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ARTICLE INFO ABSTRACT

Edited by Bauke W. Dijkstra The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can

act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morpho-

Keywords: logical and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck,
Coral reef. 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-
yjz()p:q?;:_crr skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals. Yet, tomo-
SEMy graphic reconstructions reveal an analogous mineral distribution between shallow and mesophotic adults,
RNA-Seq pointing to similar skeleton growth dynamics. Our study reveals patterns of host genetic connectivity and

minimal symbiont depth-zonation across a broader depth range than previously known for this species in
Bermuda. Transcriptional variations across life stages showed different regulation of metabolism and stress
response functions, unraveling molecular responses to environmental conditions at different depths. Overall,
these findings increase our understanding of coral acclimatory capability across broad vertical gradients, ulti-
mately allowing better evaluation of the refugia potential of mesophotic reefs.

Climate refugia

1. Introduction

Tropical coral reefs have undergone global declines due to rapidly
changing climate and the accumulation of anthropogenic local stressors
(Pandolfi et al., 2011). Such losses are particularly marked in shallow
reef systems of the Caribbean, that have a long history of increasingly
stressful environmental conditions and dramatic coral losses (Cramer
et al., 2021). Deeper reef systems (>30 m), also referred to as meso-
photic coral ecosystems, represent potentially critical ecological refuges
by offering shelter against disturbances and providing propagules to
recolonize impacted shallow reefs (termed the Deep Reef Refugia Hy-
pothesis - Bongaerts et al., 2010; Lesser et al., 2018). Although not
ubiquitously immune to the impacts of disturbances (Appeldoorn et al.,
2016; Bongaerts et al., 2013; Rocha et al., 2018; Smith et al., 2013),
mesophotic coral ecosystems appear to be generally buffered from

bleaching and storm events (Bongaerts et al., 2010; Lesser et al., 2009;
Pérez-Rosales et al., 2021), suggesting that increasing depth may offer a
level of protection against shallow-water stressors.

The potential of mesophotic coral reefs to reseed shallower envi-
ronments is tightly linked to the extent of species overlap across the
vertical gradient. In the Caribbean region for example, 25 to 40% of
coral species are depth-generalists, found along the depth gradient from
shallow to mesophotic reef zones (Bongaerts et al., 2010). Such species
overlap, however, does not necessarily ensure effective flow of larvae
along the vertical gradient. Local adaptation, parental effects and larval
selectivity could, in fact, pose a major ecological barrier to gene flow
between shallow and mesophotic reefs (Shlesinger and Loya, 2021).

Light penetrating though the water column is an important selective
factor for corals due to the dependence on the photosynthetic activity of
algal endosymbionts for their energy requirements (Falkowski et al.,
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1984). Depth-generalist coral species have been found in association
with different symbiont types across the vertical gradient (e.g. Bongaerts
et al., 2015; Bongaerts et al., 2013) that are physiologically distinct
having adapted, or acclimated, to different light conditions (Frade et al.,
2008; Iglesias-Prieto et al., 2004). Such depth-zonation in symbiont
species or phenotypes likely facilitates the distributions of coral hosts
across broad vertical gradients (Frade et al., 2008). Other than symbiont
photobiological features that optimize light-harvesting or photo-
protective mechanisms, host morphological and physiological proper-
ties can also contribute to modulate the internal light field for their
endosymbionts (Enriquez et al., 2005; Kramer et al., 2022a; Salih et al.,
2000). For example, small-scale morphological changes result in greater
self-shading and thus ensure that irradiance is kept at a photo-
physiological optimum in shallow Stylophora pistillata colonies,
whereas the mesophotic skeletal architecture facilitates light capture by
the endosymbionts (Kramer et al., 2022a). Such modifications of the
coral skeletal morphology could be particularly advantageous in those
cases where the hosted algal symbionts are not depth-specialists. In fact,
if the Symbiodiniaceae consortia hosted by the coral colonies is similar
regardless of depth, this could indicate that the coral-algal association is
phenotypically flexible enough to be beneficial regardless of depth-
related environmental changes (Bongaerts et al., 2011). For vertically
transmitting species (algal symbionts are transmitted from parent to
offspring), hosting similar symbiont assemblages from shallow to mes-
ophotic reefs may favor settlement of coral planulae across the depth
gradient, as opposed to hosting depth-specialist symbionts that may
function as a post-zygotic barrier to coral connectivity (Shlesinger and
Loya, 2021).

The brooding coral Porites astreoides in Bermuda is one example of a
coral species associated with the same dominant symbiont type (Sym-
biodinium type A4 or A4a) from the shallow to the upper mesophotic
zone (Reich et al., 2017; Serrano et al., 2016). Other symbiont types
have also been detected in P. astreoides across depths (type B - Breviolum
and type C — Cladocopium, Reich et al., 2017) or exclusively in shallow
corals (type B - Breviolum, Serrano et al., 2016). P. astreoides is
commonly found throughout the Caribbean and Western Atlantic,
occurring over a wide range of depths from 0 to 50 m (Fricke and
Meischner, 1985). Several aspects make this species an ideal candidate
to test the Deep Reef Refugia Hypothesis. In Bermuda, P. astreoides is a
main contributor to reef community structure across the lagoon and rim
reef zones (Goodbody-Gringley et al., 2019). From shallow to meso-
photic reefs, this species exhibits similar thermal tolerance ranges and
bleaching thresholds, despite the different thermal histories, suggesting
high levels of plasticity to increasing temperatures (Gould et al., 2021).
Earlier investigations have shown that P. astreoides populations maintain
high levels of genetic connectivity in Bermuda from shallow to upper
mesophotic zones (~25 m; Serrano et al., 2016). However, nothing is yet
known about the genetic and phenotypic characteristics of P. astreoides
at depths greater than 35 m for both adult and early life history stages.

