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Abstract 
For measuring the strength of visually-observed subpopulation differences, the 
Population Difference Criterion is proposed to assess the statistical significance of 
visually observed subpopulation differences. It addresses the following challenges: in 
high-dimensional contexts, distributional models can be dubious; in high-signal contexts, 
conventional permutation tests give poor pairwise comparisons. We also make two other 
contributions: Based on a careful analysis we find that a balanced permutation approach 
is more powerful in high-signal contexts than conventional permutations. Another 
contribution is the quantification of uncertainty due to permutation variation via a 
bootstrap confidence interval. The practical usefulness of these ideas is illustrated in the 
comparison of subpopulations of modern cancer data.  

Keywords: balanced permutations; confidence intervals; correlation adjustment; 

high dimension, population criterion difference.  

1 Introduction 

In the age of Big Data, many contexts involve analyzing and understanding 

relationships between multiple subpopulations. A fascinating and particularly 

deep example of this comes from cancer research as illustrated in Section 4, 

where we have gene expression data from five cancer types and a goal of 

understanding relationships between the cancer types (aka subpopulations). A 

common approach to understanding subpopulation differences is visualization 
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using Principal Component Analysis (PCA) Jolliffe (1986). While this method 

gives useful insights, visual approaches can be deceptive. This motivates our 

work to develop a method for quantification of the strength of the evidence for 

distinction between each pair of groups. Because of the very rich general 

structure of biological processes, classical statistical distributional models are 

woefully inadequate. Hence permutation testing methods, such as the 

DiProPerm test proposed by Wei et al. (2016), provide an appealing alternative.  

The DiProPerm method measures strength of difference between any two 

subpopulations by projecting the data onto a direction aimed at separating them, 

and summarizing using the difference of the projected means as a statistic. 

Typical permutation p-values are calculated using the number of permuted 

summaries that lie outside the corresponding true data summary statistic. 

Bioinformatics data is frequently high signal, meaning there are usually very 

strong differences between subpopulations. The challenge of high signal 

situations is that there frequently are no permuted statistics outside that range, 

so the only conclusion is that the permutation p-value is 

1

Pn


, where nP is the 

number of permutations. From the classical viewpoint, that is strong evidence of 

all such differences being significant which is the end of the story. However, 

understanding the relationship between subpopulations is a different challenge. 

This motivates our invention of the Population Difference Criterion (PDC), which 

is a quantitative measure of separation between subpopulations that provides 

meaningful comparisons even in high dimensional and high signal contexts. A 

very important example of the value of PDC is in comparison of the many 

possible pre-processing operations that are routinely used for example in 

bioinformatics applications. In particular, better pre-processing methods are 

those which result in a larger PDC for a given set of subpopulations of interest.  

A major contribution of this paper discussed in Section 2 is the discovery of a 

peculiar phenomenon that in high signal situations increasing signal strength can 
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actually entail the loss of statistical power as measured by the PDC. Detailed 

mathematical analysis reveals that this is caused by the traditional permutation 

scheme employed in DiProPerm Wei et al. (2016). This motivates our proposal of 

a non-standard balanced permutation scheme. Comparisons using simulated 

and real data show that balanced permutations provide more powerful results.  

Yet another contribution of this paper appears in Section 3, where we propose 

confidence intervals that account for the Monte Carlo uncertainty in permutation 

testing. The value of quantifying that uncertainty for comparing multiple cancer 

subpopulations is demonstrated in Section 4. Discussion of controversies related 

to non-traditional permutation schemes can be found in Section 5.  

2 Population Difference Criterion 

Consider data from two potentially high-dimensional populations 1 , , mX X
 and 

1 , nY Y
. As explained in the introduction, a common way of visualizing the 

difference between the subpopulations uses projections on a given direction 

determined by a unit vector w, e.g., a PCA direction. A particularly useful visual 

direction for distinguishing subpopulations is the Distance Weighted 

Discrimination (DWD) direction vector w proposed by Marron et al. (2007). DWD 

solves an optimization problem that is formally stated in Appendix A. A potential 

drawback is that DWD can be relatively slow to compute. Therefore, we will also 

investigate a computationally faster version of DiProPerm based on projection 

onto the Mean Difference (MD) direction, i.e. 
| | | |

m n

m n

X Y
w

X Y





 – the direction 

pointing from the mean of one group to the mean of the other.  

