
The Next Generation of BGP Data Collection Platforms

Thomas Alfroy∗, Thomas Holterbach∗,
Thomas Krenc†, KC Claffy†, Cristel Pelsser∗‡

∗University of Strasbourg, †CAIDA/UC San Diego, ‡UCLouvain

bgproutes.io

ABSTRACT
BGP data collection platforms as currently architected face fun-
damental challenges that threaten their long-term sustainability.
Inspired by recent work, we analyze, prototype, and evaluate a
new optimization paradigm for BGP collection. Our system scales
data collection with two components: analyzing redundancy be-
tween BGP updates and using it to optimize sampling of the incom-
ing streams of BGP data. An appropriate definition of redundancy
across updates depends on the analysis objective. Our contributions
include: a survey, measurements, and simulations to demonstrate
the limitations of current systems; a general framework and algo-
rithms to assess and remove redundancy in BGP observations; and
quantitative analysis of the benefit of our approach in terms of accu-
racy and coverage for several canonical BGP routing analyses such
as hijack detection and topology mapping. Finally, we implement
and deploy a new BGP peering collection system that automates
peering expansion using our redundancy analytics, which provides
a path forward for more thorough evaluation of this approach.

CCS CONCEPTS
• Networks → Network measurement.

KEYWORDS
Internet measurement, BGP, Routing Security
ACM Reference Format:
Thomas Alfroy, Thomas Holterbach, Thomas Krenc, KC Claffy, Cristel
Pelsser. 2024. The Next Generation of BGP Data Collection Platforms.
In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August 4–8,
2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3651890.3672251

1 INTRODUCTION
The study of the global Internet infrastructure relies on BGP data
collection platforms (RouteViews [61] and RIPE RIS [49]) that main-
tain BGP peering sessions with network operators who volunteer
to share (sometimes portions of) their routing tables. Originally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672251

established decades ago to support operational troubleshooting
("How do others reach my network?"), these systems have become
a cornerstone for scientific and operational analysis of the Internet.

Collecting this data faces a fundamental cost-benefit trade-off.
The information-hiding character of BGP requires collecting routes
from as many BGP routers, a.k.a Vantage Points (VPs), as possible.
But in practice the BGP protocol extensively propagates connectiv-
ity messages, leading to highly redundant (along with significant
unique) data coming from each peer. The result is a data set with
enormous redundancy and yet dangerous visibility gaps [34].

The platforms’ policies to store a snapshot of the aggregated
data every few hours, as well as every BGP update received in
between these snapshots, exacerbates the storage of redundant
data. Continued growth of the Internet (≈ 75k ASes [14] and ≈ 1M
globally announced prefixes) and increasing connectivity between
networks further burden data collection and use [1, 28]. Users often
resort to sampling the data, e.g., using only a sample of the VPs,
neglecting the connectivity uniquely visible to other VPs. Finally,
the manual vetting of new peers also strains platform scalability.
The platforms collectively peer with only ≈1% of the observably
active ASes on the global Internet. Despite continued addition of
peers, RIS and RV’s coverage in terms of fraction of ASes they are
peering with has remained flat for two decades.

These growing pressures coincide with regulatory concerns
about slow progress in deployment of routing security protections
[62]. The ensuing public debate has highlighted the importance of
these platforms for detecting both accidental and malicious trans-
gressions in the routing system. While significant investment in
data collection could accommodate gathering, retention, and shar-
ing orders of magnitude more routing data, current constraints
motivate us to consider a more strategic approach. We propose a
data collection scheme that scales at least an order of magnitude in
the number of VPs feeding public collection systems while limiting
the increase in human effort and data volume.
Vision. We explore a fundamentally new way to collect BGP data:
an overshoot-and-discard strategy. Akin to CERN’s Large Hadron
Collider (LHC) which generates millions of collisions just to see
a few interesting particles (e.g., Higgs boson), overshooting BGP
data collection will maximize the chance to see interesting routing
events, e.g., BGP hijacks.We imagine aworld where public BGP data
providers could automate deployment of additional VPs, targeting
a moonshot of peering with one VP in every of the ≈75K ASes
participating in the global routing system (even half would be a
moonshot!). Overshooting BGP data collection is feasible only if
the system can discard the “less interesting” bits upon acquisition,

bgproutes.io
https://doi.org/10.1145/3651890.3672251
https://doi.org/10.1145/3651890.3672251
https://doi.org/10.1145/3651890.3672251

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

before they consumes processing or storage resources. In the case
of the LHC, fast online algorithms using custom hardware and
software discard 99.994% of the likely less interesting collisions [55].

The epistemological challenge is that discarding BGP updates
inevitably implies loss of information. Even if two VPs observe the
identical (or similar) prefix announcement, there is a signal in know-
ing which VPs observed it. We construct a framework that allows
some context-dependence in the definition of redundancy and ap-
ply it to several important use cases for BGP data. For example, a
BGP hijack may reach many VPs, which redundantly observe it, or
it may reach no available VP (perhaps by intention [34]), in which
case substantial expansion of VP deployment is the best way to
increase the chance of observing it.
Contributions. We make the following contributions.

• We demonstrate with a survey, measurements, and simulations
that the RIS and RV coverage limitations limit effective scientific
use of the data. (§2-§3).

• We characterize redundancy in BGP data, design algorithms that
identify redundant updates and VPs for flexible redundancy defi-
nitions, and implement GILL, a BGP data collection system that
uses an overshoot-and-discard collection scheme (§4-§5-§6-§7).

• We deployed GILL at https://bgproutes.io and publish all its data.
Operators can automatically connect their BGP routers to GILL
to contribute BGP data (§8-§9).

• We show that GILL’s sampling algorithms outperform the status
quo for five relevant use cases (§10).

Long-term impact (§11). GILL’s approach offers a long-term path
toward sustainable scaling of BGP data collection. We show that a
redundancy-aware system consistently improves the accuracy and
coverage of studies and tools that rely on BGP data. Our simulations
of a scenario where 50% (vs. 2%) of ASes peered with GILL tripled
the number of peer-to-peer links observed, doubled the number
of Internet failures that we could localize, and reduced by 33% the
proportion of undetected forged-origin hijacks without processing
more data than what RIS and RV do today.
Immediate benefits (§12). Regardless of the future of the GILL
platform, its sampling algorithms can help users cope with the mas-
sive stream of data that RIS and RV generate. We replicated analyses
in three studies/tools, in all cases GILL improved the accuracy and
coverage while processing the same data volume: we inferred more
AS relationships (+16%), identified and corrected errors in CAIDA’s
ASrank dataset, and inferred more forged-origin hijacks (+23%)
with ≈4× fewer incorrect inferences (i.e., false positives).

2 BACKGROUND
Routing Information Service (RIS) [49] and RouteViews (RV) [61]
are two widely-used platforms that peer with hundreds of routers
(also called peers, or VPs) and collect the BGP updates exported
by those VPs. As of May 2023, 32% of the RIS and RV VPs [37, 52]
are full feeders, i.e., they send updates for roughly all announced IP
prefixes on the Internet (≈944k IPv4 and ≈205k IPv6 prefixes [14]).
A stored BGP update carries four relevant attributes [40]: (i) the
timestamp at which the update was received, (ii) the IP (v4 or v6)
prefix that the update announces, (iii) the AS path used to reach

that prefix, and (iv) a set of BGP communities, which carry informa-
tion or requests for special handling of the announcement. Among
other uses, researchers leverage the timestamp to find transient
paths [30], the prefix to detect hijacks [56], the AS paths to infer
AS relationships [31], and the communities to understand complex
routing behavior [29, 60].

The path-vector nature of BGP challenges macroscopic data
collection efforts, because each router only announces updates for
its best route to each destination, limiting the visibility of backup
links. Confidential routing policies also limit the propagation of
updates and thus visibility of links. Thus, each VP (even full feeders)
provides a partial view over Internet routing. We illustrate in Fig. 1
the inherent limitation in mapping AS topology by combining
partial views. Assume that every AS runs a single BGP router,
announces its only prefix into BGP, and configures routing policies
following the Gao-Rexford model [23]. Straight lines are customer-
to-provider (c2p) links and dashed lines are peer-to-peer (p2p) links.
Logically, VPs at the core help to observe c2p links whereas the ones
at the edge help to observe p2p links (as they are not announced to
providers [23]). With the local view of 1 , one can infer all AS links
but the two peering links 3 4 and 5 6 (Fig. 1a), whereas
with the local view of 5 , one can infer all AS links but the two
customer-to-provider links 2 4 , 4 6 (Fig. 1b). Local views
can be redundant, e.g., combining local views of 1 and 2 does
not reveal more links (Fig. 1c).

To expand coverage, RIS and RV continually add newVPs; by Dec
2023, RIS had 1537 VPs in 816 distinct ASes and RV had 1130 VPs in
337 distinct ASes (Fig. 2, top). But the total number of active ASes on
the Internet grows faster than the platforms’ peering expansion, so
the net coverage, i.e., the proportion of ASes that host at least one VP,
is stable (Fig. 2, bottom). Users can download a snapshot of all BGP
updates held by a VP at a particular time also called a routing table or
RIB (Routing Information Base). Alternatively, users may download
every update observed by the VPs over time (e.g., using [40]), which
currently results in ≈28K updates per hour (average in Dec. 2023)
for a single VP (Fig. 3a), and billions of updates per day for all RIS
and RV VPs (Fig. 3b).

3 INCREASING COVERAGE
We use three case studies—AS topology mapping, locating outages,
and BGP hijack detection—to demonstrate how expanding these
platforms to support more VPs would improve the accuracy and
coverage of scientific and operational analyses of Internet infras-
tructure (§3.1). We explain the challenges of such expansion for
data providers and users (§3.2).

3.1 Limitations of low VP coverage

A tiny fraction (1.1%) of the 74k ASes participating in the global
routing system [14] host a VP. If we consider only the 11832 transit
ASes (i.e., those with at least one customer), this fraction is higher
but still only 5.9%. While we cannot know how much additional
information we might observe from VPs that do not peer with the
public collection platforms, we estimate this gap using controlled
simulations. We use C-BGP [47] to simulate "mini" Internets where
each AS runs one BGP router and announces one or more prefixes.

https://bgproutes.io

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 2

3 4

5 6

(a)

1 2

3 4

5 6

(b)

1 2

3 4

5 6

(c)
Figure 1: Combining local views can
help to map the AS topology. Gray
links are not visible from routes col-
lected by VPs ().

250

500

750

of

 A
S

ho
st

in
g

a
VP

RIPE RIS
RouteViews

2003 2008 2013 2018 2023
0 %

1 %

2 %

%
 o

f A
S

ho
st

in
g

a
VP

Figure 2: Growth in VPs.

2003 2008 2013 2018 2023
0

50K

100K

150K

(a) Hourly average # of
updates per VP.

2003 2008 2013 2018 2023
0

50M

100M

150M

200M

250M

(b) Updates per hour among
all VPs.

Figure 3: Growth in updates collected by RIS and RV
combined.

We ensure that the number of prefixes announced by the ASes
follows the distribution observed in the real Internet. We then
collect routes from a subset of ASes selected randomly and measure
how well they enable achieving various objectives.
Used AS topologies. We run our simulations on eleven ASes
topologies generated using two techniques.
Pruned known AS topology:We infer the AS topology fromCAIDA’s
AS relationship dataset from October 2023 [19] and prune it (to
reduce the computational/hardware cost of the simulations) by
iteratively removing leaf nodes until the topology has 6k ASes
(or 1k depending on the objective). While we cannot scale our
simulations to the size of the real Internet, we note that they are
larger than simulations conducted in previous studies [26, 35, 36].
Artificial topologies: We built ten AS topologies whose statistical
parameters match those of the known AS topology using the Hyper-
bolic Graph Generator [3]. We set the average node degree to 6.1,
which results in a comparable degree of connectivity (a.k.a. Beta
index) to the one observed in CAIDA’s AS relationship dataset [19],
and use as the degree distribution a power lawwith exponent 2.1 (as
in [3]). We assign AS relationships as follows. The three ASes with
the highest degree are Tier1s and fully meshed. ASes connected to
a Tier1 are Tier2s. ASes connected to a Tier2 but not to a Tier1 are
Tier3s, etc. Two connected ASes have a p2p relationship if they are
on the same level, and a c2p relationship if not. Routing policies
follow the Gao-Rexford model [23].
Studied objectives. We use these topologies to estimate the im-
pairment in our ability to perform three canonical inferences: AS
topologymapping, link failure localization, and forged-origin hijack
detection.
AS topology mapping: We measure the proportion of p2p and c2p
links observed in at least one collected AS path. We consider p2p
links separately since routing policies typically reduce their propa-
gation and thus observability [23].
Link failure localization: We simulate 1k random link failures and
measure how many p2p and c2p links we can locate using the
algorithm described in [21]. Here, we use a topology with 1k ASes
(instead of 6k for the other objectives) as this analysis is more
computationally expensive.
Forged-origin hijack detection: In these hijacks, the attacker prepends
the valid origin in the AS path [25]. Type-X hijacks are forged-
origin hijacks where 𝑋 ≥ 1 is the position of the attacker’s AS in
the forged AS path. We simulate a Type-1 and a Type-2 hijack for
every possible victim and measure how many we detect from the

collected routes. Attackers are randomly picked and hijack one of
their victim’s prefixes.
Observations. Fig. 4 shows the percentage of observed AS links
(bottom), localized failures (middle), and detected forged-origin
hijacks (top) as a function of the number of ASes hosting a VP
(coverage). The results of the simulations with the pruned known
AS topology are indicated with a star whereas the results from
the ten artificial topologies are shown in boxes. We make two key
observations.
Key observation #1: The simulations effectively illustrate the
opportunity cost of having only a 1% coverage of VPs, i.e., the
coverage of RIS and RV combined.
AS topology mapping: With so few VPs, simulations observed only
16% (resp. 12%) of the p2p links (median) when using the artificial
topologies (resp. pruned known AS topology).
Failure localization: Only 10% (median of the ten simulations) of
the failures on p2p links can be localized. With the pruned known
AS topology, even c2p link failures are difficult to localize: with 1%
coverage, we locate only ≈40% of them.
Hijack detection: With a 1% coverage, we fail to detect 24% (median)
of Type-1 hijacks, i.e., they are not visible from any VP when using
artificial topologies (16% when using the known pruned topology).
Type-2 hijacks are even less visible (32%with a 1% coverage) because
the hijacked routes have a longer AS path. The implication is that
forged-origin hijack detection systems [25, 56] miss a significant
fraction of hijacks, even if using all RIS and RV VPs. Given the
prevalent use of these platforms for hijack detection, their lack of
coverage leaves open significant attack surface [34].
Key observation #2: Our simulations suggest that the percentage of
ASes hosting a VP should grow by 25-100× to achieve the three
objectives reasonably well. With 50% of ASes hosting a VP (i.e., a
50× coverage increase), 90% of p2p links are mapped, 95% of failures
on p2p links can be localized, and only 4% of Type-1 hijacks remain
undetected (median values with artificial topologies).
Confirmation with real (but private) data. We contacted a
private BGP data provider (bgp.tools [17]) that collects BGP routes
from ≈1000 routers and compared the set of AS links observed
from these private feeds against the set observed by RIS and RV
VPs (in September 2023). We found that bgp.tools saw 192k AS
links that none of the RIS and RV VPs observed, and conversely,
RIS and RV VPs observed 401k links that bgp.tools did not observe.
Other private data collection systems, e.g., that companies support,
have reported visibility not seen in the public systems [12]. These