Previous studies have assessed phenotypic changes that allow certain
coral species to thrive across broad depth distributions, such as modi-
fications of skeletal morphology (Goodbody-Gringley and Waletich,
2018; Malik et al., 2020; Studivan et al., 2019), physiology (Goodbody-
Gringley et al., 2021; Mass et al., 2007; Scucchia et al., 2021, 2020) and
photobiology (Carpenter et al., 2022; Einbinder et al., 2016; Lesser et al.,
2010; Martinez et al., 2020). However, there is a general lack of
knowledge about the molecular mechanisms that underlie such pheno-
typic variations across depths for most coral species. Only a few studies
in fact have attempted to uncover gene expression patterns and major
biological pathways that contribute to the persistence of depth-
generalist corals from shallow to mesophotic reefs (Malik et al., 2020;
Scucchia et al., 2021; Studivan and Voss, 2020). Importantly, the focus
of these studies has been put on adult corals, while little is currently
known about gene expression dynamics in early life stages of corals
across vertical gradients. Thus, the genetic basis that could facilitate
migration and settlement of coral planulae to different depth zones
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remains poorly understood.

In this study, we examined skeletal, genetic and transcriptomic
patterns of P. astreoides planulae and adults from shallow (~10 m) and
mesophotic (~45 m) reefs in Bermuda. We provide an assessment of the
biological processes that facilitate coral plasticity along differing envi-
ronmental conditions at depth. Elucidating the mechanisms contrib-
uting to the persistence of different coral life stages across broad depth
gradients will ultimately allow us to better evaluate the capacity of coral
planulae to disperse across depths, shedding light on the potential for
mesophotic reefs to serve as refugia in the face of global environmental
change.

2. Materials and methods
2.1. Site selection and sample collection

Two study sites on the north Atlantic Bermuda platform were
selected for this study: a rim reef (Hog Shallow; 8-10 m depth;
32°27'26"N, 64°50'05” W), and a mesophotic reef (Hog Deep; 45 m
depth; 32°29'18" N, 64°51'18"” W)(Fig. S1), located at 4.3 km from each
other. Throughout the summer temperatures were found to be consis-
tently higher at shallower depth, with maximum temperature at the
shallow site peaking at 28.9 °C, compared to 26.8° C at the mesophotic
site (Goodbody-Gringley et al., 2021).

A total of 20 adult colonies of the coral P. astreoides were randomly
chosen and collected using a hammer and chisel (PSLicenses
#2019061407): 10 from the shallow reef (~10 m depth) and 10 from
the mesophotic reef (~45 m depth), 9 days prior to the July new moon
(22 July 2019) based on previous data documenting larval release
beginning up to 10 days prior to the full moon (de Putron and Smith,
2011). At each site, a fragment of ~2 cm? was collected from 3 adult
colonies on the boat directly after collection from the reef and was
immediately stored in DNA/RNA Shield (Zymo Research) for molecular
analysis. Additional ~2 cm? fragments were collected from each colony
per each site and stored with ethanol for scanning electron microscope
(SEM) and X-ray uCT analysis.

To enable planulae collection, adult corals retrieved from the reef
were transferred to the outdoor mesocosm at the Bermuda Institute of
Ocean Sciences (BIOS) where they were maintained under ambient
temperature conditions in 400-L flow tanks using seawater pumped
directly from the adjacent shoreline, that is exposed to moderate flow
and frequent turnover from the open ocean. Temperature was recorded
in the mesocosm tanks daily using a HOBO onset data logger on 1-min
intervals (27.6 °C £ 0.004, shallow; 27.5 °C + 0.005, mesophotic;
mean + SEM). To reduce light stress and maintain temperature controls,
water level heights of ~45 cm above the colony surface were maintained
during the day. All corals experienced a natural light period as no arti-
ficial light source was provided and the mesocosm facility is exposed to
natural light with no coverings that block incoming light. Mesophotic
colonies were covered with a single layer of light filter (Lagoon Blue,
LEE Filters) to mimic mesophotic light levels, while shallow colonies
were left uncovered. Daily light readings using a PME miniPAR logger
were recorded for each condition over the period that corals were in the
mesocosm (10 days), as previously detailed (Goodbody-Gringley et al.,
2021). In situ light measurements from the collection sites were taken
every 30 s for a period of 3—4 min at depths of 10 m and 45 m on the day
of coral collections using a Li-COR sensor on a stable frame with a 100 m
fiber optic cable. During the daily timing of highest light exposure
(12:00 - 13:00) over the period of time the corals were in the mesocosm
(10 days), mean light in the mesophotic condition tank was 139 + 0.89
pmol/s m%, compared to a mean level of 124 + 0.16 pmol/s m? recorded
over the same period and time of day in situ, and 442 + 36.9 pmol/s m?
in the uncovered (shallow conditions) tanks, compared to 392 + 0.92
pmol/s m? in situ. All light measurements were reported in (Goodbody-
Gringley et al., 2021).

Larval P. astreoides collections were accomplished from July 24 to
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July 26, 2019. During the larval collection period, tank water levels
were dropped at night and individual colonies were placed into 2-L
plastic separated jugs with individual lines of flowing seawater. An
800 mL polypropylene beaker with a 153 pym mesh bottom was placed
under the spout of each container to collect the positively buoyant
planulae following the methods of (Goodbody-Gringley et al., 2018).
Every morning at dawn, all planulae released from each colony were
collected with a sterile clear transfer pipette and pooled by reef depth to
randomize larval selection among parental colonies. Subsamples were
then immediately taken from the pooled planulae and placed in 1.5 mL
tubes (3 tubes per depth of origin, ~20 planulae per tube) and stored
with DNA/RNA Shield (Zymo Research) for molecular analysis.

2.2. Adult skeletal micromorphology

Adults fragments collected at each depth that were stored with
ethanol were immersed in 1% sodium hypochlorite (NaClO) for 10 min
to remove the living tissue. Thereafter, the skeletons were rinsed with
distilled water followed by drying overnight. Fragments were vacuum
coated with gold (for conductivity) prior to examination under a ZEISS
SigmaTM SEM (Germany), by using an In-lens detector (2 kV, WD = 3-4
mm). In each fragment, the area of the calyx of individual polyps (N =
15) was measured with the image processing package FIJI (Schindelin
etal., 2012) delimiting and selecting the calyx region in the SEM images.
The number of rapid accretion deposits (RADs) on the skeletal spines (N
= 12) was measured as the ratio between the number of RADs to surface
area of the spine, calculated using FLJI (Schindelin et al., 2012) and
following the method by Scucchia et al., 2021.

