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Respecting the laws of thermodynamics is crucial for ensuring that numerical simulations
of dynamical systems deliver physically relevant results. In this paper, we construct a

structure-preserving and thermodynamically consistent finite element method and time-

stepping scheme for heat conducting viscous fluids, with general state equations. The
method is deduced by discretizing a variational formulation for nonequilibrium ther-

modynamics that extends Hamilton’s principle for fluids to systems with irreversible

processes. The resulting scheme preserves the balance of energy and mass to machine
precision, as well as the second law of thermodynamics, both at the spatially and tempo-

rally discrete levels. The method is shown to apply both with insulated and prescribed

heat flux boundary conditions, as well as with prescribed temperature boundary con-
ditions. We illustrate the properties of the scheme with the Rayleigh-Bénard thermal
convection. While the focus is on heat conducting viscous fluids, the proposed discrete

variational framework paves the way to a systematic construction of thermodynamically
consistent discretizations of continuum systems.
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1. Introduction

Structure preserving discretization of continuum systems, such as fluids and elastic

bodies, is today widely recognized as an essential tool for the construction of nu-

merical schemes when the long time accuracy and the respect of the balance and

conservation laws of the simulated system are crucial. Such properties are espe-

cially relevant in the context of geophysical fluid dynamics for weather and climate
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prediction, or in the context of plasma physics.

A well-known constructive approach to deriving such structure preserving dis-

cretizations is to exploit the variational formulation underlying the equations of

motion. This formulation is deduced from Hamilton’s critical action principle and

provides a useful setting for both the temporal and spatial discretization steps.

While variational time integrators for finite dimensional systems are today well-

established (see Ref. 38 and the large series of subsequent works), spatial and

spacetime discrete variational approaches for continuum systems are still under-

going foundational developments (e.g. Refs. 36, 34, 40, 15, 14, 21).

Despite their wide range of applicability, a main limitation of variational for-

mulations issued from Hamilton’s principle is their inability to consistently include

irreversible processes in the systems. In most of the real world applications of con-

tinuum mechanics, however, such processes do have a deep impact on the dynam-

ics. For instance, in the case of fluid dynamics, the processes of heat conduction,

diffusion, viscosity, or chemical reactions, play a major role in geophysical, astro-

physical, engineering and technological applications. Thermal convection occurring

in the planets’ oceans, atmospheres and mantles, as well as in stars, is a typical

phenomenon occurring in conjunction with the process of heat transfer among oth-

ers. Importantly, due to their irreversible character, such phenomena fit into the

realm of nonequilibrium thermodynamics, governed by the two laws imposing con-

straints on the energy and entropy behavior. In order to get reliable and physically

meaningful numerical solutions for such systems, it is of paramount importance to

preserve these laws at the discrete level, thereby highlighting the need to extend

variational discretization from reversible continuum mechanics to nonequilibrium

thermodynamics.

We propose in this paper a first step in this direction for the case of fluid

dynamics with heat conduction and viscosity. The general form of the equations

of evolution for such fluids on a bounded domain Ω ⊂ Rd, d = 2, 3, with smooth

boundary is 
ρ(∂tu+ u · ∇u) = −ρ∇ϕ−∇p+ div σ

T (∂ts+ div(su) + div js) = σ :∇u− js ·∇T

∂tρ+ div(ρu) = 0,

(1.1)

with u the fluid velocity, ρ the mass density, s the entropy density, T the tempera-

ture, and p the pressure. The equations also depend on the gravitational potential

ϕ, while the irreversible processes are described by the viscous stress tensor σ and

the entropy flux js. In this paper we shall take for them the usual Navier-Stokes

and Fourier expressions. The equations are supplemented by the no-slip boundary

condition for the velocity u|∂Ω = 0 and by one of the following thermal boundary

conditions:

Tjs · n|∂Ω = q0 or T |∂Ω = T0. (1.2)
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These correspond to either prescribed heat flux or prescribed temperature boundary

conditions, the case q0 = 0 being that of an insulated boundary. The system is closed

by a given state equation, which we keep general in this paper, not necessarily given

by the perfect gas.

Our approach is based on a variational formulation for nonequilibrium thermo-

dynamics that extends Hamilton’s principle to include irreversibility, developed in

Refs. 27, 28, 30. Importantly for the present work, this approach extends to the

irreversible setting the well-known variational and geometric formulation of hydro-

dynamics on diffeomorphism groups initiated in Ref. 2. This variational formulation

gives (1.1) together with an appropriate boundary condition from (1.2) as critical

point conditions. It should be noted that in this paper, we use the term “variational

formulation” to refer to a critical action principle that characterizes solution curves,

not a variational (or weak) formulation in the finite element sense. One can use the

former to construct the latter, but not vice versa in general.

The resulting class of schemes, which is written down in standard finite element

notation in (3.34), satisfies the two laws of thermodynamics at the fully discrete

level. More precisely, the total energy is shown to be exactly preserved at the fully

discrete level when the fluid is adiabatically closed, while a discrete energy balance

holds in the presence of external heating. Regarding the second law, the entropy

generated by the internal irreversible processes is shown to grow at each time step

on each cell.

It turns out that the variational formulation for nonequilibrium thermodynamics

yields the equations for heat conducting viscous fluids in a weak form that is quite

suitable to achieve thermodynamic consistency and, at the same time, can natu-

rally accommodate both prescribed heat flux (Neumann) or prescribed temperature

(Dirichlet) boundary conditions. The variational formulation also naturally involves

an internal entropy variable, helping identify the internal entropy production at the

fully discrete level, which is well-known to differ from the rate of entropy change in

the presence of the entropy flux.

To our knowledge, our scheme is the first scheme to respect both the balance

of total energy and the second law of thermodynamics locally (i.e. elementwise)

among finite element/finite volume approaches for heat conducting viscous fluids.

One existing scheme that comes close to achieving these goals is the finite volume

scheme studied in Ref. 5 and the references therein. It satisfies a global energy

balance law and a global entropy production law, but the laws contain artificial

sources of energy dissipation and entropy production. It also does not appear to

guarantee entropy production locally. Another approach that achieves global, but

not local, entropy production is described in Refs. 32, 43. It relies on a change of

variables that couples the energy density with other variables, and for this reason

it does not appear to respect the balance of total energy. Related techniques are

used in Ref. 44 to achieve global entropy production in the one-dimensional setting.

In the absence of irreversible processes, Ref. 41 has recently constructed a scheme

that conserves both total entropy and total energy. This was also accomplished in
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Section 6 of Ref. 21.

Our paper is structured as follows. In §2 we recall the variational formulation

for heat conducting viscous fluids in the insulated case following Ref. 28 and then

present the modifications needed for the treatment of a prescribed temperature or

prescribed heat flux on the boundary, consistently with the variational formulation

of open systems given in Ref. 30. We also give the weak formulation of the equa-

tions resulting from the variational framework. In §3, following previous works on

the reversible case, we carry out this variational formulation on a discrete version

of the diffeomorphism group, based on a discontinuous Galerkin discretization of

functions. A suitable spatially discrete version of heat conducting viscous flow is

obtained for any given discrete fluid Lagrangian. A main subsequent step is the ap-

propriate discretization of the thermodynamic fluxes, which is chosen in accordance

with the considered Neumann or Dirichlet boundary conditions, and realized for the

Navier-Stokes-Fourier case. It is then shown that the resulting spatial discretization

satisfies the two laws of thermodynamics exactly. Thanks to its structure preserving

form, the resulting finite element scheme can be followed by an energy preserving

time discretization which allows satisfaction of the second law at each step on each

fluid cell. Rayleigh-Bénard convection tests are carried out in §4 for both prescribed

temperature (Dirichlet) and prescribed heat flux (Neumann) boundary conditions,

for several values of Rayleigh numbers, illustrating the predictive value and ther-

modynamic consistency of our scheme. We also test the numerical convergence of

our scheme with respect to spatial and temporal refinements, and provide a com-

parison with a recently derived finite volume method for the Navier-Stokes-Fourier

equations.

2. Variational formulation for heat conducting viscous fluids

We review here the variational formulation of nonequilibrium thermodynamics un-

derlying the structure preserving discretization method that we present for heat

conducting viscous fluids. This variational formulation, developed in Refs. 27, 28,

30, is an extension of the Hamilton principle which allows one to systematically

include irreversible processes in the dynamics, such as friction, viscosity, heat con-

duction, matter transfer, or chemical reactions. Importantly for the present work,

the variational formulation applies to adiabatically closed systems as well as systems

exchanging heat and matter with their surroundings, see Ref. 30.

We recall in §2.1 this formulation for heat conducting viscous fluids with insu-

lated boundaries (homogeneous Neumann boundary conditions), and then present

the modifications needed for the treatment of a prescribed temperature on the

boundary (Dirichlet boundary conditions) or prescribed heat flux at the boundary

(nonhomogeneous Neumann boundary conditions), see §2.2. A weak formulation of

the equation is deduced from the variational formulation in §2.3 in a unified way

for all boundary conditions.

In order to help identify the role and meaning of each variable in a simpler
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context, both for the adiabatically closed case and for the open case, we present in

Appendix A an application of the variational formulation to an elementary finite

dimensional example.

2.1. Insulated boundaries

The variational formulation is best expressed in the material (or Lagrangian) de-

scription since it is in this description that it is an extension of the Hamilton princi-

ple of continuum mechanics and takes its simpler form. The variational formulation

in the spatial (or Eulerian) description that underlies our approach is then deduced

by using the fluid relabelling symmetry. A finite element spatial discretization of

this “Lagrangian-to-Eulerian” variational approach will be developed in §3.

Lagrangian description. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with

smooth boundary, Diff(Ω) the group of diffeomorphisms of Ω, and Diff0(Ω) the

subgroup of diffeomorphisms keeping ∂Ω pointwise fixed. We denote by F(Ω) and

F(Ω)∗ the spaces of functions and densities on Ω with sufficient regularity. We

identify densities with functions, bearing in mind that the action of Diff(Ω) on

F(Ω)∗ under this identification differs from the action of Diff(Ω) on F(Ω); see (2.6).

In the Lagrangian description, the motion of a compressible fluid in the domain Ω

is given by two time dependent maps, the fluid configuration map φ : [t0, t1] →
Diff0(Ω), giving the position x = φ(t,X) at time t of a particle located at X at

t = t0, and the entropy density S : [t0, t1] → F(Ω)∗. From mass conservation,

the mass density ϱ0 ∈ F(Ω)∗ is constant in time in the Lagrangian description,

ϱ(t,X) = ϱ0(X).

In the absence of irreversible processes, the entropy density is also constant

in time S(t,X) = S0(X) and the equations of motion follow from the Hamilton

principle

δ

∫ t1

t0

L(φ, φ̇, S0, ϱ0)dt = 0 (2.1)

for variations δφ with δφ|t=t0,t1 = 0. In (2.1) the function L : T Diff0(Ω)×F(Ω)∗×
F(Ω)∗ → R is the Lagrangian of the compressible fluid model, the standard expres-

sion being

L(φ, φ̇, S, ϱ) =

∫
Ω

[1
2
ϱ|φ̇|2 − ϵ

(
ϱ/Jφ, S/Jφ

)
− ϱϕ(φ)

]
dX (2.2)

with Jφ the Jacobian of φ, ϵ the internal energy density, and ϕ(x) the gravitational

potential.

For the heat conducting viscous fluid one also needs to specify the phenomeno-

logical expressions of the viscous stress tensor and entropy flux, denoted P and

JS in the Lagrangian description. The extension of Hamilton’s principle (2.1) to

heat conducting viscous fluids given in Ref. 28 involves two additional variables
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besides φ(t) ∈ Diff0(Ω) and S(t) ∈ F(Ω)∗: the internal entropy density variable

Σ(t) ∈ F(Ω)∗, whose time rate of change is the internal entropy production, and

the thermal displacement Γ(t) ∈ F(Ω), whose time rate of change is the tempera-

ture. The variational principle reads as follows.

