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Abstract

We study accelerated optimization methods
in the Gaussian phase retrieval problem. In
this setting, we prove that gradient meth-
ods with Polyak or Nesterov momentum have
similar implicit regularization to gradient de-
scent. This implicit regularization ensures
that the algorithms remain in a nice re-
gion, where the cost function is strongly con-
vex and smooth despite being nonconvex in
general. This ensures that these acceler-
ated methods achieve faster rates of conver-
gence than gradient descent. Experimental
evidence demonstrates that the accelerated
methods converge faster than gradient de-
scent in practice.

1 INTRODUCTION

While convex optimization is by now a mature field
with an array of well-understood algorithms, the prop-
erties of nonconvex optimization algorithms have only
recently begun to be illuminated. Understanding non-
convex optimization algorithms is of fundamental im-
portance for progress in data science and machine
learning since many optimization problems we wish
to solve are nonconvex. Furthermore, it is important
to understand how variants of these nonconvex opti-
mization algorithms, such as stochastic or accelerated
methods, perform in various settings.

A prototypical nonconvex optimization problem arises
when one considers the Burer-Monteiro factorization
of programs over positive semidefinite (PSD) matrices
(Burer and Monteiro, 2003). Here, for a PSD matrix
S ∈ Rn×n one uses the parametrization S = UUT ,
and then applies a standard algorithm like gradient
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descent to optimize over U rather than S. This factor-
ization can be used in solving many problems, such as
matrix completion, phase retrieval, covariance sketch-
ing, and more (Sanghavi et al., 2017; Li et al., 2019;
Ma et al., 2020). The Burer-Monteiro factorization has
been shown to work well in practice despite it typically
leading to nonconvex optimization problems. Further-
more, it represents a concrete case where we can un-
derstand the properties of nonconvex optimization al-
gorithms.

While many works have analyzed the optimization
landscapes of factorized matrix problems, we draw our
inspiration from the work of Ma et al. (2020). Here,
the authors study how gradient descent interacts with
a random observation model on the specific problems
of phase retrieval, matrix completion, and blind decon-
volution. In this work, we focus on one of the specific
problems of Ma et al. (2020) for clarity, although these
results can be generalized. The phase retrieval prob-
lem seeks a signal vector x⋆ ∈ Rn from observations

yi = |aT
i x⋆|2 (1)

collected from a set of known sensing vectors
a1, . . . ,am. In the general case, one considers sens-
ing vectors and signals ai,x⋆ ∈ Cn, but here we focus
on the real case for simplicity of exposition. The Gaus-
sian phase retrieval problem refers to the case where
the sensing vectors ai are standard Gaussian (Candes
et al., 2015).

In effect, they show that gradient descent with proper
initialization interacts well with the random measure-
ment model by developing an analysis of its implicit
regularization. Broadly speaking, implicit regulariza-
tion refers to a bias in an optimization algorithm that
only exists implicitly rather than explicitly. In effect,
the implicit regularization result of Ma et al. (2020)
ensures that the optimization problem in question be-
haves much like a convex optimization problem despite
the problem being nonconvex in general.

Implicit regularization can be used to show that cer-
tain optimization methods perform well on nonconvex
problems, and the type of regularization varies from
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setting to setting. In certain settings, it ensures that
the algorithm finds a solution that minimizes some
norm (Gunasekar et al., 2017; Li et al., 2018; Vaske-
vicius et al., 2019; Min et al., 2021; Zhao et al., 2022)
or yields outputs that are projections with respect to
a Bregman divergence or minimum entropy solutions
(Gunasekar et al., 2018; Woodworth et al., 2020; Even
et al., 2023). Alternatively, as we mentioned in the
case of Ma et al. (2020), one can show that meth-
ods maintain some independence properties in random
sensing models. Almost all implicit regularization re-
sults for nonconvex methods rely on finding a good
starting point, either by spectral initialization or by
some other cleverly chosen point.

While many results exist exploring the implicit bi-
ases of gradient descent and its stochastic counterpart,
the implicit biases of accelerated algorithms are not
well understood. It is essential to better understand
their implicit biases since in practical nonconvex opti-
mization such as training state-of-the-art deep learning
methods, practitioners use some variant of momentum
(such as in Kingma and Ba (2014)).Therefore, in this
work, we set out to better understand the implicit reg-
ularization of gradient descent with momentum in the
context of the specific nonconvex problem of phase re-
trieval.

1.1 Outline of Contributions

Here, we summarize the main contributions of our
work. These findings are also presented in Figure 1:
accelerated gradient descent (AGD) methods achieve
faster convergence than gradient descent on the Gaus-
sian phase retrieval problem in theory and practice.

1. We develop the first implicit regularization anal-
ysis for two accelerated gradient methods on the
Gaussian phase retrieval problem. These meth-
ods utilize Polyak’s momentum (Polyak, 1964)
and Nesterov’s momentum (Nesterov, 1983). Our
analysis shows that with spectral initialization,
these accelerated methods maintain incoherence
and locality properties throughout their itera-
tions. To accomplish this, we develop a novel
leave-one-out analysis that works on pairs of iter-
ates rather than the iterates themselves. To our
knowledge, this is the first implicit regularization
result for accelerated gradient methods on a ma-
trix factorization problem.

2. As a result of this analysis, we are able to
show that accelerated gradient methods converge
faster than gradient descent on the Gaussian
phase retrieval problem. These are the first re-
sults of guaranteed convergence for accelerated
algorithms on the phase retrieval problem, even

Figure 1: Accelerated gradient methods achieve faster
convergence than gradient descent in both practice
and in theory on the Gaussian phase retrieval prob-
lem. Here, Polyak and Nesterov momentum are used
to accelerate gradient descent. The y-axis measures
the log-error of the accelerated method, whereas the
x-axis measures the log-error of the standard gradi-
ent method at each iteration. As we can see, after the
same amount of iterations has passed for each method,
accelerated gradient descent is approximately a factor
of
√

log(n) closer to x∗ on a log scale, which is sup-
ported by our theory.

though such methods were previously considered
in works such as Xu et al. (2018); Wang and Aber-
nethy (2020).

3. While past works experimentally verify the fast
convergence of momentum methods, we also sup-
plement our results to show that accelerated gra-
dient methods achieve faster convergence than
gradient descent in practice.

1.2 Review of Related Work

Many techniques exist to solve the phase retrieval
problem (1), and so we review some of them here.

Other variants of the phase retrieval problem consider
different types of sensing vectors. These include holo-
graphic phase retrieval (Barmherzig and Sun, 2022),
ptychography (Thibault et al., 2008), near-field phase
retrieval (Wang et al., 2020), and far-field phase re-
trieval (Zhuang et al., 2022). Here, we considered the
problem of Gaussian phase retrieval (Candes et al.,
2015).

One popular technique for recovering the vector x∗ in-
volves solving convex relaxations (Candes et al., 2013).
However, solving the resulting semidefinite programs
is typically expensive.
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Many past works have studied first-order algorithms to
recover x⋆ from observations (1), and, as mentioned,
these have shown efficient recovery. Candes et al.
(2015) study the Wirtinger Flow algorithm, which has
become a staple in the phase retrieval literature. This
algorithm is gradient descent on the least squares ob-
jective that we consider. Here, the authors prove lo-
cal linear convergence of the WF algorithm and show
it needs O(n log(1/ϵ)) iterations to converge to an ϵ-
accurate solution. Sun et al. (2018) show that the ob-
jective has no local minimizers, all global minimizers
are equal up to a phase shift, and all saddle points are
strict saddles. To take advantage of this structure of
the problem, they advocate the use of a trust-region
algorithm.

