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Child-adult speech diarization in naturalistic conditions
of preschool classrooms using room-independent ResNet model
and automatic speech recognition-based re-segmentation
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'Center for Robust Speech Systems (CRSS), Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas,
Richardson, Texas 75080, USA

2Anita Zucker Center for Excellence in Early Childhood Studies, University of Florida, Gainesville, Florida 32611, USA
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ABSTRACT:

Speech and language development are early indicators of overall analytical and learning ability in children. The
preschool classroom is a rich language environment for monitoring and ensuring growth in young children by
measuring their vocal interactions with teachers and classmates. Early childhood researchers are naturally interested
in analyzing naturalistic vs controlled lab recordings to measure both quality and quantity of such interactions.
Unfortunately, present-day speech technologies are not capable of addressing the wide dynamic scenario of early
childhood classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio streams, auto-
mated speaker diarization technology would need to be advanced to address this challenging domain for segmenting
audio as well as information extraction. This study investigates alternate deep learning-based lightweight,
knowledge-distilled, diarization solutions for segmenting classroom interactions of 3-5years old children with
teachers. In this context, the focus on speech-type diarization which classifies speech segments as being either from
adults or children partitioned across multiple classrooms. Our lightest CNN model achieves a best Fl-score of
~76.0% on data from two classrooms, based on dev and test sets of each classroom. It is utilized with automatic
speech recognition-based re-segmentation modules to perform child-adult diarization. Additionally, Fl-scores are
obtained for individual segments with corresponding speaker tags (e.g., adult vs child), which provide knowledge for
educators on child engagement through naturalistic communications. The study demonstrates the prospects of
addressing educational assessment needs through communication audio stream analysis, while maintaining both
security and privacy of all children and adults. The resulting child communication metrics have been used for broad-
based feedback for teachers with the help of visualizations. © 2024 Acoustical Society of America.
https://doi.org/10.1121/10.0024353

(Received 7 May 2023; revised 21 December 2023; accepted 24 December 2023; published online 8 February 2024)
[Editor: B. Yegnanarayanal] Pages: 1198-1215

I. INTRODUCTION processing would be of great value for understanding and
assessing the vast amounts of data in this early childhood
domain. The preliminary task of analyzing such data environ-
ments involves speaker diarization (i.e., segmenting and tag-
ging “who spoke when”) followed by speech recognition,
keyword spotting, etc. In this study, speaker group (or speaker
type) diarization is performed on child-adult and child-child
interactions of preschool children in naturalistic active learning
environments. The audio data in this study was collected using
LENA devices (LENA, 2024; Ziaei et al., 2013) worn by chil-
dren in different classrooms at different days and times. The
recordings continue while subjects move around during a typi-
cal school day and are paused only during nap time.

The research questions that we attempt to solve with
this study are as follows:

The diversity of language background, socio-economic
conditions, development level, or potential communication dis-
orders represents a challenge in assessment of child speech and
language skills (Rosenbaum and Simon, 2016). The language
environment of young children plays an important role in the
development of speech, language, vocabulary and thus, knowl-
edge/learning ability. Taken collectively, these impact the life
prospects of the child. The quality and quantity of interaction
in a rich language environment helps to meet essential lan-
guage development outcomes in early childhood (Hart and
Risley, 1995). Thus, early childhood researchers are interested
in analyzing classroom interactions of preschool children to
monitor and provide proactive support. As daylong recordings
are collected on a regular basis, the amount of data to be ana-
lyzed keeps increasing at much a faster pace than what is prac- (1) How can we organize/combine well-researched deep
tically feasible to review manually. Automated speech neural networks from speech detection/ recognition
literature, to develop robust child vs. adult speech diari-
zation system for naturalistic audio streams recorded in
“Email: John.Hansen@utdallas.edu preschool classrooms using mobile devices worn in
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jackets by the children? Can shallow neural networks
utilized for speech activity detection tasks in literature
match the performance of deep neural networks investi-
gated here?

(2) How accurately can we measure the interaction metrics
of the children using the diarization system from step 1?
Can audio stream diarization for a few hours of duration
be visualized compactly using a software solution? Can
it provide a visual assessment of the child-adult diariza-
tion system by analyzing subregions of such a diagram?

(3) Can the neural networks developed in step 1 be analyzed
for regions of the input features that have greater contri-
bution in terms of attention or saliency maps for this
noisy, naturalistic audio dataset? Will the regions
detected in these maps have any physical significance
within the speech/audio domain?

(4) Can the performance of shallow neural networks devel-
oped in step 1, be improved using knowledge distillation
(KD) from deeper neural networks developed in step 1?

The contributions of this study are stated as follows.
First, we introduce the child-adult speech/speaker-type clas-
sification framework explained later for designing the scope
of the speech-segment classification task. Next, standard
convolutional neural network (CNN) architectures are
explored for this challenging task of distinguishing child-
ren’s speech from adult speech and non-speech.
Additionally, we analyze classifications of speech segments
into alternate speech types in terms of Fl-score. To improve
performance of smaller CNN models, KD techniques
[teacher-student (T/S) learning] of learning from advanced
CNN architectures having larger number of parameters are
applied to smaller CNNs with fewer parameters. The perfor-
mance improvements are analyzed using attention and
saliency maps for the input log-mel-spectrogram images.
The speech/speaker-type detector is integrated with an auto-
matic speech recognition (ASR) re-segmentation module
and provides diarized outputs based on different system con-
figurations. Thus, the diarization error rate (DER) is also
provided, which helps in understanding the performance
achieved by the different speech-type modeling techniques
and system configurations. This study would be one of the
first efforts for child-adult speech/speaker-type diarization
on a large North American English dataset of child-adult
naturalistic recordings in diverse classroom conditions.
Previous studies have considered the application of alternate
DNN architecture embeddings for child vs adult speech-
type classification. DNN multi-label classification (Lavechin
et al., 2020) has achieved segment-level classification of
child or adult speech detection for diarization which
included fine-grained labels like “key child,” “other child,”
and generic labels like “speech” for multitask learning as a
general audio-tagging task. A single label for an audio seg-
ment can be useful for downstream speech tasks. Moreover,
as we are testing on the segment-level audio, the output
speech-type classification and ASR re-segmentation can be
performed in an online fashion (Xue et al., 2021) (i.e., every
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segment can be processed as it is recorded). This has advan-
tages in classroom settings where immediate feedback for
teachers/adults can be provided. For offline processing, the
entire recording would need to be provided to generate any
final output estimated knowledge of the speech segment
type.

