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ABSTRACT
Most existing audio-text emotion recognition studies have focused
on the computational modeling aspects, including strategies for
fusing the modalities. An area that has received less attention is
understanding the role of proper temporal synchronization be-
tween the modalities in the model performance. This study presents
a transformer-based model designed with a word-chunk concept,
which o�ers an ideal framework to explore di�erent strategies to
align text and speech. The approach creates chunks with alterna-
tive alignment strategies with di�erent levels of dependency on
the underlying lexical boundaries. A key contribution of this study
is the multi-scale chunk alignment strategy, which generates ran-
dom alignments to create the chunks without considering lexical
boundaries. For every epoch, the approach generates a di�erent
alignment for each sentence, serving as an e�ective regularization
method for temporal dependency. Our experimental results based
on theMSP-Podcast corpus indicate that providing precise temporal
alignment information to create the audio-text chunks does not im-
prove the performance of the system. The attention mechanisms in
the transformer-based approach are able to compensate for imper-
fect synchronization between the modalities. However, using exact
lexical boundaries makes the system highly vulnerable to missing
modalities. In contrast, the model trained with the proposed multi-
scale chunk regularization strategy using random alignment can
signi�cantly increase its robustness against missing data and re-
main e�ective, even under a single audio-only emotion recognition
task. The code is available at: https://github.com/winston-lin-wei-
cheng/MultiScale-Chunk-Regularization
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1 INTRODUCTION
Automatic emotion recognition is a crucial technique that can signif-
icantly enhance the user experience in human-computer interaction
(HCI) [19] and facilitate healthcare applications such as the detec-
tion of mental disorders (e.g., Autism [33]). Considering the multi-
modal nature of the externalization of human emotions, previous
studies have proposed multimodal emotion recognition solutions
to improve performance over other unimodal methods [9, 13, 14].
With the rapid development of deep learning (DL), many frame-
works have been proposed in recent years focusing on the fusion
of modalities, including speech, text, face, gestures, and physiolog-
ical signals [12, 20, 49, 51]. A research question that remains less
explored is how important is to provide precise temporal synchro-
nization between the modalities. Is it essential to perfectly align
the speech frames co-occurring with a given word to improve an
audio-text recognition system?

Studies have shown a strong intercorrelation between modalities
while developing multimodal emotion recognition systems [5, 6].
Currently, the most popular approach to combine multimodal sig-
nals in a�ective computing is to fuse their information at the model
level using DL frameworks [15, 39, 52]. Feature representations are
individually obtained from each modality, which are later combined
using DL strategies. Given that the modalities have di�erent sam-
pling rates, processing frame-level features will result in loosely
synchronized streams. These approaches implicitly assume that
the DL models can deal with the temporal synchronization across
di�erent modalities, without any speci�c alignment information in-
jected into the model as input (e.g., word-level alignments between
speech frames and spoken words). Current models typically rely on
attention mechanism modules such as the cross-modal attention
layers [11, 12, 17, 30, 45] to achieve synchronization. Is there any
bene�t in explicitly providing to the model the actual timing syn-
chronization across modalities? Is the attention mechanism enough
to compensate for the mismatch in temporal synchronization across
the modalities? Relying on a simple feature-level concatenation (i.e.,
early fusion [4, 15, 53]) between the feature maps is not appropriate
to resolve these questions.

This study proposes a novel transformer-based framework that
provides the �exibility to model the alignment level between the
input of multimodal signals using a word-chunk concept. The ap-
proach is implemented for bimodal emotion recognition systems
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trained with text and speech. The core idea is to introduce an ad-
ditional pre-segmentation module for the audio modality, which
pre-splits the speech frames into data chunks aligned to their cor-
responding spoken words (e.g., using the word-level boundaries
obtained with forced alignment). After this step, we apply temporal
pyramid pooling [16, 43] to obtain the chunk-level audio feature
map that is temporal aligned with the corresponding text embed-
dings. The text and aligned chunk-level audio representation are
used as the input of the main transformer model, which adopts the
cross-modal attention fusion technique [45]. The pre-segmentation
module o�ers the �exibility to determine how important the audio-
text alignment is for multimodal emotion recognition systems. We
compare three alignment strategies by varying the dependency
on the exact lexical boundaries in the segmentation: strict, par-
tial, or random alignment. The strict alignment strategy uses the
word-level forced alignment results to split data into chunks (i.e.,
start and end timestamps of each word). The partial alignment
strategy segments the data with a �xed window size, following
the temporal order of the data. The random alignment strategy is
a major contribution in this study. It splits the data chunks using
randomly sampled window sizes that do not depend on the lex-
ical boundaries. Importantly, a random alignment is created for
each sentence at every epoch, providing di�erent views of the data
during the training. This multi-scale chunk strategy serves as a
temporal regularization, which could be expected to increase the
model robustness against missing data. The proposed framework
with the three alignment strategies enables us to investigate the
role of temporal synchronization in audio-text emotion recognition.

