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Abstract
Modern data collection inmany data paradigms, including bioinformatics, often incor-
porates multiple traits derived from different data types (i.e., platforms). We call this
data multi-block, multi-view, or multi-omics data. The emergent field of data integra-
tion develops and applies new methods for studying multi-block data and identifying
howdifferent data types relate and differ. Onemajor frontier in contemporary data inte-
gration research is methodology that can identify partially shared structure between
sub-collections of data types. This work presents a new approach: Data Integration
Via Analysis of Subspaces (DIVAS). DIVAS combines new insights in angular sub-
space perturbation theory with recent developments in matrix signal processing and
convex–concave optimization into one algorithm for exploring partially shared struc-
ture. Based on principal angles between subspaces, DIVAS provides built-in inference
on the results of the analysis, and is effective even in high-dimension-low-sample-size
(HDLSS) situations.

Keywords Data integration ·Matrix decomposition · Rotational bootstrap · Principal
angle analysis

Mathematics Subject Classification 62H20

1 Introduction

Modern experiments are increasingly likely to produce complex data derived from
multiple sources. One common example is a single group of n objects (i.e., cases,
observations, patients) being observed across K different views or data blocks, each
with their own sets of dk, k = 1, . . . , K , traits (i.e., variables, features, descriptors)
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andmeasurement methodologies.We call data collected and organized this waymulti-
block data. Simple data analysis approaches would concatenate multiple data blocks
into a single data matrix of n data objects and d1 + · · · + dK traits. However, these
approaches ignore the often important relationships between the views and obscure
insights on which information comes from which data block. We specifically aim to
address this challenge by considering the data blocks as separate units and searching
for shared structure between them. Shared structure can be defined in several ways.
Here and in some other contemporary approaches seen in Sect. 1.1, it means common
modes of variation modeled by low-rank matrices. More mathematical details of this
modeling choice can be found in Sect. 2. Our proposed method, Data Integration
Via Analysis of Subspaces (DIVAS), incorporates state-of-the-art advances in matrix
perturbation theory andoptimization to provide insights about both shared andpartially
shared joint structure between several data blocks.

DIVASgives a novel approach forfinding structure in amulti-blockdata set basedon
searching for shared subspaces between different collections of data blocks. The data
blocks are intrinsically linkedbyhaving the same trait spaceRn , soweprimarily search
for shared subspaces within the trait space. In contrast to other approaches, angles
form the foundation of our analysis of the relationships between these subspaces. In
particular, principal angles are themeasure of choice of proximity between subspaces.
These angles are applied in a rigorous framework of inference that provides relevant
statistical significance determinations for the chosen subspaces.

Subspaces of trait space have corresponding induced subspaces of object space
R
dk for each data block. Combined together, these subspaces can be decomposed into

modes of variation. A mode of variation is a rank 1 matrix formed from the outer
product of two vectors: one in object space and one in trait space. In the terminology
of principal component analysis (PCA), these would be a loading (direction) vector
and a score vector, respectively. Considering subspaces in terms of modes of variation
is particularly useful for visualization. The score vectors demonstrate relationships
between the data objects, and the loading vectors provide information about which
traits are driving the variation. The ultimate result of a DIVAS exploration of a data set
is a set of modes of variation for each data block associated with each block collection.

The rest of the paper proceeds as follows: The remainder of Sect. 1 continues
with background information on data integration in general. Section2 details DIVAS
methodology and demonstrates the method’s performance on a synthetic data set. Sec-
tion3.1 provides a prototypical application of DIVAS in cancer genomics. Section3.2
contains a case study on twentieth-century mortality using DIVAS. Section4 summa-
rizes some brief conclusions. Appendices A, B, C, and D provide reference materials
on random matrix theory, principal angle analysis, residual matrix estimation, and
details on the optimization problem solved by DIVAS, respectively. MATLAB code
is available for download at https://github.com/jbprothero/DIVAS2021.

1.1 Data integration literature

A time-honored multi-block data analysis method is canonical correlation analysis
(CCA), proposed by Hotelling (1936). Given two blocks of data X and Y, CCA seeks
to maximize the Pearson correlation between vectors from the span of each data block
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in trait space. The fundamental ideas of CCA have been thoroughly extended to more
general settings. Several authors propose different generalizations of CCA for locating
highly correlated structure between three or more data blocks, including (Horst 1961;
Kettenring 1971; Nielsen 2002). Some others have experimented with kernel methods
for CCA, as in Akaho (2007) and Cai and Huang (2017).

In the context of machine learning, methods like CCA are termed multi-view
methods. Multi-view learning broadly includes methods like co-training for semi-
supervised learning (Blum and Mitchell 1998), SVM-2K (Farquhar et al. 2005),
subspace learning (White et al. 2012), and other multi-view extensions of paradigms
like active learning and ensemble learning. See Sun (2013), Xu et al. (2013), and Li
et al. (2019) for more details on these extensions.

Any CCA-based method is ultimately focused on finding jointly shared structure
between each available block or view of the data. Oftentimes, given low-rank approx-
imations of each data block we are also interested in a full factorization of the signal
present in each block into a joint component shared between all blocks and an individ-
ual component unique to each block. One algorithm that produces such a factorization
is Joint and Individual Variation Explained (JIVE) (Lock et al. 2013). After initially
choosing a signal rank for each data matrix using a permutation testing approach, the
algorithm seeks to minimize residual energy by alternating between determining joint
structure and individual structure. Broadly the algorithm accomplishes its goal, but
the optimization problem can proceed slowly and there is no underlying inferential
justification for the chosen boundary between joint and individual structure.

A later generation of JIVE, dubbed angle-based JIVE (AJIVE) (Feng et al. 2018),
was proposed to address the above shortcomings. Selection of joint structure happens
in a quick, single step based on principal angle analysis and the delineation between
joint and individual structure is based on a bound on the angles between original
and perturbed subspaces found in Wedin (1972). Initial rank selection, however, is
performed ad hoc in a separate initial step, and as described in Feng et al. (2018) the
perturbation angle bounds used can become extremely conservative under rank mis-
specification. Additionally, neither JIVE nor AJIVE considers partially shared joint
structure between subsets of blocks.

Decomposition of data blocks into partially shared joint structure components is one
of the primary frontiers in contemporary data integration research. Two approaches to
the problem, Gaynanova and Li (2019) and Zhao et al. (2016), both model partially
shared information via structured sparsity in a basis matrix for the concatenated data
blocks. Gaynanova and Li (2019) determine sparse structure via bi-cross-validation,
while Zhao et al. (2016) determine sparse structure via a collection of Bayesian priors.
A third approach is found in the recent unpublished manuscript (Yi et al. 2022). Their
methodmodels partially shared information via subspace intersections and a hierarchi-
calmatrix nuclear norm regularization scheme. This formulation eschews factorization
into scores and loading subspaces entirely in order to work with a convex optimiza-
tion problem, to capture potentially non-orthogonal partially shared structure across
block collections, and to ensure identifiability. DIVAS maintains identifiability even
among potentially non-orthogonal partially-shared structures via a sequential search
through each collection of data blocks. DIVAS also involves a more challenging non-
convex optimization problem based on factorized matrices, but in doing so achieves
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relevant statistical significance measurements for the resulting shared and partially
shared subspaces.

Another recent pursuit in data integration research is complete incorporation of
all the information from the data blocks. In most cases, the data blocks share the
same number of data objects, so integrative analysis often takes place primarily in
trait space, with corresponding information about the contributions of certain traits
to shared structure being determined subsequently. In many cases, information about
the contributing traits is just as pertinent as the shared structure itself, including if
data blocks are bi-dimensionally linked as in Lock et al. (2020) or bi-dimensionally
matched as in Yuan and Gaynanova (2021). This is often the case in bioinformatics
where the traits represent measurements of particular genes, and the primary goal is to
identify genes or other biological factors that contribute to patterns observed across the
data blocks. The above papers each propose their own method for incorporating trait
information in the analysis in the situations where the data blocks are appropriately
linked. Anothermethodology found in Shu andQu (2021) attempts to incorporate trait
information for more general multi-block situations, but it relies on a computationally
taxing row-matching algorithm as part of its procedure, and the method cannot parse
partially shared joint structure. Our method utilizes subspace perturbation theory that
applies along either dimension of the data blocks and in any scenario with multi-block
data. This makes trait information easy to incorporate throughout the algorithm that
locates partially shared structure.

2 Methodology

Let X1, . . . ,XK be data blocks each containing the same set of n data objects and
distinct sets of d1, . . . , dK traits. In matrix calculations, we follow the bioinformatics
convention where matrix columns are data objects and matrix rows are traits (i.e., the
matrix Xk has dk rows and n columns). In our data model, shown in (2.1), each data
block is assumed to be a low-rank signal matrix Ak plus a full-rank noise matrix Ek :

Xk = Ak + Ek . (2.1)

We assume each entry ofEk is independent with identical variance σ 2
k and finite fourth

moment. For inferential purposes,we also assume rotational invariancebetween signal
and noise data matrices. The mathematical details of this assumption are provided in
Sect. 2.1.3 where they are maximally relevant.

Further discussion of the modeling assumptions for DIVAS requires notation for
describing different collections of data blocks in detail. Consider the power set 2{1,...,K }
as a set of index sets, where each element i ∈ 2{1,...,K } represents a particular collection
of data block indices. Each i indexes a shared structure among the data blocksXk with
k ∈ i. Denote by |i| the cardinality of i.

In order to define structure partially shared across the data blocks, we decompose
the signal matrices Ak, k = 1 . . . , K into a sum of low-rank signal matrices, each
of which corresponds to the joint structure shared between the collection of blocks
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indicated by the index i:

Ak =
∑

i|k∈i
Li,kV�i . (2.2)

Here the sum extends over all index sets i ∈ 2{1,...,K } that satisfy k ∈ i. The n × ri
scores matrices Vi model the shared structure in the trait space between the data
blocks Xk with k ∈ i. The dk × ri loadings matrices Li,k contain the induced object
space structure in each block Xk with k ∈ i. In order to ensure identifiability of the
decomposition (2.2), the factorized signal matrices Li,k and Vi are required to satisfy
the following conditions: (Here and for the rest of the manuscript the notation [Vi]i|i∈S
denotes horizontal matrix concatenation

[
Vi1 · · ·Vi|S|

]
of all matrices Vi with i ∈ S.)

Conditions 1 Identifiability conditions for decomposition (2.2):

1. The columns of each Vi are orthonormal.
2. For two different block index sets i �= j, if i ⊂ j or j ⊂ i, then the subspaces spanned

by the columns of Vi and Vj in the trait space are orthogonal.
3. The matrix [Vi]i|i∈2{1,...,K } , concatenated over all i ∈ 2{1,...,K }, has rank equal to its

number of columns.
4. For all k, the matrix

[
Li,k

]
i | k∈i, concatenated over all i ∈ 2{1,...,K } so that k ∈ i,

has rank equal to its number of columns.