While such visualizations are suggestive, they can also be deceptive. As noted in 

Wei et al. (2016), rigorous quantification of visual differences can be surprisingly 

counter intuitive, because human intuition is not good at incorporating issues 

such as sample size and high dimensional variation into visual impression. An 

explicit example of this is shown in Figure 2.3 of the PhD dissertation of 
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Yang (2021). Hence it is very important to provide a quantitative measure of the 

strength of the evidence for visual subpopulation separation based on rigorous 

statistical inference.  

An early version of a quantitative measure of this type was provided by the 

DiProPerm test (Wei et al. (2016)). The DiProPerm test statistic is the observed 

mean difference of the projected scores:  

1 1

1 1
, , ,

m n

k k
j k

C w X w Y
m n

 

        (1) 

where ,w x   is the inner product.  

The Population Difference Criterion (PDC) is a quantitative measure of the 

differences between subpopulations that may be visually apparent in PCA scatter 

plots. Specifically,  

,
V a r

C E C
P D C

C


  

where the mean and variance of C are computed under the null model of no 

difference between subpopulations. Larger values of PDC represent stronger 

evidence of the difference between subpopulations.  

Traditionally, the null distribution EC and V a rC  have been estimated using 

permutation based methods. In particular,  

,
C C

PD C
S


  (2) 

where the mean C  and standard deviation S are estimated using re-sampling of 

the class labels and re-projection of the data. Note that if the null distribution of C 

was Gaussian, the PDC would be the classical Z-score and was called that in 

Acc
ep

ted
 M

an
us

cri
pt



Wei et al. (2016). But that term is not used here as the null distributions of C 

could be far from Gaussian.  

2.1 Gaussian model 

In this section, we study the behavior of the DiProPerm PDC using a basic two-

class Gaussian model. Both classes are assumed to follow the multivariate 

normal distribution with means separated by 2g, i.e.,  

2

2

C la ss  + 1  ( ) : ~ ( · , ) , 1, ...,

C la s s  -1  ( ) : ~ ( · , ) , 1, ...,

j d

k d

X X N g u I j m

Y Y N g u I k n







 
 (3) 

where 
du   is some unit vector, such as [1 / 1 / ]Td d  or [1 0 0 ]T , and 




 . The actual direction of u is irrelevant because the DiProPerm test is 

rotation invariant.  

An important component of our mathematical analysis is the derivation of the 

distribution of the observed statistics (1) under the model (3). Using the MD 

direction  

2
2 2 2 2 2

1

1 1 4
|| | | ( ) ~ ( ) ( )

1 1
( )

d
k k

d
k

g
C X Y X Y

m n
m n

 



    



  

and so  

21 1 4
|| ||~ ( ) .

1 1
( )

d

g
C X Y

m n

m n

   



 (4) 

Here 
( )d 

 is called the non-central Chi distribution (Johnson et al., 1972), the 

square root of the non-central Chi-square distribution with degrees of freedom d 

and non-centrality parameter 
2

 .  
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Under the null hypothesis g = 0 we have 

1 1 (( 1) / 2 )
2

( / 2 )

d
E C

m n d


 
 

  and 

2 21 1 (( 1) / 2 )
V a r ( ) ( 2 ( ) )

( / 2 )

d
C d

m n d


 
  

 . In general,  

2
/ 2 1

1 / 2( ( )) · ( ) ,
2 2

d
dE L

 
 




  

where 
( )a

nL z
 is the generalized Laguerre polynomial (Koekoek and Meijer, 1993). 

Then we have  

2
/ 2 1

1 / 2

1 1 2
[ || | |] · · ( )

1 12 ( )

d g
E X Y L

m n
m n





   



 (5)  

2 2
2 / 2 1 2

1 / 2

1 1 4 2
[ || | |] ( ) ( ·( ( )) )

1 1 1 12( ) ( )

dg g
V a r X Y d L

m n
m n m n





     

 

 (6)  

2.2 Permutation distribution 

Since in practice, most people use the estimated PDC (2), it is important to study 

the behavior of the test statistic C under various permutation schemes. The 

classical approach is to randomly reshuffle the class labels { 1,1}  for all 

observations. This generates permuted data , , 1, ,j p e rX j m 
 and 

, , 1, ,k p e rY k n 
. We call this approach all permutations. Let 

, 1, ,iC i N
 be 

independent realizations of the test statistic (1) computed using permuted data. 

