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ABSTRACT:
Speech and language development are early indicators of overall analytical and learning ability in children. The

preschool classroom is a rich language environment for monitoring and ensuring growth in young children by

measuring their vocal interactions with teachers and classmates. Early childhood researchers are naturally interested

in analyzing naturalistic vs controlled lab recordings to measure both quality and quantity of such interactions.

Unfortunately, present-day speech technologies are not capable of addressing the wide dynamic scenario of early

childhood classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio streams, auto-

mated speaker diarization technology would need to be advanced to address this challenging domain for segmenting

audio as well as information extraction. This study investigates alternate deep learning-based lightweight,

knowledge-distilled, diarization solutions for segmenting classroom interactions of 3–5 years old children with

teachers. In this context, the focus on speech-type diarization which classifies speech segments as being either from

adults or children partitioned across multiple classrooms. Our lightest CNN model achieves a best F1-score of

�76.0% on data from two classrooms, based on dev and test sets of each classroom. It is utilized with automatic

speech recognition-based re-segmentation modules to perform child-adult diarization. Additionally, F1-scores are

obtained for individual segments with corresponding speaker tags (e.g., adult vs child), which provide knowledge for

educators on child engagement through naturalistic communications. The study demonstrates the prospects of

addressing educational assessment needs through communication audio stream analysis, while maintaining both

security and privacy of all children and adults. The resulting child communication metrics have been used for broad-

based feedback for teachers with the help of visualizations. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

The diversity of language background, socio-economic

conditions, development level, or potential communication dis-

orders represents a challenge in assessment of child speech and

language skills (Rosenbaum and Simon, 2016). The language

environment of young children plays an important role in the

development of speech, language, vocabulary and thus, knowl-

edge/learning ability. Taken collectively, these impact the life

prospects of the child. The quality and quantity of interaction

in a rich language environment helps to meet essential lan-

guage development outcomes in early childhood (Hart and

Risley, 1995). Thus, early childhood researchers are interested

in analyzing classroom interactions of preschool children to

monitor and provide proactive support. As daylong recordings

are collected on a regular basis, the amount of data to be ana-

lyzed keeps increasing at much a faster pace than what is prac-

tically feasible to review manually. Automated speech

processing would be of great value for understanding and

assessing the vast amounts of data in this early childhood

domain. The preliminary task of analyzing such data environ-

ments involves speaker diarization (i.e., segmenting and tag-

ging “who spoke when”) followed by speech recognition,

keyword spotting, etc. In this study, speaker group (or speaker

type) diarization is performed on child-adult and child-child

interactions of preschool children in naturalistic active learning

environments. The audio data in this study was collected using

LENA devices (LENA, 2024; Ziaei et al., 2013) worn by chil-

dren in different classrooms at different days and times. The

recordings continue while subjects move around during a typi-

cal school day and are paused only during nap time.

The research questions that we attempt to solve with

this study are as follows:

(1) How can we organize/combine well-researched deep

neural networks from speech detection/ recognition

literature, to develop robust child vs. adult speech diari-

zation system for naturalistic audio streams recorded in

preschool classrooms using mobile devices worn ina)Email: John.Hansen@utdallas.edu
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jackets by the children? Can shallow neural networks

utilized for speech activity detection tasks in literature

match the performance of deep neural networks investi-

gated here?

(2) How accurately can we measure the interaction metrics

of the children using the diarization system from step 1?

Can audio stream diarization for a few hours of duration

be visualized compactly using a software solution? Can

it provide a visual assessment of the child-adult diariza-

tion system by analyzing subregions of such a diagram?

(3) Can the neural networks developed in step 1 be analyzed

for regions of the input features that have greater contri-

bution in terms of attention or saliency maps for this

noisy, naturalistic audio dataset? Will the regions

detected in these maps have any physical significance

within the speech/audio domain?

(4) Can the performance of shallow neural networks devel-

oped in step 1, be improved using knowledge distillation

(KD) from deeper neural networks developed in step 1?

The contributions of this study are stated as follows.

First, we introduce the child-adult speech/speaker-type clas-

sification framework explained later for designing the scope

of the speech-segment classification task. Next, standard

convolutional neural network (CNN) architectures are

explored for this challenging task of distinguishing child-

ren’s speech from adult speech and non-speech.

Additionally, we analyze classifications of speech segments

into alternate speech types in terms of F1-score. To improve

performance of smaller CNN models, KD techniques

[teacher-student (T/S) learning] of learning from advanced

CNN architectures having larger number of parameters are

applied to smaller CNNs with fewer parameters. The perfor-

mance improvements are analyzed using attention and

saliency maps for the input log-mel-spectrogram images.

The speech/speaker-type detector is integrated with an auto-

matic speech recognition (ASR) re-segmentation module

and provides diarized outputs based on different system con-

figurations. Thus, the diarization error rate (DER) is also

provided, which helps in understanding the performance

achieved by the different speech-type modeling techniques

and system configurations. This study would be one of the

first efforts for child-adult speech/speaker-type diarization

on a large North American English dataset of child-adult

naturalistic recordings in diverse classroom conditions.

Previous studies have considered the application of alternate

DNN architecture embeddings for child vs adult speech-

type classification. DNN multi-label classification (Lavechin

et al., 2020) has achieved segment-level classification of

child or adult speech detection for diarization which

included fine-grained labels like “key child,” “other child,”

and generic labels like “speech” for multitask learning as a

general audio-tagging task. A single label for an audio seg-

ment can be useful for downstream speech tasks. Moreover,

as we are testing on the segment-level audio, the output

speech-type classification and ASR re-segmentation can be

performed in an online fashion (Xue et al., 2021) (i.e., every

segment can be processed as it is recorded). This has advan-

tages in classroom settings where immediate feedback for

teachers/adults can be provided. For offline processing, the

entire recording would need to be provided to generate any

final output estimated knowledge of the speech segment

type.

Additionally, we also divide the dataset in a classroom-

independent scenario, such that models trained on one class-

room condition are available for testing on audio from

another classroom condition. This will be the first effort on

this dataset to look at data splits with audio data from alter-

nate classrooms, thus allowing for a statement on model

generalization capability. Finally, we introduce a novel visu-

alization diagram referred to as donut diagram which pro-

vides speech segment classifications over a period of time as

a feedback mechanism and practical evaluation of our pro-

posed classification models.