Later, Ma et al. (2020) improved the analysis of gra-
dient descent with an implicit regularization style
analysis to O(log(n) log(1/ϵ)). Even more recently,
these results have recently been improved to O(log n+
log(1/ϵ)) by Chen et al. (2019); Lee and Stöger (2023),
whose results rely on random initialization. The work
of Chen et al. (2019) focuses on a two-stage analy-
sis of gradient descent, while the work of Lee and
Stöger (2023) focuses on an alternating least squares
approach.

Accelerated gradient methods for phase retrieval were
considered in Xu et al. (2018); Wang and Abernethy
(2020). Some preliminary results by Wang and Aber-
nethy (2020) indicated that heavy ball for phase re-
trieval may converge to the benign region more quickly.
However, proof of this fact for the finite sample setting
has not yet been established. Other work has consid-
ered higher-order methods, such as sketched Newton
methods (Luo et al., 2023).

Also, some works have studied phase retrieval in al-
ternative settings. Sparse phase retrieval is a com-
mon paradigm where the underlying signal of interest
is assumed to be sparse (Eldar et al., 2014; Shecht-
man et al., 2014; Wang et al., 2017). The works of Wu
and Rebeschini (2020, 2021) consider implicit regular-
ization for sparse phase retrieval, where the underly-
ing vector is assumed to be sparse. Others considered
phase retrieval with generative priors, such as the work
of Hand et al. (2018). Finally, there are also works on
robust phase retrieval, such as Candes et al. (2013);
Duchi and Ruan (2019).

Geometric approaches to solving the phase retrieval
problem exist (Huang et al., 2017; Hou et al., 2020;
Maunu et al., 2023), and some methods also consider
alternative energies (Duchi and Ruan, 2019; Wang
et al., 2018; Maunu et al., 2023).

Finally, our work adds to the literature on implicit
regularization of methods for nonconvex optimization.

Much past work has focused on gradient descent, but
some works have looked at accelerated methods as well
(Pagliana and Rosasco, 2019; Wang et al., 2023; Ghosh
et al., 2023). None of these results has considered the
implicit regularization of accelerated regularization in
matrix factorization problems, though.

1.3 Notation

We use bold lowercase letters to denote vectors and
bold uppercase letters to denote matrices. When ap-
plied to vectors, ∥ · ∥2 represents the Euclidean norm,
whereas when applied to matrices, it represents the
spectral norm.

2 BACKGROUND

In this section, we give the necessary background to
understand our contributions. First, we will outline
simple approaches to solve the phase retrieval prob-
lem via first-order optimization algorithms. After this,
we review related work on the use of accelerated first-
order methods for the phase retrieval problem. Finally,
we will review the general theory of first-order accel-
erated algorithms in convex optimization.

2.1 Phase Retrieval

The phase retrieval problem arises in settings such as
X-ray crystallography (Candes et al., 2015), and it
also has applications to optical problems, in particular,
medical optical imaging (Shechtman et al., 2015), mi-
croscopy (Miao et al., 2008), and astronomical imaging
(Shechtman et al., 2015).

While the practical phase retrieval problem considers
various measurement operators A, such as Fourier ob-
servations, we consider a specific mathematical setting.
This is also referred to as the Gaussian phase retrieval
problem.

Assumption 1. The sensing vectors ai, i = 1, . . . ,m,
are sampled i.i.d. from a standard Gaussian distribu-
tion N (0, I).

Other variants of the phase retrieval problem can be
studied, where the sensing vectors take on other forms.
See the examples in Barmherzig et al. (2019). In pty-
chography, the observations are Fourier measurements
of an object modulated by a fixed illumination pattern
focused over patches at a time (Thibault et al., 2008).

It is natural to consider recovering the underlying sig-
nal x⋆ by solving an optimization problem. For exam-
ple, one can consider the least squares problem

f(x) =
1

4m

m∑
i=1

((aT
i x)

2 − yi)
2. (2)
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We note that this is equivalent to a Burer-Monteiro
factorization (Burer and Monteiro, 2003) on the low-
rank matrix sensing problem (Fazel et al., 2008). In
fact, this type of problem has a further structure in
that the sensing matrices are rank one, which has
been considered in Chen et al. (2015); Cai and Zhang
(2015).

Due to the ambiguity between ±x in the observations
(1) as well as in the cost function (2), we can only
hope to recover x∗ up to sign. Therefore, we adopt
the following notion of distance as in Ma et al. (2020).

dist(x,x∗) = min{∥x− x∗∥, ∥x+ x∗∥}. (3)

Candes et al. (2015) introduced a gradient descent al-
gorithm for the phase retrieval problem. The gradient
of the functional (2) is given by

∇f(x) =
1

m

m∑
i=1

((aT
i x)

2 − yi)aia
T
i x. (4)

The gradient descent algorithm follows the iterative
updates

xt+1 =
(
I − η

1

m

m∑
i=1

((aT
i x)

2 − yi)aia
T
i

)
xt (5)

Ma et al. (2020) showed this algorithm exhibits an im-
plicit regularization property that leads to linear con-
vergence,

∥xt − x⋆∥ ≤ C(1− η∥x⋆∥22/2)t∥x⋆∥2 (6)

for some absolute constant C.

2.2 Accelerated Methods in Phase Retrieval

In this work, we consider accelerated first-order meth-
ods. These are not new and indeed have been consid-
ered in past works for phase retrieval, such as Xu et al.
(2018); Ajayi et al. (2018); Xiong et al. (2018, 2020);
Wang and Abernethy (2020). In Ajayi et al. (2018),
the authors study an adaptation of Nesterov’s acceler-
ated method for the matrix sensing problem that ex-
hibits linear convergence up to an error that depends
on the momentum parameter. In Wang and Abernethy
(2020), the authors study how a heavy ball performs
with random initialization, although it lacks a correct
proof. Xiong et al. (2018, 2020) show convergence
of (P) and (N) using techniques from control theory.
However, they do not demonstrate acceleration over
standard gradient methods and require a generic reg-
ularity condition. In Xu et al. (2018), the authors
demonstrate the advantages of accelerated Wirtinger
flow but offer no proof of convergence. None of these

past works show convergence to the ground truth sig-
nal, and furthermore, no past works consider these ac-
celerated gradient methods from the lens of implicit
regularization. Therefore, our work answers the im-
portant outstanding question in the literature on the
convergence of these momentum methods.

The two accelerated gradient methods considered in
this paper are Polyak’s Heavy Ball (Polyak, 1964)
and Nesterov’s Accelerated Gradient (Nesterov, 1983)
methods. The iteration that defines gradient descent
with Polyak momentum is

xt+1 = xt − η∇f(xt) + β(xt − xt−1) (P)

where x1 = x0. On the other hand, gradient descent
with Nesterov momentum takes the form

xt+1 = xt − η∇f(xt + β(xt − xt−1)) + β(xt − xt−1)
(N)

where again x1 = x0.

We note that the primary difference between the two
is that Nesterov momentum takes the gradient at an
extrapolated point, whereas Polyak momentum uses
the gradient at the current iterate. As we point out
in our analysis, controlling the Nesterov momentum’s
implicit regularization is more challenging due to this
extrapolation.