Note that the columns of the loading matrices Li,k are not required to be orthogonal
and may have arbitrary magnitude in order to encode scale information. The dk × n
matrix Ai,k = Li,kV�i has rank ri, the number of columns of Vi. The matrix Ai,k will
be called the partially shared joint structure between blocks in i. When i is a singleton
we also call it individual structure, and when i = {1, . . . , K } we also call it fully joint
structure.

Next we prove existence and uniqueness of the joint structure decomposition (2.2)
in the absence of noise:

Theorem 1 For a set of signal matrices A1, . . . ,AK , there exists a set of matrices
Li,k,Vi satisfying (2.2) and identifiability Condition 1. The joint structure matrices
Ai,k = Li,kV�i are uniquely determined for all i ∈ 2{1,...,K } and k ∈ i.

Proof We proceed with a constructive proof by induction. The steps found here will be
also used in the development of the estimation algorithm in Sect. 2.2. Denote by Vi the
intersection of the subspaces spanned by the columns of transposed signal matrices
A�k with k ∈ i in trait space.

Step 1: Consider the index set i = {1, . . . , K }. Choose V{1,...,K } such that its
columns form an orthonormal basis for V{1,...,K }. Clearly the relevant parts of Condi-
tion 1 are satisfied. Also notice that any vector orthogonal to V{1,...,K } is in at most
K − 1 subspaces spanned by the columns of A�k .

Step 2: Let us assume that we have defined Vi for all K ≥ |i| ≥ q that satisfy
Condition 1, and, for any |i| = q, any vector orthogonal to

[
Vj

]
j⊃i is included in at

most q−1 subspaces spanned by the columns ofA�k , k ∈ i. For any i with |i| = q−1
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select Vi such that its columns form an orthonormal basis for Vi ∩
[
Vj

]⊥
j⊃i, the part

of the space Vi orthogonal to all Vj, j ⊃ i. Each Vi chosen this way satisfies parts 1
and 2 of Condition 1 by construction. Condition 3 is satisfied, because if there was a
rank deficiency in a concatenated matrix [Vi]i | |i|≥q−1 there would be two indices i, j
such that i �= j and the spans of the matrices Vi and Vj share some vector in common.
However, this vector would already be included in Vi∪j, which is a contradiction.
Finally, for any |i| = q − 1, any vector orthogonal to

[
Vj

]
j⊃i is included in at most

q − 2 subspaces spanned by the columns of A�k , k ∈ i. This completes the inductive
construction of the collection of Vi.

For each k, notice that the column span of [Vi]i|k∈i is V{k}, the space spanned
by columns of A�k . Thanks to part 3 of Condition 1, the matrices Li,k are cho-
sen as the unique solution of the equation formed using the concatenated matrices[
Li,k

]
i|k∈i · [Vi]�i|k∈i = Ak . These Li,k satisfy part 4 of Condition 1 by construction.

Now assume there exists some other collectionAk =∑
i|k∈i L̃i,kṼ�i also satisfying

Condition 1. Following similar arguments as above we see that the column spaces of
Ṽi and Vi are the same, and therefore, there exists an orthonormal ri × ri matrix Qi,
so that Ṽi = ViQi. Consequently, L̃i,k = Li,kQi and L̃i,kṼ�i = Li,kV�i . ��

The fact that the matrices Li,k and Vi are only determined up to basis rotation is a
natural result of DIVAS being a subspace-based method and not focused on matrices.
In particular, the most important information contained in Li,k andVi is the subspaces
their columns span in object space and trait space, respectively. This allows DIVAS
to efficiently handle near-equal singular values that could cause problems for matrix-
based approaches. For interpretive purposes, it can be helpful to choose a particular
informative basis for the shared subspaces and examine modes of variation of the data
along those basis directions. These modes of variation of the data may be formed by
outer-multiplying corresponding columns of suitably rotated Li,k and Vi. In Sect. 2.3,
we discuss a particular choice of such informative basis rotations Qi obtained using
an SVD of a particular estimated signal matrix.

Throughout the description of methodology, we will use the following synthetic
three-block data example to illustrate each step of DIVAS. Each block includes a
different set of traits associated with 400 observations. To mimic challenging data
situations with large disparities in trait set sizes, Block 1 has 200 traits, Block 2 has
400 traits, and Block 3 has 10000 traits. Figure1 displays this synthetic data set using
matrix heatmaps. Heatmaps are a graphical display of matrix entry magnitude using
color. Negative entries are shown in shades of blue and positive entries are shown
in red, with color saturation indicating the magnitude of each entry. This means that
entries close to zero are shown with a low-saturation white color. The color scaling
ranges of each heatmap are shown in the color bar below each individual plot.

Each row demonstrates the formation of one of the data blocks via the data model in
(2.1). The left-most column of heatmaps shows the observed data blocks Xk , and the
right-most column of heatmaps shows the noisematricesEk , which in this example are
i.i.d. Gaussian matrices. The middle columns display the various rank 1 components
that sum to each block’s signalmatrixAk as in (2.2). Each signalmatrix is comprised of
a fully-shared component (second column) and partially-shared components between
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Fig. 1 Heatmap view of K = 3 synthetic example construction. Heatmaps share a common color scheme
displayed in the color bars below each plot, with white representing 0 magnitude. The three blocks in the
first column are the observed data and are formed by adding up the other matrices in their respective row.
The three blocks in the second column show the rank 1 fully shared structure common to each block. The
next three columns show the rank 1 partially shared structure common to each subset of two blocks. The
final column shows the noise matrices for each data block

twoof the three data blocks (third, fourth, andfifth columns).As required by ourmodel,
these fully-shared and partially-shared components are constructed such that the trait
space subspace of the fully shared component is orthogonal to the corresponding trait
space subspaces of each partially-shared component. However, the partially shared
subspaces are not mutually orthogonal. In fact, each pair of partially shared trait
subspaces each has a principal angle of 60 degrees between them in the trait space,
R
400. Adding the matrices in the middle columns across each row in the manner of

(2.2) combines the signal components into rank 3 signal matrices. Adding the noise
matrices in the manner of (2.1) then produces the observed data blocks (first column).

The procedure of DIVAS takes the observed data blocks as input and outputs a full
breakdown of shared and partially shared structure between them over three steps.
The first step, described in Sect. 2.1, extracts and estimates the dimension, magnitude,
and direction of each block’s signal subspace. The second step, described in Sect. 2.2,
combines the information from each block to locate shared directions between sub-
spaces. The third step, described in Sect. 2.3, uses those shared directions to form
estimates Âi,k of the partially shared joint structure matrices for each data block, e.g.,
estimates of the middle columns of Fig. 1. Section2.4 describes the visual display of
DIVAS output and corresponding diagnostic measurements.

2.1 Signal subspace extraction

The first step of DIVAS is to estimate the subspaces spanned in both object space and
trait space by the signal matrix for each data block. As the properties and analyses that
take place in this subsection apply to each data block independently, in this section
we suppress the subscript k indexing data blocks Xk when referring to data-block-
specific quantities for simplicity of notation. The indexing subscript will return when
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information from different data blocks is combined together in Sect. 2.2. When we
observe X, we are observing data that’s been perturbed in both magnitude (singu-
lar values) and orientation (basis vectors) from the signal A. The signal magnitude
is readily recoverable from the data magnitude via the signal extraction procedure
described subsequently in Sect. 2.1.1. The signal orientation is itself more challenging
to estimate from the data orientation; there is no reason to favor one direction of rota-
tion over another under the rotational invariance assumptions on the noise matrix E.
However, the key to DIVAS is to quantify a range of feasible signal orientations given
the observed data orientation using bounds on principal angles. These techniques are
described in Sects. 2.1.2 and 2.1.3. The results of this step for the synthetic data set
presented in Fig. 1 are shown in Sect. 2.1.4

2.1.1 Signal subspaces

In Shabalin and Nobel (2013), Proposition 5 demonstrates that if the noise in (2.1)
is orthogonally invariant, any procedure for extracting signal from a data matrix X
need only consider the singular values of the data matrix. In Section 8.2 of Gavish
and Donoho (2017), the authors provide a similar result under the conditions that the
noise is i.i.d. with zero mean and finite fourth moment and the left and right singular
vector matrices (i.e., the subspace orientation information) of the signal matrix are
drawn uniformly at random.Motivated by this, our algorithm uses the signal extraction
procedures developed in these articles. We perform SVD on X to find X = UDV�.
The columns of the matricesU andV are orthonormal bases for the subspaces spanned
in object space and trait space of X, respectively, and the diagonal entries of D are
the singular values of X. Denote these singular values as ν1, . . . , νd∧n . Estimations
of the signal matrix Â typically take the form of a decomposition in terms of rank
1 matrices/approximations that combine to form the estimated object space and trait
space subspaces. The vectors ui and vi denote the i th columns of thematricesU andV,
respectively, and η(•) is a function from R

+ to R+ for shrinking the singular values:

Â =
d∧n∑

i=1
η(νi )uiv�i . (2.3)

Common choices for η include soft thresholding: ηso f t (ν) = (ν− c)∨ 0, and hard
thresholding: ηhard(ν) = νI{ν≥c}, for some constant c, and where I{•} represents an
indicator function. In either case, any singular value smaller than c is set to 0. This
means both procedures have dimension-reducing effects on the estimated Â, and only
subspaces uiv�i associated with nonzero transformed singular values contribute to the
estimate. Gavish and Donoho (2014) outline optimal choices for c for both soft and
hard thresholding in terms of the aspect ratio β = d∧n

d∨n and the standard deviation σ

of the noise matrix E.
In the additive noise datamatrixmodel (2.1), the presence of noise inflates the singu-

lar values associated with the signal component of the data matrix. Hard thresholding
does not account for this phenomenon at all and soft thresholding often overcorrects
by applying the same amount of shrinkage to each nonzero singular value. Shabalin
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Fig. 2 Functions for hard thresholding, soft thresholding, and optimal shrinkage under operator norm loss
for a squarematrix (β = 1). The optimal shrinkage function compromises between the other two approaches.
Figure produced with code from Gavish and Donoho (2017)

and Nobel (2013) and Gavish and Donoho (2017) each propose optimal threshold-
ing functions based on the Marchenko–Pastur distribution (see Appendix A) under a
variety of matrix norms. We use the operator-norm-optimal function η∗ from Gavish
and Donoho (2017) for DIVAS:

η∗(ν) =
⎧
⎨

⎩
1√
2

√
ν2 − β − 1+√

(ν2 − β − 1)2 − 4β, ν ≥ 1+√β;
0, ν < 1+√β.

(2.4)

Figure2 demonstrates how this shrinkage function (2.4), blue solid line, compromises
between soft and hard thresholding for singular values with different magnitudes for
a matrix with aspect ratio β = 1 and noise standard deviation σ = 1. Small values
are thresholded according to optimal soft thresholding (magenta dot-dash line), but
the shrinkage function approaches optimal hard thresholding (black dashed line) for
larger values.

