Mar. 2005.

[9] M. Wollmer, A. Metallinou, N. Katsamanis, B. Schuller, and S.

Narayanan, “Analyzing the memory of BLSTM neural networks

for enhanced emotion classification in dyadic spoken inter-

actions,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Kyoto,

Japan, 2012, pp. 4157-4160.

S. Parthasarathy and C. Busso, “Jointly predicting arousal, valence

and dominance with multi-task learning,” in Proc. Interspeech,

2017, pp. 1103-1107.

S. Parthasarathy and C. Busso, “Ladder networks for emotion recog-

nition: Using unsupervised auxiliary tasks to improve predictions of

emotional attributes,” in Proc. Interspeech, 2018, pp. 3698-3702.

[10]

[11]



14

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

E. M. Albornoz, D. H. Milone, and H. L. Rufiner, “Spoken emotion
recognition using hierarchical classifiers,” Comput. Speech Lang.,
vol. 25, no. 3, pp. 556-570, Jul. 2011.

R. Lotfian and C. Busso, “Curriculum learning for speech emotion
recognition from crowdsourced labels,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 27, no. 4, pp. 815-826, Apr. 2019.

G. N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of
emotions: An emerging approach,” IEEE Trans. Affective Comput.,
vol. 12, no. 1, pp. 16-35, Jan.-Mar. 2021.

G. N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of
emotions,” in Proc. Int. Conf. Affective Comput. Intell. Interact., San
Antonio, TX, USA, 2017, pp. 248-255.

S. Parthasarathy and C. Busso, “Preference-learning with qualita-
tive agreement for sentence level emotional annotations,” in Proc.
Interspeech, Hyderabad, India, 2018, pp. 252-256.

H. P. Martinez, G. N. Yannakakis, and J. Hallam, “Don’t classify
ratings of affect; Rank them!,” IEEE Trans. Affective Comput., vol. 5,
no. 2, pp. 314-326, Jul.—Sept. 2014.

R. Lotfian and C. Busso, “Practical considerations on the use of
preference learning for ranking emotional speech,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2016, pp. 5205-5209.

S. Parthasarathy, R. Lotfian, and C. Busso, “Ranking emotional
attributes with deep neural networks,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process, 2017, pp. 4995-4999.

S. Parthasarathy, R. Cowie, and C. Busso, “Using agreement on
direction of change to build rank-based emotion classifiers,”
IEEEJACM Trans. Audio Speech Lang. Process., vol. 24, no. 11,
pp- 2108-2121, Nov. 2016.

R. Lotfian and C. Busso, “Retrieving categorical emotions using a
probabilistic framework to define preference learning samples,”
in Proc. Interspeech, 2016, pp. 490-494.

H. Cao, R. Verma, and A. Nenkova, “Speaker-sensitive emotion rec-
ognition via ranking: Studies on acted and spontaneous speech,”
Comput. Speech Lang., vol. 29, no. 1, pp. 186202, Jan. 2015.

Z. Huang and J. Epps, “Detecting the instant of emotion change
from speech using a martingale framework,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process, 2016, pp. 5195-5199.

Z. Huang, ]. Epps, and E. Ambikairajah, “An investigation of
emotion change detection from speech,” in Proc. Interspeech,
2015, pp. 1329-1333.

S. Parthasarathy and C. Busso, “Predicting emotionally salient regions
using qualitative agreement of deep neural network regressors,” IEEE
Trans. Affective Comput., vol. 12, no. 2, pp. 402-416, Apr.—Jun. 2021.

S. Parthasarathy and C. Busso, “Defining emotionally salient
regions using qualitative agreement method,” in Proc. Interspeech,
2016, pp. 3598-3602.

J. Harvill, M. AbdelWahab, R. Lotfian, and C. Busso, “Retrieving
speech samples with similar emotional content using a triplet loss
function,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Brighton, UK, 2019, pp. 7400-7404.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit, 2015, pp. 815-823.

R. Lotfian and C. Busso, “Building naturalistic emotionally bal-
anced speech corpus by retrieving emotional speech from existing
podcast recordings,” IEEE Trans. Affective Comput., vol. 10, no. 4,
pp- 471-483, Oct.—Dec. 2019.