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
de

te
ct

ed
 h

ija
ck

s

Forged-origin hijacks (Type-1)
Forged-origin hijacks (Type-2)
CAIDA topology
(pruned: 6k ASes)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
lo

ca
liz

ed
 fa

ilu
re

s

p2p links
c2p links
CAIDA topology
(pruned: 1k ASes)

0.5 1 2 5 10 15 25 50 75 100
% of ASes hosting a VP

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
ob

se
rv

ed
 A

S
lin

ks

 RIS and RV
 coverage

 Ideal
coverage(custom scale)

p2p links
c2p links
CAIDA topology
(pruned: 6k ASes)

Figure 4: Our simulations show that the current RIS and RV
coverage (1.1%, the red area) induces a significant impairment
to important operational analyses. We suggest a 25-100×
higher coverage (green area).

significant differences in visibility across VPs provide compelling
motivation to architect data collection systems that can easily sup-
port many more VPs.

3.2 Scaling challenges in data collection

Putting aside the non-technical challenges of a radical expansion
in the number of peers, we focus first on the technical challenges,
for both data providers and users.
Challenges for data providers Cultivating more VPs generates
more data as each of them exports BGP updates. Moreover, new
IP prefixes advertised in BGP [14] contribute to the increase in
the volume of data collected by every VP. The compound effect—
more VPs (Fig. 2, top) and more updates per VP (Fig. 3a)—yields
a quadratic increase in updates reaching the collection platforms
(visible in Fig. 3b). RIPE RIS has expressed concerns about this
unsustainable growth rate [1] and its implications for long-term
data management [28]. Recently, RIPE removed the peering form
(that network operators used to submit peering requests) from their
website, to limit data processing and storage costs. Instead they
adopted a selective peering policy, targeting peers in countries with
the largest inferred visibility gaps.
Challenges for users (survey-based). Although several tools can
speed up data processing [5, 6, 40], many measurement studies and
monitoring tools use only a sample of data collected by RIS and
RV, either using only a subset of the VPs, a short time window, or

both. While authors of these studies do not typically explain why
they sample, their choice suggests they believe the data volume is
not worth trying to manage. We confirm this explanation with a
survey we conducted on authors of 11 research papers. We do not
cite these papers to preserve the anonymity of the respondents.

More precisely, we selected 11 BGP-based papers from top con-
ferences, namely SIGCOMM, NSDI, S&P, USENIX Security, NDSS
and IMC. We focused on studies published fewer than ten years ago
that collectively covered a wide range of BGP-related questions.
We purposely did not select any of the studies used to benchmark
and evaluate GILL’s algorithm (§10-§11-§12). We classified these
11 studies into two categories based on how they sampled the BGP
data. Nine papers used all routes collected from a subset of the VPs
(which we call category 𝐶1); six papers used a limited durations
(𝐶2). Note that a paper may be in both categories. For each paper,
we asked authors whether BGP data volume limited their work,
how and why they sampled BGP data sources, their understanding
of the impact of the sampling on the quality of their results, and if
they would expand their sample given more resources or time. We
did not receive answers from the authors of three papers. Thus, we
have seven respondents in 𝐶1 and five in 𝐶2. We summarize our
findings here; details of the survey are in an appendix (§16).
Key observation #1: The volume of BGP data to process is often a
limiting factor. In fact, seven (of eight) respondents found the BGP
data expensive to process. For three respondents in 𝐶1, process-
ing time motivated them to use only a subset of the VPs; three
respondents in𝐶2 considered the processing time when choosing a
measurement interval. Even a respondent who used a Spark cluster
found it inhibitively time-consuming to process the BGP data.
Key observation #2: Users often sacrifice quality of the results to fa-
cilitate data processing. In fact, six respondents in𝐶1 acknowledged
that using more VPs would improve the quality of their analysis.
The last respondent was not sure, given the potential redundancy in
the data sources (which he did not analyze). Two of the six believed
it would not significantly change the conclusion of their studies
(e.g., one said that it could help to pinpoint corner cases). However,
six of the seven authors in 𝐶1 affirmed that they would have used
more VPs if they had more resources and time. Similarly, all five
respondents in 𝐶2 said that extending the duration of their study
would improve the quality of their results. One respondent thought
the gain would not be significant; another said it could help detect
rare routing events. All respondents in 𝐶2 would have extended
the duration of their observation window given more time and
resources. The uncomfortable truth is that we do not know exactly
what they are missing, which is why we used simulations (§3.1)
and experiments (§12) to corroborate that important analyses lose
accuracy and/or coverage when using heavily sampled topologies.

4 REDUNDANCY IN BGP DATA
We show, both intuitively (§4.1) and experimentally (§4.2), that
redundancy in BGP data makes it a good candidate for collection
with an overshoot-and-discard strategy.

4.1 Motivating example
Consider the scenario in Fig. 5 that shows seven ASes (1-7) inter-
connected in c2p (arrows) and p2p (lines) relationships, according to

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 3

4

7

5
6

p1, p2

VP3 VP4

2

VP2

VP1

p3FAILURE

HIJACKS p3

prefix

Collected updates

AS path

VP1

VP

p1 2 1 4
VP1 p2 2 1 4
VP2 p1 6 2 1 4
VP2 p2 6 2 1 4

Deployed VPs

VP1 VP2

(a) Today, all updates are col-
lected from a few VPs. These
updates can be redundant.

From drop p1, p2

From drop p1, p2

From accept all
prefix AS pathVP

p1 6 2 1 4

VP3 p3 4 1 2 6

p3 5 7

VP1 VP2

VP3 VP4

VP4

VP1

VP4Anchor 
VP Accept all

p2 6 2 1 4

high

low

priority:
VP2

VP2
VP2

Collected updatesDeployed VPs Installed filters

(b) GILL collects fewer but less redundant updates that enable
inferring the failure in both directions and detecting the hijack.

Figure 5: A scenario showing the value of an overshoot-and-
discard approach when collecting BGP data.

the Gao-Rexford model [23].AS4 originates two prefixes p1 and p2
whereas AS6 originates one prefix, p3 . Four VPs (1-4) export their
routes to a data provider like RIS or RV. We consider two isolated
events: (1) an Internet link failure impacting the peering session
between AS2 and AS4, and (2) a hijack where AS7 illegitimately
announces p3 , the prefix owned by AS6. We consider only the
updates induced by these two events.
Strong data redundancy at different granularities. Assume a
deployment of only two VPs: VP1 , VP2 . In this case, four updates
are collected (Fig. 5a), induced by the link failure causing a path
change via 1 (the hijack is not visible from these VPs). We ob-
serve data redundancy at two levels of granularity: among collected
updates and between VPs.
Redundancy between updates: Updates for p1 and p2 are redun-
dant, induced by the same event (the link failure) and with similar
attribute values (time and AS path).
Redundancy between VPs: VP1 and VP2 are redundant: They pro-
vide a very similar view over routing updates. For instance, they
both receive an update for p1 and p2 at roughly the same time
and with a similar AS path.

4.2 Exploring redundancy in the BGP data
We now provide a comprehensive analysis of redundancy in the
BGP data. As there is no consensus on how to define redundant BGP
updates, we define three gradually stricter definitions of redundancy
between updates.

We denote 𝑢 (𝑣, 𝑡, 𝑝, 𝐿, 𝐿𝑤 ,𝐶,𝐶𝑤) a BGP update observed by VP 𝑣
at time 𝑡 for prefix 𝑝 . 𝐿 is the set of AS links in the AS path whereas
𝐿𝑤 is the set of AS links in the AS path implicitly withdrawn by
this update, i.e., that were in the previous update for prefix 𝑝 and
are rendered obsolete by the new update. Similarly, 𝐶 is the set of
community values and𝐶𝑤 is the set of community values implicitly
withdrawn for prefix 𝑝 . Observe that 𝐿𝑤 = 𝐶𝑤 = ∅ if there was no

Definition 1
(Cond. 1)

Definition 2
(Cond. 1 and 2)

Definition 3
(Cond. 1, 2 and 3)

0%

50%

Low
redundancy

High
redundancy

90%
100%

Figure 6: Redundancy among 100 random RIS and RV VPs
for three gradually stricter redundancy definitions.

previous update for 𝑝 observed by 𝑣 . Consider two BGP updates
𝑢1 (𝑣1, 𝑡1, 𝑝1, 𝐿1, 𝐿1𝑤 ,𝐶1,𝐶1𝑤) and 𝑢2 (𝑣2, 𝑡2, 𝑝2, 𝐿2, 𝐿2𝑤 ,𝐶2,𝐶2𝑤).
We define the following three conditions to support our redundancy
definitions:
• Condition 1: |𝑡1 − 𝑡2 |< 100s, and 𝑝1 = 𝑝2
• Condition 2: 𝐿1 \ 𝐿1𝑤 ⊂ 𝐿2 \ 𝐿2𝑤
• Condition 3: 𝐶1 \𝐶1𝑤 ⊂ 𝐶2 \𝐶2𝑤

Condition 1 uses a 100-seconds slack when comparing timestamps
to accommodate typical BGP convergence time [30]. Condition 2
checks whether the set of new links in the AS path observed by
VP 𝑣1 is included in the set of new links in the AS path observed
by VP 𝑣2. Condition 3 follows the same approach but for com-
munity values. Observe that conditions 2 and 3 are asymmetric
(𝑋 ⊂ 𝑌 ≠⇒ 𝑌 ⊂ 𝑋). We formalize our three gradually stricter
redundancy definitions:
• Definition 1 (prefix based):
𝑢1 is redundant with 𝑢2 if condition 1 is true

• Definition 2 (prefix and AS-path based):
𝑢1 is redundant with 𝑢2 if conditions 1 and 2 are true

• Definition 3 (prefix, AS-path and community based):
𝑢1 is redundant with 𝑢2 if conditions 1, 2 and 3 are true

The vast majority of the collected updates are redundant with
another collected update. Among the updates collected by RIS
and RV during one hour in Sept. 1st 2023, we find that 97% are
redundant with at least another update according to Def. 1. This
number remains high with stricter redundancy definitions (77%
with Def. 2 and 70% with Def. 3).
A significant portion of the VPs are redundant with another
VP. We use our redundancy definitions to quantify redundancy
between RIS and RV VPs. We define 𝑉𝑃1 as redundant with 𝑉𝑃2
if >90% of the updates from 𝑉𝑃1 are redundant (based on one of
the three definitions) with at least one update from 𝑉𝑃2. Fig. 6
shows the redundancy, for each of the three definitions, between
100 VPs randomly selected and computed using one hour of data on
Sept. 1st, 2023. We focus on 100 VPs to reduce the computational
resources needed to perform the experiment. However, we mitigate
possible biases induced by this sampling (see §3) by performing 30
random selections with different seeds and showing the results for
the selection that returns the median number of redundant pairs of
VPs. With Def.1, 70% of the VPs are redundant with at least another
VP. Logically, this number decreases with stricter definitions but
remains significant: With Def. 2, 26% of the VPs are redundant with
another, and 22% with Def. 3. We observe similar redundancy when
considering only full feeders.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

5 GILL’S KEY PRINCIPLES
We present GILL, a system that scales to as many ASes as wish to
peer with it, to increase coverage while keeping data collection and
processing manageable. We explain GILL’s two key principles: an
overshoot-and-discard collection scheme and support for a flexible
definition of redundant.
Overshoot-and-discard data collection strategy. GILL collects
data using an overshoot-and-discard approach. "Overshoot" means
that GILL can peer with tens of thousands of VPs (25-100× more
than RIS and RV) while "discard" means that the redundant bits of
the data are discarded right away to facilitate storage and processing.
We illustrate this strategy using the scenario in Fig. 5. Assume the
following three filters are applied to receive updates from four VPs:
from VP1 drop updates for prefixes p1 , p2 ;
from VP2 drop updates for prefix p1 ;
from VP4 drop updates for prefix p1 , p2 ;
Note that the second filter (for VP2) is not in Fig. 5, as a filter
explained in the next paragraph (ingredient #2) overrides it. These
filters retain three updates:
VP2 receives update for p2 with AS path 6 2 1 4 ;
VP3 receives update for p3 with AS path 4 1 2 6 ;
VP4 receives update for p3 with AS path 5 7 ;

These three updates provide richer information than the original
four updates enabling more complete inferences. In fact, the update
received by VP2 enables detection that one direction of link 2 4
is not used, and the update received by VP3 enables detection
that the other direction is not used. Moreover, VP4 is close to the
hijacker and observes the hijacked route, which is preferred over the
legitimate ones in this region of the topology. Once collected, this
hijacked route enables monitoring systems to detect the hijack and
report it to the victim. This scenario demonstrates the possibility
of gathering more insight from less but intelligently filtered BGP
data, using more VPs.