Find the curves φ : [t0, t1] → Diff0(Ω), S,Σ : [t0, t1] → F(Ω)∗, and Γ : [t0, t1] →
F(Ω), which are critical for the variational condition

δ

∫ t1

t0

[
L
(
φ, φ̇, S, ϱ0

)
+

∫
Ω

(S − Σ)Γ̇ dX
]
dt = 0 (2.3)

subject to the phenomenological constraint

δL

δS
Σ̇ = −P : ∇φ̇︸ ︷︷ ︸

viscosity

+ JS · ∇Γ̇︸ ︷︷ ︸
heat conduction

(2.4)

and for variations δφ, δΣ, δΓ subject to the variational constraint

δL

δS
δΣ = −P : ∇δφ︸ ︷︷ ︸

viscosity

+ JS · ∇δΓ︸ ︷︷ ︸
heat conduction

(2.5)

with δφ|t=t0,t1 = δΓ|t=t0,t1 = 0, and δφ|∂Ω = 0, while the variations δS are free. The

critical condition of this variational formulation gives the heat conducting viscous

fluid equation in the Lagrangian description, see §B.1. In (2.4) and (2.5) δL
δS is the

functional derivative of L with respect to S, defined as d
dε

∣∣
ε=0

L(φ, φ̇, ϱ, S+ εδS) =∫
Ω

δL
δS δS dX, for all δS. It is identified with minus the temperature of the fluid,

denoted T = − δL
δS in the Lagrangian description.

Remark 2.1 (Structure of the variational formulation). The variational for-

mulation (2.3)–(2.5) is an extension of the Hamilton principle (2.1) for fluids which

includes two types of constraints: a kinematic (phenomenological) constraint (2.4)

on the critical curve and a variational constraint (2.5) on the variations to be con-

sidered when computing this critical curve. The two constraints are related in a

systematic way which formally involves replacing the time rate of changes (here Σ̇,

φ̇, and Γ̇) by the δ-variations (here δΣ, δφ, and δΓ). More precisely, on the right

hand side of (2.4) the two terms correspond to the dissipated power density asso-

ciated to the processes of viscosity and heat conduction, with their virtual version

appearing in (2.5). In coordinates P : ∇φ̇ = PA
a ∂Aφ̇

a and JS · ∇Γ̇ = (JS)
A∂AΓ̇.

This setting is common to the variational formulation of adiabatically closed ther-

modynamic systems, see Refs. 27, 28, and is a nonlinear version of the Lagrange-

d’Alembert principle used in nonholonomic mechanics. In Appendix A we recall an

application of this type of variational formulation to an elementary finite dimen-

sional thermodynamic system for which the computation of the critical condition is

straightforward and which helps explain the role and the meaning of the variables

Σ and Γ.
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Eulerian description. We recall here how (2.3)–(2.5) can be converted to the

Eulerian frame, thereby yielding the variational formulation underlying our struc-

ture preserving finite element discretization. The Eulerian versions of the variables

φ̇, ϱ0, S,Σ,Γ are the Eulerian velocity u, mass density ρ, entropy density s, internal

entropy density ς, and thermal displacement γ given as

u = φ̇ ◦ φ−1 ∈ X0(Ω),

ρ = (ϱ0 ◦ φ−1)Jφ−1 ∈ F(Ω)∗, s = (S ◦ φ−1)Jφ−1 ∈ F(Ω)∗,

ς = (Σ ◦ φ−1)Jφ−1 ∈ F(Ω)∗, γ = Γ ◦ φ−1 ∈ F(Ω),

(2.6)

where X0(Ω) = {u ∈ X(Ω) | u|∂Ω = 0} is the space of vector fields on Ω vanishing on

the boundary. The Eulerian viscous stress tensor σ and entropy flux js are related

to their Lagrangian counterparts P and JS via the Piola transformations

σ = ((P · ∇φT) ◦ φ−1)Jφ−1 and js = ((∇φ · JS) ◦ φ−1)Jφ−1, (2.7)

see Ref. 37. From its relabelling symmetries, the Lagrangian L can be expressed

in terms of the Eulerian variables as L(φ, φ̇, S, ϱ0) = ℓ(u, ρ, s). For the standard

expression given in (2.2) one gets

ℓ(u, ρ, s) =

∫
Ω

[1
2
ρ|u|2 − ϵ(ρ, s)− ρϕ

]
dx. (2.8)

With relations (2.6) and (2.7), the Eulerian version of the principle (2.3)–(2.5)

reads as follows. Find the curves u : [t0, t1] → X0(Ω), s, ς : [t0, t1] → F(Ω)∗, and

γ : [t0, t1] → F(Ω), which are critical for the variational condition

δ

∫ t1

t0

[
ℓ(u, ρ, s) +

∫
Ω

(s− ς)Dtγ dx
]
dt = 0, (2.9)

with the phenomenological constraint and variational constraint given by

δℓ

δs
D̄tς = −σ : ∇u︸ ︷︷ ︸

viscosity

+ js · ∇(Dtγ)︸ ︷︷ ︸
heat conduction

, (2.10)

δℓ

δs
D̄δς = −σ : ∇v︸ ︷︷ ︸

viscosity

+ js · ∇(Dδγ)︸ ︷︷ ︸
heat conduction

, (2.11)

and the Euler-Poincaré constraints

δu = ∂tv + [u, v], δρ = −div(ρv), (2.12)

where [u, v] denotes the Lie bracket of the vector fields u and v; see Ref. 28 for

details. Here v = δφ ◦ φ−1 : [t0, t1] → X0(Ω) and δγ : [t0, t1] → F(Ω) are arbitrary

curves with v|t=t0,t1 = 0 and δγ|t=t0,t1 = 0. Also, we have δs, δς : [t0, t1] → F(Ω)∗,

δu : [t0, t1] → X(Ω) and δρ : [t0, t1] → F(Ω)∗. In (2.9)–(2.11) we have used the
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following notations for the Lagrangian derivatives and variations of functions f and

densities g:

Dtf = ∂tf + u · ∇f Dδf = δf + v · ∇f
D̄tg = ∂tg + div(gu) D̄δg = δg + div(gv),

(2.13)

where v = δφ ◦ φ−1 and u = φ̇ ◦ φ−1.

By applying the variational principle (2.9)–(2.12), we get the equations for a

compressible heat conducting viscous fluid with Lagrangian ℓ(u, ρ, s)
(∂t +£u)

δℓ

δu
= ρ∇ δℓ

δρ
+ s∇ δℓ

δs
+ div σ

− δℓ
δs

(D̄ts+ div js) = σ :∇u+ js ·∇
δℓ

δs

D̄tρ = 0,

(2.14)

with £u the Lie derivative of one-form densities, together with the conditions

Dtγ = − δℓ
δs
, D̄tς = D̄ts+ div js, and js · n = 0 on ∂Ω, (2.15)

see §B.2 for details on the derivation. We have used the functional derivatives of ℓ,

defined as d
dε

∣∣
ε=0

ℓ(u+εδu, ρ, s) =
∫
Ω

δℓ
δu ·δudx, etc. Since −

δℓ
δs is identified with the

temperature T , the first condition in (2.15) implies that the variable γ is the thermal

displacement. From the second condition it follows that D̄tς is the rate of internal

entropy production, which must be positive by the second law of thermodynamics,

namely

D̄tς = D̄ts+ div js ≥ 0. (2.16)

The last condition in (2.15) is the insulated boundary condition.

We refer to Refs. 24, 17, 25, 26 for the use of this type of variational formulation

for modelling purposes in nonequilibrium thermodynamics.

Standard Lagrangian. By using the Lagrangian for Euler fluids given in (2.8)

one gets δℓ
δu = ρu, δℓ

δρ = 1
2 |u|

2 − ∂ϵ
∂ρ − ϕ, and − δℓ

δs = ∂ϵ
∂s = T > 0 the temperature,

so that the fluid momentum equation and the entropy equation in (2.14) take the

usual form

ρ(∂tu+ u · ∇u) = −ρ∇ϕ−∇p+ div σ, T (D̄ts+ div js) = σ :∇u− js ·∇T

with p = ∂ϵ
∂ρρ+

∂ϵ
∂ss− ϵ the pressure.

Energy and entropy balances. Defining the total energy E =
〈
δℓ
δu , u

〉
−ℓ(u, ρ, s),

from (2.14) and the boundary conditions u|∂Ω = 0 and js · n = 0 we directly get

the energy conservation

d

dt
E =

∫
Ω

div
(
ρ
δℓ

δρ
u+ s

δℓ

δs
u+ σ · u+ js

δℓ

δs

)
dx = 0. (2.17)
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From now on we will focus on the Navier-Stokes-Fourier case with the phenomeno-

logical relations

σ = σ(u) = 2µDef u+ λ(div u)δ, with µ ≥ 0 and ζ = λ+
2

d
µ ≥ 0

js = js(T ) = − 1

T
κ∇T, with κ ≥ 0.

(2.18)

Here Def u = 1
2 (∇u + ∇uT) is the rate of deformation tensor, µ ≥ 0 and ζ =

λ + 2
dµ ≥ 0 are the shear and bulk viscosity coefficients, and κ ≥ 0 is the thermal

conductivity coefficient. The signs of the coefficients are imposed by the second law

of thermodynamics D̄ts + div js ≥ 0 . Indeed, with (2.18), the entropy equation

reads

D̄ts+ div js =
1

T
σ :∇u− 1

T
js ·∇T

=
2µ

T
(Def u)

(0)
: (Def u)

(0)
+
ζ

T
(div u)2 +

κ

T 2
|∇T |2 ≥ 0, (2.19)

where (Def u)
(0)

denotes the trace-free part of Def u. For simplicity, in this paper

we will assume that these coefficients are constant; however, see §3.5.
The discretization that we will develop preserves both the energy conservation

(2.17) and the positivity of the rate of internal entropy production (2.19).

2.2. Dirichlet boundary conditions

We present here a modification of the variational formulation which allows the

treatment of a fluid with prescribed temperature on the boundary ∂Ω.

Lagrangian description. Since in this case the fluid system is no longer adiabat-

ically closed, the appropriate formulation is found by considering the continuum

version of the variational formulation for finite dimensional open thermodynamic

systems developed in Ref. 30. This amounts to replacing the constraints (2.4) and

(2.5) by the kinematic and variational constraints∫
Ω

W
δL

δS
Σ̇ dX = −

∫
Ω

W (P : ∇φ̇)︸ ︷︷ ︸
viscosity

dX +

∫
Ω

W (JS · ∇Γ̇)︸ ︷︷ ︸
heat conduction

dX

−
∫
∂Ω

W (JS · n)(Γ̇− T0)︸ ︷︷ ︸
heat transfer

dA, ∀W
(2.20)

∫
Ω

W
δL

δS
δΣdX = −

∫
Ω

W (P : ∇δφ)︸ ︷︷ ︸
viscosity

dX +

∫
Ω

W (JS · ∇δΓ)︸ ︷︷ ︸
heat conduction

dX

−
∫
∂Ω

W (JS · n)δΓ︸ ︷︷ ︸
heat transfer

dA, ∀W,
(2.21)
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with T0(X) the prescribed temperature on the boundary in the Lagrangian descrip-

tion. When JS · n = 0 they consistently recover (2.4) and (2.5).

We refer to the Appendix A for an application of this type of variational principle

for an elementary finite dimensional thermodynamic system exchanging heat with

the exterior, which helps the understanding of the new boundary term. In particular,

(2.20) and (2.21) are continuum versions of the constraints (A.8) and (A.9) in

Appendix A.

Eulerian description. Exactly as in §2.1, the variational principle can be con-

verted to the Eulerian description, thereby yielding (2.9)–(2.12) with the constraints

(2.10) and (2.11) replaced by∫
Ω

w
δℓ

δs
D̄tς dx = −

∫
Ω

w(σ : ∇u) dx+

∫
Ω

w(js · ∇Dtγ) dx

−
∫
∂Ω

w(js · n) (Dtγ − T0) da, ∀ w
(2.22)

∫
Ω

w
δℓ

δs
D̄δς dx = −

∫
Ω

w(σ : ∇v) dx+

∫
Ω

w(js · ∇Dδγ) dx

−
∫
∂Ω

w(js · n)Dδγ da, ∀ w.
(2.23)

An application of the variational formulation (2.9)-(2.22)-(2.23)-(2.12) yields the

equations (2.14) and (2.15), with the last equation of (2.15) replaced by

(js · n)(T − T0) = 0 on ∂Ω, (2.24)

see §B.3 for details. With the boundary condition (2.24), the energy balance (2.17)

is modified as

d

dt
E =

∫
Ω

div
(
ρ
δℓ

δρ
u+ s

δℓ

δs
u+ σ · u+ js

δℓ

δs

)
dx = −

∫
∂Ω

(js · n)T0 da. (2.25)

Remark 2.2 (Prescribed heat flux). It is also possible to treat the boundary

condition

jq · n = q0

where jq = Tjs is the heat flux and for some given function q0 : ∂Ω → R, which may

itself depend on the boundary temperature as q0(T ). This is achieved by replacing

the last term in (2.22) with

−
∫
∂Ω

w
(
(js · n)Dtγ − q0

)
da. (2.26)

The variational constraint (2.23) is kept unchanged, as it follows from the general

variational framework for open systems, see Appendix A. The energy balance now

reads

d

dt
E = −

∫
∂Ω

q0 da.
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2.3. Associated weak formulation

The variational derivation presented above yields a weak formulation of the equa-

tions and boundary conditions, that will be shown to have a discrete version.

