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ABSTRACT
Censoreddata,where theevent time is partially observed, are challenging for survival probability estimation.
In this article, we introduce a novel nonparametric fiducial approach to interval-censored data, including
right-censored, current status, case II censored, andmixed case censoreddata. Theproposedapproach lever-
aging a simple Gibbs sampler has a useful property of being “one size fits all,” that is, the proposed approach
automatically adapts to all types of non informative censoring mechanisms. As shown in the extensive
simulations, the proposed fiducial confidence intervals significantly outperform existing methods in terms
of both coverage and length. In addition, the proposed fiducial point estimator hasmuch smaller estimation
errors than the nonparametricmaximum likelihood estimator. Furthermore, we apply the proposedmethod
to Austrian rubella data and a study of hemophiliacs infected with the human immunodeficiency virus. The
strength of the proposed fiducial approach is not only estimation and uncertainty quantification but also
its automatic adaptation to a variety of censoring mechanisms. Supplementary materials for this article are
available online.
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1. Introduction

Censored survival data are ubiquitous in biomedical studies
when actual clinical outcomes, such as death, disease recur-
rence, or distant metastasis, may not be directly observable for
such reasons as periodic follow-up and early dropout. Interval-
censored data arise when a random variable of interest can not
be observed, but can only be determined to lie in an interval
obtained from a sequence of inspection times, that is, a failure
time T is known only to lie within an interval I = (L,R], which
is more challenging than right-censored data because much less
information is contained in such intervals. We refer to Huang
and Wellner 1997; Sun 2007 for a comprehensive review on
interval-censored data and Jacobsen and Keiding (1995) who
treat interval-censoring as a special case of coarsening at ran-
dom. One extreme case is current status data where the survival
status of a subject is inspected at a single random monitoring
time, thus, yielding an extreme form of interval-censoring.

Peto (1973) proposed a nonparametric maximum likelihood
estimation (NPMLE) of the survival function for interval-
censored data using the Newton-Rapshon algorithm. Turnbull
(1976) showed that the NPMLE of the survival distribution is
only unique up to a set of intervals, which may be called the
innermost intervals, also known as the Turnbull intervals or the
regions of the maximal cliques. Turnbull (1976) then suggested
a self-consistent expectation maximization to compute the
maximum likelihood estimators. While there is no closed
form representation of the NPMLE based on general interval-
censored data, an NPMLE with a convergence guarantee was
developed in Groeneboom and Wellner (1992) for current
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status and case II censoring data. Wellner (1995) studied the
consistency of the NPMLE where each subject gets exactly K
examination times. The consistency of the NPMLE under the
mixed case censoring has been studied by van der Vaart and
Wellner (2000); Schick and Yu (2000).

Constructing pointwise confidence intervals for the distribu-
tion function of T at a given time t is more challenging in a gen-
eral interval-censoring setting. It is known that bootstrapping
from the NPMLE of the distribution function is inconsistent for
both the current status and case II censoring models (Kosorok
2008; Sen, Banerjee, and Woodroofe 2010; Sen and Xu 2015).
Banerjee and Wellner (2005) proposed likelihood ratio-based
confidence intervals for current status data. Furthermore, Sen
and Banerjee (2007) proposed a pseudo-likelihood approach
to mixed case censoring data, which may not be as efficient
as the NPMLE and does not achieve nominal coverage. While
the m-out-of-n bootstrap (Lee and Pun 2006) and subsampling
methods (Politis, Romano, and Wolf 1999) are consistent, and
the corresponding confidence intervals achieve nominal cover-
age, their resulting confidence intervals are too wide. It is also
important to note that, to our knowledge, all previous methods,
including Politis, Romano, andWolf (1999), Banerjee andWell-
ner (2005), Lee and Pun (2006), Sen and Banerjee (2007), and
Sen and Xu (2015), require the choice of tuning parameters such
as the block size.

This article introduces a novel nonparametric fiducial
approach to interval-censored data. Fiducial inference can be
traced back to a series of articles by R. A. Fisher (Fisher 1930,
1933) who introduced the concept as a potential replacement of

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/01621459.2023.2252143
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2252143&domain=pdf&date_stamp=2023-12-21
http://orcid.org/0000-0002-9957-7955
http://orcid.org/0000-0002-4164-0173
http://orcid.org/0000-0002-6070-9738
mailto:cuiyf@zju.edu.cn
http://www.tandfonline.com/r/JASA
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Y. CUI, J. HANNIG, ANDM. R. KOSOROK

the Bayesian posterior distribution. Posterior distribution was
at the beginning of 20th century called “inverse probability”
in contrast to “direct probability,” better known as likelihood
(Fisher 1922). From amathematical point of view, the difference
between the posterior and fiducial distributions is due to theway
the distribution on the parameter space is defined. The former
uses a conditional probability which requires selecting a prior
probability. The latter transports the probability distribution
from a given distribution on an auxiliary space using a mea-
surable function, which we call the data generating equation.
In both cases, we end up with a probability measure that is not
uniquely determined by the likelihood as a change of prior in one
case, and the data generating equation in the other can affect the
resulting answer. Other related approaches include Dempster-
Shafer theory (Dempster 1968; Shafer 1976), inferential models
(Martin and Liu 2013, 2015), confidence distributions (Singh,
Xie, and Strawderman 2005; Xie and Singh 2013; Hjort and
Schweder 2018), and objective Bayesian inference (Berger,
Bernardo, and Sun 2009, 2012). Many additional references
can be found in Xie and Singh (2013), Schweder and Hjort
(2016), Hannig et al. (2016), and Cui and Xie (2023). Since
the mid 2000s, there has been renewed interest in modifications
of fiducial inference. Wang (2000), and Taraldsen and Lindqvist
(2013) showed howfiducial distributions naturally arise within a
decision theoretical framework. Hannig et al. (2016) formalized
the mathematical definition of generalized fiducial distribution.
Having a formal definition allowed the application of fiducial
inference to other fields, such as psychology (Liu and Hannig
2016, 2017; Liu et al. 2019; Neupert and Hannig 2019) and
forensic science (Hannig et al. 2019). Cui and Hannig (2019)
considered a nonparametric fiducial approach to right-censored
data which is a special type of interval-censored data. Their
method does not use a Gibbs sampler and applies only to right-
censored data.

The proposed fiducial approach implemented by a simple
Gibbs sampler has a useful property of being “one size fits all,”
that is, the proposed approach automatically adapts to all types
of non-informative censoring:

(i) Exact data: L = T,R = T;
(ii) Right-censored data: R = ∞ for right-censored observa-

tions;
(iii) Left-censored data: L = 0 for left-censored observations;
(iv) Case I censoring (current status data): only one inspection

time is available, that is, either L = 0 or R = ∞;
(v) Case K censoring: K observation/inspection times C1, . . .,

CK with observations L,R ∈ {0,C1, . . . ,CK ,∞}; K might
tend to infinity as the sample size tends to infinity (Lawless
and Babineau 2006).

