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Abstract
The lottery is a very lucrative industry. Popular fascination often focuses on the larg-
est prizes. However, less attention has been paid to detecting unusual lottery buy-
ing behaviors at lower stakes. Our paper introduces a new model to detect illegal 
discounting in the North Carolina Education Lottery using statistical analysis of 
net gains and ticket buying habits. Nine outlying players are flagged and are further 
examined using a proposed stochastic model to calculate the range of their possible 
losses in the lottery. The unusual buying patterns of the players flagged as outliers 
are further confirmed using a K-means clustering analysis of lottery store visiting 
behaviors.

Keywords Illegal lottery discounting detection · Entropy · K-means · Stochastic 
model

1 Introduction
The North Carolina Education Lottery (NCEL) is a thriving business, with 

sales of $2.86 billion in 2019. We periodically see unimaginably large jackpots 
covered in the news. It is normal for some lucky players to win a single large prize 
in the lottery, but it is unlikely for any given player to win multiple large prizes. 
North Carolina law (N.C.G.S. §18C) dictates that any prizes exceeding $600 
must be redeemed at a state approved facility and certain information about the 
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winner are considered public record, while smaller prizes can be redeemed in per-
son without creating a permanent record. Therefore we will refer to a prize over 
$600 as recorded prize. Based on the published prize probabilities of 44 games on 
https:// nclot tery. com comprising a variety of costs and game types, the likelihood 
of winning a recorded prize ranges from 0.00119 to 0.000000844 with median 
0.0002. (For more details see the supplementary material.)

If a lottery player owes back taxes, child support, or some other public debt, 
the winnings would be used first to satisfy this liability (e.g., N.C.G.S. §18C134). 
Therefore such a person might illegally choose to sell a winning ticket to another 
person at a discount in order to avoid the government garnishing the winnings 
(Off and Bell 2016). In a recent case, both a father and son were found guilty of 
engaging in lottery ticket discounting, which amounted to over 20 million dollars 
in illegally claimed lottery tickets (Dotson, 2023). However, high-volume lottery 
players that are not involved in such illicit schemes may also win many prizes 
over $600. In the short term, individuals may experience luck in winning multi-
ple prizes. However, in the long term, they would incur losses as they regress to 
the expected lottery return rate. Our goal is to propose a way to help distinguish 
between discount ticket purchasers and regular high-volume lucky players. Recent 
articles have developed total net winnings estimation techniques for people with 
a large number of recorded prizes as part of similar efforts to distinguish high-
volume lottery players from people with more sinister intentions. In (Arratia et al. 
2015) the authors find high-probability lower bounds for total net winnings using 
an optimization approach. They deduce that a particular lottery player in Florida 
who won 252 large prizes across many games over the course of three years would 
have had to spend at least $2 million if all the tickets were purchased fairly. This 
finding was alarming enough to draw the attention of law enforcement. Stong and 
Garibaldi (Strong and Garibaldi 2020) find similarly high minimum loss lower 
bounds when playing repeated-draw games like Pick 4 even with optimal betting 
strategies. However, these papers made no mention of the impact of small lottery 
prizes. Consistently winning small prizes could give the player the impression that 
they are not losing as much, as some of the smallest wins might be immediately 
used to purchase more lottery tickets (practice called “reinvesting” among habitual 
players). Moreover, the majority of lottery-winning prizes consist of small prizes. 
For example among the 44 representative games the probability of winning less 
than $600 is significantly higher than the probability of winning a recorded prize. 
Therefore, there is a lot of uncertainty due to the effect of small prizes when esti-
mating a player’s net loss incurred in order to win a certain number of times. In 
this paper, we propose a simulation based approach for estimating potential spread 
of small prize winnings based on the actual revenue distribution in North Carolina 
lottery games. Finally, according to Guryan and Kearney (Guryan and Kearney 
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2005), ”consumers appear to form habits of where they shop.” Therefore, if a 
person is engaging in illegal discounting, that person will be claiming prizes 
from a much wider range of stores than a single legitimate player. Thus we 
combine two approaches to identify suspicious players. First, we estimate the 
total amount one must spend to win many recorded prizes. Second, we identify 
people with an unusual distribution of stores where they purchased their win-
ning tickets. Hopefully by combining these two approaches we avoid flagging 
out players who are truly legitimate high-volume players.

