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Respecting the laws of thermodynamics is crucial for ensuring that numerical simulations
of dynamical systems deliver physically relevant results. In this paper, we construct a
structure-preserving and thermodynamically consistent finite element method and time-
stepping scheme for heat conducting viscous fluids, with general state equations. The
method is deduced by discretizing a variational formulation for nonequilibrium ther-
modynamics that extends Hamilton’s principle for fluids to systems with irreversible
processes. The resulting scheme preserves the balance of energy and mass to machine
precision, as well as the second law of thermodynamics, both at the spatially and tempo-
rally discrete levels. The method is shown to apply both with insulated and prescribed
heat flux boundary conditions, as well as with prescribed temperature boundary con-
ditions. We illustrate the properties of the scheme with the Rayleigh-Bénard thermal
convection. While the focus is on heat conducting viscous fluids, the proposed discrete
variational framework paves the way to a systematic construction of thermodynamically
consistent discretizations of continuum systems.
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1. Introduction

Structure preserving discretization of continuum systems, such as fluids and elastic
bodies, is today widely recognized as an essential tool for the construction of nu-
merical schemes when the long time accuracy and the respect of the balance and
conservation laws of the simulated system are crucial. Such properties are espe-
cially relevant in the context of geophysical fluid dynamics for weather and climate
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prediction, or in the context of plasma physics.

A well-known constructive approach to deriving such structure preserving dis-
cretizations is to exploit the variational formulation underlying the equations of
motion. This formulation is deduced from Hamilton’s critical action principle and
provides a useful setting for both the temporal and spatial discretization steps.
While variational time integrators for finite dimensional systems are today well-
established (see Ref. 38 and the large series of subsequent works), spatial and
spacetime discrete variational approaches for continuum systems are still under-
going foundational developments (e.g. Refs. 36, 34, 40, 15, 14, 21).

Despite their wide range of applicability, a main limitation of variational for-
mulations issued from Hamilton’s principle is their inability to consistently include
irreversible processes in the systems. In most of the real world applications of con-
tinuum mechanics, however, such processes do have a deep impact on the dynam-
ics. For instance, in the case of fluid dynamics, the processes of heat conduction,
diffusion, viscosity, or chemical reactions, play a major role in geophysical, astro-
physical, engineering and technological applications. Thermal convection occurring
in the planets’ oceans, atmospheres and mantles, as well as in stars, is a typical
phenomenon occurring in conjunction with the process of heat transfer among oth-
ers. Importantly, due to their irreversible character, such phenomena fit into the
realm of nonequilibrium thermodynamics, governed by the two laws imposing con-
straints on the energy and entropy behavior. In order to get reliable and physically
meaningful numerical solutions for such systems, it is of paramount importance to
preserve these laws at the discrete level, thereby highlighting the need to extend
variational discretization from reversible continuum mechanics to nonequilibrium
thermodynamics.

We propose in this paper a first step in this direction for the case of fluid
dynamics with heat conduction and viscosity. The general form of the equations
of evolution for such fluids on a bounded domain  C R?, d = 2,3, with smooth
boundary is

p(Ou+u-Vu)=—pVeo—Vp+dive
T(0rs + div(su) + divjs) = 0:Vu — j5-VT (1.1)
Op + div(pu) = 0,

with u the fluid velocity, p the mass density, s the entropy density, T' the tempera-
ture, and p the pressure. The equations also depend on the gravitational potential
¢, while the irreversible processes are described by the viscous stress tensor ¢ and
the entropy flux js. In this paper we shall take for them the usual Navier-Stokes
and Fourier expressions. The equations are supplemented by the no-slip boundary
condition for the velocity u|sn = 0 and by one of the following thermal boundary
conditions:

Tjs - nloa = qo or T\oa = Tp. (1.2)
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These correspond to either prescribed heat flux or prescribed temperature boundary
conditions, the case ¢y = 0 being that of an insulated boundary. The system is closed
by a given state equation, which we keep general in this paper, not necessarily given
by the perfect gas.

Our approach is based on a variational formulation for nonequilibrium thermo-
dynamics that extends Hamilton’s principle to include irreversibility, developed in
Refs. 27, 28, 30. Importantly for the present work, this approach extends to the
irreversible setting the well-known variational and geometric formulation of hydro-
dynamics on diffeomorphism groups initiated in Ref. 2. This variational formulation
gives (1.1) together with an appropriate boundary condition from (1.2) as critical
point conditions. It should be noted that in this paper, we use the term “variational
formulation” to refer to a critical action principle that characterizes solution curves,
not a variational (or weak) formulation in the finite element sense. One can use the
former to construct the latter, but not vice versa in general.

The resulting class of schemes, which is written down in standard finite element
notation in (3.34), satisfies the two laws of thermodynamics at the fully discrete
level. More precisely, the total energy is shown to be exactly preserved at the fully
discrete level when the fluid is adiabatically closed, while a discrete energy balance
holds in the presence of external heating. Regarding the second law, the entropy
generated by the internal irreversible processes is shown to grow at each time step
on each cell.

It turns out that the variational formulation for nonequilibrium thermodynamics
yields the equations for heat conducting viscous fluids in a weak form that is quite
suitable to achieve thermodynamic consistency and, at the same time, can natu-
rally accommodate both prescribed heat flux (Neumann) or prescribed temperature
(Dirichlet) boundary conditions. The variational formulation also naturally involves
an internal entropy variable, helping identify the internal entropy production at the
fully discrete level, which is well-known to differ from the rate of entropy change in
the presence of the entropy flux.

To our knowledge, our scheme is the first scheme to respect both the balance
of total energy and the second law of thermodynamics locally (i.e. elementwise)
among finite element /finite volume approaches for heat conducting viscous fluids.
One existing scheme that comes close to achieving these goals is the finite volume
scheme studied in Ref. 5 and the references therein. It satisfies a global energy
balance law and a global entropy production law, but the laws contain artificial
sources of energy dissipation and entropy production. It also does not appear to
guarantee entropy production locally. Another approach that achieves global, but
not local, entropy production is described in Refs. 32, 43. It relies on a change of
variables that couples the energy density with other variables, and for this reason
it does not appear to respect the balance of total energy. Related techniques are
used in Ref. 44 to achieve global entropy production in the one-dimensional setting.
In the absence of irreversible processes, Ref. 41 has recently constructed a scheme
that conserves both total entropy and total energy. This was also accomplished in
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Section 6 of Ref. 21.

Our paper is structured as follows. In §2 we recall the variational formulation
for heat conducting viscous fluids in the insulated case following Ref. 28 and then
present the modifications needed for the treatment of a prescribed temperature or
prescribed heat flux on the boundary, consistently with the variational formulation
of open systems given in Ref. 30. We also give the weak formulation of the equa-
tions resulting from the variational framework. In §3, following previous works on
the reversible case, we carry out this variational formulation on a discrete version
of the diffeomorphism group, based on a discontinuous Galerkin discretization of
functions. A suitable spatially discrete version of heat conducting viscous flow is
obtained for any given discrete fluid Lagrangian. A main subsequent step is the ap-
propriate discretization of the thermodynamic fluxes, which is chosen in accordance
with the considered Neumann or Dirichlet boundary conditions, and realized for the
Navier-Stokes-Fourier case. It is then shown that the resulting spatial discretization
satisfies the two laws of thermodynamics exactly. Thanks to its structure preserving
form, the resulting finite element scheme can be followed by an energy preserving
time discretization which allows satisfaction of the second law at each step on each
fluid cell. Rayleigh-Bénard convection tests are carried out in §4 for both prescribed
temperature (Dirichlet) and prescribed heat flux (Neumann) boundary conditions,
for several values of Rayleigh numbers, illustrating the predictive value and ther-
modynamic consistency of our scheme. We also test the numerical convergence of
our scheme with respect to spatial and temporal refinements, and provide a com-
parison with a recently derived finite volume method for the Navier-Stokes-Fourier
equations.

2. Variational formulation for heat conducting viscous fluids

We review here the variational formulation of nonequilibrium thermodynamics un-
derlying the structure preserving discretization method that we present for heat
conducting viscous fluids. This variational formulation, developed in Refs. 27, 28,
30, is an extension of the Hamilton principle which allows one to systematically
include irreversible processes in the dynamics, such as friction, viscosity, heat con-
duction, matter transfer, or chemical reactions. Importantly for the present work,
the variational formulation applies to adiabatically closed systems as well as systems
exchanging heat and matter with their surroundings, see Ref. 30.

We recall in §2.1 this formulation for heat conducting viscous fluids with insu-
lated boundaries (homogeneous Neumann boundary conditions), and then present
the modifications needed for the treatment of a prescribed temperature on the
boundary (Dirichlet boundary conditions) or prescribed heat flux at the boundary
(nonhomogeneous Neumann boundary conditions), see §2.2. A weak formulation of
the equation is deduced from the variational formulation in §2.3 in a unified way
for all boundary conditions.

In order to help identify the role and meaning of each variable in a simpler
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context, both for the adiabatically closed case and for the open case, we present in
Appendix A an application of the variational formulation to an elementary finite
dimensional example.

2.1. Insulated boundaries

The variational formulation is best expressed in the material (or Lagrangian) de-
scription since it is in this description that it is an extension of the Hamilton princi-
ple of continuum mechanics and takes its simpler form. The variational formulation
in the spatial (or Eulerian) description that underlies our approach is then deduced
by using the fluid relabelling symmetry. A finite element spatial discretization of
this “Lagrangian-to-Eulerian” variational approach will be developed in §3.

Lagrangian description. Let Q@ C RY, d = 2,3, be a bounded domain with
smooth boundary, Diff(Q2) the group of diffeomorphisms of €2, and Diffo(Q2) the
subgroup of diffeomorphisms keeping 9 pointwise fixed. We denote by F(2) and
F(2)* the spaces of functions and densities on Q with sufficient regularity. We
identify densities with functions, bearing in mind that the action of Diff(2) on
F(Q)* under this identification differs from the action of Diff (€2) on F(2); see (2.6).
In the Lagrangian description, the motion of a compressible fluid in the domain €2
is given by two time dependent maps, the fluid configuration map ¢ : [to,t1] —
Diffo(Q2), giving the position x = (¢, X) at time ¢ of a particle located at X at
t = tg, and the entropy density S : [to,t1] — F(2)*. From mass conservation,
the mass density gg € F(2)* is constant in time in the Lagrangian description,
o(t, X) = 0o(X).