Equation (2.4) assumes noise standard deviation σ = 1. To use the shrinkage
function in general settings, we must appropriately scale the singular values before
and after shrinkage according to some estimate of the standard deviation of the noise
σ̂ . Shabalin and Nobel (2013) use a grid search over several candidate values for σ̂

to find a value that minimizes the Kolmogorov–Smirnov distance between the non-
signal singular values and the appropriate Marchenko–Pastur distribution. Gavish and
Donoho (2017) opt for the simple, robust, closed-form estimate σ̂ = νmedian√

MP(β)0.5
,

where νmedian denotes the median singular value of X and MP(β)0.5 denotes the
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median of the Marchenko–Pastur distribution with parameter β (see Sect.A). We use
the latter method as the default for DIVAS noise standard deviation estimation.

Combining the previous equations, our estimate for the signal matrix Â for a given
data block X is:

Â =
d∧n∑

i=1
σ̂ η∗(νi/σ̂ )uiv�i . (2.5)

Let ν̂i = σ̂ η∗(νi/σ̂ ) be the i th shrunken singular value of X. Let r̂ be the number of
nonzero shrunken singular values and therefore the estimated rank of A. Let Û and V̂
bematrices containing the first r̂ columns ofU andV, respectively. Using this notation
and defining the matrix D̂ as the r̂ × r̂ diagonal matrix with diagonal entries equal to
ν̂1, . . . , ν̂r̂ , we can also write Â = ÛD̂V̂�. Note that Û is therefore an orthonormal
basis for the subspace spanned in object space of Â and V̂ is an orthonormal basis for
the subspace spanned in trait space of Â.

2.1.2 Angle perturbation theory

The foundation of DIVAS is determining whether candidate directions v� ∈ R
n lie in

the trait space spanTS(A) of the signal matrixA. IfAwas observable, this would sim-
ply amount to checking whether the angle θ between v� andTS(A)was 0. SinceA and
θ are unobservable, we aim to estimate θ based on the observable estimated low-rank
signal matrix Â and an estimate of the noise variation Ê developed in Appendix C.
Specifically, we want to choose a perturbation angle bound φ̂ that defines a cone-
shaped significance region aroundTS(Â)which containsTS(A)with high probability.
Directions v� lying within that significance region would then be potential basis direc-
tions forTS(A). Hence, directions v� that liewithin the significance regions ofmultiple
data blocks would then be potential basis directions for partially shared joint struc-
ture between those blocks. To arrive at such a data-block-wise uniform perturbation
angle bound φ̂, we first look to bound the range of possible values for θ for one given
candidate direction v�.

The first step is construction of the range of values for θ based on the relationships
between the projections of v� onto various subspaces. This is illustrated using a simple
low-dimensional example in Fig. 3. In particular, v� (green vector in both panels of
Fig. 3) is projected onto each of TS(A) (translucent purple plane) and TS(Â) (solid
gold plane), with those projections denoted v�

proj (red solid lines) and v̂
�
proj (blue solid

lines), respectively. Computations of these projections are based on the orthonormal
basismatricesV forTS(A) and V̂ forTS(Â). Let θ̂ be the angle between v� andTS(Â).
We can write expressions for θ and θ̂ in terms of the above quantities as follows:

θ = arccos

( 〈v�, v�
proj 〉

‖ v� ‖‖ v�
proj ‖

)
; v�

proj = VV�v�.

θ̂ = arccos

( 〈v�, v̂�
proj 〉

‖ v� ‖‖ v̂�
proj ‖

)
; v̂�

proj = V̂V̂�v�.
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Fig. 3 Locations of θ , θ̂ , θ�
1 , and θ�

2 in a low-dimensional example. Each panel demonstrates a different

angle bound. Left: θ̂ ≤ θ + θ�
1 . Right: θ ≤ θ̂ + θ�

2

We can construct bounds involving θ and θ̂ by considering further projections
between TS(A) and TS(Â). The total angle traversed by projecting v� to TS(A) and
then projecting that result, v�

proj , onto TS(Â) (red dashed line in left panel of Fig. 3) is

at least as large as θ̂ , the angle between v� and TS(Â). Define θ�
1 as the angle between

v�
proj and TS(Â). By the triangle inequality, θ̂ ≤ θ + θ�

1 . Via an analogous projection
of v̂�

proj onto TS(A) (blue dashed line in right panel of Fig. 3), define θ�
2 as the angle

between v̂�
proj and TS(A). Then θ , the angle between v� and TS(A) is no larger than

the total angle traversed by projecting v� onto TS(Â) and then projecting that result,
v̂�
proj , onto TS(A): θ ≤ θ̂ + θ�

2 .
The above discussion of angles between subspaces summarizes the proof of the

following theorem. More details can be found in the PhD dissertation of Jiang (2018).

Theorem 2 Let X = A+ E be a d × n data matrix which is a sum of a signal matrix
A and a noise matrix E under the assumptions of (2.1). Given θ , θ̂ , θ�

1 , and θ�
2 defined

as above, and using (•)+ = max(•, 0), we have:

(θ̂ − θ�
1 )+ ≤ θ ≤ θ̂ + θ�

2 . (2.6)

Both inequalities in (2.6) will be used to rule out directions v� as a candidate for the
joint spaces. These exclusions will be based on two distinct statistical arguments: a
novel rotational bootstrap used for both bounds, and a distribution of angles between
random directions used only for the upper bound.

If the angle to the estimated signal subspace θ̂ for a given candidate direction v� is
less than θ�

1 , then the lower bound in (2.6) for the angle to the true signal subspace is
0, indicating that this direction cannot be ruled out as lying in the true signal subspace.
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The angle θ�
1 is behaving much like the desired perturbation angle bound, but as

noted in Jiang (2018), θ�
1 is not directly estimable for a given direction. However,

θ�
1 is uniformly bounded from above for all v� by the maximum principal angle φ

between TS(A) and TS(Â) (see Appendix B). Our chosen perturbation angle bound
will therefore be a statistical estimate φ̂ of that maximum principal angle φ. This
estimation is performed via a rotational bootstrap as described in Sect. 2.1.3.

Unlike θ�
1 , the angle θ�

2 in the upper bound of (2.6) can be estimated for each v�

using

θ�
2 = arccos

(
‖ V�V̂V̂�v� ‖
‖ V̂V̂�v� ‖

)
. (2.7)

The only unknownquantity in this formula is thematrixV�V̂, andwegenerate samples
from the estimated distribution of this matrix as part of the rotational bootstrap in
Sect. 2.1.3. Therefore by recording those samples and using them in (2.7), we can
generate from a bootstrap distribution of θ�

2 and choose a high percentile denoted as
θ̂ �
2 .
The main use of this estimate is determining whether v� can be distinguished

from an arbitrarily chosen direction based on the estimated upper bound θ̂ + θ̂ �
2 . The

rotational invariance property assumed of the signal and noise in (2.1) implies a natural
null distribution for comparison. In particular, we choose the distribution of angles
between a fixed arbitrary r̂ -dimensional subspace of Rn (recall that r̂ is the estimated
signal rank) and unit vectors chosen uniformly at random.We pick a random direction
angle bound θ0 as a low percentile of that null distribution. If θ̂ + θ̂ �

2 lies above θ0
for some direction v�, then that direction cannot be distinguished from an arbitrarily
chosen direction, which provides statistical evidence that v� is far from TS(A).

The abovederivations of a perturbation angle bound andother angle-based inference
have taken place entirely in trait space. Analogous derivations can be carried out in
object space, and the estimation of perturbation angle bounds in both spaces can take
place simultaneously during the rotational bootstrap. When considering candidate
directions v�, we should additionally rule out directions whose corresponding basis
directions in object space do not obey the object space perturbation angle bounds.
Therefore, both space’s angle bounds play key roles in the optimization problem for
locating joint structure between data blocks. This leads to more precise estimates of
joint subspaces compared to methods like AJIVE (Feng et al. 2018) that consider only
trait space information in their algorithms.

2.1.3 Rotational bootstrap

We estimate perturbation angle bounds for the object space and trait space of a data
block using a novel rotational bootstrap. This technique is designed to take advantage
of the assumed rotational invariance property and aims to estimate the distribution of
principal angles between object space and trait space subspaces of X and A through
random generation of replicate signal subspaces.
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Recall X = A + E from (2.1), and as in Sect. 2.1.1 the compact SVD of the rank
r signal matrix is A = UDV� and the compact SVD of the rank r approximation to

the data X is Â = ÛD̂V̂�. Next consider a random replication X� = U�DV�� + E�,
where E� has the same distribution as E, and U� and V� are random d × r and n × r
orthonormal matrices, respectively. The corresponding compact SVD of the rank r
approximation to X� is Â� = Û�D̂�V̂��.
Assumption 1 The data matrix model (2.1) is called rotationally invariant when the
matrices D̂,V�V̂, ˆV�V,U�Û, ˆU�U have the same distribution as the corresponding
matrices D̂�,V��V̂�, V̂��V�,U��Û�, Û��U�.
As discussed in Appendix B, these matrices determine the principle angle structure
between the spaces spanned by the low-rank signal and its estimate in both trait and
object spaces. Theorem 7 of Jiang (2018) shows that if the noise distribution is rota-
tionally invariant, e.g., having i.i.d. centered Gaussian entries, then the model satisfies
Assumption 1. Alternatively, the model will be rotationally invariant if the signal
matrix A is considered random following a rotationally invariant prior distribution
akin to (54) in Gavish and Donoho (2017).

The continuity of these distributions in the singular values D suggests use of a
parametric bootstrap estimator of these quantities based on the estimated r̂ × r̂ sin-
gular value matrix D̂. In particular, we form a bootstrap replication of a signal matrix
A◦ = U◦D̂V◦�, where U◦ and V◦ are random d × r̂ and n × r̂ orthonormal matri-
ces, respectively. Using this randomly rotated estimated signal matrix along with an
estimate Ê of the noise matrix E, we form a bootstrap replication of the data matrix
X◦ = A◦ + Ê. If the rotational invariance assumption is satisfied, and the estimated
D̂ is close to D this construction produces replicate signal and data matrices with
principal angle structure drawn from a similar distribution as the unobserved principal
angle structure between the true signal and data matrices.

An important and perhaps surprising point is that the naïve noise matrix estimate
Ê = X− Â is not appropriate for use in this construction. This is because X− Â has
insufficient energy in the directions associated with Â and therefore has eigenvalues
that do not follow theMarchenko–Pastur distribution in themanner expected for a noise
matrix under our assumptions. Our proposed estimator, labeled Êimpute, is shown in
(C.2) and corrects for the insufficient energy through imputationviaMarchenko–Pastur
random variates. See Appendix A for details on the Marchenko–Pastur distribution
and Appendix C for full details on the poor performance of X− Â and the motivation
of Êimpute.