2 Data
Via a Freedom of Information Act request on March 20, 2020, we received 

the data from North Carolina Education Lottery officials. They contain infor-
mation about winning lottery prizes above $600 from 597 North Carolina Edu-
cation lotteries from March 31st, 2006, to January 31st, 2020, just before the 
U.S. COVID pandemic outbreak. People with a winning prize of less than $600 
can directly declare at the point of purchase without providing identification 
information. People who win more than $600 must go to regional claims cent-
ers and fill out an NCEL winner claim form. Our data is built upon the NCEL 
winner claim form. Therefore, each row of our data is a single recorded prize. 
For each recorded prize, we have the following features: the winner’s full name, 
city, county, game type, prize amount, lottery name, declared place, paid date, 
selling retailer name, and selling retailer address. Though this data provides 
winners’ names, we anonymize them in this paper. In all, 391,791 winning 
prizes were recorded, with 197,930 unique winners collecting these prizes.

2.1 Data Visualization

We present several plots investigating overall patterns among players who 
have won large prizes. Recall that our dataset only contains information about 
recorded wins (wins over $600). Therefore whenever we refer to a win in this 
section, we specifically mean a recorded win.

To get an overall sense of how the 391,791 wins are distributed among the 
197,930 players in the data set, we generated a graph that visually represents 
that distribution. Note that the vertical axis is logarithmic in Fig. 1 as the vast 
majority of players in the data set have very few wins.

As the number of wins increases, there is a significant decline, with only 
approximately 1,000 individuals achieving six or more big wins. Fewer than 
100 individuals managed to secure at least 49 big wins. The highest number 
of wins for prizes over $600 is recorded at 277, marking an exceptional outlier 
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within the dataset. Our primary interest is mostly in players towards the higher 
end of this distribution and our main task is distinguishing legitimate high-vol-
ume players from discounters.

We also conducted a preliminary investigation into the types of lotteries that 
have the highest number of significant prizes. Figure 2 illustrates the lotteries with 
most number of recorded prizes.

The lottery with the highest number of recorded wins is Pick 4, followed by 
a mix of online and scratch-off lottery games. The high number of wins in Pick 4 
can be attributed to its popularity and relatively favorable odds. The only way to 
win a prize exceeding $600 is by matching the exact four numbers drawn in each 
lottery period, which is 1 in  104.

When we started this study, we held an assumption that most lottery players, 
and especially habitual players, had a small number of favorite stores where they 
purchased tickets. This assumption is a key component of our proposed method 
for discriminating between legitimate players and discounters. Therefore, we also 
explore the distribution of the number of stores at which each player won a big 
prize in the same manner as the distribution of the number of wins.

The distribution of stores is similar to the distribution of wins among players. 
Given that the majority of players experienced a single win, it is expected that 
they only won in a single store. As we move towards players with multiple wins, 
the number of individuals sharply decreases, with approximately 1,000 winners 

Fig. 1  Scatter plot of  log10 of people who won at least x times (y axis) vs the number of wins (x axis). Each 
dot corresponds to the total number of players who won a big prize at least x times
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having obtained their big prizes from at least four different stores. Only around 
100 players won big prizes in at least 18 different stores. Comparing to the data in 
Fig. 1 where around 100 players won around 49 times, we can conclude that many 
high-volume players are likely playing at only a few specific stores. In contrast, 
the most exceptional player in our dataset won prizes that were distributed across 
86 different stores.