2.3. X-ray uCT: Image acquisition and tomographic reconstruction

Tomographic scanning was conducted at BAMline (Gorner et al.,
2001), the imaging beamline of BESSY II (the synchrotron storage ring of
HZB-Helmoholtz-Zentrum Berlin, Germany) on the adult skeleton frag-
ments. Each sample was attached to a stub and scanned with incre-
mental rotation (multiple projections spanning 360°) on a high-
resolution imaging sample stage (Zaslansky et al., 2011) with expo-
sure times set to 140 ms. Projection images were acquired with a final
pixel size of 3.61 um, using an energy of 24.5 keV.

Prior to reconstruction, data were normalized to account for beam
inhomogeneities using FIJI (Schindelin et al., 2012) in the laboratory of
the Charité, Universitdtsmedizin (Berlin, Germany). Specifically, for
each scan, the radiograms were background-corrected by normalization
with empty beam (flat-field) images, obtained both before and after each
scan. Reconstruction was performed by the filtered back projection
method using nRecon (v1.7.4.2, Brucker micro-CT, Kontich, Belgium).
Tomographic datasets were visualized and further processed in 3D using
Dragonfly (v2021.3, Object Research Systems-ORS, Montreal, Quebec,
Canada)(Makovetsky et al., 2018). For each reconstructed fragment, the
volumetric thickness of the skeleton was computed using the “Create
Volume Thickness Map” function built into Dragonfly, which performs
volume thickness measurements based on the sphere-fitting method.
Specifically, the skeletal thickness is computed per each tomographic
slice within and between single polyps, taking into account the skeletal
macro-porosity (holes and crevices between polyps, see Fig. S2). Such
measurement is carried out per each tomographic slice across the entire
skeletal sample, allowing examination of the skeletal deposition pattern
at the macro-scale in the newest layers of the skeleton.

2.4. RNA extraction and sequencing

Total RNA was extracted from the planulae (pools of ~20) and adult
samples (that were stored with DNA/RNA Shield) using the Invitrogen
PureLink RNA micro (for the planulae) and mini (for the adults) kits
according to the manufacturer’s protocol (Thermo Fisher Scientific).
DNAase treatment was performed within the RNA extraction procedures
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according to the Invitrogen PureLink RNA kit instructions. RNA con-
centration was confirmed using a NanoDrop 2000 (Thermo Fisher Sci-
entific, United States) and quality was tested on a TapeStation (Agilent
Technologies, United States); only samples with RNA integrity number
values above 8 were selected for sequencing.

Three independent samples were obtained for each developmental
stage and depth of origin. Strand-specific RNA-seq libraries were pre-
pared using an in-house protocol at the Weizmann Institute of Science
(Israel). Briefly, mRNA was captured via polyA selection from 500 ng of
total RNA followed by fragmentation and the generation of double-
stranded cDNA. Then end repair, A base addition, adapter ligation and
PCR amplification steps were performed. Sequencing libraries were
constructed with barcodes to allow multiplexing of all samples to be run
in each lane. Paired-end reads (100 bp) were sequenced on an Illumina
NovaSeq 6000 across two different lanes (i.e., each sample run on each
lane to remove batch effects and the sequence files were concatenated
for analysis).

2.5. RNA-Seq reads alignment to reference genome and symbiont species
identification

Read quality of raw RNA-Seq was assessed using FastQC (v0.11.9)
and compiled with MultiQC (v1.10.1). Reads were then trimmed and
filtered using Cutadapt (v2.6, Martin, 2011) and Trimmomatic (v0.39,
Bolger et al., 2014), to retain reads with and average quality score of at
least 25. Reads were then aligned to the P. astreoides host genome as-
sembly (Wong and Putnam, 2022)(assembly as well as structural and
functional annotation data are available at DOI https://doi.org/10.1760
5/0SF.I0/ED8XU, NCBI Accession PRIJNA834048) using HISAT2
(v2.2.1, Kim et al., 2019) in the stranded paired-end mode and assem-
bled using StringTie (v2.2.5, Pertea et al., 2015). GFFcompare (v0.12.2,
Pertea and Pertea, 2020) was used to assess the precision of mapping by
comparison of merged mapped GFFs to the P. astreoides reference as-
sembly. Finally, a gene count matrix was generated using the StringTies
python script prepDE (Pertea et al., 2015). To identify algal symbiont
species, high-quality reads were subjected to a BLASTx search using
Diamond (v2.0.11, Buchfink et al., 2015) against open-access genome-
based proteome databases of Symbiodiniaceae species (Table S1).

2.6. Coral host single nucleotide polymorphisms and FST analyses

Single nucleotide polymorphisms (SNPs) were extracted from the
RNA-Seq data using the Genome Analysis Toolkit framework (GATK,
v4.2.0; McKenna et al., 2010) following the recommended RNA-Seq
SNPs practice of the Broad Institute (Auwera et al., 2013), with neces-
sary adjustments for genotype calling in non-model organisms where
variants sites are not known beforehand, since calibration of GATK SNP
calling parameters is largely dependent on known variant datasets
(Auwera et al., 2013). In short, HISAT-aligned reads were sorted and
marked for duplicates, variant calling was performed with the GATK
HaplotypeCaller tool (McKenna et al., 2010) and genotypes were then
jointly called using the GATK GenotypeGVCFs tool. The GATK Select-
Variants and VariantFiltration tools were used to filter the joined variant-
calling matrices for quality by depth, producing a filtered genotype
matrix of ~400,000 SNPs. Finally, filtering for linkage disequilibrium
was applied using the —indep-pairwise function of PLINK (v2.0, Purcell
et al., 2007); producing a final genotype matrix of 12 individuals and
9,060 SNPs.

