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Abstract

For measuring the strength of visually-observed subpopulation differences, the
Population Difference Criterion is proposed to assess. the statistical significance of
visually observed subpopulation differences. It addresses the following challenges: in
high-dimensional contexts, distributional models can be dubious; in high-signal contexts,
conventional permutation tests give poor pairwise comparisons. We also make two other
contributions: Based on a careful analysis we find that a balanced permutation approach
is more powerful in high-signal contexts than conventional permutations. Another
contribution is the quantification of.uncertainty due to permutation variation via a
bootstrap confidence interval. The practical usefulness of these ideas is illustrated in the
comparison of subpopulations of modern cancer data.

Keywords: balanced permutations; confidence intervals; correlation adjustment;

high dimension/population criterion difference.
1 Introduction

In the age of Big Data, many contexts involve analyzing and understanding
relationships between multiple subpopulations. A fascinating and particularly
deep example of this comes from cancer research as illustrated in Section 4,
where we have gene expression data from five cancer types and a goal of
understanding relationships between the cancer types (aka subpopulations). A

common approach to understanding subpopulation differences is visualization
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using Principal Component Analysis (PCA) Jolliffe (1986). While this method
gives useful insights, visual approaches can be deceptive. This motivates our
work to develop a method for quantification of the strength of the evidence for
distinction between each pair of groups. Because of the very rich general
structure of biological processes, classical statistical distributional models are
woefully inadequate. Hence permutation testing methods, such as the

DiProPerm test proposed by Wei et al. (2016), provide an appealing alternative.

The DiProPerm method measures strength of difference between any two
subpopulations by projecting the data onto a direction aimed at separating them,
and summarizing using the difference of the projected means as a statistic.
Typical permutation p-values are calculated using the number of permuted
summaries that lie outside the corresponding true data summary statistic.
Bioinformatics data is frequently Aigh signal, meaning there are usually very
strong differences between subpopulationsi, The challenge of high signal

situations is that there frequently are nospermuted statistics outside that range,

1
<« —

so the only conclusion is that the permutation p-value is "» , where npis the
number of permutations. Fromthe classical viewpoint, that is strong evidence of
all such differences being significant which is the end of the story. However,
understanding the relationship between subpopulations is a different challenge.
This motivates our invention.of the Population Difference Criterion (PDC), which
is a quantitative measure of separation between subpopulations that provides
meaningful comparisons even in high dimensional and high signal contexts. A
very important example of the value of PDC is in comparison of the many
possible pre-processing operations that are routinely used for example in
bioinformatics applications. In particular, better pre-processing methods are

those which result in a larger PDC for a given set of subpopulations of interest.

A major contribution of this paper discussed in Section 2 is the discovery of a

peculiar phenomenon that in high signal situations increasing signal strength can



actually entail the loss of statistical power as measured by the PDC. Detailed
mathematical analysis reveals that this is caused by the traditional permutation
scheme employed in DiProPerm Wei et al. (2016). This motivates our proposal of
a non-standard balanced permutation scheme. Comparisons using simulated

and real data show that balanced permutations provide more powerful results.

Yet another contribution of this paper appears in Section 3, where we propose
confidence intervals that account for the Monte Carlo uncertainty in permutation
testing. The value of quantifying that uncertainty for comparing multiple cancer
subpopulations is demonstrated in Section 4. Discussion of controversies related

to non-traditional permutation schemes can be found in Section 5.

2 Population Difference Criterion

X

Consider data from two potentially high-dimensionalpopulations X X0 and

Vo T As explained in the introduction, a common way of visualizing the
difference between the subpopulations'uses projections on a given direction
determined by a unit vector w, e.g.,'a PCAdirection. A particularly useful visual
direction for distinguishing subpopulations is the Distance Weighted
Discrimination (DWD) direction vector w proposed by Marron et al. (2007). DWD
solves an optimization problemsthat is formally stated in Appendix A. A potential
drawback is that DVWD«can-be relatively slow to compute. Therefore, we will also

investigate a computationally faster version of DiProPerm based on projection

X, -7,
w= ="
X, -Y, I

onto thesMean.Difference (MD) direction, i.e. — the direction

pointing from the mean of one group to the mean of the other.