Additionally, we also divide the dataset in a classroom-
independent scenario, such that models trained on one class-
room condition are available for testing on audio from
another classroom condition. This will be the first effort on
this dataset to look at data splits with audio data from alter-
nate classrooms, thus allowing for a statement on model
generalization capability. Finally, we introduce a novel visu-
alization diagram referred to as donut diagram which pro-
vides speech segment classifications over a period of time as
a feedback mechanism and practical evaluation of our pro-
posed classification models.

Il. OUTLINE

The following is an overview of this paper which starts
with Sec. III mentioning the background including speaker
characteristics and child-adult speech diarization. Section
IV introduces our framework for end-to-end (E2E) child-
adult speech/speaker-type classification which includes the
assumptions and scope of our problem formulation. Section
V provides details of the dataset. Section VI explains the
procedure for producing the classification from raw audio
including steps displayed in Fig. 1. Within Sec. VI of the
method, Sec. VI A provides details on the system diagram
based on Fig. 2, Sec. VIB introduces data preprocessing
which includes segment generation and labeling, Sec. VIC
provides details about the deep learning architectures of
baseline CNN (CNN60) (Alam and Khan, 2020), spectro-
temporal attention CNN (STACNN) (Lee et al., 2020) and
ResNet18 (He et al., 2016) neural network used for segment
classification. Section VII talks about the experimental
design and the metrics used for evaluating the experiments,
while we look and discuss the results in Sec. VIII, followed
by conclusions and future work in Sec. IX.

lll. BACKGROUND
A. Modeling speaker characteristics

i-Vectors (Dehak et al., 2011b; Hansen and Hasan,
2015) are fixed length vectors that characterize speaker
identity from arbitrary length sequential data (i.e., speech
samples). They are standard features for speaker recognition
(Dehak et al., 2011b) and have been used extensively as a
baseline system in recent studies. They have also been used
for language recognition (Dehak er al., 2011a), accent rec-
ognition (Bahari et al., 2013), emotion recognition (Xia and
Liu, 2012), etc. Alternatively, DNNs (McLaren et al., 2015;
Snyder et al., 2018b; Snyder et al., 2016) can be used to
directly capture language or speaker characteristics. They
achieve improved results over i-Vectors using mel-
frequency cepstral coefficients (MFCCs) or log-mel-spectro-
grams as features. Here, log-mel-spectrograms can be
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FIG. 1. (Color online) System diagram for child-adult speech-type classification system for alternate neural network architectures.

defined as the logarithm of the mel-spaced filterbanks. It is
generated by the series of operations consisting of framing
and windowing, followed by applying discrete or fast
Fourier transform, then applying mel operation to the spec-
trogram and last logarithm operation. It helps in generating
features where the frequencies are overlapped and non-
uniformly spaced on the frequency axis such that the percep-
tual difference in frequencies stays the same for very high
frequencies. Finally, applying discrete cosine transform
(DCT) to log-mel-spectrograms generates MFCCs.

The current standard framework consists of a discrimi-
natively trained DNN that maps variable-length speech seg-
ments to embeddings called x-Vectors (Snyder et al.,
2018b). x-Vectors are deep speaker embeddings based on a
time-delay neural network (TDNN) architecture. This
approach has achieved excellent results for speaker recogni-
tion (Snyder et al., 2018b), diarization (Sell et al., 2018),
and language recognition (Snyder et al., 2018a) with further
advancements being actively researched. ECAPA-TDNN

(Dawalatabad er al., 2021) were recently introduced and
provide enhancements over TDNN (Snyder et al., 2018b) by
introducing channel and context-dependent attention
mechanism.

B. Child-adult speech diarization

Previous work on child speech has utilized i-Vectors
(Kothalkar ef al., 2019; Najafian et al., 2016; Cristia et al.,
2018) and x-Vectors (Xie et al., 2019a) as features for
speaker classification. The SincNet-based speaker identifica-
tion model has been used in university classroom setting
(Dubey et al., 2019) with effective results. Previous work on
this dataset (Najafian et al., 2016) used much lesser data and
fixed segments of length 1.5 s with a support vector machine
(SVM) backend for classification. A recent study (Kothalkar
et al., 2019) with more data transcribed for the dataset, used
DNN modeling with i-Vectors as features, and provided
promising results. Since, we aim to perform classification
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for real-time application in an E2E diarization scenario,
multiple pipelines of DNN models for speech activity detec-
tion (SAD) or voice activity detection (VAD), speech/
speaker-type classification and ASR are combined for their
strong performance in related studies (Silero Team, 2021;
Kim et al., 2021; Bredin and Laurent, 2021; Ozturk et al.,
2022; Radford et al., 2022; Bain et al., 2023) and possible
E2E classification approach.

C. E2E child-adult speech diarization

Recently studies have considered neural network-based
classification systems trained for classifying child or adult
speech/speaker-type. These utilize some form of fixed
length embedding as input for another neural network for
final classification of child or adult based on class posterior
values (Koluguri et al., 2020; Kumar et al., 2020) or tradi-
tional speaker clustering (Krishnamachari et al., 2021).
Alternately, such embeddings have also been utilized for
child-adult speech/speaker-type diarization, where neural
network training is formulated as a sequence classification
problem with output belonging to one of three classes: child
speech, adult speech, and silence. These solutions are effec-
tive in moderate noise conditions such as home environ-
ments with limited number of children and/or adults.

Lavechin et al. (2020) formulated the child-adult diari-
zation task as a multi-label classification task using SincNet
followed by long-short-term-memory (LSTM) layers for
activating multiple voice types present in 2s audio seg-
ments. This implied each segment could be reported as mul-
tiple voice-types resulting in multiple classes for
downstream processing tasks like ASR or keyword spotting.
Speech-type specific ASR models could be utilized for
downstream recognition and analysis tasks if such specific
information can be extracted. Thus, multiple segment labels
may not be optimal for extremely noisy data/scenarios with
audible/intelligible speech from single unique speech/
speaker-type.

Speech activity detection (SAD) and audio classifica-
tion are similarly aligned tasks as our speech/speaker-type
diarization and have achieved effective performance using
single DNN multitask classification. A single DNN with
multi-class classification has performed effectively for short
duration audio on tasks such as SAD or audio classification.
Hebbar et al. (2019) utilized standard deep learning archi-
tectures for image classification tasks with ResNet for
segment-based robust speech activity detection (clean,
music, noise classes) with impressive performance. Apart
from convolutional recurrent neural networks (CRNN), time
delay neural networks (TDNN) (Snyder et al., 2018b) have
been utilized to model long-term dependencies while per-
forming SAD with advantage of overall lower computa-
tional costs.

