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Abstract

In digital health research, there is increasing interest in developing mathematical and
computational models to forecast adverse events in physiological systems. Examples
include falls, the onset of fatal cardiac arrhythmias, and adverse surgical outcomes.
However, the dynamics of physiological systems are known to be exceedingly complex
and perhaps even chaotic. Since no model can be perfect, it becomes important to
understand how the model’s forecasting abilities can be improved, especially when
machine learning is involved and the training data is limited. An adverse event that can
be readily studied in the laboratory is the occurrence of stick falls when humans
attempt to balance a stick on their fingertips. Over the last 20 years, this task has been
extensively investigated experimentally and presently detailed mathematical models are
available. Here we use a long short-term memory (LTSM) deep learning network to
forecast stick falls. We train this model to forecast stick falls in three ways: 1) using
only data generated by the mathematical model (synthetic data), 2) using only stick
balancing recording of stick falls measured using high-speed motion capture
measurements (human data), and 3) using transfer learning which combines a model
trained using synthetic data plus a small amount of human balancing data. We observe
that the LTSM model is much more successful in forecasting a fall using synthetic data
than it is in forecatsing falls for models trained with limited available human data.
However, with transfer learning, i.e. the LTSM model pre-trained with synthetic data
and re-trained with a small amount of real human balancing data, the ability to forecast
impending falls in human data is vastly improved. Indeed, it becomes possible to
correctly forecast 60-70 % of real human stick falls up to 2.35 s in advance. These
observations support the use of physics-assisted model-generated data and transfer
learning techniques to improve the ability of computational models to forecast adverse
physiological events.
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Introduction

There is increasing interest in leveraging physiological measurements to forecast
clinically-relevant events ranging from susceptibility to cardiac arrhythmias [30, 29] to
adverse surgical outcomes [4], predicting limb movements using EMG signals [26],
understanding the effects of ankle weakness on human gait [24] and adverse events in
human balancing tasks [14, 31, 33]. Studies over the last few years have leveraged
advances in machine learning and, more recently, deep learning, to learn dynamical
behaviors [7]. However, in many physiological processes, the dynamics are exceedingly
complex and may not be amenable to these techniques, especially when given a limited
amount of data. A case in point concerns the forecasting of falls for stick balancing on
the fingertip [14]. The dynamics of the movements of the balanced stick are exceedingly
complex and include on-off intermittency [2], Levy flights [3], and micro-chaotic
fluctuations [19, 20]. These dynamical signatures form the cornerstone upon which
current theories of human balance and falls can be based [9]. Thus it can be anticipated
that strategies that forecast the fall of an inverted pendulum will translate into effective
strategies for forecasting human falls. An important benchmark is how far in advance is
it possible to forecast a fall? Clearly, the longer a fall can be forecasted ahead, the more
time is available to activate strategies to mitigate the adverse effects of a fall [23].

Recently it was shown that by using traditional machine learning techniques
(Artificial Neural Networks, Random Forest, Support Vector Machine, K-nearest
Neighbour), it is possible to forecast falls for human pole balancing on the fingertip by
≈ 0.83s [14] based on data from two pole balancers. However, it is known that machine
learning model trained with small amount of data cannot generalize to the different skill
levels of pole balancers, as reflected by different mean balance times. Pole balancing
times can range from a few seconds to many minutes depending on the skill of the
human balancer. Thus fatigue limits the number of balance trials to < 100 per day with
a significant bias towards the less skilled balancers.

An attractive solution to this data scarcity problem is to use a mathematical model
to generate any desired amount of synthetic stick falls and use this data to train a
machine learning model to approximate the complex dynamics of stick falling. This
strategy is similar in spirit to the use of physics-inspired models to investigate the effects
of ankle plantar flexor weakness on gait [24], prediction of arrhythmias susceptibility[29],
and to estimate limb movements using the EMG signal [26]. In all of these cases,
synthetic data is generated via the relevant mathematical models in order to gain
insights into the underlying physiology of the clinically-relevant system. These relevant
mathematical models serve as a ”digital twin” of the various systems in question[11].