While such visualizations are suggestive, they can also be deceptive. As noted in
Wei et al. (2016), rigorous quantification of visual differences can be surprisingly
counter intuitive, because human intuition is not good at incorporating issues
such as sample size and high dimensional variation into visual impression. An

explicit example of this is shown in Figure 2.3 of the PhD dissertation of



Yang (2021). Hence it is very important to provide a quantitative measure of the
strength of the evidence for visual subpopulation separation based on rigorous

statistical inference.

An early version of a quantitative measure of this type was provided by the
DiProPerm test (Wei et al. (2016)). The DiProPerm test statistic is the observed

mean difference of the projected scores:

1 10
C=|—Y (w.x)-=Y w.ypl. (1)

m T n,

where (">’ is the inner product.

The Population Difference Criterion (PDC) is a quantitative measure of the
differences between subpopulations that may be visually. apparent in PCA scatter

plots. Specifically,

C-EC

A VarC ’

PDC =

where the mean and variance of € are computed under the null model of no
difference between subpopulations. Larger values of PDC represent stronger

evidence of the difference between subpopulations.

Traditionally, the'null'distribution £C and YarC have been estimated using

permutation/based'methods. In particular,

clc
s

PDC = (2)
where the mean € and standard deviation Sare estimated using re-sampling of
the class labels and re-projection of the data. Note that if the null distribution of C

was Gaussian, the PDC would be the classical Z-score and was called that in



Wei et al. (2016). But that term is not used here as the null distributions of C

could be far from Gaussian.

2.1 Gaussian model

In this section, we study the behavior of the DiProPerm PDC using a basic two-
class Gaussian model. Both classes are assumed to follow the multivariate

normal distribution with means separated by 2g, i.e.,

Class +1 (X): X, ~N,(gu,c’l), j=1..m
Class -1 (Y): Y, ~ N, (~gu,c’l), k=1,..,n

R4 . . T T
where » < " is some unit vector, such as '/ V¢ " 1/Nd] gl 05501 g4
R + . . .. . .
o€ . The actual direction of v is irrelevant because the DiProPerm test is

rotation invariant.

An important component of our mathematical analysis is the derivation of the
distribution of the observed statistics (1) under the model (3). Using the MD

direction

d 2
- = - = o1 4g
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Here #«*) is called the non-central Chi distribution (Johnson et al., 1972), the
square root of the non-central Chi-square distribution with degrees of freedom ¢

and non-centrality parameter A
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and

. In general,

where is the generalized Laguerre polynomial (Koekoek and Meijer,1993).

Then we have

. - 1 1 d/2-1 2 ’
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2.2 Permutation distribution

Since in practice, most people use the estimated PDC (2), it is important to study
the behavior of the test statistic.C under various permutation schemes. The

classical approach is to randomly reshuffle the class labels (=1 for all

j=1,...,m

observations. This generates permuted data X soper and

Y ik =1,

" (We call this approach all permutations. Let € =1 N pe

independent realizations of the test statistic (1) computed using permuted data.
Again, in the'ease of the MD direction Crmll Xy =¥y Il =170, N

When labels are randomly reshuffled, there is a random number R; of
observations in each class that switch labels. Note that when all permutations are

used, R;is a Hypergeometric random variable whose probability mass function is:



pp(r)=P(R, =r)=

The conditional distribution of *» ~ v is (detailed derivation shown in

Appendix B):

- — roor , 1 1
(X ,, =Y, IR =r~N,Q2g(0-—=")u,0’ (—+—)1,). (7)
m n m n

R

Thus, for a given permutation, ™ is the proportion of the originahClass -1 cases

n-R,

that are relabeled as the permuted Class +1, and  ~_ s the proportion of the
Class -1 cases that remain in the new Class -1. The.difference between these 2

proportions, denoted as

(8)

1=

g, =¢(R)= -

n—R, R, R, R,
m n

n m

quantifies the class balance of this permutation. Hence we call it the coefficient of

unbalance. Those permutations, with <=9 are called palanced permutations.