Again, in the case of the MD direction 
|| ||, 1, , .i p er p erC X Y i N  

  

When labels are randomly reshuffled, there is a random number Ri of 

observations in each class that switch labels. Note that when all permutations are 

used, Ri is a Hypergeometric random variable whose probability mass function is:  
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( ) ( ) , 0 ,1, . . . , m in ( , ) .R i

m n

r n r
p r P R r r m n

m n

m

   

   
   

   
 

 
 

 

The conditional distribution of p er p erX Y
 is (detailed derivation shown in 

Appendix B):  

2 1 1
( ) | ~ ( 2 ·(1 )· , ( ) ) .p e r p e r i d d

r r
X Y R r N g u I

m n m n
      (7) 

Thus, for a given permutation, 

iR

m  is the proportion of the original Class -1 cases 

that are relabeled as the permuted Class +1, and 

in R

n



 is the proportion of the 

Class -1 cases that remain in the new Class -1. The difference between these 2 

proportions, denoted as  

( ) 1 ,i i i i
i i

n R R R R
R

n m m n
 


       (8) 

quantifies the class balance of this permutation. Hence we call it the coefficient of 

unbalance. Those permutations with 
0i 

 are called balanced permutations.  

To study the theoretical behavior of MD PDC we need to calculate the mean and 

variance of 
|| ||p er p erX Y

 under the model (3). First define the following notation:  

2

2

4
· ( ) 2 ·(1 ) , .

1 1
( )

r
r r

gr r
g g r g

m n

m n

 



    



 

The unconditional distribution of p er p erX Y
 is a normal mixture which is related to 

Theorem 1 of Wei et al. (2016):  

Acc
ep

ted
 M

an
us

cri
pt



m in ( , )
2

0

1 1
~ ( ) ( 2 · , ( ) ) .

m n

per p er R d r d
r

X Y p r N g u I
m n





   

The permutation null distribution is  

m in ( , )

0

1 1
|| | |~ ( ) ( ) .

m n

i p e r p e r R d r
r

C X Y p r
m n

  



     (9) 

Thus Ci has a mixture distribution with the mixture component driven by the 

coefficient of unbalance ξi. Then we have  

2
/ 2 1

1 / 2
0

1 1
( || | |) · ( ) ( )

2 2

m
d r

p e r p e r R
r

E X Y p r L
m n









     (10)  

2 2 2

0

1 1
(|| ||) ( ) ( )( ) ( || ||)

m

per p er R r p er p er
r

V a r X Y p r d E X Y
m n

 



       (11) 

Note that, the sample sizes m, n are inversely related to the sample variances.  

Using (5), (10), (11) define the PDC function  

[ || | |] ( || | |)( ) ( )
( , , , ) : .

( ) ( || | |)

p e r p e ri

i p e r p e r

E X Y E X YE C E C
f m n d g

V a r C V a r X Y

  
 



 (12) 

This function provides important lessons about the behavior of the all 

permutation based PDC under the Gaussian model. In particular, careful 

examination of ( , , , )f m n d g  viewed as a function of g (with m, n, d fixed) shows 

that the function first increases and then decreases, eventually converging to  

0

2

0

1 ( ) | 1 / / |

lim ( , , , ) .
1

( ( ) | 1 / / |)
1

m

R
r

mg

R
r

p r r m r n

f m n d g

p r r m r n
m n



 



  



  
 





 (13) 
Acc

ep
ted

 M
an

us
cri

pt



(see Appendix C). This behavior is a serious deficiency of the traditional all 

permutation approach since the power of the test fails to increase with stronger 

signal.  

2.3 Gaussian model simulation 

In this section, we demonstrate the behavior of the DiProPerm PDC using a 

simulation based on the Gaussian model (3). In each of our simulation scenarios 

we generate samples from the two populations of size 1 0 0m n  . We consider 

three very different dimensions 1,1 0 ,1 0 0 ,d   and 200 values of signal strength g 

ranging equally between 0 and 20. The PDC values (2) are calculated using the 

mean and variance of N = 100 permutations. Each d, g combination is replicated 

100 times for the PDC calculated using MD and only 10 times using DWD due to 

the longer running time of DWD.  