As mentioned in Sect. 2.1.2, we will use estimates of the maximum principal angles
between the subspaces spanned in object space and trait space by X and A as pertur-
bation angle bounds. Through repeated replications of the randomly rotated signal
and data matrices described in the previous paragraph, we generate bootstrap samples
estimating the distribution of principal angles between subspaces spanned byX andA
in both object and trait space. With sufficiently many replications (we use M = 400),
we can choose high quantiles (e.g., 0.95) of the empirical distributions of maximum
principal angles as statistical perturbation angle bounds. Recall that φ̂ is the trait space
perturbation angle bound, and denote the corresponding object space perturbation
angle bound as ψ̂ .
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The procedure described in Sect. 2.1.1 discriminates noise fairly well, but as our
algorithm is based on angles we find that additional angle-based rank selection is
often necessary for good practical performance. Therefore, as part of the rotational
bootstrap we filter the signal subspaces according to the random direction angle bound
θ0 defined inSect. 2.1.2. In particular,we choose afiltered rank ř such that the estimated
maximumprincipal angles between true and estimated signal do not exceed ξθ0, where
ξ ∈ (0, 0.5] is a tuning parameter. In our analyses, we explored a grid of values
for ξ ranging from 0.3 to 0.5 and found that a value between 0.35 and 0.4 often
captured an appropriate amount of signal for our data sets. Therefore, the case studies
in Sects. 3.1 and 3.2 choose ξ = 1− 2

1+√5
≈ 0.382, a value based on the golden ratio.

This hyperparameter can be tuned up or down within (0, 0.5] to include more or less
information from the estimated signal matrix in the analysis.

The limitation of ξ ≤ 0.5 follows from the statistical inference framework laid
out in Sect. 2.1.2. If the lower bound (θ̂ − φ̂)+ is 0 and the upper bound θ̂ + θ̂ �

2
is simultaneously greater than θ0 for a given candidate direction v�, the inference
procedure says there is evidence that v� is both significantly close to the true signal
subspace and indistinguishable from an arbitrary direction. This inference outcome
is completely non-informative. In this case, both θ̂ and θ̂ �

2 must be bounded from
above by the maximum principal angle between estimated and true signal subspaces.
Therefore, this non-informative inference outcome is avoided by filtering the estimated
signal subspace until the rotational-bootstrap-estimated maximum principal angle is
at most 0.5 · θ0.

The above description of the rotational bootstrap algorithm is formulated in Algo-
rithm 1. For each block k, we have as inputs to the algorithm the estimated signal
matrix Â = ÛD̂V̂� from (2.5) in Sect. 2.1, the estimated residual matrix Êimpute from
(C.2) in Appendix C, the random direction angle bound θ0 discussed at the end of
Sect. 2.1.2, and the hyperparameters ξ and α. Here α is the desired confidence level
for the perturbation angle bounds and the default is 0.95. At the end of the algorithm,
we have as outputs estimates of the trait space and object space perturbation angle
bounds ψ̂ and φ̂, respectively, for each block k.

During each replication, random subspaces are generated from i.i.d. standard
Gaussian matrices with the same centering operations used on the data. Note that
orthogonalization of an i.i.d. random matrix in this fashion is identical to sampling
from a rotationally uniform distribution of subspaces, according to Theorem 2.2.1
from Chikuse (2012). The inner for loop records maximum principal angles at each
possible filtered rank from 1 to r̂ . After the outer for loop concludes, the algorithm
chooses a filtered rank ř to align with the chosen value of ξ . In the case where the
filtered ranks in object space and trait space differ, the smaller of the two is chosen to
ensure compliance in both spaces. The trait and object space perturbation angle bounds
φ̂ and ψ̂ are chosen as the 1 − α percentile of the empirical distributions of angles
at the filtered rank ř . Once the filtered rank is selected, we filter the columns of the
estimated basis matrices for the signal object and trait space subspaces to correspond
with the reduced rank. Let Ǔ = U1:ř and V̌ = V1:ř be the final estimates of the signal
object and trait space bases, respectively.
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Algorithm 1 Rotational Bootstrap
Require: D̂: r̂ × r̂ diagonal singular values matrix, Ê: d × n residual matrix, θ0: random direction angle
bound, ξ : filter percentage, α: significance level, M : number of replications
object Angles ← 90 ∗ 1M×r̂ ; trai t Angles ← 90 ∗ 1M×r̂
for all m ∈ {1, . . . , M} do

U◦ ← randd×r̂ ; V◦ ← randn×r̂
� Replications must be orthogonal to constant function direction in appropriate spaces.

if X is trait-centered then
U◦ ←

(
Id×d − 1

d 1
d×d)

U◦
end if
if X is object-centered then

V◦ ←
(
In×n − 1

n 1
n×n)

V◦
end if
U◦ ← orth(U◦); V◦ ← orth(V◦); A◦ ← U◦D̂V◦; X◦ ← A◦ + Ê
[U◦,∼,V◦] ← SVD(X◦). “MATLAB" Notation for only storing the orthonormal matrices
for all j ∈ {1, . . . , r̂} do

� Smallest singular value equal to cosine of largest angle.

[∼, �νobject ,∼] ← SVD
(
U◦TU◦1: j

)
; [∼, �νtrai t ,∼] ← SVD

(
V◦TV◦1: j

)

object Angles[m, j] ← arccos(min(�νobject )); trai t Angles[m, j] ← arccos(min(�νtrai t ))
end for

end for
object AnglesSort ← sort(object Angles, col, asc)
trai t AnglesSort ← sort(trai t Angles, col, asc)

ř ← min
(∑r̂

j=1 I{object AnglesSort[αM, j]<ξθ0},
∑r̂

j=1 I{trai t AnglesSort[αM, j]<ξθ0}
)

ψ̂ ← object AnglesSort[αM, ř ]; φ̂ ← trai t AnglesSort[αM, ř ]

2.1.4 Signal extraction for synthetic data

The results of signal space extraction on the synthetic data example from Fig.1 are
shown in Fig. 4. Each heatmap shows the estimated signal matrix Â for the respective
data block. The denoising of each data block appears to have been successful when
comparing the visual impression of these heatmaps to the original data matrices shown
in the first column of Fig. 1. The signal rank is correctly chosen as 3 for all three blocks.
In this case, with a generally high signal-to-noise ratio, angle-based rank filtering
didn’t further reduce the rank beyond the value determined from eigenvalue-based
rank selection.

Since we know the true signal object and trait subspaces for the synthetic data
example, we can compare the estimated perturbation angle bounds to the actual angles
between estimated and true signal subspaces to check the performance of the bounds.
Tables 1 and 2 display the perturbation angle bounds and angles between the true and
estimated signal subspaces in trait space and object space, respectively. The calculated
bounds exceed the true angles in all cases, so the true basis directions all lie within
the cones of feasibility defined by the bounds. Since the bounds are calculated as
uniform 95% bounds, we’d expect to not cover the truth about 1 in 20 times, and the
performance of the bounds in this case aligns with that expectation.

Each synthetic data block has a similar signal-to-noise ratio, so the observed differ-
ences in perturbation angle bounds in the second column of each table are primarily
explained by differences in matrix dimension. Recall that all four data blocks have 400
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Fig. 4 Estimated signal matrices for each block in the synthetic example defined in Fig. 1. The heatmaps
show good recovery of the original signal patterns. The trait and object spaces of each estimated matrix are
rank 3

Table 1 Table of angles between estimated signal trait spaces and true signal trait spaces. All angles are
within the calculated perturbation angle bounds

Data Block Trait
Space
Angle
Bound

Angle to
1,2,3
Truth

Angle to
1,2 Truth

Angle to
1,3 Truth

Angle to
2,3 Truth

1 11.7 9.2 8.5 6.1

2 8.6 6.9 5.6 4.0

3 2.8 2.5 1.0 1.0

data objects, X1 has 200 traits, X2 has 400 traits, and X3 has 10000 traits. The trait
space perturbation angle bounds decrease as the number of traits in the data blocks
increases since we have a more precise idea of where the true signal subspace is with
more trait vectors in the same trait space R

400. The object space perturbation angle
bounds increase as the number of traits in the data blocks increases since we have a
more precise idea of where the true signal subspace is in object space with 400 object
vectors in R200 than we do with 400 object vectors in R10000.

2.2 Joint subspace estimation

We formally introduce the optimization problem for locating shared structure in
DIVAS. The conceptual constraints and objective function are shown in (2.8), and
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Table 2 Table of angles between estimated signal object spaces and true signal object spaces. All angles
are within the calculated perturbation angle bounds

Data Block Object
Space
Angle
Bound

Angle to
1,2,3
Truth

Angle to
1,2 Truth

Angle to
1,3 Truth

Angle to
2,3 Truth

1 8.6 4.5 4.9 4.7

2 8.6 5.8 6.6 4.0

3 13.1 7.9 4.6 4.7

the full numerical algorithm is deferred to Appendix D with the main subproblem
being a convex optimization problem (D.4).

For any given collection of blocks i, the corresponding joint subspace should be
near each of the included blocks in some sense. In DIVAS, proximity is evaluated
in terms of angles between candidate directions and subspaces. In particular, during
each phase of joint subspace estimation we minimize the angle between candidate
directions v� and the estimated trait space subspaces of included blocks subject to
identifiability and feasibility constraints:

min
v�

−
∑

k∈i
cos2 θ̂T k

s.t . θ̂T k = ∠(v�, V̌k) ∀k
θ̂Ok = ∠(Xkv�, Ǔk) ∀k
θ̂T k ≤ φ̂k ∀k ∈ i

θ̂T k > φ̂k ∀k ∈ ic

θ̂Ok ≤ ψ̂k ∀k ∈ i

v� ⊥ Vj ∀j ⊇ i.

(2.8)

In practice, this problem is solved via an iterative procedure called convex–concave
procedure as described in Ismailova and Lu (2016). This algorithm is also called
DC (Difference of two Convex functions) algorithm in the literature. Full explanation
can be found in Appendix D. In the rest of this section, we discuss details of the
optimization problem (2.8) and its role in the estimation of the joint signal structure.

The objective function is expressed in terms of angle cosines in line 1 of (2.8).
To ensure that a candidate direction lies in the true signal subspace of an included
block Xk, k ∈ i with high significance, the trait space angle between a candidate
direction and the subspace spanned by the columns of V̌k should be at most the trait
space angle perturbation bound φ̂k . Additionally, the object space angle betweenXkv�

and the subspace spanned by the columns of Ǔk should be at most the object space
angle perturbation bound ψ̂k . Finally, the angle between a candidate direction and an
excluded block should be at least the trait space angle perturbation bound φ̂k . These
requirements are expressed as constraints for the optimization problem in lines 2–6
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in (2.8), with subscripts T and O indicating angles in trait space and object space,
respectively. Crucially, our dimensionally flexible subspace-based angle perturbation
approach to signal extraction allows object space information to be incorporated very
naturally into the joint subspace estimation algorithm. This innovation enhances the
significance and interpretability of loadings vectors found using DIVAS.

Following the proof of Theorem 1, we determine each block collection’s potential
joint structure in turn, starting with larger block collections and ending with singleton
block collections. Within a joint structure search for a given block collection i, joint
subspace basis directions are found one at a time via successive solves of (2.8). If no
new feasible direction is found, the search among the current block collection ends and
the search among the next block collection begins. Candidate directions in trait space
for a particular block collection must also obey orthogonality constraints expressed in
parts 1 and 2 of Condition 1. These conditions are concisely expressed in the constraint
in line 7 of (2.8). The Gothic script symbolVi is used to denote the current estimated
trait space basis for the shared structure for block collection i, i.e., an estimate of the
Vi from (2.2). Note that the search for joint structure between two block collections of
the same size is embarassingly parallelizable, as the orthogonality constraint will only
include joint structure found for strictly larger block collections. The order in which
block collections of equal size are searched does not affect DIVAS output.