To study the theoretical behavior of MD PDC we need to calculate the mean and

Bl

variance of | * 7« = Yi- I ynder the model (3). First define the following notation:

r r 4gr2

g, =g¢(M=2g(1-—-—), A, = P

m n 2

o (—+ )
m n

The unconditional distribution of Xper =Y, is a normal mixture which is related to
Theorem 1 of Wei et al. (2016):



min(m,n)

— 1 1
2
Xper_YperN z pR(r)Nd(2g’_-u,O' (—+—)Id).
n
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The permutation null distribution is

min(m,n)

— 1
ComllX o =Y ll~ o= — >opeMx, 2. 9)
r=0

Thus Cjhas a mixture distribution with the mixture component driven by the

coefficient of unbalance &. Then we have

- - 1 1 d/2-1 _/1,-2
EQNX,, -Y, )= a,/5~,/—+ =3 p L= (10)
2 N\m  n'_, 2

. - 1 [ 2 — - 2
Var(|1 X, =Y, D=0 (—+2)Y p,(r)(d+ i)~ E(| X g —% I (11)
m n o

Note that, the sample sizes m, n are inversely related to the sample variances.

Using (5), (10), (11) define the PDC function

E(C)-E(C, E[)?—Y_]—E X -
©-£©) EUXSIM-E0X, -1
\/Var(C,.) \/Var(H X, o=, 1))

f(m,n,d,g):=

This function provides.important lessons about the behavior of the all
permutation based PDC under the Gaussian model. In particular, careful
examination of. £.("-"#-7-2) viewed as a function of g (with m, n, dfixed) shows
that the.function first increases and then decreases, eventually converging to

m

l—z P 1=r/m—r/n|
lim f(m,n,d,g)= = : (13)

g™ 1 m
7—(2 pR(r)|1—r/m—r/n\)2
m+n—1 o




(see Appendix C). This behavior is a serious deficiency of the traditional all
permutation approach since the power of the test fails to increase with stronger

signal.

2.3 Gaussian model simulation

In this section, we demonstrate the behavior of the DiProPerm PDC using a
simulation based on the Gaussian model (3). In each of our simulation scenarios
we generate samples from the two populations of size ™ = 7 =100 'We consider

three very different dimensions ¢ = 1-10-100,

and 200 values of signal'strength g
ranging equally between 0 and 20. The PDC values (2) are calculated using the

mean and variance of V=100 permutations. Each d, g combination is replicated
100 times for the PDC calculated using MD and only 10 times.using DWD due to

the longer running time of DWD.

The results are summarized in Figure 1. The left and right panels show the PDC
calculated using the MD and DWD directions respectively. In both panels the
horizontal axis shows the signal strength g.and the vertical axis shows the
DiProPerm PDC. The solid curves(in both panels show local linear regression
estimates (Fan and Gijbels, 1996) of the PDC samples vs signal strength g. The
dashed curve on the left shows the theoretical PDC value /(":"-4:¢) viewed as
the function of g computed in (12). Each dot is a single realization of the

estimated PDC valueyreflecting its variation due to randomness.

When using'the MD direction and d> 1 (left panel), the PDC first goes up (as
expected from increasing signal strength), then goes down (which is quite
surprising), and finally converges to the limit given by (13). When using the DWD
direction the PDC also levels off instead of increasing, as one would naively

expect, with increasing signal strength.

The non-intuitive behavior of PDC computed using all permutations is further
explored in Figure 2 by taking a deeper look at three particular data sets with d=

100, g= 2, 4, 20. These 3 values of grepresent increasing, peak, and decreasing



regions of the PDC computed using the MD direction. They are highlighted as
black stars in Figure 1 and correspond to the 3 columns in Figure 2. The
permuted distributions are shown in the top three panels of Figure 2 using a jitter
plot (Tukey (1976)), where on the horizontal axis we plot the test statistic C; the
independent realizations of the test statistic (1) computed using permuted data
and the MD and DWD direction respectively, and on the vertical axis we plot a

random height for visual separation. The colors of the dots in these 3 top panels

represent the absolute value of coefficient of unbalance <1 of the #h
permutation, using the color bar shown in Figure 3. The black curves are kernel
density estimates (KDE, i.e., a smooth histogram, Wand and Jones (1994)) of the
distribution of the permuted test statistics (dots). The numbers on‘the vertical

axes are the height of the kernel density estimate.

From left to right, the kernel density estimates become more skewed and multi-
modal in agreement with the fact that the all\permutation null distributions are
mixtures of chi-distributions (9). This is‘particularly apparent in the top right

panel. As the signal, g, gets stronger thereiis much more separation of colors

based on || In the top left panel, which has the weakest signal (g = 2), the
colored dots are mostly mixed. In the top middle panel, as the signal strength (g

= 4) increases, the coloredidots:separate more.