Our experimental results based on the MSP-Podcast corpus [29]
indicate that strict temporal synchronization in audio-text emotion
recognition plays a minor role in performance. This result suggests
that attention mechanisms are e�ective in compensating for the
lack of perfect alignment between the modalities. Interestingly, we
observe that the model trained with strictly aligned information
becomes extremely vulnerable to missing partial information from
the multimodal features. The strong temporal dependency between
modalities exacerbates the major drawback of multimodal model-
ing, which struggles to deal with missing modalities (Sec. 2.2). In
contrast, the model trained with random alignments shows a multi-
scale chunk regularization characteristic, which naturally restricts
the model from learning heavy temporal dependency across modal-
ities. The proposed multi-scale chunk regularization strategy o�ers
a cheap and built-in solution to increase the robustness to miss-
ing data of a multimodal model, which neither adds extra model
complexity nor requires other compatible systems. Furthermore,
the approach remains e�ective even under an audio-only modeling
scheme, where the proposed approach can simply serve as a data
augmentation strategy to improve model performance. In summary,
the main contributions of this study are:
• We propose a word-chunk transformer framework which can
model the alignment level between audio and text data, facilitating
a better understanding of the role of their temporal synchroniza-
tion.
• We propose a multi-scale chunk regularization with random
alignments between audio and text, which can signi�cantly in-
crease the model robustness against missing partial data from the
modalities.

2 RELATEDWORKS
This study focuses on multimodal emotion recognition systems
(Sec. 2.1). Our analysis demonstrates that the di�erent strategies
for combining audio and text can a�ect the system’s robustness
against missing data. Therefore, this section also discusses methods
designed to improve robustness of multimodal emotion recognition
systems against missing data (Sec. 2.2).

2.1 Multimodal Emotion Recognition
The core problem in multimodal emotion recognition is determin-
ing the optimal approach to leverage information from di�erent
modalities. An e�ective modeling framework can extract mean-
ingful inter- and intra-modality relations from multimodal signals,
improving the emotion recognition performance [2]. Traditional
approaches rely on simple feature-level or decision-level fusion
techniques [4, 15, 47]. The feature-level fusion, referred to as early
fusion, pre-concatenates handcraft sentence feature vectors from
di�erent modalities as the model input, while the decision-level fu-
sion, referred to as late fusion, produces emotion decisions based on
the majority voting result from modality-speci�c classi�ers [42, 54].
The main drawback of these approaches is the lack of modeling �ex-
ibility to leverage temporal dynamics across modalities capturing
their relationships. Recently, DL-based frameworks have provided
powerful and �exible alternatives for multimodal learning, o�ering
various strategies for better model-level fusion. Instead of concate-
nating features, model-level fusion combines information in the
intermediate hidden outputs of the DL feature encoders [15, 27]. By
leveraging jointly learnable feature representations, we can capture
cross-modality dynamics along with emotional-relevant patterns
[39]. Applying an additional attention mechanism [31] can further
enhance the model summarization ability by modeling long-term
dependency and modality-speci�c information [21, 52].