In some convex settings, the convergence of these ac-
celerated methods is well understood. For a twice con-
tinuously differentiable function f , we say that f is
µ-strongly convex and L-smooth if

µI ⪯ ∇2f(x) ⪯ LI, (7)

for all x. The condition number is the ratio κ = L/µ.
Under the assumption of strong convexity and smooth-
ness, the convergence of (P) and (N) can be succinctly
stated in the following theorem.

Theorem 1 ((Polyak, 1964; Nesterov et al., 2018)).
Suppose that we run gradient descent, (P) or (N) on
a µ-strongly convex and L-smooth function f . Then,
gradient descent with step size η = 1/L achieves the
convergence bound

∥xt − x∗∥2 ≲ exp(−t/κ)∥xt − x0∥2. (8)

On the other hand, (P) with step size η = 4
(
√
µ+

√
L)2

and momentum parameter β =
√
κ−1√
κ+1

and (N) with

step size η = 1/L and momentum parameter β =√
κ−1√
κ+1

achieve the convergence bound

∥xt − x∗∥2 ≲ exp(−c1t/
√
κ)∥xt − x0∥2, (9)

Here, the constant c1 = 2 for (P) and c1 = 1 for (N).
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As we can see, the accelerated methods achieve a
faster rate, where the improvement is by a factor of√
κ. This means that, to reach an error ϵ, GD needs

O(κ log(1/ϵ)) iterations while the accelerated methods
need O(

√
κ log(1/ϵ)) iterations. Notice that one needs

to select the parameters for the momentum methods
carefully. However, as we will see in the next section, in
the Gaussian phase retrieval problem, we have bounds
for µ and L that allow us to set the parameters in these
methods.

3 CONVERGENCE FOR
ACCELERATED GRADIENT
METHODS

In this section, we give our main theorems proving
convergence of (P) and (N) on the Gaussian phase re-
trieval problem. First, in Section 3.1, we review the
ideas of implicit regularization from Ma et al. (2020)
used to prove the convergence of gradient descent on
this problem. Then, in Section 3.2, we give our main
convergence theorems and a sketch of their proofs. Fi-
nally, Section 3.3 discusses these results and compares
them with those for gradient descent.

3.1 Implicit Regularization

Ma et al. (2020) give implicit regularization results for
low-rank matrix recovery problems. The main idea is
to ensure that the iterates of gradient descent remain
in a good region, which the authors call the region of
incoherence and contraction (RIC). In this region, one
can show that the cost function (2) is strongly convex
and smooth.

To see how this might be the case, consider the Hessian
of the cost function,

∇2f(x) =
1

m

m∑
i=1

(3(aT
i x)

2 − yi)aia
T
i . (10)

One can show that I ⪯ Eai
∇2f(x) ⪯ 10I for x in a

small ball around x∗,

∥xt − x⋆∥2 ≤ 2C1∥x⋆∥2 (LOC)

This is a locality property, which says the iterate needs
to be sufficiently close to optimal for the cost function
to be strongly convex and smooth. Thus, we might
expect the function to be smooth and strongly convex
for large samples. However, the concentration of the
Hessian requires a suboptimal number of samples m =
Ω(n2) samples, while m = Ω(n) samples is sufficient
to identify x∗ (Chen et al., 2015).

To transfer these ideas to the small sample setting,
one can show that the Hessian of f is sufficiently well-

behaved, provided that x obeys an additional condi-
tion besides locality. The extra condition that defines
the RIC besides (LOC) is the incoherence condition,

max
i

|aT
i (x− x⋆)| ≤ C2 log(n)∥x∗∥. (INC)

This condition ensures that the vector x − x∗ is not
too aligned with any specific vector ai.

Under the two assumptions (LOC) and (INC), Lemma
1 of Ma et al. (2020) states that with probability at
least 1−O(mn−10),

1

2
I ⪯ ∇2f(x) ⪯ O(log(n))I. (11)

The main idea is that the additional restriction of in-
coherence allows one to apply concentration bounds
that hold for sample sizes m = Ω(n log n) rather than
m = Ω(n2).

With this lemma in hand, one might expect to be able
to show that (P) and (N) achieve faster convergence
due to Theorem 1. However, there is an outstanding is-
sue: this theorem assumes that the optimization land-
scape is globally strongly convex and smooth. How-
ever, this is not the case for the phase retrieval func-
tion, since it is only strongly convex and smooth inside
the RIC.

To find an initial point in the RIC, we use a spectral
initialization (Ma et al., 2020). Indeed, setting

x0 =
√
λ1(Y )/3x̃0,

where λ1(Y ) and x̃0 are the leading eigenvalue and
eigenvector of Y = 1

m

∑m
i=1 yiaia

T
i , guarantees that

inequalities (LOC) and (INC) are satisfied for x0.

3.2 Convergence of (P) and (N)

The main theorem in this work is the same as the main
theorem of Ma et al. (2020) for phase retrieval with the
notable change that the convergence improves from κ
to

√
κ, as in Theorem 1. In practical terms, with spec-

tral initialization, (P) and (N) need O(
√
log n log(1/ϵ))

iterations rather than the O(log n log(1/ϵ)) to reach
an error ϵ. As we demonstrate in experiments, this is
backed up by real scenarios, where we see accelerated
method demonstrating faster convergence. While we
assume ∥x∗∥ = 1 in the theorem to simplify our pre-
sentation, the proof can be extended to signals with
arbitrary length without much difficulty.

Theorem 2 (Convergence of (P) and (N)). Suppose
that x∗ is a fixed vector with ∥x∗∥ = 1 and aj fol-
low Assumption 1. Provided that 0 ≤ η ≲ 1

c logn∥x0∥2 ,

m ≳ n log n, β =

√
c log(n)−

√
1/2√

c log(n)+
√

1/2
for some suffi-

ciently large constant c, then with probability at least
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1−O(mn−9), (P) and (N) with spectral initialization
achieve the following contraction and incoherence:

dist(xt,x∗) ≤ ϵ
(
1−√

η∥x∗∥22/2
)t ∥x∗∥2 (12)

max
j

|aT
j (x

t − x∗)| ≤ c2
√

log n∥x∗∥2. (13)

To fix ideas, we present the main ideas in the proof for
Polyak momentum. The proof for Nesterov momen-
tum needs similar steps and estimations with more in-
volved expressions. The fundamental ingredient of the
proof of the rate of our algorithm is the fact that, for
a strongly convex and smooth function, two consecu-
tive iterations of (P) with the parameters of Theorem
2 achieve the contraction∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

.

(14)

The repeated application of this relation, i.e.,

∥∥∥∥[xt+1 − x∗
xt − x∗

]∥∥∥∥
2

≤
(√

L−√
µ√

L−√
µ

)t ∥∥∥∥[x1 − x∗
x0 − x∗

]∥∥∥∥
2

(15)
would be enough to show the algorithm’s convergence
if f was strongly convex and smooth. However, be-
cause f is nonconvex in general, to use this reasoning
directly, we need to make sure that all the iterations
of gradient descent remain in the RIC, i.e., that they
satisfy (LOC) and (INC).

While the detailed proof of Theorem 2 is given in the
supplementary material, we sketch the induction we
use here.

