Speciation and Reactivity of Mono- and Binuclear Ni Intermediates in Aminoquinoline-Directed C–H Arylation and Benzylation

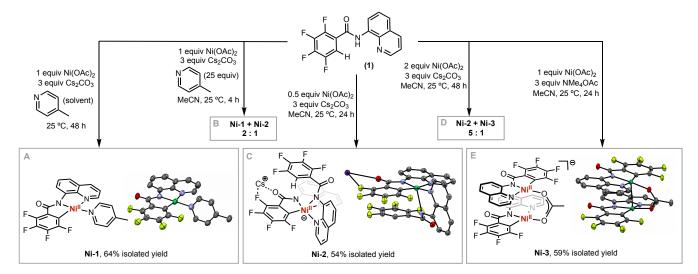
Emily L. Nolan, Isaac M. Blythe, Fengrui Qu, Jeff W. Kampf, and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA

ABSTRACT: This report describes detailed organometallic studies of the aminoquinoline-directed Ni-catalyzed C–H functionalization of 2,3,4,5-tetrafluoro-*N*-(quinolin-8-yl)benzamide with diaryliodonium reagents. A combination of ¹⁹F NMR spectroscopy and X-ray crystallography are used to track and characterize diamagnetic and paramagnetic intermediates throughout this transformation. These provide key insights into both the cyclometalation and oxidative functionalization steps of the catalytic cycle. The reaction conditions (solvent, ligands, base, stoichiometry) play a central role in the observation of a Ni^{II} pre-cyclometalation intermediate as well as in the speciation of the Ni^{II} products of C–H activation. Both mono- and binuclear cyclometalated Ni^{II} species are observed and interconvert, depending on the reaction conditions. Cyclic voltammetry reveals that the Ni^{II/III} redox potentials for the cyclometalated intermediates vary by more than 700 mV depending on their coordination environments, and these differences are reflected in their relative reactivity with diaryliodonium oxidants. The oxidative functionalization reaction affords a mixture of arylated and solvent functionalization organic products, depending on the conditions and solvent. For example, conducting the oxidation in toluene leads to preferential formation of the benzylated product. A series of experiments implicate a Ni^{III/III/IV} pathway for this transformation.

INTRODUCTION

Aminoquinoline (AQ)-directed C–H functionalization has emerged as a powerful approach for the late-stage derivatization of arene and alkane substrates.¹ The AQ directing group was pioneered by Daugulis for palladium-catalyzed C–H arylation² and subsequently other C–C and C–heteroatom coupling reactions. Several years later, analogous transformations were developed using its first-row congener nickel.³,⁴ Intermediates in the palladium-catalyzed transformations have been well-studied and characterized.⁵ In contrast, the details of the structures, oxidation states, and reactivity of Ni intermediates have only begun to emerge. 6,7,8,9,10


To date, organometallic investigations of Ni-catalyzed AQ-directed C–H arylation have largely focused on individual steps of the catalytic cycle. For instance, Love and Schafer,⁶ Johnson,⁷ and others⁸ have interrogated C–H activation at Ni^{II} centers to generate NNC pincer intermediate **B** (Scheme 1, steps *i* and *ii*). These studies show the initial formation of Ni^{II} aminoquinoline coordination complexes of general structure **A** (Scheme 1, step *i*). The speciation of these paramagnetic and often fluxional coordination complexes has been shown to vary as a function of stoichiometry, base, and quinoline electronics; furthermore, the formation/reactivity of **A** has been implicated as a key factor in the rate of C–H activation to generate **B** (*step ii*).^{6,7} Despite these advances, the detection and characterization of paramagnetic coordination complexes has largely been limited to what crystallizes from solution, as there are not good

ways to track their formation and evolution *in situ*. Additionally, isolation of the cyclometalated intermediate (**B**) typically requires trapping with an exogenous donor ligand (e.g., phosphine, pyridine, CO) that would not be present during catalysis. As such, the structure and speciation of Ni^{II} intermediate **B** under catalytically relevant conditions remains an open question.

Scheme 1. General catalytic cycle for nickel-catalyzed AQ-directed C-H arylation

In parallel, work from our group 10 and others $^{8.9}$ has probed the oxidative functionalization of Ni^{II} pincer complex **B**. These studies implicate the accessibility of Ni^{III} and/or Ni^{IV}

Scheme 2. Selective formation of Ni-1, Ni-2, and Ni-3 under varying conditions. Experimental and crystallographic details in SI.

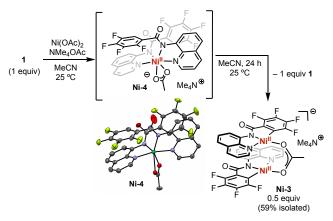
intermediates, depending on the oxidant and reaction conditions. For instance, arylation has been shown to proceed from either Ni^{III} (following single-electron redox transmetalation between **B** and a silver(I)–aryl species)⁹ or Ni^{IV} (following the net two-electron oxidative addition of a diaryliodonium reagent). However, questions remain about the detailed mechanism of C–H arylation, including the relationship between the Ni^{II}, Ni^{III}, and Ni^{IV} oxidation states. For instance, it is currently unclear whether Ni^{IV}–aryl intermediates are accessed exclusively via two-electron redox pathways (Ni^{II/IV}) or whether sequential single electron Ni^{II/IIII/IV} mechanisms¹² are feasible with aryl electrophiles. Herthermore, the connection between the speciation of C–H activation intermediate **B** and its reactivity towards oxidative functionalization has not been established.