(vi) Mixed case censoring: an arbitrary number of observa-
tion/inspection times, that is, a mixture of the above cen-
soring mechanisms.

We use the fiducial distribution to construct a point estimator
and pointwise confidence intervals for the distribution function.
In this article, we perform extensive simulations following the
configurations considered in the previous literature (Banerjee
andWellner 2005; Sen and Banerjee 2007). In these simulations,
the proposed confidence interval maintains coverage in situa-
tions wheremost existingmethods have coverage problems, and

meanwhile, it has the shortest length among all the confidence
intervals. In addition, the proposed fiducial point estimator has
the smallest mean squared error compared to various NPMLE
estimators. Furthermore, we apply the proposed approach to
Austrian rubella data and a study of hemophiliacs infected with
the human immunodeficiency virus.

The advantages of the proposed fiducial approach are 2-fold:
(a) The proposed fiducial distribution and corresponding algo-
rithm adapt to a variety of censoringmechanisms automatically,
which is a substantial advantage when information about the
inspection times is not available. This is somewhat of an art,
and our contribution appears valuable for such scientific appli-
cations; (b) In our simulations, the proposed fiducial approach
significantly outperforms existing methods in terms of both
point estimators and confidence intervals.

2. Methodology

2.1. Setup and Notation

Before describing the proposed fiducial approach, we first intro-
duce some general notation. Suppose the observed data are {Ii =
(li, ri], i = 1, . . . , n}. For the censoring mechanism, we con-
sider non-informative censoring (Oller, Gómez, and Calle 2004)
under which intervals do not provide any further information
than the fact that the event time lies in the interval:

Pr(T ≤ t|L = l,R = r, L < T ≤ R) = Pr(T ≤ t|l < T ≤ r).
(1)

We refer to Sun (2007) and Kalbfleisch and Prentice (2011) for
the possibility of including covariates. Suppose we are interested
in the unknown distribution function F(t) of the survival time
T at time t. Law and Brookmeyer (1992) showed through sim-
ulations that treating observations as right-censored data after
a midpoint imputation does not preserve Type I error. There
is clearly a need for methods specifically designed for interval-
censored data.

2.2. A Data Generating Equation Perspective

In this section, we first explain the definition of a fiducial
distribution and then demonstrate how to apply it to interval-
censored data. This derivation will be conditional on the
observed li, ri, i = 1, . . . , n. The common assumption (1)
allows us to ignore the potential dependence betweenT and L,R,
and treat the observed li, ri as fixed. We provide an alternative
derivation of the same generalized fiducial distribution in
Appendix F, where we explicitly model the relationship between
failure and censoring times treating L and R as random.

We start by expressing the event times Ti using

Ti = F−1(Ui), i = 1, . . . n, (2)

where Ui are independent Unif(0, 1) and F−1(u) = inf{t :
F(t) ≥ u}.

Recall that we do not observe the exact values of Ti but
instead observe their lower and upper bounds (li, ri]. By a simple
calculation,

F−1(ui) > li if and only if F(li) < ui,
F−1(ui) ≤ ri if and only if F(ri) ≥ ui.
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Consequently, the inverse of the data generating equation (2)
expressed by the observed data is

Q #»l , #»r ( #»u ) = {F : F(li) < ui ≤ F(ri), i = 1, . . . , n}. (3)

Note thatQ #»l , #»r ( #»u ) is a set of cumulative distribution functions.
By Lemma A.1 provided in Appendix A, Q #»l , #»r ( #»u ) �= ∅ if and
only if #»u satisfy:

whenever ri ≤ lj then ui < uj. (4)

Afiducial distribution is obtained by inverting the data gener-
ating equation, that is, the distribution of Q #»l , #»r (

#»U�), where #»U�

is the uniform distribution on the set { #»u � : Q #»l , #»r ( #»u �) �= ∅}.
The random functions defined for each t and #»U�

FU(t) ≡ min{U�
i , for i such that t < Li},

and

FL(t) ≡ max{U�
i , for i such that t ≥ Ri},

where min∅ = 1 and max ∅ = 0, are nondecreasing and right
continuous. Note that any distribution function lying between
FU and FL is an element of the closure, in weak topology, of
Q #»l , #»r (

#»U�). Thus, the functions FU and FL will be called the
upper and lower fiducial bounds throughout.

2.3. A Simple Gibbs Sampler

In this section, we propose a novel Gibbs sampler to efficiently
sample #»U�. A sample from the fiducial distribution obtained
from the Gibbs sampler can then be used to form a point
estimator and confidence intervals for the unknown distribution
function F(t) in the same way that posterior samples are used in
the Bayesian context.

We need to generate #»U� from the standard uniform distri-
bution on a set described by (4). We achieve this by a simple
Gibbs sampler. For each fixed i, we denote the random vector
#»U� with the ith observation removed by #»U�[−i]. If

#»U� satis-
fies the constraint (4), so does #»U�[−i] with the corresponding
#»l [−i] and #»r [−i]. The proposed Gibbs sampler is based on the
conditional distribution of U�

i | #»U�[−i]. Equation (4) implies
that U�

i | #»U�[−i] is a uniform distribution on (a, b), where a
and b depend on #»U�[−i]. In particular, a is the largest #»U�

v that
is required to be smaller than #»U�

i by constraints in (4), that
is, a = maxv{ #»U�

v , where li ≥ rv, v �= i}. Similarly b =
minw{ #»U�

w, where ri ≤ lw, w �= i}; a and b are defined as 0 and
1 if the set is empty, respectively. The proposed Gibbs sampler
requires starting points.We randomly sample #»u 0 from indepen-
dent Unif(0,1) and sort #»u 0 according to the order of (

#»l + #»r )/2
as initial points. The details are described in Algorithm 1. The
sample R code of Algorithm 1 is available at https://github.com/
yifan-cui/IntervalCensoringFiducial.

The computational complexity of our algorithm is a sum of
two parts. The computational complexity of the Gibbs sampler
is O(n2 × (nburn + nmcmc)). The computational complexity
of the post-processing step, including regriding and quadratic
programming, is O((mn + m3) × nmcmc), since Ye and Tse
(1989) showed that the complexity of interior point methods for

Algorithm 1: A simple pseudo-algorithm for the fidu-
cial Gibbs sampler

Input: Dataset ( #»l , #»r ), nmcmc, nburn, and vector #»t grid of
lengthm.