The current state-of-the-art (SOTA) fusion approaches are based
on the transformer architecture [12, 18, 41, 49]. This strategy utilizes
the cross-modal attention framework [45], which is a dot-product
attention mechanism that systematically de�nes attention rules
by performing dot-product multiplications of the query, key, and
value matrices associated with di�erent regions of a sequence or dis-
tinct modalities. Speci�cally, in a multimodal context, this approach
enables the model to capture comprehensive global cross-modal
correlations by using the query (Q) from one modality to compute
attention scores with the keys (K) and values (V) from another
modality. This process allows the model to learn associations be-
tween di�erent modalities and integrate information from both
sources into the resulting representations, leading to a more ro-
bust understanding and synthesis of information across diverse
data types. Therefore, we can perform bidirectional attention be-
tween audio-visual or audio-text modalities, enabling the model
to attend to either modality based on the other. In this study, we
adopt the SOTA cross-modal attention model [12, 45] as the back-
bone architecture, proposing a transformer framework based on
the word-chunk concept for audio-text emotion recognition. We
make appropriate modi�cations to �t this model to our problem.
We describe our multimodal architecture in Section 3.
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2.2 Robustness Against Missing Data
While multimodal emotion recognition can e�ectively improve the
model performance by leveraging complementary discriminative
information conveyed by the individual modalities, these systems
are less �exible when modalities are missing. The common assump-
tion is that all the relevant modalities need to be available for the
multimodal system to operate. This problem is especially prevalent
in in-the-wild applications [35]. For instance, speech signals can
su�er from packet losses or noise interferences [7], and signi�-
cantly degrade the automatic speech recognition (ASR) performance
[22, 23], a�ecting the text transcriptions generated by the ASR
system. As a result, both speech and text data are compromised,
leading to multimodal emotion recognition systems with worse
performance [55]. Additional ad-hoc techniques are required to
compensate for the model, such as missing data cancellation and
generation [10, 23], cascaded enhancement and recognition models
[44], or multimodal joint representation learning [38].

Various studies have been proposed to handle missing total or
partial data from modalities for robust emotion recognition. Investi-
gation from early studies showed that simple feature interpolation
of missing values is helpful [40]. Another straightforward approach
is to perform ensemble fusion based on model con�dence from
di�erent modalities [40, 47] (e.g., weighted majority voting). The
emotion classi�er from the modality with missing data is expected
to produce less con�dent predictions, and, therefore, has a lower
contribution to the �nal decision. For recent DL frameworks, one
research direction focuses on training strategies to handle missing
modalities. Goncalves and Busso [12] proposed an optimized train-
ing strategy where 20% of the data from one modality was replaced
by zeros in some batches (e.g., modality dropout). Parthasarathy
and Sundaram [37] proposed a similar approach in which they
randomly zero out visual data with a given probability during the
training stage for an audiovisual emotion recognition task. This
data strategy can be done at the clip or frame levels, resulting in
performance gains of up to 17% for the transformer model. Zuo
et al. [55] attempted to learn a modality-invariant feature space
to compensate for the mismatch introduced by the missing data.
Another approach is to explicitly introduce a system for canceling
out the missing data, such as packet-loss concealment (PLC) for
speech [23]. Mohamed and Schuller [36] presented an end-to-end
PLC framework concatenated with the downstream speech emotion
recognition (SER) task, where the model makes emotion prediction
after it reconstructs the lost frames. Di�erent from the aforemen-
tionedmethods, our proposed solution to improvemodel robustness
relaxes the cross-modality (i.e., audio-text) temporal dependency
by randomizing the lexical segmentation during training.

3 PROPOSED METHODOLOGY
We show the proposed framework in Figure 1, which consists of
three major components: 1) pre-segmentation module, 2) input
preprocessing, and 3) the main transformer-based architecture. We
describe these blocks in this section.

3.1 Pre-Segmentation of Audio Chunks
Studies have shown the bene�ts of using chunk-based segmenta-
tion, splitting sentences into smaller segments [24, 25]. Therefore,
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Figure 1: Overview of the proposed transformer-based archi-
tecture for audio-text emotion recognition. The key novelty
of the model is the word-chunk approach to split a sentence
into chunks. The approach provides the �exibility to intro-
duce alternative alignment strategies with di�erent depen-
dencies on lexical boundaries to combine words with the
co-occurring speech frames.