The results are summarized in Figure 1. The left and right panels show the PDC 

calculated using the MD and DWD directions respectively. In both panels the 

horizontal axis shows the signal strength g and the vertical axis shows the 

DiProPerm PDC. The solid curves in both panels show local linear regression 

estimates (Fan and Gijbels, 1996) of the PDC samples vs signal strength g. The 

dashed curve on the left shows the theoretical PDC value ( , , , )f m n d g  viewed as 

the function of g computed in (12). Each dot is a single realization of the 

estimated PDC value, reflecting its variation due to randomness.  

When using the MD direction and d > 1 (left panel), the PDC first goes up (as 

expected from increasing signal strength), then goes down (which is quite 

surprising), and finally converges to the limit given by (13). When using the DWD 

direction the PDC also levels off instead of increasing, as one would naïvely 

expect, with increasing signal strength.  

The non-intuitive behavior of PDC computed using all permutations is further 

explored in Figure 2 by taking a deeper look at three particular data sets with d = 

100, g = 2, 4, 20. These 3 values of g represent increasing, peak, and decreasing 
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regions of the PDC computed using the MD direction. They are highlighted as 

black stars in Figure 1 and correspond to the 3 columns in Figure 2. The 

permuted distributions are shown in the top three panels of Figure 2 using a jitter 

plot (Tukey (1976)), where on the horizontal axis we plot the test statistic Ci, the 

independent realizations of the test statistic (1) computed using permuted data 

and the MD and DWD direction respectively, and on the vertical axis we plot a 

random height for visual separation. The colors of the dots in these 3 top panels 

represent the absolute value of coefficient of unbalance 
| |i  of the ith 

permutation, using the color bar shown in Figure 3. The black curves are kernel 

density estimates (KDE, i.e., a smooth histogram, Wand and Jones (1994)) of the 

distribution of the permuted test statistics (dots). The numbers on the vertical 

axes are the height of the kernel density estimate.  

From left to right, the kernel density estimates become more skewed and multi-

modal in agreement with the fact that the all permutation null distributions are 

mixtures of chi-distributions (9). This is particularly apparent in the top right 

panel. As the signal, g, gets stronger there is much more separation of colors 

based on 
| |i . In the top left panel, which has the weakest signal (g = 2), the 

colored dots are mostly mixed. In the top middle panel, as the signal strength (g 

= 4) increases, the colored dots separate more.  

The multimodality is further explored in the bottom two rows which show the 

projections on the permuted directions for the smallest and largest Ci. In each 

case, the symbols represent the original class labels and the colors show the 

permuted labels, whose mean difference determines the direction. The x-axis is 

the projection scores on the permuted directions. The symbols in the middle are 

jitter plots and the heights of the symbols are random heights. The curves are 

kernel density estimates of the projection scores. The colors represent the 

permutated labels and symbols represent the original labels. Subdensities, 

corresponding to each permuted subpopulation, are shown using colors that 

correspond to the symbols. The y-axis shows the height of the KDE densities.  

Acc
ep

ted
 M

an
us

cri
pt



The middle row of Figure 2 shows the permutation with maximal Ci for that d and 

g corresponding to the far-right circles in each top panel. Going from left to right, 

the permuted mean difference direction first separates the red/blue permuted 

class colors and then tends to separate the symbols (the original class labels). 

This direction essentially becomes the original mean difference direction of the 

non-permuted data for large g. This effect is usefully quantified by the angles 

between the observed mean difference and each permutation direction shown in 

each panel in the middle row. A large angle suggests a large discrepancy 

between the original mean difference and the corresponding permutation 

direction. The left panel g = 2 is separating the colors well and mixing up the 

symbols with a relatively large angle 5 6 

, as intuitively expected from the 

permutation test. This results in a PDC reflecting no signal as expected from the 

permutation test. In the middle g = 4 panel, there is still some color separation 

but also a strong separation of the symbols, with a smaller angle, 3 3 

. In the right 

g = 20 panel, the angle is very small, 8 

, showing this direction is very close to 

the mean difference direction of the original data. Because of the true class 

difference and the large coefficient of unbalance, this results in PDC values that 

are much larger than would be expected under the null distribution of no signal (g 

= 0) which results in a strong loss of power.  