11 Sample #»u 0 from independent Unif(0,1);
22 Sort #»u 0 according to the order of (

#»l + #»r )/2;
33 Gibbs sampler using #»u 0 as initial values:
4 for j = 1 to nburn + nmcmc do
55 Let #»u j = #»u j−1;
6 for i = 1 to n do
77 #»u ∗

j = #»u j[−i];
88 v=which( #»l [i] ≥ #»r [−i]), a = max( #»u ∗

j [v], 0);
99 w=which( #»r [i] ≤ #»l [−i]), b = min( #»u ∗

j [w], 1);
1010 #»u j[i] = Unif(a, b);
11 end
1212 Sample n independent Unif(0,1), sort them according

to the order of #»u j, and denote this new vector as #»u j;
13 end
1414 Post-processing:
15 for j = nburn + 1 to nburn + nmcmc do
16 Compute lower and upper bounds #»u L

j and
#»uU
j for all

grid points #»t grid:
17 for k = 1 tom do
1818 v=which( #»t grid[k] ≥ #»r ), #»u L

j [k] = max( #»u j[v], 0);
1919 w=which( #»t grid[k] ≤ #»l ), #»uU

j [k] =
min( #»u j[w], 1);

20 end
2121 Select a smooth fiducial sample #»u I

j defined on the
grid #»t grid satisfying #»u L

j ≤ #»u I
j ≤ #»uU

j :
22 Sample u0 from Beta(1/2, 1/2) transformed to

(0, #»uU
j [1]);

23 Sample um+1 from Beta(1/2, 1/2) transformed
( #»u L

j [m], 1);
24 Solve optimization problem:

minimize
#»u I

j=(u1,...,um)T

m+1∑
k=1

(uk − uk−1)
2

subject to #»u L
j ≤ #»u I

j ≤ #»uU
j

25 end
26 return The fiducial samples #»uU

j ,
#»u L
j ,

#»u I
j ,

j = nburn + 1, . . . , nburn + nmcmc.

quadratic programmingwithm variables isO(m3). Note that the
number of grid pointsm is usually small.

Using this algorithm we generate a fiducial sample #»U�
j , j =

1, . . . , nmcmc. Based on the fiducial sample, we construct two
types of pointwise confidence intervals by finding intervals
of a given fiducial probability. Similar to Cui and Hannig
(2019), we define conservative and linear interpolation intervals,
using appropriate quantiles of fiducial samples. In particular,
a 95% conservative confidence interval is formed by taking

https://github.com/yifan-cui/IntervalCensoringFiducial
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the empirical 0.025 quantile of FLj (t) as a lower limit and the
empirical 0.975 quantile of FUj (t) as an upper limit (Shafer 1976;
Dempster 2008), where FLj (t) and FUj (t) are fiducial samples of
FL(t) andFU(t) based on #»U�

j . An alternative pointwise interval is
based on selecting a suitable representative of each Q #»l , #»r (

#»U�
j ).

We propose to select a smooth distribution function FIj (t) by
using linear interpolation that is computed via a quadratic
programming. The details of the algorithm are provided in
Algorithm 1. Thus, a 95% linear interpolation confidence
interval for F(t) is formed by using the empirical 0.025 and
0.975 quantiles of FIj (t). Finally, we propose to use the pointwise
median of the linear interpolation fiducial samples {FIj (t), j =
1 . . . , nmcmc} as a point estimator for the distribution function.
Hereinafter, we refer to fiducial confidence intervals as linear
interpolation fiducial confidence intervals as we recommend
the linear interpolation fiducial samples for practice.

2.4. Further Illustration with Two Simulated Examples

To demonstrate the proposed fiducial approach, we present two
toy examples in this section. In the first setting, current status
data, suppose that the event time T and observation time C1

both follow the exponential distribution Exp(1) (Banerjee and
Wellner 2005; Sen andBanerjee 2007). In the second settingwith
case II censoring, the event time follows a Gamma(2, 1) distri-
bution, and observation times C1,C2 are taken to be Unif(0, 2)
and C1 + 0.5+ C̃1, respectively, with C̃1 independent of C1 and
also following Unif(0, 2) (Sen and Banerjee 2007).

In Figure 1 we show two fiducial samples from the fiducial
distribution Q #»l , #»r (

#»U�) for a small dataset (n = 20) for the
first setting, the current status data. The dashed curves are the
lower and upper fiducial bounds, and the solid curve is the
corresponding linear approximation. The crosses correspond to
the observations of the type (0, ri], where on the horizontal axis
we plot the ri and on the vertical axis we show the corresponding
U�
i . The circles are the observations of the type (lj,∞], where

on the horizontal axis we plot the lj and on the vertical axis we
again show theU�

j . Note that the upper fiducial bound has jumps
only at values corresponding to some of the circles, with the rest
of the circles being above the upper fiducial bound. Similarly,
the lower fiducial bound jumps only at locations correspond-
ing to some of the crosses with the rest of the crosses being
below it.

Next, we consider the sample size of the simulated data
n = 200. The fiducial estimates were based on 1000 iterations
after 100 burn-in times. The left panels of Figures 2 and 3

Figure 1. Two fiducial samples from the fiducial distribution for a small dataset (n = 20) for the first setting, the current status data; the event time and observation time
both follow Exp(1).

Figure 2. Setting 1 (current status data): the event time and observation time both follow Exp(1). Left panel: The last Markov chain Monte Carlo sample from fiducial
distribution. The dashed curves are the realizations of the lower fiducial sample FL(t) and upper fiducial sample FU(t), respectively. The solid line is the linear interpolation
FI(t). Right panel: true cumulative distribution function (black line), 95% confidence interval (dashed blue line) and corresponding point estimator (solid blue line).
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Figure 3. Setting 2 (case II censoring): the event time follows Gamma(2, 1), and observation times C1, C2 are Unif(0, 2) and C1+0.5+ C̃1, respectively, with C̃1 independent
ofC1 and also followingUnif(0, 2). Left panel: The lastMarkov chainMonteCarlo sample fromfiducial distribution. Thedashed curves are the realizations of the lower fiducial
sample FL(t) and upper fiducial sample FU(t), respectively. The solid line is the linear interpolation FI(t). Right panel: true cumulative distribution function (black line), 95%
confidence interval (dashed blue line) and corresponding point estimator (solid blue line).

present the last Markov chain Monte Carlo sample of the lower
and upper fiducial bounds as well as the linear interpolation
fiducial sample. As the fiducial distribution reflects the uncer-
tainty, we do not expect every single fiducial curve to be close
to the true cumulative distribution function. Furthermore, the
right panels of Figures 2 and 3 present 95% linear interpola-
tion confidence intervals and corresponding point estimators,
respectively.

3. Theoretical Results

3.1. Connection to the Nonparametric Maximum
Likelihood Estimator

In Section 3, we present the theoretical results in two directions.
First, we show that the mode of the fiducial distribution is the
NPMLE. We found this result surprising as fiducial distribution
is not the same as normalized likelihood. The other direction is
asymptotic analysis of the caseK censoring where the number of
inspection times K goes to infinity, which will be studied in the
next section. It is well known that counting process techniques
that have been successfully used in asymptotic analysis of right-
censored data cannot be used for fixed K interval-censored data
where theoretical results appear to be much harder and will not
be studied here.

Proposition 3.1. For a given dataset (
#»l , #»r ) any F maximizing

fiducial probability Pr�(F ∈ Q #»l , #»r (
#»U�)) is an NPMLE.