II. OUTLINE

The following is an overview of this paper which starts

with Sec. III mentioning the background including speaker

characteristics and child-adult speech diarization. Section

IV introduces our framework for end-to-end (E2E) child-

adult speech/speaker-type classification which includes the

assumptions and scope of our problem formulation. Section

V provides details of the dataset. Section VI explains the

procedure for producing the classification from raw audio

including steps displayed in Fig. 1. Within Sec. VI of the

method, Sec. VI A provides details on the system diagram

based on Fig. 2, Sec. VI B introduces data preprocessing

which includes segment generation and labeling, Sec. VI C

provides details about the deep learning architectures of

baseline CNN (CNN60) (Alam and Khan, 2020), spectro-

temporal attention CNN (STACNN) (Lee et al., 2020) and

ResNet18 (He et al., 2016) neural network used for segment

classification. Section VII talks about the experimental

design and the metrics used for evaluating the experiments,

while we look and discuss the results in Sec. VIII, followed

by conclusions and future work in Sec. IX.

III. BACKGROUND

A. Modeling speaker characteristics

i-Vectors (Dehak et al., 2011b; Hansen and Hasan,

2015) are fixed length vectors that characterize speaker

identity from arbitrary length sequential data (i.e., speech

samples). They are standard features for speaker recognition

(Dehak et al., 2011b) and have been used extensively as a

baseline system in recent studies. They have also been used

for language recognition (Dehak et al., 2011a), accent rec-

ognition (Bahari et al., 2013), emotion recognition (Xia and

Liu, 2012), etc. Alternatively, DNNs (McLaren et al., 2015;

Snyder et al., 2018b; Snyder et al., 2016) can be used to

directly capture language or speaker characteristics. They

achieve improved results over i-Vectors using mel-

frequency cepstral coefficients (MFCCs) or log-mel-spectro-

grams as features. Here, log-mel-spectrograms can be
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defined as the logarithm of the mel-spaced filterbanks. It is

generated by the series of operations consisting of framing

and windowing, followed by applying discrete or fast

Fourier transform, then applying mel operation to the spec-

trogram and last logarithm operation. It helps in generating

features where the frequencies are overlapped and non-

uniformly spaced on the frequency axis such that the percep-

tual difference in frequencies stays the same for very high

frequencies. Finally, applying discrete cosine transform

(DCT) to log-mel-spectrograms generates MFCCs.

The current standard framework consists of a discrimi-

natively trained DNN that maps variable-length speech seg-

ments to embeddings called x-Vectors (Snyder et al.,
2018b). x-Vectors are deep speaker embeddings based on a

time-delay neural network (TDNN) architecture. This

approach has achieved excellent results for speaker recogni-

tion (Snyder et al., 2018b), diarization (Sell et al., 2018),

and language recognition (Snyder et al., 2018a) with further

advancements being actively researched. ECAPA-TDNN

(Dawalatabad et al., 2021) were recently introduced and

provide enhancements over TDNN (Snyder et al., 2018b) by

introducing channel and context-dependent attention

mechanism.

B. Child-adult speech diarization

Previous work on child speech has utilized i-Vectors

(Kothalkar et al., 2019; Najafian et al., 2016; Cristia et al.,
2018) and x-Vectors (Xie et al., 2019a) as features for

speaker classification. The SincNet-based speaker identifica-

tion model has been used in university classroom setting

(Dubey et al., 2019) with effective results. Previous work on

this dataset (Najafian et al., 2016) used much lesser data and

fixed segments of length 1.5 s with a support vector machine

(SVM) backend for classification. A recent study (Kothalkar

et al., 2019) with more data transcribed for the dataset, used

DNN modeling with i-Vectors as features, and provided

promising results. Since, we aim to perform classification

FIG. 1. (Color online) System diagram for child-adult speech-type classification system for alternate neural network architectures.

FIG. 2. Illustrative example of floor

plan for child learning spaces within

preschool classrooms (i.e., learning

stations: Books/Reading, Science,

etc.).
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for real-time application in an E2E diarization scenario,

multiple pipelines of DNN models for speech activity detec-

tion (SAD) or voice activity detection (VAD), speech/

speaker-type classification and ASR are combined for their

strong performance in related studies (Silero Team, 2021;

Kim et al., 2021; Bredin and Laurent, 2021; Ozturk et al.,
2022; Radford et al., 2022; Bain et al., 2023) and possible

E2E classification approach.

C. E2E child-adult speech diarization

Recently studies have considered neural network-based

classification systems trained for classifying child or adult

speech/speaker-type. These utilize some form of fixed

length embedding as input for another neural network for

final classification of child or adult based on class posterior

values (Koluguri et al., 2020; Kumar et al., 2020) or tradi-

tional speaker clustering (Krishnamachari et al., 2021).

Alternately, such embeddings have also been utilized for

child-adult speech/speaker-type diarization, where neural

network training is formulated as a sequence classification

problem with output belonging to one of three classes: child

speech, adult speech, and silence. These solutions are effec-

tive in moderate noise conditions such as home environ-

ments with limited number of children and/or adults.

Lavechin et al. (2020) formulated the child-adult diari-

zation task as a multi-label classification task using SincNet

followed by long-short-term-memory (LSTM) layers for

activating multiple voice types present in 2 s audio seg-

ments. This implied each segment could be reported as mul-

tiple voice-types resulting in multiple classes for

downstream processing tasks like ASR or keyword spotting.

Speech-type specific ASR models could be utilized for

downstream recognition and analysis tasks if such specific

information can be extracted. Thus, multiple segment labels

may not be optimal for extremely noisy data/scenarios with

audible/intelligible speech from single unique speech/

speaker-type.

Speech activity detection (SAD) and audio classifica-

tion are similarly aligned tasks as our speech/speaker-type

diarization and have achieved effective performance using

single DNN multitask classification. A single DNN with

multi-class classification has performed effectively for short

duration audio on tasks such as SAD or audio classification.

Hebbar et al. (2019) utilized standard deep learning archi-

tectures for image classification tasks with ResNet for

segment-based robust speech activity detection (clean,

music, noise classes) with impressive performance. Apart

from convolutional recurrent neural networks (CRNN), time

delay neural networks (TDNN) (Snyder et al., 2018b) have

been utilized to model long-term dependencies while per-

forming SAD with advantage of overall lower computa-

tional costs.