P. H. Le-Khac , G. Healy, and A. F. Smeaton, “Contrastive repre-
sentation learning: A framework and review,” IEEE Access, vol. §,
pp- 193907-193934, Oct. 2020.

J. Bromley et al., “Signature verification using a “siamese” time
delay neural network,” Int. J. Pattern Recognit. Artif. Intell., vol. 7,
no. 4, pp. 669-688, Aug. 1993.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in Proc. ICML Deep Learn.
Workshop, 2015, pp. 1-8.

S. Chopra, R. Hadsell, and Y. LeCun , “Learning a similarity met-
ric discriminatively, with application to face verification,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 539-546.

C. Zhang, W. Liu, H. Ma, and H. Fu, “Siamese neural network
based gait recognition for human identification,” in IEEE Int.
Conf. Acoust., Speech Signal Process., 2016, pp. 2832-2836.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
Proc. Int. Conf. Mach. Learn., H. Daumé III and A. Singh, Eds., Jul.
2020, pp. 1597-1607.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

D. Jiang, W. Li, M. Cao, W. Zou, and X. Li, “Speech SIMCLR:
Combining contrastive and reconstruction objective for self-
supervised speech representation learning,” 2020, arXiv:2010.
13991.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature
learning via non-parametric instance discrimination,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3733—
3742.

X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in Proc. Eur. Conf. Comput. Vis., V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds., 2018, pp. 459-474.

A. Hermans, L. Beyer, and B Leibe, “In defense of the triplet loss
for person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops, 2017, pp. 354-355.

Z. Ming, ]. Chazalon, M. M. Lugman, M. Visani, and ]. Burie,
“Simple triplet loss based on intra/inter-class metric learning for
face verification,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops,
2017, pp. 1656-1664.

F.Ren and S. Xue, “Intention detection based on siamese neural net-
work with tripletloss,” IEEE Access, vol. 8, pp. 8224282254, 2020.

Y. Qiu, T. Misu, and C. Busso, “Use of triplet loss function to
improve driving anomaly detection using conditional generative
adversarial network,” in Proc. Intell. Transp. Syst. Conf., 2020, pp. 1-7.
C. Liet al., “Deep speaker: An end-to-end neural speaker embed-
ding system,” 2017, arXiv:1705.02304.

C. Zhang and K. Koishida, “End-to-end text-independent speaker
verification with triplet loss on short utterances,” in Proc. Inter-
speech, 2017, pp. 1487-1491.

S. Novoselov, V. Shchemelinin, A. Shulipa, A. Kozlov, and I. Krem-
nev, “Triplet loss based cosine similarity metric learning for text-
independent speaker recognition,” in Proc. Interspeech, 2018,
pp- 2242-2246.

H. Bredin, “TristouNet: Triplet loss for speaker turn embedding,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2017,
pp. 5430-5434.

P. Wy, S. K. Rallabandi, A. W. Black, and E. Nyberg, “Ordinal
triplet loss: Investigating sleepiness detection from speech,” in
Proc. Interspeech, 2019, pp. 2403-2407.

S.J. Bu and S. B. Cho, “Automated learning of in-vehicle noise
representation with triplet-loss embedded convolutional beam-
forming network,” in Proc. Int. Conf. Intell. Data Eng. Automated
Learn., C. Analide, P. Novais, D. Camacho, and H. Yin, Eds., 2020,
pp. 507-515.

J. Huang, Y. Li, J. Tao, and Z. Lian, “Speech emotion recognition
from variable-length inputs with triplet loss function,” in Proc.
Interspeech, 2018, pp. 3673-3677.

P. Kumar, S. Jain, B. Raman, P. P. Roy, and M. Iwamura, “End-to-
end triplet loss based emotion embedding system for speech
emotion recognition,” in Proc. Int. Conf. Pattern Recognit., 2021,
pp- 8766-8773.

J. Han, Z. Zhang, G. Keren, and B. Schuller, “Emotion recognition
in speech with latent discriminative representations learning,”
Acta Acustica United Acustica, vol. 104, no. 5, pp. 737-740, Sep.
2018.

J. Han, Z. Zhang, Z. Ren, and B. W. Schuller, “EmoBed: Strength-
ening monomodal emotion recognition via training with crossmo-
dal emotion embeddings,” IEEE Trans. Affective Comput., vol. 12,
no. 3, pp. 553-564, Jul.-Sep. 2021.