We approach the difficult problem of obtaining a generalized model for forecasting of
stick falls limited by a small amount of real data by first generating synthetic stick fall
data using a physiologically motivated mathematical model for pole balancing on the
fingertip. This mathematical model for pole balancing has been developed and refined
in our laboratory over the last twenty years [Milton2023, 1, 8, 18, 19, 20, 9, 22].
Although not yet perfect, this model nonetheless reproduces the same balance time
distribution and many of the frequency and kinematics-dependent properties as
measured experimentally for human pole balancing. Next, we train a stacked long
short-term memory (LSTM) deep learning network on synthetic data generated using
this model to learn the patterns leading to stick falling. Finally, we use transfer learning
to fine-tune this model with a limited amount of real-world human pole-balancing data.

LSTMs are part of a class of Recurrent Neural Network (RNN) deep-learning
algorithms that have been used in time-series forecasting. Unlike traditional
feed-forward neural networks, LSTMs are able to use their internal memory to process
arbitrary sequences of inputs, capturing the temporal dynamics of the data. Moreover,
deep learning models do not require hand-crafted feature engineering. The model can
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learn the latent representation inherent in the data via lots of examples/data. Designing
good hand-crafted features requires expert knowledge and is a labor-intensive process.
This particular deep neural network architecture has been used previously to train a
model to recognize motion-related activities from a wristwatch over a period of time so
that they can be better distinguished from others [16]. A bi-directional LSTM has also
been used in [5] for the forecasting of human physical activity from smartphone sensors.

We conducted an extensive set of experiments to train a range of forecasting models
with forecast times ranging from 0.85 to 2.35 seconds to assess the limit of forecasting in
an unstable dynamic system using a combination of measured human stick balancing
data, simulated data generated by a mathematical model for stick balancing and deep
transfer learning for refinement. We show that it is possible to increase the forecast
time for stick falling by approximately 2-3 times as compared to the latest forecasting of
impending falls by [14].

Our paper is organized as follows. First, we describe how real-world human pole
balancing data is collected. Next, we present the mathematical model for human pole
balancing and describe how the important parameters (time delay, sensory dead zone,
and four reflex gains) were estimated. We describe how the mathematical
model-generated data is pre-processed as suitable input to LSTM algorithm, and how
the unbalanced nature of the fall events (i.e. falls being“rare” events relative to
non-falls) was overcome. In the next section, we show how transfer learning was utilized
to combine the benefits of synthetic data generation with real-world examples for
improved accuracy in event anticipation. Finally, we discuss the implications of our
findings and future directions for this approach for fall forecasting.

Methods

Data Collection

Human pole balancing data collection was approved by the institutional review board at
Claremont McKenna College and was de-identified. Pole balancing at the fingertip was
performed as described previously using the training protocol outlined in [18]. Briefly,
subjects were seated in a chair while facing a blank black screen (Fig 1a). The pole is
an oak dowel with diameter 6.35 mm, length 0.56 m (length of dowel plus 0.009 m
reflective markers attached at each end). The mean balance time for Subject A was 31 s
and for Subject B it was 22 s. Since the mean balance times were less than 240 s, both
of these subjects are considered to be “novice” pole balancers [19]. The mass of the pole
plus reflective markers was 13.8 g. A high-speed motion capture system (3 Qualisys
Oqus 300 cameras, 250 Hz) was used to measure the position of reflective markers
during pole balancing as a function of time. Balance trials in which the fall occurs in
the saggital plane were selected for this study (≈ 70− 80% of stick falls occur in this
direction [19, 9]). Data was down-sampled to 100 Hz for all our fall forecasting
experiments to mimic real-world motion sensor devices, such as smartwatches and
phones which typically collect data at 30-100 Hz.