In the absence of irreversible processes, this weak formulation has been derived

in Ref. 21 and is based on the trilinear forms a : L∞(Ω)d ×H1(Ω)d ×H1(Ω)d → R
and b : L2(Ω)×H1(Ω)× L∞(Ω)d → R defined by

a(w, u, v) = −
∫
Ω

w · [u, v] dx

b(f, ρ, v) = −
∫
Ω

ρ∇f · v dx.

For the treatment of the irreversible part, we restrict to the expressions σ =

σ(u) and js = js(T ) given in (2.18). For viscosity, we define the trilinear form

c : L∞(Ω)×H1(Ω)d ×H1(Ω)d → R by

c(w, u, v) =

∫
Ω

w σ(u) : ∇v dx. (2.27)

For heat conduction, we set F = {f ∈ H1(Ω) | 1/f ∈ L∞(Ω), div(∇f/f) ∈ L2(Ω)}
and define d :W 1,∞(Ω)× F ×H1(Ω) → R by

d(w, f, g) =


∫
Ω

w js(f) · ∇g dx for homogeneous Neumann∫
Ω

w js(f) · ∇g dx−
∫
∂Ω

wjs(f) · ng da
for Dirichlet and

nonhomogeneous Neumann
(2.28)

and e :W 1,∞(Ω)× F → R by

e(w, f) =



0 for homogeneous Neumann∫
∂Ω

wjs(f) · nT0 da for Dirichlet∫
∂Ω

wq0(f) da for nonhomogeneous Neumann

(2.29)

so that the constraints (2.10)–(2.11) and (2.22)–(2.23) (including the modified ver-

sion in (2.26)) can be written in a unified way for all boundary conditions as〈
w,

δℓ

δs
D̄tς

〉
= −c(w, u, u) + d

(
w,− δℓ

δs
,Dtγ

)
+ e

(
w,− δℓ

δs

)
, ∀w (2.30)

and 〈
w,

δℓ

δs
D̄δς

〉
= −c(w, u, v) + d

(
w,− δℓ

δs
,Dδγ

)
, ∀w, (2.31)

with ⟨·, ·⟩ the L2 inner product. Note that the condition div(∇f/f) ∈ L2(Ω) was

included in the definition of F so that the term −
∫
∂Ω
wjs(f) · ng da can be given

meaning using the identity∫
∂Ω

w
1

f
∇f ·ng da =

∫
Ω

∇w · 1
f
(∇f)g dx+

∫
Ω

w div

(
1

f
∇f

)
g dx+

∫
Ω

w
1

f
∇f ·∇g dx.
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This condition can be omitted from the definition of F in the homogeneous Neu-

mann setting. Note also that we really have two ways to impose homogeneous

Neumann boundary conditions: by choosing d and e as indicated above, or by using

the “nonhomogeneous Neumann” d and e with q0 = 0. Both approaches lead to the

same equations of motion, but the first approach is slightly simpler, and it simplifies

the statement of the second law of thermodynamics below. Therefore we prefer to

treat it separately.

Importantly, by using these notations when carrying out the variational for-

mulations (2.9)–(2.12) and (2.9)-(2.22)-(2.23)-(2.12), we get the equations (2.14),

together with the boundary conditions js ·n = 0 or (js ·n)(T −T0) = 0 in the weak

form

〈
∂t
δℓ

δu
, v

〉
+ a

( δℓ
δu
, u, v

)
+ b

( δℓ
δρ
, ρ, v

)
+ b

( δℓ
δs
, s, v

)
= −c(1, u, v), ∀ v

−
〈
∂ts,

δℓ

δs
w

〉
− b

( δℓ
δs
w, s, u

)
+ d

(
1,− δℓ

δs
,
δℓ

δs
w
)

= c(w, u, u) + d
(
w,− δℓ

δs
,
δℓ

δs

)
− e

(
w,− δℓ

δs

)
, ∀w

⟨∂tρ, θ⟩+ b(θ, ρ, u) = 0, ∀ θ,

(2.32)

see §B.4 for details. Note in particular the very specific form of the two terms

involving d(·, ·, ·) in the weak form of the entropy equation, which plays a crucial

role in our discretization.

With these notations, the energy balance follows as

d

dt
E =

〈
∂t
δℓ

δu
, u

〉
−
〈
δℓ

δρ
, ∂tρ

〉
−
〈
δℓ

δs
, ∂ts

〉
= −a

( δℓ
δu
, u, u

)
− b

( δℓ
δρ
, ρ, u

)
− b

( δℓ
δs
, s, u

)
− c(1, u, u)

+ b
( δℓ
δρ
, ρ, u

)
+ b

( δℓ
δs
, s, u

)
− d

(
1,− δℓ

δs
,
δℓ

δs

)
+ c(1, u, u) + d

(
1,− δℓ

δs
,
δℓ

δs

)
− e

(
1,− δℓ

δs

)
= −e

(
1,− δℓ

δs

)
(2.33)

from the property

a(w, u, v) = −a(w, v, u), ∀u, v, w

of the trilinear form a.

Conservation of total mass
∫
Ω
ρ dx follows from the property

b(1, ρ, v) = 0, ∀ρ, v.

Regarding entropy production, we have the inequalities σ(u) : ∇u ≥ 0 and

−js(T ) ·∇T ≥ 0 for all u and all T > 0, consistently with the second law of

thermodynamics written in (2.16). In terms of c, the first condition is equivalently

written as

c(w, u, u) ≥ 0, ∀u, ∀w ≥ 0. (2.34)
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For homogeneous Neumann boundary conditions, the second condition is equiva-

lently written as

d(w, f, f) ≤ 0, ∀ f > 0, ∀w ≥ 0, (2.35)

while for Dirichlet and nonhomogeneous Neumann boundary conditions, it can be

equivalently written as

d(w, f, f) ≤ 0, ∀ f > 0, ∀w ≥ 0, w with compact support in the interior of Ω,

(2.36)

where we recall that the expression for d depends on the boundary condition used.

Discrete versions of (2.34)–(2.36) will be shown to hold in the discrete case.

Finally, the second law (2.16) can be equivalently written by using b and d as

⟨∂ts, Tw⟩+ b(Tw, s, u)− d(1, T, Tw) ≥ 0 (2.37)

for all w ≥ 0 with compact support in Ω.

3. Structure preserving variational discretization

The structure preserving finite element integrator is obtained by developing a dis-

crete version of the variational formulation presented above. In particular, exactly

as in the continuous case, the discrete variational formulation of the Eulerian form

of the equation is inherited by a variational formulation extending Hamilton’s prin-

ciple in the Lagrangian description.

This is achieved thanks to the introduction of a discrete version Gh of the

diffeomorphism group Diff(Ω) of fluid motion, acting on discrete functions and

densities. We shall follow the approach developed for compressible fluids in Ref. 21

based on the earlier works Refs. 40, 19, 16, 39, 6. We refer to Ref. 13 for another

approach to the variational discretization of (2.9)–(2.12) for heat conducting viscous

fluids, also based on a discrete version of the diffeomorphism group.

3.1. Discrete setting

Let Th be a triangulation of Ω. We regard Th as a member of a family of triangula-

tions parametrized by h = maxK∈Th
hK , where hK = diamK denotes the diameter

of a simplex K. We assume that this family is shape-regular, meaning that the ratio

maxK∈Th
hK/ρK is bounded above by a positive constant for all h > 0. Here, ρK

denotes the inradius of K.

We shall discretize functions with the discontinuous Galerkin space

Vh = DGq(Th) := {f ∈ L2(Ω) | f |K ∈ Pq(K), ∀K ∈ Th}.

Considering the discrete diffeomorphism group as a certain subgroup Gh ⊂ GL(Vh),

the action f ∈ Vh 7→ gf ∈ Vh, g ∈ Gh is understood as a discrete analog of the

action f ∈ F(Ω) 7→ f ◦ φ−1 ∈ F(Ω), φ ∈ Diff(Ω), of diffeomorphisms on functions.
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The discrete analog of the action ρ ∈ F(Ω)∗ 7→ (ρ ◦ φ)Jφ ∈ F(Ω)∗ on densities,

written as ρ ∈ Vh 7→ ρ · g ∈ Vh, is defined by L2 duality as in the continuous case

⟨ρ · g, f⟩ = ⟨ρ, gf⟩ , ∀f, ρ ∈ Vh. (3.1)

In particular, the Lagrange-to-Euler relations (2.6) have the discrete analog

A = ġg−1, ρ = ϱ0 · g−1 ∈ Vh, s = S · g−1 ∈ Vh,

ς = Σ · g−1 ∈ Vh, γ = gΓ ∈ Vh.
(3.2)

The Lie algebra gh ⊂ L(Vh, Vh) of Gh acts on discrete functions and densities

as f ∈ Vh 7→ fA ∈ Vh and ρ ∈ Vh 7→ ρ ·A ∈ Vh, which satisfy

⟨ρ ·A, f⟩ = ⟨ρ,Af⟩ , ∀f, ρ ∈ Vh. (3.3)

As shown in Ref. 21, the realization of elements of this Lie algebra as discrete vector

fields is obtained by associating to each u ∈ H0(div,Ω) ∩ Lp(Ω)d (with p > 2) the

Lie algebra element Au ∈ gh defined by

⟨Auf, g⟩ := −
∑

K∈Th

∫
K

(∇uf)g dx+
∑
e∈E0

h

∫
e

u · JfK{g} da, ∀f, g ∈ Vh,

which yields a consistent approximation of the distributional derivative in the di-

rection u. Moreover, the linear map u ∈ H0(div,Ω) ∩ Lp(Ω)d 7→ Au ∈ gh becomes

injective on the Raviart-Thomas finite element space RT2q(Th), see Prop. 3.4 in

Ref. 21. Above, we used the notation JfK and {f} for the jump and average of a

scalar function f across e = K1 ∩K2 ∈ E0
h, which are defined by

JfK = f1n1 + f2n2, {f} =
1

2
(f1 + f2).

Here, fi = f |Ki
and ni is the unit normal vector to e pointing outward from Ki.

Later we will also apply {·} to vector fields and interpret it componentwise.

This setting is used in Ref. 21 to develop a finite element variational discretiza-

tion of compressible fluids, by writing the analog to the Hamilton principle (2.1)

on the discrete diffeomorphism group Gh and using the first three relations (3.2) to

deduce its Eulerian version. The discrete Lagrangian ℓd : gh × Vh × Vh → R can be

defined from a given continuous Lagrangian ℓ as

ℓd(A, ρ, s) := ℓ(Â, ρ, s)

thanks to the Lie algebra-to-vector field map A ∈ gh 7→ Â ∈ [Vh]
d defined by

Â := −
d∑

k=1

A(πh(x
k))ek,

where xk : Ω → R is the kth coordinate function, {ek}dk=1 is the standard basis

for Rd, and πh : L2(Ω) → Vh the L2-orthogonal projector, which we interpret

componentwise when applied to a vector field. It satisfies Âu = πh(u).
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3.2. Discrete variational formulation

We discretize the velocity by using the continuous Galerkin space

Ugrad
h = CGr(Th)d := {u ∈ H1

0 (Ω)
d | u|K ∈ Pr(K)d, ∀K ∈ Th}.