D. ASR word alignments to refine diarization results

In early works, ASR has been utilized in the context of

diarization for re-segmenting the initial speech segments

generated from speech activity detection outputs. The IBM

system (Huang et al., 2008) for RT07 evaluation incorpo-

rates word alignments from the speaker independent ASR

system to refine the SAD outputs and reduce false alarms,

thus resulting in better segment clustering output.

IV. FRAMEWORK FOR CHILD-ADULT SPEECH/
SPEAKER TYPE CLASSIFICATION AND DIARIZATION

The TDNN (Snyder et al., 2018b) architecture embed-

dings have been utilized for detection of speech (Bai et al.,
2019b; Ogura and Haynes, 2021), language (Garcia-Romero

and McCree, 2016), acoustic scene (Bai et al., 2019a),

Parkinson’s disease (Wodzinski et al., 2019), audio session

(Raj et al., 2019), gender (Raj et al., 2019), speaking rate

(Raj et al., 2019), words (Raj et al., 2019), phoneme (Raj

et al., 2019), utterance length (Raj et al., 2019), etc.

Recently, ECAPA-TDNN (Dawalatabad et al., 2021)

embeddings have provided state-of-the-art results for

speaker recognition (Chung et al., 2018) and speaker diari-

zation (Dawalatabad et al., 2021) tasks in noisy audio.

The posterior probabilities from the TDNN (Snyder

et al., 2018b), CNN, recurrent neural networks (RNN),

CRNN, and/or ResNet (He et al., 2016) architectures have

also been utilized for detection of speech (Silva et al., 2017;

Bai et al., 2019b; Horiguchi et al., 2021; Kwon et al., 2021;

Lin et al., 2020a; Villalba et al., 2019; Wang et al., 2020;

Braun and Tashev, 2021; Wilkinson and Niesler, 2021),

speaker (Xie et al., 2019b), music (Lee et al., 2006), stutter-

ing (Sheikh et al., 2021, 2022), Parkinson’s disease

(Wodzinski et al., 2019), spoken term (Ram et al., 2019),

dysarthria (Gupta et al., 2021), intoxication (Wang et al.,
2019), etc.

Based on the effectiveness in these studies, we pose the

child-adult speech/speaker-type detection problem as a

multi-class classification task using modern CNN-based

architectures. With the intent of utilizing noise-robust neural

networks having lightweight architecture for potential real-

time application, we propose to experimentally verify the

detection of child and adult speech from non-speech in natu-

ralistic audio using alternate types of CNNs having vanilla

baseline (Alam and Khan, 2020), attention-based (Lee et al.,
2020), and ResNet18 architecture (He et al., 2016) along

with 2-dimensional (2D) input feature. Here, non-speech

comprises silence, inaudible speech within crowd noise by

adults or children, background music or electronic devices.

Child-specific background non-speech further comprises

laughs, cries, screams, breathing, burping, babbling, growl-

ing, squealing, etc. Due to the pervasiveness of such noisy

non-speech along with speech, for long periods of interac-

tion in the preschool classroom, we prioritize capturing

speech-types in clean as well as extremely noisy conditions,

by training a single model for distinguishing clean/noisy

child-adult speech from non-speech.

To capture the minor variation in perceptual differences

between intelligible speech from children and adults, in the

presence of near-identical unintelligible adult noise or child

non-speech sounds, we formulate it as a multiclass
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classification task, for a single neural network with loga-

rithm of the mel-spaced spectrogram (log-mel-spectrogram)

input features. The hypothesis is that regions of child/adult

speech in the log-mel-spectrograms would be distinguish-

able by a DNN compared to regions of non-speech in both

clean and noisy conditions. The outputs from these architec-

tures are compared and combined with outputs from state-

of-the-art speech activity detection systems for performance

evaluations. Further verification and boundary refinement of

the captured intelligible speech is performed using ASR re-

segmentation of the detected speech segments.

V. DATA SPECIFICS

A. Data collection

The dataset in this study consists of spontaneous con-

versational speech recorded with the help of LENA units

attached to subjects in a high-quality childcare learning cen-

ter in the United States. Daylong audio recordings consist of

54 preschool daylong audio files across 3 days in 7 sessions

in 2 classrooms (A or B). Most of the LENA units record

the data at 16 kHz sampling rate. Although some of the

LENA units in classroom B have recorded the audio at

22 kHz, every audio segment is resampled at 16 kHz sam-

pling rate before applying any signal processing technique

such as feature extraction.

B. Classroom details

Data collected using LENA recorders in two classrooms

have multiple working stations.

These learning station activities such as reading, blocks,

play, singing, science, etc. (see Fig. 1). The dimensions of

the two classrooms are different, which may affect the

recorded audio in terms of reverberation. Classroom A is

24 ft by 24 ft in dimension. Classroom B is much larger with

dimensions of 24 ft by 40 ft An illustration of a floor plan in

a preschool classroom is shown in Fig. 1. Thus, to under-

stand the performance of our algorithms in diverse environ-

mental conditions, it would be useful to have data from

these classrooms in different sets for model training and

test.

C. Dataset distributions

Audio for this study have children who are 3 to 5 years

along with one or more adults (e.g., typically, teachers).

Most children wear LENA devices as well as accompanying

1–3 adults are also wearing them. Both classrooms A and B

have audio recorded from 4 adults in the distance from

LENA devices worn by the children. In both the classrooms

A and B, some of the audio sessions have one adult wearing

the LENA recording device in a vest. Classroom A has

8 children wearing the LENA recorder device while class-

room B has 9 children wearing the same.

The total audio from classroom A is of duration 61 h

and 18 min and from classroom B is 63 h and 57 min. Thus,

around 60 h of audio or approximately 230 000 segments of

1 s duration are used for training the classroom-specific

models. For this dataset, an organized set of approximately

19 h of speech from classroom A and similar amount of

speech from classroom B are established as the evaluation

set for the corresponding classrooms.

The audio segment files are divided into training, develop-

ment and test sets following the classroom-based division such

that there is no overlap of data between the sets. The audio

data corresponding to classrooms A and B are used for training

alternate models. Data from the other classroom is used for

model development and testing. During model development, a

separate hold-out set known as development data, is used in

order to find the best performing model (based on training

epoch) during neural network training.