We hypothesized that many of these questions could be studied directly by using 2,3,4,5-tetrafluoro-*N*-(quinolin-8-yl)benzamide **1** as a substrate to interrogate organonickel intermediates throughout the C(sp²)–H arylation catalytic cycle. A recent report from our group showed that **1** enables the detection and isolation of related NNC pincer Cu^{II} and Cu^{III} intermediates, which had previously proven elusive.¹⁵ In the Cu system, the fluorine substituents played multiple roles including: (1) serving as ¹⁹F NMR spectroscopic handles for detecting and tracking paramagnetic intermediates,¹⁶ (2) lowering the barrier to C–H activation by acidifying the (fluoro)aryl–H bond,¹⁷ and (3) stabilizing σ-aryl–Cu intermediates.¹⁸

In this report, we study the Ni-catalyzed reaction of **1** with diaryliodonium reagents and use ¹⁹F NMR spectroscopy and X-ray crystallography to track and quantify diamagnetic and paramagnetic intermediates throughout these transformations. These studies reveal that the reaction conditions (solvent, ligands, base, stoichiometry) play a central role in the speciation of Ni^{II} coordination complexes and cyclometalated products. This speciation, in turn, dramatically impacts reactivity towards oxidative functionalization with diaryliodonium reagents, which occurs via Ni^{II/III/IV} pathway. Overall, this work provides detailed insights into multiple steps of the catalytic cycle and informs the development of a Ni-catalyzed C–H benzylation reaction involving diaryliodonium salts and toluene.

RESULTS AND DISCUSSION

Cyclometalation. We initially interrogated the cyclometalation of 1 at Ni(OAc)₂ under a range of different conditions.¹⁹ First, substrate 1 (1 equiv), Ni(OAc)₂ (1 equiv), and Cs₂CO₃ (3 equiv) were combined in 4-methylpyridine, which can serve as both the solvent and an L-type ligand for the cyclometalated product **B**. Monitoring this reaction by ¹⁹F NMR spectroscopy revealed clean formation of the diamagnetic 4-methylpyridinecoordinated cyclometalated product Ni-1 in 72% yield after 48 h at room temperature (Scheme 2A).²⁰ Ni-1 was isolated in 64% yield by column chromatography on silica gel and was characterized by ¹H, ¹³C, and ¹⁹F NMR spectroscopy, elemental analysis, HRMS, and X-ray crystallography. The solid-state structure of Ni-1 shows a square planar Ni^{II} center with a Ni-C bond distance of 1.906 Å. This is within 0.02 Å of that in other reported neutral (NNC_{Aryl})Ni^{II} complexes.^{8,9,10b} Overall, this initial experiment shows that the cyclometalation of 1 at Ni^{II} proceeds under mild conditions.


Pyridine ligands are typically not present during C-H functionalization catalysis; thus, to mimic more catalytically relevant conditions, we next examined the analogous reaction in MeCN with smaller quantities of 4-methylpyridine. Using 25 equiv of 4-methylpyridine led to a 2:1 mixture of Ni-1 and a second cyclometalated product (Ni-2) after 4 h at 25 °C (Scheme 2B). Lowering the amount of 4-methylpyridine led to corresponding decreases in the Ni-1 to Ni-2 ratio, suggesting that Ni-2 does not contain the pyridine as a supporting ligand. Indeed, excluding 4-methylpyridine under otherwise identical conditions afforded Ni-2 in 48% yield as the sole detectable Nicontaining product.²¹ Upon adjusting the reaction stoichiometry to 0.5 equiv of Ni(OAc)2 and 1 equiv of 1, Ni-2 was isolated in 54% yield (Scheme 2C). Characterization by X-ray crystallography revealed that Ni-2 is a 5-coordinate anionic complex (τ = 0.07) bearing one cyclometalated ligand and one aminoquinoline bound as an N~N donor. ²² A Cs cation balances the charge, and in the solid state the Cs⁺ has close contacts with the C=O (Cs--O = 2.938 Å) and *ortho*-fluorine (Cs--F = 3.012 Å) of the cyclometalated aminoquinoline. The Ni-C bond length of 1.916 Å is 0.01 Å longer than that of the neutral analogue Ni-1. Notably, Huang isolated a neutral Ni^{III} complex with an analogous coordination environment using N-(quinolin-8-yl)benzamide as the AQ substrate.8b

Finally, changing the Ni(OAc)₂: 1 stoichiometry to $\geq 1:1$ resulted in the formation of a third cyclometalated product, Ni-3. For instance, the reaction of 2 equiv of Ni(OAc)₂ with 1 equiv 1 afforded a 5:1 mixture of Ni-2: Ni-3 after 48 h at 25 °C (Scheme 2D). Adjusting the stoichiometry to a 3:1 ratio of Ni : 1 and lowering the overall concentration produced Ni-3 as the sole detectable product in 52% yield. Characterization of the tetramethylammonium salt of Ni-3 by X-ray crystallography showed that this is a binuclear monoanionic structure, with an acetate ligand bridging two square planar NNC-coordinated nickelacycles. Related Pd²³ and Ni²⁴ acetate-bridged complexes have been well-studied in the C-H functionalization of substrates bearing monodentate directing groups (e.g, 2-phenylpyridine, benzo[h]quinoline). However, to our knowledge, this is the first analogue with a bidentate AQ directing group. The Xray structure of Ni-3 reveals an average Ni-C bond length of 1.896 Å, which is 0.01 Å shorter than that in the neutral monomeric complex Ni-1. The Ni-Ni distance is 2.926 Å, which is significantly longer (by 0.1 to 0.3 Å) than the metal-metal distances observed in related acetate-bridged complexes of both Ni^{II 24} and Pd^{II}.²³