To assess genetic differentiation among age-depth groups, the ge-
notype matrix was loaded as a Genomic Data Structure (GDS) object in
the R environment (v3.6.3, R Core Team, 2020) using the function
snpgdsOpen of the package SNPRelate (v1.20.1, Zheng et al., 2012). The
fixation index (Fst, Weir and Cockerham, 1984) was estimated using the
package HIERFSTAT (v0.5.10), and resulting Fsr pairwise values were
tested for significance with 999 permutations.
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2.7. Host differential gene expression analysis and WGCNA

Within the R environment (v3.6.3, R Core Team, 2020), the gene
count matrix was filtered to remove low-counts genes using the pOverA
filter function of the package Genefilter (v1.68.0). Specifically, genes
with less than 10 counts in at least 3 (minimum number of replicates per
each condition) out of 12 samples were excluded. Counts were then
normalized using the variance stabilizing transformation (vst) in
DESeq2 (v1.26.0, Love et al., 2013) and PCA was conducted using the
plotPCA function to calculate sample-to-sample distances. Differential
expression analysis with DESeq2 was performed between depths (mes-
ophotic and shallow) for each life stage (planulae and adults) using the
Wald test (Love et al., 2014), to identify differentially expressed genes
(DEGs) with adjusted p-value (FDR, < 0.05).

Normalized counts (vst-transformed) were also used to perform
Weighted Gene Co-expression Network Analysis (WGCNA)(Langfelder
and Horvath, 2008) to identify modules (groups of genes) with different
expression profiles across depths but with similar expression between
life stages at the same depth. Compared with focusing solely on DEGs,
WGCNA makes use of the expression data of all genes to identify gene
modules of co-expression and therefore enables association analysis (e.
g., correlation) with the phenotypes under study. First, an unrooted
hierarchical tree was built using the R function hclust “average” to check
for outliers. The function pickSoftThresholding of the WGCNA package
(v1.70.3) was used to explore values of soft threshold from 1 to 30, to
construct a topological overlap matrix similarity network and assess
gene expression adjacency (Langfelder and Horvath, 2008). A soft
thresholding power of 17 was chosen (scale-free topology fit index of
0.8) and used to construct the topological overlap matrix similarity
network with adjacency of type “signed”, which is used to keep track of
the sign (negative or positive) of the co-expression information (Lang-
felder and Horvath, 2008). The WGCNA package dynamicTreeCut was
used to identify modules from the topological overlap matrix similarity
network with minimum module size of 30, producing a total of 103
modules. Modules with >85% eigengene similarity were merged,
resulting in a total of 56 finalized modules.

The hclust “average” method was used to cluster the expression
modules by eigengene similarity, and module-trait correlation was
assessed by determining the genes significance (correlation between
genes and age-depth groups) and the module membership (correlation
between modules eigengene and genes expression profiles)(Langfelder
and Horvath, 2008). The module-trait correlation values were plotted as
a heatmap with the package complexHeatmap and the 56 modules were
divided into clusters with the function row_split of complexHeatmap to
highlight changes in expression by age-depth. Finally, the expression
profile in each cluster of modules was summarized by generating plots of
mean eigengene expression value per each age-depth group. The vari-
ation in mean eigengene expression of each cluster was analyzed using
Mann Whitney test within the comparisons mesophotic versus shallow
adults and mesophotic versus shallow planulae. The rationale for the
Mann Whitney test is to detect module clusters that share the same up-
or down-ward trend of expression across developmental stages of corals
at the same depth (i.e., finding module clusters that show a depth-
dependent pattern across developmental stages), and to find module
clusters that have an opposite trend between corals of the same age but
from different depths (i.e., finding module clusters that show a depth-
dependent pattern at different developmental stages).

2.8. Host gene ontology enrichment analysis

Gene Ontology (GO) enrichment analysis was performed to examine
functions and processes primarily related to each depth across devel-
opmental stages, converting both DEGs and WGCNA modules into bio-
logical knowledge. First, GO annotation of the P. astreoides genome was
retrieved from the work of Wong and Putnam (Wong and Putnam,
2022). GO enrichment analysis was performed using the package Goseq
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(v1.42.0, Young et al., 2010) in the R environment. For the enrichment
analysis based on the DE data, several cut-offs on the number of DEGs to
be used were tested, to ensure obtaining a reasonable number of
enriched GO terms. Specifically, for both the mesophotic versus shallow
adults and planulae comparisons, only DEGs with log2FoldChange>|2|
were included in the analysis. Furthermore, the list of significantly
enriched GO terms of the mesophotic versus shallow planulae compar-
ison was filtered before final plotting by only keeping terms with at least
2 DEGs per category (numDEInCat) and by excluding broader terms such
as “modulation process of other organism”, “membrane”, “component of
membrane” that may be less informative. After filtering, enriched GO
terms were hierarchically clustered based on pairwise distances between
groups of genes and a terms tree was constructed using the clustering
method “Ward” with the package Bioconductor-ggtree (Yu et al., 2018)
as described previously (Malik et al., 2020; Scucchia et al., 2021). The
full list of enriched GO terms is available in the electronic notebook
https://github.com/fscucchia/Pastreoides_development_depth.

For the WGCNA data, only the modules clusters with the same di-
rection of change and with highly significant (p < 0.001) differences in
mean eigengene expression in both the between-adults and between-
planulae comparisons were included in the GO enrichment analysis.
Since a large number of enriched GO terms resulted to be significant
within each cluster of modules (range of ~300-1500 significant GO
terms per cluster), the stringent significance cutoff of p < 0.001 was
chosen to identify clusters of modules with the highest relatedness to
changes in the trait of interest (depth) between groups. The package
Goseq (v1.42.0, Young et al., 2010) was used to perform the enrichment
analysis. For the resulting enriched GO terms, slim categories were ob-
tained with the function goSlim of the R package GSEABase (v1.52.1)
using the GOslim generic obo as reference database (v1.2, Ashburner
et al., 2000). The full list of WGCNA-related enriched GO terms is
available in the electronic notebook https://github.com/fscucchia/
Pastreoides_development_depth.