Assuming r ≤ q (see Remark 3.1 for r > q), we denote by ∆h ⊂ gh the sub-

space corresponding to Ugrad
h via the injective map u 7→ Au. We denote by

πgrad
h : L2(Ω)d → Ugrad

h the L2-orthogonal projector onto Ugrad
h .

Consider discretizations of d and e given as dh : Vh×Vh×Vh → R and eh : Vh×
Vh → R. For now, we only suppose that dh is linear in its first and third arguments,

and eh is linear in its first argument. The explicit form and their properties are

stated later.

With this setting, the discrete version of the variational formulation (2.9)-(2.30)-

(2.31)-(2.12) reads as follows. Find A : [t0, t1] → ∆h and ρ, s, ς, γ : [t0, t1] → Vh
which are critical for the variational condition

δ

∫ t1

t0

[
ℓd(A, ρ, s) + ⟨s− ς,Dh

t γ⟩
]
dt = 0, (3.4)

with the phenomenological constraint and variational constraint given by〈
δℓd
δs
D̄h

t ς, w

〉
= −c(w, Â, Â)+dh

(
w,−δℓd

δs
,Dh

t γ

)
+eh

(
w,−δℓd

δs

)
,∀w ∈ Vh, (3.5)

〈
δℓd
δs
D̄h

δ ς, w

〉
= −c(w, Â, B̂) + dh

(
w,−δℓd

δs
,Dh

δ γ

)
,∀w ∈ Vh, (3.6)

and with Euler-Poincaré variations

δA = ∂tB + [B,A], (3.7)

δρ = −ρ ·B, (3.8)

for B(t) an arbitrary curve in ∆h with B(0) = B(T ) = 0, and with δγ|t=0,T = 0.

Above we have defined the discrete analogs to the Lagrangian time derivatives

and variations considered in (2.13) as

Dh
t f = ∂tf −Af Dh

δ f = δf −Bf

D̄h
t ρ = ∂tρ+ ρ ·A D̄h

δ ρ = δρ+ ρ ·B.
(3.9)

In (3.5) and (3.6), the partial derivative δℓd
δs ∈ Vh is defined exactly as in the

continuous case, with respect to the L2 duality pairing on Vh.

Proposition 3.1. The equations of motion that result from (3.4)–(3.6) and from



16 Evan S. Gawlik and François Gay-Balmaz

the definition ρ = ϱ0 · g−1 are

〈
∂t
δℓ

δu
, v

〉
+ ah

(
πh
δℓ

δu
, u, v

)
+ bh

(
πh
δℓ

δρ
, ρ, v

)
+bh

(
πh
δℓ

δs
, s, v

)
= −c(1, u, v), ∀ v ∈ Ugrad

h ,

⟨∂tρ, θ⟩+ bh(θ, ρ, u) = 0, ∀ θ ∈ Vh,

−
〈
∂ts, πh

( δℓ
δs

)
w

〉
− bh

(
πh

(
πh

( δℓ
δs

)
w
)
, s, u

)
+ dh

(
1,−πh

δℓ

δs
, πh

(
πh

( δℓ
δs

)
w
))

= c(w, u, u) + dh

(
w,−πh

δℓ

δs
, πh

δℓ

∂s

)
− eh

(
w,−πh

δℓ

δs

)
, ∀w ∈ Vh,

(3.10)

where

ah(w, u, v) = −
∫
Ω

Âw · ̂[Au, Av] dx = −
∫
Ω

w · [u, v] dx (3.11)

bh(f, ρ, u) = ⟨ρ,Auf⟩ = −
∑

K∈Th

∫
K

(∇uf)ρ dx+
∑
e∈E0

h

∫
e

u · JfK{ρ} da. (3.12)

The variational principle (3.4)–(3.6) also yields the conditions

Dh
t γ = −πh

δℓ

δs
,

〈
D̄h

t (ς − s), δγ
〉
= −dh

(
1,−πh

δℓ

δs
, δγ

)
, ∀ δγ ∈ Vh. (3.13)

Remark 3.1. The second equality in (3.11) is valid if r ≤ q. If r > q, then we

can still arrive at the same scheme by considering a discrete diffeomorphism group

Gh ⊂ GL(DGr(Th)) and treating ρ, s, ς, γ as elements of DGq(Th) ⊂ DGr(Th); see
Remark 5.1 in Ref. 21. In both cases, the fact that our discrete velocity field is

continuous is important. In the absence of continuity, the formula (3.11) contains

additional terms involving jumps across codimension-1 faces; see Proposition 4.3 in

Ref. 21. The absence of these jump terms renders ah independent of h, so we drop

the subscript h in what follows.

Remark 3.2. Note that (3.12) is a standard discontinuous Galerkin discretization

of the scalar advection operator, see Ref. 9.

Proof. Taking the variations in (3.4) yields∫ t1

t0

[〈〈δℓd
δA

, δA
〉〉

+
〈δℓd
δρ

, δρ
〉
+

〈δℓd
δs
, δs

〉
+

〈
δs,Dh

t γ
〉
−
〈
δς,Dh

t γ
〉

−
〈
D̄h

t (s− ς), δγ
〉
−

〈
s− ς, δAγ

〉]
dt = 0,

(3.14)

where
〈〈
·, ·
〉〉

: g∗h × gh → R denotes the duality pairing on g∗h × gh. We used∫ t1
t0

〈
s− ς,Dh

t δγ
〉
dt = −

∫ t1
t0

〈
D̄h

t (s− ς), δγ
〉
dt which follows from (3.3), (3.9), and

δγ|t=t0,t1 = 0. Since δs is arbitrary in Vh, we get the condition

Dh
t γ = −δℓd

δs
. (3.15)
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Making use of this condition and using (3.6) yields∫ t1

t0

[〈〈δℓd
δA

, δA
〉〉

+
〈δℓd
δρ

, δρ
〉
− c(1, Â, B̂) + dh

(
1,−δℓd

δs
,Dh

δ γ
)

−
〈δℓd
δs
, ς ·B

〉
−
〈
D̄h

t (s− ς), δγ
〉
−

〈
s− ς, δAγ

〉]
dt = 0.

Using that δγ is arbitrary and independent of the other variations, we get〈
D̄h

t (ς − s), δγ
〉
= −dh

(
1,−δℓd

δs
, δγ

)
, ∀ δγ ∈ Vh. (3.16)

With this, the previous condition becomes∫ t1

t0

[〈〈δℓd
δA

, δA
〉〉

−
〈
s− ς, δAγ

〉
−

〈δℓd
δρ

, ρ ·B
〉
−

〈δℓd
δs
, ς ·B

〉
−c(1, Â, B̂)− dh

(
1,−δℓd

δs
,Bγ

)]
dt = 0.

Using δA = ∂tB + [B,A] and the computation∫ t1

t0

⟨s− ς, δAγ⟩dt =
∫ t1

t0

⟨s− ς, (∂tB + [B,A])γ⟩dt

=

∫ t1

t0

⟨−∂t(s− ς), Bγ⟩ − ⟨s− ς, B∂tγ⟩+ ⟨(s− ς) ·B,Aγ⟩ − ⟨(s− ς) ·A,Bγ⟩dt

=

∫ t1

t0

〈
−D̄h

t (s− ς), Bγ
〉
−

〈
(s− ς) ·B,Dh

t γ
〉
dt

=

∫ t1

t0

−dh
(
1,−δℓd

δs
,Bγ

)
+

〈
(s− ς) ·B, δℓd

δs

〉
dt,

the previous condition becomes∫ t1

t0

[〈〈
−∂t

δℓd
δA

,B
〉〉
+
〈〈δℓd
δA

, [B,A]
〉〉
−
〈δℓd
δρ

, ρ·B
〉
−
〈δℓd
δs
, s·B

〉
−c(1, Â, B̂)

]
dt = 0.

Using that A ∈ ∆h means A = Au for u ∈ Ugrad
h and using the definitions of a and

bh in (3.11) and (3.12), together with δℓd
δρ = πh

δℓ
δρ ,

δℓd
δs = πh

δℓ
δs , and

〈〈
δℓd
δAu

, C
〉〉

=〈
πh

δℓ
δu , Ĉ

〉
, we get the first equations of (3.10).

Combining the constraint (3.5) and condition (3.15), we get〈
D̄h

t ς, πh

(δℓd
δs
w
)〉

= −c(w, Â, Â)− dh

(
w,−δℓd

δs
,
δℓd
δs

)
+ eh

(
w,−δℓd

δs

)
, ∀w ∈ Vh.

Using (3.16) and A = Au this becomes〈
D̄h

t s, πh

(δℓd
δs
w
)〉

− dh

(
1,−δℓd

δs
, πh

(δℓd
δs
w
))

= −c(w, u, u)− dh

(
w,−δℓd

δs
,
δℓd
δs

)
+eh

(
w,−δℓd

δs

)
,

∀w ∈ Vh. We have thus derived the entropy equation in (3.10). The mass density

equation readily follows from ρ = ϱ0 · g−1 while the conditions (3.13) have been

obtained in (3.15) and (3.16).
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Energy balance and mass conservation. The exact same proof as in the con-

tinuous case works, see (2.33), giving energy balance and mass conservation in the

spatially discrete setting as

d

dt
E = −eh

(
1,−πh

δℓ

δs

)
(3.17)

d

dt

∫
Ω

ρ dx = 0. (3.18)

Remark 3.3. The conservation properties above continue to hold if we omit the

outermost projection πh from the terms of the form πh

(
πh

(
δℓ
δs

)
w
)
in (3.10). They

also continue to hold if we omit the πh from πh
δℓ
δu in (3.10). We find it advanta-

geous to make these modifications, since they simplify the implementation of the

scheme. We do not omit the πh from πh
δℓ
δρ , since this interferes with the balance of

energy. Likewise, we do not omit the πh from πh
δℓ
δs , since we have found that the

time-discrete version of (3.10) is difficult to solve numerically without it; Newton’s

method converges much more reliably when the projection is present.

In summary, we solve

〈
∂t
δℓ

δu
, v

〉
+ a

( δℓ
δu
, u, v

)
+ bh

(
πh
δℓ

δρ
, ρ, v

)
− bh(T, s, v) = −c(1, u, v), ∀ v ∈ Ugrad

h ,

⟨∂tρ, θ⟩+ bh(θ, ρ, u) = 0, ∀ θ ∈ Vh,

⟨∂ts, Tw⟩+ bh(Tw, s, u)− dh(1, T, Tw)

= c(w, u, u)− dh(w, T, T )− eh(w, T ), w ∈ Vh,
(3.19)

where T = − δℓd
δs = −πh δℓ

δs .

3.3. Discretization of thermodynamic fluxes

We now discuss our discretizations dh and eh of the maps d and e defined in (2.28)

and (2.29). We will design dh and eh so that the discrete entropy equation

⟨∂ts, Tw⟩+ bh(Tw, s, u)− dh(1, T, Tw)

= c(w, u, u)− dh(w, T, T )− eh(w, T ), ∀w ∈ Vh
(3.20)

yields a consistent discretization of the continuous entropy equation

T (D̄ts+ div js) = σ : ∇u− js · ∇T.

We restrict our attention to the setting where js = js(T ) = − 1
T κ∇T , so that the

above equation simplifies to

TD̄ts− σ : ∇u = κ∆T.

Note that an integration by parts shows that the exact solution (u, ρ, s, T ) of

the continuous problem satisfies

⟨∂ts, Tw⟩+ bh(Tw, s, u)− c(w, u, u) = ⟨TD̄ts− σ : ∇u,w⟩, ∀w ∈ Vh.
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Thus, to ensure consistency, we aim to design dh and eh so that the exact solution

also satisfies

dh(1, T, Tw)− dh(w, T, T )− eh(w, T ) = ⟨κ∆T,w⟩, ∀w ∈ Vh. (3.21)

Our discussion is split into three cases: homogeneous Neumann boundary con-

ditions on T , Dirichlet boundary conditions on T , and nonhomogneous Neumann

boundary conditions on T . To simplify the discussion, we consider the setting

where (3.20) is implemented with T = − δℓ
δs . The case in which one uses T = −πh δℓ

δs

is addressed in Remark 3.4.