As the algorithm finds basis directions for block collection i, the rank of Vi
increases, and so the constraint in line 7 tightens as more basis directions are located.
As directions are located the angle constraints also change.We shrink V̌k , the orthonor-
mal bases for estimated trait space signal, to only include directions in the null space
of [Vj]j⊇i. This basis shrinking improves computation time and assists in the choice
of basis directions satisfying our assumptions.

2.3 Signal reconstruction

Once we have located all possible joint structure, the remaining task is to reconstruct
the signal matrix components for each data block. Recall that in Sect. 2.2 we denote
the estimated orthonormal basis for the joint structure among blocks in collection i as
Vi. For a given data block k, we first horizontally concatenate all joint structure basis
matrices found involving block k into one matrix [Vi]i|k∈i. Then, we form a linear
regression problem to find the corresponding loading vectors for block k associated
with the common scores vectors for block collection i in a similar fashion as the proof
of Theorem 1. In particular, [Li,k]i|k∈i is chosen as the least-squares solution of the
regression problem minL ‖Xk −L · [Vi]�i|k∈i‖22. This solution is unique when [Vi]i|k∈i
is full-rank. The columns of [Li,k]i|k∈i can then be partitioned into loadings matrices
Li,k , each of which is associated with joint structure for one block collection i with
k ∈ i, i.e., Li,k is an estimate of Li,k from (2.2). The estimated partially shared joint
structure between data blocks in i is then simply Âi,k = Li,kV

�
i .

As a brief remark, DIVAS may in certain cases select shared structure such that the
rank of [Vi]i|k∈i is larger than řk . Since the subspaces spanned byVi andVj need not
be orthogonal unless i ⊆ j or j ⊆ i, more than řk total basis directions may be selected
within the cone of feasibility for block k.
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Additional insight comes from further decomposition of Âi,k into a sum of rank 1
modes of variation. Eachmode comes from an outer product of corresponding columns
ofLi,k andVi. SinceLi,k andVi are only determined up to basis rotation,we first select
a rotation matrix Qi and then examine modes of variation formed with the matrices
Li,kQi and ViQi. In particular, we take an SVD of the projection of the stacked data
matrix [X�k ]�k∈i onto the subspace spanned by Vi in trait space, and choose Qi as the
matrix of right singular vectors from that calculation. This re-rotation can be thought
of as sorting the modes of variation within the shared subspace in order of importance.

Since DIVAS is based on angles, additional diagnostic insight into the modes of
variation is derived from angles between the loadings (columns of Li,kQi) and scores
(columns ofViQi) and the object and trait spaces spanned by the estimated low-rank
matrix Âk , respectively. In particular, for each estimated score vector and loadings
vector, the angle to each estimated signal matrix θ̂k and the upper bound on the angle
to the true signal θ̂k + θ�

2 for each direction in both trait space and object space
are computed. See Sect. 2.1.2 for a definition of θ�

2 . To calculate the upper bound
for one of the vectors, we choose the 95th percentile of an empirical distribution of
θ�
2 generated using (2.7) and the cached matrices from the rotational bootstrap (see
Sect. 2.1.3). Scores for all blocks are in a shared trait space, and therefore, in trait
space we calculate these angles not only for included (k ∈ i) but also for excluded
(k /∈ i) blocks for each block collection i. The angle to the included block is expected
to be small and the angle to the excluded block is expected to be large, though not
necessarily 90 degrees. If some score vector has an upper bound below the random
direction bound θ0 for an excluded block, then the corresponding mode of variation
is correlated with that excluded block even though it is not joint with that block. The
object spaces are block specific, and therefore for loadings we calculate angles to the
included (k ∈ i) data blocks only. These diagnostic angles form the crux of the overall
diagnostic displays that we describe next.

2.4 DIVAS diagnostic graphics

Wecompile all angle-based diagnostics forDIVAS into comprehensive displays. These
displays can be seen in Figs. 5 and 6 for the synthetic data set shown in Fig. 1, in Fig. 7
for breast cancer omics data, and in Figs. 10 and 11 for twentieth-century mortality
data. We explain the interpretation of these displays in this section using the synthetic
data example.

Figure 5 shows the diagnostic angles for the joint score vectors found for the
synthetic data example from Fig. 1, and Fig. 6 shows those same diagnostic angles
for the joint loading vectors. Each row of boxes corresponds to a data block and the
various block collections appear in the columns. Boxes for included blocks in a given
column are colored-in while boxes for excluded blocks are white. The number in each
colored box specifies the rank of the estimated joint subspace between the blocks
included in that column. Block collections where no partially shared joint structure
was found are labeled with a 0 and grayed out. The last column labeled Ranks contains
the dimensions of key subspaces for each data block k = 1, . . . , K . The final rank
is the dimension of the subspace spanned by all structure involving that data block,
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i.e., the rank of [Vi]i|k∈i. The filtered rank is the dimension of the estimated signal
subspace in both object and trait space for that data block, i.e. řk . The maximum rank
is the largest possible dimension spanned by structure involving that data block, i.e.
dk ∧ n. These three ranks will usually appear in ascending order, but as discussed in
Sect. 2.3, the final rank is sometimes larger than the filtered rank.

To explain the interpretation of the comprehensive information inDIVASdiagnostic
displays, we first focus on the top-left corner of Fig. 5. Each box is a scatter plot, with
the horizontal axis indicating basis direction index and the vertical axis indicating angle
from 0◦ at the bottom to 90◦ at the top. Within a box of this figure, each candidate
direction found for that column’s joint structure is represented by two points:× and •.
The × represents the angle θ̂k between the candidate direction and the corresponding
estimated signalmatrix for data block k, and the • represents the upper bound θ̂k+θ̂ �

2 on
θk , the angle between the direction and the true subspace. The dashed line represents the
perturbation angle bound φ̂k (for trait space) or ψ̂k (for object space) and the dot-dash
line represents the random direction angle bound θ0,k . The numerical values of those
angle bounds are given to the right of each group of columns. As per the inferential
framework laid out in Sect. 2.1.2, a× below the dashed line indicates strong evidence
that the direction cannot be ruled out as joint structure for that data block, and a •
above the dot-dash line indicates strong statistical evidence that the direction cannot
be distinguished from an arbitrarily chosen direction with respect to that data block.
Due to the rank filtering procedure that takes place during the rotational bootstrap, no
direction has both a × below the dashed line and a • above the dot-dash line.

Based on the placements of × and • in each colored box in Figs. 5 and 6, we
have strong evidence that each piece of estimated joint structure located by DIVAS is
statistically significant in both trait space and object space, respectively. Specifically,
all× are below the perturbation angle bound dashed line within their respective boxes.
We also gain additional insight about the angular relationships between the two-way
joint subspaces via the angles to the excluded blocks in Fig. 5. Each • lies below the
random direction angle bound dot-dash line in columns 3–5 of the display, indicating
strong evidence that the chosen joint subspaces are distinguishable from arbitrary
directions with respect to the excluded block in each column. In fact, the true joint
subspaces were constructed to have pairwise principal angles of 60◦ between them,
so this statistical rejection of arbitrariness is not surprising.

There are some situations where DIVAS basis directions appear statistically signif-
icant from an angular perspective but depend on a very small number of observations
or traits. Useful insight comes from summarizing the contributions of each observa-
tion and/or trait to the shared structure. In the case of observations, we quantify their
involvement with a summary statistic called the Effective Number of Cases (ENC)
based on ideas in importance sampling from Kish (1965). Let v j for j ∈ {1, . . . , n}
be the entries of a chosen direction v�. Note that the entries are scaled so v� has norm
1 (i.e.,

∑n
j=1 v2j = 1). In this case, the ENC is:

ENC = 1
∑n

j=1 v4j
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Fig. 5 Summary of joint structure diagnostics for the trait spaces of the synthetic data example. All joint
structure located is statistically significant, and angles to excluded blocks confirm underlying angular
relationships between two-way shared subspaces. Effective Numbers of Cases (ENC) values in last row
align well with the true score vectors

Fig. 6 Summary of joint structure diagnostics for the object spaces of the synthetic example. All joint
structure located is statistically significant. Effective Contributions of Traits (ECT) in last row align with
expectations per the proportion of colored rows in each heatmap of Fig. 1

If one entry v j is ±1 while the rest are 0, meaning a single observation determines
the direction, then the ENC evaluates to 1. If all entries v j have the same magnitude
± 1√

n
, meaning all observations have equal influence on the direction, then the ENC

evaluates to n. Any chosen direction will fall somewhere between those two extremes.
The last row of Fig. 5 shows the ENC for each joint scores direction found for

the synthetic data example. Each box is again a scatter plot, with the horizontal axis
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indicating basis direction index and the vertical axis indicating the ENC from 1 to
n on a logarithmic scale. Each ENC value is shown with a +. All the values for the
synthetic example are very close to n = 400, indicating near-equal contribution from
each observation in all the score vectors. This aligns with expectations since the entries
of the true shared scores directions all have equal magnitude.

In the case of summarizing individual trait contributions, we use an analogous
metric that takes into account the differing magnitudes of loadings vectors within
data blocks and the different dimensions of loadings vectors between data blocks.
To differentiate the two metrics, we call this one Effective Contribution of Traits
(ECT). ECT performs the same operation as ENC, except it uses the entries lm for
m ∈ {1, . . . , dk} of candidate loadings directions l�k . Furthermore, it scales the result

by both the magnitude ||l�k || =
∑dk

m=1 l2m of the candidate direction and by the number
of traits dk to allow for comparisons between data blocks:

ECT = 1

dk

(∑dk
m=1 l2m

)2

∑dk
m=1 l4m

.

The last row of Fig. 6 shows the ECT for each loadings direction found for the
synthetic data example. Within each box, the horizontal axis indicates basis direction
index and the vertical axis indicates ECT percentage ranging from 0% to 100%. Each
block has its own loadings direction for each basis direction, so each block’s ECT is
shownwith a number correspondingwith that block’s index in the analysis. In all cases,
the contribution percentages align quite well with the percentage of traits involved in
each piece of true joint structure as per Fig. 1. For example, half of the traits in X3
have the characteristic pinstripe pattern of the fully joint structure in Fig. 1, and the
“3" in the bottom-left box of Fig. 6 sits right around 50%.

3 Case studies

3.1 Case study 1: cancer genomics

One of the examples that motivates the development of DIVAS is a four-block data
set containing different views of omics data from n = 616 breast cancer patients from
The Cancer Genome Atlas (TCGA) (Network 2012). We have a gene expression (GE)
data block containing 16615 gene traits, a gene copy number (CN) data block with
24174 traits, a protein expression (RPPA) data block containing 187 protein traits,
and a 0-1 mutation detection (Mut) block containing traits for 128 genes. Each patient
is labeled as one of four breast cancer subtypes: Luminal A, Luminal B, Basal, or
Her2-enriched.