For example, a model trained on data from classroom A

is used for model development on data from a given time-

point in data from classroom B, and tested on data for

remaining timepoints from the same classroom B. Similarly,

a model trained on data from classroom B is used for model

development on data from given timepoint in classroom A

and tested on data from remaining timepoints in classroom

A. Thus, training set is from alternate classroom compared

to development and test sets. This provides an opportunity

for a model developed on data from one classroom, to be

evaluated on two subsets of data from other classrooms.

Also, such a data split has practical application for new

classroom scenarios where smaller, transcribed pilot data

FIG. 3. (Color online) System configurations for child-adult diarization using ASR-based re-segmentation.
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from new classroom can be used for model epoch selection

and rest of the untranscribed data for testing. Even if tran-

scription for new classroom data is not feasible, the current

data split provides generalized models for testing based on

train-development split.

VI. METHOD

A. System pipeline

1. Speech/speaker-type classification

Figure 2 explains the high-level system diagram for

child-adult speech-type classification task. It starts with data

collection using our LENA device in preschool classroom.

This data is transcribed by the CRSS transcription team for

recognizing the speech in this naturalistic audio. After data

preprocessing steps, the modified data is used to train deep

learning models using the training set. The best model is

finally evaluated on the test set for speech/speaker-type clas-

sification as mentioned in the details of Sec. V C.

2. ASR re-segmentation for child-adult speech/
speaker diarization

The ASR re-segmentation module consists of an E2E

ASR system for recognizing the text in the audio segment

followed by another E2E ASR system for recognizing the

timestamps as shown in Fig. 3. We utilize Whisper for rec-

ognizing the text in the speech segment due to its high-

quality transcription performance in naturalistic conditions.

This is followed by the forced alignment using another E2E

ASR model known as Wav2Vec2 (Baevski et al., 2020).

This combined system for forced alignment is implemented

in the tool WhisperX (Bain et al., 2023). For a given system

alternate model variations of the two E2E ASR systems

were utilized. For Whisper its medium and large models for

English language were considered. For Wav2Vec2 ASR sys-

tem, Facebook’s wav2vec2-large-robust model finetuned on

noisy conversational Switchboard speech data and XLSR-53

large model finetuned on English version of common voice

for speech recognition were considered. The variations were

based on the datasets utilized to fine-tune the base

Wav2Vec2 model. The alternate configurations of the

Speech-type classification and ASR re-segmentation mod-

ules are displayed in Fig. 3 and explained as follows:

a. System S1. System S1 consists of an industry-

strength Silero (Silero Team, 2021) SAD system followed by

an ASR-based re-segmentation module. The ASR-based

re-segmentation module marks the start and end times of the

ASR recognized segments from the SAD segmented audio

files. The Silero SAD system consists of CNN and

transformer-based architectures. Finally, if presence of child

speech-type is detected by the speech-type detector ResNet

module, the speech-type of the segment is marked accordingly.

All combinations of Whisper E2E ASR models and

Wav2Vec2 forced alignment models are utilized to produce

multiple diarized segment system outputs for the entire test set.

b. System S2. System S2 consists of speech-type detec-

tor ResNet module followed by ASR-based re-segmentation

module. Here, our speech-type detection module acts as an

implicit speech activity detector with an additional class for

detecting child speech. The ASR re-segmentation module

performs the task of marking the timestamps of the ASR rec-

ognized speech-types. All combinations of Whisper E2E

ASR models and Wav2Vec2 forced alignment models are

utilized to produce multiple diarized segment system outputs

for the entire test set.

c. System S1þS2. In the combination system, we

combine the multiple diarized segment outputs from sys-

tems S1 and S2.

3. Merging strategies of ASR re-segmentation module
for child-adult speech/speaker diarization

Irrespective of the segment speech-type, for output seg-

ments with overlapping timestamps from any of the system

outputs of system S1 and/or S2, the segments from the two

FIG. 4. Block diagram for STA CNN model.

TABLE I. Configurations of all operators in ResNet-18 where I.C. repre-

sents input channel and O.C. represents output channel.

Name Output size I.C. size, O.C. size Kernel size, Stride size

Layer0 99� 80 3, 64 7, 2

Layer1 50� 40 64, 64 3, 1

64, 64 3, 1

Layer2 25� 20 64, 128 3, 2

128, 128 3, 1

Layer3 13� 10 128, 256 3, 2

256, 256 3, 1

Layer4 7� 5 256, 512 3, 2

512, 512 3, 1

Avg. Pool 4� 3 512, 3 1, 1

Embedding 1� 1 — 1, 1

Softmax 1� 1 — —
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systems are merged using following segment merging

strategies:

(1) If a given segment from any of the system outputs of

system S1/S2, has the same start or end time as that of a

segment from any of the other system outputs, the seg-

ment with smaller talktime is discarded.

(2) If a given segment from any of the system outputs of

system S1/S2, has the same start and end time as that of

a segment from any of the other system outputs, and has

presence of child speech/speaker-type in one of the

speech segments, the segment is assigned with child

speech/speaker-type class.

(3) If one segment from any of the system outputs of system

S1/S2 completely bounds a segment from any of the

other system outputs on the time axis, the smaller seg-

ment is discarded.

(4) For a given segment from any of the system outputs of

system S1/S2, if it overlaps a segment from any of the

other system outputs to its right along the time axis, the

given segment from system S1/S2 is truncated to start of

overlapping segment on its right along the time axis.

B. Data preprocessing

Audio recordings from both classroom A and B are

divided into audio segments using a sliding window of

1000 ms duration with no overlap. Based on text transcripts

from the data, ground-truth speaker-types are assigned as

“adult” or “child” speech because of greater talk time by

either the adult or child speaker over each 1000 ms audio seg-

ment, respectively. This approach was motivated by an earlier

study that also considered a different challenging diarization

scenario (Lin et al., 2020b). For segments with speech tags

that occupy less than 12.5% of the total segment duration,

these are marked as non-speech. The ability to set a speech/

silence threshold balance, achieving overall effective diariza-

tion robustness, has also been explored in other studies

(Hebbar et al., 2019).