The multimodality is further'explored in the bottom two rows which show the
projections on the permuted directions for the smallest and largest C.. In each
case, the symbols represent the original class labels and the colors show the
permuted.abels, whose mean difference determines the direction. The x-axis is
the projection scores on the permuted directions. The symbols in the middle are
jitter plots and the heights of the symbols are random heights. The curves are
kernel density estimates of the projection scores. The colors represent the
permutated labels and symbols represent the original labels. Subdensities,
corresponding to each permuted subpopulation, are shown using colors that

correspond to the symbols. The j~axis shows the height of the KDE densities.



The middle row of Figure 2 shows the permutation with maximal C;for that dand
g corresponding to the far-right circles in each top panel. Going from left to right,
the permuted mean difference direction first separates the red/blue permuted
class colors and then tends to separate the symbols (the original class labels).
This direction essentially becomes the original mean difference direction of the
non-permuted data for large g. This effect is usefully quantified by the angles
between the observed mean difference and each permutation direction shewn in
each panel in the middle row. A large angle suggests a large discrepancy
between the original mean difference and the corresponding permutation
direction. The left panel g = 2 is separating the colors well and mixing,up the
symbols with a relatively large angle 3¢ , as intuitively expected from the
permutation test. This results in a PDC reflecting no signahas.expected from the
permutation test. In the middle g = 4 panel, there is still some color separation
but also a strong separation of the symbols, with-a smaller angle, 33 . In the right
g =20 panel, the angle is very small, 8 , showing this direction is very close to
the mean difference direction of the original.data. Because of the true class
difference and the large coefficient of unbalance, this results in PDC values that
are much larger than would be expected under the null distribution of no signal (g

= 0) which results in a strong loss of power.

The bottom three panels.of Figure 2 show the permutation with minimal C;

corresponding to.thefar-left stars in each top panel. However, because 16,1~ 0 ,
the large g doesn’t affect these nearly balanced permutations as seen in the
bottoni'panels, where the angles are relatively large and close to 90 (82 -79 88
) as expected for random directions from the results of Hall et al. (2005). Hence
the bottom panels show projections which are much more consistent with the null

hypothesis of no signal.

2.4 Proposed solution: Balanced Permutations

As discussed above DiProPerm PDC has issues with power caused by the fact

that the estimates of EC and VarC under the null hypothesis is inflated when



using the traditional all permutations. In this section, we propose a solution to this

issue by using only balanced permutations. Recall that a permutation is called

=1-R'x(1/m+1/n)=0

balanced if , So the number of switches in labels is

mn

closeto m +n |

Figure 4 provides a simple example illustrating the difference between balanced
and all permutations. There are 8 cases in each class shown as rows. The first
row is colored using the real class labels followed by 7 permutations where
symbols represent the true class labels and colors represent the permuted ¢lass
labels as in the bottom 6 panels of Figure 2. The colors of the text on the right
are in the spirit of the color bar in Figure 3 and the colored dots in the top panels

in Figure 2. The top 3 permutations are all balanced permutations and in these
E,=1-R x(1/m+1/ny=0

cases solving the equation: results in
R mn 8 x 8 4
m+n  8+8 . The bottom 4 permutations are all unbalanced. The original

DiProPerm draws from all permutations, but the proposed improved DiProPerm

only draws from balanced permutations as shown in Figure 4.

When there is a large separation between the centers of the two classes, using
only the balanced permutations makes the mean of the permutation null
distribution closer ta'’zero. Therefore, it provides a more useful alternative
distribution. In particular, under the Gaussian model (3), Equation (7) implies that

for balanced permutations and the MD direction

— ¥ 11
2
(X, =Y )~ N, (0.0°(—+—)1,).
m n

Consequently,
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which gives the balanced PDC curve as:

E(C)-E,(C) ENX-YI-E(X, -¥, I
f,(m.n,d, g):= ©-5E) = - (14)

JVar,€) JVan (X, v, 1

Figure 5 compares PDCs computed using balanced vs. all permutations, by
adding the former to a part of Figure 1 for both MD and DWD directions. The
lower curves labeled as A/l permutations are the same as the.curves in Figure 1.
The higher level curves, labeled as Balanced permutations, use colors and
symbols analogous to Figure 1 with (14) replacing{12)for the dashed curve.
Each dot is a single realization of the estimated balanced PDC value, reflecting
its variation due to randomness. The two sets of eurves give direct comparison
between the original and proposed versions of the DiProPerm PDC. For small g
the PDCs overlap. When the signalreaches a certain level, the balanced PDCs
continue increasing as expected (from‘the increased signal strength), and the all
permutation PDCs reach a‘peak.and then seem to decrease (MD) or stay
constant (DWD). This indicates the balanced PDC is much more powerful than
the all permutation PDC.inthe case of strong signals for both MD and DWD
directions. A carefuldook at the axis labels shows that stronger signals are

required to see this effect for DWD.