3 Methods
A naive approach to identifying unusual lottery activity would be looking for 

players with the most wins. However, different lotteries vary in chances to win 
large prizes. According to https:// nclot tery. com, the Power Ball has a probabil-
ity of winning over $600 as low as 1.984933 ×  10−7, while the $30 scratch-off 
– Ultimate Millions has a chance to win at least $600 over 0.0009. An Ultimate 
Millions player would win many more prizes above $600 than a Power Ball player 
given similar frequencies of lottery purchasing. Since numbers of wins alone do 
not adequately measure behavior, we instead focus on net monetary winnings as 
our metric for how intensively people play the lottery. We predict the net win-
nings using a geometric distribution-based model that accounts for unrecorded 
small prizes (less than $600). However, attempting to identify potentially suspi-
cious players by estimated net winnings alone will still result in including both 
legitimate habitual players and discounters. Therefore, to identify persons who are 
suspected of ticket discounting, we also look into the players ticket buying behav-
ior measured by entropy of the distribution of stores where their winning tickets 

Fig. 2  Top 10 lottery games by number of recorded wins
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were bought. See Fig. 3 for a plot of these two metrics for every player in the 
dataset. In order to assess whether individuals with high potential losses and high 
entropy are suspicious or simply exceptionally lucky, we investigate their winning 
pattern using a stochastic model.

3.1 Estimation of Mean Net Gain

When an individual participates in a lottery, they are purchasing tickets in the 
hopes of winning a large prize. The number of tickets they need to buy before 
achieving a big win is like a geometric distribution, with the probability p of win-
ning the large prize on a single ticket. However, we need to consider more then the 
number of tickets bought when considering average net winnings associated with a 
big prize. Individuals also win numerous unrecorded small prizes on the way to a big 
prize. Thus to calculate the overall net gain or loss for each lottery winner, we must 
consider the number of tickets purchased before winning a recorded prize and any 
smaller prizes (less than $600) the person may receive from those tickets. Since our 
goal is to first identify people who likely have outlying losses, we propose a simple 
and computationally efficient method to estimate expected values of those losses. A 
more realistic simulation based model is proposed in Section 3.3 to further investi-
gate players identified by this simple method.

To account for small prizes, we find the overall return rate of lotteries in NC. 
The return rate (R) of a lottery is defined as the percentage of money that individuals 
anticipate gaining from a single lottery purchase. This rate is determined by dividing 
the total money won (gall) from both big prizes (over $600) (gbig) and small prizes 
(less than $600) (gsmall) by the total money spent on lottery tickets (sall). However, 
since now we focus on calculating the losses incurred to win a single big prize, 
where the big prize amount is already known, we are mainly interested in the return 
rate of small prizes. Therefore, we define the small price return rate of a lottery (Rs) 
in our paper as the percentage of small prizes (less than $600) that an individual can 
anticipate receiving from a single lottery purchase. This rate is calculated by divid-
ing the total value of all prizes by the total amount of money spent on lottery tickets, 
while subtracting the sum of prizes exceeding $600,

We investigated the overall lottery return rate of NC and calculated the return 
rate of NC lotteries from 2007-2019 (the same full year time range of our dataset) 
according to the lottery report from the United States Census Bureau and the big 
prizes recorded in our dataset. Figure 4 shows a graph of both the overall return 
rate (R, in blue) and the return rate for small prizes (Rs, in red) from 2007 to 2019. 

R =
gall
sall

, gsmall = gall − gbig,Rs =
gsmall
sall

.
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As can be seen from Fig. 4, the return rate of unrecorded prizes for commonly 
played lottery games is nontrivial, meaning that the number of small prizes won 
could be significant before a winner wins a recorded prize.

We use the mean of the geometric distribution to calculate the expected 
cost needed (E[Ni,jCi,j] = Cj/pj) to win one prize (j) for one player (i) of over 
$600. For each game (j) The cost to play (Cj) and the probability (pj) of win-
ning a prize over $600 can be calculated from the information provided by the 
NC lottery website (https:// nclot tery. com, accessed on 9/2/2023).

However, there is a large number of games that has been offered over the 
years and some of the information is no longer available on the NC lottery 
website. Therefore we decided to estimate an overall cost to win a small price 
by a weighted average of Ci/pi from 44 different types of games, with prices 
ranging from $1-$30. In particular we estimate E[Ni,jCi,j

]

≈

∑

j Oj∕pj
∑

j Oj∕cj
 , where Oj is 

the number of times the game j was recorded as a win in our database. The esti-
mated value is E[Ni,jCi,j] ≈ 12947.63.