2.9. Statistical analysis

The mean thickness value per each skeleton fragment (N = 3 frag-
ments per depth), the area of the calyxes (N = 15 calyxes per depth) and
the number of RADs per unit surface area of the spines (N = 12 per
depth) were tested for normality (Shapiro-Wilk test) and homogeneity
of variance (Brown-Forsythe test). For the skeletal thickness and the
calyx area, an unpaired t-test was used, whereas Mann-Whitney test was
used for the RADs number (to test the differences between depths), in
which significant groups have a value of p < 0.05. GraphPad Prism
version 9.0.0 (GraphPad Inc., San Diego, CA, USA) was used to perform
the statistical tests.

3. Results
3.1. Adult skeletal growth patterns

We characterized adult colony structure and various micro-scale
skeletal features associated with living in shallow or mesophotic reef
environments. Scanning electron microscope (SEM) observations show
that the area of the corallites significantly decreased from 2.23 mm? in
shallow corals to 1.54 mm? in mesophotic corals (unpaired t-test, N =
15, p < 0.001)(Fig. S3a). Furthermore, mesophotic adults appear to
possess a less extensive development of RADs on the spines (2.13 £ 0.05,
average number of RADs/mm?), which appear to be smoother compared
to shallow adults (2.80 + 0.04 RADs/mm?) (Mann-Whitney test, N = 12,
p < 0.001) (Fig. la-d and Fig. S3b). However, surface micro-texture
examinations reveal that the aragonite crystal morphology was highly
similar at both depths, characterized by bundles of fibers ranging be-
tween rhomb-shaped structures and flat blades (Fig. le, ).

Further morphological investigations were conducted by imaging
adult fragments with X-ray uCT (Fig. 2). Three dimensional renderings
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Shallow

Journal of Structural Biology 215 (2023) 108036

Mesophotic

Fig. 1. Comparison between skeletal features of shallow and mesophotic adult P. astreoides corals. (a, b) SEM images showing typical calyxes and spines
structure; (c, d) enlargements showing the rapid accretion deposits (RADs; globular elements indicated by red arrows) on the spines surface and (e, f) enlargements
showing the spines surface texture in shallow and mesophotic P. astreoides polyps. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

of the skeleton volumetric thickness show the distribution of the mineral
both within and between single corallites in mesophotic and shallow
corals (Fig. 2b, d; Movie S1 and S2). Single tomographic cross-sectional
slices (Movie S1 and S2) and sliced top-view 3D renderings (Fig. 2f, h)
reveal the internal architecture of the skeleton at both depths. Mea-
surements of the overall mean skeletal thickness distributions do not
show any significant differences between shallow and mesophotic adults
(unpaired t-test, N = 3, p = 0.8)(Fig. 2e, g, Fig. S4).

3.2. Host genetic connectivity and identification of symbiont identities

We next aimed to elucidate whether the patterns we observed in the
skeleton result from morphological plasticity or genetic adaptation. For

that, we assessed the vertical genetic connectivity between shallow and
mesophotic P. astreoides corals by estimating the fixation index Fgr from
transcriptome-derived SNPs. Overall, pairwise Fgr estimates support
genetic connectivity between shallow and mesophotic conspecifics,
corresponding to Fst = 0.051 (p < 0.05) between P. astreoides adults
(Fig. 3a). Relatively higher differentiation exists between mesophotic
and shallow planulae (0.107, p < 0.05) than between adults, possibly
due to the fact that each planulae sample corresponds to a pool of
planulae generated from different adult colonies.

Symbiont species identification analysis reveals that planulae and
adults from both depths host a similar consortium of Symbiodinium
species (Symbiodinium CladeA3, Symbiodinium microadriaticum, Symbio-
dinium linucheae; Fig. 3b). Among these symbiont species, Symbiodinium
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linucheae appears to be more abundant in shallow adults, where
approximately 85% of all reads BLASTed against Symbiodiniaceae
species belonged to S. linucheae, whereas in mesophotic adults only 43%
of all reads belonged to the same symbiont species.

3.3. Host gene expression patterns

We explored the genomic basis of phenotypic variation across
diverse environments by examining the association of gene expression
with environmental condition. A principal coordinate analysis con-
ducted on expressed genes of P. astreoides planulae and adults reveals a
much tighter clustering of shallow corals compared to their mesophotic
conspecifics (Fig. 4a and 4b). Out of a total 24,247 expressed genes,
1.8% (439 genes) were found to be differentially expressed (p < 0.05)
between mesophotic and shallow adults (Fig. 4c). In planulae samples,
out of 32,724 expressed genes 8.9% (2,898 genes) were found to be
differentially expressed (Fig. 4d).

Rather than focusing solely on the expression of individual genes,
adaptation to shallow and mesophotic depth environments was addi-
tionally investigated by looking at co-expression patterns using
Weighted Correlation Network Analysis (WGCNA)(Langfelder and
Horvath, 2008). All expressed genes across coral samples were assigned
by WGCNA into 56 modules, that showed ten distinct expression profiles
(Fig. 5a). Significant (p < 0.05) module-trait correlations were found for
14 modules in mesophotic adults, 13 modules in shallow adults, 3
modules in mesophotic planulae and 5 modules in shallow planulae. No
modules were found to share the same up- or down-ward trend of
expression across developmental stages of corals at the same depth (i.e.,
no modules specific to shallow or mesophotic depth environments across
developmental stages were observed).

The overall expression of genes in each module cluster was sum-
marized by mean module’s eigengene value (Fig. 5b). No clusters were
found with significant adult-planulae co-variance in mean eigengene
value due to depth origin, but 6 clusters showed a significant difference
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in eigengene expression due to depth origin in either the adults or
planulae comparisons. Specifically, mean eigengene values were
significantly different between adults in clusters 3, 4 and 5, and between
planulae in clusters 7, 8 and 10. Between these, the most significant
differences were found in clusters 5 (Mann Whitney test, N = 24, p <
0.001) and 7 (Mann Whitney test, N =9, p < 0.001).