Next, we continue the investigation of the three cases studied in Figure 2. In
Figure 6, the dashed curves are the derived theoretical null distribution using the
MD direction, i.e. the scaled central yvdistribution (4). The goodness of fit of that
distribution is demonstrated by the red solid curves which are kernel density
estimates of the red dots in the jitter plots, i.e. only the balanced permutations.

The solid black curves are the kernel estimates of all permutations. The bottom



panels only show the red and black solid curves since the theoretical distribution
using the DWD direction is much harder to derive. In both top and bottom panels,
as the signal g grows stronger, the distributions of all permutations (black curves)
become more and more skewed but the distributions of balanced permutations
(red dots/curves) stay the same and hence provide a much more useful null
distribution. The skewness in the bottom panels is not as strong as in the top
panels, indicating the DWD direction suffers less from the all permutations,effect

and has higher test power than using the MD direction.
3 Quantification of Permutation Sample Variation

While they provide useful comparisons between data sets, the estimated
permutation p-values and PDCs inherit variation caused by.random sampling
from each set of permutations. In some cases, this yvariation can obscure
important differences between classes which metivates careful quantification of

this uncertainty using confidence intervals.

The DiProPerm PDC (2) is a random variable that depends on the permutation
null distribution. Thus, a confidence interval for the PDC can be estimated by the
upper and lower quantiles using bootstrap re-sampling methods. A general

algorithm is based on B repetitions. In our calculations 5= 100:

1. Draw a B x N matrix.where each row is a random sample (with
replacement)d{rom the N permutations used in the original calculation of
PDC: Calculate the sample means and variances of each row. This results
in Bre-sampled means and variances, which are used to get Bre-
sampled PDCs.

2. Find the upper and lower quantile of the PDCs based on the Bre-sampled
PDCs in Step 2.

Note that this method is unrelated to the direction choices of DiProPerm, e.g.,

MD or DWD, and to the choice of balanced or all permutations.



Alternatively, as we discussed in Section 2 when the original data are close to
normal, the permutation null distribution is a mixture the y distributions (9). Thus,
we can also estimate the distribution using the method of moments estimation
based on the Welch-Satterthwaite approximation (Satterthwaite (1946)). This
has been explored in the Section 3 of the PhD Dissertation Yang (2021).
However, the normal assumption of the original data is often questionable, and

hence the bootstrap re-sampling method is recommended.
4 TCGA Pan-Can Data

To demonstrate the proposed method, we consider gene expression for five
different cancer types, one of which is very different from the'restiand two of
which are similar to each other. Here, we used a subset ofithe-TCGA Pan-
Cancer data representing 1523 cases from 5 cancertypes.including 12478
genes. The tissues came from different organs (hence different cancer types),
and represent a useful cohort to illustrate ourproposed method for quantitatively
determining their level of similarity or dissimilarity (Hoadley et al., 2018; Hutter
and Zenklusen, 2018). These cancer.types will be contrasted in visualizations

discussed below using the colors and symbols shown in Table 1.

Figure 7 shows the relationship between cancer types using a PCA scatter plot,

R 5nto the two

i.e., the two-dimensional projection of the point cloud in
directions of highestwvariation. The PC1 scores are plotted on the vertical axis
and the PC2 scores on the horizontal axis. The liquid tumor LAML is very
different from the rest, which are solid epithelial tumors. Within the epithelial
tumors, READ and COAD appear visually quite overlapped, consistent with the
fact that these cells come from organs in the same developmental process and
often referred to as a single disease (colorectal cancer). The BLCA and BRCA

are somewhat different but not as separated as BLCA and LAML.