D. ASR word alignments to refine diarization results

In early works, ASR has been utilized in the context of
diarization for re-segmenting the initial speech segments
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generated from speech activity detection outputs. The IBM
system (Huang et al., 2008) for RTO7 evaluation incorpo-
rates word alignments from the speaker independent ASR
system to refine the SAD outputs and reduce false alarms,
thus resulting in better segment clustering output.

IV. FRAMEWORK FOR CHILD-ADULT SPEECH/
SPEAKER TYPE CLASSIFICATION AND DIARIZATION

The TDNN (Snyder et al., 2018b) architecture embed-
dings have been utilized for detection of speech (Bai et al.,
2019b; Ogura and Haynes, 2021), language (Garcia-Romero
and McCree, 2016), acoustic scene (Bai et al., 2019a),
Parkinson’s disease (Wodzinski et al., 2019), audio session
(Raj et al., 2019), gender (Raj et al., 2019), speaking rate
(Raj et al., 2019), words (Raj et al., 2019), phoneme (Raj
et al., 2019), utterance length (Raj et al., 2019), etc.
Recently, ECAPA-TDNN (Dawalatabad et al., 2021)
embeddings have provided state-of-the-art results for
speaker recognition (Chung et al., 2018) and speaker diari-
zation (Dawalatabad et al., 2021) tasks in noisy audio.

The posterior probabilities from the TDNN (Snyder
et al., 2018b), CNN, recurrent neural networks (RNN),
CRNN, and/or ResNet (He et al., 2016) architectures have
also been utilized for detection of speech (Silva et al., 2017,
Bai et al., 2019b; Horiguchi et al., 2021; Kwon et al., 2021;
Lin et al., 2020a; Villalba et al., 2019; Wang et al., 2020;
Braun and Tashev, 2021; Wilkinson and Niesler, 2021),
speaker (Xie et al., 2019b), music (Lee et al., 2006), stutter-
ing (Sheikh er al., 2021, 2022), Parkinson’s disease
(Wodzinski et al., 2019), spoken term (Ram et al., 2019),
dysarthria (Gupta et al., 2021), intoxication (Wang et al.,
2019), etc.

Based on the effectiveness in these studies, we pose the
child-adult speech/speaker-type detection problem as a
multi-class classification task using modern CNN-based
architectures. With the intent of utilizing noise-robust neural
networks having lightweight architecture for potential real-
time application, we propose to experimentally verify the
detection of child and adult speech from non-speech in natu-
ralistic audio using alternate types of CNNs having vanilla
baseline (Alam and Khan, 2020), attention-based (Lee et al.,
2020), and ResNetl8 architecture (He er al., 2016) along
with 2-dimensional (2D) input feature. Here, non-speech
comprises silence, inaudible speech within crowd noise by
adults or children, background music or electronic devices.
Child-specific background non-speech further comprises
laughs, cries, screams, breathing, burping, babbling, growl-
ing, squealing, etc. Due to the pervasiveness of such noisy
non-speech along with speech, for long periods of interac-
tion in the preschool classroom, we prioritize capturing
speech-types in clean as well as extremely noisy conditions,
by training a single model for distinguishing clean/noisy
child-adult speech from non-speech.

To capture the minor variation in perceptual differences
between intelligible speech from children and adults, in the
presence of near-identical unintelligible adult noise or child
non-speech sounds, we formulate it as a multiclass
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classification task, for a single neural network with loga-
rithm of the mel-spaced spectrogram (log-mel-spectrogram)
input features. The hypothesis is that regions of child/adult
speech in the log-mel-spectrograms would be distinguish-
able by a DNN compared to regions of non-speech in both
clean and noisy conditions. The outputs from these architec-
tures are compared and combined with outputs from state-
of-the-art speech activity detection systems for performance
evaluations. Further verification and boundary refinement of
the captured intelligible speech is performed using ASR re-
segmentation of the detected speech segments.

V. DATA SPECIFICS
A. Data collection

The dataset in this study consists of spontaneous con-
versational speech recorded with the help of LENA units
attached to subjects in a high-quality childcare learning cen-
ter in the United States. Daylong audio recordings consist of
54 preschool daylong audio files across 3 days in 7 sessions
in 2 classrooms (A or B). Most of the LENA units record
the data at 16kHz sampling rate. Although some of the
LENA units in classroom B have recorded the audio at
22kHz, every audio segment is resampled at 16 kHz sam-
pling rate before applying any signal processing technique
such as feature extraction.

B. Classroom details

Data collected using LENA recorders in two classrooms
have multiple working stations.

These learning station activities such as reading, blocks,
play, singing, science, etc. (see Fig. 1). The dimensions of
the two classrooms are different, which may affect the
recorded audio in terms of reverberation. Classroom A is
24 ft by 24 ft in dimension. Classroom B is much larger with
dimensions of 24 ft by 40 ft An illustration of a floor plan in
a preschool classroom is shown in Fig. 1. Thus, to under-
stand the performance of our algorithms in diverse environ-
mental conditions, it would be useful to have data from
these classrooms in different sets for model training and
test.

System combo: System S1 + System S2

C. Dataset distributions

Audio for this study have children who are 3 to 5 years
along with one or more adults (e.g., typically, teachers).
Most children wear LENA devices as well as accompanying
1-3 adults are also wearing them. Both classrooms A and B
have audio recorded from 4 adults in the distance from
LENA devices worn by the children. In both the classrooms
A and B, some of the audio sessions have one adult wearing
the LENA recording device in a vest. Classroom A has
8 children wearing the LENA recorder device while class-
room B has 9 children wearing the same.

The total audio from classroom A is of duration 61h
and 18 min and from classroom B is 63 h and 57 min. Thus,
around 60 h of audio or approximately 230000 segments of
1's duration are used for training the classroom-specific
models. For this dataset, an organized set of approximately
19h of speech from classroom A and similar amount of
speech from classroom B are established as the evaluation
set for the corresponding classrooms.

The audio segment files are divided into training, develop-
ment and test sets following the classroom-based division such
that there is no overlap of data between the sets. The audio
data corresponding to classrooms A and B are used for training
alternate models. Data from the other classroom is used for
model development and testing. During model development, a
separate hold-out set known as development data, is used in
order to find the best performing model (based on training
epoch) during neural network training.