Proposition 3.1 provides some justification for the fiducial
approach. Note that the Pr�(F ∈ Q #»l , #»r (

#»U�)) is called plausi-
bility in the Dempster-Shafer theory (Shafer 1976), so the result
could be interpreted as maximum plausibility and maximum
likelihood agree in this model. This result suggests a possi-
ble way to create a simultaneous fiducial confidence interval
as a ball of 1 − α fiducial probability with its center being
the most plausible distribution function, the NPMLE. In prac-
tice, this would be constructed by selecting a ball that con-
tains (1 − α)100% fiducial samples from the Gibbs sampler of
Section 2.3.

3.2. Bernstein-vonMises TheoremUnder Various Settings

Recall that the fiducial distribution is a data-dependent dis-
tribution which is defined for every fixed dataset (

#»l , #»r ). It
can be made into a random measure in the same way as one
defines the usual conditional distribution, that is, by plugging
random variables (

#»L , #»R ) into the observed data. We first study
the asymptotic behavior of this random measure under the
following scenario:

Condition 1. n2 maxi=1,...,n |Ri − Li| → 0 in probability.

Condition 1 provides a sufficient condition for
√
n-

convergence and the Bernstein-von Mises Theorem 3.1, which
needs the length of each interval to be short. This condition
can also be viewed as a case K censoring where the number of
inspection times K increase at a certain rate as the sample size
grows. For example, in the application of testing Coronavirus
disease, the frequency of tests might increase as the population
grows. A similar but different asymptotic assumption for
interval-censoring is Assumption (A1) in Huang (1999) which
basically requires enough exact observations. Both assumptions
essentially impose the restriction that the censored data are in
some sense close to the uncensored data.

We prove a central limit theorem for FL(t). The same result
holds for FU(t).

Theorem 3.1. Suppose the true cumulative distribution function
is absolutely continuous. If Condition 1 holds,

n1/2{FL(·) − F̂(·)} → BF(·), (5)

in distribution on Skorokhod space D[0, τ ] in probability,
where F̂(·) is the empirical cumulative distribution function
constructed based on the unobserved failure times Ti, τ is
the end of the follow-up time with F(τ ) < 1, and BF(·) is
a Gaussian process with mean zero and cov(BF(s),BF(t)) =
F(t ∧ s) − F(t)F(s).

The above theorem establishes a Bernstein-von Mises theo-
rem for the fiducial distribution. To understand this mode of
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convergence used here, note that there are two sources of ran-
domness present. One is from the fiducial distribution derived
from each fixed dataset. The other is the usual randomness of
the data. The mode of convergence here is in distribution in
probability, that is, the centered and scaled fiducial distribution
viewed as a random probability measure onD[0, τ ] converges in
probability to the distribution of the Gaussian process described
in the right-hand side of eq. (5). Mathematically speaking, for all
ε > 0,

Pr(ρ[n1/2{FL(·) − F̂(·)},BF(·)] > ε) → 0,

where ρ is a metric on the space of probability measures on
D[0, τ ] that metrizes weak topology, for example, Dudley’s met-
ric (Shorack 2017), and the probability refers to the randomness
of the data Li,Ri,Ti.

Next, we study the asymptotic behavior of fiducial distribu-
tion under the following scenario with censoring occurring on
a grid (Yu et al. 1998; Tang, Banerjee, and Kosorok 2012):

Condition 2. The observation/inspection times are a fixed grid
0 < C1 < C2 < · · · .

Again, we prove a central limit theorem for FL(t). The same
result holds for FU(t).

Theorem 3.2. If Condition 2 holds,

Pr
(
n1/2{FL(s) − F̂(s)}
{F(s)[1 − F(s)]}1/2 ≤ t

)
→ �(t), (6)

almost surely for any grid value s = Cl for some l with F(s) ∈
(0, 1), where �(·) is the cumulative distribution function of a
standard normal distribution, and Pr refers to fiducial probabil-
ity.

While a theoretical analysis needs to be established case by
case under different censoring settings, we believe that Theo-
rems 3.1 and 3.2 might hold more generally. In particular, we
conjecture that under this interval-censoring setting whenever
there is a

√
n-convergence of the NPMLE, there is a Bernstein-

vonMises theorem for the fiducial distribution. It would also be
interesting to investigate the convergence rate and distributional
result of the proposed fiducial distribution for the fixed case
K censoring. In general, we do not expect a

√
n-convergence

rate because Groeneboom andWellner (1992) andGroeneboom
et al. (2008) proved a cube rate convergence for the NPMLE for
current status data and case II censoring.

4. Simulation Experiments

4.1. Current Status Data

We examined the coverage and average length of 95% fiducial
confidence intervals for F(t0), where, following Banerjee and
Wellner (2005) and Sen and Banerjee (2007), we select t0 as the
median of the failure distribution. We considered the following
two scenarios from Banerjee andWellner (2005), where the first
scenario was also considered in the unpublished longer version
of Sen and Banerjee (2007):

Scenario 1: Let the event time F follow Exp(1) and the obser-
vation time follow Exp(1).

Table 1. Error rates in percent and average width of 95% confidence intervals for
F(t0).

Scenario 1 Scenario 2

LR UR WD LR UR WD

n=50 1.4 2.7 0.414 1.3 3.6 0.430
n=75 0.9 1.8 0.364 0.9 2.6 0.383
n=100 0.9 0.9 0.333 0.7 2.9 0.351
n=200 0.8 1.0 0.262 0.7 1.4 0.281
n=500 0.5 1.2 0.189 1.2 0.4 0.206
n=800 0.6 1.3 0.159 0.7 1.3 0.174
n=1000 1.1 1.1 0.146 0.6 1.2 0.160

LR denotes the error rate that the true parameter is less than the lower confidence
limit; UR denotes the error rate that the true parameter is greater than the upper
confidence limit; WD is the average width of the confidence interval. The results
of prior methods can be found in Tables 1 and 2 of Banerjee and Wellner (2005),
and we provide them in the supplementary material.

Scenario 2: Let the event time F follow Gamma(3, 1) and the
observation time follow Unif(0, 5).

We chose sample sizes n = 50, 75, 100, 200, 500, 800, 1000
following Banerjee and Wellner (2005). Each scenario was sim-
ulated 1000 times. The fiducial estimates were based on 1000
iterations after 100 burn-in times. For both scenarios, the inter-
val [0,5] was equally divided into 100 intervals as a fiducial
grid, where fiducial grid refers to the vector #»t grid defined in
Algorithm 1. The simulation results are listed in Table 1 for each
scenario. The results of competing 95% confidence intervals,
such as the likelihood ratio-basedmethod,maximum likelihood
based method with nonparametric estimation, subsampling-
based method, and parametric (Weibull-based) estimation, can
be found in Banerjee and Wellner (2005).