In the absence of irreversible processes, the entropy density is also constant
in time S(t,X) = So(X) and the equations of motion follow from the Hamilton
principle

ty
5/ L(g, ¢, 50, 00)dt =0 (2.1)
to

for variations d¢ with dp|i=¢, ¢, = 0. In (2.1) the function L : T Diffo(Q) x F(Q)* x
F()* — R is the Lagrangian of the compressible fluid model, the standard expres-
sion being

L(g,¢,5,0) = / [%QIW —e(o/Je, 5/ Jp) — 9¢>(<p)]dX (2.2)

Q

with Jo the Jacobian of ¢, € the internal energy density, and ¢(x) the gravitational
potential.

For the heat conducting viscous fluid one also needs to specify the phenomeno-
logical expressions of the viscous stress tensor and entropy flux, denoted P and
Js in the Lagrangian description. The extension of Hamilton’s principle (2.1) to
heat conducting viscous fluids given in Ref. 28 involves two additional variables
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besides ¢(t) € Diffo(2) and S(t) € F(Q)*: the internal entropy density variable
X(t) € F(2)*, whose time rate of change is the internal entropy production, and
the thermal displacement I'(t) € F(€2), whose time rate of change is the tempera-
ture. The variational principle reads as follows.

Find the curves ¢ : [to, t1] = Diffg(Q), S, X : [to, t1] = F(Q)*, and T : [to, t1] —
F (), which are critical for the variational condition

t1

5 [L(% .5, 00) + /Q(S — )P dX} at =0 (2.3)

to
subject to the phenomenological constraint

SL. .
0N =—P:Vp+ Js- VI 2.4
- = LiVet Js VD (24)

viscosity heat conduction
and for variations dyp, 63, 61" subject to the variational constraint

5L
25N = —P:Vép+ Js- VT (2.5)
S ——— ——

viscosity heat conduction

with 0p|i=t,.t, = 0L |t=t,.t, = 0, and dp|sq = 0, while the variations 0.5 are free. The
critical condition of this variational formulation gives the heat conducting viscous
fluid equation in the Lagrangian description, see §B.1. In (2.4) and (2.5) % is the
functional derivative of L with respect to S, defined as d% |5=O L(p,p,0,S+€6S) =
fQ %55 dX, for all §S. It is identified with minus the temperature of the fluid,

denoted T = —g—é in the Lagrangian description.

Remark 2.1 (Structure of the variational formulation). The variational for-
mulation (2.3)—(2.5) is an extension of the Hamilton principle (2.1) for fluids which
includes two types of constraints: a kinematic (phenomenological) constraint (2.4)
on the critical curve and a variational constraint (2.5) on the variations to be con-
sidered when computing this critical curve. The two constraints are related in a
systematic way which formally involves replacing the time rate of changes (here 3,
¢, and T') by the d-variations (here 0%, d¢, and 6T). More precisely, on the right
hand side of (2.4) the two terms correspond to the dissipated power density asso-
ciated to the processes of viscosity and heat conduction, with their virtual version
appearing in (2.5). In coordinates P : V¢ = PA9,¢® and Jg - VI = (Jg)404T".
This setting is common to the variational formulation of adiabatically closed ther-
modynamic systems, see Refs. 27, 28, and is a nonlinear version of the Lagrange-
d’Alembert principle used in nonholonomic mechanics. In Appendix A we recall an
application of this type of variational formulation to an elementary finite dimen-
sional thermodynamic system for which the computation of the critical condition is
straightforward and which helps explain the role and the meaning of the variables
Y and T
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Eulerian description. We recall here how (2.3)—(2.5) can be converted to the
Eulerian frame, thereby yielding the variational formulation underlying our struc-
ture preserving finite element discretization. The Eulerian versions of the variables
b, 00,5,2,T" are the Eulerian velocity u, mass density p, entropy density s, internal
entropy density ¢, and thermal displacement v given as

u=pop™ € Xo(1),
p=(000p )Jp e F(Q)*, s=(Sop el e F(Q)Y,  (26)
c=(Bop )T e F(Q), y=TopleF(Q),

where Xo(02) = {u € X(Q) | ulapq = 0} is the space of vector fields on € vanishing on

the boundary. The Eulerian viscous stress tensor ¢ and entropy flux j, are related
to their Lagrangian counterparts P and Jg via the Piola transformations

c=(P-Vo)op " )Jo™" and  j.=((Ve-Js)op HJp™', (27

see Ref. 37. From its relabelling symmetries, the Lagrangian L can be expressed
in terms of the Eulerian variables as L(¢, ¢, S, 00) = £(u, p, s). For the standard
expression given in (2.2) one gets

1
tGu.p.5) = [ [5olul = elp.s) - po]a. (2:5)
Q
With relations (2.6) and (2.7), the Eulerian version of the principle (2.3)—(2.5)

reads as follows. Find the curves u : [tg,t1] = Xo(Q2), s,¢ : [to,t1] — F(2)*, and
v : [to, t1] = F(£2), which are critical for the variational condition

1 /ttl [Z(u, 0,8) + /Q(s —¢)Dyy dx} dt =0, (2.9)

with the phenomenological constraint and variational constraint given by

ol -
T Dis=—0:Vu+ js- V(D) , 2.10
3s S o U+ ). (D) ( )
viscosity heat conduction
“p Vot js - V(Ds) (2:11)
— = —0 . v s " ) :
55 08¢ J 57
viscosity heat conduction

and the Euler-Poincaré constraints
du = 0w + [u,v], op = —div(pv), (2.12)

where [u,v] denotes the Lie bracket of the vector fields u and v; see Ref. 28 for
details. Here v = §p o @~ 1: [tg, t1] — Xo(Q) and &7 : [to, t1] — F(2) are arbitrary
curves with v|i=¢, ¢, = 0 and 67|4=¢,,., = 0. Also, we have Js, ds : [to, t1] = F()*,
du = [to,t1] — X(Q) and dp : [to,t1] — F(Q)*. In (2.9)—(2.11) we have used the
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following notations for the Lagrangian derivatives and variations of functions f and
densities g:
Dif =0:f +u-Vf Dsf=6f+v-Vf (2.13)
Dig = 0rg + div(gu) Dsg = 6g + div(gv), ’
where v = dpop~tand u=pop L
By applying the variational principle (2.9)—(2.12), we get the equations for a
compressible heat conducting viscous fluid with Lagrangian £(u, p, s)

ol ol ol .
(0 + £u)% = pV% + svg +dive
ol ol
——(Dys+divyjs) =0:Vu+ js-V— (2.14)
0s 0s
Dtp = 07
with £, the Lie derivative of one-form densities, together with the conditions
ol _ _
Dy = ~ 35 D¢ = Dys + div js, and js-n=0 on 09, (2.15)
s

see §B.2 for details on the derivation. We have used the functional derivatives of ¢,
defined as dis|s:0 Lu+edu, p,s) = fQ g—ﬁ-&u dz, etc. Since —% is identified with the
temperature T, the first condition in (2.15) implies that the variable v is the thermal
displacement. From the second condition it follows that Dyc is the rate of internal
entropy production, which must be positive by the second law of thermodynamics,
namely

Dis = Dys + divj, > 0. (2.16)

The last condition in (2.15) is the insulated boundary condition.
We refer to Refs. 24, 17, 25, 26 for the use of this type of variational formulation
for modelling purposes in nonequilibrium thermodynamics.

Standard Lagrangian. By using the Lagrangian for Euler fluids given in (2.8)

one gets % = pu, % = 2|u|? - g—; — ¢, and —g—ﬁ = % = T > 0 the temperature,
so that the fluid momentum equation and the entropy equation in (2.14) take the

usual form

p(Oru+u-Vu) = —pV¢p — Vp +divo, T(D¢s + divjs) = 0:Vu — js-VT
with p = g—;p + %s — € the pressure.
Energy and entropy balances. Defining the total energy £ = <%, u> —L(u, p, s),
from (2.14) and the boundary conditions u|spq = 0 and j, - n = 0 we directly get
the energy conservation

d Y4 ol 4
Ze= | div(p= = . o — =0. )
dtg /Q iv (p6pu+85$u+a u+J 5S>dx 0 (2.17)
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From now on we will focus on the Navier-Stokes-Fourier case with the phenomeno-
logical relations

2
o = o(u) = 2uDef u + A\(div u)d, with,uEOandCZ/\—l—EuZO
. (2.18)
js = js(T) = —THVT, with x > 0.

Here Defu = %(Vu + VuT') is the rate of deformation tensor, p > 0 and ¢ =
A+ %u > 0 are the shear and bulk viscosity coefficients, and x > 0 is the thermal
conductivity coefficient. The signs of the coefficients are imposed by the second law
of thermodynamics D;s + divj, > 0 . Indeed, with (2.18), the entropy equation
reads

_ 1 1
DtS + diVjS = TUVU — TJSVT
2
_ ?” (Def u) @ : (Def )@ + %(div w)? + %\VT\Z >0, (2.19)

where (Def u)(o) denotes the trace-free part of Def u. For simplicity, in this paper
we will assume that these coeflicients are constant; however, see §3.5.

The discretization that we will develop preserves both the energy conservation
(2.17) and the positivity of the rate of internal entropy production (2.19).

2.2. Darichlet boundary conditions

We present here a modification of the variational formulation which allows the
treatment of a fluid with prescribed temperature on the boundary 92.

Lagrangian description. Since in this case the fluid system is no longer adiabat-
ically closed, the appropriate formulation is found by considering the continuum
version of the variational formulation for finite dimensional open thermodynamic
systems developed in Ref. 30. This amounts to replacing the constraints (2.4) and
(2.5) by the kinematic and variational constraints

/W‘S—Ldez—/W(P;w) dX+/W(JS-vF) dx
Q 68 Q —— Q

—_———
viscosity heat conduction (220)
— | W(Js-n)([ —%)dA, VW
A —Y
o0 heat transfer
oL
/ wilssax = — / W (P : Vo) dX + / W (Js - Vo) dX
viscosity heat conduction (221)

— [ W (Jg-n)dT dA, VW,
o0 S———

heat transfer
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with To(X) the prescribed temperature on the boundary in the Lagrangian descrip-
tion. When Jg - n = 0 they consistently recover (2.4) and (2.5).