For example, a model trained on data from classroom A
is used for model development on data from a given time-
point in data from classroom B, and tested on data for
remaining timepoints from the same classroom B. Similarly,
a model trained on data from classroom B is used for model
development on data from given timepoint in classroom A
and tested on data from remaining timepoints in classroom
A. Thus, training set is from alternate classroom compared
to development and test sets. This provides an opportunity
for a model developed on data from one classroom, to be
evaluated on two subsets of data from other classrooms.
Also, such a data split has practical application for new
classroom scenarios where smaller, transcribed pilot data
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FIG. 3. (Color online) System configurations for child-adult diarization using ASR-based re-segmentation.
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from new classroom can be used for model epoch selection
and rest of the untranscribed data for testing. Even if tran-
scription for new classroom data is not feasible, the current
data split provides generalized models for testing based on
train-development split.

VI. METHOD
A. System pipeline
1. Speech/speaker-type classification

Figure 2 explains the high-level system diagram for
child-adult speech-type classification task. It starts with data
collection using our LENA device in preschool classroom.
This data is transcribed by the CRSS transcription team for
recognizing the speech in this naturalistic audio. After data
preprocessing steps, the modified data is used to train deep
learning models using the training set. The best model is
finally evaluated on the test set for speech/speaker-type clas-
sification as mentioned in the details of Sec. V C.

2. ASR re-segmentation for child-adult speech/
speaker diarization

The ASR re-segmentation module consists of an E2E
ASR system for recognizing the text in the audio segment
followed by another E2E ASR system for recognizing the
timestamps as shown in Fig. 3. We utilize Whisper for rec-
ognizing the text in the speech segment due to its high-
quality transcription performance in naturalistic conditions.
This is followed by the forced alignment using another E2E
ASR model known as Wav2Vec2 (Baevski et al., 2020).
This combined system for forced alignment is implemented
in the tool WhisperX (Bain et al., 2023). For a given system
alternate model variations of the two E2E ASR systems
were utilized. For Whisper its medium and large models for
English language were considered. For Wav2Vec2 ASR sys-
tem, Facebook’s wav2vec2-large-robust model finetuned on
noisy conversational Switchboard speech data and XLSR-53
large model finetuned on English version of common voice
for speech recognition were considered. The variations were
based on the datasets utilized to fine-tune the base
Wav2Vec2 model. The alternate configurations of the
Speech-type classification and ASR re-segmentation mod-
ules are displayed in Fig. 3 and explained as follows:

a. System S1. System S1 consists of an industry-
strength Silero (Silero Team, 2021) SAD system followed by
an ASR-based re-segmentation module. The ASR-based

J. Acoust. Soc. Am. 155 (2), February 2024

re-segmentation module marks the start and end times of the
ASR recognized segments from the SAD segmented audio
files. The Silero SAD system consists of CNN and
transformer-based architectures. Finally, if presence of child
speech-type is detected by the speech-type detector ResNet
module, the speech-type of the segment is marked accordingly.
All combinations of Whisper E2E ASR models and
Wav2Vec?2 forced alignment models are utilized to produce
multiple diarized segment system outputs for the entire test set.

b. System S2. System S2 consists of speech-type detec-
tor ResNet module followed by ASR-based re-segmentation
module. Here, our speech-type detection module acts as an
implicit speech activity detector with an additional class for
detecting child speech. The ASR re-segmentation module
performs the task of marking the timestamps of the ASR rec-
ognized speech-types. All combinations of Whisper E2E
ASR models and Wav2Vec2 forced alignment models are
utilized to produce multiple diarized segment system outputs
for the entire test set.

c. System S1+4 S2.In the combination system, we
combine the multiple diarized segment outputs from sys-
tems S1 and S2.

3. Merging strategies of ASR re-segmentation module
for child-adult speech/speaker diarization

Irrespective of the segment speech-type, for output seg-
ments with overlapping timestamps from any of the system
outputs of system S1 and/or S2, the segments from the two

TABLE 1. Configurations of all operators in ResNet-18 where 1.C. repre-
sents input channel and O.C. represents output channel.

Name Output size  I1.C.size, O.C.size  Kernel size, Stride size
LayerO 99 x 80 3,64 7,2
Layerl 50 x 40 64, 64 3,1
64, 64 3,1
Layer2 25 %20 64, 128 3,2
128, 128 3,1
Layer3 13x 10 128, 256 3,2
256, 256 3,1
Layer4 7x5 256,512 3,2
512,512 3,1
Avg. Pool 4x3 512,3 1,1
Embedding 1x1 — 1,1
Softmax 1x1 — —
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2D Residual
convolution blocks
I Lotg + max (]ayer 1-
melspectrogram pooling
(layer 0) layer 4)

Adult
speech

> Avgpool2D N AM- Child

+ Linear Softmax

speech

Non-
speech

FIG. 5. Block diagram for E2E ResNet18 model.

systems are merged using following segment merging
strategies:

(1) If a given segment from any of the system outputs of
system S1/S2, has the same start or end time as that of a
segment from any of the other system outputs, the seg-
ment with smaller talktime is discarded.

(2) If a given segment from any of the system outputs of
system S1/S2, has the same start and end time as that of
a segment from any of the other system outputs, and has
presence of child speech/speaker-type in one of the
speech segments, the segment is assigned with child
speech/speaker-type class.

(3) If one segment from any of the system outputs of system
S1/S2 completely bounds a segment from any of the
other system outputs on the time axis, the smaller seg-
ment is discarded.

(4) For a given segment from any of the system outputs of
system S1/S2, if it overlaps a segment from any of the
other system outputs to its right along the time axis, the
given segment from system S1/S2 is truncated to start of
overlapping segment on its right along the time axis.

B. Data preprocessing

Audio recordings from both classroom A and B are
divided into audio segments using a sliding window of
1000 ms duration with no overlap. Based on text transcripts
from the data, ground-truth speaker-types are assigned as
“adult” or “child” speech because of greater talk time by
either the adult or child speaker over each 1000 ms audio seg-
ment, respectively. This approach was motivated by an earlier
study that also considered a different challenging diarization
scenario (Lin ef al., 2020b). For segments with speech tags

that occupy less than 12.5% of the total segment duration,
these are marked as non-speech. The ability to set a speech/
silence threshold balance, achieving overall effective diariza-
tion robustness, has also been explored in other studies
(Hebbar et al., 2019).