the �rst step is to extract the feature representation for the input
modalities of audio and text data. The frame-level audio feature
map and the word-level text embeddings are denoted by the vari-
ables XA 2 R�⇥⇡� and XT 2 R!⇥⇡) . The sequence lengths are �
and !, where � � ! since the number of audio frames is always
greater than the number of spoken words in a sentence. ⇡� and ⇡)
represent the extracted feature dimension for the corresponding
modalities. The goal of the pre-segmentation step is to segment the
audio data into ⇠ chunks according to the lexical boundary, obtain-
ing an aligned audio-text feature pair (i.e., make ⇠ = !, creating
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a one-to-one map between the speech and word representations).
The advantage of this approach is the ability to control the strict-
ness of word boundaries when de�ning the alignment between
modalities. This �exibility enables us to investigate the role of tem-
poral synchronization between lexical and acoustic information
in multimodal emotion recognition systems. We consider three
alignment levels: strict, partial, and random alignment. The key
di�erence between these strategies is how we de�ne the data chunk
window size, (i.e., word boundary). Figure 2 illustrates these three
strategies.
• Strict Alignment- Fig. 2(a): This approach segments data chunks
by strictly following the forced alignment results. It crops the audio
frames co-occurring with the word using the starting and ending
timestamps in the word-level alignment information. We denote
this approach to as Align-VW, since it produces varied sizes for the
length of the chunks.

• Partial Alignment- Fig. 2(b): The sentence is uniformly divided
into a number of chunks with a �xed duration, , according to
the number of words in the sentence. This approach is inspired
by the segmentation approach proposed by Lin and Busso [26].
Equation 1 shows the key formula, where the shifting between data
chunks �; depends on the sentence duration ) and the number of
words !. With the �xed, , each data chunk is likely to at least
cover a partial region of the word corresponding to that chunk. For
instance, we can see in Figure 2(b) that the �rst chunk covers the
�rst word, “I”, and the second chunk also covers the second word,
“woke”. We denote this strategy to as Align-FW, since it produces a
�xed duration, for all the chunks.

�; =
) �,

! � 1
(1)

• Random Alignment- Fig. 2(c): This approach randomly segments
the data into chunks of di�erent durations. The process starts with
the segmentation provided by the partial alignment strategy Align-
FW (i.e., a �xed number of chunks with the same duration). The
approach crops a sub-region from each data chunk by randomly
selecting the starting point of the chunk and its duration. We de-
note the cropped sub-region as B , which is randomly sampled from
a de�ned set S of reasonable durations, where B  , . Section
4.3 provides the values used for the implementation in this study.
For instance, the �rst data chunk in Figure 2(c) is a sub-region
sampled from the �rst data chunk in Figure 2(b). This process is
conducted for each epoch during the training process, creating
di�erent random chunk segmentations for each sentence during
the training. This random cropping strategy has the least strict
alignment requirements. However, this strategy proves to be an
e�ective mean of temporal dependency regularization by randomly
selecting B at each epoch. Notice that this segmentation method
still preserves the minimal lexical boundary information, since the
number of words determines the number of chunks. Figure 2(c)
shows an example of this strategy, where the data chunks cover
portions of the corresponding word. We refer to this approach as
Align-MultiScaleW, since this approach produces di�erent sizes of
, using a multi-scale strategy. The multi-scale part of the model
comes from implementing this chunk segmentation strategy at each

I       woke       up       late       this       morning

Varied W based on 
forced-alignment

:Word chunk
:Full sentence

:Chunk center

(a) Strict Alignment – Align-VW

I       woke       up       late       this       morning
:Word chunk
:Full sentence

Fixed W

:Chunk center

(b) Partial Alignment – Align-FW

I       woke       up       late       this       morning

Random W sampling 
from size-pool

:Word chunk
:Full sentence

:Chunk center 
from (b)

(c) Random Alignment – Align-MultiScaleW

Figure 2: Visualization of three di�erent chunk segmenta-
tion approaches explored to understand the role of modality
synchronization in the performance of a multimodal emo-
tion recognition system.

epoch, presenting di�erent alignments between speech and text
during the training process.