We refer to the Appendix A for an application of this type of variational principle
for an elementary finite dimensional thermodynamic system exchanging heat with
the exterior, which helps the understanding of the new boundary term. In particular,
(2.20) and (2.21) are continuum versions of the constraints (A.8) and (A.9) in
Appendix A.

Eulerian description. Exactly as in §2.1, the variational principle can be con-
verted to the Eulerian description, thereby yielding (2.9)—(2.12) with the constraints
(2.10) and (2.11) replaced by

/w Dtgdx——/w(a:Vu)dx+/w(jS~VDt'y)dx
Q )
~ [ wlen) (D~ T) da, Y
o0

5
/ w—Dscdz = 7/ w(o : Vv)dx +/ w(js - VDgvy) dz
o 05 Q Q
7/ w(js - n)Dsyda, Y w.
o9

An application of the variational formulation (2.9)-(2.22)-(2.23)-(2.12) yields the

equations (2.14) and (2.15), with the last equation of (2.15) replaced by
(s -n)(T'—Tp) =0 on 01, (2.24)

see §B.3 for details. With the boundary condition (2.24), the energy balance (2.17)
is modiﬁed as

5 / le u—l—s%u—i—a U+ Js M)dx = —/ (Js - m)Tp da. (2.25)
os os o9

Remark 2.2 (Prescrlbed heat flux). It is also possible to treat the boundary
condition

(2.22)

(2.23)

jq ‘= 4qo
where j, = T'j, is the heat flux and for some given function gg : 92 — R, which may

itself depend on the boundary temperature as qo(7"). This is achieved by replacing
the last term in (2.22) with

- [ w(Ge D - ) da (2.26)
oQ

The variational constraint (2.23) is kept unchanged, as it follows from the general
variational framework for open systems, see Appendix A. The energy balance now

d
Le__ da.
dtg /anqo ¢

reads
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2.3. Associated weak formulation

The variational derivation presented above yields a weak formulation of the equa-
tions and boundary conditions, that will be shown to have a discrete version.

In the absence of irreversible processes, this weak formulation has been derived
in Ref. 21 and is based on the trilinear forms a : L>(Q)¢ x H(Q)? x H}(Q)¢ - R
and b: L2(Q) x H1(Q) x L>=(Q)¢ — R defined by

a(w,u,v) :—/Qw-[u,v]dx

b(f,p,v) = —/Qpr-vdx.

For the treatment of the irreversible part, we restrict to the expressions o =
o(u) and js; = j4(T) given in (2.18). For viscosity, we define the trilinear form
c: L®(Q) x H'(Q)? x H'(Q)? — R by

c(w,u,v) = /Qwa(u) : Vodz. (2.27)

For heat conduction, we set F' = {f € H'(Q) | 1/f € L*>(Q), div(Vf/f) € L?(Q2)}
and define d : W1>°(Q) x F x H(2) — R by

/ wjs(f) - Vgda for homogeneous Neumann
d(w.1,9) = : for Dirichlet and
/Q wis(f) - Vg dr = /89 wis(f) - ng da nonhomogeneous Neumann
(2.28)
and e : WH°(Q) x F — R by
0 for homogeneous Neumann
e(w, f) = /BQ wjs(f) - nTy da for Dirichlet (2.29)
/ wqo(f) da for nonhomogeneous Neumann
a0

so that the constraints (2.10)—(2.11) and (2.22)—(2.23) (including the modified ver-
sion in (2.26)) can be written in a unified way for all boundary conditions as

<w, %Dt§> = —c(w,u,u) + d(w, —%, Dt'y) + e(w, —%), Yw (2.30)
and

<w, %D5§> = —c(w,u,v) + d(w7 —%, D5’}/), Yw, (2.31)
with (-,-) the L? inner product. Note that the condition div(Vf/f) € L?(Q) was
included in the definition of F' so that the term — [, wjs(f) - ngda can be given
meaning using the identity

1 1 1 1
~Vf-nogda = L d div [ = d —Vf-Vgdz.
/emw Vf-ngda /QV’LU f(Vf)g ;er/Qw 1V<fo>g er/waVf Vgdz
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This condition can be omitted from the definition of F' in the homogeneous Neu-
mann setting. Note also that we really have two ways to impose homogeneous
Neumann boundary conditions: by choosing d and e as indicated above, or by using
the “nonhomogeneous Neumann” d and e with ¢y = 0. Both approaches lead to the
same equations of motion, but the first approach is slightly simpler, and it simplifies
the statement of the second law of thermodynamics below. Therefore we prefer to
treat it separately.

Importantly, by using these notations when carrying out the variational for-
mulations (2.9)-(2.12) and (2.9)-(2.22)-(2.23)-(2.12), we get the equations (2.14),
together with the boundary conditions js-n = 0 or (js-n)(T —Tp) = 0 in the weak
form

<8t§§,v> +a(§—i,u,v> +b(§—i,p,v> er(%,s,v) = —¢(1,u,v), Yo

- <3ts, giw> - b(%w,s,u) + d(l, —%, %w) (2.32)
= c(w,u,u)—i—d(w,—%,%) — ( ,—%), Y w

<atp7 0> + b(97p1 U) = Ov V@,

see §B.4 for details. Note in particular the very specific form of the two terms
involving d(-,-,-) in the weak form of the entropy equation, which plays a crucial
role in our discretization.

With these notations, the energy balance follows as

d ol ol ol
ag = <8t5u’u> - <6p7atp> - <557at8>

= —a(%,u,u) - b(%,p,u) —b(%,s,u) —c(1,u,u)

+ b(%,p, u) + b(g,s,u) — d(L —%, %)

+c(1,u,u) + d(l, —%, %) - e(L —%) = —e(l, —%)

(2.33)

from the property
a(w,u,v) = —a(w,v,u), Yu,v,w
of the trilinear form a.
Conservation of total mass fQ pdx follows from the property
b(1,p,v) =0, Vp,v.
Regarding entropy production, we have the inequalities o(u) : Vu > 0 and
—j4s(T)-VT > 0 for all w and all T > 0, consistently with the second law of

thermodynamics written in (2.16). In terms of ¢, the first condition is equivalently
written as

c(w,u,u) >0, Yu, Yw>0. (2.34)
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For homogeneous Neumann boundary conditions, the second condition is equiva-
lently written as

dw,f,f) <0, Yf>0, Yw >0, (2.35)

while for Dirichlet and nonhomogeneous Neumann boundary conditions, it can be
equivalently written as

d(w, f,f) <0, Vf>0, Yw >0, w with compact support in the interior of Q,
(2.36)
where we recall that the expression for d depends on the boundary condition used.
Discrete versions of (2.34)—(2.36) will be shown to hold in the discrete case.
Finally, the second law (2.16) can be equivalently written by using b and d as

(Ops, Tw) + b(Tw, s,u) —d(1,T,Tw) > 0 (2.37)

for all w > 0 with compact support in €.

3. Structure preserving variational discretization

The structure preserving finite element integrator is obtained by developing a dis-
crete version of the variational formulation presented above. In particular, exactly
as in the continuous case, the discrete variational formulation of the Eulerian form
of the equation is inherited by a variational formulation extending Hamilton’s prin-
ciple in the Lagrangian description.

This is achieved thanks to the introduction of a discrete version Gj of the
diffeomorphism group Diff () of fluid motion, acting on discrete functions and
densities. We shall follow the approach developed for compressible fluids in Ref. 21
based on the earlier works Refs. 40, 19, 16, 39, 6. We refer to Ref. 13 for another
approach to the variational discretization of (2.9)—(2.12) for heat conducting viscous
fluids, also based on a discrete version of the diffeomorphism group.

3.1. Dziscrete setting

Let 75, be a triangulation of 2. We regard 7; as a member of a family of triangula-
tions parametrized by h = maxxe7, hix, where hxg = diam K denotes the diameter
of a simplex K. We assume that this family is shape-regular, meaning that the ratio
maxgeT, hi/pk is bounded above by a positive constant for all h > 0. Here, px
denotes the inradius of K.

We shall discretize functions with the discontinuous Galerkin space

Vi = DGy (Th) = {f € L2(Q) | flx € Py(K), VK € Th}.

Considering the discrete diffeomorphism group as a certain subgroup Gy, C GL(V4),
the action f € Vi — gf € Vi, g € G}, is understood as a discrete analog of the
action f € F(Q) — fop~! € F(Q), ¢ € Diff(Q), of diffeomorphisms on functions.
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The discrete analog of the action p € F(2)* — (po ¢)Jp € F(Q)* on densities,
written as p € V3, + p- g € Vj,, is defined by L? duality as in the continuous case

(p-9,f)=Ap.gf), Yfp€Vh (3.1)

In particular, the Lagrange-to-Euler relations (2.6) have the discrete analog

A=g9™', p=0-9'€Vh s=S-gteW,

o (3.2)
c=X-g "€V, ~v=gl' € V.

The Lie algebra g, C L(Vp, V) of G, acts on discrete functions and densities
as fe V= fAeVyand p € Vi, — p- A €V, which satisfy

(p- A f)=(p,Af), Yf.p€Vh. (3.3)

As shown in Ref. 21, the realization of elements of this Lie algebra as discrete vector
fields is obtained by associating to each u € Hy(div, Q) N LP(Q)? (with p > 2) the
Lie algebra element A, € g defined by

At ==Y [ (Vupgde+ Y [u-[la}da, Vg€V

KeTy ecgy ¢

which yields a consistent approximation of the distributional derivative in the di-
rection u. Moreover, the linear map u € Hy(div, Q) N LP(Q)¢ — A, € g becomes
injective on the Raviart-Thomas finite element space RT%,(7r), see Prop. 3.4 in
Ref. 21. Above, we used the notation [f] and {f} for the jump and average of a
scalar function f across e = K1 N Ks € &), which are defined by

[f] = fini + fana, {f}= %(fl + f2)-

Here, f; = f| i, and n; is the unit normal vector to e pointing outward from Kj.
Later we will also apply {-} to vector fields and interpret it componentwise.