We wish to obtain the entire hierarchy of joint structure among the four data blocks.
Of particular interest are the four-way joint structure, three-way partially shared joint
structures, and partially shared structure involving proteins or mutations. The biolog-
ical understanding of the protein production pathway suggests that after accounting
for the gene expression and gene copy number there should be no additional variation
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Fig. 7 Joint structure breakdown and diagnostics for the breast cancer omics score vectors

shared between mutations and proteins. Once all joint structure is cataloged, further
conclusions can be drawn from loadings of the joint modes of variation. For exam-
ple, the loadings from the gene expression data block would reveal which genes are
involved in a certain cancer subtype if one of the joint modes of variation discriminates
that subtype from the others. Note that DIVAS is an unsupervisedmethod that does not
make use of the class labels. Development of a supervised version of DIVAS remains
an interesting open problem.

Figure 7 shows the DIVAS decomposition and angle diagnostics for the joint scores
vectors for this data set. Detailed descriptions of the information plotted in the figure
can be found in Sect. 2.4. DIVASfinds a single shared component between all four data
blocks, a six-dimensional subspace shared between all data blocks besides mutation,
and lots of shared structure between pairs of data blocks not involving mutation.
This result aligns well with biological expectations, particularly the large amount of
structure shared uniquely between gene expression and copy number.

Figure 8 displays a scores scatter plot matrix of directions from the four-way joint
and three-way joint components of the data. In these plots, each point corresponds to
a single data object. Each cancer subtype is shown with a different color and point
symbol: basal with red triangles, luminal A with blue asterisks, luminal B with cyan
x’es, and Her2-enriched with magenta pluses. On-diagonal plots show the coefficients
of projection of data objects onto the score vector indicated. The vertical axis provides
a jitter for ease of visual interpretation. Solid curves in on-diagonal plots are kernel
density estimates, with the black curve including all data objects and the colored
curves corresponding with each respective subtype. Off-diagonal plots show scatter
plots of coefficients of projection of the data objects onto the score vectors in that
plot’s respective axes labels. More information about these plots may be found in
Chapter 1 of Marron and Dryden (2021). We chose to include the first two directions
in the basis for the three-way joint subspace along with the four-way joint direction for
ease of visual interpretation. The four-way joint component separates basal cases from
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other cases. This is typically the first component found in any analysis of the modes
of variation in breast cancer patients, as basal cell cancers have a very different gene
expression profile than the other subtypes. The two-dimensional plot of the scores
along the first two directions in the three-way joint subspace separates Her2 cases
from Basal cases primarily, and from Luminal A cases secondarily. This indicates the
potential for identifying useful genes, proteins, and copy number regions that drive
the variation in this three-way joint subspace that distinguish Her2 cases from other
breast cancer subtypes.

3.2 Case study 2: twentieth-century mortality

Marron and Alonso (2014) consider a data matrix containing mortality rates (propor-
tion of the population of a given age that died in a year) of Spanish males from 1908 to
2002. We expand on this initial analysis by incorporating three additional data blocks:
one for Spanish women and two more for Swiss men and women, and by increasing
the end of the time frame to 2018. We are interested in how mortality rates changed
over the course of this time period as a function of age. Hence, we will treat each year
as a data object and the mortality rates of each age as a trait. We consider ages 12 to 90
to avoid zero counts for particularly high and low ages. Data was downloaded on April
8, 2021 from the Human Mortality Database (Wilmoth and Shkolnikov 2000-2021).

To appropriately handle the multiple orders of magnitude present in mortal-
ity proportions, we transform each entry of the data blocks with a logit function

f (x) = log
(

x
1−x

)
. After the logit transformation, each data block was double-

centered: the mean vectors in both object space and trait space were removed from
each data block. As per the discussion in Prothero et al. (2023), this type of centering is
effective when all the data blocks share a common mode of variation in the trait mean
direction. The object and trait means for each data block are displayed as curves in
Fig. 9. Each curve is colored according to year using a rainbow color scheme starting
at magenta and blue, through orange and red. In the object mean panels (top row),
we see the overall mortality profile across ages for each country and gender. Males
exhibit a slightly higher increase in mortality upon entering adulthood than females in
both countries due to increased risk-taking behaviors at that age (Kalben et al. 2000;
Patton et al. 2009). We also observe systematic anomalies in the mortality rates for
older Spanish individuals that are not present in the Swiss data. As discussed in Mar-
ron and Alonso (2014), these anomalies are manifestations of an age-rounding effect
and reflect major early differences in demographic record keeping practices between
the two countries. The distinct rainbow sequence in each trait mean panel (bottom
row) shows steady overall decreases in average mortality rate over time. The worst
year of the twentieth-century flu pandemic, 1918, appears prominently at the top of
each trait mean panel in violet. Spanish data block panels (especially males) have
out-of-sequence light blue lines in their plots due to a civil war in the late 1930s.

Figure 10 shows the scores diagnostic graphic for the DIVAS decomposition of
the mortality data, and Fig. 11 shows the angle diagnostics for the corresponding
loadings vectors (see Sect. 2.3). Since all four data blocks have identical trait and
object dimensions and relatively similar variation, all the perturbation angles are also

123



Data integration via analysis of subspaces (DIVAS)

Fi
g.
8

Sc
or
es

sc
at
te
rp
lo
tm

at
ri
x
of

fo
ur
-w

ay
jo
in
td

ir
ec
tio

n
an
d
fir
st
tw
o
th
re
e-
w
ay

jo
in
td

ir
ec
tio

ns
.T

he
fo
ur
-w

ay
jo
in
ts
ub

sp
ac
e
(t
op

le
ft
)
di
st
in
gu

is
he
s
ba
sa
l(
re
d
tr
ia
ng
le
s)

fr
om

ot
he
r
su
bt
yp

es
an
d
th
e
th
re
e-
w
ay

jo
in
ts
ub

sp
ac
e
(b
ot
to
m

ri
gh

t)
di
st
in
gu

is
he
s
H
er
2
(m

ag
en
ta
pl
us
se
s)
fr
om

ot
he
r
su
bt
yp

es

123



J. Prothero et al.

Fi
g.
9

O
bj
ec
tm

ea
ns

(t
op

ro
w
)
an
d
tr
ai
tm

ea
ns

(b
ot
to
m

ro
w
)
fo
r
ea
ch

da
ta
bl
oc
k.
B
ot
h
m
al
e
da
ta
bl
oc
ks

ha
ve

a
m
or
e
dr
am

at
ic
in
cr
ea
se

in
m
or
ta
lit
y
fo
r
yo

un
g
ad
ul
ts
th
an

th
e

fe
m
al
e
da
ta
bl
oc
ks
.B

ot
h
Sp

an
is
h
da
ta
bl
oc
ks

di
sp
la
y
ef
fe
ct
s
of

re
co
rd
-k
ee
pi
ng

ro
un
d-
of
fs
ab
se
nt

fr
om

Sw
is
s
da
ta
bl
oc
ks
.A

ll
tr
ai
tm

ea
ns

ca
pt
ur
e
th
e
ov
er
al
li
m
pr
ov
em

en
ti
n

m
or
ta
lit
y
ra
te
ov
er

tim
e
ac
ro
ss

th
e
po
pu
la
tio

n

123



Data integration via analysis of subspaces (DIVAS)

Fig. 10 Joint structure breakdown and diagnostics for the mortality data score vectors. Perhaps surprising is
some amount of three-way partially shared joint structure. Spanish men and women have complex two-way
partially shared joint structure due to age rounding

Fig. 11 Joint structure breakdown and diagnostics for the mortality data loadings vectors

similar to each other. DIVAS finds a two-dimensional four-way shared component,
a one-dimensional three-way component shared between each block besides Swiss
females, and a six-dimensional shared component betweenSpanishmales and females.
Intuitive reasons for these findings are explained below via discussion of the modes
of variation.

We further investigate the joint structure by visualizing the joint modes of variation
about the mean in curve plots throughout Figs. 12, 13 and 14. Figure12 shows such a
visualization for the four-way joint structure. In this and subsequent mode of variation
figures, each row of panels corresponds to a different basis direction and each column
of panels corresponds to a data block. The final plot in each row shows the entries
of the common score vector corresponding to that mode of variation. Each row of
panels in this figure contains one trend in mortality that was found to be common
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across both countries and genders. The first mode is a contrast between older and
younger individuals that manifests as a change in slope over time. In particular, while
mortality rates decreased for all ages over the twentieth century as per the trend seen
in the trait mean, this mode of variation shows that decrease was more pronounced for
younger individuals. The second mode is primarily a contrast between younger adults
and middle-age adults that takes place between the 1970s and 1990s, with somewhat
different age groupings across blocks. This contrast is thewell-documented automotive
safety effect described in Marron and Alonso (2014). The wide proliferation of cars
in the mid-twentieth century without modern safety guidelines in this time frame led
to a notable increase in automobile fatalities concentrated in younger individuals. As
automotive safety improved across Europe in the 1980s and 1990s, this source of
excess mortality dissipated.

Figure13 shows the single mode of variation found as three-way shared structure
between Swiss men, Spanish men, and Spanish women. Before analyzing this data,
we primarily expected to see four-way shared structure and pairwise shared structure
across blocks with gender or country in common; this three-way shared structure
deviates from that expectation. This mode of variation indicates a contrast between
the mortality rates of young adults and the rest of the population during the late 1980s
and early 1990s. Considering that the automotive safety effect already appeared in
the fully joint component, we suspect this mode of variation is capturing a different
phenomenon. Our hypothesis given the time frame and groups affected is that this
component is capturing increased mortality from HIV/AIDS in the late twentieth
century. The contrast focusing on young males in both countries is the main driver of
this hypothesis; the corresponding effect in Spanish women seems to be concentrated
in older individuals so some additional effect might be entering the mode of variation
in that block. This motivates further mortality research.

Figure 14 shows the six modes of variation found as two-way joint structure shared
between the two Spanish blocks. Component 1 captures excess mortality of young
people, and especially young men, during the Spanish Civil War. Component 2 is
a contrast within young adults that we do not fully understand. The remaining four
modes of variation seem to be harmonic components generated by the age rounding
effect discussed in Marron and Alonso (2014).

4 Conclusions

This paper proposes DIVAS, a novel exploratory data analysis method for statistical
data integration that allows for partially shared structure between several distinct data
blocks. The main contributions of DIVAS are twofold. First, we develop a rigorous,
angle-based framework of statistical inference for diagnostically evaluating estimated
shared structure. Second, we consider integration across both dimensions of the data
blocks simultaneously and produce more thorough and higher-fidelity results as a
consequence.

Futurework onDIVAScould proceed in at several different directions.Methodolog-
ically, there remains room for additional refinement of noise estimation throughout
the first step of DIVAS, both in the noise variance estimator and the residual matrix
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estimator. Structurally, DIVAS is fundamentally a linear, unsupervised statistical
model. Generalizations and expansions that extend DIVAS to tackle supervised learn-
ing and nonlinear relationships between data blocks are promising future directions.
Practically, the driving force behind development of the method has always been
appropriately complex data like the breast cancer omics data set that demands such
methodological sophistication. Therefore, we expect further improvements in DIVAS
development will be found during analysis of ever more demanding data.
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Grant No. DMS-1916115, 2113404, and 2210337. J.S. Marron’s research was partially supported by the
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A Review of randommatrix theory

Our chosen signal extraction procedure uses randommatrix theory ideas. The classical
result from Marchenko and Pastur (1967) on the distribution of the eigenvalues of
random matrices underpins all of these ideas; we restate that result below.