In the tables, LR denotes the error rate that the true parameter
is less than the lower confidence limit; UR denotes the error
rate that the true parameter is greater than the upper confidence
limit. The two-sided error rate is obtained by adding the values
in columns LR and UR. Values less than 2.5% in individual
columns, 5% in aggregate, indicate good performance. WD is
the average width of the confidence interval. As can be seen
from these tables, the proposed fiducial confidence intervals
maintain the aggregate coverage and are much shorter than
those considered in Banerjee and Wellner (2005). Recall that
Tables 1–2 in Banerjee and Wellner (2005) show all considered
methods have either substantial or minor coverage problems in
these settings.

4.2. Case II andMixed Case Censoring

We considered the following two scenarios from Sen and Baner-
jee (2007) and their unpublished longer version:

Scenario 3 (case II censoring): Let F follow a Gamma(2, 1)
distribution, and the first observation time C1 is taken to be
Unif(0, 2) and the second observation time C2 is taken as
C1 + 0.5 + C̃1, with C̃1 independent of C1 and also following
Unif(0, 2). Recall that we take t0 to be the median of the failure
time.

Scenario 4 (mixed case censoring): The event time distri-
bution F is taken to follow Exp(1). The random number of
observation times for an individual K is generated from the
discrete uniform distribution on the integers {1, 2, 3, 4}, and,
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Table 2. Error rates in percent and average width of 95% confidence intervals for
F(t0).

Scenario 3 Scenario 4

LR UR WD LR UR WD

n=50 2.2 2.9 0.326 1.0 4.0 0.373
n=75 1.6 1.3 0.282 0.8 3.3 0.323
n=100 1.2 1.5 0.252 1.5 1.4 0.292
n=200 1.4 0.8 0.194 1.1 2.7 0.225
n=500 1.4 1.1 0.135 1.4 2.6 0.156
n=800 2.0 1.8 0.112 0.5 1.8 0.130
n=1000 1.7 1.3 0.102 1.0 1.7 0.119

LR denotes the error rate that the true parameter is less than the lower confidence
limit; UR denotes the error rate that the true parameter is greater than the upper
confidence limit; WD is the average width of the confidence interval. The results
of priormethods can be found in Tables 2 and 3 in the unpublished longer version
of Sen and Banerjee (2007), and we provide them in the supplementary material.

givenK = k, the observation times {Ci}ki=1 are chosen as k order
statistics from a Unif(0, 3) distribution.

Again, we chose sample sizes n = 50, 75, 100, 200, 500, 800,
1000. Each scenario was simulated 1000 times. The fiducial
estimates were based on 1000 iterations after 100 burn-in times.
For Scenario 3, the interval [0,5] was equally divided into 100
intervals as a fiducial grid, and the interval [0,3] was equally
divided into 100 intervals as a fiducial grid for Scenario 4. Again,
we examined the coverage and average length of the 95%fiducial
confidence intervals for F(t0). The results of the 95% confi-
dence intervals for the pseudo-likelihood ratio method, max-
imum pseudo-likelihood method, kernel-based method, and
subsampling-based method were reported in Sen and Banerjee
(2007) and their unpublished longer version.

The simulation results are shown in Table 2 for each scenario.
Again, we see that the proposed fiducial confidence intervals
maintain the aggregate coverage and are much shorter than
those considered in Sen and Banerjee (2007). Recall that Tables
2–3 in Sen and Banerjee (2007) show all considered meth-
ods have coverage problems in these settings except for the
subsampling-based method.

4.3. Mean Squared Error of the Point Estimators

In this section, we evaluate the mean squared error of the pro-
posed fiducial point estimator of F(t0) for the above four sce-
narios. Furthermore, we compare it with the NPMLE estimator
implemented in Fay and Shaw (2010). The default values of
the parameters in the function interval::icfit are used.
Moreover, theNPMLE estimator is not uniquely defined. If there
is not a unique NPMLE for a specific time, then we consider the
following choices specified in interval::getsurv.

• Interpolation: take the point on the line connecting the two
points bounding the nonunique NPMLE interval;

• Left: take the left side of the nonunique NPMLE interval
(smallest S(t), largest F(t));

• Right: take the right side of the nonunique NPMLE interval
(largest S(t), smallest F(t)).

The mean squared errors are presented in Tables 3 and 4
for each scenario. As the sample size increases, all methods
have higher estimation accuracy. In addition, we see that the

Table 3. Mean squared error (×10−4) of point estimators for F(t0).

Scenario 1 Scenario 2

F MLE-I MLE-L MLE-R F MLE-I MLE-L MLE-R

n=50 102 225 236 246 116 272 295 281
n=75 70 158 163 160 83 189 198 191
n=100 54 127 132 133 69 152 158 156
n=200 35 85 86 87 38 95 97 97
n=500 17 44 45 45 19 50 50 50
n=800 12 31 32 32 14 36 37 37
n=1000 10 27 27 27 11 29 29 29

F denotes the proposed fiducial point estimator; MLE-I, MLE-L, and MLE-R denote
theNPMLEwith three specifications “interpolation”, “left”, and “right”, respectively.

Table 4. Mean squared error (×10−4) of point estimators for F(t0).

Scenario 3 Scenario 4

F MLE-I MLE-L MLE-R F MLE-I MLE-L MLE-R

n=50 67 137 143 137 90 175 190 183
n=75 42 86 88 89 66 124 129 129
n=100 33 70 71 72 47 92 98 95
n=200 20 45 46 46 29 56 58 57
n=500 10 23 23 24 13 29 29 29
n=800 7 16 16 16 9 21 21 21
n=1000 6 14 14 14 7 15 15 15

F denotes the proposed fiducial point estimator; MLE-I, MLE-L, and MLE-R denote
the NPMLEwith three specifications “interpolation,”“left,”and “right,”respectively.

proposed fiducial approach has the smallest mean squared
errors. Moreover, the mean squared errors of the NPMLE are
twice as large as the fiducial estimator. The observed patterns are
consistent across all four scenarios and different sample sizes. In
the supplementary material, following Zhu and Kosorok (2012),
we report average absolute errors and supremumabsolute errors.
A similar pattern is observed and we see that the proposed
fiducial estimator provides much smaller errors.

The first-order asymptotic theory cannot explain this because
heuristically speaking all good statistical methods are asymptot-
ically equivalent. Higher-order asymptotics could be useful in
explaining this, but we think that the explanation may require
newmathematical techniques. Finding a theoretical explanation
forwhy generalized fiducial distribution performswell including
smaller mean squared error of point estimators, and shorter
length of confidence intervals, is an important open problem,
which is of future interest.

5. Real Data Application

5.1. Current Status Data

We consider a dataset on the prevalence of rubella in 230 Aus-
trian males older than three months for whom the exact date
of birth was known (Keiding et al. 1996). Each individual was
tested at the Institute of Virology, Vienna during March 1–25,
1988, for immunization against Rubella. The Austrian vaccina-
tion policy against Rubella at the time had long been to routinely
immunize girls just before puberty but not to vaccinate the
boys, so that the male Austrians can represent an unvaccinated
population.