We intentionally placed additional VPs (VP3 and VP4) and op-
timized filters to detect the two routing events and discard updates
with similar attribute values. For example, the four updates that
VP1 and VP2 observe for p1 and p2 have a similar AS path;
GILL retains only one of these updates. In practice, deciding which
updates to discard and building filters is challenging. There is no
ground truth about which routing events will appear where, how
they will propagate, and what users want to do with the data.
Sampling algorithms that maximize fairness. Our design ob-
jective is a general framework that is beneficial regardless of what
users do with the data. However, discarding data inevitably affects
some studies more than others. Maximizing fairness is challeng-
ing, especially given the diverse objectives that operators and re-
searchers may have. GILL relies on a new sampling scheme that
uses two key ingredients to maximize fairness.
Ingredient #1: Support for a flexible definition of redundant. While
the three redundancy definitions in §4 enable us to illustrate redun-
dancy across BGP updates and VPs, optimizing our algorithms to
minimize redundancy according to a definition leads to overfitting.
We explore this risk of overfitting by developing three specific BGP
data sampling strategies, each optimized to minimize redundancy in
the set of updates collected by a sample of VPs according to one of the
definitions in §4. These three specific sampling strategies greedily

select the VP that minimizes the proportion of collected redundant
updates. Logically, a specific sampling strategy returns less redun-
dant VPs compared to selecting them randomly (as in Fig. 6) when
redundancy is evaluated according to the definition it is optimized
for. For instance, when we use the specific sampling strategy that
uses the loose redundancy Def. 1 to sample 100 RIS and RV VPs,
only 37 VPs have >50% of their updates that are redundant with
the ones observed by another VP. This number drops to 20 with
Def. 2 and 15 with Def. 3. However, we benchmarked these specific
sampling strategies on various use cases (e.g., hijack detection) and
found that they perform poorly (§10).

Thus, we designed GILL’s sampling algorithm to not optimize for
a given objective. Instead, GILL finds correlations across past BGP
updates and uses a metric called reconstitution power to identify
updates to discard because they can be inferred from other updates.
GILL retains the latter updates.
Ingredient #2: Keep all updates from a few valuable VPs. Some studies
require data for all prefixes (even if redundant), which is the case
when one wants to identify the origin AS of every prefix. Ingredient
#1 does not ensure visibility over all prefixes as the filters above
discard all updates for p1 . Thus, GILL retains all updates from VP2
by applying the filters depicted in Fig. 5b. Now, GILL collects four
updates, the same number as in the current approach with only
two VPs but no filters (Fig. 5a). But these four updates allow all
three objectives—detecting the failure on 2 4 , the hijack on p3 ,
and identifying the origin AS of every prefix.

In practice, it is challenging to find from which VPs GILL should
retain all updates as there is no ground truth. Selecting them ran-
domly is an obvious option that performs poorly as GILL would
retain all updates from many redundant VPs (Fig. 6) and discard
updates from more valuable VPs. Thus, GILL uses algorithms that
quantify redundancy between every pair of VPs and select a set of
VPs that minimizes overall redundancy among the collected routes
(§6). GILL keeps the full RIBs and all updates from these valuable
(or anchor) VPs and filters updates received from other VPs.

6 GILL’S SAMPLING ALGORITHMS
We overview the two sampling algorithms that GILL uses to find
redundant updates and anchor VPs, respectively. For reproducibil-
ity, we provide formalization, examples, and describe parameter
calibration in §17-§18.
Component #1: Finding redundant BGP updates. GILL com-
putes redundancy between past collected updates using the follow-
ing three-steps algorithm.
Step 1 (§17.1): GILL takes a past set of updates 𝛽 collected during
a two-day period and groups updates that appear together in a
short time window of 100s into correlation groups. These correlation
groups capture groups of correlated updates, i.e., that often appear
together. GILL builds correlation groups on a per-prefix basis, i.e.,
two updates with different prefixes cannot be in the same correlation
group. In Fig. 5, the two updates for p1 collected by VP1 and VP2
are in the same correlation group whereas the two updates for p2
are in another correlation group.GILL then weights every correlation
group based on how many times its updates appear together during
the time window where the set of updates 𝛽 was collected.

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Step 2 (§17.2): GILL identifies redundant updates individually for
every prefix using a metric called the reconstitution power.
Reconstitution power intuition: If we can identically reconstitute
the set of updates 𝛽 from one of its subsets 𝛼 , then 𝛼 contains
useful updates and 𝛽 \ 𝛼 contains redundant updates. Two iden-
tical updates come from the same VP and have the same prefix,
AS path, community values, and timestamp1. GILL’s updates re-
constitution algorithm works as follows: for every update 𝑢 in 𝛼 ,
GILL reconstitutes all the updates in the correlation group with the
highest weight among the ones that include 𝑢. The reconstitution
power is the percentage of updates in 𝛽 that GILL can identically
reconstitute.

For each prefix, GILL builds the set 𝛼 of nonredundant updates
by iteratively adding to 𝛼 the set of all updates collected by the
same VP and that most improves the reconstitution power. Observe
that GILL adds to 𝛼 either all updates collected by a VP, or none
of them, as the filters that GILL builds match on the prefix and the
VP only and cannot discriminate updates based on their AS path or
community values (§7). GILL stops adding new updates to 𝛼 when it
can reconstitute 94% of the updates in 𝛽 , which we experimentally
find to be the best tradeoff between volume of data retained and
loss of nonredundant information. With RIS and RV data, GILL
stops when |𝛼 |/|𝛽 | ≈ 0.16, i.e., GILL can reconstitute 94% of a set of
updates from only ≈16% of them. GILL classifies updates in 𝛼 (16%)
as nonredundant and the ones in 𝛽 \ 𝛼 (84%) as redundant.
Step 3 (§17.3): Finally, GILL exploits redundancy across prefixes as
we find that two prefixes can be subject to similar and simultaneous
route updates (e.g., when these two prefixes are announced by the
same AS, which is the case for p1 and p2 in Fig. 5). If different
prefixes are subject to the same updates that GILL classified as
nonredundant in Step 2, then GILL classifies the updates for one
of these prefixes as nonredundant and the others as redundant.
Now, GILL classifies 93% of the RIS and RV updates as redundant
(|𝛼 |/|𝛽 | ≈ 0.07).
Component #2: Finding anchor (i.e., valuable) VPs. GILL iden-
tifies anchor VPs (from which it retains all updates) by computing
redundancy between combinations of updates collected by each
VP, i.e., it quantifies how similar the views of the VPs are, using the
following four steps.
Step 1 (§18.1): GILL selects a large, unbiased set of BGP events to
gauge pairwise redundancy between VPs. First, GILL carefully se-
lects three types of non-global events (path changes, outages, and
origin changes). GILL avoids global events since all VPs tend to see
them, rendering them less discriminating. Second, GILL stratifies
its sample of events across space and time to avoid bias.
Step 2 (§18.2):GILL characterizes howVPs experience selected events.
That is, for every BGP event, GILL computes the difference induced
by the event on the topological features [58] of the ASes involved,
as observed by each VP. These features embed information about
the four attributes of a BGP update: time, prefix, AS path, and
community values.
Step 3 (§18.3): GILL computes pairwise redundancy scores between
VPs. That is, for every event, GILL computes the pairwise Euclidean
distance in a 𝑛-dimensional space, where 𝑛 is the number of topo-
logical features. VP pairs with similar feature values for an event are

1We use a 100s slack when comparing timestamps.

1 2 4 8 16 32 64 128
Number of days after training

(log scale)

0

25

50

75

100

Pe
rc

en
t o

f m
at

ch
in

g
up

da
te

s

Figure 7: Ability of the gen-
erated filters to discard up-
dates over time.

1
2022-07

2 3 4 5
2018-07

Time difference (Years)

0.0

0.5

1.0

R
ed

un
da

nc
y

Sc
or

e
D

iff
er

en
ce

Figure 8: Redundancy score
differences between two
runs of GILL.

close in this space and thus likely redundant. GILL then computes
the average Euclidean distance between each pair of VPs over all
the selected events.
Step 4 (§18.4): GILL selects a set of anchor VPs, considering each
VP’s data redundancy and its volume. GILL considers the volume
of data generated by every VP to prioritize the one that provides
richer information within a few updates. GILL first selects the VP
with the lowest average Euclidean distance to all other VPs, then
greedily adds the VP that balances maximal Euclidean distance to
already selected VPs and minimal additional data volume that the
VP brings. GILL stops selecting new VPs when each remaining VP
has the highest possible redundancy score with one selected VP.
Intuitively, the higher the VP coverage, the lower the proportion of
selected anchor VPs. With RIS and RV, GILL finds 178 anchor VPs.

7 GILL’S FILTER GENERATION
Once GILL identifies redundant BGP updates, it computes filters to
apply to its peering sessions.
Filtering policy. GILL builds filters that aim to discard redun-
dant BGP updates that do not come from an anchor VP, and retain
all others. We infer from experimental analyses the frequency at
which GILL must refresh its filters. Fig. 5b gives an example of
the filters generated by GILL. The first filter accepts all updates
from anchor VP2 . The subsequent (lower priority) filters discard
redundant updates from other VPs. GILL employs an “accept ev-
erything” default filtering policy. Thus, GILL always retains new
updates (i.e., not seen before), which ensures retention of updates
from newly deployed VPs. GILL might discard new updates only
when it relaunches its sampling algorithms and refreshes its filters
(see next paragraph).
Keeping filters accurate over time. GILL needs an up-to-date
list of redundant updates, otherwise an increasing number of new
redundant updates match none of the filters over time and thus
GILL retains them (due to the "accept everything" default policy).
We infer the frequency at which GILL must refresh its filters (i.e.,
execute components #1 and #2 in §6) from experimental analyses.
GILL executes component #1 every 16 days. We evaluate how accu-
rate GILL’s redundant update inferences remain over time. More
precisely, we build GILL’s filters using data from Sept. 1, 2023, and
measure their ability to discard redundant updates in a set of up-
dates collected 𝑑 days after the filter generation, with 𝑑 ranging
from 1 to 128 days. Fig. 7 shows the percentage of updates matched

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

Sampling (§6)

Filters 
Generation (§7)

Orchestrator (§8)

Filters

Retained 
updates

Peer n

streams of 
BGP updates

unmatched

Filters

matched

Discarded 
updates

Peer 1

Mirror Mirror

Anchor 
VPs

Redundant 
updates

temporary 
and partial 
mirroring

GILL’s

filters

BGP 
daemons (§8)

Filters loading

refresh

Figure 9: GILL’s workflow. All blue items are publicly avail-
able at https://bgproutes.io (§9).

by the filters (thus discarded by GILL). Logically, the higher the
value of 𝑑 , the lower the percentage of matched updates, as the
proportion of new updates (i.e., never observed before) in a set of
updates increases when 𝑑 increases. We configure GILL to execute
component #1 in §6 every 16 days, as it appears to be the threshold
after which the percentage of matched updates critically drops.
GILL executes component #2 every year. To estimate how oftenGILL
should refresh its list of anchor VPs, we compute the redundancy
score for every pair of VPs on Sept. 2023 and compare them with
redundancy scores computed𝑚 months before. Fig. 8 shows the
distribution of the redundancy score differences for different values
of𝑚, ranging from six to 66 (=5.5 years). Logically, the higher the
value of𝑚, the higher the redundancy score differences. However,
when𝑚 ≤ 12, the redundancy score differences are low (the differ-
ence is below 0.1 in the median case), and we find that redundancy
scores change by less than 5%. We thus configure GILL to execute
component #2 in §6 one time per year.
Observe that GILL’s operators can temporarily overwrite these de-
fault settings to accommodate bursts of new peering sessions, e.g.,
when the platform bootstraps.
Discarding future redundant updates. One challenge when
generating filters is that GILL identifies past redundant updates
whereas filters aim to discard future redundant updates, which
are impossible to predict. Filters that match on all attributes (i.e.,
prefix, AS path, community values) and the sending VP would be
too fine-grained and result in continuous retention of new updates.
In Fig. 5, new updates induced by the failure have an AS path likely
never observed before. Fine-grained filters that match on the AS
path would retain all these updates, increasing the volume and
redundancy of data collected.