The expected return rate from small prizes E[Rs] is estimated as 0.5677 using 
the average return rate for small prizes from Fig. 4. The recorded prize won on 
a certain record j in the winning history of player i is denoted as Pi,j

b . Thus, the 
mean net gain (E[Gi,j]) of one single recorded win (j) of a particular player (i) is:

(1)E
[

Gi,j

]

= Pb
i,j
− E

[

Ni,j,Ci,j

]

∗ (1 − E
[

Rs

]

)

Fig. 3  Scatter plot of  log10 of people who won in at least x stores (y axis) vs the number of stores (x axis). 
Each dot corresponds to the total number of winners who won a big prize at in least x stores
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We compute the estimated mean net gain for every recorded prize j of each 
player. The total mean net gain (E[Gi]) for one player is the sum of the mean 
net gains for each recorded prize. For example, if a winner won a $600 prize, 
the expected net gain for that prize would be 600 − 12947.63 × (1 − 0.5677) = 
−4997.26.

The resulting mean net gains vary by several orders of magnitude among play-
ers in our data set. Therefore we employ a logarithmic transformation in graphical 
displays involving mean net gain, e.g. Fig. 3. In particular we will plot the log 
mean net loss Notice, that players who are estimated to make money have their 
log loss displayed as 0 in Figs. 3 and 5.

3.2 Entropy

As observed in Fig. 6, among players who have won more than once, the number 
of wins they have is considerably lower than the number of stores in which they have 
won big prizes. This suggests that a significant portion of the big players exhibit a 
preference for certain stores when purchasing lottery tickets, rather than choosing 
points of purchase in their vicinity at random. Therefore, players with many apparent 
wins across many stores are more likely to be potential ticket discounters. We quan-
tify the range of lottery purchasing behaviors using entropy of the distribution of 
wins per store. Large entropy may be indicative of a suspicious player. The entropy 
(Ei) for each player(i) is defined as:

Fig. 4  Return rate and return rate for small prizes (in %) of NC lottery from 2007 - 2019. For example, for 
every dollar spent on NC lottery tickets in 2007, about 70 cents were returned to customers in the form of prizes 
out of which about 55 cents were prizes less then $600
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(2)Ei = −

N
∑

n=1

(

Win

Wi

)

log

(

Win

Wi

)

,

Fig. 5  Empirical Cumulative Distribution of Entropy for players with at least 5 wins

Fig. 6  Scatter plot of  log10 of estimated net losses (with players who made money shown as 0) on NC edu-
cation lottery (y axis) vs entropy of store distribution where winning tickets were bought(x axis). Each dot 
corresponds to an individual who won at least one prize of $600. Zero y-value corresponding to people who 
were estimated to make money. The red box shows nine suspicious individuals with both large losses and high 
entropy. The blue line shows the entropy threshold we use for the Bonferroni Adjustment
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where Win is the number of wins in a store n for player i, Wi is the total wins of the player i, and 
N is the total number of distinct stores in which player i won big prizes.

Figure 7 shows the empirical distribution function (ECDF) of the entropy val-
ues Ei for all players with at least 5 wins. Most entropy values are relatively small 
indicating concentrated distribution of the stores where players purchased their win-
ning tickets. Recall that the uniform distribution on N points has entropy of log(N). 
Moreover, close to 10% of these frequent winners purchased all their winning tickets 
in one store.

3.3 Stochastic Model for Net Gain

While the method in Section 3.1 is an computationally efficient method for 
estimating net monetary gain from the lottery for each player, this method made a 
number of simplifying assumptions. Additionally, we also want to be able to esti-
mate potential stochastic variation among the players deemed potentially suspi-
cious by the net gain and entropy metrics. This would allow us to account for any 
inadvertent inclusion of unusually lucky individuals in the detection procedure. 
Therefore, we propose a stochastic model that simulates the actual experience of 
playing the lottery according to the probability of prizes for each lottery game.