Figure 8 shows differences between three representative pairs of the

subpopulations using projections on the MD (top row) and DWD (bottom row)



directions. The subpopulations are indicated using symbols and colors described
in Table 1. Each dot represents a projection of a case subject on the MD or DWD
direction respectively. The value of the projection is displayed on the x-axis. The
height of the dots are random for visual separation. The curves are kernel density
estimates of the projection scores with subdensities corresponding to the
subpopulations. The y~axis shows the height of KDE densities. The black text
shows the corresponding all and balanced permutation PDC respectively./As
discussed in Section 2.3 there is better visual separation of the subpopulations
for DWD (bottom) than for MD (top) and the PDCs for balanced permutations are
higher than all permutations. This effect is particularly pronounced for.the BLCA
versus LAML, where the signal is the strongest. Figure 8 shows broadly similar
lessons to Figure 7: READ and COAD are rather overlapped (left panels); BRCA
and BLCA are moderately different (middle panels) while:®bLAML is very distinct
from BLCA (right panels).

For all 10 pairs of TCGA cancer types,Figure 9.gives a comparison of the
strength of separation using the PDC. Thewrandom permutation variability in
estimating each PDC is reflected by a'95% confidence interval as developed in
Section 3. Conventional single-sample confidence intervals are shown as thick
lines, the thin lines are Bonferroni-adjusted for the fact that we have 10 intervals.
The results based on MD are shown in black/gray and the results based on DWD
are shown in blue/light blue.*The PDCs are not the centers of the confidence
intervals because the distributions of the permutation statistics are skewed. The
PDCs computed using balanced permutations (circles) are much higher than the
PDCs computed using all permutations (stars) showing the strong value of
balanced 'permutations. Overall each DWD based PDC (blue) is higher than the
corresponding MD based PDC (black) showing the utility of DWD over MD for

distinguishing class differences in higher dimensions.

The PDC allows us to accurately quantify the strength of population difference in

each pair. The confidence intervals allow us to statistically compare these



strengths of population difference across pairs. In Figure 9, all pairs involving
LAML tend to have large PDCs, which is consistent with Figure 7 which shows
that LAML (magenta) is the most distinct cancer type. Pairs including BRCA also
have relatively large PDCs. This is consistent with the fact that BRCA has the
largest sample size which leads to a smaller variance and thus stronger
statistical significance. The PDCs for LAML vs. READ and LAML vs. BLCA and
BRCA vs. COAD reflect similar amounts of population difference. Those PDCs
are the smallest among all test pairs indicating the weakest difference among the
considered comparisons as shown in Figure 9. This is consistent with'thewoverlap
of COAD and READ observed in Figures 7 and 8.

In cases with a strong signal, such as LAML vs. BRCA, LAMLE vs. COAD and
BRCA vs. COAD, the balanced PDCs (gray/blue circles),are' much larger than
the corresponding PDCs computed using all permutations (gray/blue stars). This
is consistent with the idea that when the signal'is/strong, all permutations will
cause a loss of power (see Figure 5). When the,signal is weak, such as COAD

vs. READ, all and the balanced PDCs are'small and similar to each other.
5 Discussion

Our recommendation of balanced permutations is somewhat opposite to the
recommendation against,balanced permutations in Southworth et al. (2009).
They appeal to grouptheory and suggest that all permutations are generally
superior to balanced permutations since balanced permutations tend to be anti-
conservative,.i.e. their reported p-values are too small. In particular, under their
null hypethesis, the permutation distribution, e.g., distribution of the red dots in
Figure 6 doesn’t have enough extremely large values. Hemerik and

Goeman (2018) provided adjustments that make the use of balanced
permutations for p-value calculation valid. Appendix D derives an often negligibly
small alternative adjustment to both types of permutation PDC that overcomes

the anti-conservative problem.



Figure 1 reveals the strange behavior that under the alternative the power of the
tests from all permutations can decrease as the signal strength increases. The
much-improved power of balanced permutations is shown in Figure 5 where the
balanced permutation power as measured by PDC is proportional to the signal
strength. When the signal is weak, Figure 5 shows that the balanced and all
permutations give very similar PDCs. Thus balanced permutations are superior
to all permutations in large-signal cases which often arise in bioinformatics,and

have no or minor differences from all permutations in small-signal cases:
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Fig. 1 Test power as indicated by PDC, with MD on the left and DWD on the
right, for different choices of d (shown with colors) and signal strength g (x-axes).
The y-axes show the PDC from DiProPerm’s results. The dashed curves in the
left panel are the theoretical PDC (12). The solid curves in both panels are local

linear regression fits of the Monte Carlo samples. Each dot is a single realization