Based on the structure of **Ni-3**, we hypothesized that this complex could also be formed using an acetate base instead of Cs₂CO₃. Indeed, a higher yield of 68% of **Ni-3** was observed by ¹⁹F NMR spectroscopy with tetramethylammonium acetate (NMe₄OAc) as the base under otherwise identical conditions. Ultimately, the optimal route to **Ni-3** involved the use of 1 equiv of **1**, 1 equiv of Ni(OAc)₂, and 3 equiv of NMe₄OAc in MeCN at 25 °C (Scheme 2E). This reaction afforded quantitative yield of **Ni-3** by ¹⁹F NMR spectroscopy, and the product was isolated in 59% yield and characterized by ¹H, ¹³C, and ¹⁹F NMR, elemental analysis, and HRMS.

While monitoring the formation of Ni-3 under the optimal conditions, we observed a paramagnetic intermediate (Ni-4) with a diagnostic set of three broad ¹⁹F NMR signals between -170 and -140 ppm. Ni-4 appeared after 10 min at 25 °C and slowly decayed over the course of 24 h, with concomitant formation of Ni-3. Recrystallization of a solution containing a mixture of Ni-3 and Ni-4 from MeCN/Et₂O, afforded two distinct types of crystals: orange crystals of Ni-3 and green crystals of Ni-4. X-ray crystallographic characterization of the green crystals showed a mononuclear pseudo-octahedral Ni^{II} coordination complex, featuring two equivalents of N~N bound 1 along with a κ₂-acetate ligand (Scheme 3).

Scheme 3. Ni-4 is an intermediate en route to Ni-3

^aConditions: 1 equiv Ni(OAc)₂, 1 equiv 1, 3 equiv NMe₄OAc in MeCN at 25 °C.

Intermediate Ni-4 appears poised to undergo acetate-assisted $C(sp^2)$ —H activation to form the mononuclear cyclometalated product Ni-2 along with 1 equiv of AcOH (Scheme 4A, step i). However, Ni-2 was not detected by ¹⁹F NMR spectroscopy during the conversion of Ni-4 to Ni-3. This observation led us to hypothesize that the AcOH by-product might be reacting rapidly with Ni-2 to protonate the bidentate AQ ligand, releasing 1 and generating a transient mononuclear intermediate (I, Scheme 4A, step ii). Reaction with a second equiv of intermediate I would then form 0.5 equiv of Ni-3 along with 1 equiv of NMe₄OAc (Scheme 4A, step iii). To evaluate the feasibility of this proposed sequence, we subjected an isolated sample of Ni-2 to 1 equiv of AcOH- d_4 . As shown in Scheme 4B, this led to rapid (\leq 10 min) and quantitative formation of Ni-3 and 1, consistent with the pathway outlined in Scheme 4A.

Scheme 4. (A) Proposed pathway from Ni-4 to Ni-3 (via intermediacy of Ni-2). (B) Reaction of Ni-2 with 1 equiv of AcOH- d_4

Overall, these studies demonstrate the accessibility of both mono- and binuclear nickelacycles under typical C-H functionalization reaction conditions. These complexes differ in charge, nuclearity, and coordination environment, and their distribution is highly sensitive to changes in conditions, such as reaction solvent, acid/base, and stoichiometry. For instance, the anionic mononuclear complex Ni-2 (which contains a second N~Nbound AQ ligand) forms selectively in the presence of a relatively strong base (Cs₂CO₃) and an excess of substrate 1 relative to [Ni]. This combination of base and stoichiometry represent the typical conditions for Ni-catalyzed C-H functionalization reactions.4 However, binuclear complex Ni-3 (which contains a bridging acetate and a single AQ ligand per Ni center) is also readily accessible. It forms rapidly from Ni-2 upon the addition of 1 equiv of AcOH. Furthermore, it is generated selectively via the reaction of 1 with an excess of Ni(OAc)2 in the presence of an acetate base. These results thus provide insights into how to favor the formation of Ni-2 versus Ni-3 in catalysis.

We also detect a pre-cyclometalation intermediate (Ni-4), bearing two N~N bound aminoquinoline ligands along with a bidentate acetate. Ni-4 closely resembles an anionic octahedral (N~N)₃Ni^{II} complex that was recently isolated by Love and Schafer.^{6a} Their work (as well as several other recent reports)^{7,32} proposes that productive cyclometalation occurs from a neutral square planar (N~N)Ni^{II}(OAc) intermediate, thus requiring dissociation of two AQ ligands and coordination of a carboxylate. In contrast, our results suggest that C–H activation at a bis-AQ complex like Ni-4 should also be considered as an alternative pathway to cyclometalated product Ni-2.