C. Deep learning model architectures and input
feature type

E2E deep learning systems for speech classification tasks

consist of the following steps: (i) frame-level feature extrac-

tion using DNNs, (ii) temporal aggregation of frame-level fea-

tures, and (iii) optimization of classification loss. Most

speaker verification/recognition systems have a base DNN

architecture such as a 2D CNN with convolutions in both time

and frequency domains such as ResNet (He et al., 2016).

Here, the focus is to evaluate these for speaker/speech-type

classification. Thus, looking at 2D CNN architectures will

help to evaluate features and architectures for systems that can

perform well on child or adult speaker/speech-type detection

from non-speech. The ECAPA-TDNN (Desplanques et al.,
2020) performs better than the ResNet architecture for speaker

recognition tasks, due to its ability to learn complex patterns

that occur in any frequency region since 1D convolutions

cover the complete frequency range of the input features.

However, this leads to hardcoding (Thienpondt et al., 2020) of

absolute frequency position of each input feature. Our hypoth-

esis is that this may not translate to appropriate generic

speech/speaker-type classifications due to differences in fre-

quency variability within adult/child speakers. ResNet models

are expected to benefit due to 2D convolutions with small

receptive fields by exploiting the local speech-type frequency

patterns that repeat for small frequency shifts, thus providing

generality for modeling speakers within child/adult groups.

FIG. 5. Block diagram for E2E ResNet18 model.

TABLE II. F1-score results on testing subset recordings of classroom A and classroom B audio.

Train on Train set of: Test on Test set of: Model F1child (%) F1adult (%) F1non-sp. (%) F1overall (%)

Room A Room B CNN60 73.7% 72.9% 78.0% 74.9%

STACNN 76.1% 77.5% 79.8% 77.9%

ResNet18 76.9% 81.7% 80.0% 79.7%

KD-CNN60 73.8% 76.4% 78.4% 76.3%

KD-STACNN 78.7% 81.6% 80.6% 80.4%

Room B Room A CNN60 75.1% 77.7% 78.3% 76.9%

STACNN 77.7% 78.5% 78.9% 78.4%

ResNet18 80.9% 82.6% 80.3% 81.3%

KD-CNN60 76.0% 77.7% 78.4% 77.4%

KD-STACNN 79.9% 82.5% 80.2% 80.9%
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1. CNN60 model

The CNN60 model is our baseline CNN system for the

task of child-adult speaker-type detection with approxi-

mately 60 000 trainable parameters. It is composed of three

convolution and pooling layers followed by two fully con-

nected layers. The first convolution and pooling layer each

use a (5� 5) kernel. Second and final convolution layer use

a (3� 3) kernel and each is followed by a (2� 2) max pool-

ing layer. The three convolution layers consist of 32, 48,

and 64 filters, respectively. The first fully connected layer

has 64 hidden units, and the second fully connected layer

has 3 hidden units corresponding to the speaker-types of

child, adult, or non-speech.

2. STACNN model

The STACNN model as depicted in Fig. 4, consists of

spectral and temporal attention modules that comprise of

blocks of convolutional layers and multi-head attention

layers, respectively. Specifically, the spectral attention layer

is used to attend to speech features in the acoustic space and

provides the robustness for the noisy data task of speaker-

type detection.

The spectral attention module consists of T blocks with

each block composed of a pair of convolutional layers and

one-dimensional max pooling layer. The pipe-net contains

two fully connected layers, each with Np units, which acts

as an information bridge between the spectral attention mod-

ule and the temporal attention module. The temporal atten-

tion module attends to the most important positions from

several neighboring input features using multi-head self-

attention module. Temporal attention module is followed by

two fully connected layers, each with Np hidden units. The

final linear layer has three hidden units for the three

speaker-types to be detected. The logit output of the classifi-

cation layer is passed through AM-Softmax loss function for

CNN optimization.

3. ResNet18 model

The ResNet model is used for training very deep net-

works with the help of residual learning which involves skip

connections to help overcome the problem of vanishing gra-

dient due to increase in the depth. Configuration details for

the ResNet18 (He et al., 2016) model is presented in Table

I. ResNet is a block-based model which includes identity

block and convolution block. Here, identity block passes the

original input to the output of the convolution block by

skipping intermediate convolutional layers within the block.

For convolutional block, the original input is passed through

another convolutional layer to match the output dimensions

of the convolutional block during summation. This creates

an alternate path for the vanishing gradient to pass through

from deeper layers. This approach will allow the model to

learn an identity function, which allows the higher layer in

the model to perform as effectively as the lower layer. After

initial convolution (layer 0) and batch normalization and

ReLU operations, there are always 4 blocks (layer 1-layer 4)

with each block containing multiple convolutions, batch

normalization and ReLU operations. Layer 0 represents the

input layer and layers 1–4 are the residual blocks in the

ResNet architecture with skip connections as summarized in

Table I.

The architecture finishes with a convolutional layer,

flatten operation, average pool operation and output layers

as seen in the block diagram for ResNet model in Fig. 5.

4. Input representation for CNN60, STACNN and
ResNet18

For this system, 80-dimensional log-mel-spectrograms

are extracted over 25 ms windows with 10 ms skip rate as

input features. Stacked frame blocks of 1000 ms duration

(100 frames) are used to generate serialized input 2D fea-

tures for the task of speaker/speech-type classification.

D. Knowledge distillation

Knowledge distillation (Hinton et al., 2015; Gou et al.,
2021) helps the training process of “student” networks by dis-

tilling knowledge from one or multiple well-trained “teacher”

networks. The key here is to leverage the soft probability out-

puts of teacher networks, where incorrect-class assignments

reflect how a teacher network generalizes from previous train-

ing. By mimicking probabilities output, the student network

can incorporate the knowledge that the teacher network dis-

covered earlier, allowing the performance of the student net-

work to be better than if it were trained with labels only.

Let ðxi; yiÞ denote a training sample in dataset ðX; YÞ
where xi contains a sequence of N input speech frames and

yi is the predicted speaker-type class. Hinton et al. (2015)

introduced “softmax temperature” function rss
(.) to produce

a softer probability distribution output when a large temper-

ature ss (usually greater than 1) is picked. Since it takes log-

its from final layer as input, it decays to normal softmax

TABLE III. Diarization error rate results on testing subset recordings of classroom A and classroom B audio.