3.4. Host gene ontology enrichment

Enrichment analysis performed on DEGs resulted in 20 over-
represented GO terms in the within-adults comparison, and 29 GO
terms in the within-planulae comparison (Fig. 6). Genes associated with
GO terms involved in peptidases activity (“peptidase inhibitor activity”
GO:0030414, “negative regulation of endopeptidase activity”
G0:0010951, “metalloendopeptidase inhibitor activity” GO:0008191,
“negative regulation of peptidase activity” GO:0010466) were upregu-
lated in mesophotic corals compared to shallow corals for both planulae
and adults, showing a depth-dependent pattern across developmental
stages (Fig. 6). In addition, genes associated with terms involved in
immune response (“immune response” GO:0006955, “tumor necrosis
factor” GO:0005164) were downregulated in mesophotic corals
compared to their shallow counterparts in both planulae and adults. In
the within-planulae stage comparison, genes associated with the
“ATPase activity” (GO:0016887) GO term were downregulated in mes-
ophotic planulae as compared to the shallow ones, whereas genes linked
to the terms “oxidoreductase activity” (GO:0016702), “actin binding”
(GO:0003779), “lipid binding” (G0O:0008289), “peptide metabolic pro-
cess” (GO:0006518), “nematocyst” (GO:0042151) and “toxin activity”
(G0O:0090729) were upregulated in mesophotic planulae (Fig. 6).

In addition, gene ontology enrichment analysis undertaken for
WGCNA module clusters showed highly significant differences in mean

eigengene expression values between mesophotic and shallow corals in
the case of adult samples (cluster 5) and planulae samples (cluster 7)
(Fig. 5b). A total of 1758 GO terms were found to be over-represented in
cluster 5 (Fig. 7), with a negative module-trait correlation in mesophotic
adult corals and a positive correlation in shallow adult corals (Fig. 5b).
These terms are primarily related to 65 slim terms, including anatomical
structure development, signaling, immune system process, ribosome
biogenesis, carbohydrate metabolic process, lipid metabolic process and
lipid binding, inflammatory response and circulatory system process
(Fig. 7). In cluster 7, a total of 253 were over-represented (Fig. 7) with a
negative module-trait correlation in mesophotic planulae and a positive
correlation in shallow planulae (Fig. 5b). Biological processes and mo-
lecular functions of cluster 7 were summarized by 33 slim terms,
including anatomical structure development, signaling, immune system
process, lipid metabolic process, vitamin metabolic process, protein
catabolic process, membrane and cytoskeleton organization, cell dif-
ferentiation, carbohydrate metabolic process and transporter activity
(Fig. 7).

4. Discussion

In this study, we uncovered the phenotypic flexibility of the coral-
algal association that contributes to the persistence of P. astreoides
corals across broad vertical gradients, from shallow to mesophotic reefs.
Several coral skeletal features are implicated in light collection or
dissipation due to light-driven morphological plasticity. The coarser
surface of the skeletal spines in shallow P. astreoides adults (Fig. 1a, c)
suggests a higher dissipation of excess light through self-shading skeletal
features, whereas the smoother spine surfaces in mesophotic adults
(Fig. 1b, d) indicate a light-passage-facilitating functional trait. Such
morphological patterns have also been observed between shallow and
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mesophotic S. pistillata adults in the Red Sea (Malik et al., 2020). Ad-
justments of coral skeletal traits to their ambient light conditions have
been suggested to complement the endosymbionts demands for light,
resulting in significantly higher light absorption in mesophotic corals
compared to their shallow counterparts (Kramer et al., 2022a, 2022b).

P. astreoides adults show also differences in calyx area across depth
environments, with mesophotic corals having smaller calyxes compared
to their shallow conspecifics, similarly to other depth-generalist coral
species (Malik et al., 2020; Studivan et al., 2019). Indeed, the size and
spacing of calyxes can be plastic in response to changing light conditions
at depth, acting to focus, redirect, or dissipate light to enhance light
harvesting or reflectance (Nir et al., 2011; Ow and Todd, 2010; Rocha
et al., 2014). Additionally, having larger calyxes increases drag, which
could increase retention of pray in high water flow environments such as
shallow reefs (Dustan, 1975).

Morphological changes between shallow and mesophotic conspe-
cifics have also been attributed to different calcification rates (Lesser
et al., 2010; Malik et al., 2020; Risk and Sammarco, 1991), which have

been shown to significantly decline along the light gradient (Lesser
et al., 2010; Mass et al., 2007). In the present study, we observed an
analogous mineral distribution between shallow and mesophotic
P. astreoides adults (Fig. 2), suggesting that, even in the case of lower
calcification rates in deeper water, the bulk skeletal growth dynamics
are highly similar. Little information exists on the calcification rates of
P. astreoides below 30 m depth. In the Puerto Rican shelf, the calcifica-
tion rate of this species does not show a clear relationship with depth
going from shallow to mesophotic reefs (6-47 m)(Groves et al., 2018).
All these results suggest that light might not be the primary factor
controlling growth for this species, or that P. astreoides is able to adjust
its biomineralization machinery to changing light regimes across wide
depth ranges. Such capability of maintaining homogeneous skeleton
development dynamics across depths could significantly facilitate the
successful growth of early P. astreoides life stages migrating across the
vertical gradient, increasing connectivity between reefs.