Similar to Keiding et al. (1996) and Banerjee and Wellner
(2005), our goal is to estimate the distribution of the time
to infection (and subsequent immunization) with rubella in
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the male population. It is assumed that immunization once
achieved, is lifelong. Keiding et al. (1996) andBanerjee andWell-
ner (2005) analyzed these data using the current status model.
We apply the proposed fiducial approach to this dataset with
the range of observed times equally divided into 100 intervals
as a fiducial grid. The fiducial estimates were based on 1000
iterations after 100 burn-in times.

As can be seen from Figure 4, the estimated distribution
function is similar to that of the NPMLE, as shown in Figure 1 of
Banerjee and Wellner (2005). The distribution function seems
to rise steeply in the age range from 0 to 20 years. There is no
significant change beyond 30 years, indicating that almost all
individuals were immunized in their youth.

The shape of our 95% confidence interval is similar to the
likelihood ratio-based confidence intervals as presented in Fig-
ure 1 of Banerjee and Wellner (2005). Figure 2 of Banerjee and
Wellner (2005) shows the lengths of the confidence intervals, as
a function of t for the likelihood ratio-based confidence interval,
parametric maximum likelihood based interval, nonparametric
maximum likelihood based interval, and subsampling-based
method. As stated in Banerjee and Wellner (2005), “none of the
methods can be expected to come up with the shortest intervals
in any given situation.” However, the maximum length, taken
over all t, of the proposed fiducial confidence intervals is 0.329.
This appears to be much shorter than the maximum lengths
reported in Figure 2 of Banerjee and Wellner (2005).

5.2. Mixed Case Censoring Data

In this section, we consider a classic dataset given inDeGruttola
and Lagakos (1989) of a cohort study of hemophiliacs that
were at risk of infection with HIV. Since 1978, 262 people with
hemophilia have been treated at Hopital Kremlin Bicetre and
Hopital Coeur des Yvelines in France. The data consist of two
groups: 105 patients in the heavily treated group, that is in the
group of patients who received at least 1000 μg/kg of blood
factor for at least one year between 1982 and 1985, and 157
patients in the lightly treated group, corresponding to those
patients who received less than 1000 μg/kg per year. By August

Figure 4. Austrian rubella data: the estimated cumulative distribution function
(solid line) and 95% confidence interval (dashed lines) for F(t).

1988, 197 had become infected, 97 in the heavily treated group
and 100 in the lightly treated group, and 43 of these had devel-
oped clinical symptoms relating to their HIV infection. All of
the infected persons are believed to have become infected by the
contaminated blood factor they received for their hemophilia.

We are interested in estimating the distribution of time to
HIV infection T (T = 1 denotes July 1, 1978). The observations
are based on a discretization of the time axis into six-month
intervals. For each patient, the only information available is that
T ∈ (L,R]. We apply the proposed fiducial approach separately
to the two different groups with the range of observed times
equally divided into 100 intervals as a fiducial grid. The fiducial
estimates were based on 1000 iterations after 100 burn-in times.

Due to the lack of information about the other inspection
times, the full mixed case model cannot be fitted to the data. Sen
and Banerjee (2007) formulated the problem as a case II censor-
ing model, which is a simplification for the purpose of illustrat-
ing their method; while for the proposed fiducial approach, we
do not necessarily treat the data as a case II censoring problem
due to the nature of our unified approach.

In Figure 5 we see a sharp rise in the frequency of infections
beginning around t = 9, with infections for the heavily treated
group occurring somewhat sooner. Such a difference in the two
distributions has biological plausibility because heavily treated
patients are likely to have received greater concentrations of
HIV (De Gruttola and Lagakos 1989). As can be seen from our
Figure 5 as well as Figure 1 and Table 2 in Sen and Banerjee
(2007), although the overall trends across the two groups are
similar among various methods, our results differ slightly from
Sen and Banerjee (2007) in the range (14, 16). The distribution
function for the heavily treated group dominates the lightly
treated group from day 6, while Sen and Banerjee (2007) found
that, between 14 and 16, the distribution function for the lightly
treated group is higher. Our findings are more in line with a
nonparametric Bayesian approach (Calle and Gómez 2001) as
well as a self-consistency algorithm (Gómez and Lagakos 1994).

Figure 5. A cohort study of hemophiliacs infected with HIV: the estimated cumula-
tive distribution functions (solid lines) and 95% confidence intervals (dashed lines)
for F(t) of two groups, respectively. The blue curves correspond to the heavily
treated group; the red curves correspond to the lightly treated group. Here, time
is measured in 6-month intervals, with t = 1 denoting July 1, 1978.
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6. Discussion

In this article, we derived a nonparametric fiducial distribution
for interval-censored data. By leveraging a simpleGibbs sampler,
the proposed fiducial distribution provided us with a unified
framework of deriving statistical procedures for various types
of interval-censoring data, such as current status data, case II
censored and mixed case censored data. Additionally, our simu-
lation studies suggested that the fiducial approach outperforms
many other statistical procedures proposed for this classical
problem in survival analysis.

Generalized fiducial distribution can be viewed as aiming at
the same goal as Bayesian posterior distribution under a non-
informative prior. In fact in a few cases, such as parametric
models invariant under group transformations the fiducial
distribution and non-informative Bayesian posterior coincide
(Taraldsen andLindqvist 2013;Hannig et al. 2016).However, the
agreement between fiducial and Bayesian distribution is more
of an exception and is not known to happen in nonparametric
problems. Therefore, nonparametric fiducial inference is a
new approach distinct from nonparametric Bayesian approach
that can expand on a statistician’s toolbox. The strength of
the proposed fiducial approach is not only estimation and
uncertainty quantification but also adapting to a variety of
censoring mechanisms automatically. We conclude by listing
some open research problems:

• The proposed nonparametric fiducial approach is a powerful
tool to interval-censored data. It would be interesting to
implement it inside other statistical models when covariates
information is available, such as interval-censored forests
(Cho, Jewell, and Kosorok 2019) and fiducial ensemble trees
(Wu, Hannig, and Lee 2019).

• The proposed procedure can be readily extended to con-
structing confidence bands and tests of two distribution func-
tions by defining (possibly weighted) norms, which may
provide alternatives to weighted log-rank tests (Fay and Shaw
2010).

• Parzen, Wei, and Ying (1994), Tian et al. (2004), and Tian,
Liu, andWei (2007) proposed resampling approaches to esti-
mating equation based statistical inference, which can also
be viewed from a fiducial perspective. It would be interesting
to apply fiducial inference to semiparametric models, such as
Cox proportional hazard models (Cox 1972) or accelerated
failure time models (Wei 1992; Robins and Tsiatis 1992).

• Based on our simulation results, the proposed fiducial
approach works well numerically in situations that are not
fully covered by theoretical results presented here. Extensions
are under investigation by the authors and will be presented
elsewhere.

Appendix

Appendix A: Lemma A.1 and its Proof

Lemma A.1. Q #»l , #»r ( #»u ) �= ∅ if and only if #»u satisfy: whenever ri ≤ lj
then ui < uj.