For the purposes of our analysis, we assume that the result of each instance of 
buying a lottery ticket can be treated as an independent event. This is clearly true 
for online lottery games such as Pick 4, Pick 3, Powerball, etc. because they are 

Fig. 7  Zoomed in scatter plot of  log10 of estimated net losses (with positive gains shown as 0) on NC educa-
tion lottery (y axis) vs entropy of store distribution where winning tickets were bought(x axis). Each dot cor-
responds to a individual who won at least one prize of $600 or more and has an entropy bigger than or equal to 
2.5. The red points on the graph indicate players who belong to the same cluster as the nine suspicious players 
except Winner 3. The blue points represent players who are in the same cluster as Winner 3
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based solely on the numbers selected using the state’s random number generator. 
If a player buys a scratch-off ticket, there will be one less ticket in the lottery ticket 
pool causing the probability to win the recorded prize to change. However, given 
the substantial number of tickets printed for any given scratch-off lottery (https:// 
nclot tery. com/ scrat ch- off, accessed on 9/2/2023), we can reasonably overlook any 
negligible fluctuations in the probability of winning a prize from a scratch-off 
pool over time and assume independence for scratch-offs as well.

For each player i, we define the recorded prize won on a certain winning 
ticket j in their winning history to be Pb

i,k,j
 , and the net gain for winning that sin-

gle recorded prize ( Pb
i,k,j

 ) to be Gi,k,j, where k = 1,...K are the replicate runs of the 
simulation model. For each recorded ticket, we know the type of lottery played, 
the amount won Pb

i,k,j
 , the associated ticket cost Ci,j, and the probabilities of win-

ning any prize, big or small. Thus we propose simulating all purchases leading up 
to each recorded prize, and tabulating all small prizes ( Ps

i,k,j,x
 ) won along the way. 

Here we are assuming that the player purchases tickets from the same lottery until 
they win a large prize. Once a purchase results in a prize greater than $600, the 
simulation for this recorded prize halts. We capture the number of simulated tick-
ets purchased Ni,k,j and the total amount of simulated small prizes ∑x P

s
i,k,j,x

 . The 
simulated net gain associated with this ticket for one simulation run are given by

If an individual won a single $600 prize, we would continue drawing and 
record any additional smaller prizes they accumulate until one time the prize 
value exceeds $600. For instance, let us consider a scenario where the person 
bought 100 $10 lottery tickets before winning the $600 prize. During these 100 
lottery draws, they only received 2 $20 prizes. The final total for the person’s 
$600 prize would be calculated as follows: 600 + 2 × 20 − 10 × 100 = −360.

In contrast to (1), the number of tickets purchased and the total value of small 
prizes in (3) are generated using simulation rather than expected value. The total 
net gain for a player is calculated by summing over the recorded prizes j:

For each player studied, the model is run 60,000 times. Because obtaining 
the full range of prize probabilities for each lottery is prohibitively complex, 
we select one representative lottery with approximately average win probabil-
ity at each ticket price.

The aggregated small prize probability and recorded prize probability from 
the representative lotteries are used for each simulated ticket purchased. The 

(3)Gi,kij = Pb
i,k,j

+
∑

x

Ps
i,k,j,x

− Ni,k,j ∗ Ci,j

Gi =
∑

j

Gi,j.
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selected lotteries and the prize probability for the representative lotteries can 
be seen in the supplementary material. Since the model is run 60,000 times for 
a single player, we have 60,000 different estimated net gains for each player. 
We summarize the simulation results by reporting the net gain, as well as a 
80% simulation based confidence interval based on the 60,000 simulated net 
gains. As we focus on investigating players who exhibit exceptional success 
among all habitual players, it is crucial to consider a multiple testing adjust-
ment when reporting the confidence interval for big players. In particular, we 
have applied the Bonferroni Adjustment to all the big players.