C. Deep learning model architectures and input
feature type

E2E deep learning systems for speech classification tasks
consist of the following steps: (i) frame-level feature extrac-
tion using DNN, (ii) temporal aggregation of frame-level fea-
tures, and (iii) optimization of classification loss. Most
speaker verification/recognition systems have a base DNN
architecture such as a 2D CNN with convolutions in both time
and frequency domains such as ResNet (He er al., 2016).
Here, the focus is to evaluate these for speaker/speech-type
classification. Thus, looking at 2D CNN architectures will
help to evaluate features and architectures for systems that can
perform well on child or adult speaker/speech-type detection
from non-speech. The ECAPA-TDNN (Desplanques et al.,
2020) performs better than the ResNet architecture for speaker
recognition tasks, due to its ability to learn complex patterns
that occur in any frequency region since 1D convolutions
cover the complete frequency range of the input features.
However, this leads to hardcoding (Thienpondt et al., 2020) of
absolute frequency position of each input feature. Our hypoth-
esis is that this may not translate to appropriate generic
speech/speaker-type classifications due to differences in fre-
quency variability within adult/child speakers. ResNet models
are expected to benefit due to 2D convolutions with small
receptive fields by exploiting the local speech-type frequency
patterns that repeat for small frequency shifts, thus providing
generality for modeling speakers within child/adult groups.

TABLE II. Fl-score results on testing subset recordings of classroom A and classroom B audio.

Train on Train set of: Test on Test set of: Model Flenig (%) Flaqu (%) Flyon-sp- (%) Floyeran (%)
Room A Room B CNN60 73.7% 72.9% 78.0% 74.9%
STACNN 76.1% 77.5% 79.8% 77.9%
ResNet18 76.9% 81.7% 80.0% 79.7%
KD-CNN60 73.8% 76.4% 78.4% 76.3%
KD-STACNN 78.7% 81.6% 80.6% 80.4%
Room B Room A CNN60 75.1% 77.7% 78.3% 76.9%
STACNN 77.7% 78.5% 78.9% 78.4%
ResNet18 80.9% 82.6% 80.3% 81.3%
KD-CNN60 76.0% 77.7% 78.4% 77.4%
KD-STACNN 79.9% 82.5% 80.2% 80.9%
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TABLE III. Diarization error rate results on testing subset recordings of classroom A and classroom B audio.

Train on Train set of: Test on Test set of: System combination with Resnet model Egpir (%) Ega (%) Ewiss (%) DER (%)
Room A Room B System S1 20.7 14.7 394 74.8
System S2 1.3 3.5 532 58.0
System S1+S2 11.9 7.8 21.6 41.3
Room B Room A System S1 20.7 12.7 40.7 74.1
System S2 4.1 1.9 40.3 46.3
System S1+S2 11.3 7.0 20.8 39.1

1. CNN60 model

The CNN60 model is our baseline CNN system for the
task of child-adult speaker-type detection with approxi-
mately 60 000 trainable parameters. It is composed of three
convolution and pooling layers followed by two fully con-
nected layers. The first convolution and pooling layer each
use a (5 x 5) kernel. Second and final convolution layer use
a (3 x 3) kernel and each is followed by a (2 x 2) max pool-
ing layer. The three convolution layers consist of 32, 48,
and 64 filters, respectively. The first fully connected layer
has 64 hidden units, and the second fully connected layer
has 3 hidden units corresponding to the speaker-types of
child, adult, or non-speech.

2. STACNN model

The STACNN model as depicted in Fig. 4, consists of
spectral and temporal attention modules that comprise of
blocks of convolutional layers and multi-head attention
layers, respectively. Specifically, the spectral attention layer
is used to attend to speech features in the acoustic space and
provides the robustness for the noisy data task of speaker-
type detection.

The spectral attention module consists of T blocks with
each block composed of a pair of convolutional layers and
one-dimensional max pooling layer. The pipe-net contains
two fully connected layers, each with N units, which acts
as an information bridge between the spectral attention mod-
ule and the temporal attention module. The temporal atten-
tion module attends to the most important positions from
several neighboring input features using multi-head self-
attention module. Temporal attention module is followed by
two fully connected layers, each with N,, hidden units. The
final linear layer has three hidden units for the three
speaker-types to be detected. The logit output of the classifi-
cation layer is passed through AM-Softmax loss function for
CNN optimization.

3. ResNet18 model

The ResNet model is used for training very deep net-
works with the help of residual learning which involves skip
connections to help overcome the problem of vanishing gra-
dient due to increase in the depth. Configuration details for
the ResNet18 (He et al., 2016) model is presented in Table
I. ResNet is a block-based model which includes identity
block and convolution block. Here, identity block passes the
original input to the output of the convolution block by
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skipping intermediate convolutional layers within the block.
For convolutional block, the original input is passed through
another convolutional layer to match the output dimensions
of the convolutional block during summation. This creates
an alternate path for the vanishing gradient to pass through
from deeper layers. This approach will allow the model to
learn an identity function, which allows the higher layer in
the model to perform as effectively as the lower layer. After
initial convolution (layer 0) and batch normalization and
ReLU operations, there are always 4 blocks (layer 1-layer 4)
with each block containing multiple convolutions, batch
normalization and ReLLU operations. Layer O represents the
input layer and layers 1-4 are the residual blocks in the
ResNet architecture with skip connections as summarized in
Table I.

The architecture finishes with a convolutional layer,
flatten operation, average pool operation and output layers
as seen in the block diagram for ResNet model in Fig. 5.

4. Input representation for CNN60, STACNN and
ResNet18

For this system, 80-dimensional log-mel-spectrograms
are extracted over 25 ms windows with 10ms skip rate as
input features. Stacked frame blocks of 1000 ms duration
(100 frames) are used to generate serialized input 2D fea-
tures for the task of speaker/speech-type classification.

D. Knowledge distillation

Knowledge distillation (Hinton et al., 2015; Gou et al.,
2021) helps the training process of “student” networks by dis-
tilling knowledge from one or multiple well-trained “teacher”
networks. The key here is to leverage the soft probability out-
puts of teacher networks, where incorrect-class assignments
reflect how a teacher network generalizes from previous train-
ing. By mimicking probabilities output, the student network
can incorporate the knowledge that the teacher network dis-
covered earlier, allowing the performance of the student net-
work to be better than if it were trained with labels only.

Let (x;,y;) denote a training sample in dataset (X,Y)
where x; contains a sequence of N input speech frames and
y; is the predicted speaker-type class. Hinton et al. (2015)
introduced “softmax temperature” function o, (.) to produce
a softer probability distribution output when a large temper-
ature 7, (usually greater than 1) is picked. Since it takes log-
its from final layer as input, it decays to normal softmax

Kothalkar et al. 1205

€1:20:20 ¥20Z Ae 9L


https://doi.org/10.1121/10.0024353

function ¢(.) when 7, equals 1. The softmax function value
for instance x; can be calculated as

ou () = exp(xi/ts)

- Z exp (x;/Ts) '

X,’EX

&)

KD loss is defined as the sum of the KL-divergence
between logits of teacher network output with the student
network output and the cross-entropy of the dataset (X,Y).
Given a pre-trained teacher network fp,(-) and a student net-
work fp,(-), where 07 and Og denote the network parameters,
the goal of knowledge distillation is to force the output
probabilities of fy(-) to be close to that of fy,(-). Py, () indi-
cate the logit response of x; from fj (.). The student network
fo, can then be learned by the following relation with the
parameters of the teacher model fy, :

miny, Z (ot x 12 x KL (ar“ (Pra, (xi))> o<, (P (x,)))

(XY EXY)
+(1=2)CE(ox, (Ppy (11)),31)) )

where KL(---) and CE(---) are the Kullback-Leibler
(KL-divergence) divergence and cross-entropy loss, respec-
tively. Another hyperparameter o is utilized to perform the
weighting between T/S loss and cross-entropy loss and per-
forms well when the weight for T/S loss is higher.