The bottom three panels of Figure 2 show the permutation with minimal Ci 

corresponding to the far-left stars in each top panel. However, because 
| | 0i 

, 

the large g doesn’t affect these nearly balanced permutations as seen in the 

bottom panels, where the angles are relatively large and close to 9 0 

 (8 2 , 7 9 , 8 8  

) as expected for random directions from the results of Hall et al. (2005). Hence 

the bottom panels show projections which are much more consistent with the null 

hypothesis of no signal.  

2.4 Proposed solution: Balanced Permutations 

As discussed above DiProPerm PDC has issues with power caused by the fact 

that the estimates of EC and V a rC  under the null hypothesis is inflated when 
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using the traditional all permutations. In this section, we propose a solution to this 

issue by using only balanced permutations. Recall that a permutation is called 

balanced if 
1 (1 / 1 / ) 0i

i R m n     
, so the number of switches in labels is 

close to 

m n

m n .  

Figure 4 provides a simple example illustrating the difference between balanced 

and all permutations. There are 8 cases in each class shown as rows. The first 

row is colored using the real class labels followed by 7 permutations where 

symbols represent the true class labels and colors represent the permuted class 

labels as in the bottom 6 panels of Figure 2. The colors of the text on the right 

are in the spirit of the color bar in Figure 3 and the colored dots in the top panels 

in Figure 2. The top 3 permutations are all balanced permutations and in these 

cases solving the equation: 
0

0 1 (1 / 1 / ) 0R m n     
 results in 

0 8 8
4

8 8

m n
R

m n


  

  . The bottom 4 permutations are all unbalanced. The original 

DiProPerm draws from all permutations, but the proposed improved DiProPerm 

only draws from balanced permutations as shown in Figure 4.  

When there is a large separation between the centers of the two classes, using 

only the balanced permutations makes the mean of the permutation null 

distribution closer to zero. Therefore, it provides a more useful alternative 

distribution. In particular, under the Gaussian model (3), Equation (7) implies that 

for balanced permutations and the MD direction  

2 1 1
( ) ~ (0 , ( ) ) .p e r p e r d dX Y N I

m n
   

Consequently,  
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2 2

1 1 (( 1) / 2 )
( || | |) 2 ·

( / 2 )

1 1 (( 1) / 2 )
V a r ( || | |) ( ) [ 2 ( ) ] ,

( / 2 )

b p e r p e r

b p e r p e r

d
E X Y

m n d

d
X Y d

m n d





 
  



 
   



 

which gives the balanced PDC curve as:  

[ || | |] ( || | |)( ) ( )
( , , , ) : .

V a r ( ) V a r ( || | |)

b p e r p e rb i
b

b i b p e r p e r

E X Y E X YE C E C
f m n d g

C X Y

  
 



 (14)  

Figure 5 compares PDCs computed using balanced vs. all permutations by 

adding the former to a part of Figure 1 for both MD and DWD directions. The 

lower curves labeled as All permutations are the same as the curves in Figure 1. 

The higher level curves, labeled as Balanced permutations, use colors and 

symbols analogous to Figure 1 with (14) replacing (12) for the dashed curve. 

Each dot is a single realization of the estimated balanced PDC value, reflecting 

its variation due to randomness. The two sets of curves give direct comparison 

between the original and proposed versions of the DiProPerm PDC. For small g 

the PDCs overlap. When the signal reaches a certain level, the balanced PDCs 

continue increasing as expected (from the increased signal strength), and the all 

permutation PDCs reach a peak and then seem to decrease (MD) or stay 

constant (DWD). This indicates the balanced PDC is much more powerful than 

the all permutation PDC in the case of strong signals for both MD and DWD 

directions. A careful look at the axis labels shows that stronger signals are 

required to see this effect for DWD.  

Next, we continue the investigation of the three cases studied in Figure 2. In 

Figure 6, the dashed curves are the derived theoretical null distribution using the 

MD direction, i.e. the scaled central χd distribution (4). The goodness of fit of that 

distribution is demonstrated by the red solid curves which are kernel density 

estimates of the red dots in the jitter plots, i.e. only the balanced permutations. 