3.2 Input Preprocessing
After obtaining the audio chunks, we adopt the temporal pyramid
pooling (TPP) [43] to �atten out the temporal dimension of the
data chunks. Figure 3 visualizes the TPP procedure. Unlike conven-
tional mean-pooling operation, which results in a single average
vector, TPP performs mean-pooling by further subdividing the data
chunk into di�erent scales along with the temporal axis (i.e.,, ).
Then, the approach concatenates these partial pooling results to
obtain a chunk-based representation. With this approach, TPP cap-
tures richer information at di�erent dynamic temporal resolutions.
Then, we can obtain the aligned audio-embeddings XA 2 R!⇥⇡�

by simply stacking the �attened outputs created by the TPP. In
our emotion recognition task, we deal with sentence-level labels.
To better represent this information, we generate a special token,
denoted as <SUM>, for every sequence, which serves as the aggre-
gate sentence-level representation for emotion recognition. This
token is designed to encapsulate the overall sentence information
and is prepended to the input of the model, as in Devlin et al. [8].
The �nal hidden state corresponding to the <SUM> token is then
utilized to recognize emotions. To incorporate this token into the
model, we use a one-vector initialization for both audio and text
inputs. Speci�cally, we initialize <SUM>with a one-vector of dimen-
sions 11⇥⇡� for audio and 11⇥⇡) for text to train the model. Notice
that our input sequence length is dramatically decreased from �
(frames) to ! (words), which signi�cantly reduces the complexity
of the transformer model for the audio stream (i.e., O(!2)).
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Figure 3: Visualization of temporal pyramid pooling. Our
implementation exactly follows this strategy, splitting the
chunks into two and four blocks.

3.3 Main Transformer Model Architecture
Our main model follows the standard setup of the transformer
encoder [46]. The input embeddings are linearly projected into a
�xed hidden dimension. We add positional encodings using the
sine/cosine functions. Then, we implement the multi-head self-
attention block to capture the intra-modality information. We refer
to this block in Figure 1 as the self-attention transformer layer.
Then, we implement the cross-modal attention layer to capture
the cross-modality correlation. The major di�erence between the
self- and cross-modal attention is the query (Q) term in the scaled
dot-product attention formula (Eq. 2). The query of the cross-modal
attention model comes from another modality [45] (see cross-modal
attention layer in Fig. 1).

�CC4=C8>=(&, ,+ ) = B> 5 C<0G

 
& )p
3:

!
+ (2)

Lastly, we concatenate the hidden output of the global tokens
from the two modalities, which are fed into the multitask output
layers for predicting emotions. We build our model to recognize
the three conventional emotional attributes: arousal, valence, and
dominance. Since these labels are represented by continuous values,
the architecture is formulated as a regression problem. We use the
concordance correlation coe�cient (CCC) to de�ne the multitask
loss function to train the model (Eq. 3). We also use CCC as the
evaluation metric to assess model performance.

J =
1
3
�
(1 � CCCaro) + (1 � CCCval) + (1 � CCCdom)

�
(3)

4 EXPERIMENTAL SETTINGS
4.1 The MSP-Podcast Corpus
We use the release version 1.10 of the MSP-Podcast corpus [29].
The dataset collects spontaneous recordings that are available on
audio-sharing websites. A series of automatic processes including
speaker diarization, and noise and music detection are applied to
split the recordings into clean speaking turns. The �le duration of
the speaking turns ranges from 2.75 to 11 secs. The approach relies

on the retrieval-based strategy proposed by Mariooryad et al. [32],
where only samples that are predicted to have emotional content
are annotated with emotional labels. The emotional evaluation
follows a modi�ed version of the real-time crowdsourcing protocol
proposed by Burmania et al. [3]. This approach resulted in a large-
scale corpus with high-quality and spontaneous speaking turns.

The corpus provides the prede�ned train/development/test par-
titions with a total of 104,267 audio clips (⇡166 hrs). We use the
development set for hyperparameter tuning and the test set for our
evaluation. These speaking turns are annotated for arousal (calm
versus active), valence (negative versus positive), and dominance
(weak versus strong) with continuous values from 1 to 7. Each �le
has at least �ve annotations and we consider the average score
as the ground-truth labels. The corpus also provides the human
transcriptions, and the corresponding word-level forced alignment
results based on the Montreal-forced-aligner (MFA) [34]. We utilize
these resources for building the proposed word-chunk experiments.