In our case, we utilize the ResNetl8 model to be the
teacher for teaching the speaker-type detection task to CNN60

Session in Classroom A
Actual Groundtruth Diarization

1 second segments displayed over
time in anticlockwise direction

Starttime:0's »
¢ End time: 11388 seconds 1
| g Overall Duration~ 3 hours 10 minutes

A
2972 seconds 2493 seconds 5931 seconds
(26.1% of total time)  (21.9% of total time) (52.0% of total time)
B Adult B Child Non Speech

FIG. 6. (Color online) Actual talktime for child and adult speech as repre-
sented by a donut diagram for a session in classroom A with a child wearing
the LENA device.
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and STACNN models through the KD loss. Thus, KD loss
comprising of T/S loss and cross-entropy loss is used in addition
to the AM-Softmax loss. The models generated through KD
training procedure are from now referred to as KDCNN60 and
KD-STACNN for CNN60 and STACNN models, respectively.

VIl. EXPERIMENTAL DESIGN AND METRICS
A. Experimental design

For uniformity in system evaluation, all CNN architec-
tures including ResNet18 (He et al., 2016) models are trained
with an Additive Margin-Softmax loss with margin =0.15 on
input features for 40 epochs using the RMSprop algorithm
with a learning rate of 0.001, « =0.95 and ¢ =1 X 1078,
Each epoch consists of 800 batches of randomly selected seg-
ments of batch size 32. Figures 4 and 5 highlight the block dia-
gram for STACNN and ResNet18 (He et al., 2016) models,
respectively. Results are reported for both development and
test sets for both models as explained in Sec. V C.

For the KD procedure, hyperparameters o = 0.9 and
T, = 4 are set based on empirical observations. It ensures
that the T/S loss receives much higher weightage compared
to cross-entropy loss.

B. F1-score for speech type detection by model
on testing dataset

To understand the child-adult speaker/speech-type
detection, we test our models on classroom specific test

Session in Classroom A
Predicted ResNet18 Diarization

1 second segments displayed over
time in anticlockwise direction

i Starttime:0's .
End time: 11308 seconds
Overall Duration~ 3 hours 10 minutes

3329 seconds 2789 seconds 5278 seconds
(29.2% of total time) (24.5% of total time) (46.3% of total time)
W Adult B Child Non Speech

FIG. 7. (Color online) Predicted talktime for child and adult speech as rep-
resented by a donut diagram for a session in classroom A with a child wear-
ing the LENA device.
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data. Different metrics can assess model performance in
terms of their ability to recall as well as precision of detec-
tion. “Accuracy” is defined as the total number of samples
that are predicted correctly. “Precision” is the fraction of
relevant instances among all the detected instances. These
would be the fraction of actual segments of speech/speaker
type or non-speech type, among all such detected
segments,
P

Precision = TP+ FP’ 3)
where TP represents true positives and FP represents false
positives.

“Recall” is defined as the fraction of the relevant instan-
ces that were actually detected. In our case, these would be
the fraction of segments of particular speech/speaker or non-
speech type that were predicted correctly,

P

Recall = ——— 4
ecall TPLFN’ 4)

where TP represents true positives and FN represents false
negatives.

Fl-score is defined as harmonic mean of the precision
and recall and takes both precision and recall into account
for providing an overall balanced assessment.

2 X Precision X Recall
Flypre = — . 5
score Precision + Recall ©®)

C. Diarization error rate

Diarization error rate (DER) can be defined as the sum
of errors due to an incorrect speaker (Ey,), missed speech
(Eiss), false alarm speech (Er4), and overlapping speakers
(E,y) based on the predictions of the Diarization system.
E,,; and are not considered in this evaluation,

DER = Espkr + Episs + EFa. (6)

In the literature, speaker confusion error for audio
streams is mostly reported as DER. However, we have
reported DER comprised of speaker confusion error, false
alarm error and missed speech error. Missed speech error
(Kumar et al., 2020), are most important for follow-on
downstream tasks of both speech analysis and ASR.

VIIl. RESULTS AND DISCUSSIONS
A. Fi-score and DER

Table II reports corresponding F1-scores for each of the
speaker/speech types and non-sp. audio where non-sp. repre-
sents non-speech. Table III reports diarization error rate on
the test subsets for classrooms A and B.

The largest improvement by ResNet model is for seg-
ments containing child speech in terms of the Fl-score as
seen in Table II for test subset. Specifically, Fl-score for
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child speech provides an absolute improvement of +8.4%
for test data from classroom A, and an absolute improve-
ment of +8.0% for test data from classroom B. For all
results in Table II, the best Fl-scores are for non-speech
segments, for test sets of both classrooms A and B. We
hypothesize the lower Fl-scores for all the speech-types in
test subset of classroom B to be due to the more challenging
environmental noise conditions of classroom B vs classroom
A. The highest Fl-scores across all models and classrooms
for non-speech type audio can be attributed to the dispropor-
tionate amount of non-speech present in these audio files,
and therefore the distribution in the test segments.

As can be seen from Table III, system S2 outperforms
system S1 significantly for speaker confusion error rate,
false alarm error rate, and overall, DER on the test set for
both classrooms A and B. However, the best overall DER
on the test set for both classrooms A and B is by system
S14-S2. The relative improvements by system S1+S2 vs sys-
tem S1 on classroom A test audio data are +45.4% for
speaker confusion error rate, +48.9% for missed speech error
rate, and +47.2% for overall DER. Relative improvements by
system S1+S2 vs system S1 on classroom B test audio data
are +42.5% for speaker confusion error rate, +45.2% for
missed speech error rate, and +44.8% for overall DER.