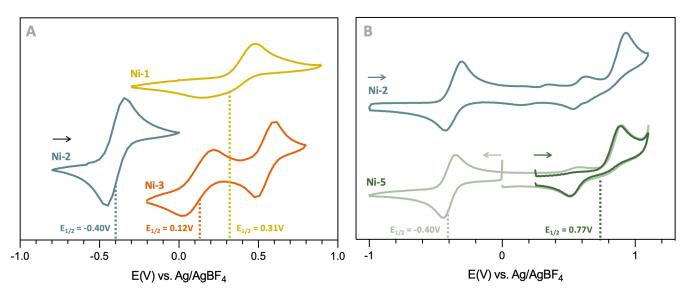


Figure 1. Cyclic voltammetry data for isolated nickelacycles. Conditions: 4-6 mM solution of [Ni] in 0.1 M NBu₄PF₆ in CH₃CN; scan rate of 100 mV/s. (A) Stacked CV traces for Ni-1 (yellow), Ni-2 (blue), and Ni-3 (orange), scanning oxidatively. (B) Stacked CV trace of Ni-2 scanning oxidatively (blue) and CV traces of Ni-5 scanning both oxidatively (dark green) and reductively (light green).

Oxidative functionalization. Cyclic voltammagrams (CVs) of Ni-1, Ni-2, and Ni-3 were obtained in MeCN/NBu₄PF₆ at a scan rate of 100 mV/s and are shown in Figure 1. The neutral complex Ni-1 shows a quasi-reversible Ni^{II/III} couple with $E_{1/2} = +0.31$ V versus Ag/Ag⁺. The Ni^{II/III} couple for anionic Ni-2 is more than 700 mV lower ($E_{1/2} = -0.40$ V versus Ag/Ag⁺). This is comparable to that of the Cu^{II} analogue, which shows a Cu^{II/III} couple with $E_{1/2} = -0.58$ V vs Ag/Ag⁺. Finally, the anionic binuclear complex shows discrete oxidations for the two Ni^{II} centers, with $E_{1/2} = +0.12$ V and +0.55 V vs Ag/Ag⁺. For complexes Ni-1 (Figure S18) and Ni-2 (Figure 1B, top), an additional irreversible peak is observed at $\geq +0.8$ V, likely associated with the Ni^{III/IV} couple (Figure 1B, top). Overall, these data indicate that Ni-2 undergoes single-electron oxidation to Ni^{III} at much lower potentials than Ni-1 or Ni-3.

Scheme 5. Single electron oxidation with AgOTf

Complexes Ni-1 and Ni-3 showed no reaction with AgOTf over 1 h at room temperature.²⁵ This is fully consistent with their Ni^{II/III} redox potentials, which are greater than 0 V vs Ag/Ag⁺. In contrast, the treatment of Ni-2 (formed *in situ*) with 1 equiv of AgOTf resulted in a nearly instantaneous color change from brown to green along with the precipitation of Ag⁰. Monitoring this reaction by ¹⁹F NMR spectroscopy showed the clean and quantitative formation of a paramagnetic product with three broad resonances. This Ni^{III} complex, Ni-5, was isolated in 52% yield as a dark green solid (Scheme 5). Ni-5 was

characterized by single crystal X-ray diffraction, which shows a distorted trigonal bipyramidal Ni^{III} complex ($\tau = 0.38$) with a Ni–C bond length of 1.930 Å. This is ~0.01 Å shorter than that of the unfluorinated analogue of **Ni-5** reported by Huang. ^{8b} The Ni^{III}–C distance in **Ni-4** is only slightly longer (by 0.0014 Å) than that in the anionic Ni^{II} precursor **Ni-2**.

Minimal (≤6%) reaction was observed when Ni-5 was heated for 24 h at 60 °C in MeCN in the absence of an oxidant. This is in marked contrast to the Cu^{III} analogue, ¹⁵ which undergoes a second C-H activation at Cu^{III} and subsequent C(sp²)-C(sp²) bond-formation to generate the oxidatively coupled dimer. However, we note that the CV of Ni-5 (Figure 1B, bottom) shows a quasi-reversible oxidation peak at +0.77 V that matches the second redox event observed in the CV of Ni-2 (Figure 1B). This implicates the feasibility of a second singleelectron oxidation of Ni-5 to generate a cationic Ni^{IV} complex that is expected to be more reactive towards bond-forming reactions. Notably, Ackermann reported that the corresponding unfluorinated Ni^{III} complex shows a similar quasi reversible oxidation at +0.50 V vs. Fc/Fc⁺ and assigned this as a Ni^{III/IV} redox couple.8a Furthermore, he showed that electrochemical oxidation to Ni^{IV} in the presence of nucleophiles leads to rapid C(sp²)–nucleophile coupling to release functionalized products.

We next examined the reaction of the cyclometalated Ni^{II} complexes Ni-1, Ni-2, and Ni-3 with diaryliodonium oxidant 2. Diaryliodonium salts have previously been employed as arylating reagents in Ni-catalyzed AQ-directed C–H functionalization reactions. Furthermore, our group recently reported that 2 effects the net two-electron oxidation of a related Ni^{II} pincer complex to form a Ni^{IV}–aryl intermediate. This Ni^{IV} species then undergoes C–C bond-forming reductive elimination to release an arylated product. 10a,26

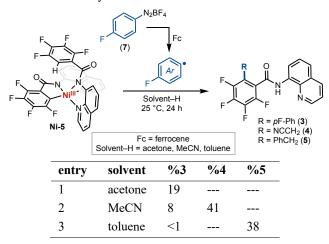
Neither Ni-1 nor Ni-3 showed any reaction with diaryliododium salt 2 at room temperature in acetone- d_6 .²⁷ In contrast, under otherwise analogous conditions, Ni-2 reacted with 2 to afford the C–H arylation product 3 in 52% yield after an acid work up to decomplex the organic product from Ni (Table 1, entry 1). Unexpectedly, when the solvent was changed to