However, updates classified as redundant byGILL in §6 at time 𝑡1
are often similar to updates classified as redundant at time 𝑡2 (𝑡1 <

𝑡2). GILL thus generates coarse-grained filters that match only on
the VP fromwhich it receives an update and its prefix (Fig. 5b). Such
a filter thus matches on an entire space of similar (and redundant)
updates—which are either all retained or all discarded. We confirm
the validity of this approach by developing two modified versions
of GILL that build finer-grained filters. The first version (GILL -
asp) builds filters that match on the prefix, VP, and AS path. The
second version (GILL -asp-comm) builds filters that also match on

Number of peers 100 1000 10000

With filters (i.e., GILL)

Update load
(per hour)

Average (28K upd/h) 0% 0% 0%

99th percentile (241K upd/h) 0% 0% high

Without filters

Update load
(per hour)

Average (28K upd/h) 0% 0% 39%

99th percentile (241K upd/h) 0% 32% high

Table 1: Proportion of updates lost by our BGP daemons as
a function of the update frequency when using only one
CPU. A green cell means daemons cope with the update
frequency (no updates are lost) whereas a red cell means
daemons drop at least one update. When the number of
lost updates cannot be precisely computed because the
load is too high, we just label it as high and color it in red.

community values. We then use a typical training-testing pipeline
to evaluate the proportion of future redundant updates that the
generated filters discard. More precisely, we consider the set of
redundant updates 𝑟 (= 𝛽 \ 𝛼) inferred by GILL, which we divide
into two distinct sets 𝑟1 and 𝑟2 that are consecutive in time (i.e.,
updates in 𝑟2 appear after the ones in 𝑟1). We then generate filters
with the three versions of GILL that match on the updates in 𝑟1
and measure the proportion of updates in 𝑟2 that match the filters.
We find that GILL’s filters match 87% of the updates in 𝑟2 against
only 43% for GILL -asp and 0% for GILL -asp-comm.

Observe that GILL generates filters that match on updates in-
ferred as redundant by its sampling algorithms, which we purposely
designed to align with the coarse-grained granularity of filters:
They classify either all or no updates for a given prefix and VP as
redundant (§6). Thus, filters cannot match an update inferred as
nonredundant by GILL.

8 SOFTWARE
Fig. 9 describes the overall workflow of GILL, which relies on the
following two software components:
A custom BGP daemon, written in C and tailored to peer with a
single BGP router, apply filters on received updates, and store (either
RIBs every eight hours or every update) updates not matched by the
filters. We evaluate the ability of our BGP daemon to cope with high
data volume by running multiple instances of it simultaneously
on a single 3.20 GHz Apple M1 Pro CPU with 16GB of RAM. For
every BGP daemon that we run, we configure a fake peer that
establishes a BGP session with the daemon and sends a stream of
BGP updates. Table 1 shows the percentage of BGP updates lost
by the BGP daemons as a function of the BGP update frequency
and depending on whether they apply filters generated by GILL
(top part) or not (bottom part). We configure our fake peers to send
BGP updates at a frequency that is either the average (28k/hour) or
the 99th percentile (241k/hour) of the frequency at which RIS and
RV peers send updates.

We find that a single CPU successfully handles (i.e., losing no
updates) up to 10k BGP daemons with the average update frequency

https://bgproutes.io

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

and up to 1k daemons with the high update frequency (99th per-
centile) when using filters. Thus, we expect GILL to support tens
of thousands of BGP sessions (even during peak times) on a server
with many CPUs. Logically, we observe that our BGP daemons can
process more updates when using filters because less data is written
to disk, which is the most time-consuming task of our daemon.

Observe that GILL could implement filters using route-maps as
suggested in [4]. However, we find that a server with 24 CPUs
and 64GB of RAM running FRR [45] (a typical software router that
current collection platforms use to peer with VPs) can only handle
up to ≈ 10𝐾 route-maps, far fewer than what GILL generates (≈1M).
An orchestrator, written in Python, starts new BGP sessions us-
ing our daemon, periodically executes components #1 and #2 of
GILL’s sampling algorithms (§6), generates filters (§7), and loads
them into the BGP daemons. Observe that sampling algorithms
require all data (all updates from all VPs), which conflicts with the
overshoot-and-discard principles of GILL. However, steps #1 and
#2 of component #1 can execute prefix by prefix and step #3 only
needs the output of the previous two steps. Additionally, component
#2 can run on short windows of updates. Thus, the orchestrator
copes with high data volume by temporarily retaining all data for a
prefix or all data during a short time window (using a mirroring
scheme invisible to users, see Fig. 9), executing components #1 and
#2, generating filters, and then dropping this data. Finding redun-
dant updates (component #1) takes 22 hours while finding anchor
VPs (component #2) takes 35 hours with the RIS and RV data. These
execution times are compatible with the frequency at which GILL
updates its filters (§7).

9 GILL IS UP AND RUNNING
GILL runs at https://bgproutes.io and currently collects BGP up-
dates from a few routers. The installation of new VPs is automated:
operators can connect their BGP routers to GILL by submitting a
form on the website. GILL automatically configures new peering
sessions based on the information provided in the form and new
peers are visible on the website within a few minutes. GILL min-
imizes the risk of fake or misconfigured peering sessions using a
two-step authentification scheme: (i) a new participant must send
an email to GILL with the AS number provided in the form (ii) once
received, GILL cross-checks that the email address of the sender
owns that AS according to PeeringDB [43]. In addition to its own
peers, GILL also takes as input streams of BGP updates from all
RIS VPs using the WebSocket API of RIS Live [48] and all RV VPs
using a custom proxy that gathers and gives to GILL the RV data in
near real-time. Overall, GILL currently processes and stores data
for ≈2500 VPs. GILL stores the collected BGP updates in a public
database using the MRT format [8] with Bzip2 file compression. We
publish two supporting documents:

• The computed filters from which users can infer which BGP up-
dates are discarded by GILL and possible missing in the database;

• The list of anchor VPs found by GILL and from which all the
updates are processes and stored.

These documents help users find which bits of data they should
process from RIS when they have limited resources, whichmitigates
the risk of common but naive sampling approaches (§16).

10 BENCHMARKING GILL’S SAMPLING
We show that GILL’s sampling improves the trade-off between data
volume and information inferred compared to current BGP data
sampling schemes in five use cases.
Use cases. We carefully picked the five use cases such that each
BGP attribute is required for at least one of them. For instance, the
time is required to detect transient events (use case I); the prefix
is required to detect Multiple Origin ASes (MOAS) prefixes (use
case II); the AS path is required to map the Internet topology (use
case III); and the community values are required to detect action
communities (use case IV) and unchanged-path updates (use case
V). These use cases allow us to show that GILL’s sampling does not
overfit on some particular use cases or BGP attributes. For each use
case, we process updates collected by all RIS and RV VPs during 30
one-hour periods (randomly selected in Sept. 2023), and benchmark
GILL’s sampling on a set of events found. We briefly describe below
each use case along with our experimental settings.
I Transient paths detection. Transient paths are BGP routes visible
for less than five minutes, a typical BGP convergence delay [30],
and which can be attributed to e.g., path exploration [39]. We focus
on all transient path events detected during the 30 hours, a total of
859K events.
II MOAS prefixes detection.MOAS prefixes are announced by multi-
ple distinct ASes [56], due to legitimate [66] or malicious [15, 51, 59]
actions. We use the methodology of [46] to eliminate false positives.
We focus on all 1587 MOAS observed during the 30 hours.
III AS topology mapping. This is useful for e.g., inferring BGP poli-
cies [31] or AS paths [33]. For each VP, we process the first RIB
dump of Sept. 2023 as well as the updates collected during the 30
one-hour periods. We focus on all 687K distinct AS links observed.
IV Action communities detection. Action communities are associ-
ated with traffic engineering actions and are the most challenging
to observe [60]. We consider all 8683 action communities provided
in [60] and observed during the 30 hours.
V Unchanged-path updates detection.Unchanged-path BGP updates
are announcements that only signal a change in community val-
ues but not in AS path [29]. We consider all 263K unchanged-path
updates observed during the 30 hours.
Baselines. We benchmarked GILL’s sampling against several base-
lines from the following four categories.
GILL-simplified: We developed two simple versions of GILL, one
named GILL-upd that samples at the update granularity (using
Component #1 in §6) and another named GILL-vp that samples at
the VP granularity (using Component #2 in §6).
Naive baselines: We develop four naive sampling schemes some of
which are used in practice (see §16): (i) Rnd.-VP selects updates
exported by a random set of VPs (ii) AS-Dist. selects a first VP ran-
domly and the next ones to maximize the AS-level distance between
selected VPs. It collects all updates from them; (iii) Unbiased takes
all VPs, iteratively removes the one that most increases the bias
(according to the definition in [57]), and collects all updates from
the remaining VPs, and (iv) Rnd.-Upd selects updates randomly
regardless of which VP they come from.
Definition-based specifics: We compare GILL against three specific
sampling schemes optimized for minimizing redundancy based on
redundancy definitions 1, 2, and 3 in §4.

https://bgproutes.io

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

Sampling Scheme GILL
GILL-simplified Naive Definition-based specifics Use-case-based specifics

GILL-upd GILL-vp Rnd. Upd. Rnd. VP AS-Dist. Unbiased Def. 1 Def. 2 Def. 3 I II III IV V

U
se

ca
se
s

Trans. path detection (I) 96% 65% 75% 83% 75% 95% 89% 76% 98% 82% 100% 83% 79% 82% 83%

MOAS detection (II) 95% 95% 45% 33% 35% 59% 46% 47% 48% 40% 36% 100% 32% 33% 32%

Topo mapping (III) 90% 93% 61% 72% 41% 67% 38% 43% 49% 33% 72% 72% 100% 72% 64%

Action Coms. detection (IV) 91% 95% 49% 79% 48% 41% 42% 46% 45% 44% 78% 77% 85% 100% 73%

Unchanged-path Upd. detection (V) 87% 60% 80% 76% 74% 43% 61% 63% 63% 90% 76% 76% 71% 76% 100%

Table 2: GILL’s sampling outperforms all naive baselines, for all use cases. Unlike the Use-case-based specifics baselines, GILL
avoids overfitting. The color means that GILL performs better (), worse (), or similarly () than the baseline.

Use-case-based specifics: We compare GILL against five specific sam-
pling schemes, one optimized for each of the five use cases described
above. These specific sampling schemes optimize the trade-off be-
tween the volume of the data and its capacity to achieve a particular
objective. For instance, the specific sampling scheme optimized to
map the AS topology (use case III) iteratively selects the VP that
best improves the trade-off between the number of discovered AS
links and the volume of processed data.
Benchmark results. We compute for GILL and each baseline the
proportion of events that they detect or links that they observe
and report the results in Table 2. For instance, GILL detects 95% of
MOAS events means that the data GILL samples enables to detect
95% of the 1587 MOAS events used in the benchmark. The cell of a
baseline is green when GILL outperforms the baseline, red if the
baseline is better, and yellow if the two perform similarly (±5%).
We ensure that the baselines process the same number of updates
as GILL, i.e., 6.7% of RIS and RV updates (see §6).
Takeaway #1: Unlike its simplified versions, GILL performs well
for every use case. GILL-upd performs poorly for use cases I and
V whereas GILL-vp always performs worse than GILL. GILL-vp
outperforms GILL-upd for use cases I and V likely because the
higher link visibility that GILL-upd enables compared to GILL-vp
is not helpful for these use cases. GILL-upd outperforms GILL-vp
for other use cases, as it collects more diverse BGP attributes. This
complementarity between GILL-vp and GILL-upd demonstrates
that Ingredient #2 in GILL’s principles (§5) is sound.
Takeaway #2: GILL outperforms each naive baseline for every use
case, and sometimes significantly, e.g., GILL detects +62%, +60%,
+36%, and +49% MOAS hijacks (use case II) compared to Rnd.-Upd.,
Rnd.-VPs, Dist.-based and Unbiased, respectively.
Takeaway #3: The definition-based specifics perform poorly formany
use cases, e.g., GILL detects +45%, +46%, and +47% action commu-
nities (use case V) compared to the specific optimized for Def. 1, 2,
and 3, respectively. This demonstrates that GILL’s filter generation
is sound (§7).
Takeaway #4: GILL generalizes whereas use-case-based specific sam-
pling schemes overfit. In fact, a specific baseline optimized for a
use case outperforms GILL for that use case (thus the diagonal is
yellow/red). However, GILL always outperforms a specific baseline
for the use cases this specific baseline does not optimize. These
results demonstrate that our algorithms in §6 avoid overfitting.

11 LONG-TERM IMPACT
The long-term impact of GILL will only be visible when it will peer
with thousands of BGP routers. Yet, we can evaluate the long-term
impact now using simulations with C-BGP [47].
Used AS topologies and settings. We generate a pruned known
AS topology and an artificial topology using the methodology in §3
except that they now all have 1k ASes to limit the computational
resources needed.
Use cases. We use the three use cases in §3 but focus on p2p links
for both topology mapping and failure localization as they are the
more challenging to capture, and on Type-1 forged-origin hijacks
for the hijack detection use case as they are the most common [25].
Baselines. We compare GILL’s sampling against two baselines.
Random VPs:We iteratively select a VP among the deployed VPs and
collect the updates that it exports until the total number of collected
updates has reached the number of updates retained by GILL. We
use this baseline as it is commonly used in practice according to
our survey (§16).
Best case: Akin to our simulations in §3, we take all updates from
all deployed VPs, which is a best-case scenario. Inevitably though,
best case processes more updates than GILL.
Simulations settings. We tested different coverage (i.e., number
of ASes that deploy a VP) ranging from 2% (the rounded-up coverage
of RIS and RV) to 100% (all ASes host a VP). Observe that GILL’s
sampling algorithms (§6) are data-driven and thus need past BGP
updates as input.We thus generate 500 random link failures (distinct
from the failures used for the failure localization use case) and feed
GILL the induced BGP updates collected by every deployed VP.
Simulation results. Unlike in §10 where we focus on a set of
events observed in the RIS and RV data, we now have the ground
truth. We thus compute, for each sampling scheme, the proportion
of events that they detect among all the events that we triggered
or links that they observe among all the links that exist (Table 3).
Note that Table 3 shows results with the artificial topology, results
with the pruned known AS topology are similar.
Takeaway #1: GILL responds to the increasing coverage by discard-
ing more data. GILL retains 18% of the updates when coverage is
2%, and 7.9%, 5.4%, 4.7%, and 4.4%, when coverage is 10%, 20%, 50%,
and 100%, respectively. Similarly, GILL finds that 17% of the VPs are
anchors when coverage is 2%, and 3.3%, 1.3%, 0.9%, and 0.4% when
coverage is 10%, 20%, 50%, and 100%, respectively. This behavior is
expected as the higher the coverage the higher the proportion of
redundant updates.