4.2 Audio and Text Features
This study relies on pre-trained self-supervised deep features for
acoustic features, which have consistently shown better perfor-
mance compared to traditional acoustic features in speech emotion
recognition (SER) such asmel frequency cepstral coe�cients (MFCCs)
[48]. We extract frame-level features based on the wav2vec2-large-
robust model [1]. For text, we follow a similar approach, extracting
word-level embeddings with the RoBERTa model [28]. The last hid-
den state outputs of these models are the inputs for our model
(⇡�=1,024 for audio, and ⇡) =768 for text). We extract these fea-
tures using the Hugging Face library [50]. Notice that these in-
put features are �xed. We do not �ne-tune or incorporate the pre-
trained model architecture during training. We perform additional
z-normalization on the features to facilitate the convergence speed
of the models during training, where the normalization parameters
(i.e., mean and std) are estimated from the train set.

4.3 Implementation Details
We set all the hidden dimensions of the transformer model to 256D
using four attention heads. As we mentioned in Section 3.2, the
model input lengths depend on the number of words spoken in the
sentence (i.e., !). Therefore, we set the maximum input sequence
length to 128 (words), which is long enough to cover the full infor-
mation without truncating the sentence. We zero-pad sentences to
reach the maximum length of 128 to facilitate batch training. We
use a batch size of 128, the Adam optimizer with a learning rate
set to 0.0001, and an early stopping criterion based on the CCC
performance of the development set. We save the best model, which
is evaluated on the test set.

For the segmentation setup, we use, =1 sec for the Align-FW
approach. For the Align-MultiScaleW approach, we de�ne the fol-
lowing random size-pool set S={0.2 secs, 0.4 secs, 0.6 secs, 0.8 secs,
1.0 secs}. The TPP scale setting is exactly the same as illustrated in
Figure 3, dividing the chunk into two and four parts. We conduct a
two-tailed t-test based on the CCC metric to compare the results
in the experimental evaluation. Each experiment is run �ve times
using di�erent network initializations. We equally split the original
test set into �ve subsets, resulting in a total of 5⇥5=25 testing points
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Table 1: CCC results of multimodal baselines and proposed
transformer-based approach implemented with di�erent
alignment strategies. Symbol ⇤ and † indicate that the system
performance is signi�cantly better than the MDRE-GRU and
MDREA-GRU baseline, respectively. The bold values show
the best result per emotional attribute.

Approach Arousal Valence Dominance
MDRE-GRU [52] 0.6090 0.5592 0.4842
MDREA-GRU [52] 0.6029 0.5603 0.4792
Align-VW 0.6094 0.5723⇤† 0.4932⇤†
Align-FW 0.6117† 0.5767⇤† 0.4939⇤†
Align-MultiScaleW 0.6137† 0.5691⇤† 0.5000⇤†

for the statistical analysis. We assert statistically signi�cant when
?-value < 0.05. All models are trained and tested using an NVIDIA
GeForce RTX 2080 Ti GPU. The codes are implemented in PyTorch.

We compare two model-level fusion approaches with the trans-
former framework using cross-modal attention layers. We consider
the multimodal dual recurrent encoder (MDRE)-GRU framework
[52]. This approach concatenates the last time-step hidden output
of a gated recurrent units (GRU) encoder from the audio and text
streams. This model-level fusion vector is then utilized to predict
emotions. The MDREA-GRU introduces an additional attention
module on the top of the MDRE-GRU framework, fusing informa-
tion with a weighted sum from all the time steps from the GRU
encoder outputs (the “A” in the acronym stands for attention). No-
tice that we use the same deep features mentioned in Section 4.2 to
train the baselines for fair comparison, which is di�erent from the
original implementation in this model that used MFCCs.

5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Role of Temporal Alignment
First, we compare the proposed approach with the di�erent align-
ment strategies to the baselines. Table 1 lists the performances
of these systems. The fusion method using cross-modal attention
consistently outperforms classic model-level fusion techniques. For
valence and dominance, the three implementations of the proposed
approach are statistically better than the baseline models.

As mentioned before, the �exibility of the proposed model allows
us to explore the change in performance as we use strict, partial,
and random alignment between the audio and text feature repre-
sentations. When we compare the models with the di�erent imple-
mentations, we do not observe signi�cant performance di�erences
by introducing the additional alignment information. The Align-
VW results do not show any performance gain over the Align-FW
or Align-MultiScaleW approaches, which demonstrates the minor
e�ect in performance of providing precise temporal synchroniza-
tion between the input audio-text pair. The attention mechanism
implemented in the proposed system can e�ectively compensate
for cases when the modalities are not perfectly aligned.