The solid black curves are the kernel estimates of all permutations. The bottom 
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panels only show the red and black solid curves since the theoretical distribution 

using the DWD direction is much harder to derive. In both top and bottom panels, 

as the signal g grows stronger, the distributions of all permutations (black curves) 

become more and more skewed but the distributions of balanced permutations 

(red dots/curves) stay the same and hence provide a much more useful null 

distribution. The skewness in the bottom panels is not as strong as in the top 

panels, indicating the DWD direction suffers less from the all permutations effect 

and has higher test power than using the MD direction.  

3 Quantification of Permutation Sample Variation 

While they provide useful comparisons between data sets, the estimated 

permutation p-values and PDCs inherit variation caused by random sampling 

from each set of permutations. In some cases, this variation can obscure 

important differences between classes which motivates careful quantification of 

this uncertainty using confidence intervals.  

The DiProPerm PDC (2) is a random variable that depends on the permutation 

null distribution. Thus, a confidence interval for the PDC can be estimated by the 

upper and lower quantiles using bootstrap re-sampling methods. A general 

algorithm is based on B repetitions. In our calculations B = 100:  

1. Draw a B × N matrix where each row is a random sample (with 

replacement) from the N permutations used in the original calculation of 

PDC. Calculate the sample means and variances of each row. This results 

in B re-sampled means and variances, which are used to get B re-

sampled PDCs.  

2. Find the upper and lower quantile of the PDCs based on the B re-sampled 

PDCs in Step 2. 

Note that this method is unrelated to the direction choices of DiProPerm, e.g., 

MD or DWD, and to the choice of balanced or all permutations.  

Acc
ep

ted
 M

an
us

cri
pt



Alternatively, as we discussed in Section 2 when the original data are close to 

normal, the permutation null distribution is a mixture the χ distributions (9). Thus, 

we can also estimate the distribution using the method of moments estimation 

based on the Welch–Satterthwaite approximation (Satterthwaite (1946)). This 

has been explored in the Section 3 of the PhD Dissertation Yang (2021). 

However, the normal assumption of the original data is often questionable, and 

hence the bootstrap re-sampling method is recommended.  

4 TCGA Pan-Can Data 

To demonstrate the proposed method, we consider gene expression for five 

different cancer types, one of which is very different from the rest and two of 

which are similar to each other. Here, we used a subset of the TCGA Pan-

Cancer data representing 1523 cases from 5 cancer types including 12478 

genes. The tissues came from different organs (hence different cancer types), 

and represent a useful cohort to illustrate our proposed method for quantitatively 

determining their level of similarity or dissimilarity (Hoadley et al., 2018; Hutter 

and Zenklusen, 2018). These cancer types will be contrasted in visualizations 

discussed below using the colors and symbols shown in Table 1.  

Figure 7 shows the relationship between cancer types using a PCA scatter plot, 

i.e., the two-dimensional projection of the point cloud in 
1 2 4 7 8

 onto the two 

directions of highest variation. The PC1 scores are plotted on the vertical axis 

and the PC2 scores on the horizontal axis. The liquid tumor LAML is very 

different from the rest, which are solid epithelial tumors. Within the epithelial 

tumors, READ and COAD appear visually quite overlapped, consistent with the 

fact that these cells come from organs in the same developmental process and 

often referred to as a single disease (colorectal cancer). The BLCA and BRCA 

are somewhat different but not as separated as BLCA and LAML.  

Figure 8 shows differences between three representative pairs of the 

subpopulations using projections on the MD (top row) and DWD (bottom row) 
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directions. The subpopulations are indicated using symbols and colors described 

in Table 1. Each dot represents a projection of a case subject on the MD or DWD 

direction respectively. The value of the projection is displayed on the x-axis. The 

height of the dots are random for visual separation. The curves are kernel density 

estimates of the projection scores with subdensities corresponding to the 

subpopulations. The y-axis shows the height of KDE densities. The black text 

shows the corresponding all and balanced permutation PDC respectively. As 

discussed in Section 2.3 there is better visual separation of the subpopulations 

for DWD (bottom) than for MD (top) and the PDCs for balanced permutations are 

higher than all permutations. This effect is particularly pronounced for the BLCA 

versus LAML, where the signal is the strongest. Figure 8 shows broadly similar 

lessons to Figure 7: READ and COAD are rather overlapped (left panels); BRCA 

and BLCA are moderately different (middle panels) while LAML is very distinct 

from BLCA (right panels).  