Homogeneous Neumann boundary conditions. In this case we set eh = 0

and discretize d with

dh(w, f, g) = −
∑

K∈Th

∫
K

w

f
κ∇f · ∇g dx+

∑
e∈E0

h

∫
e

1

{f}
{wκ∇f} · JgK da

−
∑
e∈E0

h

∫
e

1

{f}
{wκ∇g} · JfKda−

∑
e∈E0

h

η

he

∫
e

{w}
{f}

JfK · JgKda,
(3.22)

where η > 0 is a penalty parameter. This is a standard non-symmetric interior

penalty discretization of −
∫
Ω
κ∇f ·∇g dx (see Section 10.5 in Ref. 8), generalized to

incorporate the weight w/f appearing in d(w, f, g) = −
∫
Ω

w
f κ∇f ·∇g dx. Using the

identity JfgK = JfK{g}+ {f}JgK, a few calculations show that for every w, T ∈ Vh,

dh(1, T, Tw)− dh(w, T, T )

= −
∑

K∈Th

∫
K

κ∇T · ∇w dx+
∑
e∈E0

h

∫
e

{κ∇T} · JwKda

−
∑
e∈E0

h

∫
e

κ({∇w}+ ε) · JT Kda−
∑
e∈E0

h

η

he

∫
e

JT K · JwKda,

(3.23)

where

ε =
1

{T}
({∇(Tw)} − {∇T}{w} − {T}{∇w}) . (3.24)

Hence, for smooth T , we get

dh(1, T, Tw)−dh(w, T, T )−eh(w, T ) =
∫
Ω

κ∆Tw dx−
∫
∂Ω

κ∇T ·nw da, ∀w ∈ Vh.

(3.25)

This shows that the method is consistent: The exact solution (with homogeneous

Neumann boundary conditions on T ) satisfies (3.21) (where here eh = 0). Fur-

thermore, the presence of
∫
∂Ω

∇T · nw da in (3.25) shows that the scheme enforces

homogeneous Neumann boundary conditions on T in a natural way.

We also have for every w, T ∈ Vh,

dh(w, T, T ) = −
∑

K∈Th

∫
K

w

T
κ|∇T |2 dx−

∑
e∈E0

h

η

he

∫
e

{w}
{T}

|JT K|2 da, (3.26)
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so the following inequality holds:

dh(w, T, T ) ≤ 0, ∀ T > 0, ∀ w ≥ 0, T, w ∈ Vh. (3.27)

This is the discrete version of the thermodynamic consistency condition (2.35). In

particular, dh(1K , T, T ) ≤ 0, for all K, where 1K denotes the indicator function for

K.
Dirichlet boundary conditions. Next we consider Dirichlet boundary condi-

tions. To distinguish the choice of dh above from the forthcoming choice, we denote

the former by dNh and the latter by dDh , and similarly for eh. We define

eDh (w, f) = −
∫
∂Ω

w

f
κ∇f · nT0 da+

∑
e∈E∂

h

η

he

∫
e

w(f − T0) da (3.28)

and

dDh (w, f, g) = −
∑

K∈Th

∫
K

w

f
κ∇f · ∇g dx+

∑
e∈E0

h

∫
e

1

{f}
{wκ∇f} · JgK da

−
∑
e∈E0

h

∫
e

1

{f}
{wκ∇g} · JfKda−

∑
e∈E0

h

η

he

∫
e

{w}
{f}

JfK · JgKda

−
∑
e∈E∂

h

∫
e

w

f
κ∇g · n(f − T0) da+

∑
e∈E∂

h

∫
e

w

f
κ∇f · ng da,

(3.29)

where T0 : ∂Ω → R is the prescribed temperature on the boundary.

Like (3.22), (3.29) is a standard non-symmetric interior penalty discretization of

−
∫
Ω
κ∇f ·∇g dx (this time for problems with Dirichlet boundary conditions), gener-

alized to incorporate the weight w/f appearing in d(w, f, g) = −
∫
Ω

w
f κ∇f ·∇g dx+∫

∂Ω
w
f κ∇f ·ng da, see (2.28). It is related to (3.22) via the addition of three boundary

terms:

(1) A term
∑

e∈E∂
h

∫
e

w
f κ∇f ·ng da that corresponds to the term −

∫
∂Ω
wjs(f) ·

ng da appearing in (2.28).

(2) A term −
∑

e∈E∂
h

∫
e

w
f κ∇g · nf da whose role is to cancel with∑

e∈E∂
h

∫
e

w
f κ∇f · ng da when f = g.

(3) A term
∑

e∈E∂
h

∫
e

w
f κ∇g · nT0 da that restores the consistency of dDh .
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Similar calculations as earlier show that for every w, T ∈ Vh,

dDh (1, T, Tw)− dDh (w, T, T )− eDh (w, T )

= −
∑

K∈Th

∫
K

κ∇T · ∇w dx+
∑
e∈E0

h

∫
e

{κ∇T} · JwKda−
∑
e∈E0

h

∫
e

κ({∇w}+ ε) · JT Kda

−
∑
e∈E0

h

η

he

∫
e

JT K · JwKda−
∑
e∈E∂

h

∫
e

κ∇(Tw) · n
(
1− T0

T

)
da

+
∑
e∈E∂

h

∫
e

κ∇T · nw da−
∑
e∈E∂

h

η

he

∫
e

w(T − T0) da,

(3.30)

where ε is given by (3.24). Hence, for smooth T ,

dDh (1, T, Tw)− dDh (w, T, T )− eDh (w, T )

=

∫
Ω

κ∆Tw dx+

∫
∂Ω

κ∇(Tw) · n
(
T0
T

− 1

)
da

+
∑
e∈E∂

h

η

he

∫
e

w(T0 − T ) da, ∀w ∈ Vh.

This shows that the method is consistent, and it enforces Dirichlet boundary con-

ditions on T in a nearly standard way.

If w has compact support in the interior of Ω and T > 0, then dDh (w, T, T )

takes exactly the same form as in the homogeneous Neumann case in (3.26). So the

discrete version of the thermodynamic consistency condition (2.36) for Dirichlet

boundary conditions holds. In particular, dDh (1K , T, T ) ≤ 0, for all K away from

∂Ω.

The terms associated with heat conduction processes on the right hand side of

the discrete entropy equation (3.20) are given by

dDh (w, T, T ) + eDh (w, T ) =−
∑

K∈Th

∫
K

w

T
κ|∇T |2 dx−

∑
e∈E0

h

η

he

∫
e

{w}
{T}

|JT K|2 da

+
∑
e∈E∂

h

η

he

∫
e

w(T − T0)da.

(3.31)

Nonhomogeneous Neumann boundary conditions. In view of the expressions

(2.28) and (2.29) for d and e in the nonhomogeneous Neumann case, we discretize

d and e with

dNN
h (w, f, g) = dNh (w, f, g)+

∑
e∈E∂

h

∫
e

w

f
κ∇f ·ng da and eNN

h (w, f) =

∫
∂Ω

wq0 da,
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where dNh is taken from the homogeneous Neumann case, see (3.22). The consistency

of the method can be checked by following the same steps as before, and similarly

for the discrete version of the thermodynamic consistency condition (2.36).

Now the expression entering into the right hand side of the discrete entropy

equation (3.20) reads

dNN
h (w, T, T ) + eNN

h (w, T ) =−
∑

K∈Th

∫
K

w

T
κ|∇T |2 dx−

∑
e∈E0

h

η

he

∫
e

{w}
{T}

|JT K|2 da

−
∫
∂Ω

w
(
Tjs(T ) · n− q0

)
da;

(3.32)

compare to (3.31).

Remark 3.4. In the discussion above, we established the consistency of (3.20) in

the setting where T = − δℓ
δs . If instead T = −πh δℓ

δs , then we have consistency in a

weaker sense: The solution to the continuous problem satisfies the discrete equations

approximately rather than exactly. One can equivalently view this situation as a

variational crime; see Chapter 10 in Ref. 8. Indeed, by using −πh δℓ
δs in place of

− δℓ
δs , we are in essence modifying the maps d and e. This is analogous to the effect

of quadrature on classical finite element methods for elliptic problems; see Section

8.1.3 in Ref. 18.

Discrete form of the second law. The rate of entropy production in the discrete

setting is Dh
t ς. According to (3.16), it satisfies

⟨D̄h
t ς, Tw⟩ = ⟨D̄h

t s, Tw⟩ − dh(1, T, πh(Tw)), ∀w ∈ Vh,

where T = −πh δℓ
δs . For piecewise constant w, we have πh(Tw) = Tw, so

⟨D̄h
t ς, Tw⟩ = ⟨D̄h

t s, Tw⟩ − dh(1, T, Tw)

= ch(w, u, u)− dh(w, T, T )− eh(w, T ), ∀w ∈ DG0(Th).

See (3.26), (3.31), and (3.32) for the concrete expressions for each boundary condi-

tion.

From the definition of c and the thermodynamic consistency of dNh , dDh , dNN
h ,

the numerical solution satisfies

⟨D̄h
t ς, Tw⟩ = ⟨D̄h

t s, Tw⟩ − dh(1, T, Tw) ≥ 0, (3.33)

for all w ∈ DG0(Th) with w ≥ 0 (provided that w has compact support in Ω

for Dirichlet and nonhomogeneous Neumann boundary conditions), which is the

discrete form of the second law (2.16) as reformulated in (2.37). In particular∫
K
TD̄h

t ς dx ≥ 0 on each K (provided that K is away from ∂Ω in the Dirichlet

and nonhomogeneous Neumann cases). If T is piecewise constant, then this implies

that
∫
K
D̄h

t ς dx ≥ 0 on those K.
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3.4. Temporal discretization

As shown in Proposition 5.1 of Ref. 21, in the absence of irreversible processes (c =

d = 0) an energy preserving time discretization can be developed for Lagrangians

of the standard form (2.8).

We show that a natural extension of this scheme to the discrete heat conducting

viscous fluid equations (3.19) allows one to exactly preserve energy balance and

mass conservation, while satisfying the second law of thermodynamics on each cell

at the fully discrete level. The scheme reads

⟨D∆t(ρu), v⟩+ a
(
(ρu)k+1/2, uk+1/2, v

)
− bh

(
D2ϵ, sk+1/2, v

)
+ bh

(
1

2
πh(uk · uk+1)−D1ϵ− πhϕ, ρk+1/2, v

)
= −c(1, uk+1/2, v), ∀ v ∈ Ugrad

h

⟨D∆tρ, θ⟩+ bh(θ, ρk+1/2, uk+1/2) = 0, ∀ θ ∈ Vh

⟨D∆ts,D2ϵw⟩+ bh
(
D2ϵw, sk+1/2, uk+1/2

)
− dh (1, D2ϵ,D2ϵw)

= c(w, uk+1/2, uk+1/2)− dh (w,D2ϵ,D2ϵ)− eh(w,D2ϵ), ∀w ∈ Vh
(3.34)

with

D1ϵ = πh

(
δ1(ρk, ρk+1, sk) + δ1(ρk, ρk+1, sk+1)

2

)
, δ1(ρ, ρ

′, s) =
ϵ(ρ′, s)− ϵ(ρ, s)

ρ′ − ρ

D2ϵ = πh

(
δ2(sk, sk+1, ρk) + δ2(sk, sk+1, ρk+1)

2

)
, δ2(s, s

′, ρ) =
ϵ(ρ, s′)− ϵ(ρ, s)

s′ − s

D∆tx =
xk+1 − xk

∆t
, D∆t(ρu) =

ρk+1uk+1 − ρkuk
∆t

xk+1/2 =
xk + xk+1

2
, (ρu)k+1/2 =

ρkuk + ρk+1uk+1

2
.

Proposition 3.2. The solution of (3.34) satisfies the energy balance and conser-

vation of mass

Ek+1 − Ek
∆t

= −eh(1, D2ϵ) (3.35)∫
Ω

ρk+1dx =

∫
Ω

ρkdx, (3.36)

as well as the second law

⟨D∆ts,D2ϵw⟩+ bh
(
D2ϵw, sk+1/2, uk+1/2

)
−dh (1, D2ϵ,D2ϵw) ≥ 0, ∀w ∈ DG0(Th), w ≥ 0,

(3.37)

for all k (provided that w has compact support in Ω for Dirichlet and nonhomoge-

neous Neumann boundary conditions).