5.2 Robustness to Missing Data
We evaluate the model’s robustness against missing data. We simu-
late the missing data condition by randomly dropping G% of words

∗† ∗†
∗†

∗†

(a) Arousal

∗
∗

(b) Valence

∗† ∗†
∗†

∗†

∗

(c) Dominance

Figure 4: Analysis of robustness of the multimodal systems
against missing data from both modalities. The x-axis in
each plot indicates the data drop ratio. The y-axis is the cor-
responding CCC performance. The symbols ⇤ and † indicate
that the results for the Align-MultiScaleW strategy are signif-
icantly better than the results achieved with the Align-VW
and Align-FW strategies, respectively.

in a sentence during the inference stage. Considering the multi-
modal task setup, we drop both audio and text data simultaneously.
Once the word is dropped, its corresponding uttered speech frames
are also dropped based on the forced alignment results.

Figure 4 shows the performance when the drop rate G is set
from 0% to 90% for the three emotional attributes. We add symbols
to indicate when the Align-MultiScaleW strategy leads to statis-
tically better performance than the Align-VW (⇤) and Align-FW
(†) strategies. The model trained with strict alignment informa-
tion (i.e., Align-VW) is vulnerable when the data is missed. This
strategy is consistently the worst across emotional attributes. The
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Table 2: Speech emotion recognition modeling under the packet-loss simulation evaluation. The results are shown in term of
CCC values. Bold values show the best performance per attribute for each set of values for %! and %# . The symbols ⇤ and †

indicate that the results for the Align-MultiScaleW strategy are signi�cantly better than the results achieved with the Align-VW
and Align-FW strategies, respectively.

approx. drop
(?! , ?# )

Arousal Valence Dominance
frames (%) Align-VW Align-FW Align-MultiScaleW Align-VW Align-FW Align-MultiScaleW Align-VW Align-FW Align-MultiScaleW

0% (0.0, 1.0) 0.5906 0.5999 0.6120⇤† 0.3420 0.3384 0.3554⇤† 0.4776 0.4775 0.4917⇤†

10% (0.1, 0.9) 0.5931 0.6018 0.6138⇤† 0.3416 0.3385 0.3552⇤† 0.4790 0.4784 0.4934⇤†

17% (0.5, 0.9) 0.5934 0.6014 0.6140⇤† 0.3380 0.3359 0.3531⇤† 0.4774 0.4777 0.4935⇤†

36% (0.1, 0.5) 0.5950 0.6009 0.6119⇤† 0.3344 0.3306 0.3457⇤† 0.4795 0.4768 0.4916⇤†

50% (0.1, 0.1) 0.5887 0.5903 0.6004⇤† 0.3250 0.3161 0.3256 0.4724 0.4668 0.4802⇤†

50% (0.5, 0.5) 0.5822 0.5873 0.5979⇤† 0.3148 0.3131 0.3235 0.4654 0.4640 0.4780⇤†

50% (0.9, 0.9) 0.5506 0.5708 0.5822⇤† 0.2899 0.2990 0.3139⇤† 0.4337 0.4481 0.4645⇤†

65% (0.5, 0.1) 0.5503 0.5515 0.5592 0.2828 0.2759 0.2766 0.4362 0.4324 0.4432
84% (0.9, 0.5) 0.3541 0.3805 0.3719⇤ 0.1604 0.1572 0.1407 0.2782 0.2934 0.2924⇤

90% (0.9, 0.1) 0.2400 0.2684 0.2573⇤ 0.0924 0.0922 0.0763 0.1948 0.2084 0.2073⇤

Figure 5: Markov Chain packet-loss model to simulate the
loss of frames. State N:1 indicates that the frame is received,
and state L:0 indicates that the frame is lost.

performance dramatically drops when themissing data is more than
30%, especially for arousal and dominance. The major cause for
this result is that the Align-VW model learns a strong dependency
between the audio and text representations relying on its tempo-
ral synchronization. This approach reduces the resiliency of the
model when words are dropped. In contrast, the Align-MultiScaleW
approach consistently leads to better CCC performance, showing
stronger performance against missing data (see the red lines in Fig.
4). For instance, when 90% of the data is lost, the Align-MultiScaleW
strategy leads to performance gains for arousal above 14% and 5%
compared to the Align-VW and Align-FW strategies, respectively
(Fig. 4(a)). The random alignment in the Align-MultiScaleW strat-
egy relaxes the requirement of matching lexical boundaries, which
naturally prevents the model from memorizing trivial temporal
dependency. It also regularizes the model by presenting di�erent
alignments for each sentence across epochs. Interestingly, the Align-
FW strategy, which has partial alignment constraints, shows better
robustness than the Align-VW method, but worse performance
than the Align-MultiScaleW strategy.