Let E be a d × n random matrix. The entries of E are independent and identically
distributed (i.i.d.) with mean 0, finite variance σ 2, and finite fourth moment. Form the
d × d estimator of the covariance matrix �n = 1

nEE
� and let λ1, . . . , λd denote the

eigenvalues of �n . Consider the empirical measure μd(A) = 1
d #{λ j ∈ A}, A ⊂ R

representing the empirical distribution of the eigenvalues of �n as random variables
themselves. Define an indicator fuction 1{K } for a given condition K as a function that
returns 1 when condition K is satisfied and returns 0 otherwise.

Theorem 3 [Marchenko and Pastur 1967] If d, n →∞ such that dn → β ∈ (0,+∞),
then μd converges weakly to the measure whose density is μ(λ):

μ(λ) =
⎧
⎨

⎩
h(λ)1(1−√β)2≤ λ

σ2
≤(1+√β)2 0 < β ≤ 1

h(λ)1(1−√β)2≤ λ

σ2
≤(1+√β)2 +

(
1− 1

β

)
1λ=0 β > 1

(A.1)

where the function h(λ) is defined below:

h(λ) = 1

2π

√(
(1+√β)2 − λ

σ 2

) (
λ
σ 2 − (1−√β)2

)

βλ
. (A.2)

If d < n, then β < 1 for E and �n is rank d. In this case, since �n is full-
rank, all eigenvalues are nonzero, and asymptotically fall between σ 2(1−√β)2 and
σ 2(1+√β)2. Alternatively, if d > n, then β > 1 for E and �n is rank n. In this case,
�n is not full rank so the eigenvalues λn+1 . . . λd are all 0. In cases where β > 1 the
Marchenko–Pastur density is therefore a mixture between a point mass of 1 − 1

β
at

zero and a continuous portion bounded between σ 2(1−√β)2 and σ 2(1+√β)2 with
total area 1

β
.

123



Data integration via analysis of subspaces (DIVAS)

B Review of principal angle analysis

The following is based on Zhua and Knyazev (2012) andMiao and Ben-Israel (1992).
Principal angle analysis characterizes the relative positions of two subspaces X and
Y in Euclidean space using canonical angles found via SVD. In particular, let WX
and WY be orthonormal basis matrices for X and Y , respectively. Then the singular
value decomposition of W�

XWY finds both the principal angles between X and Y
and the corresponding principal vectors. Write the singular value decomposition of
W�

XWY as W�
XWY = UDV�, where U and V are orthonormal matrices containing

the principal vectors of X and Y respectively, and D is a diagonal matrix. The inverse
cosines of the nonzero entries of D give the principal angles between X and Y , and
in particular the angles between each pair of corresponding principal vectors. The j th
pair of principal vectors have an angle between them equal to the j th principal angle.

This perspective also demonstrates the result of principal angle analysis when the
dimensions ofX andY differ. Let the dimensions ofX andY be p and q, respectively,
with p < q. In this case, some of the singular values will be zero as thematrixW�

XWY
is non-square, and the inverse cosine of zero is 90◦. If p < q, the principal angles
θp+1, . . . , θq are all 90◦.

Principal angle analysis is also orthogonally invariant. In particular, the principal
angles between X and Y will be identical to the principal angles between reoriented
versions OX and OY , where O is an orthogonal matrix and OX = {Ox|x ∈ X }.
The matrices OWX and OWY represent orthonormal bases for OX and OY , so
the principal angle structure between the two rotated subspaces is found by taking a
singular value decomposition ofW�

XO�OWY , which is equivalent to that ofW�
XWY .

C Noise matrix estimation

The residual Ê = X − Â is a poor estimate of the non-signal component of the
data, especially in the case of a non-square matrix. Heuristically, this is caused by the
residual lying entirely in the subspace spanned by the data. We investigate the causes
of this phenomenon and propose a solution.

For this investigation, our synthetic data will be a 5000× 500 matrix X = A+ E.
The signal matrix A = UDV� is rank 50 with equally spaced singular values from
0.1 to 5. E is a full-rank i.i.d. Gaussian matrix with variance σ 2

5000 . This scaling of
the noise variance by the number of traits is common in the matrix signal processing
literature (Gavish and Donoho 2014, 2017). It results in columns with expected norm
σ and sets the noise at a level commensurate with the magnitude of the signal. With
σ = 1, we expect most of the singular values to be easily recoverable while others
are indistinguishable from the noise. We perform signal extraction as described in
Sect. 2.1.1 on this matrix and subsequently examine estimators of E given Â.

One way to check the efficacy of an estimator Ê for E is to see how well its
eigenvalues align with the Marchenko–Pastur distribution (see Appendix A). We can
compare the observed values to theoretical quantiles using a quantile–quantile (Q-Q)
plot. On the horizontal axis we plot the sorted observed eigenvalues for a noise matrix
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Fig. 15 Q–Q plot for the eigenvalues of the naïve noise matrix estimate. The first r̂ eigenvalues fall entirely
outside the range determined by Theorem 3, signaling that the naive noise matrix estimate is flawed. These
eigenvalues are also scaled using the original noise level estimate to retain some interpretability. Scaling
using the apparent noise level in the estimated error matrix produces an even worse fit to the Marchenko-
Pastur distribution because the apparent noise level is too low

estimate Ê, and on the vertical axis we plot evenly spaced quantiles of theMarchenko–
Pastur distribution with parameter β = d∧n

d∨n (here d and n are the row and column
dimensions of the matrix, respectively). Typically, if the plotted points on a Q–Q plot
roughly follow the 45◦ line, the conclusion is that the observed data align well with
the theoretical distribution. To get a sense of how much variability to expect about the
45◦ line, we generate M = 100 i.i.d. Gaussian matrices and plot their eigenvalues as
green lines underneath the magenta Q-Q points. These traces create a visually striking
region of acceptable variability, which can be used to judge the goodness of fit at a
glance.

Figure 15 shows such a Q–Q plot for the eigenvalues of the naïve noise estimate
Ê = X − Â for the synthetic data matrix. The naïve estimated non-signal com-
ponent tends to display perhaps unexpectedly low energy in directions associated
with the estimated signal subspace. This phenomenon leads to Q–Q plots that are
challenging to interpret. For this matrix, the estimated signal rank is 44, and the
bottom 44 eigenvalues of the estimated noise matrix completely deviate from the the-
oretical Marchenko–Pastur distribution. Importantly, this phenomenon (explained in
detail below) occurs regardless of the chosen estimate for σ . The aberration in this
graphic demonstrates the ineffectiveness of the naïve estimate. The rotational boot-
strap procedure (see Sect. 2.1.3) central to DIVAS depends on effective estimation of
the underlying noise matrix E. This is accomplished via a correction to a portion of
the singular values of Ê.

To explain this behavior andmotivate our proposed correction, we consider our data
model (2.1) in a special case where the signal is rank one, and the signal, noise and data
are all vectors in R

2, illustrated in Fig. 16. The signal (green) and noise (red) vectors
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Fig. 16 Example of noise energy underestimation for a rank-one signal subspace in R2. Left: Signal space
(green), noise space (red), and data space (blue). Data vector formed by adding signal and noise vectors
tip to tail. Right: Estimating Â (green-blue dashed) and Ê = X − Â (red-blue dashed). When we remove
energy equal to that of the signal space from the data space the leftover energy is noticeably smaller than
the true noise energy. Note that the black arc indicates a rotation rather than a projection, so the green-blue
dashed line has the same length as the green line

each lie in distinct one-dimensional subspaces. The two vectors are added together
to form the data vector (blue). When we form our estimate of the signal Â (green-
blue dashed), our shrinkage procedure gives us a good estimate of signal magnitude.
However, it is challenging to recover directional information about A as the estimate
Â lies in the same subspace as the data. When we next subtract Â from the data X to
form the naïve estimate Ê (red-blue dashed), the subtraction occurs entirely in the data
subspace so we don’t account for the angle between the initial signal and noise vectors
at all. This leads to an underestimation of noise energy: the length of the estimated
noise within the data subspace (red-blue dashed) is distinctly shorter than the length of
the original noise vector (red). This length discrepancy is the one-dimensional analog
of the phenomenon shown in Fig. 15 where many of the smallest eigenvalues are even
smaller than expected.

Several potential corrections for this effect are proposed in Chapter 4 of Prothero
(2021). We present the correction used in DIVAS here. Consider X as a sum of
rank 1 approximations in the manner of (2.3): X = ∑d∧n

i=1 νiuiv�i . Once we estimate
the signal singular values, we can split the energy in the associated singular vector
directions into signal energy ν̂ and non-signal energy ν − ν̂:

X =
r̂∑

i=1
ν̂iuiv�i +

r̂∑

i=1
(νi − ν̂i )uiv�i +

d∧n∑

i=r̂+1
νiuiv�i (C.1)

The Gavish–Donoho shrinkage function (2.4) gives us good estimates for the first
r̂ singular values ν̂1:r̂ while confirming many of the uiv�i subspaces and associated

singular values as noise. However, by subtracting Â = ∑r̂
i=1 ν̂iuiv�i from X we are
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Fig. 17 Q–Q plot for the eigenvalues of the naïve noise matrix estimate (magenta) and the imputed noise
matrix estimate (black) from the synthetic data matrix. The corrected eigenvalues largely remain within the
green acceptable variability envelope

overestimating the influence of the signal within the data subspace as the νi − ν̂i terms
of Ê have inordinately low energy in directions associated with the estimated signal.

The DIVAS solution to this energy deficiency is to replace each deficient singular
value in Êwith aMarchenko–Pastur random variate. LetMPq(β) be the qth percentile
of the Marchenko–Pastur distribution with parameter β, let U1:r̂ be r̂ i.i.d. standard
uniform random variables, and let σ̂ 2 be an estimate of the noise variance. We form
the imputed noise matrix estimate Êimpute as follows:

Êimpute =
r̂∑

i=1
σ̂MPUi (β)uiv�i +

d∧n∑

i=r̂+1
νiuiv�i (C.2)

Figure 17 shows the original Q–Q plot from Fig. 15 with the eigenvalues of Êimpute

for the synthetic data matrix also included in black. After imputing the deficient sin-
gular values, the eigenvalues of the reconstructed noise matrix estimate follow the
expected Marchenko–Pastur distribution quite closely; nearly all of them fall within
the green acceptable variability envelope.