1. First, we notice that for points in the RIC (namely
close enough to x∗ (LOC) and in the incoher-
ence region (INC)), the sampled function (2) is
strongly convex and smooth with high probabil-
ity.

2. Second, we prove a contraction-like result for it-
erations xt in the RIC of the form∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤ M

∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

, (16)

where M depends only on the constants of strong
convexity and smoothness of f . This result fol-
lows from the facts that the segment [x∗,xt] is
in the RIC for (P) and that f can be considered
strongly convex and smooth in the RIC (11). In a
similar way, we can show that for(N), the segment
[x∗,xt + β(xt − xt−1)] is in the RIC.

3. We then proceed by induction to show that all it-
erations for a starting point x0 in the RIC remain
in the RIC with high probability using a leave-
one-out argument.

Our proof strategy is based on a leave-one-out ap-
proach, where a new function is constructed

f (ℓ)(x) =
1

4m

∑
i:i̸=ℓ

((aT
i x)

2 − yi)
2, (17)

for ℓ = 1, . . . ,m. The leave one out sequences xt,(ℓ) are
defined by running one of the optimization methods
(P) or (N) on (17). The following lemma ensures that
the accelerated methods remain close to the leave-one-
out sequences throughout their iterations.

Lemma 1 (Leave-one-out proximity). Suppose that

aj
i.i.d.∼ N(0, I). Then, for the sequences generated by

(P) or (4), with probability at least 1−O(mn−10),

max
1≤ℓ≤m

∥∥∥∥[xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]∥∥∥∥
2

≤ C3

√
log(n)

n
.

In the past analysis of gradient descent, proximity to
leave-one-out sequences was essential for proving that
the iterates remain in the RIC. Therefore, our analysis
can be seen as an extension of these results to the
accelerated case, where we show that the accelerated
gradient sequences also remain close to the leave-one-
out sequences.

3.3 Discussion

It is important to point out that we only actually need
O(log n) iterations to reach a region where (LOC) im-
plies (INC). From that point on, the rates of con-
vergence provided by the methods we studied are not
probabilistic. This fact is also used in Ma et al. (2020),
although they use a conservative bound on the number
of iterations to achieve this fact.

One of the main challenges in the proof of implicit reg-
ularization and convergence of the accelerated gradient
methods is that these methods do not generally de-
fine monotonic sequences for common Lyapunov func-
tions. For example, we do not expect the sequences
(∥xt − x∗∥)t∈N or (f(xt) − f(x∗))t∈N to be mono-
tonic. This then makes it hard to guarantee that the
sequences of iterates (xt) remain within the RIC. For-
tunately, we are able to prove an analogous implicit
regularization result to that observed for gradient de-
scent in Ma et al. (2020) by looking at sequences that
consider pairs of consecutive iterates. That is, we are
able to prove a contraction result, as well as leave-one-

out proximity for the sequence

([
xt+1

xt

])
t∈N

.
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Since the bounds require that pairs of iterates main-
tain properties rather than individual iterates, the con-
stants in our estimates are worse than those required
for GD by a constant absolute factor. This essentially
means that our sample complexity is a constant factor
worse than that required for GD. On the other hand,
our convergence rate is arbitrarily better than that of
GD, since we get a better convergence rate by a factor
of

√
log n.

There are a few limitations of our methodology. First,
current results on random initialization and alter-
nating projections separate the dimension from the
log(1/ϵ) in the rate, while our rate is

√
log n log(1/ϵ).

Thus, while our results are better than GD with spec-
tral initialization (Ma et al., 2020), they are not bet-
ter than GD with random initialization in the random
model (Chen et al., 2019). Proving convergence of ac-
celerated methods with random initialization remains
an open question (Wang and Abernethy, 2020). On
the other hand, our work opens the door to acceler-
ating in the random setting by showing how to apply
leave-one-out analysis to accelerated gradient meth-
ods.

4 EXPERIMENTS

While our results are primarily theoretical in nature,
we give a few simulations showing that accelerated gra-
dient methods are well-behaved, and actually perform
better than GD on simulated phase retrieval tasks.

Our first experiment is displayed in Figure 2. Here,
we test GD against the two momentum based meth-
ods (P) and (N). Here, the sensing vectors satisfy
Assumption 1, x∗ is drawn uniformly from Sn−1,

η = 0.2/(log n), and β =
√
10 log n−

√
2√

10 log n+
√
2
. We vary

n = 10, 50, 100 and m = 200, 500, 1000. As we can
see, where gradient descent converges, the accelerated
methods converge faster.

In our second experiment, we test GD against the two
momentum-based methods (P) and (N) in the same
setup as before, but now the initial vector is randomly
chosen from Sn−1. The results are displayed in Figure
3. As we can see, the accelerated methods still con-
verge faster than GD when it converges. Therefore,
we expect that our theoretical results can be extended
to this setting as well.

In our third experiment in Figure 4, we repeat the ex-
periment in Figure 1 across a range of dimensions. For
each dimension, we compute the slope of the line given
by plotting log ∥xt

AGD − x∗∥ against log ∥xt
GD − x∗∥.

This slope can be interpreted as the speedup of the
accelerated method. With the spectral initialization,
we expect the speedup to be proportional to

√
log n,
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Figure 2: Experiment demonstrating the faster conver-
gence of accelerated methods when compared to GD.
Across the rows we vary m = 200, 500, 1000, and down
the columns we vary n = 10, 50, 100. As we can see,
(P) and (N) have identical performance.
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Figure 3: Experiment demonstrating the faster conver-
gence of accelerated methods when compared to GD
with random initialization. Across the rows we vary
m = 200, 500, 1000, and down the columns we vary
n = 10, 50, 100. As we can see, (P) and (N) have iden-
tical performance.

which we observe in practice.

Finally, we compare gradient descent to the acceler-
ated methods on the coded diffraction experiment of
Section IV of Candes et al. (2015). Here, the vector x∗
is the Stanford main quad image, and aj are Fourier
measurements with random modulation patterns; see
the supplementary material or Section IV or Candes
et al. (2015) for details. As we can see, the accelerated
methods recover the image much faster than Wirtinger
Flow (WF), which is just gradient descent.

5 CONCLUSIONS

This work presents the first analysis of implicit reg-
ularization of accelerated gradient methods on a ma-
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Figure 4: Plot of speedup of accelerated gradient de-
scent versus momentum. Here, the y-axis is the slope
of the linear fit of log ∥xt

AGD −x∗∥ versus log ∥xt
GD −

x∗∥, and the x-axis is n. As we can see, these are well-
approximated by the curve

√
log n.

Figure 5: Errors versus iteration for Wirtinger flow
as well as Nesterov/Polyak accelerated Wirtinger flow.
All methods have the same per-iteration complexity.
As we see, the accelerated methods recover the true
image much faster.

trix factorization problem. We consider the problem
of Gaussian phase retrieval, where the measurement
vectors follow a standard Gaussian distribution. In
this case, we are able to show that accelerated gradi-
ent iterates remain well-behaved in the sense that they
remain within the region of incoherence and contrac-
tion. We believe that our results can be generalized
to other settings, such as matrix completion and blind
deconvolution.

Many interesting future directions can be pursued. For
example, one can consider extending the results to
show that accelerated methods converge more quickly
than GD for random initialization. Furthermore, one
can consider accelerated methods for sparse phase re-
trieval or generative phase retrieval. This could be
done by applying ideas from nonsmooth optimization
(Beck and Teboulle, 2009) or accelerating smooth for-
mulations with other implicit regularization (Wu and
Rebeschini, 2021).