Here Ek =
∫
Ω

[
1
2ρk|uk|

2 + ϵ(ρk, sk) + ρkϕ
]
dx is the total energy of the system at

time k∆t.
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Proof. Taking v = uk+1/2 in the fluid momentum equation, θ =

−
(
1
2πh(uk · uk+1)−D1ϵ− πhϕ

)
in the mass equation, w = 1 in the entropy equa-

tion, and adding the three equations together, we get

−eh(1, D2ϵ) = ⟨D∆t(ρu), uk+1/2⟩+ ⟨D∆tρ, θ⟩+ ⟨D∆ts,D2ϵ⟩

= ⟨D∆t(ρu), uk+1/2⟩ −
1

2
⟨D∆tρ, uk · uk+1⟩+ ⟨D∆tρ,D1ϵ⟩+ ⟨D∆tρ, ϕ⟩

+ ⟨D∆ts,D2ϵ⟩.

The energy balance relation (3.35) then follows from the identities

⟨D∆t(ρu), uk+1/2⟩ −
1

2
⟨D∆tρ, uk · uk+1⟩ =

1

∆t

∫
Ω

1

2
ρk+1|uk+1|2 −

1

2
ρk|uk|2 dx,

⟨D∆tρ,D1ϵ⟩+ ⟨D∆ts,D2ϵ⟩ =
1

∆t

∫
Ω

ϵ(ρk+1, sk+1)− ϵ(ρk, sk) dx,

⟨D∆tρ, ϕ⟩ =
1

∆t

∫
Ω

ρk+1ϕ− ρkϕ dx.

Conservation of mass (3.36) follows by taking θ = 1 in the mass density equation.

Finally, the discrete second law is a direct consequence of the last equation

together with the definition of c and the thermodynamic consistency of dNh , dDh ,

and dNN
h .

3.5. Enhancements

The scheme (3.34) admits several enhancements and generalizations.

Rotation. Rotational effects, which are important in geophysical applications, can

be easily incorporated by using a Lagrangian

ℓ(u, ρ, s) =

∫
Ω

[1
2
ρ|u|2 + ρR · u− ρϕ− ϵ(ρ, s)

]
dx

in place of (2.8). Here, R is half the vector potential of the angular velocity ω of

the fluid domain; that is, curlR = 2ω.

Variable coefficients. Temperature-dependent and density-dependent coeffi-

cients µ(ρ, T ) and ζ(ρ, T ) can be treated without difficulty. The map c then de-

pends parametrically on ρ and T , and the balance of energy, conservation of mass,

and second law of thermodynamics remain valid at the discrete level if we evalu-

ate c(1, uk+1/2, v) and c(w, uk+1/2, uk+1/2) at, e.g., (ρ, T ) = (ρk+1/2, D2ϵ) in (3.34).

It is also possible to treat a temperature-dependent and density-dependent heat

conduction coefficient κ(ρ, T ). In (3.22) and (3.29), one must choose appropriate

discretizations of the trace of κ(ρ, f) (such as {κ(ρ, f)} or κ({ρ}, {f})) when treat-

ing integrals over e ∈ E0
h. The balance of energy and conservation of mass remain

valid at the discrete level, and so does the second law of thermodynamics, assuming

that κ remains positive and its discrete trace along each e ∈ E0
h remains positive.
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Upwinding. Upwinding can be incorporated into the discrete advection equations

for the density and entropy, while still preserving the balance of energy, conserva-

tion of mass, and second law of thermodynamics. Following Refs. 20, 22, 23, one

introduces a u-dependent trilinear form

b̃h(u; f, g, v) = bh(f, g, v) +
∑
e∈E0

h

∫
e

βe(u)
( v · n
u · n

)
JfK · JgKda,

where {βe(u)}e∈E0
h
are nonnegative scalars. One then replaces every appearance of

bh(·, ·, ·) in (3.34) by b̃h(uk+1/2; ·, ·, ·). We used this upwinding strategy with

βe(u) =
1

π
(u · n) arctan (10u · n) ≈ 1

2
|u · n| (3.38)

in the numerical experiments below.

4. Numerical tests

4.1. Rayleigh-Bénard convection

We use our scheme to simulate Rayleigh-Bénard convection driven by a temperature

difference between the top and bottom boundaries of the fluid’s container.

Rayleigh-Bénard convection has been mainly studied in the Boussinesq approx-

imation which is valid only for thin layers of fluid and cannot take into account the

full thermodynamic description. We consider here Rayleigh-Bénard convection in

the general compressible Navier-Stokes-Fourier equations, which are well adapted

to treat deep convection.

Taking a perfect gas with adiabatic exponent γ > 1, in a gravitational potential

ϕ = gz, and assuming λ = − 2
dµ (Stokes hypothesis), we consider the following

nondimensional form of the equations:

ρ(∂tu+ u · ∇u) = −∇p− 1

Fr
ρẑ +

1

Re
div Σ, Σ = Def u− 1

d
(div u)δ, (4.1)

T (D̄ts+ div js) =
1

Re
Σ:∇u− js · ∇T, js = − 1

Re

1

Pr

γ

γ − 1

1

T
∇T, (4.2)

∂tρ+ div(ρu) = 0, (4.3)

with Fr, Re, and Pr, the Froude, Reynolds, and Prandtl numbers, respectively. The

internal energy density is ϵ(ρ, s) = ργe(γ−1)s/ρ.

We assume that the fluid moves in a 2D domain [0, 2] × [0, 1] ∋ (x, z) that is

periodic in the x-direction, with no slip boundary condition u = 0 for the velocity at

the top and bottom. We consider an initial temperature profile T (z) = 1+Z(1− z)
and initial velocity

u(x, z) = (0, ψ(x, z)) ,

where

ψ(x, z) =

exp
(

1
(x−1)2+(z−0.5)2−0.2

)
if (x− 1)2 + (z − 0.5)2 < 0.2,

0 otherwise.
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Fig. 1. The onset of Rayleigh-Bénard convection with Dirichlet boundary conditions.

Using the hydrostatic equilibrium ∇p = − 1
Frρẑ, one gets the initial mass density

and pressure profiles ρ(z) = T (z)m and p(z) = T (z)m+1 with m = 1
FrZ − 1 the

polytropic index.

In the Boussinesq case the critical conditions for the onset of convection are

uniquely determined by a certain value of the Rayleigh number (e.g., Ref. 10). In

the compressible case, the situation is more involved since the critical value depends

on other parameters, such as the temperature difference Z (Refs. 7, 1 and references

therein). Following Ref. 42, we will use the following expression of the Rayleigh

number in the compressible case:

Ra = Re2(m+ 1)Z2Pr(1− (γ − 1)m)/γ.

Dirichlet boundary conditions. In the series of experiments below, we fix γ =

1.1 and test the onset of Rayleigh-Bénard convection for several values of the four

parameters Re, m, Z, Pr, for Dirichlet boundary conditions T (x, 0) = 1 + Z and

T (x, 1) = 1, corresponding to the case of ideally conducting upper and lower plates.

Starting with Re = 100,m = 0, Z = 0.256905, and Pr = 2.5, which corresponds to a

flow with Rayleigh number 1500, we varied each of the four parameters individually

to realize flows with Rayleigh numbers Ra ∈ {500, 1000, 1500, 2000, 2500}. We ran

each of these simulations from time t = 0 to time t = 300 and plotted the evolution

of the L2-norm of the velocity field in Figure 1. In our simulations, we used a

uniform triangulation of Ω with h =
√
2

16 , a time step ∆t = 0.4, penalty parameter
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Fig. 2. The onset of Rayleigh-Bénard convection with nonhomogeneous Neumann boundary con-
ditions.

η = 0.01κ (where κ = 1
Re

1
Pr

γ
γ−1 ), and finite element spaces Vh = DG1(Th) and

Ugrad
h = CG2(Th)2. One can see in Figure 1 that in each experiment, the flow

begins to exhibit instability when the Rayleigh number exceeds a critical value

lying somewhere between Ra = 1500 (the green curves) and Ra = 2000 (the blue

curves), regardless of which of the four parameters Re, m, Z, Pr is varied.

Prescribed heat flux boundary conditions. In order to illustrate the impact

of the boundary condition on the critical value of the Rayleigh number, we repeat

below the same experiments, now with prescribed heat flux boundary conditions jq ·
n = q0 (nonhomogeneous Neumann boundary conditions). This boundary condition

describes cases where the upper and lower plates conduct heat poorly compared

with the fluid. In order to use exactly the same initial temperature profile, we set

q0(x, 0) = − 1
Re

1
Pr

γ
γ−1Z, q0(x, 1) =

1
Re

1
Pr

γ
γ−1Z. This change of boundary condition

is known to have a significant impact on the onset of convection by decreasing the

critical Rayleigh number, see Refs. 33, 11 for the Boussinesq case. Figure 2 confirms

this; one can see in Figure 2 that the flow begins to exhibit instability when the

Rayleigh number exceeds a critical value lying somewhere between Ra = 1000 (the

yellow curves) and Ra = 1500 (the green curves), regardless of which of the four

parameters Re, m, Z, Pr is varied.

We also repeated the above experiment with Re = 100, m = 0, Z = 2, and

Pr = 2.5, which corresponds to a much higher Rayleigh number Ra = 90909.1. We
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fixed ∆t = 1
80 and tested several values of h. Plots of the computed temperature

at time t = 10 are shown in the leftmost column of Figure 3. Note that since the

prescribed heat flux q0 satisfies
∫
z=0

q0 da +
∫
z=1

q0 da = 0, this system conserves

energy (and mass) exactly in the continuous setting. The leftmost plot in Figure 4

shows that energy and mass are conserved to machine precision in the discrete

setting as well.

4.2. Comparison

To see how our scheme compares with others in the literature, we implemented

and tested the finite volume scheme proposed in Refs. 5, 35. This scheme uses a

formulation of the Navier-Stokes-Fourier equations in terms of u, T , and ρ which,

for a perfect gas in the presence of gravity, has nondimensional form

∂t(ρu) + div(ρu⊗ u) = div

(
Σ

Re
− pδ

)
− 1

Fr
ρẑ, Σ = Def u− 1

d
(div u)δ,

CV (∂t(ρT ) + div(ρTu)) =

(
Σ

Re
− pδ

)
: ∇u− div(Tjs), js = − 1

Re

1

Pr

γ

γ − 1

1

T
∇T,

∂tρ+ div(ρu) = 0,

where CV = 1
γ−1 and p = ρT . We will detail the scheme below, beginning with the

case where periodic boundary conditions are imposed on ∂Ω. The scheme discretizes

all variables with piecewise constant functions on a regular quadrilateral mesh Th
of Ω. In our notation (which differs considerably from Refs. 5, 35), it seeks u ∈
DG0(Th)d and T, ρ ∈ DG0(Th) such that

⟨∂t(ρu), v⟩+ βh(v, ρu, u) = −αh(v,Ξ)−
1

Fr
⟨ρẑ, v⟩, ∀v ∈ DG0(Th)d, (4.4)

CV (⟨∂t(ρT ), w⟩+ βh(w, ρT, u)) = αh(u,wΞ)− γh(T,w), ∀w ∈ DG0(Th), (4.5)

⟨∂tρ, θ⟩+ βh(θ, ρ, u) = 0, ∀θ ∈ DG0(Th), (4.6)

where

Ξ =
1

Re

(
1

2
(X +XT)− 1

d
TrX

)
− ρTδ

and X ∈ DG0(Th)d×d is determined from

⟨X,Y ⟩ = αh (u, Y ) , ∀Y ∈ DG0(Th)d×d.

Here, the maps αh, βh, and γh have the following definitions. The map αh is given

by

αh(v,Ξ) =
∑
e∈E0

h

∫
e

{v} · JΞKda,

where {v} denotes the average of a vector field v and JΞK denotes the jump of a

tensor field Ξ across e = K1 ∩K2 ∈ E0
h. These are defined by

{v} =
1

2
(v1 + v2), JΞK = Ξ1n1 + Ξ2n2,
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where vi = v|Ki , Ξi = Ξ|Ki , and ni is the unit normal vector to e pointing outward

from Ki. The map βh(·, ·, u) has two meanings. For scalar fields f and g, it is the

bilinear form

βh(f, g, u) =
∑
e∈E0

h

∫
e

({u} · JfK{g}+ (βe({u}) + hξ)JfK · JgK) da, (4.7)

where βe({u}) = 1
2 |{u} ·n| and ξ ∈ (0, 1). (We used ξ = 1

2 together with the smooth

approximation (3.38) of βe({u}) in our implementation.) When f and g are vector

fields, βh(f, g, u) is understood as
∑d

i=1 βh(fi, gi, u). Lastly,

γh(T,w) =
∑
e∈E0

h

∫
e

κ

h
JT K · JwKda.