This setting is used in Ref. 21 to develop a finite element variational discretiza-
tion of compressible fluids, by writing the analog to the Hamilton principle (2.1)
on the discrete diffeomorphism group G}, and using the first three relations (3.2) to
deduce its Eulerian version. The discrete Lagrangian ¢, : g X Vi, X V;, = R can be
defined from a given continuous Lagrangian £ as

La(A, p,s) == 6(21\7 0, 8)

thanks to the Lie algebra-to-vector field map A € g, — A € [Vi]¢ defined by

d
A:=— Z A(mp(x*))ey,
k=1
where ¥ : Q — R is the kth coordinate function, {e,}¢_, is the standard basis
for R4, and 7, : L%(Q2) — Vj the L?-orthogonal projector, which we interpret
componentwise when applied to a vector field. It satisfies A, = 7p,(u).
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3.2. Discrete variational formulation

We discretize the velocity by using the continuous Galerkin space
UE = CG(Th)? := {u € HY(Q)? | u|x € P.(K)?, VK € Tp,}.

Assuming r < ¢ (see Remark 3.1 for r > ¢), we denote by A, C g, the sub-
space corresponding to U,%rad via the injective map u + A,. We denote by
7&ed . 12(Q)? — UE the L2-orthogonal projector onto UE™!.

Consider discretizations of d and e given as dp, : Vi, X Vi, x Vi, — R and e, : Vj, X
Vi, — R. For now, we only suppose that dj, is linear in its first and third arguments,
and ey, is linear in its first argument. The explicit form and their properties are
stated later.

With this setting, the discrete version of the variational formulation (2.9)-(2.30)-
(2.31)-(2.12) reads as follows. Find A : [tg,t1] — Ap and p,s,¢,7 @ [to,t1] = Va
which are critical for the variational condition

5/tt1 [Ed(A,p, s)+ (s— g,D?v}} dt =0, (3.4)

with the phenomenological constraint and variational constraint given by

o~ o~

0y ~ Y4 Y4
<6;D?<,w> = —c(w, A, A)+dj, <w, (S;I,D?’y) +ep, (w, 6;) NYw eV, (3.5)

5y ~ S 5t
<6;D§<,w> = —c(w, A, B) +d (w, 5:,D§W) Nw € Vi, (3.6)

and with Euler-Poincaré variations

5A=08,B+ B, A, (3.7)
op=—p- B,

for B(t) an arbitrary curve in A, with B(0) = B(T') = 0, and with §v|¢—9 7 = 0.
Above we have defined the discrete analogs to the Lagrangian time derivatives
and variations considered in (2.13) as

DI f =8, f — Af D}f=6f—Bf

_ - (3.9)
Dip=0w+p-A  Dsp=dp+p-B.

In (3.5) and (3.6), the partial derivative %i € Vj, is defined exactly as in the
continuous case, with respect to the L? duality pairing on V},.

Proposition 3.1. The equations of motion that result from (3.4)—(3.6) and from
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the definition p = 0o - g~ are

(05o0) + an(mn e o) + (e p.0)

ol _ grad
+bh(wh$,s,v) = —c(1,u,v), Yve U™,

(Orp, 0) + bp (0, p,u) =0, VO €V},

(s ()0 (o)) o)+ 1))

of ol ol
= c(w,u,u) +dy (w, —Wh%,ﬂ'h%) —ep (w, —wh£)7 Vw e Vy,
(3.10)
where
ah(w,u,v):f/;l;{mv]dx:f/w~[u,v]dx (3.11)
Q Q

ifop) = o Ad) == 3 [ (Fuppdas 3 [ lllodda. @12

KeTh ecéE))

The variational principle (3.4)—=(3.6) also yields the conditions

50 ] 50
Diy=-ms,  (Di(c=2).07) = —dn(L,—m5-.67), Vor € Vi (3.13)

ds’
Remark 3.1. The second equality in (3.11) is valid if » < ¢. If » > ¢, then we
can still arrive at the same scheme by considering a discrete diffeomorphism group
G), C GL(DG,(Tp)) and treating p, s,s,~y as elements of DG, (Ty) C DG,(Th); see
Remark 5.1 in Ref. 21. In both cases, the fact that our discrete velocity field is
continuous is important. In the absence of continuity, the formula (3.11) contains
additional terms involving jumps across codimension-1 faces; see Proposition 4.3 in
Ref. 21. The absence of these jump terms renders a; independent of h, so we drop
the subscript h in what follows.

Remark 3.2. Note that (3.12) is a standard discontinuous Galerkin discretization
of the scalar advection operator, see Ref. 9.

Proof. Taking the variations in (3.4) yields
[ TG0 + (500} + (o0) {3, ph) = {3 )
- <Df(s - <),(5’y> - <s -, 6A7>}dt =0,

where ((-,-)) : g} x gn — R denotes the duality pairing on g x gn. We used

(3.14)

ftf; (s —<,Dpéy)dt = — ttol (D}'(s — <), 6v) dt which follows from (3.3), (3.9), and
07|t=to.t, = 0. Since ds is arbitrary in V4, we get the condition
Y4
Dhy =212 (3.15)

0s
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Making use of this condition and using (3.6) yields

[ (s an) + ()0 2801520
0

_ <% ¢+ B) = (Dli(s =), 6v) = (s —<,047)]at = 0.

ds’
Using that 6+ is arbitrary and independent of the other variations, we get
= o¢
<D?(< - s),57> = —dh(L—d—jm), Y6y € Vi (3.16)

With this, the previous condition becomes

[ T 08 ~ o)~ (32,5 5) ~ (2.5
5y

—¢(1,4, B) —dh<1,— -

,By)}dtzo.

Using 0A = ;B + [B, A] and the computation
t1

/t1 (s —¢,0Ay)dt = (s —¢,(0:B+ B, A])y) dt

to tO

- / (=045 — ), B) — (5 — 5 BOA) + (5 — <) - B, Av) — (5 — <) - A, By dt

to

_ /t1 (=Dh(s — ), By) — <(5 —9) .B,D?'y>dt

to

<[] ) (o

the previous condition becomes

[} o m) e (5 tm ) (o 8)- (5 B) e, A B =0

Using that A € Ay, means A = A, foru e U }gLrad and using the definitions of a and

by in (3.11) and (3.12), together with 84 = ;2 8t — 7, 9t g << Ly >> -

<7rh§—ﬁ, 6>, we get the first equations of (3.10).
Combining the constraint (3.5) and condition (3.15), we get
_ Y4 ~ 5 00 Y4
h od - _ _ _Ztd Chd _ 2t
<Dt g,wh< 5s w>> c(w, A, A) dh(w, 55 o3 ) +eh(w, 5s ), Yw € Vj,.
Using (3.16) and A = A,, this becomes

(Dt (20) =0 1. B0)) = et - .52

()

Yw € Vj,. We have thus derived the entropy equation in (3.10). The mass density
equation readily follows from p = gy - g~! while the conditions (3.13) have been
obtained in (3.15) and (3.16). O
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Energy balance and mass conservation. The exact same proof as in the con-
tinuous case works, see (2.33), giving energy balance and mass conservation in the
spatially discrete setting as

d Y4

%5 = —eh(l, —Whg) (3.17)
d
il dz = .1
dt/Qp x (3.18)

Remark 3.3. The conservation properties above continue to hold if we omit the
outermost projection 7, from the terms of the form 7y, (wh (%)w) in (3.10). They
also continue to hold if we omit the m; from ;25 in (3.10). We find it advanta-
geous to make these modifications, since they simplify the implementation of the

scheme. We do not omit the 7, from Whg—ﬁ, since this interferes with the balance of
Y

energy. Likewise, we do not omit the m, from 7, 5;, since we have found that the
time-discrete version of (3.10) is difficult to solve numerically without it; Newton’s
method converges much more reliably when the projection is present.

In summary, we solve

0¢ Y4 Y4

<8t6u,v> + a(%,u, v) + by, (Wh%,p, v) —bp(T, s,v) = —c(1,u,v), Vv € Ufjrad,
(0rp,0) + bp(0,p,u) =0, VO €V,
(Ors, Tw) + bp(Tw, s,u) — dp (1, T, Tw)

= C(wau,u) - dh(vavT) - eh(waT)a w e Vh7

(3.19)
where T'= — 54 = —m, 5.

3.3. Discretization of thermodynamic fluxes

We now discuss our discretizations dj, and ey, of the maps d and e defined in (2.28)
and (2.29). We will design dj, and ej, so that the discrete entropy equation

(0rs, Tw) + bp(Tw, s,u) —dp(1, T, Tw) (3.20)
= c(w,u,u) — dp(w, T, T) — ep(w,T), Yw eV,
yields a consistent discretization of the continuous entropy equation
T(Dys +divjs) = o : Vu — j, - VT.
We restrict our attention to the setting where j, = j4(T) = —%HVT, so that the
above equation simplifies to

TD;s — o : Vu = kAT.

Note that an integration by parts shows that the exact solution (u,p,s,T’) of
the continuous problem satisfies

(0ps, Tw) + bp(Tw, s,u) — c(w,u,u) = (T'Dys — o : Vu,w), Yw € Vj.
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Thus, to ensure consistency, we aim to design dj and ey so that the exact solution
also satisfies

dp(1, T, Tw) —dp(w, T, T) — ep(w,T) = (kAT , w), Yw € V. (3.21)

Our discussion is split into three cases: homogeneous Neumann boundary con-
ditions on 7', Dirichlet boundary conditions on 7', and nonhomogneous Neumann
boundary conditions on T. To simplify the discussion, we consider the setting
where (3.20) is implemented with T = —%. The case in which one uses T' = —mp, gf

is addressed in Remark 3.4.