Figure 6: Recovered images after 140 iterations for
the accelerated as well as Wirtinger flow algorithm
on the coded diffraction test. As we can see, the ac-
celerated methods have already recovered an accurate
image before the gradient method even begins to con-
verge. Note that the WF image is black because most
pixels are much smaller in value than the maximum.
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[Yes – see Section 2.1 as well as Section 2.2.]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
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[Yes - the complexity of the method is the
same as gradient descent, and we prove better
iteration complexity. See Theorem 2.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No - we do not provide
source code, but can provide it upon re-
quest and will make a public github repos-
itory upon release of our paper. ]
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(b) Complete proofs of all theoretical results.
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(c) Clear explanations of any assumptions. [Yes
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sumption in Assumption 1.]
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pants and the total amount spent on partic-
ipant compensation. [Not Applicable]



Acceleration and Implicit Regularization in Gaussian Phase Retrieval

A SUPPLEMENTARY MATERIAL

Recall that, by Assumption 1, the sensing vectors {ai}, i = 1, . . . ,m, are sampled i.i.d from a normal distribution
N (0, I). In the proofs in this section, we use the following results that come from standard concentration
inequalities for normal distributions, see Ma et al. (2020, Appendix A):

1. With probability at least 1 −O(me−3n/2):

max
1≤i≤m

∥ai∥2 ≤
√
6n (18)

2. With probability at least 1 −O(mn−10), for any y ∈ Rn:

max
1≤i≤m

|aT
i y| ≤ 5

√
log(n)∥y∥2 (19)

A.1 Proof of Theorem 2 for Polyak’s Heavy Ball method

Proof of Theorem 2 for Polyak’s Heavy Ball Method (P). By repeated application of Lemma 4, for any t ≤ n,
we have that xt is in the RIC with probability at least (1−O(mn−10))n ≥ 1−O(mn−9). Moreover, by Lemma
3 we also have that ∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)t ∥∥∥∥[x1 − x∗
x0 − x∗

]∥∥∥∥
2

≤
(
1− 2

√
µ√

L+
√
µ

)t

C1. (20)

In particular, for T0 = n, we obtain∥∥∥∥[ xT0 − x∗
xT0−1 − x∗

]∥∥∥∥
2

≤
(
1− 2

√
µ√

L+
√
µ

)T0

C1 (21)

≤ 1

n
C1, (22)

as long as n ≥ − log(n)

log

(
1− 2

√
1/2√

C log(n)+
√

1/2

) . Furthermore, the choice t ≥ n then implies that

(
1− 2

√
1/2√

C log(n) +
√
1/2

)t

≤ 1

n
. Therefore, as long as the iterates remain in the RIC for the first T0 iter-

ations, we get contraction to a neighborhood where dist(xT0 ,x∗) ≤ C1/n = O(1/n).

After this, for t ≥ T0, locality implies incoherence, i.e., condition (LOC) implies (INC). Indeed, for t = T0, by
Cauchy-Schwartz inequality, concentration inequality (18), and inequality (21) we obtain:

max
1≤ℓ≤m

|aT
ℓ (x

T0 − x∗)|

≤
√
6n∥xT0 − x∗∥ ≤

√
6n

1

n
C1

≲ C2

√
log(n). (23)

Now, because xT0 is in the RIC, we can use Lemma 3 to get that∥∥∥∥[xT0+1 − x∗
xT0 − x∗

]∥∥∥∥
2

≤
(
1− 2

√
µ√

L+
√
µ

)∥∥∥∥[ xT0 − x∗
xT0−1 − x∗

]∥∥∥∥
2

≤ 1

n
C1 (24)
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Following the same argument that led to (23) and (24), we can see that locality implies incoherence for iterates
with t ≥ T0. We have just shown that the assumptions of Lemma 3 are satisfied for all t ≥ T0 = n, which implies
that ∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤
(
1− 2

√
µ√

L+
√
µ

)t

C1 (25)

The previous proofs rely on the following three lemmas. We state the first without proof, since it was shown in
Ma et al. (2020). This lemma gives high probability bounds on the Hessian seen in (11) provided that the point
x is in the RIC.

Lemma 2 (Lemma 1 of Ma et al. (2020)). For sufficiently small C1, sufficiently large C2, and m ≥ c0n log n
with sufficiently large c0, with probability at least 1−O(mn−10), one has

∇2f(x) ⪯ (5C2(10 + C2) log(n))In (26)

for all x ∈ Rn for which ∥x− x∗∥2 ≤ 2C1, and

∇2f(x) ⪰ 1

2
In (27)

for all x ∈ Rn such that

∥x− x∗∥2 ≤ 2C1 (28)

max
i

|aT
i (x− x∗)| ≤ C2

√
log(n)

In the following proof of Theorem 2, as a short hand, we use µ = 1/2 and L = c log n as lower and upper bounds
on the Hessian by Lemma 2.

Next, using the previous lemma, we show that if the current pair of consecutive iterates lie within the RIC, then
they get closer to x∗.

Lemma 3 (Contraction). If aj
i.i.d.∼ N(0, I), then with probability at least 1−O(mn−10), then the iterates (P)∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

(29)

when xt,xt−1 satisfy conditions (28), η ≲ 4

(
√

1/2+
√

log(n))2
, and β =

√
c log(n)−

√
1/2√

c log(n)+
√

1/2
.

Proof of Lemma 3. We can write one step of the heavy ball method as[
xt+1 − x∗
xt − x∗

]
=

[
xt − x∗ − η∇f(xt) + β(xt − xt−1)

xt − x∗

]
= M(t)

[
xt − x∗

xt−1 − x∗

]
(30)

where ξt ∈ [x∗,xt], the segment joining x∗ and xt. Here we have made

M(t) =

[
(1 + β)I −∇2f(ξt) −βI

I 0

]
(31)

A direct analysis shows that ξt is in the region of RIC. Indeed, if ξt = (1− τ)x∗ + τxt for some τ ∈ (0, 1) then

∥ξt − x∗∥2 = τ∥xt − x∗∥2 ≤ 2C1

and
max

i
|aT

i (ξ − x∗)| = τ max
i

|at
i(x

t − x∗)| ≤ C2

√
log n.
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Therefore, as f is strongly convex and smooth, we can bound the norm of the matrix factor (31) as is usually
done in the heavy ball method, by bounding its eigenvalues (see for instance Polyak (1964, 1987)).

Bounding the eigenvalues in this way yields the contraction∥∥∥∥[xt+1 − x∗
xt − x∗

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

(32)

We now put the previous two lemmas together to prove the main induction. This lemma ensures that pairs of
consecutive iterates maintain the contraction and incoherence properties necessary to remain in the RIC. Note
that the proof of this lemma relies on a further Lemma 5, where we show that the iterates (P) stay close to
leave-one-out sequences.