For all 10 pairs of TCGA cancer types, Figure 9 gives a comparison of the 

strength of separation using the PDC. The random permutation variability in 

estimating each PDC is reflected by a 95% confidence interval as developed in 

Section 3. Conventional single-sample confidence intervals are shown as thick 

lines, the thin lines are Bonferroni-adjusted for the fact that we have 10 intervals. 

The results based on MD are shown in black/gray and the results based on DWD 

are shown in blue/light blue. The PDCs are not the centers of the confidence 

intervals because the distributions of the permutation statistics are skewed. The 

PDCs computed using balanced permutations (circles) are much higher than the 

PDCs computed using all permutations (stars) showing the strong value of 

balanced permutations. Overall each DWD based PDC (blue) is higher than the 

corresponding MD based PDC (black) showing the utility of DWD over MD for 

distinguishing class differences in higher dimensions.  

The PDC allows us to accurately quantify the strength of population difference in 

each pair. The confidence intervals allow us to statistically compare these 
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strengths of population difference across pairs. In Figure 9, all pairs involving 

LAML tend to have large PDCs, which is consistent with Figure 7 which shows 

that LAML (magenta) is the most distinct cancer type. Pairs including BRCA also 

have relatively large PDCs. This is consistent with the fact that BRCA has the 

largest sample size which leads to a smaller variance and thus stronger 

statistical significance. The PDCs for LAML vs. READ and LAML vs. BLCA and 

BRCA vs. COAD reflect similar amounts of population difference. Those PDCs 

are the smallest among all test pairs indicating the weakest difference among the 

considered comparisons as shown in Figure 9. This is consistent with the overlap 

of COAD and READ observed in Figures 7 and 8.  

In cases with a strong signal, such as LAML vs. BRCA, LAML vs. COAD and 

BRCA vs. COAD, the balanced PDCs (gray/blue circles) are much larger than 

the corresponding PDCs computed using all permutations (gray/blue stars). This 

is consistent with the idea that when the signal is strong, all permutations will 

cause a loss of power (see Figure 5). When the signal is weak, such as COAD 

vs. READ, all and the balanced PDCs are small and similar to each other.  

5 Discussion 

Our recommendation of balanced permutations is somewhat opposite to the 

recommendation against balanced permutations in Southworth et al. (2009). 

They appeal to group theory and suggest that all permutations are generally 

superior to balanced permutations since balanced permutations tend to be anti-

conservative, i.e. their reported p-values are too small. In particular, under their 

null hypothesis, the permutation distribution, e.g., distribution of the red dots in 

Figure 6 doesn’t have enough extremely large values. Hemerik and 

Goeman (2018) provided adjustments that make the use of balanced 

permutations for p-value calculation valid. Appendix D derives an often negligibly 

small alternative adjustment to both types of permutation PDC that overcomes 

the anti-conservative problem.  
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Figure 1 reveals the strange behavior that under the alternative the power of the 

tests from all permutations can decrease as the signal strength increases. The 

much-improved power of balanced permutations is shown in Figure 5 where the 

balanced permutation power as measured by PDC is proportional to the signal 

strength. When the signal is weak, Figure 5 shows that the balanced and all 

permutations give very similar PDCs. Thus balanced permutations are superior 

to all permutations in large-signal cases which often arise in bioinformatics and 

have no or minor differences from all permutations in small-signal cases.  
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Fig. 1 Test power as indicated by PDC, with MD on the left and DWD on the 

right, for different choices of d (shown with colors) and signal strength g (x-axes). 

The y-axes show the PDC from DiProPerm’s results. The dashed curves in the 

left panel are the theoretical PDC (12). The solid curves in both panels are local 

linear regression fits of the Monte Carlo samples. Each dot is a single realization 

Acc
ep

ted
 M

an
us

cri
pt



of the estimated PDC value. Three representative cases studied in Figure 2 are 

highlighted in the left panel as black stars. We observe that PDC does not 

increase with signal strength g as expected. 
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Fig. 2 DiProPerm results for the MD direction and d = 100. Left: g = 2; middle: g 

= 4; right: g = 20 shown as black stars in Figure 1. Top panels are the permuted 

statistics Ci and their kernel density estimates with PDCs values printed in green 

text. Middle and bottom panels are chosen permutations with colors representing 

the permuted labels and symbols representing the original labels; the middle row 

of panels have the largest permuted statistic (colored circles in the top panels); 

bottom panels are permutations with the smallest permuted statistic (colored 

stars in the top panels). Shows increasing skewness of the permutation 

distribution as g grows due to permutation unbalance. Acc
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Fig. 3 Colorbar used in the jitter plots in the top panels in Figure 2. Numbers 

represent the absolute value of the coefficient of unbalance ξi defined in Equation 

(8) in Section 2.2. 