Homogeneous Neumann boundary conditions. In this case we set e, = 0
and discretize d with

w(w, £, 9) }:(/ Vvt Vgdo+ 3 {ﬂ{mef} o] da

KeTh cegd “ ¢ (3.22)
- wkK a — {w} a, .
byl 7y lwnva) - 1714 i = [ FH-1a

where 17 > 0 is a penalty parameter. This is a standard non-symmetric interior
penalty discretization of — fQ kV f-Vgdz (see Section 10.5 in Ref. 8), generalized to
incorporate the weight w/ f appearing in d(w, f, g) fQ LV f-Vgdz. Using the
identity [fg] = [f1{g} + {f}]9], a few calculatlons show that for every w, T € Vj,,

dn(1, T, Tw) — dp(w, T,T)
= — Z / nVT~deo:+Z {kVT} - [w] da

KeTh ceeo e (3.23)
- Y [ 5w} +o) - [Tlda- 3 ﬂmwm
ecg) "¢ eesg
where
e= {V(Tw)} —{VTHuw} - {THVuw}). (3.24)

{T}

Hence, for smooth T', we get

dh(l,T,Tw)fdh(w,T,T)feh(w,T)://iAdexf/ kVT -nwda, Yw € V.
Q 19)

(3.25)
This shows that the method is consistent: The exact solution (with homogeneous
Neumann boundary conditions on T) satisfies (3.21) (where here e, = 0). Fur-
thermore, the presence of |, oq VT -nwda in (3.25) shows that the scheme enforces
homogeneous Neumann boundary conditions on 7' in a natural way.
We also have for every w, T € Vj,

2 {w} 2
dp(w, T, T) —k|VT|*dz — [[T]|* da, (3.26)
K; / Z he {T}
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so the following inequality holds:
dp(w, T, T) <0, VT >0, Yw>0, T,we V. (3.27)

This is the discrete version of the thermodynamic consistency condition (2.35). In
particular, dy(1x,T,T) < 0, for all K, where 1x denotes the indicator function for

K.
Dirichlet boundary conditions. Next we consider Dirichlet boundary condi-

tions. To distinguish the choice of dj, above from the forthcoming choice, we denote
the former by d,]LV and the latter by df , and similarly for ej,. We define

D = —kK n a .
en (w, f) =— /mfvf Ty d +Z / (f —Tp)d (3.28)

eEEO

and

i (w, f,9) == Y / —KVf-Vgdz+ Y {f}{wa} [9] da

KeTh ecgl ”®
{w)
| TCAORULIEDS i &[G e (30)

— Z/—an n(f —To) da+2/—an ngda,

where Ty : 09 — R is the prescribed temperature on the boundary.
Like (3.22), (3.29) is a standard non-symmetric interior penalty discretization of
— fQ KV f-Vgdz (this time for problems with Dirichlet boundary conditions), gener-
alized to incorporate the weight w/ f appearing in d(w, f,g) = — fQ %an -Vgdz+
Jo0 +rV f-ngda, see (2.28). It is related to (3.22) via the addition of three boundary
terms:

(1) A term 26658 f 2KV f-ngda that corresponds to the term — [, wjs(f)-
ngda appearmg 1n (2.28).
(2) A term — eega f YkVg - nfda whose role is to cancel with

eeg@ f LrVf- ngda when f =g.
(3) A term Zeesa f Y kVg - nTyda that restores the consistency of dP.
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Similar calculations as earlier show that for every w,T € V},,
d?(1,T, Tw) — dP (w,T,T) — e? (w, T)

= _ Z//@VT dex—FZ/{/@VT} [[w]]da—Z/ ({Vw} +e¢) - [T]da

KeTh ecéEy ecéEy)
T
_Z /[[T]] [[w]]da—Z/mVTw (1—;) da
65,‘{ ec&p
+Z/HVT nwda—z / (T —Tp)d
ec&f esa

(3.30)
where € is given by (3.24). Hence, for smooth T,

d?(la T7 TU)) - d?(wa T7 T) - BE(IU, T)

T
z/ﬁ:Adex—F/ mV(Tw)-n<0—1> da
o o) T
+Z / (Ty — T)da, Yw € V.

2
ee&y

This shows that the method is consistent, and it enforces Dirichlet boundary con-
ditions on T in a nearly standard way.

If w has compact support in the interior of Q and T' > 0, then dP(w,T,T)
takes exactly the same form as in the homogeneous Neumann case in (3.26). So the
discrete version of the thermodynamic consistency condition (2.36) for Dirichlet
boundary conditions holds. In particular, d?(1x,T,T) < 0, for all K away from
09.

The terms associated with heat conduction processes on the right hand side of
the discrete entropy equation (3.20) are given by

2 {w} 24
dP (w, T, T) + P (w, T) K;/ Y VTP dz — Z [P

+Z / (T — Tp)d
es,?
(3.31)

Nonhomogeneous Neumann boundary conditions. In view of the expressions
(2.28) and (2.29) for d and e in the nonhomogeneous Neumann case, we discretize
d and e with

Nw, f,g) = d¥ (w, f, g —O—Z/—/ﬁVf ngda and ehNN(w,f):/ wqo da,

ccg? o0
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where dY is taken from the homogeneous Neumann case, see (3.22). The consistency
of the method can be checked by following the same steps as before, and similarly
for the discrete version of the thermodynamic consistency condition (2.36).

Now the expression entering into the right hand side of the discrete entropy
equation (3.20) reads

dh (w7 ) )+eh (’UJ, ) K; KTH|V | dz gg:ohe e{T}H[ ]H da

- / w(Tjs(T) - n — qo)da;
o9
(3.32)
compare to (3.31).

Remark 3.4. In the discussion above, we established the consistency of (3.20) in
the setting where T = f%. If instead T = fwh%, then we have consistency in a
weaker sense: The solution to the continuous problem satisfies the discrete equations
approximately rather than exactly. One can equivalently view this situation as a

variational crime; see Chapter 10 in Ref. 8. Indeed, by using —wh% in place of

—%, we are in essence modifying the maps d and e. This is analogous to the effect
of quadrature on classical finite element methods for elliptic problems; see Section

8.1.3 in Ref. 18.

Discrete form of the second law. The rate of entropy production in the discrete
setting is Dl'c. According to (3.16), it satisfies

<ng,Tw> = <Dfs,Tw> —dp(1, T, mp(Tw)), Yw € Vp,

where T' = —ﬂhg—ﬁ. For piecewise constant w, we have m,(Tw) = Tw, so
(D¢, Tw) = (Dl's, Tw) — dy, (1, T, Tw)
= cp(w,u,u) —dp(w, T, T) — ep(w,T), Yw € DGo(Th).

See (3.26), (3.31), and (3.32) for the concrete expressions for each boundary condi-
tion.

From the definition of ¢ and the thermodynamic consistency of d{lv , df , dé\’ N
the numerical solution satisfies

(Dls, Tw) = (Dl's, Tw) — dy(1, T, Tw) > 0, (3.33)

for all w € DGy(T,) with w > 0 (provided that w has compact support in 2
for Dirichlet and nonhomogeneous Neumann boundary conditions), which is the
discrete form of the second law (2.16) as reformulated in (2.37). In particular
i} ® TD!sdx > 0 on each K (provided that K is away from 9 in the Dirichlet
and nonhomogeneous Neumann cases). If T' is piecewise constant, then this implies
that [, Dl'cdz > 0 on those K.
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3.4. Temporal discretization

As shown in Proposition 5.1 of Ref. 21, in the absence of irreversible processes (¢ =
d = 0) an energy preserving time discretization can be developed for Lagrangians
of the standard form (2.8).

We show that a natural extension of this scheme to the discrete heat conducting
viscous fluid equations (3.19) allows one to exactly preserve energy balance and
mass conservation, while satisfying the second law of thermodynamics on each cell
at the fully discrete level. The scheme reads

(Dat(pu),v) + a ((pw) k4172, Up+1/2,v) — b (D26, Sg1/2,v)

1 ra
+ bh (27Th(uk . ’Uzk+1) — D1€ — 7Th¢>[)k+1/2,v> = _C(lyuk+1/27u)7 Yo e UE d

(Daep, 0) + b0, pry1/2, Upy1/2) =0, VO eV,
(Dags, Daew) + by, (Da€w, spy1/2, Ukt1/2) — dp (1, Da€, Daew)

= c(w, Up41/2, Ukt1/2) — dn (W, Da€, Dae) — ep(w, Dae), Yw € Vy

(3.34)
with
5 5 rg)
Dyc—m < 1(Pks P15 8k) + 1(Pkapk+1a3k+1)) C Gipgs) = w
2 p=p
J 5 n_
Daoe = ( 2(Sk, Skt1, Pk) +2 2(Sk,8k+1,l)k+1)> , 5a(s, s, p) = M
s —s
Tp+1 — Tk Pk+1Uk+1 — PrUE
Dagp = L= p _
AT AL at(pu) AL
Tp + Tpt1 KUk + Plr1Uk
l’k+1/2 = %’ (Pu)k+1/2 — p p2 -+ +1 )

Proposition 3.2. The solution of (3.34) satisfies the energy balance and conser-
vation of mass

Ery1 — &k
At

/pk+1dx:/pkdx, (3.36)
Q Q

(Dags, Daew) + by, (Da€w, sgy1/2, Ukt1/2)
—dp, (1,D26,D2€w) >0, Yw € DGo(ﬂl), w >0,

= —en(1, Dae) (3.35)

as well as the second law

(3.37)

for all k (provided that w has compact support in Q for Dirichlet and nonhomoge-
neous Neumann boundary conditions).

Here &, = [, [3pk|url? + €(pr, si) + pro| da is the total energy of the system at
time kAt.
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Proof. Taking v = ug4i2 in the fluid momentum equation, 6 =
— (%ﬂh(uk “Upq1) — Die— ﬂhqﬁ) in the mass equation, w = 1 in the entropy equa-
tion, and adding the three equations together, we get

—en(1, Dae) = (Dai(pu), ugy1/2) + (Daep, 0) + (Dars, Dze)
1
= \Aat\pu), Ugt1/2) — S \ALP; Uk - Uk+1 Atp, 1€ AP
(Daclpu) s ja) — 3D )+ (Daep. Drc) + (Dasep. )
+ (Da¢s, Dae).

The energy balance relation (3.35) then follows from the identities

1 1 1 1
<DAt(PU)»Uk+1/2> — o (Datp,up - ups1) = */ *Pk+1|uk+1\2 - *Pk|uk|2 de,
2 At Jq 2 2

1
(Datp; Di€) + (Dags, Dae) = E/ €(pr+1, Skt1) — €(pr, sk) dz,
Q

1
(Dap ) = 5 /Q prird — pro da.

Conservation of mass (3.36) follows by taking = 1 in the mass density equation.
Finally, the discrete second law is a direct consequence of the last equation
together with the definition of ¢ and the thermodynamic consistency of d,ly , th,
and th N, D

3.5. Enhancements

The scheme (3.34) admits several enhancements and generalizations.

Rotation. Rotational effects, which are important in geophysical applications, can
be easily incorporated by using a Lagrangian

1
fGups) = [ [Golul + o upo = clp.s)]as

in place of (2.8). Here, R is half the vector potential of the angular velocity w of
the fluid domain; that is, curl R = 2w.