Thus, system S1+S2 provides improvement in overall
DER vs systems S1 due to relatively improved error rate for
missed speech by 45%—49% on test set for both classrooms
A and B. System S14-S2 also provides improvement in
overall DER vs system S2 due to relatively improved error
rate for missed speech by ~59% on test set for both class-
rooms A and B. It can be observed from Table III that the
false alarm error rate and speaker confusion rate for both the
models on test sets of both the classrooms increase for sys-
tem S14-S2 vs system S2. This can be attributed to the dras-
tic drop in missed speech rate for system S1+S2 on test
subsets of both the classrooms. Detecting more speech seg-
ments while improving the DER is more important than a
lower false alarm rate for this dataset in order to perform
analytics on the recognized conversational speech.

Thus, our speech/speaker-type classifier trained on
classroom domain-specific data in conjunction with ASR
models trained on massive amounts of audio data can match
performance of the combination of Silero VAD and ASR
models. In combination with Silero VAD our ResNet-based
speech/speaker-type classifier can improve the missed
speech error rate and thus, the overall child-adult diarization
performance. Thus, models trained on multi-condition, mas-
sive speech corpora for multiple speech tasks are hypothe-
sized to provide complementary information in terms of
acoustical environmental conditions to models trained on
domain-specific speech data for focused task of child-adult
speech/speaker-type diarization.

B. Visualization of speech-type density and
turn-taking using donut diagrams

Also, we present the speaker/speech-type density and
turn-taking with a visualization tool known as a “donut

Kothalkar et al. 1207

€1:20:20 ¥20Z Ae 9L


https://doi.org/10.1121/10.0024353

diagram” that reflects the speech density per speaker over
different times of a session. The donut diagrams present an
easy way to visualize the missed speech and false alarms at
the segment level along with performance comparison in a
temporal manner. It begins in the east-most section of the
donut and displays times along an anti-clockwise direction
until time is complete, reaching the same point 360° later.

Figures 6 and 7 represent the actual and predicted
[using ResNet (He et al., 2016) model] talktimes for a ses-
sion in classroom A with a child wearing the LENA device.
Here, segment-level false alarms can be recognized between
250° and 300° based on the thickening of adult speech seg-
ments in that region of the diagram for Fig. 7 compared to
Fig. 6. We see the percentage difference between predicted
and actual talktimes differ between 2.6% (child) and 3.1%
(adult). The density of speech-type and change in speech-
types in alternate sections are captured well and offers an
excellent high-level assessment of child-adult conversa-
tional engagement. For example, the left half of the diagram
with multiple interactions between children and adults is
useful for further analysis. The mapping between dense
regions of child speech (thick segments of pink) and adult
speech (thick segments of green) is also matched closely
between Figs. 6 and 7, where thick segments would have
speech for a single type for significant duration.

Figures 8 and 9 represent the actual and predicted
(using ResNet model) talktimes for a session in classroom B
with a child wearing the LENA, resulting in much more

Session in Classroom B
Actual Groundtruth Diarization

1 second segments displayed over
time in anticlockwise direction

Starttime:0's
End time: 10729 seconds
Cverall Duration~ 3 hours

2808 seconds 4590 seconds 3331 seconds
(26.2% of total time) ~ (42.8% of total time)  (31.0% of total time)
W Adult B Child = Non Speech

FIG. 8. (Color online) Actual talktime for child and adult speech as repre-
sented by a donut diagram for a session in classroom B with a child wearing
the LENA device.
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recorded adult speech. Here, segment-level false alarms can
be recognized between 150° and 200° on account of the
empty spaces in that region of the diagram for Fig. 9 when
compared with Fig. 8. Approximately, 10% of child speech
is missed in this predicted donut diagram, and approxi-
mately a similar amount of non-speech is misclassified.
However, regions with significant child or adult communi-
cation [which is represented by thick segment of single color
(green or pink)] interspersed with the speech type are pre-
sent and well matched in both figures. For example, pres-
ence of thick green segments between approximately
260°-300° represents significant adult talk during that time
of the session, along with child speech in between in class-
room B with a child wearing the LENA device.

For example, certain thick green segments are matched
at 85° and between 150° and 210°. Similar, thick pink seg-
ments are present between 180° and 210°.

C. Visualization of attention maps over input
spectrogram images for the predicted label based on
the output of ResNet, STACNN, and KD-STACNN
models

In Fig. 10, we have presented the log-mel-spectrograms
of four random audio segments containing adult speech with
corresponding attention map outputs of the four ResNet
blocks (denoted as g0, gl, g2, g3) in the first four rows.
These are followed by log-mel-spectrograms of four random
audio segments containing child speech with corresponding

Session in Classroom B
Predicted ResNet18 Diarization

1 second segments displayed over
time in anticlockwise direction

Starttime:0s
End time: 10720 seconds
Overall Duration~ 3 hours

2877 seconds 3521 seconds 4331 seconds
(26.8% of total time) (32.8% of total time) (40.4% of total time)
W Adult B Child 0 Non Speech

FIG. 9. (Color online) Predicted talktime for child and adult speech as rep-
resented by a donut diagram for a session in classroom B with a child wear-
ing the LENA device.
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attention map outputs of the four ResNet blocks in the last

four rows of Fig. 10.

Here, the second column (denoted as g0) represents the
output of the first ResNetl8 block and provides detailed
view of the regions corresponding to the image, that have
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FIG. 10. (Color online) Log-mel-spectrograms of eight random audio files containing adult (top four) and child (bottom four) speech along with the attention
map outputs from the four blocks of the ResNet model.
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Attention maps for adult speech segments in Spectro-Temporal Attention Vs. Knowledge Distilled Spectro-Temporal Attention CNN Model
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FIG. 11. (Color online) Log-mel-spectrograms of four random audio segments containing adult speech that show improvement due to KD along with the
corresponding attention map outputs of multihead attention layer in the spectro-temporal attention CNN model.

contours of the log-mel-spectrograms in column 1 of Fig.
10. Thus, the ResNet model can detect regions of high for-
mat frequencies for predicting the speaker-type class.

The output of the deeper layers of the ResNet18 model
in terms of the outputs for the second, third, and fourth
ResNet blocks are presented in the third, fourth, and fifth
columns of Fig. 10. Since the block size reduces for deeper
layers of the model with corresponding increase in channel
size, a rescaled version of the output image displays the
regions of focus after application of ResNet blocks. Since
deeper layers of the CNN learn high-level features for a
given classification task, the outputs are as per expectations
of standard procedure for inference in CNNSs.

Figure 11 presents log-mel-spectrograms of four ran-
dom audio segments containing adult speech that show
improvement due to KD along with the corresponding atten-
tion map outputs of multihead attention layer in the
STACNN model. Here, the second column (denoted as g0)
presents the output of the multihead attention layer of the

1210  J. Acoust. Soc. Am. 155 (2), February 2024

STACNN model, and the third column (denoted as gl)
presents the output of the multihead attention layer of the
KD-STACNN model.