Response of populations to local environmental features can be
either due to evolutionary changes underlined by genetic differentiation
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among populations (Sanford and Kelly, 2011; Savolainen et al., 2013),
or can be driven by mechanisms enabling phenotypic plasticity of the
species (Thibert-Plante and Hendry, 2011). Genetic connectivity be-
tween shallow and mesophotic P. astreoides adults (Fig. 3a) does not lend
support to selection for genetic adaptation to differing environments
across depths. Instead, it suggests that it is the P. astreoides phenotypic
plasticity that primarily determines the species persistence across the
broad vertical cline in Bermuda. It must be noted, however, that these
suppositions are based on a restricted sample size, attributable to the
strong limitations on sampling corals from protected environments. This
limits accurate estimation of genetic differentiation between shallow
and mesophotic populations. Still, there is large variability in sample
size employed in population genomic work, suggesting that there is no
agreed-on universal sample size rule to precisely characterize genetic
variation across populations and taxa (reviewed in Phillips et al., 2019).
It appears, however, that even with restricted sample sizes (<10) it is
possible to adequately estimate differentiation between populations
(Hoban et al., 2013; Nazareno et al., 2017; Phillips et al., 2019; Qu et al.,
2020; Trask et al., 2011; Willing et al., 2012), particularly in the case of
populations that have confined geographical distributions (Phillips
et al., 2019), such as corals in Bermuda. In addition, several studies have
shown that increasing the sample size only minorly improves, or does
not improve at all, preciseness of the genetic diversity estimation
(Hoban et al., 2013; Kumasaka et al., 2010; Qu et al., 2020; Zeggini
et al., 2005). Furthermore, screening a large number of SNPs (>1,500),
as in this study, can compensate for the small sample size and produce
accurate assessment of genetic differentiation (Jeffries et al., 2016;
Nazareno et al.,, 2017; Qu et al.,, 2020; Zimmerman et al., 2020).
Nevertheless, further studies using a larger sample size are needed to
accurately assess the degree of genetic connectivity between shallow

and mesophotic P. astreoides corals in Bermuda.

The observed pattern of genetic similarity, which involves a broader
depth range than previously shown for this species in Bermuda (Serrano
et al., 2016), is reflected by the degree of variation between the tran-
scriptome profiles of shallow and mesophotic corals. In fact, while wide
gene expression changes (>4000 DEGs, 15%-39% of the total expressed
genes) were found between mesophotic and shallow S. pistillata corals
shown to be genetically differentiated (Malik et al., 2020; Scucchia
et al., 2021), a much lower degree of change was found here between
mesophotic and shallow P. astreoides adults (1.8% of the total expressed
genes, Fig. 4c). These results are comparable to the 3.6% of total
expressed genes that were found to be differentially expressed between
depths and across several sites in the Gulf of Mexico and Belize for
M. cavernosa corals (Studivan and Voss, 2020), which had been shown to
be genetically connected (Studivan and Voss, 2018).

For other coral species in Bermuda, genetic differentiation has been
observed across the vertical gradient and has been attributed to the
different coral reproductive modes (Bongaerts et al., 2017). Divergence
by depth is thought to be prevalent in species with a brooding repro-
ductive mode compared to broadcast spawners (Bongaerts et al., 2010;
Gorospe and Karl, 2015; Van Oppen et al., 2011). With its brooding
reproductive mode and a short pelagic larval duration, P. astreoides
would be expected to have low levels of gene flow. However, divergence
by depth has been observed in both broadcasting and brooding coral
species (Bongaerts et al., 2010; Brazeau et al., 2013; Serrano et al., 2014,
2016; Van Oppen et al., 2011), suggesting that other location-specific
extrinsic processes contribute in determining vertical connectivity
(Serrano et al., 2016), such as selection, temporal shifts in population
dynamics and sweepstakes reproductive success (Eldon et al., 2016).
The presence of genetic connectivity among P. astreoides populations in
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Bermuda would suggest substantial levels of historic or contemporary
larval migration between shallow and mesophotic reefs, which may be
attributed to the Bermuda vertical mixing patterns (Reich et al., 2017).
Such consideration finds support in the fact that planulae of P. astreoides
from the same shallow and mesophotic reefs sites of this study exhibited
the capacity to survive and settle under reciprocal light conditions
(Goodbody-Gringley et al., 2021).

Altering the expression of genes is one mechanism allowing organ-
isms to adjust to environmental variance. Compared to the adults,
P. astreoides planulae showed a higher degree of variation of tran-
scriptome profiles between shallow and mesophotic individuals (8.9% of
total expressed genes are differentially expressed). Such larger changes
compared to the adult phase are likely related to broad cell differenti-
ation processes occurring at invertebrate larval stages (Arenas-Mena,
2010) which dramatically alter a cell’s shape, size and energy re-
quirements (Ng et al., 2019). This is also indicated by the enrichment of
biological functions related to cell differentiation and to membrane and
cytoskeleton organization observed in mesophotic and shallow planulae
(Fig. 7). Cellular processes, including differentiation, are sensitive to
both mechanical and chemical stimuli from the environment (Ng et al.,
2019). In marine habitats, environmental signals and features, particu-
larly light, greatly change from shallow to mesophotic reefs, deter-
mining a change in the energy available to the symbionts and coral host
for the maintenance of cellular processes and for organismal growth.
Several functions related to energy metabolism (i.e., lipid metabolic
process, carbohydrate metabolic process) as well as functions related to
organism growth (i.e., anatomical structure development) showed an
opposite module-trait correlation in mesophotic and shallow corals at

both adults and planulae stages (Fig. 7), suggesting a differential utili-
zation of energy for organismal growth across the depth gradient.

Energy acquisition in organisms is regulated at the cellular level by a
variety of enzymes, including peptidases (Wilson et al., 2013). Genes
related to peptidases activity are up-regulated in mesophotic corals
across developmental stages (Fig. 6), providing further indication that
energy metabolism is differentially regulated across the depth gradient.
Peptidases are also involved in a variety of other cellular processes such
as growth, cell-cell interactions, differentiation and play crucial roles in
the regulation of immune functions (Lendeckel et al., 2002). Immune
system processes appear to have a depth-dependent pattern across
developmental stages, being up-regulated in shallow corals compared to
their mesophotic counterparts (Figs. 6 and 7). This suggests higher levels
of pathogen invasion or disease in the shallow environment compared to
deeper depths, although coral diseases have been recorded in meso-
photic environments (Bongaerts et al., 2010; Calnan et al., 2007) and for
some coral species they appear to be spread over the entire depth
gradient (Morais and Santos, 2022).