Mathematical model for stick balancing

Stick balancing on the fingertip was modeled using an inverted pendulum-cart
mechanical model along with human control force in the form of time-delayed predictor
feedback. (Fig. 1(b)). The equation of motion for the stick itself is(
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pendulum.pdf

Fig 1. Human pole balancing illustrating both (a) human position during task, (b) the
mathematical representation of the pole balancing behavior as an inverted
pendulum-cart mechanical model.

where m is the mass of the stick, m0 is the mass of the cart, which is equivalent to the
inertia of the human arm segments plus the hand [21], θ is the vertical displacement
angle of the stick, ẍ is the acceleration of the fingertip (cart), θ̈ is the angular
acceleration of the stick, and f(t) is the control force. The linearized equation of
fingertip motion for the control of the pendulum-cart model is(

1
3ml2 1

2ml
1
2ml m+m0

)(
θ̈
ẍ
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Assuming predictor feedback, the control action, f(t), takes the form

f(t) = kp,θθ(t− τ) + kp,xx(t− τ) + kd,θ θ̇(t− τ) + kd,xẋ(t− τ)

+

∫ t

t−τ

kf(t− s)fPF(s)ds, (3)

where kp,θ, kp,x, kd,θ and kd,x are, respectively, the proportional and derivative control
gains for θ and x, and kf is a function related to the predictor feedback (for further
details, see [9]). The first four terms in Eq. (3) represent the delayed state feedback,
while the last term is associated with the weighted integral of the issued control force
over the interval [t− τ, t] [13]. The effect of a sensory dead zone in the sagittal plane,
related to difficulties with depth perception[19] , was modeled as a switching component
to the control. In other words, the feedback is turned on or off depending on whether θ
is larger or smaller than a sensory threshold Π, i.e.,

θperceived(t− τ) =

{
0 if |θ(t− τ)| < Π

θ(t− τ) if |θ(t− τ)| ≥ Π .
(4)

However, information related to θ̇ and θ̈ remains available [28]. The presence of this
dead zone accounts for the observation that 70-80% of human stick falls occur in the
anterior-posterior direction.

The model equations were integrated using semi-discretization [10] because the
integral term in Eq. (3) cannot be implemented analytically. In the computer code, we

August 14, 2024 4/20



discretized the control force and approximated the integral by a discrete sum of delayed
values with a sampling time of 10 ms. This approach is equivalent to the assumption
that the nervous system behaves like a digital controller with a discrete input and a
discrete output system. The solutions of this model exhibit micro-chaos [19, 20]

Synthetic stick falls. We consider two ways that stick falls can occur: 1) θ
becomes too large and 2) x exceeds arm length. The third possibility, namely that there
is a static mismatch in the gains, was not explored. For stick balancing the changes in x
and θ are strongly correlated especially on time scales of 4τ − 5τ . On these time scales
when a change in x predicts a fall then so do changes in θ. The largest θ for which
balance can be maintained depends on the skill of the stick balancer: we estimated 10
degrees for subject A and 20 degrees for subject B.

There are two constraints placed on x: 1) x cannot be larger than the effective
length, L, of the subject’s arm, and 2) the fingertip cannot hit the subject’s chest. The
effective arm length, L, is shorter than the length of the arm measured from the tip of
the shoulder to the tip of the out-stretched index finger. This is a result of the “slider
crank” movements of the arm which are limited by the bulk of the upper arm. These
constraints were modeled by assuming that the reference position x = 0 of the fingertip
as L/2. Changes in L due to the subject leaning forward were minimized by having the
subject keep their back against the back of the chair at all times.

The arm length limitations become effective at time instant t = t∗ if either

• x(t∗) = L/2 and ẋ(t∗) > 0 (the arm cannot stretch further) or

• x(t∗) = −L/2 and ẋ(t∗) < 0 (the fingertip hits the chest).

In both cases, the fingertip position is constrained to either x(t) = L/2 or x(t) = −L/2
with ẋ(t) = 0 for t > t∗. This corresponds to a sudden fixation in rigid body dynamics:
the pole’s angular velocity changes suddenly, and the control force can be neglected
compared to the arising constraint force. The pole’s angular velocity after the sudden
fixation (at time t∗+) can be calculated given that the angular momentum about the
fixation point (pole’s bottom) is preserved. The angular velocity just after the sudden
fixation is

θ̇(t∗+) = θ̇(t∗) +
2

l
ẋ(t∗). (5)

The pole’s angular position after the sudden fixation can be calculated by the open-loop
dynamics of a pinned pendulum. Time domain simulations show that arm length
limitation ends up with the pole falling in within 1-2 seconds.