Proof. Sufficiency: If Q #»l , #»r ( #»u ) �= ∅ holds, and ri ≤ lj, then we know
that ui ≤ F(ri) ≤ F(lj) < uj.

Necessity: We prove this by contradiction. If Q #»l , #»r ( #»u ) is empty,
then there must exist indices i and j such that, (lj, rj] is strictly larger
than (li, ri] but ui ≥ uj. This contradicts with whenever ri ≤ lj then
ui < uj.

Appendix B: Proof of Proposition 3.1

Proof. Let us first consider the current status data, K = 1. We adopt
the notation of Groeneboom and Wellner (1992), and denote δi = 1 if
li = 0 and δi = 0 if ri = ∞. Thus, the observed data {Ii = (li, ri], i =
1, . . . , n} can be recorded as {(xi, δi), i = 1, . . . , n}, where xi = ri if
δi = 1 and xi = li if δi = 0. We have that the fiducial plausibility

Pr�(F ∈ Q #»l , #»r (
#»U�)) ∝

n∏
i=1

F(xi)δi(1 − F(xi))1−δi

= exp

{∑
i

[
δi log(F(xi)) + (1 − δi) log(1 − F(xi))

]}
,

where Pr� denotes the fiducial probability. Recall that the NPMLE
solves the following optimization problem,

max
0≤y1,...,yn≤1

∑
i

[
δi log(yi) + (1 − δi) log(1 − yi)

]
.

A detailed derivation of the closed form NPMLE can be found in Sun
(2007). Thus, maximizing fiducial probability is equivalent to solving
the optimization problem of the NPMLE estimator.

In general, we have

Pr�(F ∈ Q #»l , #»r (
#»U�)) ∝

n∏
i=1

[F(ri) − F(li)],

where Pr� denotes the fiducial probability. Therefore, any F that maxi-
mizes the fiducial probability Pr�(F ∈ Q #»l , #»r (

#»U�)) is an NPMLE esti-
mator. Different algorithms for the NPMLE such as the self-consistency
algorithm (Efron 1967; Turnbull 1976; Dempster, Laird, and Rubin
1977), the iterative convexminorant algorithm (GroeneboomandWell-
ner 1992; Jongbloed 1998), and a hybrid of self-consistency and iterative
convex minorant algorithm (Wellner and Zhan 1997), can be found in
Sun (2007).

Appendix C: Proof of Theorem 3.1

Proof. We need to study the distribution of Q #»l , #»r (
#»U�) where #»U�

follows uniform distribution on the set { #»u � : Q #»l , #»r ( #»u �) �= ∅}. Recall
that we have Ti = F−1(Ui) and Li < F−1(Ui) ≤ Ri from Section 2.
Given Condition 1, we have

n2 max
i=1,...,n

|Ri − Li| → 0 in probability. (C.1)

We shall see that the unobserved Ti = F−1(Ui) are well separated.
Straightforward calculation with uniform order statistics shows that

Pr
(

min
i∈{0,...,n}

{
U(i+1) − U(i)

}
>

t
n(n + 1)

)
≥

(
1 − t

n

)n
, (C.2)

where U(0) ≡ 0 and U(n+1) ≡ 1. Equations (C.1) and (C.2) together
imply that

Pr((Li,Ri) ∩ (Lj,Rj) �= ∅ for some i �= j) → 0.

Define

F̃(s) ≡
n∑

i=0
I[T(i) ≤ s < T(i+1)]U∗

(i). (C.3)
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Thus, we have that

Pr(sup
s

n1/2 {̃F(s) − FL(s)} > ε) ≤
n∑

i=0
Pr

(
U∗

(i+1) − U∗
(i) >

ε

n1/2

)

=(n + 1) × Pr
(
Beta(1, n) >

ε

n1/2

)
=(n + 1) ×

(
1 − ε

n1/2

)n
→ 0.

Therefore,
sup
s

n1/2 |̃F(s) − FL(s)| → 0,

in probability. By Lemma E.1, we have that

n1/2{FL(·) − F̂(·)} → {1 − F(·)}W(γ (·)),
in distribution on Skorokhod spaceD[0, τ ] in probabilitywith F(τ )< 1,
whereW is the Brownian motion. Thus, for any t < s,

cov[{1 − F(s)}W(γ (s)), {1 − F(t)}W(γ (t))]
= γ (t){1 − F(s)}{1 − F(t)} = F(t){1 − F(s)},

which completes the proof.

Appendix D: Proof of Theorem 3.2

Proof. Note that a standardized Beta(α,β) converges in distribution to
a Normal(0,1) as long as α + β → ∞ and α

α+β → c ∈ (0, 1). For
a given grid value s = Cl, F̂(s) = 1

n
∑n

i=1 I(ri ≤ s). Recall that for
uniform distributions, the kth order statistics follows Beta(k, n+ 1−k).
Therefore, FL(s) = Beta(k, n + 1−k) with k = ∑n

i=1 I(ri ≤ s).
Moreover, k

n converges to F(s) almost surely. The result follows from
Slutsky’s theorem as n1/2E[FL(s)] − F̂(s) = n1/2( k

n+1 − k
n ) goes

to 0 and var[n1/2FL(s)] = nk(n+1−k)
(n+1)2(n+2) converges to F(s)[1 − F(s)],

where the expectation and variance are taken with respect to fiducial
probability.

Appendix E: Lemma E.1 and its proof

Lemma E.1. Assume the conditions of Theorem 3.1. We have
n1/2 {̃F(·) − F̂(·)} → {1 − F(·)}B(γ (·)),

in distribution on Skorokhod space D[0, 1] in probability, where B is
the Brownian motion, γ (t) = ∫ t

0
f (s)

[1−F(s)]2 ds = F(t)
1−F(t) , F̂ is defined in

Theorem 3.1 as

F̂(s) ≡ 1
n

n∑
i=1

I[Ti ≤ s], (E.1)

and F̃ is defined in Section C as

F̃(s) ≡
n∑

i=0
I[T(i) ≤ s < T(i+1)]U∗

(i).

Proof. By Theorem 2 of Cui and Hannig (2019), we essentially need
to check their Assumptions 1–3. Their Assumption 1 satisfies with
their π(t) = 1 − F(t); their Assumption 2 satisfies as we assume
true cumulative distribution function is absolutely continuous; their
Assumption 3 satisfies as∫ t

0

gn(s)∑n
i=1 I(Ti ≥ s)

d

[ n∑
i=1

I(Ti ≤ s)

]
→

∫ t

0

f (s)
[1 − F(s)]2 ds,

for any t such that 1 − F(t) > 0 and any sequence of functions gn →
1

1−F uniformly.

Appendix F: CensoringMechanism

Consider the following data generating equation:

(Li,Ri] = G(Vi, θi,Ti), Ti = F−1(Ui), i = 1, . . . , n, (F.1)

where Vi,Ui are independent Unif(0,1), and G satisfies the following
assumptions:

(a) Li < Ti ≤ Ri, for any Vi and θi;
(b) for the observed (Li,Ri], any Ti ∈ (Li,Ri] and Vi ∈ (0, 1), there

exists θi satisfying (F.1).