Lemma 4 (Induction). Suppose that we initialize (P) with x0 =
√

λ1(Y )
3 x̃0, where λ1(Y ) and x0 are the leading

eigenvalue and eigenvector of Y = 1
m

∑m
i=1 yiaia

T
i . Suppose further that aj

i.i.d.∼ N(0, I). Then, for n sufficiently
large, with probability at least 1−O(mn−10),

∥xt+1 − x∗∥22 + ∥xt − x∗∥22 ≤ C2
1 (33)

max
1≤i≤m

|aT
i (x

t+1 − x∗)| ≤ C2

√
log(n) (34)

Proof. The proof of all these relations relies on an induction argument. According to Lemma 5 in Ma et al.
(2020), for a given δ > 0 and m large enough one has ∥x0 − x∗∥ ≤ 2δ. Choosing δ = C1

8 implies that

∥x1 − x∗∥2 + ∥x0 − x∗∥2 ≤ C1. Furthermore, by Lemma 3, for C =
(√

L−√
µ√

L+
√
µ

)
< 1,

∥xt+1 − x∗∥22 + ∥xt − x∗∥22 (35)

≤ C2(∥xt − x∗∥22 + ∥xt−1 − x∗∥22) ≤ C2
1

Then, we prove incoherence using induction as well:

max
1≤ℓ≤m

|aT
ℓ (x

t+1 − x∗)| (36)

≤|aT
ℓ (x

t+1 − xt+1,(ℓ)) + aT
ℓ (x

t+1,(ℓ) − x∗)| (37)

≤∥aT
ℓ ∥∥xt+1 − xt+1,(ℓ)∥+ 5

√
log(n)∥xt+1,(ℓ) − x∗∥ (38)

≤∥aT
ℓ ∥C3

√
log(n)

n
(39)

+ 5
√
log(n)(∥xt+1,(ℓ) − xt+1∥+ ∥xt+1 − x∗∥) (40)

≤
√
6nC3

√
log(n)

n
+ 5
√
log(n)

(
C3

√
log(n)

n
+ C1

)
(41)

≤C2

√
log(n) (42)

by taking n large enough and using the fact that C2 can be taken larger than C1 and C3. Here, the second to
last inequality was obtained using (33) and Lemma 5.

To prove the upper bound on the incoherence in the previous Lemma, we must use leave-one-out sequences.
Define the leave-one-out function

f (ℓ)(x) =
1

4m

∑
i:i̸=ℓ

((aT
i x)

2 − yi)
2

We let xt,(ℓ) be sequence defined by running (P) on this function with the same initialization, x0,(ℓ) = x0.
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Lemma 5 (Leave one out). Suppose that aj
i.i.d.∼ N(0, I). Then, with probability at least 1−O(mn−10), for n

sufficiently large,

max
1≤ℓ≤m

∥∥∥∥[xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]∥∥∥∥
2

≤ C3

√
log(n)

n
.

Proof. According to 6 in Ma et al. (2020) we have that

max
1≤ℓ≤m

∥x0 − x0,(ℓ)∥2 ≤ C3

√
log(n)

n
(43)

for any constant C3 (for m large enough so that n log(n)
m ≤ C3). Our base case is satisfied if C3 is chosen

appropriately and we take into account that x1 = x0,x1,(ℓ) = x0,(ℓ) (see Lemma 6 in Ma et al. (2020)).

Recall that

xt+1 = xt − η∇f(xt) + β(xt − xt−1).

For the leave one out iteration we have:

xt+1 − xt+1,(ℓ) = xt − η∇f(xt) + β(xt − xt−1) (44)

−[xt,(ℓ) − η∇f (ℓ)(xt,ℓ)]− β(xt,(ℓ) − xt−1,(ℓ)), (45)

that can be rewritten as (by adding and subtracting the term η∇f(xt,(ℓ))):[
xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]
=M(t)

[
xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]
(46)

− η

[
∇f(xt,(ℓ))−∇f (ℓ)(xt.(ℓ))

0

]
, (47)

where

M(t) =

[
I − η∇2f(ξt) + βI −βI

I 0

]
(48)

for some ξt ∈ [xt,xt,(ℓ)]. As in the proof of Lemma 3, ξt is in the RIC. If ξt = (1− τ)xt + τxt,(ℓ), then

∥ξt − x∗∥2 ≤ (1− τ)∥xt − x∗∥+ τ∥xt,(ℓ) − x∗∥ (49)

≤ (1− τ)C1 + τ(∥xt,(ℓ) − xt∥+ ∥xt − x∗∥) (50)

≤ (1− τ)C1 + τ

(
C3

√
log(n)

n
+ C1

)
(51)

≤ 2C1 (52)

for large enough n. We can also show that ξt satisfies the incoherence condition using the induction hypothesis

|aT
ℓ (ξ

t − x∗)| (53)

≤|(1− τ)aT
ℓ (x

t − x∗) + τaT
ℓ (x

t,(ℓ) − x∗)| (54)

≤(1− τ)C2

√
log(n) (55)

+ τ5
√
log(n)∥xt,(ℓ) − xt + xt − x∗∥ (56)

≤(1− τ)C2

√
log(n) (57)

+ τ5
√
log(n)

(
C3

√
log(n)

n
+ C1

)
(58)

≤C2

√
log(n) (59)
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Thus, by bounding M(t) and then using induction hypothesis, we obtain∥∥∥∥M(t)

[
xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)∥∥∥∥[ xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]∥∥∥∥
2

(60)

≤
(√

L−√
µ√

L+
√
µ

)
C3

√
log(n)

n
.

On the other hand, by the definition of f (ℓ) and (4),

∇f(xt,(ℓ))−∇f (ℓ)(xt,(ℓ)) =
1

m
[(aT

ℓ x
t,(ℓ))2 − (aT

ℓ x∗)
2]aℓa

T
ℓ x

t,(ℓ). (61)

so that ∥∥∥∥[∇f(xt,(ℓ))−∇f (ℓ)(xt.(ℓ))
0

]∥∥∥∥
2

≤ 1

m
∥aℓ∥|aT

ℓ x
t,(ℓ)||(aT

ℓ x
t,(ℓ))2 − (aT

ℓ x∗)
2|. (62)

We proceed to bound each term in (62). First,

∥aℓ∥ ≤
√
6n (63)

with probability at least 1 −O(me−1.5n), by the concentration inequality (18).

For the second factor, using the induction hypothesis and (33) yields

|aT
ℓ x

t,(ℓ)| ≤ |aT
ℓ ||(xt,(ℓ) − x∗)|+ |aT

ℓ x∗| ≤ 5
√
log(n)(∥xt,(ℓ) − xt∥+ ∥xt − x∗∥) + 5

√
log(n) (64)

≤ 5
√
log(n)

(
C3

√
log(n)

n
+ C1

)
+ 5
√
log(n) (65)

≤ (C4 + 5)
√

log(n) (66)

for n large enough so that
√

log(n)
n is as small as needed. We have also used concentration inequality (19).