20



of the estimated PDC value. Three representative cases studied in Figure 2 are
highlighted in the left panel as black stars. We observe that PDC does not

increase with signal strength g as expected.
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Fig. 2 DiProPerm results for the MD. direction and o= 100. Left: g = 2; middle: g

= 4; right: g =20 shown as black stars'in Figure 1. Top panels are the permuted

statistics Cjand their kernel density estimates with PDCs values printed in green

text. Middle and bottom panels are chosen permutations with colors representing

the permuted labels and'symbols representing the original labels; the middle row

of panels have the, largest permuted statistic (colored circles in the top panels);

bottom panels.are permutations with the smallest permuted statistic (colored

stars inithe top panels). Shows increasing skewness of the permutation

distribution as g grows due to permutation unbalance.
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Fig. 3 Colorbar used in the jitter plots in the top panels in Figure 2. Numbers
represent the absolute value of the coefficient of unbalance ¢ defined in Equation
(8) in Section 2.2.
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Fig. 4 This figure shows 7 permutations from a simple example. The top row
shows the true class labels and the rest of the rows show 7 different
permutations represented as red and blue colored reassignments. The right
column distinguishesbetween balanced and all permutations by coloring the text

in the spirit of Figure 3.
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Fig. 5 Realizations of the PDC for different choices of @for both all and balanced
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both panels, labeled as Balanced permutafions, show the proposed DiProPerm

using analogous colors and signs as'in Figure 1. Unlike the all permutation

PDCs, the balanced permutation’PDECs keep growing with larger signal strength
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Fig. 6 Null distributions of the three representative testing contexts studied in
Figure 2. The MD and DWD directions are contrasted in the top and bottom
panels. The dashed curves are the derived theoretical null distribution. The red
solid curves are kernel density estimates of the balanced permutations (red dots
in the jitter plots). The black.curves are the kernel density estimates of all
permutations (dots of-all celors). The red curves do not change with gindicating

a good estimate.of the.null distribution.
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Fig. 7 PCA scores scatter plot from TCGA Pan-Cance@expression data
with symbols and colors in Table 1. As biologicall pected LAML is much
different from the rest and COAD and RE O%I PCA space.
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directions for the pairs: READ vs. COAD; BLCA vs. BRCA; LAML vs. BLCA. The

x-axis is the value of projection.scores; y-axis shows the height of the KDE

estimates, and the black text shows the corresponding PDCs. The separation of

the subpopulations on the top (MD) is similar to those for the bottom (DWD) but

not as distinct. PDCs for.balanced permutations are higher than for all

permutations.
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Fig. 9 DiProPerm 95% confidence intervals foriall 10 pairwise tests of 5 types of
cancers from TCGA data. The thicker lines represent individual confidence
intervals for each PDC and the thinnerlines are the Bonferroni corrected
confidence intervals. The circles and stars indicate the PDC estimates from
balanced and all permutations respectively. The DWD-based PDCs are shown in
blue/light blue and MD-based PDCs are shown in black/gray. The value of the
test statistic is also printed at the top of each bar. This illustrates many effects

discussed above.
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Fig. 11 Correlation (r) as a function of nwith different.line, types and colors

indicating different d and balanced versus all permutations. In the left panel,
when @ = » _ the red shows correlations of allpermutations ("= ) with blue for

balanced permutations ("~ ). These cutvés.(decreasing rapidly) are very close

to each other and "= ~ "= The right panel enables a more detailed study for o

=1, 2 in both cases, showing the difference between these correlations and the

upper bound "= . Correlations fapidly decrease as a function of nand increase

slightly as a function of '@. When d= 1, 2, correlations are already very close to
the limit ¢ = * | whichsisfalso the upper bound.



Table 1 Abbreviated name, color, symbol (used in figures in this paper) and

number of cases for each cancer type. Breast Cancer (BRCA) has the largest

number of cases.

Cancer Abbreviation||Color  |[Symbol|[Number
Acute Myeloid Leukemia LAML magental| « 173
Bladder Urothelial Carcinoma|BLCA blue * 138
Breast Cancer BRCA cyan + 950
Colon Adenocarcinoma COAD yellow || » 190
Rectal Adenocarcinoma READ red o 72