Train on Train set of: Test on Test set of: System combination with Resnet model Espkr (%) EFA (%) EMISS (%) DER (%)

Room A Room B System S1 20.7 14.7 39.4 74.8

System S2 1.3 3.5 53.2 58.0

System S1þS2 11.9 7.8 21.6 41.3

Room B Room A System S1 20.7 12.7 40.7 74.1

System S2 4.1 1.9 40.3 46.3

System S1þS2 11.3 7.0 20.8 39.1
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function rð:Þ when ss equals 1. The softmax function value

for instance xi can be calculated as

rss
xið Þ ¼

exp xi=sSð ÞX
xj2X

exp xj=sS

� � : (1)

KD loss is defined as the sum of the KL-divergence

between logits of teacher network output with the student

network output and the cross-entropy of the dataset X; Yð Þ.
Given a pre-trained teacher network fhT

(�) and a student net-

work fhS
(�), where hT and hS denote the network parameters,

the goal of knowledge distillation is to force the output

probabilities of fhS
(�) to be close to that of fhT

(�). Pfh :ð Þ indi-

cate the logit response of xi from fh (.). The student network

fhS
can then be learned by the following relation with the

parameters of the teacher model fhT
:

minhs

X
xi;yið Þ2 X;Yð Þ

�
a�s2

s �KL
�
rss

PfhT
xið Þ

� �
;rss

PfhS
xið Þ

� ��

þ 1�að ÞCE
�
rss

PfhS
xið Þ

� �
;yi

��
; (2)

where KL(� � �) and CE(� � �) are the Kullback-Leibler

(KL-divergence) divergence and cross-entropy loss, respec-

tively. Another hyperparameter a is utilized to perform the

weighting between T/S loss and cross-entropy loss and per-

forms well when the weight for T/S loss is higher.

In our case, we utilize the ResNet18 model to be the

teacher for teaching the speaker-type detection task to CNN60

and STACNN models through the KD loss. Thus, KD loss

comprising of T/S loss and cross-entropy loss is used in addition

to the AM-Softmax loss. The models generated through KD

training procedure are from now referred to as KDCNN60 and

KD-STACNN for CNN60 and STACNN models, respectively.

VII. EXPERIMENTAL DESIGN AND METRICS

A. Experimental design

For uniformity in system evaluation, all CNN architec-

tures including ResNet18 (He et al., 2016) models are trained

with an Additive Margin-Softmax loss with margin¼ 0.15 on

input features for 40 epochs using the RMSprop algorithm

with a learning rate of 0.001, a ¼ 0:95 and e ¼ 1 � 10�8.

Each epoch consists of 800 batches of randomly selected seg-

ments of batch size 32. Figures 4 and 5 highlight the block dia-

gram for STACNN and ResNet18 (He et al., 2016) models,

respectively. Results are reported for both development and

test sets for both models as explained in Sec. V C.

For the KD procedure, hyperparameters a ¼ 0:9 and

ss ¼ 4 are set based on empirical observations. It ensures

that the T/S loss receives much higher weightage compared

to cross-entropy loss.

B. F1-score for speech type detection by model
on testing dataset

To understand the child-adult speaker/speech-type

detection, we test our models on classroom specific test

FIG. 7. (Color online) Predicted talktime for child and adult speech as rep-

resented by a donut diagram for a session in classroom A with a child wear-

ing the LENA device.

FIG. 6. (Color online) Actual talktime for child and adult speech as repre-

sented by a donut diagram for a session in classroom A with a child wearing

the LENA device.
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data. Different metrics can assess model performance in

terms of their ability to recall as well as precision of detec-

tion. “Accuracy” is defined as the total number of samples

that are predicted correctly. “Precision” is the fraction of

relevant instances among all the detected instances. These

would be the fraction of actual segments of speech/speaker

type or non-speech type, among all such detected

segments,

Precision ¼ TP

TP þ FP
; (3)

where TP represents true positives and FP represents false

positives.

“Recall” is defined as the fraction of the relevant instan-

ces that were actually detected. In our case, these would be

the fraction of segments of particular speech/speaker or non-

speech type that were predicted correctly,

Recall ¼ TP

TP þ FN
; (4)

where TP represents true positives and FN represents false

negatives.

F1-score is defined as harmonic mean of the precision

and recall and takes both precision and recall into account

for providing an overall balanced assessment.

F1score ¼
2 � Precision � Recall

Precision þ Recall
: (5)

C. Diarization error rate

Diarization error rate (DER) can be defined as the sum

of errors due to an incorrect speaker (Espkr), missed speech

(Emiss), false alarm speech (EFA), and overlapping speakers

(Eovl) based on the predictions of the Diarization system.

Eovl and are not considered in this evaluation,

DER ¼ Espkr þ Emiss þ EFA: (6)

In the literature, speaker confusion error for audio

streams is mostly reported as DER. However, we have

reported DER comprised of speaker confusion error, false

alarm error and missed speech error. Missed speech error

(Kumar et al., 2020), are most important for follow-on

downstream tasks of both speech analysis and ASR.

VIII. RESULTS AND DISCUSSIONS

A. F1-score and DER

Table II reports corresponding F1-scores for each of the

speaker/speech types and non-sp. audio where non-sp. repre-

sents non-speech. Table III reports diarization error rate on

the test subsets for classrooms A and B.

The largest improvement by ResNet model is for seg-

ments containing child speech in terms of the F1-score as

seen in Table II for test subset. Specifically, F1-score for

child speech provides an absolute improvement of þ8.4%

for test data from classroom A, and an absolute improve-

ment of þ8.0% for test data from classroom B. For all

results in Table II, the best F1-scores are for non-speech

segments, for test sets of both classrooms A and B. We

hypothesize the lower F1-scores for all the speech-types in

test subset of classroom B to be due to the more challenging

environmental noise conditions of classroom B vs classroom

A. The highest F1-scores across all models and classrooms

for non-speech type audio can be attributed to the dispropor-

tionate amount of non-speech present in these audio files,

and therefore the distribution in the test segments.

As can be seen from Table III, system S2 outperforms

system S1 significantly for speaker confusion error rate,

false alarm error rate, and overall, DER on the test set for

both classrooms A and B. However, the best overall DER

on the test set for both classrooms A and B is by system

S1þS2. The relative improvements by system S1þS2 vs sys-

tem S1 on classroom A test audio data are þ45.4% for

speaker confusion error rate, þ48.9% for missed speech error

rate, and þ47.2% for overall DER. Relative improvements by

system S1þS2 vs system S1 on classroom B test audio data

are þ42.5% for speaker confusion error rate, þ45.2% for

missed speech error rate, and þ44.8% for overall DER.