For the third factor

|(aT
ℓ x

t,(ℓ))2 − (aT
ℓ x∗)

2| ≤ |(aT
ℓ x

t,(ℓ) − aT
ℓ x∗)

2 + 2aT
ℓ (x

t,(ℓ) − x∗)a
T
ℓ x∗| (67)

≤ |aT
ℓ (x

t,(ℓ) − x∗)||aT
ℓ (x

t,(ℓ) − x∗) + 2aT
ℓ x∗| (68)

≤ C2

√
log(n)(C2

√
log(n) + 10

√
log(n)) (69)

This follows from the fact that xt,(ℓ) is independent of aℓ, and by Gaussian concentration. The combination of
all these bounds gives∥∥∥∥[∇f(xt,(ℓ))−∇f (ℓ)(xt.(ℓ))

0

]∥∥∥∥
2

≤
√
6n(C4 + 5)

√
log(n)C2(C2 + 10) log(n)

≤ C4 + 5)C4(C4 + 10)
n log(n)

m

√
log(n)

n
(70)

≤ c

√
log(n)

n
(71)

for any c provided m is sufficiently large, m ≥ n log(n). Finally the combination of bounds (60) and (70) yields∥∥∥∥[xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]∥∥∥∥
2

≤
(√

L−√
µ√

L+
√
µ

)
C3

√
log(n)

n
+ cη

√
log(n)

n
, (72)

and as c can be made as small as desired and because of the relation between
(√

κ−1√
κ+1

)
and η then∥∥∥∥[xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]∥∥∥∥
2

≤ C3

√
log(n)

n
(73)
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A.2 Proof of Theorem 2 for Nesterov’s Accelerated Gradient method

Proof of Theorem 2 for Nesterov’s method N. Again, in the following, as a short hand, we use µ = 1/2 and
L = c log n as lower and upper bounds on the Hessian by Lemma 2.

The proof follows the same pattern as for Polyak’s method with the difference that the contraction constant for

Nesterov’s method is

(
1−

√
µ√
L

)
instead of

(
1− 2

√
µ√

L+
√
µ

)
in equation (20).

For Nesterov’s method it is also sufficient to choose T0 = n because for n large enough

n ≥ − log(n)

log
(
1−

√
µ√
L

) ≥ − log(n)

log

(
1−

√
1/2√

C log(n)

)
which implies that for t ≥ T0 = n (

1−
√
1/2√

C log(n)

)t

≤ 1

n
(74)

The rest of the proof stays the same as the proof of Theorem 2 for (P) given in Appendix A.1.

We provide the lemmas as before for completeness. Note that there are small differences in the proof and these
lemmas in order to deal with the extrapolation in the gradient computation for (N). In particular, it takes more
work to ensure that the extrapolated point xt + β(xt − xt−1) remains in the RIC. To start, however, we show
that as long as xt,xt−1 points are sufficiently far inside the RIC, then the pair has a contraction property.

Lemma 6 (Contraction for Nesterov). If aj
i.i.d.∼ N(0, I), then with probability at least 1 − O(mn−10), the

iterates (N) satisfy ∥∥∥∥[xt+1 − x∗
xt − x∗

]∥∥∥∥
2

=

(
1−

√
µ√
L

)∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

(75)

when xt,xt−1 satisfies conditions (28), η = 1
c logn , and β =

√
c log(n)−

√
1/2√

c log(n)+
√

1/2
.

Proof. Let’s look at the recursion for xt in Nesterov’s method. In this case, we have

xt+1 = xt − η∇f(xt + β(xt − xt−1)) + β(xt − xt−1) (76)

We then have

xt+1 − x∗ = xt − x∗

− η∇2f(ξt)(xt + β(xt − xt−1)− x∗)

− β(xt − x∗)

+ β(xt−1 − x∗)

that can be rewritten as [
xt+1 − x∗
xt − x∗

]
= M(t)

[
xt − x∗

xt−1 − x∗

]
(77)

where

M(t) =

[
(1 + β)(I − η∇2f(ξt)) −β(I −∇2f(ξt))

I 0

]
(78)

and ξt ∈ [x∗,xt + β(xt − xt−1)], the segment joining x∗ and xt + β(xt − xt−1).

We can show directly that ξt is in the region of RIC. For some τ ∈ (0, 1) we have

∥ξt − x∗∥2 = ∥(1− τ)x∗ + τ(xt + β(xt − xt−1))− x∗∥
= τ∥xt − x∗ + β(xt − x∗) + β(x∗ − xt−1)∥

≤ C1

3
+ 2β

C1

3
≤ 2C1. (79)
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and for incoherence we get

|aT
ℓ (ξ

t − x∗)| (80)

≤ |aT
ℓ ((1− τ)x∗ + τ(xt + β(xt − xt−1))− x∗)| (81)

= τ |aT
ℓ (x

t − x∗ + β(xt − xt−1))| (82)

≤ |(1 + β)aT
ℓ (x

t − x∗) + βaT
ℓ (x∗ − xt)| (83)

≤ (1 + 2β)
C2

3

√
log(n) ≤ C2

√
log(n) (84)

Therefore, as f can be considered strongly convex and smooth, we can bound the eigenvalues of the matrix M(t)
to obtain ∥∥∥∥[xt+1 − x∗

xt − x∗

]∥∥∥∥
2

=

(
1−

√
µ√
L

)∥∥∥∥[ xt − x∗
xt−1 − x∗

]∥∥∥∥
2

(85)

Lemma 7 (induction for Nesterov). For n sufficiently large, with probability at least 1−O(mn−10),

∥xt+1 − x∗∥22 + ∥xt − x∗∥22 ≤ (C1/3)
2 (86)

max
1≤i≤m

|aT
i (x

t+1 − x∗)| ≤
C2

3

√
log(n) (87)

Proof. In exactly the same way as for heavy ball, Lemma 5 in Ma et al. (2020) implies that the conditions are

satisfied for the base case. Now, by Lemma 6, for C =
(
1−

√
µ√
L

)
< 1,

∥xt+1 − x∗∥22 + ∥xt − x∗∥22 (88)

≤ C2(∥xt − x∗∥22 + ∥xt−1 − x∗∥22) ≤
(
C1

3

)2

We can also use induction to prove incoherence:

max
1≤ℓ≤m

|aT
ℓ (x

t+1 − x∗)| (89)

≤|aT
ℓ (x

t+1 − xt+1,(ℓ)) + aT
ℓ (x

t+1,(ℓ) − x∗)| (90)

≤∥aT
ℓ ∥∥xt+1 − xt+1,(ℓ)∥+ 5

√
log(n)∥xt+1,(ℓ) − x∗∥ (91)

≤∥aT
ℓ ∥C3

√
log(n)

n
(92)

+ 5
√

log(n)(∥xt+1,(ℓ) − xt+1∥+ ∥xt+1 − x∗∥) (93)

≤
√
6nC3

√
log(n)

n
+ 5
√
log(n)

(
C3

√
log(n)

n
+

C1

3

)
(94)

≤C2

3

√
log(n) (95)

by taking n large enough, considering that C2 can be chosen larger than C1 and that C3 can be chosen as small
as necessary by taking a large enough c0 in m ≥ c0n log(n).

Here, as in the proof of the corresponding lemma for heavy ball, to prove the upper bound on the incoherence
in the previous Lemma, we must use leave-one-out sequences. As before, the leave-one-out function is defined as

f (ℓ)(x) =
1

4m

∑
i:i̸=ℓ

((aT
i x)

2 − yi)
2

and we let xt,(ℓ) be the sequence defined by running (N) on this function with the same initialization, x0,(ℓ) = x0.
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Lemma 8 (Leave one out for Nesterov). For n sufficiently large, with probability at least 1−O(mn−10),

max
1≤ℓ≤m

∥∥∥∥[xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]∥∥∥∥
2

≤ C3

√
log(n)

n
.