MeCN or toluene, products derived from solvent functionalization were formed competitively. For instance, in MeCN the reaction of Ni-2 with 2 afforded 24% of nitrile 4 along with the arylated product 3 (in 47% yield). The -CH₂CN group derives from C–H functionalization of the solvent, which could occur by either a polar (α -deprotonation) or radical (H-atom abstraction) pathway. The lack of a similar product in acetone (whose pK_a is ~ 20 versus 25 for MeCN) suggests the latter. Consistent with this proposal, moving to toluene (which has homolytically weak benzylic C–H bonds) led to benzylated 5 as the major product (in 37% yield) along with 7% of 3.28 Changing the iodonium reagent from 2 to 6 resulted in an increase in the yield of 5 to 54%. These results suggest that the use of oxidant 2 or 6 in toluene could be effective for the selective Ni-catalyzed C–H benzylation of substrate 1 (vide infra).

Table 1. Reactivity of Ni^{II} complex **Ni-2** with diaryliodonium oxidants^a

entry	[Ar ₂ I] ⁺	solvent	%3	%4	%5
1 ^a	2	acetone	52		
2 ^a	2	MeCN	47	23	
3 ^a	2	toluene	7		31
4 ^b	6	toluene	6		54

^aUsing **2** as oxidant (affords product **3**). ^bUsing **6** as oxidant (affords product **3-Ph**). Following oxidation, an acidic work-up was used to decomplex organic products from Ni. See SI for details.


Scheme 6. Proposed pathway for the oxidative functionalization of Ni-4 with Ar_2I

The results in Table 2 implicate radical intermediates in the oxidation of **Ni-2** with diaryliodonium oxidants, and a pathway consistent with these data is outlined in Scheme 6. It begins with a single electron transfer (SET) from the Ni^{II} starting material **Ni-2** to the diaryliodonium reagent, generating the Ni^{III} complex **Ni-5** along with Ar₂I' (step *i*). This electron transfer is likely facilitated by ion pairing between the anionic Ni^{II} complex and cationic oxidant.²⁹ Next, the Ar₂I' product fragments to form ArI and Ar' (step *ii*), a well-documented and rapid pathway for these species.³⁰ Addition of Ar' to **Ni-5** then forms Ni^{IV}—Ar complex **Ni-6** (step *iii*). Importantly, our group has previously shown the feasibility of Ar' addition to Ni^{III} complexes in other contexts.¹² Finally, C(sp²)—C(sp²) bond-forming reductive elimination from **Ni-6** releases product **3**.^{10a}

This pathway diverges in the presence of solvents with relatively weak C–H bonds (e.g., toluene). Here, the Ar formed in step *ii* competitively abstracts a benzylic hydrogen atom from toluene, producing ArH along with PhCH₂ (step ν). The benzyl radical then adds to Ni^{III}, generating benzyl Ni^{IV} intermediate Ni-7 (step νi), followed by reductive elimination to release 5. Notably, related Ni^{IIIIIIIV} pathways have been proposed for AQ-directed C–H alkylation reactions with alkyl iodides as oxidants¹⁴ but have rarely been invoked with aryl electrophiles.¹³

To experimentally evaluate the viability of this pathway, we studied the reactions of **Ni-5** (isolated independently via the procedure in Scheme 5) with Ar in acetone, MeCN, and toluene.³¹ For these studies, Ar was generated *in situ* by the treatment of ArN₂BF₄ (7) with ferrocene (Fc).¹² Controls show that **Ni-5** does not react with either ArN₂BF₄ or Fc independently. However, combining **7**, Fc, and **Ni-5** in acetone- d_6 at 25 °C yielded **3** in 19% yield (Table 2, entry 1). The analogous reaction between **Ni-5** and 7/Fc was next conducted in MeCN and in toluene. This afforded **4** and **5** as the major products in 41% and 38% yield, respectively (Table 2, entries 2 and 3). Only 8% of the C–H arylation product was observed in MeCN, while none was detected in toluene.

Table 2. Reactivity of Ni-5 with Ar' in different solvents

Overall, these experiments support the viability of steps *iii-vii* of the pathway in Scheme 6. Furthermore, the results in Table 2 provide a framework for leveraging hydrogen atom transfer with Ar* to install different functional groups in AQ-directed C–H functionalization reactions. As mentioned above, this Ni^{II/III/IV} pathway is unusual for AQ-directed C–H functionalization with aryl electrophiles, which are generally proposed to participate in two-electron oxidative addition at Ni^{II}. For

instance, a 2017 computational paper by Liu and coworkers³² suggested that radical oxidation pathways are disfavored in cases where unstable Ar* would be formed. While this is likely the case in reactions of aryl halides (which are not strong one-electron oxidants),³³ the current work shows that aryl radicals are viable intermediates when using an oxidant and Ni^{II} precursor that are electronically well-matched for SET.