 

Fig. 4 This figure shows 7 permutations from a simple example. The top row 

shows the true class labels and the rest of the rows show 7 different 

permutations represented as red and blue colored reassignments. The right 

column distinguishes between balanced and all permutations by coloring the text 

in the spirit of Figure 3. 
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Fig. 5 Realizations of the PDC for different choices of d for both all and balanced 

permutations based on DiProPerm. The lower curves in both panels, labeled as 

All permutations, are the same curves as Figure 1. The higher curves and dots in 

both panels, labeled as Balanced permutations, show the proposed DiProPerm 

using analogous colors and signs as in Figure 1. Unlike the all permutation 

PDCs, the balanced permutation PDCs keep growing with larger signal strength 

g. 

Acc
ep

ted
 M

an
us

cri
pt



 

Fig. 6 Null distributions of the three representative testing contexts studied in 

Figure 2. The MD and DWD directions are contrasted in the top and bottom 

panels. The dashed curves are the derived theoretical null distribution. The red 

solid curves are kernel density estimates of the balanced permutations (red dots 

in the jitter plots). The black curves are the kernel density estimates of all 

permutations (dots of all colors). The red curves do not change with g indicating 

a good estimate of the null distribution. 
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Fig. 7 PCA scores scatter plot from TCGA Pan-Cancer gene expression data 

with symbols and colors in Table 1. As biologically expected LAML is much 

different from the rest and COAD and READ overlap in PCA space. 
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Fig. 8 Distributions of projection scores on MD (top) and DWD (bottom) 

directions for the pairs: READ vs. COAD; BLCA vs. BRCA; LAML vs. BLCA. The 

x-axis is the value of projection scores, y-axis shows the height of the KDE 

estimates, and the black text shows the corresponding PDCs. The separation of 

the subpopulations on the top (MD) is similar to those for the bottom (DWD) but 

not as distinct. PDCs for balanced permutations are higher than for all 

permutations. 
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Fig. 9 DiProPerm 95% confidence intervals for all 10 pairwise tests of 5 types of 

cancers from TCGA data. The thicker lines represent individual confidence 

intervals for each PDC and the thinner lines are the Bonferroni corrected 

confidence intervals. The circles and stars indicate the PDC estimates from 

balanced and all permutations respectively. The DWD-based PDCs are shown in 

blue/light blue and MD-based PDCs are shown in black/gray. The value of the 

test statistic is also printed at the top of each bar. This illustrates many effects 

discussed above. 
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Fig. 10 The first row represents the orginal class labels: orange vs. blue. The 

bottom two rows are two random balanced permutations.  
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Fig. 11 Correlation (r) as a function of n with different line types and colors 

indicating different d and balanced versus all permutations. In the left panel, 

when d   , the red shows correlations of all permutations ( ,a llr
 ) with blue for 

balanced permutations ( ,b a lr
 ). These curves (decreasing rapidly) are very close 

to each other and , ,b a l a llr r
 


. The right panel enables a more detailed study for d 

= 1, 2 in both cases, showing the difference between these correlations and the 

upper bound ,a llr
 . Correlations rapidly decrease as a function of n and increase 

slightly as a function of d. When d = 1, 2, correlations are already very close to 

the limit d   , which is also the upper bound.  
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Table 1 Abbreviated name, color, symbol (used in figures in this paper) and 

number of cases for each cancer type. Breast Cancer (BRCA) has the largest 

number of cases. 

Cancer  Abbreviation Color  Symbol  Number 

Acute Myeloid Leukemia  LAML  magenta 
 

173  

Bladder Urothelial Carcinoma BLCA  blue  *  138  

Breast Cancer  BRCA  cyan  +  950  

Colon Adenocarcinoma  COAD  yellow  ★  
190  

Rectal Adenocarcinoma  READ  red    
72  
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