Parameter estimation. There are six parameters to be determined: the time
delay (τ), the sensory threshold (Π) and the four feedback control gains
(kp,θ, kp,x, kd,θ, kd,x). The time delay and threshold for the sensory dead zone were
measured as described previously [19]. For all subjects we took τ = 0.23s [17, 19]. A
stabilometry technique was used to estimate the control gains ([22] for more details).

We assumed that transient pole balancing resulted from alterations in the control
gains for the pole angle, kp,θ and kd,θ. The control gains for the movements for the
position of the cart were not changed. Fig 2 summarizes the balance time predicted by
the model as a function of kp,θ and kd,θ for fixed kp,x and kd,x. Three types of
behaviors can be observed: (1) unstable balancing with balance time ≤ 1 s, (2) stable
balancing with BT ≥ 240 s, and (3) transient balancing with 1 s < BT < 240 s. The
blue dot shows the values of the gains for the control of the pole angle determined using
stabilometry.

We used the measured mean pole balancing time to choose the gains for the control
of the pole angle generated by the model (simulated data). We estimated the mean pole
balancing time for simulated data by varying the initial angle from -3 degrees to 3
degrees in steps of 0.001 degrees.
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Fig 2. Tuning of the control gains for the simulations of the simulated data. Greyscale
show the balance times, the blue dot indicates the identified control gains for balance
time > 240 s, and red dot indicates the tuned control gains for balance time ≈ 31 s.

Subject kp,θ(N/rad) kd,θ(Ns/rad) kp,x(N/m) kd,x(Ns/m) Π (rad)

A 120 28 14 19 1.75
B 240 30 13 30 3.00

Table 1. Control gains estimated from real pole balancing data. Note that N is
Newtons, rad is radians, m is meters and s is seconds. Π refers to the dead zone
threshold.

The values of the gains for the simulated data (kp,x and kd,x) were chosen to give a
similar mean balance time as observed experimentally for each subject (see Table 1 and
Figure 3). For Subject A’s parameters, the mean balance time for simulated data was
30.4± 24.8s (mean ± one standard deviation) and the measured mean balance time for
95 balancing trials was 31± 19.8s. The red dot in Fig. 2 shows the values of the gains.
For Subject B’s the mean balance time for simulated data was 24.6± 9.8s and the
measured mean balance time for 21 balancing trials was 24.8± 13.05s.

Data generation and pre-processing for machine learning. We configured
the mathematical model using the control gains shown in Table 1. An initial angle was
randomly selected from a range between [-3,3]. The data generation process involves
running six simulations, and computing the feature set: fingertip position x, and
vertical displacement angle θ at each time step. A total of 1000 balancing trials are
generated in each simulation. The time point at which balance control was lost (LCT)
was determined as follows: First, the largest θ for which the stick remained balanced
was determined from all of the balance trials. Balance control was lost when the angle
in the next time step (0.01s) was larger. The data points for times greater than LCT
were discarded. This is indicated to the right of the vertical orange line in Fig. 3 Since
our focus is on forecasting, not fall detection, we further removed the 0.75s prior to LCT
to make sure that the changes in angular displacement θ and fingertip position x were
not those related to falling (i.e. truly pre-fall data). This time can also be thought of as
time (buffer zone) available to activate strategies to either prevent or minimize the
consequences of a fall.

The remaining data is then partitioned into no-fall and pre-fall regions and further
segmented into fixed-size windows creating training instances/windows using the sliding
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window protocol as shown in Fig. 3. In all of our experiments, each window is set to
1.28 s long which is sufficient to account for the dynamics of a pre-fall pattern. The
amount of data labeled as pre-fall is determined by the time-to-predict parameter and
the size of the window we used. We vary the time-to-predict parameters from 0.1 to 1.5s
to assess how far ahead we can forecast impending fall in an unstable dynamical system.

images/figure_3_up.pdf

Fig 3. Comparison of the changes for the last 10s of balancing in vertical displacement
angle, θ, for synthetic data and real pole balancing data for Subject A. The data
pre-processing process excluded the data points in the last portion of the signal (labeled
as loss of control, LCT region) that correspond to the start of a fall. We divide the
remaining data into no fall and pre-fall which we label as 0 and 1. The generated data
was further partitioned into windows, which are visually represented by boxes colored in
shades of gray (indicates no-fall region) and brown (indicates pre-fall region). The
horizontal dashed line indicates the θ when the control was lost.