Translation to catalysis. A final set of studies focused on translating insights from these stoichiometric organometallic experiments to the catalytic AQ-directed C(sp²)—H functionalization of substrate 1. Based on the results in Schemes 5 and 6, we hypothesized that conducting the Ni-catalyzed reaction of 1 with a diaryliodonium salt in toluene would enable oxidative coupling with solvent to afford benzylated product 5.³⁴ This catalytic transformation was evaluated using 10 mol % of different Ni^{II} catalysts using with 6 as the oxidant, and a carbonate salt as the base. Iodonium 6 was selected because it afforded the highest yield of and chemoselectivity for the benzylation product in Table 1 (compare entries 3 to 4). Carbonate bases were selected based on the results in Schemes 2-4 showing that these strong bases favor speciation of Ni as Ni-2, which is most reactive towards SET with the oxidant.

Table 3.³⁵ Ni-catalyzed reaction of 1 with 6 in toluene to form benzylated product 5

As shown in Table 3, the combination of 10 mol % $Ni(OTf)_2$, ¹⁹ 1 equiv of 1, 1.2 equiv of 6, and 2 equiv of Na_2CO_3 afforded the benzylated product in 41% yield (entry 1). ³⁶ Importantly, this catalytic reaction (and all the rest of the examples in Table 3) was highly chemoselective, and <1% of the corresponding arylated product 3-Ph was detected. Ni-2 and Ni-3 were also competent catalysts with Na_2CO_3 as a base, affording

5 in 55% and 45% yield, respectively. This latter result was initially surprising based in the low reactivity of **Ni-3** with 2 at room temperature.²⁷ However, ¹⁹F NMR studies show that **Ni-3** partially converts to **Ni-2** upon the addition of an excess of carbonate base (see SI, p. S25), which is likely responsible for much of the observed catalytic activity. Consistent with this proposal, the use of NaOAc as a base (which favors speciation as **Ni-3**) led to significantly lower reactivity with all three catalysts (entries 6-8).

CONCLUSION

In summary, this report leverages fluoroaryl substrate 1 to detect and study key intermediates in aminoquinoline-directed C-H activation and functionalization at Ni. A series of Ni^{II}, Ni^{III}, and Ni^{IV} intermediates are isolated or implicated in the reaction of 1 with Ni(OAc)2 and subsequent functionalization of the cyclometalated Ni products with diaryliodonium oxidants. These studies implicate a NiIIIIIIIV pathway involving Ar intermediates for this transformation. The Ar' can react to form arylated products or with solvent (acetonitrile, toluene) to form solvent functionalization products. Ultimately, insights from these stoichiometric organometallic reactions were leveraged to achieve a Ni-catalyzed C-H benzylation reaction using diaryliodonium salts in toluene. We anticipate that further study of organometallic Ni intermediates derived from 1 will provide deeper insights into the mechanisms of established Ni-catalyzed transformations as well as serve as a platform for new reaction discovery and optimization.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Procedure details and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

* Melanie Sanford; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; orcid.org/0000-0001-9342-9436; Email: mssanfor@umich.edu

ACKNOWLEDGMENT

We gratefully acknowledge the US National Science Foundation (CHE-1954985 and CHE-2349827) for support.