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Coverage 2% 10% 25% 50% 100%

Data Collection Scheme GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case

Updates retained / Anchor VPs 18.0% / 17.0% 100%/100% 7.9% / 3.3% 100%/100% 5.4% / 1.3% 100%/100% 4.7% / 0.9% 100%/100% 4.4% / 0.4% 100%/100%

U
se

ca
se
s Topology Mapping 14% 4% 20% 33% 7% 50% 42% 7% 69% 61% 16% 85% 78% 25% 100%

Failure Localisation 29% 11% 37% 61% 14% 81% 60% 25% 80% 80% 18% 92% 94% 40% 100%

Hijack detection 58% 53% 73% 73% 54% 87% 77% 59% 92% 82% 74% 96% 85% 76% 100%

Table 3: Performance of GILL, Rnd.-VPs and best-case on a simulated mini Internet where the proportion of ASes deploying a
VP ranges from 1% to 100%. GILL leverages high coverage but the two other baselines do not.

Takeaway #2: GILL’s overshoot-and-discard data collection scheme
is efficient. While best-case outperforms GILL, it also collects many
more updates. With 50% coverage, GILL localizes 80% of p2p links
against 92% with best-case. However, GILL collects ≈21× fewer up-
dates than best-case. When coverage is high (e.g., 50%), the number
of updates processed with GILL is comparable to best-case with a
2% coverage. Assuming this observation holds in the real Internet,
GILL would collect a similar number of updates as RIS and RV to-
day while peering with 50% of the ≈75k ASes, which would triple
the number of p2p links mapped, double the number of localized
failures, and reduce by 33% the proportion of undetected hijacks.
Takeaway #3: GILL outperforms random VPs for all use cases. Even
with 100% coverage, only 25% of p2p links are detected when pro-
cessing the same number of updates as GILL. The forged-origin
hijack use case is the more challenging for GILL, as all prefixes
owned by an AS are subject to identical updates in our simulations
(thus GILL discards many of these updates) but only one prefix is
hijacked. Yet, GILL always outperforms random VPs for this use
case, e.g., GILL detects +18% of hijacks with a 25% coverage.

12 IMMEDIATE BENEFITS
We show that running GILL’s sampling algorithms on RIS and RV
data improves coverage and accuracy of three studies/tools. Unlike
in §11, the ground truth is now unknown.
GILL helps to infer +16% more AS relationships. We replicate
the methodology proposed in [31] that uses BGP data from RIS
and RV to infer AS relationships and build the widely-used CAIDA
AS-relationship dataset [19]. We compute the number of inferred
AS relationships for every month in 2023 when using the 648 VPs
that CAIDA uses to build its dataset (in Jan. 2023) and when using
all the RIS and RV data but sampled using GILL’s algorithms. We
ensure that GILL retains the same number of BGP updates as the
data set CAIDA collected from the 648 VPs. Thus, we can attribute
any performance improvement to GILL. We find that GILL collects
updates that enable consistent (from Jan. 2023 to Dec. 2023) infer-
ence of ≈89k additional AS relationships (≈+17%) while missing
only ≈8k AS relationships (≈1.5%) present in the original dataset.
We also replicated the AS relationship validation algorithm used
in [31] (which relies on IRR and RIR data) and found that the true
positive rate (the metric used in [31]) remains identical (97%). We
conclude that GILL enables inference of ≈+16% more AS relation-
ships compared to the original dataset provided by CAIDA, while
processing the same number of BGP updates and without losing
accuracy.

GILL reduces flawed inferences in the ASRank dataset. We
replicate themethodology used by ASRank [11], which uses 648 VPs
to compute the AS Customer Cone Sizes (CCS).We find that the CCS
changes for 1067 ASes when using the same number of BGP updates
as in [11] but sampled using GILL. We manually investigated a few
cases of substantial changes and found that inferences made using
GILL are more accurate. For instance, AS132337 has an incorrect
(confirmed by AS132337 itself) CCS of 1 in the original dataset and
a correct CSS of 18k when using GILL. Similarly, AS24745 is the
route server of Balcan-IX and has an incorrect CSS of 16 in the
original ASrank dataset, which is fixed when using GILL (CSS is
one). We observe that GILL enables more accurate inferences of
CCSs because it collects more diverse AS paths.
GILL improves forged-origin hijack inferences. We replicate
the algorithm of DFOH [25] that uses routes collected by 287 RIS
and RV VPs to infer forged-origin hijacks in September 2023. We
implement two versions of DFOH, one called DFOH𝐺𝐼𝐿𝐿 which
uses BGP routes collected by GILL, and another one called DFOH𝑅

that uses routes collected from a random set of VPs. In both ver-
sions, we ensure that the number of routes collected is identical to
the one used in [25]. As DFOH relies on probabilistic inference, we
measure the performance of DFOH𝐺𝐼𝐿𝐿 and DFOH𝑅 in terms of
True Positive Rate (TPR) and False Positive Rate (FPR). We obtain
an approximation of ground truth (needed to compute the TPR and
FPR) by implementing a third version of DFOH, called DFOH𝐴𝐿𝐿

that uses all the RIS and RV data. Note that DFOH𝐴𝐿𝐿 is an approx-
imation of ground truth as incorrect inferences are still possible
even if all the data is used because of the low RIS and RV coverage.
DFOH𝐺𝐼𝐿𝐿 uncovers 1708 suspicious cases against only 1300 for
DFOH𝑅 . DFOH𝐺𝐼𝐿𝐿 outperforms DFOH𝑅 for both the TPR and the
FPR: It has a TPR of 94% (against 71.5% for DFOH𝑅) and a FPR of
14.4% (against 60.1% for DFOH𝑅)—a ≈4× better precision.

13 RELATED WORK
Existing BGP routes collection platforms. Public BGP route col-
lection systems include RIS (≈1500 VPs) [49], RV (≈1000 VPs) [61],
PCH (≈700 VPs) [42], BGPWatch (15 VPs) [7] and Isolario (not main-
tained anymore) [27]. Private collection systems include bgp.tools
(≈1000 VPs) [17], PacketVis (≈2000 VPs) [41], Radar by QRator
(≈800 VPs), Kentik’s and ThousandsEyes’s BGP route monitoring
platforms (confidential number of VPs). Observe that their coverage
(when known) is always tiny (<2%). However, they could all benefit
from GILL’s algorithms to increase their coverage with limited cost.
VPs deployment schemes. Current VPs deployment schemes
suggest deploying a few but strategically positioned VPs [53]. For

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

instance, Gregori et al. proposed amethodology that finds a relevant
placement for a new VP [24], and Cittadini et al. demonstrated the
marginal utility of adding new VPs at the core of the Internet [16].
The peering strategy of RIS is to maximize coverage on the core of
Internet (e.g., by peering with Tier1 ASes) and improve coverage
diversity across countries [2]. GILL’s approach is radically different:
deploying many VPs but discarding redundant routes.
BGP data sampling schemes. Prior works suggest sampling BGP
data at the VP granularity. For instance, Zhang et al. and Oliviera
et al. show that carefully selecting VPs increases the utility of the
data [38, 65]. But their technique is tailored for topology mapping
whereas GILL’s algorithms are not specific to a particular objective.

14 FUTURE DIRECTIONS
If GILL gains traction, we expect it to trigger new interesting re-
search problems and future directions.
Incentivizing network operators to peer with GILL. Our vision
for GILL includes an order of magnitude increase in the number
of peers, which motivates the question: how do we inspire such
an expansion in participation? We have already taken two steps
to improve the cost-benefit calculus of peering with GILL: a fully
automated and immediate peering session activation via a web form
(§9); and a bootstrap of GILL with the 2500 peering sessions from
RIS and RV to ensure a head start in visibility (§9).

Two other strategies could further incentivize participation.

• Custom services that improve visibility. In return for peering,
GILL could let the network operator configure forwarding rules
such that GILL forwards some updates to the operator’s network
prior to discarding them. Forwarding rules would typically enable
operators to have high visibility of their prefixes. If GILL had
100% coverage of VPs, operators could make hijack detection
systems such as ARTEMIS [56] bulletproof for their prefixes.

• Collective action. Recent community-driven routing security
initiatives such as MANRS [32] or VIPzone [18] could encourage
participants to contribute BGP data to public BGP data collection
platforms. The FCC’s recent notice of proposed regulation [63] to
require disclosure of BGP security strategies could lend further
motivation to such strategies.

Preventing fake peering sessions and data. WhileGILL includes
a basic authentification scheme when installing a new peering
session, nothing prevents an attacker with an AS from announcing
fake updates once it peers with GILL. Remote peering sessions also
enable on-path attackers to modify the content of the BGPmessages
to replace route updates with fake ones.

Fake BGP updates and on-path attackers are also possible with
current collection platforms, which as far as we know, do not em-
ploy any mechanism that consistently verifies the validity of the
collected routes. Thus, GILL opens up new research problems in
verifying the correctness of the collected BGP updates. Encrypted
BGP peering sessions using e.g., BGP over QUIC seems a promising
starting point [13, 64].
Generalizing to other types of Internet routing data. The prin-
ciples used in GILL’s algorithms and implementation extend to
other types of BGP monitoring systems (e.g., BMP) and potentially
other types of Internet data, e.g., active measurement platforms

(e.g., RIPE Atlas [50]). Adapting our algorithms for these use cases
is a promising direction.
Ethics. See §16 about the ethics of our survey. Otherwise, this
work does not raise any ethical issues.

ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers and our shepherd
Marinho Barcellos for their feedback. We thank Ben Cox (bgp.tools
[17]) and Hans Kuhn (RouteViews [61]) for their feedback at the
early stage of this work. This work was supported by the ArtIC
project (grant ANR-20-THIA-0006-01), Région Grand Est, Inria
Nancy-Grand Est, IHU of Strasbourg, U. of Strasbourg, U. of Haute-
Alsace, the RIPE Community Fund Project, Silicon Valley Foun-
dation for Cisco (CG1318167 and CG1348196), NSF CNS-2120399,
NSF OAC-2131987, and NSF OAC-2029309. The views and conclu-
sions are those of the authors and do not represent the policies or
endorsements of the funding agencies.

REFERENCES
[1] Emile Aben. 2020. Route Collection at the RIPE NCC - Where are we and where

should we go? https://labs.ripe.net/author/emileaben/.
[2] Emile Aben. 2023. Two Years of Selective Peering with RIS. https://labs.ripe.net/

author/emileaben/two-years-of-selective-peering-with-ris/.
[3] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. 2015. Hyperbolic graph

generator. In Computer Physics Communications.
[4] Thomas Alfroy, Thomas Holterbach, Thomas Krenc, KC Claffy, and Cristel Pelsser.

2023. Internet Science Moonshot: Expanding BGP Data Horizons. In HotNets ’23.
ACM.

[5] Lorenzo Ariemma, Mariano Scazzariello, and Tommaso Caiazzi. 2021. MRT#: a
Fast Multi-Threaded MRT Parser. In IFIP/IEEE IM ’21.

[6] BGPKIT. 2022. BGPKIT. https://blog.bgpkit.com/.
[7] BGPWatch. 2023. BGPWatch: BGP Routing Analysis and Diagnostic Platform.

https://bgpwatch.cgtf.net/.
[8] Larry Blunk, Craig Labovitz, and Manish Karir. 2011. Multi-Threaded Routing

Toolkit (MRT) Routing Information Export Format. In RFC 6396.
[9] Paolo Boldi and Sebastiano Vigna. 2013. Axioms for Centrality.
[10] Timm Böttger, Félix Cuadrado, and Steve Uhlig. 2018. Looking for hypergiants

in PeeringDB. In SIGCOMM CCR.
[11] CAIDA. 2023. AS Rank. https://asrank.caida.org/.
[12] Nikolaos Chatzis and al. 2013. On the benefits of using a large IXP as an internet

vantage point. In IMC. ACM.
[13] Shuanglong Chen, Yongkang Zhang, Haibo Wang, and Zhenbin Li. 2021. BGP

Over QUIC. Technical Report draft-chen-idr-bgp-over-quic-00.
[14] CIDR. 2023. CIDR REPORT. https://www.cidr-report.org/as2.0/.
[15] CitizenLab. 2012. A Case Study of the China Telecom Incident. https://citizenlab.

ca/2012/12/.
[16] Luca Cittadini, Stefano Vissicchio, and Benoit Donnet. 2014. On the quality of

BGP route collectors for iBGP policy inference. In IFIP ’14.
[17] Ben Cox. 2023. BGP tools. https://bgp.tools/.
[18] David Clark and Cecilia Testart and Matthew Luckie3 and kc claffy. 2024. A path

forward: Improving Internet routing security by enabling zones of trust. Journal
of Cybersecurity (2024).

[19] University San Diego. 2022. The CAIDA AS Relationships Dataset, 2022. https:
//www.caida.org/catalog/datasets/as-relationships/.

[20] Benoit Donnet and Olivier Bonaventure. 2008. On BGP Communities. In SIG-
COMM CCR.

[21] Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and Bruce Maggs.
2004. Locating Internet Routing Instabilities. ACM SIGCOMM (2004), 205–218.

[22] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.
Social Networks (1978).

[23] Lixin Gao and Jennifer Rexford. 2000. Stable Internet Routing without Global
Coordination. In SIGMETRICS ’00.

[24] Enrico Gregori, Alessandro Improta, Luciano Lenzini, Lorenzo Rossi, and Luca
Sani. 2012. On the Incompleteness of the AS-Level Graph: A Novel Methodology
for BGP Route Collector Placement. In IMC ’12.