In corals exposed to temperature stress some immunity functions are
enhanced (Mydlarz et al., 2010), such as in the case of corals living in
shallow environments, that are characterized by wider temperature
fluctuations compared to mesophotic ones (Hinderstein et al., 2010).
Another hallmark of the environmental stress response is the regulation
of genes linked to ribosome biogenesis (Saez-Vasquez and Delseny,
2019), which are up-regulated in shallow P. astreoides adults compared
to their mesophotic conspecifics (Fig. 7). Such patterns reveal a potential
genomic mechanism employed by this species to colonize and persist in
the thermally variable shallow environment. In fact, plasticity of gene
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expression involved in environmental stress response correlates with
lower susceptibility to summer bleaching events in P. astreoides adults
inhabiting shallow reef locations (Kenkel and Matz, 2017).

The similar regulation of stress response genes among shallow
planulae, collected right after release, and adults observed here suggests
that a legacy of environmentally induced effects in parents can be car-
ried over to their offspring. Parental thermal history, in fact, often af-
fects the thermal tolerance of the progeny in many marine invertebrates,
improving performance under thermal stress through, for example,
epigenetic effects (reviewed in Byrne et al., 2020). Whilst acclimatiza-
tion through epigenetics in reef building corals has received substantial
attention (Putnam, 2021), nothing is yet known about potential epige-
netic mechanisms linked to the persistence of corals across wide depth
ranges, thus constituting a fertile field of investigation.

The ability of P. astreoides planulae to colonize highly different light
environments may stem from the endosymbionts photosynthetic plas-
ticity. Shallow and mesophotic P. astreoides corals in fact host a similar
consortium of Symbiodinium species (Fig. 3b), revealing minimal sym-
biont depth-zonation at these sites in Bermuda. Such low differentiation
in symbiont consortia may reflect Bermuda isolated high-latitudinal
location and the less steep environmental gradients compared with
other regions in the Caribbean, which may also explain the level of coral
genetic connectivity (Gould et al., 2021; Reich et al., 2017; Serrano
et al., 2014). Commonly, the association with different symbiont types
across depths is considered a trait of depth generalist corals to broaden
their vertical distribution range (Bongaerts et al., 2010). Symbiont types
can in fact differ in photosynthetic pigments quality and quantity, which
determine different photo-physiological efficiencies at depth (Frade
et al., 2008). However, depth stratification of the algal symbiont is not a
universal trend, as demonstrated here for P. astreoides and by previous
investigations for other coral species (Bongaerts et al., 2013; Chan et al.,
2009; Martinez et al., 2021; Studivan and Voss, 2020; Ziegler et al.,
2015). The same symbiont type can in fact employ different photo-
acclimatory strategies to adjust to differing light conditions at depth,
by for example reorganizing the photosynthetic machinery to cope with
different light intensities (Lesser et al., 2010; Ziegler et al., 2015). The
symbiont genus Symbiodinium (formerly clade A, LaJeunesse et al.,
2018) has been shown to possess high resistance to light variations
compared to other genera, promoting survival of the host at high light
intensities and conferring resistance to bleaching (Reynolds et al.,
2008). These photo-physiological characteristics of the Symbiodinium
genus may enhance the capacity of P. astreoides planulae to successfully
migrate along the vertical gradient.

Overall, our investigation has identified key morphological and ge-
netic mechanisms underlying the plasticity of P. astreoides planulae and
adults that enable them to survive along broad depth gradients. Several
aspects contribute to this capacity, including micro-skeletal features that
may optimize symbiont light capture in the diverse light-environments,
differential regulation of metabolism-related functions suggesting a
differential utilization of energy across the depth gradient, and differ-
ential regulation of immune system and ribosome biogenesis processes
to cope with environmental stress, particularly in the shallow environ-
ment. These variations in micro-skeletal morphology and gene expres-
sion patterns across depth zones do not appear to limit coral
connectivity. Rather, the low genetic differentiation, analogous bulk
skeletal growth dynamics and the uniform consortium of Symbiodinium
species indicate that the micro-skeletal and gene expression differences
observed between shallow and depth zones stem from plasticity of this
species in adjusting to different environmental conditions at depths.
While cautioning that these results should be viewed with the caveat of a
restricted sample size, we emphasize that the combination of multiple
techniques and the overall correspondence of processes across different
assays demonstrates the robust nature of our work.

It must be noted that the pattern of connectivity across depths
observed here may derive from a dominant one-way flux of coral plan-
ulae, considering that several studies presented genetic evidence of
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asymmetric (only from shallow to deep) gene flow across the depth
gradient (Bongaerts et al., 2017; Prada and Hellberg, 2013; Serrano
et al., 2014; Shlesinger and Loya, 2021). An ex-situ experiment showed
that mesophotic P. astreoides planulae have a greater dispersal potential
and the ability to survive and settle under shallow light conditions
(Goodbody-Gringley et al., 2021), suggesting that for this species in
Bermuda larval dispersal may preferentially occur up the slope (from
deep to shallow). However, for that study the only environmental factor
manipulated to mimic shallow and mesophotic conditions was light
intensity, leaving unaddressed the influence on larval dispersal and
settlement of other depth-related factors (i.e., temperature, water flow,
food availability, sedimentation, herbivory). Thus, it still remains un-
clear if mesophotic population of P. astreoides in Bermuda act as larval
sink or source, or both, for their shallow-water conspecifics. It should
also be underlined that such refugia capacity may only be limited to
P. astreoides at this specific location. In fact, previous work has shown
that other coral species lack refugia potential (Bongaerts et al., 2017),
which also appears to be location-specific (Bongaerts et al., 2017;
Serrano et al., 2016). Thus, the reseeding and buffer capacity of meso-
photic reefs may not be considered as a global trend. A deeper under-
standing of coral acclimatory capability and of genetic connectivity
among coral populations is crucial in the context of global environ-
mental change, as it enables to assess coral population dynamics and
future potential shifts in reef ecosystems structure and function. As such,
future research priorities should include in situ reciprocal trans-
plantation experiments using planulae and adults to assess bidirectional
plasticity across shallow and mesophotic environments for multiple
corals species in Bermuda and other un-assessed locations.
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