This completes the specification of the scheme when periodic boundary conditions

are imposed. Notice that αh(v,Ξ) approximates −
∫
Ω
v · div Ξdx, and when u is

continuous, βh(f, g, u) is the same as our b̄h(u; f, g, u) for scalar fields f and g, up

to the addition of a term proportional to hξ that Refs. 5, 35 include for stability

reasons.

To impose the no-slip boundary condition u = 0 on ∂Ω, we follow Ref. 35 and

penalize u|∂Ω by adding 1
ε

∫
∂Ω
u · v da to the right-hand side of (4.4), where ε is an

h-dependent penalty parameter. (We took ε = h2 in our implementation, following

Theorem 6.2 in Ref. 5.) Likewise, to impose T = T0 on ∂Ω, we follow Ref. 5 and

add 1
ε

∫
∂Ω

(T − T0)w da to the right-hand side of (4.5). To impose Tjs · n = q0 on

∂Ω, we subtract
∫
∂Ω
q0w da from the right-hand side of (4.5).

We discretized (4.4)-(4.6) in time with

⟨D∆t(ρu), v⟩+ βh(v, (ρu)k+1/2, uk+1/2)

= −αh(v,Ξk+1/2)−
1

Fr
⟨ρk+1/2ẑ, v⟩, ∀v ∈ DG0(Th)d,

CV

(
⟨D∆t(ρT ), w⟩+ βh(w, (ρT )k+1/2, uk+1/2)

)
= αh(uk+1/2, wΞk+1/2)− γh(Tk+1/2, w), ∀w ∈ DG0(Th),

⟨D∆tρ, θ⟩+ βh(θ, ρk+1/2, uk+1/2) = 0, ∀θ ∈ DG0(Th),

where uk+1/2 = uk+uk+1

2 , ρk+1/2 = ρk+ρk+1

2 , Tk+1/2 = Tk+Tk+1

2 , (ρu)k+1/2 =
ρkuk+ρk+1uk+1

2 , (ρT )k+1/2 = ρkTk+ρk+1Tk+1

2 ,

Ξk+1/2 =
1

Re

(
1

2
(Xk+1/2 +XT

k+1/2)−
1

d
TrXk+1/2

)
− (ρT )k+1/2δ,

and

⟨Xk+1/2, Y ⟩ = αh

(
uk+1/2, Y

)
, ∀Y ∈ DG0(Th)d×d.

Using the above finite volume scheme, we ran the same experiment described

in the last paragraph of Section 4.1, this time with smaller values of h (detailed in

the caption of Fig. 3) to ensure that the experiments with the above finite volume
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Fig. 3. Temperature contours at time t = 10 during a simulation of Rayleigh-Bénard convection

with Re = 100, m = 0, Z = 2, and Pr = 2.5, so that Ra = 90909.1. Left column: Our scheme with

h ∈ {
√
2

4
,
√
2

8
,
√
2

16
,
√
2

32
}, ordered from smallest h to largest. Middle column: The scheme (4.4)-(4.6)

with h ∈ { 1
16

, 1
32

, 1
64

, 1
128

}, ordered from smallest h to largest. Right column: Same as the middle

column, but with the term proportional to hξ excluded from (4.7).

scheme used a similar number of degrees of freedom as the experiments we did with

our scheme. (Our scheme used 1056, 4160, 16512, and 65792 degrees of freedom in

the four experiments of Fig. 3, while the other used 2048, 8192, 32768, and 131072.)

The results obtained with the finite volume scheme are shown in the second

column of Fig. 3. At low resolutions, the temperature contours are qualitatively

incorrect due to excessive numerical diffusion. This appears to be due primarily

to the term proportional to hξ that appears in (4.7). Removing it improved the

appearance of the temperature contours significantly; see the rightmost column in

Fig. 3. Nevertheless, the finite volume scheme still artificially dissipates energy,

regardless of whether the term proportional to hξ is included or not; see the middle

and rightmost columns of Fig. 4.

It is worth mentioning that the finite volume scheme also fails to preserve the

total entropy
∫
Ω
s dx in the purely reversible setting (κ = µ = λ = 0). This is

illustrated in the blue and red curves in Fig. 5, where we ran the same experiment

as above using the finite volume scheme with h = 1
64 , this time with Re = ∞

and Fr = 0.5. In contrast, our structure-preserving scheme preserves
∫
Ω
s dx to

machine precision in the purely reversible setting if one uses the finite element
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Fig. 4. Evolution of mass and energy during the three simulations in the top row of Fig. 3. The

absolute deviations |F (t)− F (0)| are plotted for each conserved quantity F (t).

Fig. 5. Evolution of total entropy in the purely reversible setting.

space Vh = DG0(Th). One can see this by taking w = 1
D2ϵ

in (3.34). This fact

is illustrated in the black curve in Fig. 5, where we used our structure-preserving

scheme with Vh = DG0(Th), Ugrad
h = CG1(Th)2, and h =

√
2

64 .

4.3. Numerical convergence

To test the convergence of our scheme, we considered the same setup as in §4.1, this
time with initial conditions

u(x, z) =
1

10
(cos(πx) sin(πz), sin(πx) sin(πz)),

T (x, z) = 1 + Z(1− z) +
1

10
sin(πz),

ρ(x, z) = 1.

We imposed periodic boundary conditions in the x-direction and the no-slip bound-

ary condition u = 0 along z = 0 and z = 1. We added forcing terms to the right-hand
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r q
√
2

h ∥uh − u∥L2(Ω) Rate ∥sh − s∥L2(Ω) Rate ∥ρh − ρ∥L2(Ω) Rate

2 5.54 · 10−2 1.78 · 100 6.80 · 10−2

1 0 4 1.43 · 10−2 1.95 1.07 · 100 0.73 4.12 · 10−2 0.72

8 6.44 · 10−3 1.16 5.09 · 10−1 1.07 1.95 · 10−2 1.08

16 4.30 · 10−3 0.58 2.25 · 10−1 1.18 8.55 · 10−3 1.19

2 5.11 · 10−2 2.33 · 100 9.18 · 10−2

1 1 4 1.94 · 10−2 1.40 1.22 · 100 0.94 4.83 · 10−2 0.93

8 4.66 · 10−3 2.06 5.64 · 10−1 1.11 2.26 · 10−2 1.10

16 1.01 · 10−3 2.21 2.46 · 10−1 1.20 9.90 · 10−3 1.19

2 1.20 · 10−2 3.73 · 10−1 1.48 · 10−2

2 1 4 2.13 · 10−3 2.49 8.56 · 10−2 2.12 3.44 · 10−3 2.11

8 2.07 · 10−4 3.37 2.47 · 10−2 1.79 1.00 · 10−3 1.78

16 2.16 · 10−5 3.26 5.76 · 10−3 2.10 2.36 · 10−4 2.09

2 1.18 · 10−2 5.80 · 10−1 2.31 · 10−2

2 2 4 2.15 · 10−3 2.46 1.52 · 10−1 1.93 6.17 · 10−3 1.91

8 2.25 · 10−4 3.25 4.17 · 10−2 1.87 1.71 · 10−3 1.85

16 2.40 · 10−5 3.23 1.07 · 10−2 1.97 4.40 · 10−4 1.96

2 2.20 · 10−3 5.69 · 10−2 2.32 · 10−3

3 2 4 1.37 · 10−4 4.00 7.83 · 10−3 2.86 3.22 · 10−4 2.85

8 5.75 · 10−6 4.58 9.31 · 10−4 3.07 3.85 · 10−5 3.06

16 2.76 · 10−7 4.38 1.04 · 10−4 3.17 4.28 · 10−6 3.17

2 2.32 · 10−3 1.25 · 10−1 5.05 · 10−3

3 3 4 1.45 · 10−4 4.00 1.49 · 10−2 3.07 6.10 · 10−4 3.05

8 6.49 · 10−6 4.48 1.63 · 10−3 3.19 6.73 · 10−5 3.18

16 3.27 · 10−7 4.31 1.72 · 10−4 3.24 7.11 · 10−6 3.24

Table 1. L2(Ω)-errors in the velocity, entropy, and density at time t = 0.5 for various values of h,

r, and q (with ∆t fixed).

∆t−1 ∥uh − u∥L2(Ω) Rate ∥sh − s∥L2(Ω) Rate ∥ρh − ρ∥L2(Ω) Rate

8 1.82 · 10−4 6.38 · 10−3 2.45 · 10−4

16 4.69 · 10−5 1.96 1.57 · 10−3 2.03 6.01 · 10−5 2.02

32 1.18 · 10−5 1.99 3.90 · 10−4 2.01 1.50 · 10−5 2.01

64 2.96 · 10−6 2.00 9.73 · 10−5 2.00 3.74 · 10−6 2.00

Table 2. L2(Ω)-errors in the velocity, entropy, and density at time t = 0.5 for various values of ∆t
(with h, r, and q fixed).

sides of (4.1)-(4.3) to make the exact solution equal to

u(x, z, t) =
1

10
(cos(πx) sin(πz) cos t, sin(πx) sin(πz) cos t),

T (x, z, t) = 1 + Z(1− z) +
1

10
sin(πz) cos t,

ρ(x, z, t) = 1 +
1

10
sin(πx) sin(πz) sin t.
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The exact entropy is therefore

s(x, z, t) =
ρ(x, z, t)

γ − 1
log

(
T (x, z, t)

(γ − 1)ρ(x, z, t)γ−1

)
,

as one can verify by solving T = ∂ϵ
∂s for s. We imposed Dirichlet boundary conditions

for T along z = 0 and z = 1 using the exact values of T given above.

We took γ = 1.1, Re = 100, Z = 0.42, Pr = 2.5, and Fr = 1
Z , and we used

a penalty parameter η = 0.01κ with κ = 1
Re

1
Pr

γ
γ−1 . We used a small time step

∆t = 1
320 to ensure that temporal discretization errors would be negligible, and we

used finite element spaces Vh = DGq(Th) and Ugrad
h = CGr(Th)2.

Table 1 shows the L2(Ω)-errors in the computed solution (uh, sh, ρh) at time

t = 0.5 for h ∈ {
√
2
2 ,

√
2
4 ,

√
2
8 ,

√
2

16 }, r ∈ {1, 2, 3}, and q ∈ {r − 1, r}. In all cases

except (r, q) = (1, 0), the velocity, entropy, and density converged at rates given

approximately by O(hr+1), O(hr), and O(hr), respectively, both with q = r−1 and

with q = r. In the case (r, q) = (1, 0), the entropy and density converged linearly but

the velocity did not converge quadratically. Our experiments with (r, q) = (1, 0) on

even finer meshes (not shown in the table) suggest that the velocity’s convergence

rate is asymptotically linear when (r, q) = (1, 0); the errors ∥uh − u∥L2(Ω) were

2.44 · 10−3 and 1.28 · 10−3, respectively, for h =
√
2

32 and h =
√
2

64 .

We also tested the convergence rate of our temporal discretization by fixing h =√
2

16 , r = 4, and q = 4, and running the above experiment with ∆t ∈ { 1
8 ,

1
16 ,

1
32 ,

1
64}.

The results, reported in Table 2, indicate that our scheme is second-order accurate

in time.

5. Conclusion

We have constructed thermodynamically consistent finite element methods for com-

pressible viscous heat conducting fluids by focusing on the Navier-Stokes-Fourier

case with the following types of thermal boundary conditions: insulated boundaries,

prescribed heat flux, or prescribed temperature boundary conditions. It was shown

that the resulting class of schemes satisfies the two laws of thermodynamics at the

fully discrete level. More precisely, regarding the first law, the total energy was

shown to be exactly preserved at the fully discrete level when the fluid is adiabati-

cally closed, while a discrete energy balance was proven to hold in the presence of

external heating, thereby exactly reproducing the energy balance of the continuous

case. Regarding the second law, the entropy generated by the internal irreversible

processes was shown to grow at each time step on each cell.