In order to use a Bonferroni adjustment, we need to estimate the number 
(B) of big players present in the dataset. Specifically, we choose B to be the 
number of individuals whose entropy (calculated in Section  3.2) exceeds the 
threshold of winning 5 big prizes in 5 distinct stores, i.e., the number of indi-
vidual winners with entropy (2) larger than log(5). This threshold selects every 
high-volume player with buying habits that span a large number of stores. 
Using our dataset, the value of B is determined to be 4320. Consequently, we 
will report the adjusted 10th percentile using the 10/4320 = 0.0023148 percen-
tile, while the adjusted 90th percentile will use the 100 − 10/4320 = 99.99769 
percentile of the 60,000 simulated net gains as the lower and upper bound of 
the 80% simulation based confidence interval.

4 Results
4.1 Initial Screening Results

As discussed at the end of Section  3.1, the calculated mean net gains var-
ied across multiple orders of magnitude, so we display the values using a base 
10 logarithm transformation. We visually inspect the data for people with both 
large losses and suspicious store buying behavior by plotting log mean net loss 
and entropy in a scatter plot (Fig. 3). The greater the losses and entropy, the more 
suspicious the person appears. The correlation between the log loss and entropy 
for players with at least five wins is approximately 0.12, indicating a weak asso-
ciation between these two factors.

We identified nine outliers by taking the nine winners with the largest losses 
and entropy in the upper right corner (the red square in Fig. 3), indicating these 
players seem to lose a lot of money playing the lottery and go to many differ-
ent stores to buy tickets. We flagged these nine suspicious winners for a further 
investigation.
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4.2 Stochastic Model Results

We ran the simulation model described in Section 3.3 on the nine players we 
identified as unusual in Fig. 3 to estimate the range of money they might have 
spent. For each single win, we simulated 60,000 instances and rounded the results 
to the nearest thousand.

As shown in Table 1, each of these unusual players except Winner 4, 8 and 9 
would have needed to spend several hundred thousand dollars even in the best-
case scenario to win so many times in the lottery. Considering these people also 
have high entropy, we might conclude that they bought tickets from other people. 
In the cases of Winner 4, and Winner 9, despite their large potential losses in 
terms of mean and 10th percentile, their 90th percentiles does not exclude poten-
tial positive gains. The underlying explanations for why these players’ simulation 
based prediction intervals are so wide will be discussed in Section 5.

4.3 K-means Clustering

Upon analyzing the outcomes from Section 4.1 and Section 4.2, we observed 
that the players we flagged were close and isolated in Fig. 3, implying a particu-
lar lottery purchasing pattern within a specific group of players. In this section 

Table 1  Net gain estimated using the Bonferroni adjusted stochastic model for 
the nine suspicious players indicated in the red box of Fig. 3. Prizes people won 
from the lottery are marked as positive. The money people lost in the lottery are 

marked as negative
Name Number 

of wins
Total 
reported win-
nings

Mean net gain 10 percen-
tile net gain

90percen-
tile net 
gain

Winner 1 78 $114K -$715K -$1150K -$387K
Winner 2 76 $102K -$550K -$1010K -$274K
Winner 3 277 $601K -$1496K -$2084K -$948K
Winner 4 68 $82K -$482K -$854K $41K
Winner 5 154 $366K -$673K -$1078K -$344K
Winner 6 76 $86K -$668K -$1123K -$157K
Winner 7 58 $86K -$515K -$889K -$258K
Winner 8 45 $57K -$418K -$1275K -$3K
Winner 9 53 $113K -$245K -$557K $150K
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we utilize KMeans clustering to further investigate whether additional individuals 
exhibit similar lottery buying behaviors as the flagged players.

To this end, we define a 6-dimensional feature vector for each player based on 
their winning ticket purchasing pattern across stores. The first five features are the 
proportions of winning tickets purchased at each of that player’s five most-visited 
stores, and the sixth feature is the proportion of winning tickets purchased by that 
player at any other stores. For example, if a person purchased tickets from ten dif-
ferent stores and won two times at each store, that person’s 6-dimensional feature 
vector would be (0.1,0.1,0.1,0.1,0.1,0.5).