[25] Thomas Holterbach, Thomas Alfroy, Amreesh Phokeer, Alberto Dainotti, and
Cristel Pelsser. 2023. A System to Detect Forged-Origin BGP Hijacks. In NSDI’24.

[26] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. SWIFT: Predictive Fast Reroute. In ACM SIGCOMM.

https://labs.ripe.net/author/emileaben/
https://labs.ripe.net/author/emileaben/two-years-of-selective-peering-with-ris/
https://labs.ripe.net/author/emileaben/two-years-of-selective-peering-with-ris/
https://blog.bgpkit.com/
https://bgpwatch.cgtf.net/
https://asrank.caida.org/
https://www.cidr-report.org/as2.0/
https://citizenlab.ca/2012/12/
https://citizenlab.ca/2012/12/
https://bgp.tools/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[27] Alessandro Improta. 2023. Isolario project: The real-time Internet routing obser-
vatory. https://content.cooperate.com/post/internet_history/.

[28] Robert Kisteleki. 2023. RIPE NCC Measurement Data Retention Principles. https:
//labs.ripe.net/author/kistel/ripe-ncc-measurement-data-retention-principles/.

[29] Thomas Krenc, Robert Beverly, and Georgios Smaragdakis. 2020. Keep Your
Communities Clean: Exploring the RoutingMessage Impact of BGP Communities.
In CoNEXT ’20.

[30] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2000. Delayed
Internet Routing Convergence. In SIGCOMM CCR.

[31] Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere, Vasileios Giotsas, and
kc claffy. 2013. AS Relationships, Customer Cones, and Validation. In IMC ’13.

[32] MANRS. 2021. Mutually Agreed Norms for Routing Security. https://manrs.org/.
[33] Z. Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. 2005. On AS-Level Path

Inference. In SIGMETRICS ’05.
[34] Alexandros Milolidakis, Tobias Bühler, Kunyu Wang, Marco Chiesa, Laurent

Vanbever, and Stefano Vissicchio. 2023. On the Effectiveness of BGP Hijackers
That Evade Public Route Collectors. In IEEE Access.

[35] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. 2008.
Path splicing. In SIGCOMM ’08. ACM.

[36] Wolfgang Mühlbauer, Anja Feldmann, Olaf Maennel, Matthew Roughan, and
Steve Uhlig. 2006. Building an AS-TopologyModel That Captures Route Diversity.
In SIGCOMM CCR. ACM.

[37] University of Oregon. 2023. Route Views Peers list. http://www.routeviews.org/
peers/peering-status.html.

[38] Ricardo Oliveira and al. 2006. Placing BGP monitors in the Internet. In Technical
No. UCLA, TR.

[39] Ricardo Oliveira, Beichuan Zhang, Dan Pei, Rafit Izhak-Ratzin, and Lixia Zhang.
2006. Quantifying Path Exploration in the Internet. In ACM IMC’06.

[40] Chiara Orsini, Alistair King, Danilo Giordano, Vasileios Giotsas, and Alberto
Dainotti. 2016. BGPStream: A Software Framework for Live and Historical BGP
Data Analysis. In IMC ’16.

[41] PacketVis. 2024. BGP and RPKI real-time monitoring. https://https://packetvis.
com/.

[42] PCH. 2010. Packet Clearing House. https://www.pch.net/.
[43] PeeringDB. 2023. The Interconnection Database. https://www.peeringdb.com/.
[44] Lars Prehn and Anja Feldmann. 2021. How Biased is Our Validation (Data) for

AS Relationships?. In IMC ’21.
[45] FRRouting Project. 2023. A fully featured, high performance, free software IP

routing suite. https://frrouting.org/.
[46] LanchengQin, Dan Li, Ruifeng Li, and KangWang. 2022. Themis: Accelerating the

Detection of Route OriginHijacking byDistinguishing Legitimate and Illegitimate
MOAS. In USENIX Security.

[47] B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous system
with C-BGP. IEEE Network (2005).

[48] RIPE. 1. RIPE RIS Live. https://ris-live.ripe.net/.
[49] RIPE. 1. RIPE RIS Raw Data. https://www.ripe.net/data-tools/stats/ris/.
[50] RIPE. 1. The RIPE Atlas measurement platform. https://atlas.ripe.net/.
[51] RIPE. 2018. YouTube Hijacking: A RIPE NCC RIS case study. http://www.ripe.

net/internet-coordination/news/industry-developments/.
[52] RIPE. 2023. RIPE RIS Peers list. https://www.ris.ripe.net/peerlist/.
[53] Matthew Roughan, Simon Jonathan Tuke, and Olaf Maennel. 2008. Bigfoot,

Sasquatch, the Yeti and other missing links: what we don’t know about the AS
graph. In IMC ’08.

[54] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and János
Kertész. 2007. Generalizations of the clustering coefficient to weighted complex
networks. Phys. Rev. E (2007).

[55] Sciencealert. 2018. Less Than 1% of Large Hadron Collider Data Ever Gets Looked
at. https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-
particle-collision-data-is-lost.

[56] Pavlos Sermpezis and al. 2018. ARTEMIS: Neutralizing BGP hijacking within a
minute. In ToN.

[57] Pavlos Sermpezis, Lars Prehn, Sofia Kostoglou, Marcel Flores, Athena Vakali, and
Emile Aben. 2023. Bias in Internet Measurement Platforms. In TMA’23.

[58] Mattia Tantardini, Francesca Ieva, Lucia Tajoli, and Carlo Piccardi. 2019. Com-
paring methods for comparing networks. In Nature.

[59] Ars Technica. 2017. Russian-controlled telecomhijacks financial services’ Internet
traffic. https://arstechnica.com/security/2017/04/.

[60] Krenc Thomas, Luckie Matthew, Marder Alexander, and kc Claffy. 2023. Coarse-
grained Inference of BGP Community Intent.. In IMC’23.

[61] Oregon Univ. 2021. Route Views Project. www.routeviews.org/.
[62] U.S. Federal Communications Commission. 2022. NOTICE OF INQUIRY. PS

Docket No. 22-90. In the Matter of Secure Internet Routing.
[63] U.S. Federal Communications Commission. 2024. NOTICE OF PROPOSED RULE-

MAKING, In the Matter of Reporting on Border Gateway Protocol Risk Mitiga-
tion Progress and Secure Internet Routing. (2024). https://docs.fcc.gov/public/
attachments/DOC-402609A1.pdf.

[64] Thomas Wirtgen, Nicolas Rybowski, Cristel Pelsser, and Olivier Bonaventure.
2023. Routing over QUIC: Bringing transport innovations to routing protocols.

[65] Ying Zhang, Zheng Zhang, Z. Morley Mao, Y. Charlie Hu, and Bruce M. Maggs.
2007. On the impact of route monitor selection. In IMC ’07.

[66] Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin, S. Felix Wu,
and Lixia Zhang. 2001. An Analysis of BGP Multiple Origin AS (MOAS) Conflicts.
In IMW ’01.

15 APPENDICES
We provide appendices to support reproducibility and trans-
parency of artifacts of this work. The appendices address ques-
tions of interest to a small minority of reviewers such as addi-
tional implementation detail on the algorithms in §6, including
formalization, illustrative examples, and empirical grounding
for selection of default threshold parameters. We will publish
this material on GILL’s website. We expect reviewers to only
use this material for reference purposes if at all. Appendices are
supporting material that has not been peer-reviewed.

16 SURVEY
Detailed methdology. We selected eleven papers and classified
them based on how authors collected the BGP data (categories 𝐶1
and 𝐶2, in Table 4). We then emailed the authors and asked them
about their experience with using BGP routes from RIS and RV. We
did not receive answers for three papers. Observe that we do not
show parts of a few answers that would make de-anonymization
possible. However, missing parts never change the message con-
veyed in the answers.
Detailed answers. Table 4 lists the questions we asked the partici-
pants of our survey along with their detailed answers. We color the
answers based on our interpretation of whether the responses are
aligned with GILL’s objectives (green) or not (red). Neutral answers
are colored in blue. The vast majority of the answers indicate that
GILL would be beneficial for users and improve the quality of their
measurement studies.
Common BGP data sampling schemes. Among the seven re-
spondents who took the data from a subset of the VPs, one picked
geographically distant VPs. While intuitive, this strategy fails to
optimize for some metrics (e.g., AS link coverage §10). Another
respondent unintentionally removed some VPs (leaving an arbitrar-
ily selected set in the study) and two did not remember how they
selected their VPs. All the remaining respondent selected their VPs
arbitrarily. We show in the benchmark (§10) that sampling data
in an unoptimized fashion, i.e., arbitrarily or with simple metrics
leads to poor performance for most of the use cases.
Ethics The participants of the survey freely participated. We
contacted them by email to ask them whether they would agree to
participate. We stated the purpose of the survey and notified them
we might publish the results anonymously. Following is the exact
wording we used when soliciting participants.
"I would like to know whether you would be willing to answer a quick
survey about why you selected these VPs and the impact that you
think this selection made on your measurement study.
Answering this survey will help us to better understand how re-
searchers proceed when selecting BGP vantage points, why they often
do not take them all, and what is the impact of the vantage points se-
lection on the results of the measurement studies. The survey includes

https://content.cooperate.com/post/internet_history/
https://labs.ripe.net/author/kistel/ripe-ncc-measurement-data-retention-principles/
https://labs.ripe.net/author/kistel/ripe-ncc-measurement-data-retention-principles/
https://manrs.org/
http://www.routeviews.org/peers/peering-status.html
http://www.routeviews.org/peers/peering-status.html
https://https://packetvis.com/
https://https://packetvis.com/
https://www.pch.net/
https://www.peeringdb.com/
https://frrouting.org/
https://ris-live.ripe.net/
https://www.ripe.net/data-tools/stats/ris/
https://atlas.ripe.net/
http://www.ripe.net/internet-coordination/news/industry-developments/
http://www.ripe.net/internet-coordination/news/industry-developments/
https://www.ris.ripe.net/peerlist/
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://arstechnica.com/security/2017/04/
www.routeviews.org/
https://docs.fcc.gov/public/attachments/DOC-402609A1.pdf
https://docs.fcc.gov/public/attachments/DOC-402609A1.pdf

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

Collection strategy Questions asked Collected answers

𝐶1: All routes and
subset of VPs
(seven papers)

Why did you use a subset of the VPs ?
To speed up data processing (x2)
For disk space and time efficiency (x1)
I thought the rest would be similar (x1)
I did not manage to use them all (x2)

How did you select your VPs ?

I took them randomly (x2)
I do not remember (x2)
It was arbitrary: my script partially failed (x1)
I took geographically distant BGP collectors (x1)
I did not manage to use VPs from one data provider (x1)

Do you think more VPs would improve
the quality of your results?

Yes (x4)
Results would be similar, but it can help to find corner cases (x1)
Yes, but not significantly (x1)
I am not sure (x1)

Would you have used more VPs
if you could?

Yes (x4)
Yes, I’d love to (x1)
Definitely (x1)
I am not sure, but I don’t think so (x1)

𝐶2: Limited duration
of experiment
(five papers)

Was the processing time a factor
that you considered when you decided
on the duration of your measurement study?

Yes (x3)

Do you think extending the duration
of your measurement study would
improve the quality of your results?

Yes (x2)
Yes, especially for rare events (x1)
Potentially (x1)
Yes, but not significantly (x1)

Would have extended the duration
of your measurement study
if you had more resources?

Yes (x2)
Yes, but it depends on the time remaining before the deadline (x1)
I think so, but also if I had more time before the deadline (x1)

All eight papers

Do you find the data from RIS and
RouteViews expensive to process
in terms of computational resources?

Yes (x1)
Yes, CPU and storage (x2)
Yes, the storage cost and the download cost are very large (x1)
CPU is the main issue (x1)
RIS data takes a lot of time to download, especially when we need data for multiple days (x1)
Not the worst, but we definitely need a resourceful server if we want to catch some deadline (x1)
We did that in a server so that was not a huge issue (x1)
No (x1)

Is there any additional challenge
that you encountered when processing
the BGP data from RIS and RouteViews?

Our team used Spark clusters and Python but it was too slow (x1)
We had to download the data from all VPs as there is no optimal solution for selecting them,
the storage overhead and time overhead were extremely high (x1)
It’ll be helpful to make processing faster and less resource-consuming (x1)
Too many duplicate announcements make processing harder (x1)
Variable sizes of update files exacerbate scheduling parallelization (x1)
RIS took a lot longer than RouteViews (x1)
We had issues when collecting updates in real-time (x1)
We had to deal with bugs in BGPdump (x1)
Broken data feeds and data cleanup is also an issue that we need to take care of (x1)
Our study was done pre-BGPStream, which would have helped quite a bit already (x1)

Table 4: An exhaustive list of the questions asked to the participants of the survey along with their detailed answers. We color
an answer in (bold) green if it (strongly) motivates the usage of a tool such as GILL. Blue answers are neutral, i.e., they do not
motivate GILL but also do not disincentive it. Finally, (bold) red answers (strongly) disincentive the usage of a tool such as GILL.

a few questions that I will send you by email if you agree to answer
them. It should take less than 5 minutes to answer it.
We might publish the results of our survey. If we do that, we will either
do it in a manner that would not allow identification of your personal
identity, or we will ask your permission."

17 REPRODUCIBILITY DETAILS:
FINDING REDUNDANT UPDATES

We detail the algorithm used byGILL to find redundant BGP updates
to allow reproducibility. We formalize its key functions, showcase
its execution on an example, and explain how we configure its
parameters. We refer the reader to §6 (component #1) for a more
succinct description that focuses on the fundamental intuition and
principles.

17.1 Building groups of correlated updates
Pointer: This section details Step 1 of component #1 in §6.

Quick reminder: GILL builds correlation groups i.e., per-prefix
sets of updates that are correlated in time. A time-correlated set of
updates means that when one element of this set is observed, the
other are likely to be quickly observed after. Within a correlation
group,GILL identifies an update with its sending VP, AS path, and
community values. Recall that all update attributes in a correlation
group share the same prefix.