Thus, system S1þS2 provides improvement in overall

DER vs systems S1 due to relatively improved error rate for

missed speech by 45%–49% on test set for both classrooms

A and B. System S1þS2 also provides improvement in

overall DER vs system S2 due to relatively improved error

rate for missed speech by �59% on test set for both class-

rooms A and B. It can be observed from Table III that the

false alarm error rate and speaker confusion rate for both the

models on test sets of both the classrooms increase for sys-

tem S1þS2 vs system S2. This can be attributed to the dras-

tic drop in missed speech rate for system S1þS2 on test

subsets of both the classrooms. Detecting more speech seg-

ments while improving the DER is more important than a

lower false alarm rate for this dataset in order to perform

analytics on the recognized conversational speech.

Thus, our speech/speaker-type classifier trained on

classroom domain-specific data in conjunction with ASR

models trained on massive amounts of audio data can match

performance of the combination of Silero VAD and ASR

models. In combination with Silero VAD our ResNet-based

speech/speaker-type classifier can improve the missed

speech error rate and thus, the overall child-adult diarization

performance. Thus, models trained on multi-condition, mas-

sive speech corpora for multiple speech tasks are hypothe-

sized to provide complementary information in terms of

acoustical environmental conditions to models trained on

domain-specific speech data for focused task of child-adult

speech/speaker-type diarization.

B. Visualization of speech-type density and
turn-taking using donut diagrams

Also, we present the speaker/speech-type density and

turn-taking with a visualization tool known as a “donut
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diagram” that reflects the speech density per speaker over

different times of a session. The donut diagrams present an

easy way to visualize the missed speech and false alarms at

the segment level along with performance comparison in a

temporal manner. It begins in the east-most section of the

donut and displays times along an anti-clockwise direction

until time is complete, reaching the same point 360� later.

Figures 6 and 7 represent the actual and predicted

[using ResNet (He et al., 2016) model] talktimes for a ses-

sion in classroom A with a child wearing the LENA device.

Here, segment-level false alarms can be recognized between

250� and 300� based on the thickening of adult speech seg-

ments in that region of the diagram for Fig. 7 compared to

Fig. 6. We see the percentage difference between predicted

and actual talktimes differ between 2.6% (child) and 3.1%

(adult). The density of speech-type and change in speech-

types in alternate sections are captured well and offers an

excellent high-level assessment of child-adult conversa-

tional engagement. For example, the left half of the diagram

with multiple interactions between children and adults is

useful for further analysis. The mapping between dense

regions of child speech (thick segments of pink) and adult

speech (thick segments of green) is also matched closely

between Figs. 6 and 7, where thick segments would have

speech for a single type for significant duration.

Figures 8 and 9 represent the actual and predicted

(using ResNet model) talktimes for a session in classroom B

with a child wearing the LENA, resulting in much more

recorded adult speech. Here, segment-level false alarms can

be recognized between 150� and 200� on account of the

empty spaces in that region of the diagram for Fig. 9 when

compared with Fig. 8. Approximately, 10% of child speech

is missed in this predicted donut diagram, and approxi-

mately a similar amount of non-speech is misclassified.

However, regions with significant child or adult communi-

cation [which is represented by thick segment of single color

(green or pink)] interspersed with the speech type are pre-

sent and well matched in both figures. For example, pres-

ence of thick green segments between approximately

260�–300� represents significant adult talk during that time

of the session, along with child speech in between in class-

room B with a child wearing the LENA device.

For example, certain thick green segments are matched

at 85� and between 150� and 210�. Similar, thick pink seg-

ments are present between 180� and 210�.

C. Visualization of attention maps over input
spectrogram images for the predicted label based on
the output of ResNet, STACNN, and KD-STACNN
models

In Fig. 10, we have presented the log-mel-spectrograms

of four random audio segments containing adult speech with

corresponding attention map outputs of the four ResNet

blocks (denoted as g0, g1, g2, g3) in the first four rows.

These are followed by log-mel-spectrograms of four random

audio segments containing child speech with corresponding

FIG. 9. (Color online) Predicted talktime for child and adult speech as rep-

resented by a donut diagram for a session in classroom B with a child wear-

ing the LENA device.

FIG. 8. (Color online) Actual talktime for child and adult speech as repre-

sented by a donut diagram for a session in classroom B with a child wearing

the LENA device.
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attention map outputs of the four ResNet blocks in the last

four rows of Fig. 10.

Here, the second column (denoted as g0) represents the

output of the first ResNet18 block and provides detailed

view of the regions corresponding to the image, that have

greater contribution for the ResNet model inference score

from the forward operation of the CNN. It is clearly visible

by comparing columns 1 and 2 of Fig. 10 that high energy

regions of the attention maps from column 2 have similar

shape and location as the high energy formant frequency

FIG. 10. (Color online) Log-mel-spectrograms of eight random audio files containing adult (top four) and child (bottom four) speech along with the attention

map outputs from the four blocks of the ResNet model.
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contours of the log-mel-spectrograms in column 1 of Fig.

10. Thus, the ResNet model can detect regions of high for-

mat frequencies for predicting the speaker-type class.

The output of the deeper layers of the ResNet18 model

in terms of the outputs for the second, third, and fourth

ResNet blocks are presented in the third, fourth, and fifth

columns of Fig. 10. Since the block size reduces for deeper

layers of the model with corresponding increase in channel

size, a rescaled version of the output image displays the

regions of focus after application of ResNet blocks. Since

deeper layers of the CNN learn high-level features for a

given classification task, the outputs are as per expectations

of standard procedure for inference in CNNs.

Figure 11 presents log-mel-spectrograms of four ran-

dom audio segments containing adult speech that show

improvement due to KD along with the corresponding atten-

tion map outputs of multihead attention layer in the

STACNN model. Here, the second column (denoted as g0)

presents the output of the multihead attention layer of the

STACNN model, and the third column (denoted as g1)

presents the output of the multihead attention layer of the

KD-STACNN model.

Multiple heads are active for the input audio spectro-

grams and across multiple timestamps for KD-STACNN

model vs one or two attention heads and lesser timestamps

for the same input audio spectrograms.