Balancing training data. Given that each simulation will generate a lot more
data for the no-fall region than the pre-fall region, our data set is massively unbalanced.
In machine learning, training with an unbalanced dataset will end up with a model that
cannot be generalized. To balance our data set, we dynamically computed the stride
size within the no-fall region to match the number of windows within the pre-fall region
during the sliding window generation process. We present this innovative balancing
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process in Fig 4. The key is to first maintain a fixed stride size of 1 (or other suitable
sizes) within the pre-fall region. Assuming that the length of the pre-fall region is
represented by n, we will obtain a total of (n− w + 1) sliding windows within the
pre-fall region, with a stride of 1 and a window size of w. Afterward, we dynamically
calculate the stride size (S1) within the no-fall region to correspond to the number of
windows in the pre-fall region using this computation:

S1 =
(number of sliding windows in no fall region)

(number of sliding windows in pre-fall region)

where, the number of sliding windows in the no-fall region is (N −w+ 1). Here N refers
to the length of the no-fall region. By adjusting the stride size within the no-fall region,
the model observes a nearly equal number of data windows from both the no-fall and
pre-fall regions.

The traditional or naive way of balancing the dataset is by running additional
simulations, labeling the simulated data as no-fall and pre-fall after cropping off the
specified number of data points in the LCT region at the end, and only saving the
pre-fall section of the data for training. This is a much more computation-intensive way
of data balancing and might generate inconsistent training datasets since additional
pre-fall data do not have a corresponding no-fall data region. Given the temporal
relationships that could arise between the corresponding no-fall and pre-fall regions,
only adding in one of those regions could negatively affect the training process.

LSTM Networks and Model Training

The ideal model for fall forecasting should be able to learn a nonlinear function that
could accurately recognize patterns preceding falls, within a specified amount of time
ahead (i.e. time to predict). In all our experiments, we used a stacked bidirectional
LSTM deep learning model which can capture complex dependencies between the
sequential nature of pole balancing data. The distinct structure of LSTM facilitates the
selective preservation of crucial past information while ignoring nonessential information.
Our choice is supported by other researchers. For example, in [31], many variants of
stacked LSTM models were used for crash prediction in a disorienting spaceflight analog
balancing task from the time series data. The utilization of the bi-directional LSTM
model can result in a notable increase in the quantity of information accessible to the
network, consequently enhancing the contextual cues provided to the algorithm. Fig-5
shows the stacked bi-directional LSTM architecture we used with batch normalization.
Incorporating a batch normalization layer stabilizes the training process, facilitating
faster convergence, and enhancing model performance. Moreover, it also regularizes the
model, minimizing overfitting and enhancing its ability to generalize to new data to
make the model more robust.

We selected SGD (Stochastic Gradient Descent) as our optimizer since it can lead to
faster convergence, which is vital for quickly learning from historical data in time series
forecasting. Since our problem can be framed as a pre-fall-vs-no-fall classification, a
Binary-Cross-Entropy (BCE) is chosen for the loss function. We set a large epoch size
of 100 but adopt an early stopping strategy. All our models were built and trained
using Keras and TensorFlow on Dell Precision 7820 Tower with 256 GB RAM, and four
GeForce GTX 1080 GPUs. The parameters used in our bi-directional LSTMs are
presented in Table 2.

Input Features. The inputs to our bi-directional LSTM are the angular
displacement and the position of the pole both at time t and at t− τ , where τ is the
time delay in the mathematical model as discussed earlier. The vertical angular
displacement is defined as the angle made by the pole with the sagittal plane. Similarly,
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Fig 4. Computing stride size for no fall region dynamically to balance the data
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Fig 5. A bidirectional recurrent unit (LSTM) for fall forecasting.

the position of the pole at time t is defined by the actual position of the fingertip (on
the x-axis). Data is fed one window at a time with the above four features. It is
important to note that in the experiments, the dimension of the input features is
defined as, Xinput = (θ(t− τ), θ(t), x(t− τ), x(t)) such that Xinput ∈ Rd×4, where d is
the size of the window of data (128 or 1.28 s) for the optimal learning of pre-fall signals.