Variable coefficients. Temperature-dependent and density-dependent coeffi-
cients p(p,T) and ((p,T) can be treated without difficulty. The map ¢ then de-
pends parametrically on p and T, and the balance of energy, conservation of mass,
and second law of thermodynamics remain valid at the discrete level if we evalu-
ate ¢(1, upq1/2,v) and c(w, upi1/2, Urt1/2) at, e.g., (0, T) = (pr+1/2, D2€) in (3.34).
It is also possible to treat a temperature-dependent and density-dependent heat
conduction coefficient x(p,T'). In (3.22) and (3.29), one must choose appropriate
discretizations of the trace of k(p, f) (such as {k(p, )} or k({p},{f})) when treat-
ing integrals over e € 82. The balance of energy and conservation of mass remain
valid at the discrete level, and so does the second law of thermodynamics, assuming
that x remains positive and its discrete trace along each e € 52 remains positive.



Variational and thermodynamically consistent discretization for heat conducting viscous fluids 25

Upwinding. Upwinding can be incorporated into the discrete advection equations
for the density and entropy, while still preserving the balance of energy, conserva-
tion of mass, and second law of thermodynamics. Following Refs. 20, 22, 23, one
introduces a u-dependent trilinear form

(u fagv ) _'bh faga + }E:t/pﬁe

ecéE))

[[f]] [9] da,

where {f¢(u)}.cco are nonnegative scalars. One then replaces every appearance of
bn(-, -, +) in (3.34) by ,i;h(Uk+1/2; -+, +). We used this upwinding strategy with
1 1
Be(u) = =(u-n)arctan (10u - n) = §\u - (3.38)
T

in the numerical experiments below.

4. Numerical tests
4.1. Rayleigh-Bénard convection

We use our scheme to simulate Rayleigh-Bénard convection driven by a temperature
difference between the top and bottom boundaries of the fluid’s container.

Rayleigh-Bénard convection has been mainly studied in the Boussinesq approx-
imation which is valid only for thin layers of fluid and cannot take into account the
full thermodynamic description. We consider here Rayleigh-Bénard convection in
the general compressible Navier-Stokes-Fourier equations, which are well adapted
to treat deep convection.

Taking a perfect gas with adiabatic exponent v > 1, in a gravitational potential
¢ = gz, and assuming \ = f%,u (Stokes hypothesis), we consider the following
nondimensional form of the equationsx

1 1
p(Osu+u-Vu) =—-Vp — F—pz—i— R—dle Y =Defu — E(divu)&, (4.1)

T(Dys +divjs) = %EIVU —js - VT, js=—————=VT, (4.2)

Orp + div(pu) =0, (4.3)
with Fr, Re, and Pr, the Froude, Reynolds, and Prandtl numbers, respectively. The
internal energy density is €(p, s) = pYe(r=Ds/p,

We assume that the fluid moves in a 2D domain [0,2] x [0,1] 3 (z,z) that is
periodic in the z-direction, with no slip boundary condition v = 0 for the velocity at
the top and bottom. We consider an initial temperature profile T'(z) = 1+ Z(1 — 2)
and initial velocity

u(z,z) = (0, ¢¥(z, 2)),
where

if (x—1)2+ (2 —0.5)2 <0.2,

1
Y(x,z) = exp <(m*1)2+(270.5)2—0.2>
0 otherwise.
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Fig. 1. The onset of Rayleigh-Bénard convection with Dirichlet boundary conditions.
Using the hydrostatic equilibrium Vp = — ﬁ pZ, one gets the initial mass density

and pressure profiles p(z) = T(z)™ and p(z) = T(z)™ " with m = 75 — 1 the
polytropic index.

In the Boussinesq case the critical conditions for the onset of convection are
uniquely determined by a certain value of the Rayleigh number (e.g., Ref. 10). In
the compressible case, the situation is more involved since the critical value depends
on other parameters, such as the temperature difference Z (Refs. 7, 1 and references
therein). Following Ref. 42, we will use the following expression of the Rayleigh

number in the compressible case:

Ra = Re?(m + 1) Z°Pr(1 — (y — 1)m) /7.

Dirichlet boundary conditions. In the series of experiments below, we fix v =
1.1 and test the onset of Rayleigh-Bénard convection for several values of the four
parameters Re, m, Z, Pr, for Dirichlet boundary conditions T(x,0) = 1 + Z and
T(x,1) = 1, corresponding to the case of ideally conducting upper and lower plates.
Starting with Re = 100, m = 0, Z = 0.256905, and Pr = 2.5, which corresponds to a
flow with Rayleigh number 1500, we varied each of the four parameters individually
to realize flows with Rayleigh numbers Ra € {500, 1000, 1500, 2000, 2500}. We ran
each of these simulations from time ¢ = 0 to time ¢ = 300 and plotted the evolution
of the L?-norm of the velocity field in Figure 1. In our simulations, we used a
uniform triangulation of Q! with h = ‘1/—65, a time step At = 0.4, penalty parameter
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Fig. 2. The onset of Rayleigh-Bénard convection with nonhomogeneous Neumann boundary con-

ditions.

n = 0.01k (where kK = ﬁ%ﬁ), and finite element spaces V3, = DG1(Tp) and

U™ = CGy(Th)?. One can see in Figure 1 that in each experiment, the flow
begins to exhibit instability when the Rayleigh number exceeds a critical value
lying somewhere between Ra = 1500 (the green curves) and Ra = 2000 (the blue
curves), regardless of which of the four parameters Re, m, Z, Pr is varied.

Prescribed heat flux boundary conditions. In order to illustrate the impact
of the boundary condition on the critical value of the Rayleigh number, we repeat
below the same experiments, now with prescribed heat flux boundary conditions j, -
n = qo (nonhomogeneous Neumann boundary conditions). This boundary condition
describes cases where the upper and lower plates conduct heat poorly compared
with the fluid. In order to use exactly the same initial temperature profile, we set
qo(x,0) = —i%%Z, qo(x,1) = ﬁ%%Z. This change of boundary condition
is known to have a significant impact on the onset of convection by decreasing the
critical Rayleigh number, see Refs. 33, 11 for the Boussinesq case. Figure 2 confirms
this; one can see in Figure 2 that the flow begins to exhibit instability when the
Rayleigh number exceeds a critical value lying somewhere between Ra = 1000 (the
yellow curves) and Ra = 1500 (the green curves), regardless of which of the four
parameters Re, m, Z, Pr is varied.

We also repeated the above experiment with Re = 100, m = 0, Z = 2, and
Pr = 2.5, which corresponds to a much higher Rayleigh number Ra = 90909.1. We
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fixed At = % and tested several values of h. Plots of the computed temperature
at time ¢ = 10 are shown in the leftmost column of Figure 3. Note that since the
prescribed heat flux ¢g satisfies fz:O qo da + fz:l go da = 0, this system conserves
energy (and mass) exactly in the continuous setting. The leftmost plot in Figure 4
shows that energy and mass are conserved to machine precision in the discrete

setting as well.

4.2. Comparison

To see how our scheme compares with others in the literature, we implemented
and tested the finite volume scheme proposed in Refs. 5, 35. This scheme uses a
formulation of the Navier-Stokes-Fourier equations in terms of u, T, and p which,
for a perfect gas in the presence of gravity, has nondimensional form

by 1 1
O (pu) + div(pu ® u) = div (Re - p(S) - ﬁpé, ¥ = Defu — g(div u)d,
. by . . . 11 v 1
T) + div(pTu)) = (= — pd ) : Vu — div(Tjs), js = — o o ——=VT,
Cr OW(pT) + (7)) = (o = 18 + V= div(Ti) Jo =~ =79
Op + div(pu) = 0,
where Oy = —1= and p = pT. We will detail the scheme below, beginning with the

y—1
case where periodic boundary conditions are imposed on 9€2. The scheme discretizes

all variables with piecewise constant functions on a regular quadrilateral mesh Tj,
of Q. In our notation (which differs considerably from Refs. 5, 35), it seeks u €
DGo(T)? and T, p € DGo(Ty) such that

(0¢(pu), v) + Bn(v, pu,u) = —ap (v, E) — %(pé,v}, Vv € DGo(Tr)4, (4.4)
Cy ((0:(pT), w) + Br(w, pT,u)) = ap(u,wE) — (T, w), Yw € DGo(Tp), (4.5)
(Oup, ) + Br(6, p,u) =0, V0 € DGo(Tn), (4.6)
where
=L (1 n_1L -
E=gs <2(X+X ) dTrX) pTo

and X € DGo(T5)?*¢ is determined from
(X,Y)=op (u,Y), VY € DGo(T)*".
Here, the maps a4, B, and 7y, have the following definitions. The map «y, is given
by
an(v,2) = Y [{v}-[Elda,
ecg0VC
where {v} denotes the average of a vector field v and [Z] denotes the jump of a

tensor field = across e = K1 N Ky € 82. These are defined by

1
{’U} = 5(’01 + ’Ug)7 [[EH = El’ﬂl + EQTLQ,
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where v; = v|k,, Z; = E|k,, and n; is the unit normal vector to e pointing outward
from K;. The map S, (-, -, u) has two meanings. For scalar fields f and g, it is the
bilinear form

Blfrgm) = 3 / ({u} - [} + Bel(ud) + KOS - [l dar (47)

ece? V¢

where 8. ({u}) = 1|{u} n| and £ € (0,1). (We used £ = 1 together with the smooth
approximation (3.38) of S.({u}) in our implementation.) When f and g are vector
fields, Br(f, g,u) is understood as Zle Br(fi, gi,u). Lastly,

(T, w) = Z %[[T]] - [w] da.

ecgd V¢

This completes the specification of the scheme when periodic boundary conditions
are imposed. Notice that oy (v,Z) approximates — [, v - divEdz, and when u is
continuous, By (f,g,u) is the same as our by (u; f, g, u) for scalar fields f and g, up
to the addition of a term proportional to h¢ that Refs. 5, 35 include for stability
reasons.

To impose the no-slip boundary condition v = 0 on 992, we follow Ref. 35 and
penalize u|gn by adding % fag u-vda to the right-hand side of (4.4), where ¢ is an
h-dependent penalty parameter. (We took € = h? in our implementation, following
Theorem 6.2 in Ref. 5.) Likewise, to impose T' = T on 99, we follow Ref. 5 and
add L [ (T — To)wda to the right-hand side of (4.5). To impose Tj, - n = qo on
99, we subtract [, gow da from the right-hand side of (4.5).