The K-means clustering algorithm is then applied on the 6-dimensional fea-
ture vectors described above using several different total number of clusters K. 
With the exception of Winner 3, all the other suspicious winners are clustered 
together and this finding holds over a wide range of total number of clusters K.

In Figure  5 we present the clustering results computed using K = 25. Two 
clusters including the unusual players are marked with the red and blue plotting 
characters. Within the nine previously identified suspicious winners identified by 
the red square in Fig. 3, Winner 3 is contained within the blue cluster, whereas all 
the rest are located in the red cluster. As can be seen in the graph, most people in 
the red cluster have high entropy and high losses, meaning they are all potentially 
suspicious. However, the red cluster also contains some potentially lucky players 
with positive mean net gains.

To investigate the red cluster further, we repeated the simulation for all the 
remaining 11 people that were not included in the original 9 players studied in 
Table 1. The additional simulation results are provided in Table 2. Because with 
exception of Winner 11 the upper bounds of the simulation-based prediction 
intervals are negative, we can be highly confident that these winners have lost 
large sums of money if they indeed purchased their tickets from the NCEL. Since 
these players also exhibit an unusual pattern of stores where winning tickets were 
purchased we have a strong suspicion that these people bought winning tickets 
from other people.

5 Discussion
As is shown in the stochastic model results, the majority of players in the suspi-

cious cluster displayed substantial losses even in the best-case scenario if their wins 
came from legitimate ticket purchases. Combined with their high entropy, this leaves 
them looking suspicious as potential ticket discounters. However, it is worth noting 
that among the suspicious players, there are three winners who exhibit potential posi-
tive gains at the top end of the range of simulated outcomes from the model. The rea-
son for that lies in their extensive participation in online lottery games such as Pick 4 
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and Powerball. These online games have a low probability of winning prizes exceed-
ing $600, while maintaining relatively low ticket prices, resulting in comparatively 
unpredictable outcomes relative to players that play other lottery games. In some 
instances, players may have experienced extraordinary luck, winning a significant 
amount while only spending a minimal sum on tickets. Consequently, this wide range 
of outcomes produces relatively wider uncertainty intervals for these players. Despite 
their potentially positive net gain as evidenced by the Bonferroni adjusted 90th per-
centile, it is important to consider that all of these players still have remarkably high 
entropy values and display substantial losses on average. Therefore, one may still 
choose to consider Winners 4, 8, 9, and 11 as potentially suspicious players.

In conclusion, we associated estimated net gain with store buying behaviors to 
investigate suspicious lottery players. Through our initial analysis that utilized the 
geometric distribution, stochastic models, and entropy, we identified nine suspi-
cious winners with both large losses and high entropy. Using cluster analysis, we 
were able to identify fourteen additional suspicious winners who shared similar 
purchasing habits to the initial nine. As we did not consider geographic location 
in our algorithm, future work may incorporate geographic location in the analysis 
of store buying behavior. Also, a new analysis could be performed with a focus 
on stores where many winning scratch-off tickets were purchased with the aim of 
identifying potential fraud by store owners and clerks.

Table 2  Net gain estimated using the Bonferroni adjusted stochastic model for 
the additional suspicious players indicated as red dots outside the red box in 

Fig. 3. The columns are the same as in Table 1
Name Number 

of wins
Total 
reported win-
nings

Mean net gain 10 percen-
tile net gain

90 per-
centile net 
gain

Winner 11 40 $1168K $-9059K $-87564K $818K
Winner 12 27 $42K $-245K $-511K $-674K
Winner 13 24 $34K $-222K $-489K $-63K
Winner 14 22 $26K $-209K $-468K $-53K
Winner 15 34 $38K $-317K $-610K $-111K
Winner 16 34 $42K $-314K $-629K $-114K
Winner 17 30 $33K $-282K $-548K $-112K
Winner 18 22 $46K $-126K $-316K $-14K
Winner 19 20 $20K $-202K $-475K $-54K
Winner 20 27 $29K $-275K $-535K $-99K
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