Proof. In an analogous way to the heavy ball case, we can write one iteration of Nesterov acceleration as[
xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]
= M2(t)

[
xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]
− η

[
∇f(xt,(ℓ) + β(xt,(ℓ) − xt−1,(ℓ)))

0

]
+ η

[
∇f (ℓ)(xt,(ℓ) + β(xt,(ℓ) − xt−1,(ℓ)))

0

]
, (96)

where

M2(t) =

[
(1 + β)(I − η∇2f(ξt)) −β(I − η∇2f(ξt))

I 0

]
. (97)

with ξt = (1− τ)zt,(ℓ) + τzt, where τ ∈ (0, 1) and

zt,(ℓ) = xt,(ℓ) + β(xt,(ℓ) − xt−1,(ℓ)) (98)

zt = xt + β(xt − xt−1). (99)

We can show directly that ξt is in the region of RIC. First, we have that

∥ξt − x∗∥ = (1− τ)∥zt,(ℓ) − x∗∥+ τ∥zt − x∗∥ (100)

≤ (1− τ)(∥zt,(ℓ) − zt∥+ ∥zt − x∗∥) + τ∥zt − x∗∥ (101)

≤ (1− τ)∥zt,(ℓ) − zt∥+ ∥zt − x∗∥. (102)

We can bound ∥ξt − x∗∥ in two parts:

∥zt − x∗∥ ≤ (1 + β)∥xt − x∗∥+ β∥xt−1 − x∗∥ (103)

≤ (1 + 2β)
C1

3
(104)

and

∥zt − zt,(ℓ)∥ ≤ (1 + β)∥xt − xt,(ℓ)∥+ β∥xt−1 − xt−1,(ℓ)∥ (105)

≤ (1 + 2β)C3

√
log n

n
(106)

so that

∥zt − zt,(ℓ)∥ ≤ (1− τ)(1 + 2β)C3

√
log n

n
+ (1 + 2β)

C1

3
(107)

≤ 2C1 (108)

by taking n large enough.
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Now for the incoherence condition we have

|aT
ℓ ((1− τ)zt,(ℓ) − zt)| ≤(1− τ)5

√
log(n)∥zt,(ℓ) − x∗∥ (109)

+ τ |aT
ℓ (x

t − x∗ + β(xt − x∗ + x∗ − xt−1))| (110)

≤(1− τ)5
√
log(n)∥zt,(ℓ) − zt + zt − x∗∥ (111)

+ τ |aT
ℓ ((1 + β)(xt − x∗) + (x∗ − xt−1))| (112)

≤(1− τ)5
√
log(n)(∥xt,(ℓ) − xt∥) (113)

+ (1− τ)5
√
log(n)(β∥(xt,(ℓ) − xt + xt−1 − xt−1,(ℓ)∥) (114)

+ (1− τ)5
√
log(n)(1 + 2β)C1 (115)

+ τ((1 + β)C2

√
log(n) + C2

√
log(n)) (116)

≤(1− τ)5
√
log(n)

(
(1 + 2β)C3

√
log(n)

n
+ (1 + 2β)C1

)
(117)

+ τ(2 + β)C2

√
log(n) (118)

≤C2

3

√
log(n) (119)

for large enough n.

As ξt is in the RIC, for the choice η = 1
L , β =

√
L−√

µ√
L+

√
µ
the eigenvalues of M2(·) are bounded by 1 − √

µ/
√
L.

After using our induction hypothesis, we get

∥M2(t)∥2
∥∥∥∥[ xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]∥∥∥∥
2

≤
(
1−

√
µ√
L

)∥∥∥∥[ xt − xt,(ℓ)

xt−1 − xt−1,(ℓ)

]∥∥∥∥
2

(120)

≤
(
1−

√
µ√
L

)
C3

√
log(n)

n
(121)

On the other hand, if we make zt,(ℓ) = xt,(ℓ) + β(xt,(ℓ) − xt−1,(ℓ)), by the definition of f (ℓ) we have:

∇f(zt,(ℓ))−∇f (ℓ)(zt,(ℓ)) (122)

=
1

m
((aT

ℓ z
t,(ℓ))2 − (aT

ℓ x∗)
2)aℓa

T
ℓ z

t,(ℓ) (123)

(124)

so that ∥∥∥∥[∇f(zt,(ℓ))−∇f (ℓ)(zt,(ℓ))
0

]∥∥∥∥
2

(125)

≤ 1

m
∥aℓ∥|aT

ℓ z
t,(ℓ)||(aT

ℓ z
t,(ℓ))2 − (aT

ℓ x∗)
2| (126)

We now can bound each term in (126). We have that

∥aℓ∥ ≤
√
6n (127)

with probability at least 1 −O(me−1.5n), by concentration inequality (18). For the second factor we have

|aT
ℓ z

t,(ℓ)| ≤|aℓ(x
t,(ℓ) − xt)|+ |aℓ(x

t − x∗)|
+ β|aℓ(x

t,(ℓ) − xt)|+ β|aT
ℓ (x

t − x∗)|
+ β|aℓ(x∗ − xt−1)|+ β|aT

ℓ (x
t−1 − xt−1,(ℓ))|

+ |aT
ℓ x∗| (128)
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Using the induction hypothesis and locality we obtain

|aT
ℓ z

t,(ℓ)| ≤5
√
log(n)

(
C3

√
log(n)

n
+ C1 (129)

+C3

√
log(n)

n
+ 2βC1 + βC3

√
log(n)

n

)
(130)

+ 5
√
log(n) (131)

so that

|aT
ℓ z

t,(ℓ)| ≤5
√
log(n)

(
(1 + 2β)C3

√
log(n)

n
+ (1 + 2β)C1

)
(132)

+ 5
√
log(n) (133)

≤(C4 + 5)
√

log(n) (134)

for sufficiently large n so that
√

log(n)
n is as small as needed. For the third factor, by making zt,(ℓ) = xt,(ℓ) +

β(xt,(ℓ) − xt−1,(ℓ)),

|(aT
ℓ z

t,(ℓ))2 − (aT
ℓ x∗)

2| ≤|(aT
ℓ z

t,(ℓ) − aT
ℓ x∗)

2 − 2aT
ℓ (z

t,(ℓ) − x∗)a
T
ℓ x∗| (135)

≤|aT (zt,(ℓ) − x∗)||aT
ℓ (z

t,(ℓ) − x∗)− 2aT
ℓ x∗|

≤(C2

√
log(n) + 2βC2

√
log(n)) (136)

· (C2

√
log(n) + 2βC2

√
log(n) + 10

√
log(n)) (137)

=C2(1 + 2β)
√
log(n)((1 + 2β)C2

√
log(n) + 10

√
log(n)) (138)

Combining all these bounds gives

1

m
∥∇f(zt,(ℓ))−∇f (ℓ)(zt,(ℓ))∥ ≤ 1

m

√
6n(C4 + 5)

√
log(n)C2(C2 + 10) log(n) (139)

≤ (C4 + 5)C2(C2 + 10)
n log(n)

m

√
log(n)

n
(140)

≤ c

√
log(n)

n
(141)

where c can be made as small as needed by taking m large. Finally, the combination of bounds (121) and (141)
with equation (96) yields [

xt+1 − xt+1,(ℓ)

xt − xt,(ℓ)

]
≤
[(

1−
√
µ√
L

)
+ cη

]
C3

√
log(n)

n
(142)

≤ C3

√
log(n)

n
(143)

because c can be made as small as needed and η = 1
L .

A.3 Additional Details for Experiments

All experiments were conducted in Python run on a 2021 Macbook Pro with 16 GB RAM and a 2 GHz Quad-Core
Intel Core i5 processor.
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