Example. Fig. 10 uses the same AS topology as in Fig. 5 but with
four distinct events separated in time. To simplify, we only focus
on prefix p1 , and omit community values. This does not change
how GILL works in practice.
Upon event #1 (time T_1): The failure on 2 4 triggers two up-
dates, one from VP1 and one from VP2 , each with an AS path that

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

circumvents the failure. Since these two updates for the same prefix
are correlated in time, GILL groups their attributes into correlation
group 𝐺1.
Upon event #2 (time T_2): 2 4 is restored and VP1 (resp. VP2)
receives updates that announce the primary path from 2 (resp. 6)
toward p1 . These two updates are different from the ones collected
after the failure. Since these two updates have the same prefix and
are correlated in time, GILL groups their attributes into correlation
group 𝐺2.
Upon event #3 (time T_3): Both 2 4 and 2 6 fail. VP1 re-
ceives an update for p1 with AS path 2 1 4 . VP2 receives an
update for p1 with AS path 6 3 1 4 , which circumvents
both failures. As these updates were not previously observed, GILL
builds correlation group 𝐺3 and adds their attributes.
Upon event #4 (time T_4): Both 2 4 and 2 6 are restored.
VP1 (resp. VP2) receives an update that announces the primary
path from 2 (resp. 6) to p1 . These two updates have the same
attributes as the updates collected upon event #2 and are correlated
in time. GILL does not build a correlation group but increases by
one the weight of 𝐺2.
Settings. GILL has the following two parameters:
Correlation time window: Maximal time between two updates such
as GILL considers them as correlated in time. Default is 100s to
accommodate typical convergence delays [30].
Correlation groups construction time: Time during which GILL pro-
cesses all updates for a given prefix and builds its correlation groups.
The construction time must be long enough to ensure that corre-
lation groups are representative of the actual correlation between
updates received by VPs. We tested values for this parameter from
one to ten days, with ten different update periods for each value.
We found that after two days the ranking (in terms of weights)
of correlation groups had a 94% probability of being the same as
if we used another training set of the same size. This number is
95.8% when taking ten days, and 81% when taking one day. We
believe that two days is a reasonable tradeoff between stability and
computational expenses.

17.2 Finding redundant updates per prefix
Pointer: This section details Step 2 of component #1 in §6.

Quick reminder. GILL finds redundant updates using the con-
structed correlation groups and an update reconstitution algo-
rithm that relies on a new metric called the reconstitution power.

Formal definition of the reconstitution power. We denote
𝐶𝑜𝑟𝑟 (𝑝,𝑢) the list of correlation groups for prefix 𝑝 and that in-
cludes the attributes of update 𝑢. We denote𝑚𝑎𝑥𝑤𝑒𝑖𝑔ℎ𝑡 (G, 𝑡) the
function that takes as input the set G of correlation groups, returns
the update attributes included in the correlation group with the
highest weight, and builds the corresponding updates by setting the
timestamps to 𝑡 and the prefixes to 𝑝 . If multiple correlation groups
have the same highest weight,𝑚𝑎𝑥𝑤𝑒𝑖𝑔ℎ𝑡 (G, 𝑡) takes one of them
randomly. We denote U(𝑝,𝑢, 𝑡) the set of updates reconstituted
from update 𝑢 with prefix 𝑝 received at time 𝑡 :

U(𝑝,𝑢, 𝑡) =𝑚𝑎𝑥𝑤𝑒𝑖𝑔ℎ𝑡 (𝐶𝑜𝑟𝑟 (𝑝,𝑢), 𝑡)

G2 Weight: 1

PathVP
VP1

VP2 6 2 4

2 4

G3 Weight: 1

PathVP
VP1

VP2 6 3 1 4

2 1 4

G1 Weight: 1

PathVP
VP1

VP2 6 2 1 4

2 1 4

G2 Weight: 1

PathVP
VP1

VP2 6 2 4

2 4

G1 Weight: 1

PathVP
VP1

VP2 6 2 1 4

2 1 4

G1 Weight: 1

PathVP
VP1

VP2 6 2 1 4

2 1 4

G1 Weight: 1

PathVP
VP1

VP2 6 2 1 4

2 1 4

G2 Weight: 2

PathVP
VP1

VP2 6 2 4

2 4

G3 Weight: 1

PathVP
VP1

VP2 6 3 1 4

2 1 4

Event #1 (time T_1)
Link fails2 4

Event #2 (time T_2)
Link restored2 4

Event #3 (time T_3)
Link fails
Link fails

2 4
2 6

Event #4 (time T_4)
Link restored
Link restored

2 4
2 6

1 3

4

7

5
6

2
VP1

VP2
p1

1 3

4

7

5
6

2
VP1

VP2
p1

1 3

4

7

5
6

2
VP1

VP2
p1

1 3

4

7

5
6

2
VP1

VP2
p1

Updates collected: Updates collected: Updates collected: Updates collected:
VP1

VP2 6 2 1 4

2 1 4p1

p1

VP1

VP2 6 2 4

2 4p1

p1

VP1

VP2 6 3 1 4

2 1 4p1

p1

VP1

VP2 6 2 4

2 4p1

p1

Correlation Groups

Figure 10: An example of howGILL builds correlation groups
for prefix p1.

Consider now a set of updates 𝛽 and a subset of it 𝛼 , and assume that
𝑢 (𝑡) is the timestamp of an update𝑢. Consider also that two updates
are identical if all their attributes are identical (VP, prefix, AS path,
communities) and the difference between their two timestamps is
lower than 100s. The reconstitution power (denoted 𝑅𝑃) indicates
how well we can reconstruct 𝛽 from 𝛼 and is defined as follows:

𝑅𝑃 (𝛽, 𝛼) =
�����
(⋃
𝑢∈𝛼

U(𝑝,𝑢,𝑢 (𝑡))
) ⋂

𝛽

����� /|𝛽 |
Observe that

⋃
𝑢∈𝛼 U(𝑝,𝑢,𝑢 (𝑡)), i.e., the set of updates recon-

stituted from all updates in 𝛼 can include updates that are not
in 𝛽 . However, these incorrectly reconstituted updates (or "false
positives") are ignored (operator

⋂
) in the reconstitution power

definition, which only focuses on updates in 𝛽 that are correctly
reconstituted (the "true positive rate"). Incorrectly reconstituted
updates occur when two updates 𝑢1 and 𝑢2 with the same prefix,
VP, AS path, and community values but received at time 𝑡1 and 𝑡2
(with |𝑡1 − 𝑡2 | >100s) appear correlated with distinct sets of updates,
which results in 𝑢1 and 𝑢2 being in two different correlation groups.
Thus, reconstituting updates from 𝑢1 might result in reconstituting
updates that appear with𝑢2 but adding to them timestamp 𝑡1, which
leads to incorrectly reconstituted updates.
Explanation of the reconstitution algorithm (with example).
After building the correlation groups (§17.1), GILL greedily builds
the set of least redundant updates 𝛼 , i.e., in each iteration GILL
adds to 𝛼 the update in 𝛽 \ 𝛼 that best improves the reconstitution
power. GILL adds to 𝛼 either all updates received by a VP, or none
because GILL generates filters that match on the VP and the prefix
and cannot discriminate updates based on AS path or community
values (see §7).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

0 0.25 0.5 0.75 1
|α|/|β|

0

0.5

1

R
ec

on
st

itu
tio

n
Po

w
er

Figure 11: Reconstitution power as a function of the propor-
tion of discarded updates (|𝛼 |/|𝛽 |).

In the scenario depicted in Fig. 10, the set of initial updates 𝛽
contains the eight updates induced by the four events (the i-th
update is denoted 𝑈𝑖):
𝑈1: Time T_1; VP: VP1 ; Prefix: p1 ; AS path: 2 1 4
𝑈2: Time T_1; VP: VP2 ; Prefix: p1 ; AS path: 6 2 1 4
𝑈3: Time T_2; VP: VP1 ; Prefix: p1 ; AS path: 2 4
𝑈4: Time T_2; VP: VP2 ; Prefix: p1 ; AS path: 6 2 4
𝑈5: Time T_3; VP: VP1 ; Prefix: p1 ; AS path: 2 1 4
𝑈6: Time T_3; VP: VP2 ; Prefix: p1 ; AS path: 6 3 1 4
𝑈7: Time T_4; VP: VP1 ; Prefix: p1 ; AS path: 2 4
𝑈8: Time T_4; VP: VP2 ; Prefix: p1 ; AS path: 6 2 4
After one iteration, the reconstitution algorithm returns 𝛼 =

(𝑈2,𝑈4,𝑈6,𝑈8). The four updates all come from VP2 and enable
the reconstitution of 𝛽 entirely. In fact:
𝑈2 (in 𝐺1) leads to the reconstitution of 𝑈1 (also in 𝐺1)
𝑈4 (in 𝐺2) leads to the reconstitution of 𝑈3 (also in 𝐺2)
𝑈6 (in 𝐺3) leads to the reconstitution of 𝑈5 (also in 𝐺3)
𝑈8 (in 𝐺2) leads to the reconstitution of 𝑈7 (also in 𝐺2)

Observe that 𝛽 cannot be entirely reconstituted if 𝛼 contains the
four updates collected by VP1 . In fact,𝑈1 and𝑈5 have identical at-
tribute values but appear correlated to different updates throughout
time (𝑈1 is correlated to𝑈2 and𝑈5 is correlated to𝑈6). Thus, either
𝑈2 or𝑈6 is not reconstituted. Besides, one update is inevitably incor-
rectly reconstituted. Either𝑈1 leads to reconstituting the following
update:
Time T_1; VP: VP1 ; Prefix: p1 ; AS path: 6 3 1 4
which is not in 𝛽 , or𝑈5 leads to reconstituting the following update
(which is also not it 𝛽):
Time T_3; VP: VP1 ; Prefix: p1 ; AS path: 6 2 1 4
In practice, we observe a strong correlation in time across up-

dates, i.e., if a set of updates appear together at time 𝑡 , then the
appearance of one update in this set in the future is likely to be
followed by all the other updates in that set. On the RIS and RV data,
we measure that among the updates that could be reconstituted
but that are not in 𝛽 ("negative" cases), only 4.6% are (incorrectly)
reconstituted ("false positive rate").
Setting. The key parameter of GILL is when to stop iterating
and adding new elements in 𝛼 . On one hand, if |𝛼 |/|𝛽 | is close to
one, the reconstitution power is close to one (the optimum), but at
the expense of retaining many updates, leading to GILL building
filters that retain too many updates. On the other hand, if |𝛼 |/|𝛽 |

is close to zero, the reconstitution power is low, resulting in many
nonredundant updates being discarded by the generated filters.
This trade-off is visible in Fig. 11, which plots the reconstitution
factor for different values of |𝛼 |/|𝛽 |. Logically, the first updates
added to 𝛼 improve the reconstitution factor significantly. Once the
reconstitution factor reaches 0.94, adding new updates to 𝛼 has a
more limited impact on the reconstitution factor. GILL thus stops
iterating when the reconstitution factor reaches 0.94.

17.3 Finding redundant updates
across prefixes

Pointer: This section details Step 3 of component #1 in §6.

Quick reminder. BGP routes to different prefixes can be sub-
ject to similar updates. For instance, a VP likely observes the
same route updates toward two prefixes announced by the same
AS, which is the case for prefixes p1 and p2 in Fig. 5. Thus,
the compound (for all prefixes) set of nonredundant updates
returned by our algorithm (executed per-prefix) in §17.2 may
include redundant updates.

Explanation of the algorithm used to find redundant updates
across prefixes. GILL finds redundant updates across prefixes
using the following algorithm: (i) it splits the sets of per-prefix
nonredundant updates returned by our algorithm in §17.2 into
distinct subsets based on the sending VP (ii) among all the found
subsets, GILL identifies the ones that contain updates with identical
attributes (except for the prefixes, and with a 100s slack for the
timestamps) and (iii) for every group of identical subsets, GILL
classifies the updates in one subset as nonredundant and the updates
in the other subsets as redundant. In Fig. 5, our algorithm in §17.2
finds the same set of nonredundant updates for both p1 and p2 .
Thus, GILL classifies the set of nonredundant updates for p1 as
redundant whereas the set of nonredundant updates for p2 remains
classified as nonredundant.

18 REPRODUCIBILITY DETAIL:
SELECTING ANCHOR VPS

We explain (with formalization) the algorithm used by GILL to
find anchor VPs and provide the methodology used to select its
parameters. We refer the reader to §6 (component #2) for a more
succinct description that focuses on the fundamental intuition and
principles.

We consider the set of VPs 𝑉 that includes all VPs from RIS and
RV. We compute the RIB of VP 𝑣 at time 𝑡 using its last RIB dump
before 𝑡 and subsequent updates until 𝑡 . We use this RIB to construct
and maintain the directed weighted graph 𝐺𝑣 (𝑡) = (𝑁𝑣 (𝑡), 𝐸𝑣 (𝑡))
from the AS paths of the best routes observed by 𝑣 at time 𝑡 , with
𝑁𝑣 (𝑡) the set of nodes and 𝐸𝑣 (𝑡) ∈ 𝑁𝑣 (𝑡) ∗𝑁𝑣 (𝑡) the set of AS links.
The edges are directed because two identical paths in opposite
directions should not appear as redundant. Each edge in 𝐸𝑣 (𝑡) has a
weight in Z+ which is the number of routes in the RIB that includes
this edge in their AS path.