K. Feng and T. Chaspari, “A siamese neural network with modi-
fied distance loss for transfer learning in speech emotion recog-
nition,” in Proc. AAAI-20 Workshop Affective Content Anal.:
Interactive Affect. Response, 2020, pp. 1-7.

Y. Baveye, E. Dellandrea, C. Chamaret, and L. Chen, “From
crowdsourced rankings to affective ratings,” in Proc. IEEE Int.
Conf. Multimedia Expo Workshops, 2014, pp. 1-6.

P. Lopes, A. Liapis, and G. N. Yannakakis, “Modelling affect for
horror soundscapes,” IEEE Trans. Affective Comput., vol. 10, no. 2,
pp- 209-222, Apr.—Jun. 2019.

Y. Yang and H. H. Chen, “Music emotion ranking,” in Proc. Int.
Conf. Acoustics, Speech, Signal Process., 2009, pp. 1657-1660.

Y.-H. Yang and H. H. Chen, “Ranking-based emotion recognition
for music organization and retrieval,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 19, no. 4, pp. 762-774, May 2011.

M. Soleymani, G. Chanel, J. . M. Kierkels, and T. Pun, “Affective
ranking of movie scenes using physiological signals and content
analysis,” in Proc. ACM Workshop Multimedia Semantics, 2008,
pp- 32-39.



HARVILL ET AL.: QUANTIFYING EMOTIONAL SIMILARITY IN SPEECH

[59] S. Mariooryad, R. Lotfian, and C. Busso, “Building a naturalistic
emotional speech corpus by retrieving expressive behaviors from
existing speech corpora,” in Proc. Interspeech, 2014, pp. 238-242.

[60] P. P. Liang, A. Zadeh, and L.-P. Morency, “Multimodal local-
global ranking fusion for emotion recognition,” in Proc. ACM Int.
Conf. Multimodal Interaction, 2018, pp. 472-476.

[61] G. N. Yannakakis and H. P. Martinez, “Grounding truth via ordi-
nal annotation,” in Proc. Int. Conf. Affective Comput. Intell. Interact.,
2015, pp. 574-580.

[62] G. N. Yannakakis and J. Hallam, “Ranking vs. preference: A com-
parative study of self-reporting,” in Proc. Affective Comput. Intell.
Interact., S. D'Mello, A. Graesser, B. Schuller, and ].-C. Martin,
Eds., 2011, pp. 437-446.

[63] C. Holmgard, G. N. Yannakakis, H. P. Martinez, and K.-I. Kar-
stoft, “To rank or to classify? Annotating stress for reliable PTSD
profiling,” in Proc. Int. Conf. Affective Comput. Intell. Interaction,
2015, pp. 719-725.

[64] A.Burmania, S. Parthasarathy, and C. Busso, “Increasing the reli-
ability of crowdsourcing evaluations using online quality asses-
sment,” IEEE Trans. Affective Comput., vol. 7, no. 4, pp. 374-388,
Oct.—Dec. 2016.

[65] B. Schuller et al., “The INTERSPEECH 2013 computational para-
linguistics challenge: Social signals, conflict, emotion, autism,” in
Proc. Interspeech, 2013, pp. 148-152.

[66] F.Eyben, M. Wollmer, and B. Schuller, “OpenSMILE: The Munich
versatile and fast open-source audio feature extractor,” in Proc.
ACM Int. Conf. Multimedia, 2010, pp. 1459-1462.

[67] D. Wilson and T. Martinez, “The general inefficiency of batch
training for gradient descent learning,” Neural Netw., vol. 16, no. 10,
pp- 1429-1451, Dec. 2003.

[68] S. Parthasarathy and C. Busso, “Semi-supervised speech emotion
recognition with ladder networks,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 28, pp. 26972709, Sep. 2020.

[69] F. Eyben et al., “The Geneva minimalistic acoustic parameter set
(GeMAPS) for voice research and affective computing,” IEEE
Trans. Affective Comput., vol. 7, no. 2, pp. 190-202, Apr.—Jun. 2016.

[70] M. Plakal and D. Ellis, “YAMNet,” 2020. [Online]. Available:
https://github.com/tensorflow /models/tree/master/research/
audioset/yamnet

[71] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[72] S. Hershey et al., “CNN architectures for large-scale audio classi-
fication,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2017, pp. 131-135.