Multiple heads are active for the input audio spectro-
grams and across multiple timestamps for KD-STACNN
model vs one or two attention heads and lesser timestamps
for the same input audio spectrograms.

Figure 12 presents log-mel-spectrograms of four random
audio segments containing child speech that show improve-
ment due to KD along with the corresponding attention map
outputs of multihead attention layer in the STACNN model.
Here, the second column (denoted as g0) presents the output
of the multihead attention layer of the STACNN model, and
the third column (denoted as gl) presents the output of the
multihead attention layer of the KD-STACNN model.

Multiple heads are active for the input audio spectro-
grams and across multiple timestamps for KD-STACNN
model vs one or two attention heads and lesser timestamps
for the same input audio spectrograms.
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FIG. 12. (Color online) Log-mel-spectrograms of four random audio segments containing child speech that show improvement due to KD along with the
corresponding attention map outputs of multihead attention layer in the spectro-temporal attention CNN model.

D. Visualization of saliency maps over input
spectrogram images for the predicted label based
on the output of STACNN and KD-STACNN models

The saliency map generation is inspired by the basics of
backpropagation algorithm, which states that the deltas
obtained at a layer L equal the gradient of the loss incurred
by the subgraph of the CNN below L with respect to the out-
puts at L. Thus, backpropagating till the input data layer
will yield us the gradient of the loss incurred by the whole
CNN with respect to the input itself, thereby providing us
the importance/saliency over the input image. Thus, saliency
map for an image comprises the important pixels in the
image that influence class score of the network prediction.

In Fig. 13 we have presented the log-mel-spectrograms
of four random audio segments containing adult speech that
show improvement due to KD along with the corresponding
saliency map outputs in the spectro-temporal attention CNN
model without KD (second column) and with KD (third col-
umn) KD. The second and third columns are denoted as g0

J. Acoust. Soc. Am. 155 (2), February 2024

and gl, respectively. In the second column of Fig. 13, pat-
terns that have strong contribution for prediction of adult
speech display brighter colors (bright red to yellow) while
lower contribution regions are marked black in color (dark
red to black) as per the color map. Regions that show an
increase in brightness in the third column of Fig. 13 vs the
second column of Fig. 13 are marked in orange boxes.
Another notable difference between the saliency maps of the
two columns of Fig. 13 is that pixels with higher contribu-
tion towards the prediction score in the third column occur
in consecutive locations and a definite pattern, like the con-
tours of formant frequencies in log-mel-spectrogram images
of the first column. Even certain pixels of lower score con-
tribution that are completely missing in the second column
of Fig. 13 are present in the third and fourth rows of the
third column in Fig. 13.

Similarly, we have presented the log-Mel-Spectrograms
of four random audio segments containing child speech that
show improvement due to KD along with the corresponding
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FIG. 13. (Color online) Log-mel-spectrograms of four random audio segments containing adult speech that show improvement due to KD along with the
corresponding saliency map outputs of multihead attention layer in the spectro-temporal attention CNN model.

saliency map outputs in the spectro-temporal attention CNN
model without KD (second column) and with KD (third col-
umn) KD in Fig. 14. The second and third columns are
denoted as g0 and gl, respectively. Here, the first, second,
and third rows of the third column can be seen containing
consecutive pixels providing the greatest contribution to the
CNN forward inference score due to the presence of yellow,
formant shaped contours within the orange boxes.

Thus, we can detect the presence of child speech or
adult speech better after application of KD to STACNN
models due to improved detection of presence of relevant
formant contours as observed from the saliency maps for
log-mel-spectrograms.

IX. CONCLUSIONS AND FUTURE WORK

In this study, a child-adult speech-type diarization sys-
tem for recognizing speech/speaker type from day long

1212 J. Acoust. Soc. Am. 155 (2), February 2024

audio recordings was developed. State-of-the-art deep learn-
ing models renowned for speaker recognition were utilized
for predicting speech-type activity. Specifically, STACNN
models provided good and consistent results in terms of F1-
scores for all speech activity types recognized based on the
posterior probabilities. However, a ResNet model with 80-
dimensional log-Mel-spectrograms inputs have outper-
formed STACNN model in terms of Fl-scores of all speech
activity types as well as DER. Knowledge distillation-based
approaches were applied to CNN60 and STACNN models
which improved their performance for the speaker-type clas-
sification task on the evaluation set. Also, the performance
of STACNN model was very close to ResNet18 model in
terms of F1-score for evaluation set of classroom A and bet-
ter than performance of ResNet18 model for evaluation set
of classroom B. Thus, KD-STACNN models can be
substituted for ResNet18 models when smaller model sizes
are desired such as for real-time application of speaker-type
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FIG. 14. (Color online) Log-mel-spectrograms of four random audio segments containing child speech that show improvement due to KD along with the
corresponding saliency map outputs of multihead attention layer in the spectro-temporal attention CNN model.

detection. These models were trained on audio data from
one classroom and tested on audio data from a separate
classroom, which proves the generalization of our models
for alternate classroom conditions. The predicted segments
of fixed duration 1s were visualized with novel visualiza-
tions referred to here as donut diagrams. These were shown
to be an effective method for detecting continuous child
and/or adult speech segments over a period, providing
visual feedback of child-adult interactions. Thus, the dia-
grams can provide feedback to teachers/adults on their
communication metrics with children during different
times of the session. Regions or pixels of input log-mel-
spectrograms contributing for speaker-type prediction were
discovered using attention maps from gradients of model
predictions for the corresponding input audio segments.
Similar attention maps were also presented for STACNN
models for the multihead attention layer. The improve-
ments achieved in KD-STACNN models over STACNN

J. Acoust. Soc. Am. 155 (2), February 2024

model were tracked in attention and saliency map outputs
for model inference over input log-mel-spectrogram
images of the audio segments. The child-adult speech-type
predicted outputs are combined with an ASR re-
segmentation module in various configurations to provide
multiple child-adult diarization systems. A specific combi-
nation of these child-adult diarization systems provides the
best performance in terms of diarization error rate. For
future work, we suggest training and testing multi-class
classification tasks for attention-based ResNet models for
smaller duration segments. Also, we would like to utilize
alternate ASR re-segmentation modules including those
customized to speech data from preschool classroom
domain. Since the scope of this work involved classroom-
independent diarization evaluation, future work could also
include performance evaluation of the proposed diarization
system for downstream speech technology tasks including
ASR and keyword spotting.
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