REFERENCES

- ¹ (a) Rej, S.; Ano, Y.; Chatani, N. Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds. *Chem. Rev.* **2020**, *120*, 1788-1887. (b) Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp²)–H and C(sp³)–H Bonds by Using Bidentate Directing Groups *Angew. Chem. Int. Ed.* **2013**, *52*, 11726-11743.
- ² Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp³ C–H Bonds Catalyzed by Palladium Acetate. *J. Am. Chem. Soc.* **2005**, *127*, 13154-13155.
- ³ Aihara, Y; Chatani, N. Nickel-Catalyzed Direct Alkylation of C–H Bonds in Benzamides and Acrylamides with Functionalized Alkyl Halides via Bidentate-Chelation Assistance. *J. Am. Chem. Soc.* **2013**, *135*, 5308–5311.
- ⁴ (a) Khake, S. M.; Chatani, N. Chelation-Assisted Nickel-Catalyzed C–H Functionalizations. *Trends in Chem.* **2019**, *1*, 524-539. (b) Harry, N. A.; Saranya, S.; Ujwaldev, S. M.; Anikumar, G. Recent Advances and Prospects in Nickel-Catalyzed C–H Activation. *Catal. Sci. Technol.* **2019**, *9*, 1726-1743. (c) St John-Campbell, S.; Bull, J. A. Base Metal Catalysis in Directed C(sp³)–H Functionalisation. *Adv. Syn. Catal.* **2019**, *361*, 3662-3682. (d) Castro, L. C. M.; Chatani, N. Nickel Catalysts/*N*,*N*′-Bidentate Directing Groups: An Excellent Partnership in Directed C–H Activation Reactions. *Chem. Lett.* **2015**, *44*, 410-421.
- ⁵ (a) Shabashov, D.; Daugulis, O. Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp² and sp³ Carbon–Hydrogen Bonds. *J. Am. Chem. Soc.* **2010**, *132* (11), 3965–3972. (b) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C–H Bond Functionalizations: Mechanism and Scope. *Chem. Rev.* **2011**, *111* (3), 1315–1345.
- ⁶ (a) Nadeau, B. E.; Beattie, D. D.; Lui, E. K. J.; Tewkesbury, M.; Love, J. A.; Schafer, L. L. Electronic Directing Group Modification for Improved Ni(II)-Mediated C(sp³)–H Activation: A Hammett Investigation of 8-Aminoquinoline. *Organometallics* **2023**, *42*, 2326-2334. (b) Beattie, D. D.; Grunwald, A. C.; Perse, T.; Schafer, L. L.; Love, J. A. Understanding Ni(II)-Mediated C(sp³)–H Activation: Tertiary Ureas as Model Substrates. *J. Am. Chem. Soc.* **2018**, *140*, 12602-12610
- ⁷ Liu, J.; Johnson, S. A. Mechanism of 8-Aminoquinoline-Directed Ni-Catalyzed C(sp³)–H Functionalization: Paramagnetic Ni(II) Species and the Deliterious Effect of Carbonate as Base. *Organometallics* **2021**, *40*, 2970-2982.
- ⁸ (a) Zhang, S. K.; Del Vecchio, A.; Kuniyil, R.; Messinis, A. M.; Lin, Z.; Ackermann, L. Electrocatalytic C–H Phosphorylation through Nickel(III/IV/II) Catalysis. *Chem* **2021**, *7*, 1379-1392. (b) He, Z.; Huang, Y. Diverting C–H Annulation Pathways: Nickel-Catalyzed Dehydrogenative Homologation of Aromatic Amides. *ACS Catal.* **2016**, *6*, 7814-7823.
- ⁹ (a) Green, K.-A.; Honeycutt, A. P.; Ciccone, S. R.; Grice, K. A.; Baur, A.; Petersen, J. L.; Hoover, J. M. A Redox Transmetalation Step in Nickel-Catalyzed C–C Coupling Reactions. *ACS Catal.* **2023**, *13*, 6375-6381. (b) Honeycutt, A. P.; Hoover, J. M. Nickel-Catalyzed Oxidative Decarboxylative (Hetero)Arylation of Unactivated C–H Bonds: Ni and Ag Synergy. *ACS Catal.* **2017**, *7*, 4597-4601.
- ¹⁰ (a) Milbauer, M.; Kampf, J. F.; Sanford, M. S. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp²)–C(sp³) Coupling. *J. Am. Chem. Soc.* **2022**, *144*, 21030-21034. (b) Roy, P.; Bour, J. R.; Kampf, J. W.; Sanford, M. S. Catalytically Relevant Intermediates in the Ni-Catalyzed C(sp²)–H and C(sp³)–H Functionalization of Aminoquinoline Substrates. *J. Am. Chem. Soc.* **2019**, *141*, 17382-17387.
- ¹¹ Iyanaga, M.; Aihara, Y.; Chatani, N. Direct Arylation of C(sp³)–H Bonds in Aliphatic Amides with Diaryliodonium Salts in the Presence of a Nickel Catalyst. *J. Org. Chem.* **2014**, *79*, 11933-11939.
- ¹² Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. Connecting Organometallic Ni(III) and Ni(IV): Reactions of Carbon-Centered Radicals with High-Valent Organonickel Complexes. J. Am. Chem. Soc. 2019, 141, 8914-8920.
- ¹³ Proposed Ni^{II/III/IV} mechanisms with aryl electrophiles: Jagtap, R. A.; Soni, V.; Punji, B. Expeditious and Solvent-Free Nickel-Catalyzed C–H Arylation of Arenes and Indoles. *ChemSusChem* **2017**, *10*, 2242-2248.
- ¹⁴ Proposed Ni^{II/III/IV} mechanisms with alkyl electrophiles: (a) Soni, V.; Jagtap, R. A.; Gonnade, R. G.; Punji, B. Unified Strategy for Nickel-Catalyzed C-2 Alkylation of Indoles through Chelation Assistance. *ACS Catal.* **2016**, *6*, 5666-5672. (b) Ruan, Z.; Lackner, S.; Ackermann, L. A General Strategy for the Nickel-Catalyzed C–H Alkylation of Anilines. *Angew. Chem. Int. Ed.* **2016**, *55*, 3153-3157. (c) Kubo, T.; Chatani, N. Dicumyl Peroxide as a Methylating Reagent in the Ni-Catalyzed Methylation of Ortho C–H Bonds in Aromatic Amides. *Org. Lett.* **2016**, *18*, 1698-1701. (d) Soni, V.; Khake, S. M.; Punji, B. Nickel-Catalyzed C(sp²)–H/C(sp³)–H Oxidative Coupling of Indoles with Toluene Derivatives. *ACS Catal.* **2017**, *7*, 4202-4208.
- ¹⁵ Blythe, I. M.; Xu, J.; Fernandez Odell, J. S.; Kampf, J. F.; Bowring, M. A.; Sanford, M. S. Characterization and Reactivity of Copper(II) and Copper(III) σ-Aryl Intermediates in Aminoquinoline-Directed C–H Functionalization. *J. Am. Chem. Soc.* **2023**, *145*, 18253-18259
- ¹⁶ Satterlee, J. D. Fundamental Concepts of NMR in Paramagnetic Systems. Part II: Relaxation Effects. *Concepts Magn. Reson.* **1990**, 2, 119-129.
- ¹⁷ Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic Intermolecular Direct Arylation of Perfluorobenzenes. *J. Am. Chem. Soc.* **2006**, *128*, 8754-8756.
- ¹⁸ (a) Pike, S. D.; Crimmin, M. R.; Chaplin, A. B. Organometallic Chemistry Using Partially Fluorinated Benzenes. *Chem. Commun.* **2017**, *53*, 3615-3633. (b) Guihaumé, J.; Clot, E.; Eisenstein, O.; Perutz, R. N. Importance of Palladium–Carbon Bond Energies in Direct Arylation of Polyfluorinated Benzenes. *Dalton Trans.* **2010**, *39*, 10510-10519. (c) Budiman, Y. P.; Perutz, R. N.; Steel, P. G.; Radius, U.; Marder, T. B. Applications of Transition Metal-Catalyzed Ortho-Fluorine-Directed C–H Functionalization of (Poly)Fluoroarenes in Organic Synthesis. *Chem. Rev.* **2024**, *124*, 4822-4862.
- ¹⁹ Ni(OTf)₂ (another common pre-catalyst for Ni-catalyzed AQ-directed C–H functionalization) also evaluated under the same conditions. It also reacts to form Ni-1, Ni-2, and Ni-3, albeit in lower yields than Ni(OAc)₂ (see p. S14 for details).
- ²⁰ The carbonate base was not necessary to promote the formation of **Ni-1** but did lead to a significantly higher yield of this complex. For example, under the conditions in Scheme 2A but without added Cs₂CO₃, **Ni-1** was formed in 27% yield after 48 h.
- ²¹ Ligand **1** is poorly soluble in MeCN, so the conversion/mass balance could not be established via ¹⁹F NMR spectroscopic analysis of the crude reaction mixture.
- ²² This structure is very similar to that isolated from the reaction of 1 with Cu(OAc)₂ and Cs₂CO₃ [ref. 15].