Figure 12 presents log-mel-spectrograms of four random

audio segments containing child speech that show improve-

ment due to KD along with the corresponding attention map

outputs of multihead attention layer in the STACNN model.

Here, the second column (denoted as g0) presents the output

of the multihead attention layer of the STACNN model, and

the third column (denoted as g1) presents the output of the

multihead attention layer of the KD-STACNN model.

Multiple heads are active for the input audio spectro-

grams and across multiple timestamps for KD-STACNN

model vs one or two attention heads and lesser timestamps

for the same input audio spectrograms.

FIG. 11. (Color online) Log-mel-spectrograms of four random audio segments containing adult speech that show improvement due to KD along with the

corresponding attention map outputs of multihead attention layer in the spectro-temporal attention CNN model.
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D. Visualization of saliency maps over input
spectrogram images for the predicted label based
on the output of STACNN and KD-STACNN models

The saliency map generation is inspired by the basics of

backpropagation algorithm, which states that the deltas

obtained at a layer L equal the gradient of the loss incurred

by the subgraph of the CNN below L with respect to the out-

puts at L. Thus, backpropagating till the input data layer

will yield us the gradient of the loss incurred by the whole

CNN with respect to the input itself, thereby providing us

the importance/saliency over the input image. Thus, saliency

map for an image comprises the important pixels in the

image that influence class score of the network prediction.

In Fig. 13 we have presented the log-mel-spectrograms

of four random audio segments containing adult speech that

show improvement due to KD along with the corresponding

saliency map outputs in the spectro-temporal attention CNN

model without KD (second column) and with KD (third col-

umn) KD. The second and third columns are denoted as g0

and g1, respectively. In the second column of Fig. 13, pat-

terns that have strong contribution for prediction of adult

speech display brighter colors (bright red to yellow) while

lower contribution regions are marked black in color (dark

red to black) as per the color map. Regions that show an

increase in brightness in the third column of Fig. 13 vs the

second column of Fig. 13 are marked in orange boxes.

Another notable difference between the saliency maps of the

two columns of Fig. 13 is that pixels with higher contribu-

tion towards the prediction score in the third column occur

in consecutive locations and a definite pattern, like the con-

tours of formant frequencies in log-mel-spectrogram images

of the first column. Even certain pixels of lower score con-

tribution that are completely missing in the second column

of Fig. 13 are present in the third and fourth rows of the

third column in Fig. 13.

Similarly, we have presented the log-Mel-Spectrograms

of four random audio segments containing child speech that

show improvement due to KD along with the corresponding

FIG. 12. (Color online) Log-mel-spectrograms of four random audio segments containing child speech that show improvement due to KD along with the

corresponding attention map outputs of multihead attention layer in the spectro-temporal attention CNN model.
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saliency map outputs in the spectro-temporal attention CNN

model without KD (second column) and with KD (third col-

umn) KD in Fig. 14. The second and third columns are

denoted as g0 and g1, respectively. Here, the first, second,

and third rows of the third column can be seen containing

consecutive pixels providing the greatest contribution to the

CNN forward inference score due to the presence of yellow,

formant shaped contours within the orange boxes.

Thus, we can detect the presence of child speech or

adult speech better after application of KD to STACNN

models due to improved detection of presence of relevant

formant contours as observed from the saliency maps for

log-mel-spectrograms.

IX. CONCLUSIONS AND FUTURE WORK

In this study, a child-adult speech-type diarization sys-

tem for recognizing speech/speaker type from day long

audio recordings was developed. State-of-the-art deep learn-

ing models renowned for speaker recognition were utilized

for predicting speech-type activity. Specifically, STACNN

models provided good and consistent results in terms of F1-

scores for all speech activity types recognized based on the

posterior probabilities. However, a ResNet model with 80-

dimensional log-Mel-spectrograms inputs have outper-

formed STACNN model in terms of F1-scores of all speech

activity types as well as DER. Knowledge distillation-based

approaches were applied to CNN60 and STACNN models

which improved their performance for the speaker-type clas-

sification task on the evaluation set. Also, the performance

of STACNN model was very close to ResNet18 model in

terms of F1-score for evaluation set of classroom A and bet-

ter than performance of ResNet18 model for evaluation set

of classroom B. Thus, KD-STACNN models can be

substituted for ResNet18 models when smaller model sizes

are desired such as for real-time application of speaker-type

FIG. 13. (Color online) Log-mel-spectrograms of four random audio segments containing adult speech that show improvement due to KD along with the

corresponding saliency map outputs of multihead attention layer in the spectro-temporal attention CNN model.
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detection. These models were trained on audio data from

one classroom and tested on audio data from a separate

classroom, which proves the generalization of our models

for alternate classroom conditions. The predicted segments

of fixed duration 1 s were visualized with novel visualiza-

tions referred to here as donut diagrams. These were shown

to be an effective method for detecting continuous child

and/or adult speech segments over a period, providing

visual feedback of child-adult interactions. Thus, the dia-

grams can provide feedback to teachers/adults on their

communication metrics with children during different

times of the session. Regions or pixels of input log-mel-

spectrograms contributing for speaker-type prediction were

discovered using attention maps from gradients of model

predictions for the corresponding input audio segments.

Similar attention maps were also presented for STACNN

models for the multihead attention layer. The improve-

ments achieved in KD-STACNN models over STACNN

model were tracked in attention and saliency map outputs

for model inference over input log-mel-spectrogram

images of the audio segments. The child-adult speech-type

predicted outputs are combined with an ASR re-

segmentation module in various configurations to provide

multiple child-adult diarization systems. A specific combi-

nation of these child-adult diarization systems provides the

best performance in terms of diarization error rate. For

future work, we suggest training and testing multi-class

classification tasks for attention-based ResNet models for

smaller duration segments. Also, we would like to utilize

alternate ASR re-segmentation modules including those

customized to speech data from preschool classroom

domain. Since the scope of this work involved classroom-

independent diarization evaluation, future work could also

include performance evaluation of the proposed diarization

system for downstream speech technology tasks including

ASR and keyword spotting.

FIG. 14. (Color online) Log-mel-spectrograms of four random audio segments containing child speech that show improvement due to KD along with the

corresponding saliency map outputs of multihead attention layer in the spectro-temporal attention CNN model.
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