5.3 Audio-Only Modeling
The characteristic of the multi-scale chunk regularization is also
e�ective for audio-only emotion recognition tasks. In this section,
we simply remove the text-modality pipeline in the right-hand
side of Figure 1 (i.e., green colors) to adapt the model for SER.

Note that the cross-modal attention layers are replaced by self-
attention layers, sincewe do not have anothermodality for the cross-
attention queries. To simulate missing data testing conditions for
audio, we follow the two-stateMarkov Chain packet-loss generation
model commonly used to simulate missing packets on the Internet.
This model was also used by Mohamed and Schuller [36] for SER
tasks. Figure 5 shows this model, which is de�ned by the frame-
level probabilities that a packet is lost (?!) or transmitted (?# ). It
produces a randomly sampled binary sequence mask for the target
testing sentence. The initial frame always starts at the non-loss
state.

Table 2 summarizes the full testing results under di�erent values
for ?! and ?# . The table shows that the SER model implemented
with the multi-scale chunk regularization (i.e., Align-MultiScaleW)
obtains better performance than the other strategies for all three
emotional attributes in most of the testing cases. More importantly,
we �nd signi�cant CCC improvements even under non-missing
data scenarios (see the 0% results), which indicates that the multi-
scale chunk regularization not only improves the model robustness,
but also leads to SER performance gains. The approach produces a
similar e�ect to the random crops in computer vision tasks (i.e., we
random crop the voiced portions of the speech signal), which can
be considered as a data-augmentation scheme for SER to increase
robustness and performance.

6 CONCLUSIONS
This paper presented a computational multimodal framework based
on the transformer architecture, implemented with cross-modal at-
tention layers for audio-text emotion recognition. The approach has
the �exibility to explore di�erent alignment constraints between
the modalities. The framework is able to model the alignment level
between speech and text using a word-chunk concept, which pre-
segments data chunks according to the lexical boundaries. This
approach facilitates the investigation of the role of temporal syn-
chronization between the modalities in the model performance. We
implement the proposed approach with strict, partial, and random
alignment strategies. The random strategy is a major contribution
of this study. For each sentence, the approach generates random
controlled alignments between words and the co-occurring speech
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frames. The alignments for each sentence change at every epoch,
serving as a temporal regularization mechanism. Our experimental
results based on the MSP-Podcast corpus indicate that the temporal
synchronization of audio and text feature representation plays a
minor role in performance, as the three strategies achieve similar
results. The use of attention mechanisms, including the cross-modal
attention layers, is powerful enough to compensate for potential
misalignment a�ecting the temporal relationship of the modalities.
However, we found that the model becomes extremely vulnerable
to missing data when the model is trained with the strict align-
ment strategy. In contrast, the proposed random alignment strategy
results in a multi-scale chunk regularization solution that signi�-
cantly increases the robustness of the model against missing data.
The study also demonstrated that this strategy is e�ective for SER,
exhibiting similar robustness against missing acoustic frames. The
randommulti-scale chunk segmentation strategy also improved the
model recognition performance when all the frames were available.

This study opens several research questions. Following the word-
chunk concept, we can extend the investigation of temporal syn-
chronization to three ormoremodalities (e.g., video, audio, and text).
Also, we can explore the idea of multi-scale chunk segmentation
with other modalities (e.g., fMRI or EEG). The temporal relation-
ship between di�erent modalities can be very complex. Therefore,
having a complete understanding of its role in system performance
might lead to a better solution for multimodal modeling problems.
We are also intrigued by the improvements in CCC performance
observed in SER when the model was implemented with the pro-
posed multi-scale chunk segmentation. We will continue to study
the use of this approach as a regularization strategy.
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