We derived the scheme by discretizing a variational formulation for heat conduct-

ing viscous fluids that extends the classical Hamilton principle for fluid dynamics

to include irreversible processes. The treatment of different thermal boundary con-

ditions led to nontrivial changes in the way the thermodynamic fluxes associated

with heat conduction are discretized. In each case the variational derivation was

crucial to achieve thermodynamic consistency. Natural extensions of our scheme to
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the case of rotating fluids, variable viscous and thermal coefficients, and upwinding

techniques were discussed.

The qualitative properties of the scheme were illustrated by simulating the onset

of convection in the celebrated Rayleigh-Bénard experiment with both prescribed

temperature and prescribed heat flux boundary conditions. We also tested the con-

vergence rate of our scheme with respect to spatial and temporal refinement and

observed second-order accuracy in time and high-order accuracy in space. A com-

parison between our scheme and a recently proposed finite volume method for the

Navier-Stokes-Fourier equation indicated that our scheme more faithfully respects

the first two laws of thermodynamics. We are not aware of other methods sharing

the same properties within the finite element/finite volume literature.

Since the techniques developed in this paper draw upon a general variational

formulation that underlies a large class of continuum thermodynamic systems, they

are potentially applicable to a large range of models that we plan to study in

the future. Immediate applications include ongoing work on plasma physics and

geophysical fluid dynamics, where the accurate long term behavior and the ther-

modynamic consistency of the discrete models play a crucial role. Future studies

should also include error analyses for the schemes derived in the paper.

Appendix A. Finite dimensional guiding examples

The treatment of finite dimensional systems is useful for understanding several

aspects of the variational formulation for the heat conducting viscous fluid, such as

the occurrence of two entropy variables (S and Σ in the Lagrangian description, s

and ς in the Eulerian description) and the form of the constraints, especially in the

case when the system is not adiabatically closed, which arises when the temperature

is prescribed at the boundary. We follow the variational setting developed in Ref. 27

and Ref. 30 for adiabatically closed and for open systems.

Consider a thermodynamic system described by a mechanical variable q ∈ Q

in a finite dimensional configuration manifold and an entropy variable S ∈ R. We

assume the system has a Lagrangian L : TQ × R → R and involves a friction

force F fr : TQ × R → T ∗Q, with F fr(q, v, S) ∈ T ∗
qQ. The total energy and the

temperature of the system are defined from L by

E =

〈
∂L

∂q̇
, q̇

〉
− L and T = −∂L

∂S
. (A.1)

It is assumed that the Lagrangian is such that T > 0 for all (q, v, S).

Adiabatically closed system. When the system does not interact with its sur-

roundings, the variational formulation is given as follows: find the curves q(t) ∈ Q,

S(t) ∈ R which are critical for the variational condition

δ

∫ t1

t0

L(q, q̇, S)dt = 0, (A.2)
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subject to the phenomenological constraint

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
, (A.3)

and for variations subject to the variational constraint

∂L

∂S
δS =

〈
F fr, δq

〉
, (A.4)

with δq(t0) = δq(t1) = 0.

A direct application of (A.2)–(A.4) yields the coupled mechanical-thermal evo-

lution equations:

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr,

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
. (A.5)

With these equations, one directly gets the balance of total energy, see (A.1), and

entropy

Ė = 0 and Ṡ = − 1

T

〈
F fr, q̇

〉
. (A.6)

In particular, the second law requires that the force F fr must be dissipative.

A time discretization of this variational approach has been proposed in Refs. 29,

12.

System with a heat source. Assume that the system has an external heat source

of temperature TH with an entropy flow JS,H . The variational formulation needs

the introduction of two additional variables, namely, (i) the thermal displacement Γ

with Γ̇ = T the temperature and (ii) the entropy variable Σ with Σ̇ = I ≥ 0 the rate

of internal entropy production. The two relations Γ̇ = T and Σ̇ = I are not imposed

a priori but follow from the variational formulation. For such systems the variational

formulation is given as follows: find the curves q(t) ∈ Q, S(t),Γ(t),Σ(t) ∈ R which

are critical for the variational condition

δ

∫ t1

t0

[
L(q, q̇, S) + Γ̇(S − Σ)

]
dt = 0, (A.7)

subject to the kinematic constraint

∂L

∂S
Σ̇ =

〈
F fr, q̇

〉
+ JS,H(Γ̇− TH) (A.8)

and for variations subject to the variational constraint

∂L

∂S
δΣ =

〈
F fr, δq

〉
+ JS,HδΓ, (A.9)

with δq|t=t0,t1 = 0.

Application of (A.7)–(A.9) yields the conditions

δq :
d

dt

∂L

∂q̇
− ∂L

∂q
= F fr, δS : Γ̇ = −∂L

∂S
, δΓ : Ṡ = Σ̇ + JS,H .
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The second condition imposes that Γ is the thermal displacement while the third

condition splits the rate of entropy production Ṡ as the sum of the rate of internal

entropy production Σ̇ and the entropy flow rate JS,H . Finally, one gets the coupled

mechanical-thermal evolution equations:

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr,

∂L

∂S
(Ṡ − JS,H) =

〈
F fr, q̇

〉
+ JS,H

(
− ∂L

∂S
− TH

)
. (A.10)

With this system, the balance of energy and entropy (A.6) is modified as

Ė = THJS,H and Ṡ = − 1

T

〈
F fr, q̇

〉
− 1

T
JS,H(T − TH) + JS,H . (A.11)

The second law requires that − 1
T

〈
F fr, q̇

〉
≥ 0 and − 1

T JS,H(T − TH) ≥ 0, while the

entropy flow JS,H can have an arbitrary sign.

Structure of the variational formulation. In the adiabatically closed case, one

passes from the phenomenological constraint (A.3) to the variational constraint

(A.4) by formally replacing the time rate of changes (here Ṡ and q̇) by δ-variations

(here δS and δq). This is a general variational setting for adiabatically closed sys-

tems, see Ref. 27, which is reminiscent of the Lagrange-d’Alembert principle used

in nonholonomic mechanics. The same approach is used to pass from the phe-

nomenological constraint (2.4) to the variational constraint (2.5) for fluids in the

adiabatically closed case.

In the case with a heat source the kinematic constraint is affine in the rate of

changes, hence one passes from (A.8) to (A.9) by formally replacing the rate of

changes (here Ṡ, q̇, and Γ̇) by δ-variations (here δS, δq, and δΓ) and by removing

the affine terms associated to the exterior (here JS,HTH). This is a general approach

for open systems, see Ref. 30. It is used to pass from the constraint (2.20) to the

constraint (2.21) for fluids with prescribed boundary temperature

Appendix B. Variational derivation of heat conducting viscous

fluid equations

B.1. Lagrangian description

In the Lagrangian description, the computation of the critical condition is much

simpler than its Eulerian counterpart and follows closely its finite dimensional ana-

log mentioned above.

For the adiabatically closed case, one gets from (2.3)–(2.5) the fluid conducting

viscous fluid equation in Lagrangian form as
d

dt

δL

δφ̇
− δL

δφ
= DIVP

−δL
δS

(Ṡ +DIV JS) = P : ∇φ̇+ JS · ∇δL

δS
,

(B.1)
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together with the conditions

Γ̇ = −δL
δS
, Σ̇ = Ṡ +DIV JS and JS · n = 0 on ∂Ω (B.2)

associated to the variations δS and δΓ. Since −δL/δS > 0 is identified with the

temperature, the first condition implies that Γ is the thermal displacement. The

expression Ṡ + DIV JS is the rate of internal entropy production, positive by the

second law, hence the second condition implies that Σ is the internal entropy density.

The last condition is the insulated boundary condition. It follows from the variation

δΓ on the boundary ∂Ω and implies that the fluid system is adiabatically closed.

For the case with prescribed boundary temperature, one applies the variational

principle (2.3)-(2.20)-(2.21) and directly gets the equations (B.1) and (B.2) with

the last equation of (B.2) replaced by the boundary condition

(Js · n)(T− T0) = 0 on ∂Ω.

Here T = −δL/δS is the temperature in the Lagrangian frame.

B.2. Neumann boundary conditions

We show that the variational formulation (2.9)–(2.12) yields the equations (2.14)

together with the conditions (2.15).

Taking the variations in (2.9) and using δγ|t=t0,t1 = 0 and u|∂Ω = 0, we get∫ t1

t0

∫
Ω

[ δℓ
δu

·δu+ δℓ

δρ
δρ+

δℓ

δs
δs+δsDtγ−δςDtγ−D̄t(s−ς)δγ+(s−ς)∇γ ·δu

]
dxdt = 0.

(B.3)

Since δs is arbitrary, we get the condition

Dtγ = − δℓ
δs

(B.4)

thereby recovering the first condition in (2.15). Making use of this condition and of

the variational constraint (2.11) yields∫ t1

t0

∫
Ω

[ δℓ
δu

· δu+
δℓ

δρ
δρ− σ : ∇v + js · ∇(δγ + v · ∇γ)− div(ςv)

δℓ

δs

− D̄t(s− ς)δγ + (s− ς)∇γ · δu
]
dxdt = 0.

(B.5)

Since δγ is arbitrary, we get

D̄tς = D̄ts+ div js and js · n = 0 on ∂Ω (B.6)

thereby recovering the second and third conditions in (2.15). Having found these

conditions, we now use v|∂Ω = 0 and the second condition of (2.12), i.e. δρ =

−div(ρv), to rewrite (B.5) in the form∫ t1

t0

∫
Ω

[( δℓ
δu

+(s−ς)∇γ
)
·δu+

(
ρ∇ δℓ

δρ
+ς∇ δℓ

δs
+div σ

)
·v−(div js)v ·∇γ

]
dxdt = 0.
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Using the first condition of (2.12), i.e. δu = ∂tv + [u, v], integrating by parts, and

using the identity

(∂t +£u)
(
(s− ς)∇γ

)
= D̄t(s− ς)∇γ + (s− ς)∇Dtγ = − div js∇γ − (s− ς)∇ δℓ

δs
,

with £u the Lie derivative of one-form densities, we get the first equation in (2.14).

The second equation in (2.14) follows from the phenomenological constraint (2.10)

together with (B.4) and the first condition in (B.6).

B.3. Dirichlet boundary conditions

We briefly explain how the variational formulation (2.9)-(2.22)-(2.23)-(2.12) yields

the equations (2.14) together with the conditions in (2.15), with the last one replaced

by (2.24).

We proceed similarly as in §B.2 before. Making use of (2.23) instead of (2.11)

we get only the first condition in (B.6), namely

D̄tς = D̄ts+ div js (B.7)

since the boundary term involving js · n is cancelled by the additional term in the

constraint (2.23). The first equation in (2.14) follows exactly as before. Now the

kinematic constraint (2.22), together with (B.4) and the first condition in (B.6)

give both the second equation in (2.14) and the boundary condition (2.24).

B.4. Weak forms

As explained in §2.3, the constraints (2.10)–(2.11) and (2.22)–(2.23) can be written

in a unified way by using the expressions d(·, ·, ·) and e(·, ·), see (2.30)–(2.31). The

computations reviewed above can be equivalently formulated with these expressions.

However, it is useful to explain how the form of the entropy equation (the second

equation in (2.32)) emerges since its form plays a crucial role in our approach.

After taking the variation as earlier in (B.3), one uses in it the variational

constraint with w = 1, i.e.〈
1,
δℓ

δs
D̄δς

〉
= −c(1, u, v) + d

(
1,− δℓ

δs
,Dδγ

)
.

Proceeding as earlier, this yields〈
D̄t(ς − s), δγ

〉
= −d

(
1,− δℓ

δs
, δγ

)
, ∀ δγ (B.8)

which is the weak form of both (B.6) and (B.7) depending on the boundary con-

ditions considered. One finally gets the first equation in (2.32), while the second

equation in (2.32) follows from the kinematic constraint (2.30) in which (B.8) is

used with δγ = w δℓ
δs . This explains the very specific forms of the two terms involv-

ing d(·, ·, ·) in the weak form of the entropy equation, namely

d
(
1,− δℓ

δs
,
δℓ

δs
w
)

and d
(
w,− δℓ

δs
,
δℓ

δs

)
.
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2. Arnold, V. I. [1966], Sur la géométrie différentielle des des groupes de Lie de dimension
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