We discretized (4.4)-(4.6) in time with

(Dat(pu),v) + Br(v, (pu) ky1/2: Ukt1/2)
1

= —ap(v,Epq1/2) — ﬁ<ﬂk+1/257v>, Yo € DGo(Th)%,

Cv ({(Dat(pT), w) + Br(w, (0T )kr1/2, Ur+1/2))
= ap(Upt1/2, WEkt1/2) — Y (Thgr/2,w), Yw € DGo(Tr),

(Datp, 0) + Br(0, pry1/2, Urs1/2) = 0, V0 € DGo(Tn),
where Uk4+1/2 = uk+§k+1a Pk+1/2 = pk+§k+1a Tk+1/2 = %7 (Pu)k+1/2 =
Pkuk+P§+luk+1 ’ (pT)kJrl/Q _ Pka+P§+1Tk+1 7

_ 1 /1 . 1
Sr+1/2 = Rg i(Xk+1/2 + Xpt1/2) — g Tr Xiq1y2 | — (pPT)kt1/29,
and

(Xpi1/2:Y) = ap (ups1/2,Y), VY € DGo(Tp)*.

Using the above finite volume scheme, we ran the same experiment described
in the last paragraph of Section 4.1, this time with smaller values of h (detailed in
the caption of Fig. 3) to ensure that the experiments with the above finite volume
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Fig. 3. Temperature contours at time ¢ = 10 during a simulation of Rayleigh-Bénard convection
with Re = 100, m = 0, Z = 2, and Pr = 2.5, so that Ra = 90909.1. Left column: Our scheme with

h € {‘/TE, ‘/Ti, ‘1/—65, ‘3/—25}, ordered from smallest h to largest. Middle column: The scheme (4.4)-(4.6)

with h € {1—16, %, é, 1—58}, ordered from smallest h to largest. Right column: Same as the middle

column, but with the term proportional to hé excluded from (4.7).

scheme used a similar number of degrees of freedom as the experiments we did with
our scheme. (Our scheme used 1056, 4160, 16512, and 65792 degrees of freedom in
the four experiments of Fig. 3, while the other used 2048, 8192, 32768, and 131072.)

The results obtained with the finite volume scheme are shown in the second
column of Fig. 3. At low resolutions, the temperature contours are qualitatively
incorrect due to excessive numerical diffusion. This appears to be due primarily
to the term proportional to h® that appears in (4.7). Removing it improved the
appearance of the temperature contours significantly; see the rightmost column in
Fig. 3. Nevertheless, the finite volume scheme still artificially dissipates energy,
regardless of whether the term proportional to h¢ is included or not; see the middle
and rightmost columns of Fig. 4.

It is worth mentioning that the finite volume scheme also fails to preserve the
total entropy [, sdz in the purely reversible setting (k = p = X = 0). This is
illustrated in the blue and red curves in Fig. 5, where we ran the same experiment
as above using the finite volume scheme with h = 61—4, this time with Re = oo
and Fr = 0.5. In contrast, our structure-preserving scheme preserves fQ sdx to
machine precision in the purely reversible setting if one uses the finite element
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Fig. 4. Evolution of mass and energy during the three simulations in the top row of Fig. 3. The
absolute deviations |F'(t) — F'(0)| are plotted for each conserved quantity F(t).
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Fig. 5. Evolution of total entropy in the purely reversible setting.

space Vi, = DGo(Tp). One can see this by taking w = DL in (3.34). This fact

is illustrated in the black curve in Fig. 5, where we used our structure-preserving
scheme with Vj, = DGo(Ty), U™ = CG1(Tr)?, and h = g.

4.3. Numerical convergence

To test the convergence of our scheme, we considered the same setup as in §4.1, this
time with initial conditions

u(z, z) = E(cos(mc) sin(mz), sin(wz) sin(wz)),
T(x,z) =1+ Z(1—2)+ L sin(mz),

10
p(z,z) =1.

We imposed periodic boundary conditions in the z-direction and the no-slip bound-
ary condition v = 0 along z = 0 and z = 1. We added forcing terms to the right-hand
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rla | B | llun—ullpz | Rate | flsn = slli2) | Rate | oo = plli2(0)| Rate
2 | 5.54-1072 1.78 - 107 6.80 - 102

10| 4 | 1.43-1072 1.95 | 1.07-10° 0.73 | 4.12-1072 0.72
8 | 6.44-1073 1.16 | 5.09-10"! 1.07 | 1.95-1072 1.08
16 | 4.30-1073 058 | 2.25-107! 1.18 | 8.555-1073 1.19
2 [ 5.11-1072 2.33- 107 9.18 - 102

11| 4 | 194-1072 1.40 | 1.22-10° 094 | 4.83-1072 0.93
8 | 4.66-1073 2.06 | 5.64-107" 1.11 | 2.26-1072 1.10
16 | 1.01-1073 221 | 2.46-107" 1.20 | 9.90-1073 1.19
2 [ 1.20-1072 3.73-107 1 1.48 1072

21| 4 |213-1073 2.49 | 8.56-1072 2.12 | 3.44-1073 2.11

8 | 207 -107% 3.37 | 2471072 1.79 | 1.00-1073 1.78
16 | 2.16-107° 3.26 | 5.76-1073 2.10 | 2.36-107% 2.09
2 | 1.18-1072 5.80-107 ! 2.31-102
22| 4 |215-1073 2.46 | 1.52-107! 1.93 | 6.17-1073 1.91
8 | 225.-107% 3.25 | 4.17-1072 1.87 | 1.71-1073 1.85
16 | 2.40-107° 3.23 | 1.07-1072 1.97 | 4.40-107% 1.96
2 [220-1073 5.69- 102 2.32-1073
312 4 |137-107¢ 4.00 | 7.83-1073 2.86 | 3.22-107% 2.85
8 | 5.75-107 4.58 | 9.31-1074 3.07 | 3.85-107° 3.06
16 | 2.76-1077 4.38 | 1.04-107% 3.17 | 4.28.107¢ 3.17
2 [232.1073 1.25-107 1 5.05-107°
313| 4 |145-107% 4.00 | 1.49-1072 3.07 | 6.10-107% 3.05
8 | 6.49-1076 448 | 1.63-1073 3.19 | 6.73-107° 3.18
16 | 3.27-1077 431 | 1.72-107% 3.24 | 7.11-1076 3.24

Table 1. LQ(Q)-errors in the velocity, entropy, and density at time t = 0.5 for various values of h,
r, and q (with At fixed).

At~ | Jlup —ullg2(o) | Rate [ [lsn — sllL2() | Rate | llon —pllL2) | Rate
8 1.82-107% 6.38-107° 2.45-107%
16 | 4.69-107° 1.96 | 1.57-1073 2.03 | 6.01-107° 2.02
32 | 1.18-107° 1.99 | 3.90-107% 2.01 | 1.50-107° 2.01
64 | 2.96-107° 2.00 | 9.73-107° 2.00 | 3.74-107° 2.00

Table 2. L2(Q)-errors in the velocity, entropy, and density at time ¢ = 0.5 for various values of At
(with h, r, and q fixed).

sides of (4.1)-(4.3) to make the exact solution equal to

1
u(z, z,t) = E(cos(mc) sin(mz) cost, sin(mx) sin(mwz) cost),

1
T(x,z,t) =1+ Z(1—2)+ I sin(mz) cost,

1
plx,z,t) =1+ I sin(mx) sin(7rz) sin t.
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The exact entropy is therefore

oz, 2,1) T(z,2,1)

log ,
v-1 (v = Vplz, z,t)771

as one can verify by solving T' = % for s. We imposed Dirichlet boundary conditions

for T along z = 0 and z = 1 using the exact values of T' given above.
We took v = 1.1, Re = 100, Z = 0.42, Pr = 2.5, and Fr = %, and we used

s(z,z,t) =

7
a penalty parameter n = 0.01x with kK = éﬁ%. We used a small time step
At = ﬁ to ensure that temporal discretization errors would be negligible, and we

used finite element spaces Vj, = DG, (T5) and U™ = CG,.(T;)?.

Table 1 shows the L2(Q)-errors in the computed solution (up, sn,pn) at time
t =05 for h € {g,g,%,‘{—g}, r € {1,2,3}, and ¢ € {r — 1,r}. In all cases
except (r,q) = (1,0), the velocity, entropy, and density converged at rates given
approximately by O(h"™1), O(h™), and O(h"), respectively, both with ¢ = r — 1 and
with ¢ = r. In the case (r, ¢) = (1,0), the entropy and density converged linearly but
the velocity did not converge quadratically. Our experiments with (r,¢) = (1,0) on
even finer meshes (not shown in the table) suggest that the velocity’s convergence
rate is asymptotically linear when (r,q) = (1,0); the errors |lup — ul|z2(q) were
2.44-1072 and 1.28 - 1073, respectively, for h = g and h = g.

We also tested the convergence rate of our temporal discretization by fixing h =
‘{—g, r =4, and ¢ = 4, and running the above experiment with At € {é, %, 3—12, 6%1}.
The results, reported in Table 2, indicate that our scheme is second-order accurate
in time.

5. Conclusion

We have constructed thermodynamically consistent finite element methods for com-
pressible viscous heat conducting fluids by focusing on the Navier-Stokes-Fourier
case with the following types of thermal boundary conditions: insulated boundaries,
prescribed heat flux, or prescribed temperature boundary conditions. It was shown
that the resulting class of schemes satisfies the two laws of thermodynamics at the
fully discrete level. More precisely, regarding the first law, the total energy was
shown to be exactly preserved at the fully discrete level when the fluid is adiabati-
cally closed, while a discrete energy balance was proven to hold in the presence of
external heating, thereby exactly reproducing the energy balance of the continuous
case. Regarding the second law, the entropy generated by the internal irreversible
processes was shown to grow at each time step on each cell.

We derived the scheme by discretizing a variational formulation for heat conduct-
ing viscous fluids that extends the classical Hamilton principle for fluid dynamics
to include irreversible processes. The treatment of different thermal boundary con-
ditions led to nontrivial changes in the way the thermodynamic fluxes associated
with heat conduction are discretized. In each case the variational derivation was
crucial to achieve thermodynamic consistency. Natural extensions of our scheme to
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the case of rotating fluids, variable viscous and thermal coefficients, and upwinding
techniques were discussed.