Model Validation. To determine how well our models perform and which model
will perform best on unseen data, we created a training and validation data set with an
approximate split of 90% of data for training and the other 10% for testing. The data is
split in such a way that none of the data in the validation set appears in the training
set. Data used for our experiments are balanced in terms of no-fall and pre-fall data
windows. Since time to predict will affect the amount of data available for training,
down-sampling of data is performed to ensure that all our experiments are using the
same number of windows of no-fall and pre-fall data as used in the experiment using the
smallest time-to-predict value.

Evaluation Metric. We adopted the standard metric to evaluate the performance
of a machine-learning model. There are the F1 score, Precision, Recall, and Accuracy.
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Table 2. LSTM Model Configuration

Names BiLSTM

Learning Rate 0.001

Epochs 100

Batch Size 128

Optimizer SGD

Loss Function BCE

These metrics are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2 ·Recall · Precision

Recall + Precision

Accuracy =
TP + TN

TP + TN + FP + FN

True Positive(TP) occurs when the model correctly predicts a positive instance, such
as accurately forecasting a fall. True Negative (TN) is when the model correctly
predicts a negative instance (non-fall for our case). False Positive is the case when the
model erroneously predicts a negative data sample as positive and False Negative is the
opposite case. Precision, which is the same as sensitivity, assesses the accuracy of
positive prediction, and Recall, which is the same as specificity, quantifies the correct
identification of real positives. The F1 Score is a harmonic mean of precision and recall
to provide a balanced measure of model performance.

Transfer Learning. In the computer vision world, transfer learning has been
applied successfully to transfer knowledge from a model trained in an existing domain
to data captured from a new domain that has a slightly different prediction target. For
example, using transfer learning, you can take an existing algorithm trained to identify
50 different flowers in images and use it to create a new algorithm that can identify
those 50 flowers plus 10 new types of flowers, all while reducing the training time of the
new algorithm [StanfordTL-2021, 25]. Essentially, transfer learning uses a pre-trained
model as a base for a new model of a target in a similar domain. Transfer learning
allows us to refine a base model with a small amount of real human pole balancing data
set and then evaluate the model on the rest of the real data. Fig 6 is a schematic
diagram that illustrates this process.

We implemented the transfer learning by first initializing the network with the
pre-trained weights of a saved model. We split our real pole balancing data where one
set was used for the refinement of the saved model and another set was used for testing
the model after refinement.

Experiments

LSTM training with only real data. At first, we trained our LSTM model using
only measured data captured by the motion camera from the human subject. This is to
create a baseline model for comparison with other models in our experiments. We used
two subjects’ data to conduct our experimental study. For subject A, there were a total
of 28 data samples available. We used 26 data samples for training and 2 samples for
testing. For subject B, only 14 samples were available. We thus used 12 data samples
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Fig 6. Comparison of traditional Machine Learning versus Transfer Learning

for training and 2 for testing. We only trained one forecasting model using the smallest
time to predict value (0.1 s) for each subject. Table 3 shows the result of this
experiment for both subjects A and B’s real pole balancing data.

LSTM training with only synthetic data. The goal of this experiment is to
train a series of models purely using synthetic data with different time-to-predict values
to assess the limit of the performance of the LSTM machine learning algorithm for
predicting impending stick falls. A MATLAB program that implemented the
mathematical model described in section was used to generate synthetic data for
subjects A and B using the estimated parameter shown in Table 1. The detailed
implementation of the mathematical model is described in the supplementary section.
We labeled the generated data set into no-fall and pre-fall regions, segmented them into
windows of 1.28 s long, and balanced the no-fall and pre-fall windows as described
earlier in section ??. In each of the LSTM training sessions, the training set contained
1000 samples, while the validation set contained 50 samples. This model is then tested
on the small amount of real pole balancing available to us to measure how the model
trained with synthetic data performs against real data. For each subject, we repeated
this LSTM training six times with different batches of synthetic training data to
eliminate the probability of the randomness effect. In addition, each of these LSTM
training is run 15 times using a different time-to-predict value from 0.1 s to 1.5 s with a
step size of 0.1.