D Optimization algorithm and implementation

In this appendix, we provide the details of our numerical algorithm to solve the opti-
mization problem (2.8). First, we will explicitly rewrite (2.8) into a convex-concave
optimization problem, also called a DC (difference of two convex functions) pro-
gram. The detail primarily involves the steps to reformulate the problem (2.8) into
the convex-concave setting described in Ismailova and Lu (2016), and subsequently
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implements that convex–concave procedure for solving the resulting problem. The
convex–concave procedure (or also called a DC algorithm) can be found in the lit-
erature including Ismailova and Lu (2016); Tran-Dinh and Diehl (2009). Since our
problem has both the DC objective function and DC constraints, we can use the con-
vergence analysis from Tran-Dinh and Diehl (2009) to guarantee the well-definedness
of our algorithm.

DC programming reformulation of (2.8). To move toward to a DC programming
reformulation of (2.8), we express the angles between candidate directions v� and var-
ious subspaces in terms of their squared cosines. For an arbitrary-magnitude v� and
orthonormal basis matrix V for a subspace, if we define θ̂V = ∠(v�,V), then we have

cos2(θ̂V) = v��VV�v�

v��v� . More specifically, by using the representation cos2(θ̂T k) =
v��V̌k V̌�k v�

v��v� and keeping in mind the orthonormal condition that v��v� = 1, the objec-

tive function of (2.8) becomes −∑
k∈i cos2(θ̂T k) = −v��

(∑
k∈i V̌kV̌�k

)
v�. Next,

using the decreasing monotonicity of cos2 in [0, π
2 ], the constraint θ̂T k ≤ φ̂k is equiv-

alent to cos2(θ̂T k) = v��V̌k V̌�k v�

v��v� ≥ cos2(φ̂k) for all k ∈ i. Similarly, θ̂T k ≥ φ̂k

is equivalent to cos2(θ̂T k) = v��V̌k V̌�k v�

v��v� ≤ cos2(φ̂k) for all k ∈ ic. The constraint

θ̂Ok ≤ ψ̂k is equivalent to cos2(θ̂Ok) = v��X�k Ǔk Ǔ�k Xkv�

v��X�k Xkv�
≥ cos2(ψ̂k) for all k ∈ i.

Finally, we multiply all these constraint reformulations by v��v� to eliminate their
denominator, and transform them into DC constraints. The orthonormal constraint
v��v� = 1 is equivalent to v��v� − 1 ≤ 0 and 1− v��v� ≤ 0. Putting these transfor-
mations together, we can easily see that (2.8) is equivalent to the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minv� −v��
(∑

k∈i V̌kV̌�k
)
v�

s.t . θ̂T k =∠(v�, V̌k) ∀k
θ̂Ok =∠(Xkv�, Ǔk) ∀k
cos2(φ̂k)v��v�−v��V̌kV̌�k v� ≤0 ∀k ∈ i
v��V̌kV̌�k v�−cos2(φ̂k)v��v� ≤0 ∀k ∈ ic

cos2(ψ̂k)v��X�k Xkv�−v��X�k ǓkǓ�k Xkv� ≤0 ∀k ∈ i
v� ⊥ Vj ∀j ⊇ i
v��v� − 1 ≤0
1− v��v� ≤0

(D.1)

Clearly, the objective function of (D.1) is concave. In addition, the third, the fourth, the
fifth, and the last constraints of (D.1) areDC constraints of the form f (v�)−g(v�) ≤ 0.
Therefore, (D.1) is a DC program. This problem is feasible depending on the choice
of φ̂k and ψ̂k . However, due to the orthonormal constraint v��v� = 1, the feasible set
of problem (D.1) does not have nonempty interior. In this case, to guarantee the DC
algorithm being well-defined, we will relax it by adding slack variables.

DC algorithm. Note that the objective function of (D.1) is though concave, it can
be written into a DC function f0(v�) − g0(v�), where f0 = 0 and g0 is a quadratic
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function. Assume that we have mc DC constraints. Then, all the DC constraints can
be written as fk(v�) − gk(v�) ≤ 0 for k = 1, · · · ,mc. The other convex constraints
are expressed as v� ∈ F , including the orthogonal constraints v� ⊥ Vj for all j ⊇ i,
which are in fact linear. However, to guarantee the feasibility of our DC program,
we instead relax the DC constraints to obtain fk(v�) − gk(v�) ≤ sk , where sk ≥ 0
are given slack variables. We also penalize the slack variables sk into the objective
function with a given penalty parameter τ > 0 to better approximate feasible solutions
of (D.1). Therefore, we can write the relaxation form of (D.1) into the following DC
program:

⎧
⎪⎨

⎪⎩

min
v�,sk

f0(v�)− g0(v�)+ τ
∑mc

k=1 sk

s.t. fk(v�)− gk(v�) ≤ sk, ∀i = 1, · · · ,mc,

v� ∈ F , sk ≥ 0, (k = 1, · · · ,mc).

(D.2)

Note that if sk = 0 for k = 1, · · · ,mc, then (D.2) reduces to (D.1). To solve (D.2),
we apply a DC algorithm (see, e.g., Ismailova and Lu (2016); Tran-Dinh and Diehl
(2009)), which can be roughly described as follows.

1. Initialization: At the iteration t = 0, find an initial point v0 of (D.2) (specified
later).

2. Iteration t . At each iteration t ≥ 0, given vt , linearize the concave parts of (D.2)
to obtain the following convex optimization subproblem:

⎧
⎪⎪⎨

⎪⎪⎩

min
v�,sk

f0(v�)− [g0(vt )+ ∇g0(vt )�(v − vt )] + τ
∑mc

k=1 sk

s.t. fk(v�)− [gk(vt )+∇gk(vt )�(v − vt )] ≤ sk, (k = 1, · · · ,mc),

v� ∈ F , sk ≥ 0, (k = 1, · · · ,mc).

(D.3)

3. Solve (D.3) to obtain an optimal solution vt+1 and repeat the next iteration t + 1
with vt+1.

4. Termination. The algorithm is terminated if it does not significantly improve the
objective values, or other criteria are met.

Note that as proven in Tran-Dinh and Diehl (2009), under mild conditions imposed on
(D.2), our DC algorithm guarantees that the sequence {vt } generated by our DC algo-
rithm converges to a stationary point of (D.2) (i.e., the point satisfying the optimality
condition of (D.2)). We do not repeat the convergence analysis of our DC procedure
here, but refer to Tran-Dinh and Diehl (2009) for more details.

Detailed implementation. We now specify the detailed implementation of our DC
procedure as follows. The first step is to choose an initial point v0 for our DC program
(D.1). Without relaxation, choosing a feasible initial point for (D.1) is indeed chal-
lenging. Hence, we introduce slack variables sk to the constraints to guarantee that
our relaxed DC program is always feasible and thus our algorithm is well-defined and
can proceed. For instance, one can directly choose an arbitrary v0 in F first, and then
set sk,0 = max{ fk(v0)− gk(v0), 0} for each k to obtain a feasible point of (D.1).
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In our implementation, we choose as our initial point for the i th direction in the joint
subspace of block collection i the i th right singular vector from the SVD of [Vk]�k∈i,
which is related to the joint structure found via the AJIVE algorithm (Feng et al.
2018). If necessary, the chosen initial point is also projected to obey any orthogonality
constraints present at that point in the algorithm. As explained, the slack variables
sk introduced to allow for an infeasible initial condition also appear in the objective
function. They are penalized with a weight τ (also called the penalty parameter) which
changes on each iteration of the optimization problem as τt . Notably, the values of
the quadratic forms involved in the object space constraints are often much larger
than those for the trait space constraints as the object space constraints include the
full-energy data matrices Xk . Therefore, we downweight the slack penalty on those
constraints by the leading singular value ν1,k ofXk so the optimization problem is not
overly restricted by the object space constraints. For further computational efficiency,
if the algorithm reaches a point where all the angle-constraint slack variables are zero,
it will stop early and add to the current basis a normalized version of the current
iteration’s intermediate solution.

Next, if we specify the convex optimization subproblem (D.3) for (D.1), then it
becomes

minv� −2v�0
(∑

k∈i V̌kV̌�k
)
v� + v�0

(∑
k∈i V̌kV̌�k

)
v0 + τt

∑2K+2
k=1 sk

s.t . v��v� − 2
v�0 V̌k V̌�k v�

cos2
(
φ̂k

) + v�0 V̌k V̌�k v0
cos2

(
φ̂k

) ≤ sk ∀k ∈ i

v��V̌k V̌�k v�

cos2
(
φ̂k

) − 2v�0 v� + v�0 v0 ≤ sk ∀k ∈ ic

v��X�k Xkv� − 2
v�0 X�k Ǔk Ǔ�k Xkv�

cos2
(
ψ̂k

) + v�0 X�k Ǔk Ǔ�k Xkv0

cos2
(
ψ̂k

) ≤ sK+k/ν1,k ∀k ∈ i

1− 2v�0 v� + v�0 v0 ≤ s2K+1
v��v� − 1 ≤ s2K+2
V�j v� = 0 ∀j ⊇ i.

(D.4)

This problem is in fact a convex optimization problem with linear objective function
and convex quadratic and linear constraints, which can be efficiently solved by several
convex optimization solvers, including interior-point methods. In our implementation,
we use a MATLAB package associated with a default solver, called CVX from Grant
and Boyd (2014); Grant and Boyd (2008) to model the subproblem (D.4). If we
use CVX’s default solver, SDPT3, then our algorithm runs in about 30min on the
mortality data example from Sect. 3.2 on the authors’ laptop with the default solver.
Larger data sets like the breast cancer genomics example can take considerably longer,
but substantial speed-ups are possible with Mosek and other commercial solvers.

To terminate our algorithm, one can look at the objective value of (D.1) to see if
it is actually improved through iterations. If after, e.g., five consecutive iterations, the
objective values do not significantly improved, then we can terminate it. Alternatively,
we can also look at the quality of the final solution to see if it is reasonable to terminate
the algorithm or not.
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Fig. 18 Progression of the sequential optimization locating joint structure between each possible com-
bination of data blocks for the synthetic data from Fig. 1. The horizontal axes represent iterations of the
optimization problem and the vertical axes represent angles in degrees. Colored paths show progression of
angles between the candidate direction and TS(Âk ) (blue) and TS(Ak ) (red). Perturbation angle bounds φ̂k
shown as green horizontal lines. From top to bottom: three-way joint, joint between blocks 1 and 2, joint
between blocks 1 and 3, joint between blocks 2 and 3
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Experiments. Figure18 shows the iterative progress of the optimization problem
for the synthetic data example displayed in Fig. 1. On each panel, the horizontal axis
represents the number of iterations and the vertical axis represents the angles in degrees
to the panel’s respective estimated signal subspace in trait space. Each horizontal green
line represents the trait space perturbation angle bound. The blue paths represent the
angles to the low-rank approximations of trait spaces at each iteration. The red dashed
paths represent the angle to the true trait subspaces at each iteration, which are known
since this is a synthetic data set. Note that in the right panel in the first row, the initial
condition is infeasible for theX3 data block’s angle perturbation bound, demonstrating
how the algorithm can use the flexibility afforded by the slack variables to explore
the space before choosing a final solution. Since the objective function is trying to
minimize the total squared cosine of all included blocks, the angle with one data block
may increase, as in the top middle panel, if it means the angle with other data blocks
decreases.
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