[73] ]. Shor et al., “Towards learning a universal non-semantic repre-
sentation of speech,” in Proc. Interspeech, 2020, pp. 140-144.

[74] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “Wav2vec 2.0: A
framework for self-supervised learning of speech representations,”
in Proc. Adv. Neural Inf. Process. Syst., Virtual, 2020, pp. 12449-12460.

[75] ]. A.Russell and L. F. Barrett, “Core affect, prototypical emotional
episodes, and other things called emotion: Dissecting the ele-
phant,” J. Pers. Soc. Psychol., vol. 76, no. 5, pp. 805-819, May 1999.

John Harvill (Student Member, IEEE) received the
BS degree with high honors in biomedical engineer-
ing from the University of Texas at Dallas (UTD) in
2018. He is pursuing his PhD degree at the Electri-
cal and Computer Engineering Department at the
University of lllinois at Urbana-Champaign. His
research interests include the areas of voice conver-
sion, automatic speech recognition, and emotion
recognition.

Seong-Gyun Leem (Student Member, IEEE)
received the BS and MS degrees in computer sci-
ence and engineering from Korea University,
Seoul, South Korea, in 2018 and 2020, respec-
tively. He is currently working toward the PhD
degree in electrical engineering with the Univer-
sity of Texas at Dallas. His current research inter-
ests include speech emotion recognition, noisy
speech processing, and machine learning.

15

Mohammed AbdelWahab (Student Member,
IEEE) received the BSc degree in electrical and
electronic engineering from Ain Shams University,
Cairo, Egypt, in 2010, and the MS degree in electri-
cal engineering from Nile university, Cairo, Egypt
2012. He is currently working toward the PhD
degree in electrical engineering with the University
of Texas at Dallas. His research interest includes
speech signal processing, emotion recognition,
artificial intelligence, and machine leamning.

Reza Lotfian (Student Member, IEEE) received
the BS degree with high honors in electrical engi-
neering from the Department of Electrical Engi-
neering, Amirkabir University, Tehran, Iran, in
2006, the MS degree in electrical engineering from
the Sharif University, Tehran, Iran, in 2010, and
the PhD degree in electrical engineering from the
University of Texas at Dallas. He is currently a
research scientist with Cogito Corp, Boston, Mas-
sachusetts, USA. His research interests include
speech signal processing, affective computing,
human machine interaction, and machine learning.

Carlos Busso (Senior Member, IEEE) received
the BS and MS degrees with high honors in elec-
trical engineering from the University of Chile,
Santiago, Chile, in 2000 and 2003, respectively,
and the PhD degree in electrical engineering
from the University of Southern California (USC),
Los Angeles, in 2008. He is currently an associ-
ate professor with Electrical Engineering Depart-
ment, University of Texas at Dallas (UTD). He
was selected by the School of Engineering of
Chile as the best electrical engineer graduated in
2003 across Chilean universities. At USC, he received a provost doctoral
fellowship from 2003 to 2005 and a fellowship in Digital Scholarship from
2007 to 2008. At UTD, he leads the Multimodal Signal Processing. He is
the co-author of the winner paper of the Classifier Sub-Challenge event
at the Interspeech 2009 emotion challenge. His research interests
include human-centered multimodal machine intelligence and applica-
tions, affective computing, multimodal human-machine interfaces, non-
verbal behaviors for conversational agents, in-vehicle active safety
system, and machine learning methods for multimodal processing. His
work has direct implication in many practical domains, including national
security, health care, entertainment, transportation systems, and educa-
tion. He was the general chair of ACII 2017 and ICMI 2021. He is a mem-
ber of ISCA, AAAC, and a senior member of the ACM. He was the
recipient of a NSF CAREER Award, the ICMI 10 Year Technical Impact
Award in 2014. In 2015, his student was the recipient of the third prize
IEEE ITSS Best Dissertation Award (N. Li). He was also the recipient of
the Hewlett Packard Best Paper Award at the IEEE ICME 2011 (with J.
Jain), the Best Paper Award at the AAAC ACII 2017 (with Yannakakis
and Cowie), and the Best of IEEE Transactions on Affective Computing
Paper Collection in 2021 (with R. Lotfian).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.


https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