To ensure that our results are not due to insufficient training data, we trained one
LSTM model using 10,000 balance trials of synthetic data. Training this large data set
took eight hours on a computer with four GPUs. The model trained using this large
data set performed similarly to the one trained with only 1000 balance trials. For
computational efficiency, we ran all of our remaining experiments with only 1000
balance trials.

Refining LSTM model via transfer learning. In this third experiment, we
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studied the impact of transfer learning on improving a model trained using purely
synthetic data by utilizing a small amount of real human pole-balancing data. To
achieve that, we refined all the models trained with synthetic data using both subject A
and B’s real-human pole balancing data. As in other experiments, we split the available
human balancing data into training and validation sets. The model was re-trained with
a very small learning rate so that we do not drastically change the trained weights.

Results

Training with only real data.

Table 3 presents the result of training solely on real human pole balancing data, which
reveals bad performance for both subjects A and B. This data was captured using only
a time-to-predict of 0.1 s, which presumably should be the best that can be done as the
data is closest to the fall. These results were expected as the limited availability of data
was not able to train the LSTM model effectively.

Subject A Subject B

Precision 0.48 0.38

Recall 0.37 0.40

Accuracy 0.55 0.54

Table 3. Result of training with only a small amount of real data. Time-to-predict is
0.1 s.

Training with only simulated data.

In figure 7, we present the average and standard deviation of the precision, recall, and
accuracy values obtained from six independently trained LSTM models for both subject
A’s and B’s simulated data. The LSTM models performed well when tested using
simulated data, but did not perform as well when tested against real human data. For
simulated data, we observe that as the time-to-predict values increase, there is a
decrease in accuracy, precision, and recall scores. This trend holds true for accuracy and
precision scores when dealing with real data as well. This observation applies to both
Subject A’s and Subject B’s data. These results indicate that our LSTM model can
perform better with a shorter time to predict value, which is expected given that the
larger time-to-predict values incorporate data further away from the fall itself. The
recall score for both Subject A and B’s real data appears to exhibit some variability with
respect to the time to predict values. One possible explanation for this low recall could
be that the simulated data may not capture the full range of diversity and complexity
found in real pole-balancing scenarios. Additionally, the model trained on simulated
data may not exhibit effective generalization when applied to real pole-balancing data.

Refining LSTM model through transfer learning

Figure 8 summarizes the results of the LSTM model trained initially on simulated data
and refined with real human pole balancing data. As we can see from this figure, the
results for both subjects A and B suggest an improvement with transfer learning. We
see that for both subjects, precision, recall, and accuracy have all improved
substantially from when the LSTM model was trained only on simulated data. After
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Fig 7. Results for training with only simulated data. In each plot, test results on
simulated data (blue) are compared to results when tested with real human data
(orange). Both data from subject A (a-c) and subject B (d-f) are displayed. Each data
point represents the mean accuracy (a, d), precision (b, e), and recall (c, f) values
evaluated across six separate trained models. The bars indicate the standard deviation.August 14, 2024 14/20
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Fig 8. Results after refining LSTM model via transfer learning. In each plot, test
results before transfer learning (orange) are compared to results when tested after
transfer learning (green). Both data from subject A (a-c) and subject B (d-f) are
displayed. Each data point represents the mean accuracy (a, d), precision (b, e), and
recall (c, f) values evaluated across six separate trained models. The bars indicate the
standard deviation.
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implementing transfer learning, the overall accuracy for both Subject A and B exhibited
an improvement of approximately 10% to 18%. The results also demonstrate an
increase in both precision and recall for both subjects. These improvements indicate
that the LSTM model, which was originally trained solely on simulated data, now
demonstrates improved generalization to real pole balancing data.

When evaluating accuracy and precision scores on data from both subjects, the
results after implementing transfer learning also reveal a subtle pattern where the scores
gradually decrease as the time to predict values increases. This phenomenon is expected
as an increasing time-to-predict means that the window being examined is farther away
from the fall. As with any forecasting problem, there is more uncertainty when
predicting far into the future compared to predicting closer to the present. This is even
more true with complex, chaotic dynamical systems as the smallest fluctuations can
have rapid divergence in a few time steps.