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

ID Name # of ASes Avg.degree Description

1 Stub 63310 3 ASes without customer

2 Transit-1 10845 27 Transit ASes with a customer
cone size lower than the average

3 Transit-2 704 267 Transit ASes ∉ Transit-1

4 HyperGiant 15 1078 Top 15 as defined in [10]

5 Tier1 19 1817 Tier1 in the CAIDA dataset [19]

Table 5: GILL balances selected events across AS types.

18.1 Select BGP events to assess redundancy
Pointer: This section details Step 1 of component #2 in §6.

Quick reminder: GILL uses non-global BGP events to evaluate
pairwise redundancy between VPs. GILL stratifies its sample of
events across space and time to avoid bias.

GILL uses local and partially visible BGP events. To assess
redundancy, GILL focuses on BGP events that trigger topological
changes: new-link events (i.e., a new link that appears in the view
of at least one VP), outages (i.e., edges that disappear from the view
of at least one VP), and origin changes (either legitimate or not). An
event is a candidate if it has been seen by at least one VP and less
than 50% of them. As mentioned in §6, GILL excludes global events,
as it aims at finding unique pieces of data in each individual VP.
GILL avoids biases across time and location. From a candidate
set of events, GILL builds the final set of events E by selecting 2250
non-overlapping events (we find that using more events does not
change the performance of GILL), among which 750 are new-edge
events, 750 are outages, and 750 are origin changes. GILL infers
the start and end of these events by processing all the data that it
collects using its out-of-band filtering system (described in §8).

Inspired by previous approaches to mitigate the risk of over-
sampling core or stub (edge) ASes [44, 57], our approach classifies
ASes into five categories (Table 5) and selects an equal number of
events for every pair of AS categories. The AS pair for new-link and
outage events corresponds to the two ASes at both ends of the link.
For origin change, it corresponds to the old and new origins. We
distinguish two classes of transit providers by customer cone size
(Transit-1 and -2) since they have different topological properties.
If an AS belongs to more than one category, we classify it in the
category with the highest ID. ASes classified in a lower row of
Table 5 have a higher degree, and there are more low-degree ASes
than high-degree ASes.

Fig. 12 shows the proportion of selected events for each of the
15 pairs of AS category (the matrices are symmetric) and for 2250
events selected in Sept. 2023 using two schemes: balanced and
random. The random selection (Fig. 12b) selects many more events
involving Transit-2 ASes (69%) than hypergiants (11%), while our
balanced selection scheme mitigates biases by selecting the same
number of events in every category (Fig. 12a). GILL selects 50 new
links, outages, and origin changes in each of the 15 pairs of ASes,
yielding 15 ∗ 3 ∗ 50 = 2250 events (|E | = 2250) used in next step.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Stub
Transit-1

Transit-2

Hypergiant
Tier-one

Stub

Transit-1

Transit-2

Hypergiant

Tier-one

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07

(a) Balanced selection.

Stub
Transit-1

Transit-2

Hypergiant
Tier-one

Stub

Transit-1

Transit-2

Hypergiant

Tier-one

0.01 0.07 0.15 0.01 0.02

0.07 0.03 0.12 0.02 0.05

0.15 0.12 0.11 0.05 0.26

0.01 0.02 0.05 0.00 0.03

0.02 0.05 0.26 0.03 0.08

(b) Random selection.

Figure 12: GILL selects events using a balanced selection
scheme that reduces bias. The x- and y-axes are the five cate-
gories of ASes (see Table 5).

18.2 Quantifying observation of VPs
Pointer: This section details Step 2 of component #2 in §6.

Quick reminder: GILL evaluates how each VP experiences the
selected events by computing the impact that they induce on
topological features. These features embed information about
time, prefix, AS path, and communities.

GILL considers the four main BGP attributes. GILL computes
the impact of each event on the topological features [9, 22, 54]
of graph 𝐺𝑣 (𝑡) for all VPs. The combination of these topological
features prevents overfitting as the graphs on which they are com-
puted embed information about the four main BGP attributes (§2).
More concretely, the graphs 𝐺𝑣 (𝑡) embed information about (i) the
time as the graph is built until a given time, (ii) the AS path as it is
used to build the AS graph, (iii) the prefixes, used to weight every
edge on the graph, and (iv) the community values, which strongly
correlate with the AS path. We confirm this correlation by down-
loading the first RIBs of Sept. 2023 for all VPs and analyzing the
correlation between the AS path and the set of BGP communities.
We find that two identical AS paths share the exact same set of
BGP communities in 93% of the cases. GILL thus does not embed
more information about BGP communities in 𝐺𝑣 (𝑡) because many
of them encode local traffic engineering decisions [20] that could
lead to overfitting. We validate this design choice in §10.
GILL uses 15 diverse topological features (Table 6). GILL com-
putes topological features (extracted from literature [9, 22, 54]) that
are either node-based or link-based. GILL computes node-based fea-
tures for the two ASes involved in each event, while GILL computes
link-based for the AS pair. GILL uses six node-based features that
we classify into three categories. The first one quantifies how cen-
tral and connected a node is; the second quantifies how connected
are the neighboring nodes; and the third quantifies the topological
patterns that include the node. We classify the three pair-based
features into a single category that measures how close two nodes
are based on their neighboring nodes. Five features rely on edge
weights. We omit other topological features as they are redundant
with the selected ones.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia T. Alfroy et al.

Type Categorie Name Weighted Index

N
o d

e-
ba

se
d

Centrality Metrics Closeness centrality ✓ 0
Harmonic centrality ✓ 1

Neighborhood Richness Average neighbor degree ✓ 2
Eccentricity ✓ 3

Topological Pattern Number of Triangles × 4
Clustering ✓ 5

Pa
ir
-b
as
e d

Closeness Metrics
Jaccard × 6

Adamic Adar × 7
Preferential attachment × 8

Table 6: Node-based and pair-based features.

GILL computes the impact of each event on the features for
each VP. Consider event 𝑒 ∈ E that involves two ASes 𝑒𝐴𝑆1
and 𝑒𝐴𝑆2, starts at time 𝑒𝑠 , and ends at time 𝑒𝑒 . 𝑣 is a VP ∈ 𝑉 .
Computation of the feature values depends on the feature type.
We denote 𝐹𝑛 (resp. 𝐹𝑝) the set of node-based (resp. pair-based)
features and show how GILL computes the value of these two types
of features for event 𝑒 and VP 𝑣 .
Node-based features: Consider feature 𝑓𝑖 ∈ 𝐹𝑛 and 𝑓𝑖 (𝑥,𝐺𝑣 (𝑡)) its
value for node 𝑥 on graph𝐺𝑣 (𝑡), with 𝑖 the feature index in Table 6.
GILL computes the following 12-dimensional feature vector.

𝑇𝑛𝑜𝑑𝑒_𝑏𝑎𝑠𝑒𝑑 (𝑣, 𝑒) = [𝑓0 (𝑒𝐴𝑆1,𝐺𝑣 (𝑒𝑠)) − 𝑓0 (𝑒𝐴𝑆1,𝐺𝑣 (𝑒𝑒)),
𝑓0 (𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑠)) − 𝑓0 (𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑒)),

. . . , 𝑓5 (𝑒𝐴𝑆1,𝐺𝑣 (𝑒𝑠)) − 𝑓5 (𝑒𝐴𝑆1,𝐺𝑣 (𝑒𝑒)),
𝑓5 (𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑠)) − 𝑓5 (𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑒))]

Pair-based features: Consider feature 𝑓𝑖 ∈ 𝐹𝑝 and 𝑓𝑖 (𝑥1, 𝑥2,𝐺𝑣 (𝑡))
its value for the node pair (𝑥1, 𝑥2) on the graph 𝐺𝑣 (𝑡), with 𝑖 the
feature index in Table 6.GILL computes the following 3-dimensional
feature vector.

𝑇𝑝𝑎𝑖𝑟_𝑏𝑎𝑠𝑒𝑑 (𝑣, 𝑒) = [𝑓6 (𝑒𝐴𝑆1, 𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑠)) − 𝑓6 (𝑒𝐴𝑆1, 𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑒)),
. . . , 𝑓8 (𝑒𝐴𝑆1, 𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑠)) − 𝑓8 (𝑒𝐴𝑆1, 𝑒𝐴𝑆2,𝐺𝑣 (𝑒𝑒))]

The final feature vector is 𝑇 (𝑣, 𝑒), a 15-dimensional vector that
concatenates (⊕) the node- and pair-based features.

𝑇 (𝑣, 𝑒) = 𝑇𝑛𝑜𝑑𝑒_𝑏𝑎𝑠𝑒𝑑 (𝑣, 𝑒) ⊕ 𝑇𝑝𝑎𝑖𝑟_𝑏𝑎𝑠𝑒𝑑 (𝑣, 𝑒)

18.3 Redundancy scoring
Pointer: This section details Step 3 of component #2 in §6.

Quick reminder: GILL computes the pairwise redundancy
scores between VPs, i.e., it computes the pairwise Euclidean
distance between the feature vectors of each pair of VPs. GILL
then computes the average pairwise Euclidean distance between
each pair of VPs over all events.

Step 1: Normalize feature vectors. GILL normalizes the data
for each event 𝑒 using the feature matrix M(𝑒) that includes the

feature vectors for all VPs (one per row).

M(𝑒) =

𝑇 (𝑣0, 𝑒)
. . .

𝑇 (𝑣 |𝑉 | , 𝑒)


GILL normalizes (operation ▽) the matrixM(𝑒) column-wise using
a standard scaler that transforms every column such that its average
is zero and its standard deviation is one.
Step 2: Compute Euclidean distance between VPs. GILL uses
the normalized matrix ▽(M(𝑒)) to compute the Euclidean distance
between every pair of VPs and for event 𝑒 (operation ⋄). We denote
▽(M(𝑒))𝑥 the x-th row in the matrix ▽(M(𝑒)) and ▽(M(𝑒))𝑥,𝑖
its value at index 𝑖 (i.e., the i-th column). We define the Euclidean
distance between the n-th VP 𝑣𝑛 and the m-th VP 𝑣𝑚 for event 𝑒 as
follows.

⋄(𝑣𝑛, 𝑣𝑚, 𝑒) =
15∑︁
𝑖=0

(▽(M(𝑒))𝑛,𝑖 − ▽(M(𝑒))𝑚,𝑖)2

Step 3: Compute the average distance over all time periods.
The redundancy scoreR(𝑣𝑛, 𝑣𝑚) between two VPs 𝑣𝑛 and 𝑣𝑚 relates
to the normalized average Euclidean distance between them over
the 2250 events, computed as:

R(𝑣𝑛, 𝑣𝑚) = 1 −
∐

((
∑︁
𝑒∈E

⋄(𝑣𝑛, 𝑣𝑚, 𝑒)) ∗
1
|E |)

The operator
∐

applies a min-max scaler so that scores are between
0 and 1, with 1 meaning the most redundant pair of VPs and 0 the
least redundant pair of VPs. GILL thus computes and returns a
redundancy score for every pair of VPs.

18.4 Generating a set of anchor VPs
Pointer: This section details Step 4 of component #2 in §6.

Quick reminder: GILL selects a set of anchor VPs, considering
redundancy and volume. GILL considers the volume of data gen-
erated by each VP as we observe that some export (sometimes
significantly) more updates than others.

GILL generates the set of anchor VPs O that minimizes the pro-
portion of redundant information collected. GILL initializes the set
O with the most redundant VP, i.e., the one with the lowest sum of
Euclidean distances to all the other VPs. This design choice allows
the redundant part of the BGP data (e.g., c2p links) to be visible by
the first selected VP. Thus adding VPs that have unique views is
easier. At every subsequent iteration, GILL builds a candidate set
of VPs K that contains the unselected VPs exhibiting the lowest
maximum redundancy score. The maximum redundancy score 𝑃
measures the maximum redundancy between a VP 𝑣 and the set of
VPs O and is defined as follows.

𝑃 (O, 𝑣) = max(R(𝑣, 𝑣𝑖),∀𝑣𝑖 ∈ O)
GILL adds to K the 𝛾 = 10% of the nonselected VPs that exhibit the
lowest maximum redundancy score.

GILL then adds to setO the VP in the candidate setK that collects
the lowest volume of data compared to the other VPs in K . This
allows GILL to select VPs that have a good balance between volume
of collected data, and unique information added. GILL estimates

The Next Generation of BGP Data Collection Platforms ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

the volume of data collected by the VPs by counting the number of
updates that they received over 365 one-hour periods, one randomly
selected each day of the year to align with the yearly update rate of
GILL’s anchor VPs (§6). The 𝛾 parameter allows tuning redundancy
and volume knobs: a low 𝛾 prioritizes low redundancy while a
higher 𝛾 prioritizes low resulting data volume. We found that 𝛾 =

10% performs well in practical scenarios (we tested a range from 1%
to 50%). GILL stops adding new VPs to O when every nonselected
VP has a pairwise redundancy score equal to one with at least one
VP to O. With the RIS and RV VPs, we observe that the default
value is 178.

	Abstract
	1 Introduction
	2 Background
	3 Increasing Coverage
	3.1 Limitations of low VP coverage
	3.2 Scaling challenges in data collection

	4 Redundancy in BGP data
	4.1 Motivating example
	4.2 Exploring redundancy in the BGP data

	5 GILL's Key principles
	6 GILL's sampling algorithms
	7 GILL's filter generation
	8 Software
	9 GILL is up and running
	10 Benchmarking GILL's sampling
	11 long-term impact
	12 Immediate benefits
	13 Related work
	14 Future directions
	References
	15 Appendices
	16 Survey
	17 Reproducibility details:Finding redundant updates
	17.1 Building groups of correlated updates
	17.2 Finding redundant updates per prefix
	17.3 Finding redundant updatesacross prefixes

	18 Reproducibility detail:Selecting anchor VPs
	18.1 Select BGP events to assess redundancy
	18.2 Quantifying observation of VPs
	18.3 Redundancy scoring
	18.4 Generating a set of anchor VPs