- ²³ Powers, D. C.; Ritter, T. Palladium(III) in Synthesis and Catalysis. *Top. Organomet. Chem.* **2011**, 503, 129-156.
- ²⁴ (a) Diccianni, J. B.; Hu, C.; Diao, T. Binuclear, High-Valent Nickel Complexes: Ni–Ni Bonds in Aryl–Halogen Bond Formation. *Angew. Chem. Int. Ed.* **2017**, *56*, 3635-3639. (b) Somerville, R. J.; Hale, L. V. A.; Gómez-Bengoa, E.; Burés, J.; Martin, R. Intermediacy of Ni–Ni Species in sp² C–O Bond Cleavage of Aryl Esters: Relevance in Catalytic C–Si Bond Formation. *J. Am. Chem. Soc.* **2018**, *140*, 8771-8780. (c) Ravidas, C. M. T.; Shreiber, S. T.; Kletsch, L.; Klein, A.; Vicic, D. A. Nickel Perfluoroalkyl Complexes Supported by Simple Acetate Coligands. *Organometallics* **2024**, *43*, 706-712.
- ²⁵ The reactions of **Ni-2** and **Ni-3** with AgOTf were performed in MeCN, while that with **Ni-1** was conducted in acetone. This is because the latter is unstable in MeCN, even in the absence of oxidant.
- ²⁶ Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation of Ni(II) to Ni(IV) with Aryl Electrophiles Enables Ni(IV)-Mediated Aryl-CF₃ Coupling. *J. Am. Chem. Soc.* **2015**, *137*, 8034-8037.
- ²⁷ Ni-1 and Ni-3 do show some reactivity with 2 at 80 °C (see Table S1, p. S24 for complete details).
- ²⁸ This reaction was also examined in ethylbenzene as a solvent. Only traces (<5%) of the benzylated product were observed by GCMS. Following an acidic work-up, the mass balance was primarily unreacted substrate 1. No styrene was detected by GCMS, suggesting against β-hydride elimination as a major side reaction. We preliminarily propose that capture of the 2° radical is inefficient at Ni^{III}; further investigations of the scope and limitations of the benzyl coupling partner are ongoing.
- ²⁹ Marcus, R. A. Ion Pairing and Electron Transfer. *J. Phys. Chem. B* **1998**, *102*, 10071-10077.
- ³⁰ (a) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877-910. (b) Wang, X.; Studer, A. Iodine(III) Reagents in Radical Chemistry. *Acc. Chem. Res.* **2017**, *50*, 1712-1724.
- ³¹ Notably **Ni-5** does not react with diarylodium **2** in MeCN under the conditions in Table 2.
- ³² Omer, H. M.; Liu, P. Computational Study of Ni-Catalyzed C-H Functionalization: Factors That Control the Competition of Oxidative Addition and Radical Pathways. *J. Am. Chem. Soc.* **2017**, *139*, 9909-9920.
- ³³ Yokota, A.; Aihara, Y.; Chatani, N. Nickel(II)-Catalyzed Direct Arylation of C–H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as a Directing Group. *J. Org. Chem.* **2014**, *79*, 11922-11932.
- 34 A related AQ-directed oxidative coupling with toluene was reported using C_3F_7I as the oxidant. A related Ni^{II/III/IIV} pathway was proposed, although the reactive radical was generated from the combination of C_3F_7I with the carbonate base, rather than by SET with a Ni intermediate: Aihara, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Ni(II)-Catalyzed Oxidative Coupling between $C(sp^2)$ -H in Benzamides and $C(sp^3)$ -H in Toluene Derivatives. *J. Am. Chem. Soc.* **2014**, *136*, 15509-15512.
- ³⁵ Complete details of the catalytic reaction optimization are provided in Table S4.
- ³⁶ When the temperature was dropped to 100 °C under otherwise identical conditions, only 7% of **5** was observed, with 91% of **1** remaining. Based on the stoichiometric studies (in which an acid workup was required to liberate the product from the Ni center), we hypothesize that elevated temperatures are required turn the catalyst over by displacing Ni-bound product with another equivalent of substrate.

TOC Graphic:

◆ Isolated intermediates ◆ Ni^{II/III/IV} pathway ◆ Application to catalysis ◆