We notice that while our accuracy and precision are relatively high, our recall is low
when testing against real human balancing data. In our classification, a threshold of 0.5
is being used. Recall can be improved by fine-tuning the hyper-parameters of the LSTM
model such as the window size, and the systematic investigation of the trade-off
between precision and recall in future work.

Discussion

While traditional machine learning techniques have been used by many researchers for
the forecasting of adverse events [29, 14, 31, 33], recent studies have shown that when
data sets are complex and dynamic, deep machine learning techniques always surpass
these approaches [15]. In our previous study, we compared traditional machine learning
techniques (Support Vector Machine, Random Forest, Naive Bayes) against deep
learning architectures for fall detection and found better performance from deep learning
approaches [16]. In this paper, we investigated in depth the use of transfer learning and
a stacked LSTM deep learning model to train the forecasting model for stick fall.

We addressed the data scarcity problem in trying to forecast impending falls using
deep learning by showing that data generated by a mathematical model for stick
balancing can be used to effectively train a deep machine learning algorithm to predict
stick falls. We balance the massively unbalanced data using an innovative balancing
technique. In particular, our results show that by combining mathematically generated
data with a limited amount of real data using transfer learning, the ability to forecast
falls is increased significantly over that obtained with training using a small amount of
available real data alone. Our approach resulted in a fall forecasting model that is
60-70% reliable up to 2.35 seconds. This increase in forecasting times increases the time
available for activating strategies to minimize the effects of a fall [14, 23].

As stated earlier, we noticed that as the time-to-predict increases, the accuracy and
prediction decrease. One way to understand this is that the latent space representations
of the pre-fall and no-fall data windows become more similar to some extent and that
the ”signatures” indicative of the dynamics of pre-fall may not have fully manifested
because the time-to-predict is too large. This provides us with an interesting direction
for future research in exploring the specific dynamical changes that occur as the fall
approaches. One possible future direction is thus to train our model with a contrastive
supervised learning[12] approach. By this method, we first train our model to
distinguish between the pre-fall data and no-fall data by increasing the distance between
the latent space representation and later refine the model by further training to classify
the pre-fall and no-fall. Another direction is to compare the effectiveness of the
forecasting model trained with the mathematically generated data versus other
techniques such as Diffusion [27], GAN [6], and statistical approaches when data
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scarcity is a problem. This will confirm the importance of empirical modeling to
capture ”key signatures” of stick fall as compared to those reproduced by the popular
generative AI approaches.

The results that we have when tested against simulated data indicate that the
stacked LSTM architecture is able to accurately forecast complex and chaotic dynamical
systems, however, when we tested against real human data, the low recall suggests that
our model can continue to be improved in its anticipation of a fall. However, the
precision indicates that when the model suggests a fall is indeed impending, we can
expect a fall to occur. Overall, for about 30% of the time, the models is however unable
to distinguish between pre-fall and no-fall windows. These results suggest that this
approach has indeed improved our ability to anticipate fall events despite the
complexity and chaotic nature of the data, but that discrepancies between the simulated
data and real data exist.

Indeed, in our approach, the matching of the mathematical model to human data
was purposely designed to take into account the individual’s differences in mean balance
time, the gains for time-delayed predictive feedback, and their sensory dead zones.
However, when plotting the real human data and synthetic data side by side, we can
visualize the differences in their dynamical properties as shown in Figure 3. This
suggests that there may be other factors important to anticipating impending stick falls
that the LSTM has learned to anticipate, that are not necessarily found in the real data.

The above points are critically important since many attempts to generate synthetic
data could potentially fail for the same observation. For example, although synthetic
data generation by Generative Adversarial Networks (GANs) could potentially construct
time-series data that have similar statistical properties as real data when aggregated,
GANs may fail to accurately capture key features or signatures at a single trajectory
level that are indicative of an impending collapse or critical transition. Without having
some insights into the appropriate metrics that describe these key features, synthetic
data generators may instead construct data that are very accurate in every feature
except the signatures themselves. The fact that human pole balancers are able to sense
when they are about to lose control suggests that a signature does exist, and thus that
there are features that should be matched between synthetic data and real human data.
Future directions may explore the use of alternative metrics to match real data with
those generated through mathematical models including decomposition-based,
statistical generative models and alternative embedding spaces[32].
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