The qualitative properties of the scheme were illustrated by simulating the onset
of convection in the celebrated Rayleigh-Bénard experiment with both prescribed
temperature and prescribed heat flux boundary conditions. We also tested the con-
vergence rate of our scheme with respect to spatial and temporal refinement and
observed second-order accuracy in time and high-order accuracy in space. A com-
parison between our scheme and a recently proposed finite volume method for the
Navier-Stokes-Fourier equation indicated that our scheme more faithfully respects
the first two laws of thermodynamics. We are not aware of other methods sharing
the same properties within the finite element/finite volume literature.

Since the techniques developed in this paper draw upon a general variational
formulation that underlies a large class of continuum thermodynamic systems, they
are potentially applicable to a large range of models that we plan to study in
the future. Immediate applications include ongoing work on plasma physics and
geophysical fluid dynamics, where the accurate long term behavior and the ther-
modynamic consistency of the discrete models play a crucial role. Future studies
should also include error analyses for the schemes derived in the paper.

Appendix A. Finite dimensional guiding examples

The treatment of finite dimensional systems is useful for understanding several
aspects of the variational formulation for the heat conducting viscous fluid, such as
the occurrence of two entropy variables (S and ¥ in the Lagrangian description, s
and ¢ in the Eulerian description) and the form of the constraints, especially in the
case when the system is not adiabatically closed, which arises when the temperature
is prescribed at the boundary. We follow the variational setting developed in Ref. 27
and Ref. 30 for adiabatically closed and for open systems.

Consider a thermodynamic system described by a mechanical variable ¢ € @
in a finite dimensional configuration manifold and an entropy variable S € R. We
assume the system has a Lagrangian L : TQ x R — R and involves a friction
force Ff : TQ x R — T*Q, with F(q,v,5) € T;Q. The total energy and the
temperature of the system are defined from L by

oL . oL
E—<aq,q>—L and T——%. (A.1)

It is assumed that the Lagrangian is such that T' > 0 for all (¢, v, S).

Adiabatically closed system. When the system does not interact with its sur-
roundings, the variational formulation is given as follows: find the curves ¢(t) € @,
S(t) € R which are critical for the variational condition

t1

o [ Lig.q,$)at =0, (A.2)

to
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subject to the phenomenological constraint

oL .
=S =(F¥ g A3
955 = (F.4), (A.3)
and for variations subject to the variational constraint
oL
=68 =(F" A4
505 = (F".4q), (A4)

A direct application of (A.2)—(A.4) yields the coupled mechanical-thermal evo-
lution equations:

d oL 0L ; oL . I

i —— S =(FYT . A5
it dq  q o gsd ) (A.5)
With these equations, one directly gets the balance of total energy, see (A.1), and
entropy

. . 1
E=0 d S=—=
an T

In particular, the second law requires that the force F™" must be dissipative.
A time discretization of this variational approach has been proposed in Refs. 29,
12.

(F™q). (A.6)

System with a heat source. Assume that the system has an external heat source
of temperature Ty with an entropy flow Jg m. The variational formulation needs
the introduction of two additional variables, namely, (i) the thermal displacement T’
with I' = T the temperature and (ii) the entropy variable ¥ with Y = I > 0 the rate
of internal entropy production. The two relations I'=7Tand ¥ = I are not imposed
a priori but follow from the variational formulation. For such systems the variational
formulation is given as follows: find the curves ¢(t) € Q, S(t),I'(t),2(¢) € R which
are critical for the variational condition

5 /ttl[L(q, 3.5) + (S~ D)]dr =0, (A7)
0
subject to the kinematic constraint
%2 = (F™ 4) + Ts,u(T — T) (A.8)
and for variations subject to the variational constraint
%52 = (F",8q) + Js,udT, (A.9)

with 5q|t:t0,t1 =0.
Application of (A.7)-(A.9) yields the conditions
d oL 0L oL

0q: —— — — =F" 6S: I'=—-= or: S=% .
" Waq g 98 Bk S=%+Tsu
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The second condition imposes that I' is the thermal displacement while the third
condition splits the rate of entropy production S as the sum of the rate of internal
entropy production ¥ and the entropy flow rate Js z. Finally, one gets the coupled
mechanical-thermal evolution equations:

doL 0L g oL

4oL _ oL OL & _ (P _ oL _
it Dg 8q_F’ 85’(5 Ts,u) = (F 7Q>+jS,H< 35 TH)- (A.10)

With this system, the balance of energy and entropy (A.6) is modified as
. . 1 . 1
E=TyJsn and  S=—(F"q) = ZTsu(T = Tu)+Tsu. (A1)

The second law requires that —%<Ffr, q> >0 and —%js,H(T —Tg) > 0, while the
entropy flow Js g can have an arbitrary sign.

Structure of the variational formulation. In the adiabatically closed case, one
passes from the phenomenological constraint (A.3) to the variational constraint
(A.4) by formally replacing the time rate of changes (here S and §) by d-variations
(here 45 and d¢). This is a general variational setting for adiabatically closed sys-
tems, see Ref. 27, which is reminiscent of the Lagrange-d’Alembert principle used
in nonholonomic mechanics. The same approach is used to pass from the phe-
nomenological constraint (2.4) to the variational constraint (2.5) for fluids in the
adiabatically closed case.

In the case with a heat source the kinematic constraint is affine in the rate of
changes, hence one passes from (A.8) to (A.9) by formally replacing the rate of
changes (here S, ¢, and F) by d-variations (here 4.5, dq, and ¢I") and by removing
the affine terms associated to the exterior (here Js gTy). This is a general approach
for open systems, see Ref. 30. It is used to pass from the constraint (2.20) to the
constraint (2.21) for fluids with prescribed boundary temperature

Appendix B. Variational derivation of heat conducting viscous
fluid equations

B.1. Lagrangian description

In the Lagrangian description, the computation of the critical condition is much
simpler than its Eulerian counterpart and follows closely its finite dimensional ana-
log mentioned above.

For the adiabatically closed case, one gets from (2.3)—(2.5) the fluid conducting
viscous fluid equation in Lagrangian form as

i(S—L _oL =DIVP
dtdép  dp
5L (B.1)

. 5L
—5g(§ 4+ DIVJs) = P: Vo + Js - Vg,
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together with the conditions

f:-%, »=8+4DIVJs and Js-n=0 on 9Q (B.2)
associated to the variations §5 and ¢T". Since —0L/6S > 0 is identified with the
temperature, the first condition implies that I' is the thermal displacement. The
expression S + DIV Jg is the rate of internal entropy production, positive by the
second law, hence the second condition implies that ¥ is the internal entropy density.
The last condition is the insulated boundary condition. It follows from the variation
oT" on the boundary 02 and implies that the fluid system is adiabatically closed.

For the case with prescribed boundary temperature, one applies the variational
principle (2.3)-(2.20)-(2.21) and directly gets the equations (B.1) and (B.2) with
the last equation of (B.2) replaced by the boundary condition

(Js-n)(T—%p)=0 on ON.

Here ¥ = —6L/4S is the temperature in the Lagrangian frame.

B.2. Neumann boundary conditions

We show that the variational formulation (2.9)—(2.12) yields the equations (2.14)
together with the conditions (2.15).
Taking the variations in (2.9) and using 07|t=t,.+, = 0 and u|aq = 0, we get

f W4
/ / —-du +75 —|—5 88+08Dyy—06sDyy— Dy (s—)6y+(s—<5) V- 5u}dxdt—0
to

(B.3)
Since ds is arbitrary, we get the condition
Y4
thereby recovering the first condition in (2.1 ) Making use of this condition and of

the variational constraint (2.11) yields

66 Y4
/ / Sou 4 —5p—o Vo +js - V(oy+v-Vy) —div(sv)—
0s  (B.5)

— Dy(s = )6y + (s — )V - du|dxdt = 0.
Since §+ is arbitrary, we get
Dys = Dys + div j, and js-n=0 on 99 (B.6)

thereby recovering the second and third conditions in (2.15). Having found these
conditions, we now use v|spn = 0 and the second condition of (2.12), i.e. dp =
—div(pw), to rewrite (B.5) in the form

t W4 o0 o
/ / )V’y) ou+ (pV% —l—cvg +div 0’) v— (le]S)v~V7} dzdt = 0.
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Using the first condition of (2.12), i.e. du = Oyv + [u, v], integrating by parts, and
using the identity

- . ol
(0 + £4.) ((s — g)V'y) =Di(s —¢)Vy+ (s —¢)VDyy = —divj,Vy — (s — g)Vg,
with £, the Lie derivative of one-form densities, we get the first equation in (2.14).
The second equation in (2.14) follows from the phenomenological constraint (2.10)

together with (B.4) and the first condition in (B.6).

B.3. Dirichlet boundary conditions

We briefly explain how the variational formulation (2.9)-(2.22)-(2.23)-(2.12) yields
the equations (2.14) together with the conditions in (2.15), with the last one replaced
by (2.24).

We proceed similarly as in §B.2 before. Making use of (2.23) instead of (2.11)
we get only the first condition in (B.6), namely

Dy = Dys + div j, (B.7)

since the boundary term involving js - n is cancelled by the additional term in the
constraint (2.23). The first equation in (2.14) follows exactly as before. Now the
kinematic constraint (2.22), together with (B.4) and the first condition in (B.6)
give both the second equation in (2.14) and the boundary condition (2.24).

B.4. Weak forms

As explained in §2.3, the constraints (2.10)—(2.11) and (2.22)—(2.23) can be written
in a unified way by using the expressions d(-,-,-) and e(-,-), see (2.30)—(2.31). The
computations reviewed above can be equivalently formulated with these expressions.
However, it is useful to explain how the form of the entropy equation (the second
equation in (2.32)) emerges since its form plays a crucial role in our approach.

After taking the variation as earlier in (B.3), one uses in it the variational
constraint with w =1, i.e.

<1, %D@ = —c(1,u,0) +d(1, ot Dm).

s ds’
Proceeding as earlier, this yields
= Y4
(Dy(s — s),07) = —d(l7 —E,(S*y), Yoy (B.8)

which is the weak form of both (B.6) and (B.7) depending on the boundary con-
ditions considered. One finally gets the first equation in (2.32), while the second
equation in (2.32) follows from the kinematic constraint (2.30) in which (B.8) is
used with §y = w%. This explains the very specific forms of the two terms involv-

ing d(-,,-) in the weak form of the entropy equation, namely

d(l, f%, %w) and d(w, —%, %)
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