We assume that we only observe the intervals (Li,Ri], that is, the true
failure times Ti are unobserved.

The function G determines the type of censoring and is assumed
to be known. The unknown θi determines the censoring distribution
and can be infinite dimensional. To demonstrate how (F.1) is used, we
provide two classical censoring examples.

Example 1. (Right-censoring) For the right-censored data, the function
G in (F.1) is defined as follows: The unknown parameters θi are the
distribution functions Hi of censoring times, and

Li =Ti ∧ H−1
i (Vi|Ti = F−1(Ui)),

Ri =
{
Ti, if Ti ≤ H−1

i (Vi|Ti = F−1(Ui));
∞, if Ti > H−1

i (Vi|Ti = F−1(Ui)).

The traditional right-censoring case observations {Yi,
i} then areYi =
Li and 
i = I{Li = Ri}. Recall that, when Li = Ri = Ti, (F.1) is
modified to be non-empty.

Example 2. (Case K censoring) For the case K censoring, the function
G in (F.1) is defined as follows: The parameters are a collection of
stochastically ordered distribution functions θi = {Hi,1, . . .Hi,K}, the
inspection times Ci,s = H−1

i,s (Vi|Ti = F−1(Ui)), i = 1, . . . , n, s =
1, . . . ,K, and

Li =
K∑
s=0

Ci,sI{Ci,s < Ti ≤ Ci,s+1},

Ri =
K∑
s=0

Ci,s+1I{Ci,s < Ti ≤ Ci,s+1},

where Ci,0 = 0 and Ci,K+1 = ∞. Note that, if all Ci,s are deterministic,
this can be viewed as rounded data.

We now derive the generalized fiducial distribution based on this
data generating equation (F.1). The corresponding inverse map for a
single observation is

QF,θi
li,ri (ui, vi) = {F, θi : F(li) < ui ≤ F(ri), li < G(vi, θi, F−1(ui)) ≤ ri}.

Consequently, the inverse map for the entire data is QF,θ
#»l , #»r

( #»u , #»v ) =⋂
i Q

F,θi
li,ri (ui, vi), where θ ≡ ⋃

i θi. Set

QF
#»l , #»r

( #»u ) = {F : F(li) < ui ≤ F(ri), i = 1, . . . , n}.
Assumption F implies that QF,θ

#»l , #»r
( #»u , #»v ) �= ∅ if and only if

QF
#»l , #»r

( #»u ) �= ∅. Consequently, the marginal fiducial distribution is

the distribution ofQF
#»l , #»r

(
#»U�), where recall that the distribution of #»U�

is the uniform distribution on the set { #»u : QF
#»l , #»r

( #»u ) �= ∅}.
Note that this marginal fiducial distribution of F agrees with the

fiducial distribution derived in Section 2.2. In particular, it depends
only on the observed values of #»l , #»r and not on the censoring mecha-
nism. Therefore, as long as G satisfies Assumptions (a) and (b), we do
not need to know it.
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Supplementary Materials

Supplementary material includes additional simulation results.

Acknowledgments

The authors are thankful to the four referees, associate editor, and editor for
helpful comments which led to an improved manuscript.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

Yifan Cui’s research was supported in part by the National Natural Science
Foundation of China and the Open Research Fund Key Laboratory of
Advanced Theory and Application in Statistics and Data Science (East
ChinaNormalUniversity),Ministry of Education of the People’s Republic of
China. Jan Hannig’s research was supported in part by the National Science
Foundation under Grant No. DMS-1916115, 2113404, and 2210337.

References

Banerjee, M., and Wellner, J. A. (2005), “Confidence Intervals for Current
Status Data,” Scandinavian Journal of Statistics, 32, 405–424. [1,2,4,6,7,8]

Berger, J. O., Bernardo, J. M., and Sun, D. (2009), “The Formal Definition of
Reference Priors,” The Annals of Statistics, 37, 905–938. [2]

(2012), “Objective Priors for Discrete Parameter Spaces,” Journal of
the American Statistical Association, 107, 636–648. [2]

Calle, M. L., and Gómez, G. (2001), “Nonparametric Bayesian Estimation
from Interval-Censored Data Using Monte Carlo Methods,” Journal of
Statistical Planning and Inference, 98, 73–87. [8]

Cho, H., Jewell, N. P., and Kosorok, M. R. (2019), “Interval Censored
Recursive Forests,” arXiv preprint arXiv:1912.09983. [9]

Cox, D. R. (1972), “RegressionModels and Life-Tables,” Journal of the Royal
Statistical Society, Series B, 34, 187–220. [9]

Cui, Y., and Hannig, J. (2019), “Nonparametric Generalized Fiducial Infer-
ence for Survival Functions Under Censoring” (with Discussions and
Rejoinder), Biometrika, 106, 501–518. [2,3,10]

Cui, Y., and Xie, M.-g. (2023), “Confidence Distribution and Distribution
Estimation for Modern Statistical Inference,” in Springer Handbook of
Engineering Statistics, Springer, pp. 575–592. [2]

De Gruttola, V., and Lagakos, S. W. (1989), “Analysis of Doubly-Censored
Survival Data, with Application to AIDS,” Biometrics, 45, 1–11. [8]

Dempster, A. (1968), “Upper and Lower Probabilities Generated by a Ran-
domClosed Interval,”TheAnnals ofMathematical Statistics, 39, 957–966.
[2]

Dempster, A. P. (2008), “The Dempster-Shafer Calculus for Statisticians,”
International Journal of Approximate Reasoning, 48, 365–377. [4]

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likeli-
hood from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Series B, 39, 1–22. [9]

Efron, B. (1967), “The Two Sample Problem with Censored Data,” in
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability. [9]

Fay,M. P., and Shaw, P. A. (2010), “Exact andAsymptoticWeighted Logrank
Tests for Interval Censored Data: The interval R Package,” Journal of
Statistical Software, 36, 1–34. [7,9]

Fisher, R. A. (1922), “On the Mathematical Foundations of Theoretical
Statistics,” Philosophical Transactions of the Royal Society of London,
Series A, 222, 309–368. [2]

(1930), “Inverse Probability,” Proceedings of the Cambridge Philo-
sophical Society, xxvi, 528–535. [1]

(1933), “The Concepts of Inverse Probability and Fiducial Probabil-
ity Referring to Unknown Parameters,” Proceedings of the Royal Society
of London, Series A, 139, 343–348. [1]

Gómez, G., and Lagakos, S. W. (1994), “Estimation of the Infection Time
and Latency Distribution of AIDS with Doubly Censored Data,” Biomet-
rics, 50, 204–212. [8]

Groeneboom, P., Maathuis, M. H., Wellner, J. A., et al. (2008), “Current Sta-
tus Data with Competing Risks: Consistency and Rates of Convergence
of the MLE,” The Annals of Statistics, 36, 1031–1063. [6]

Groeneboom, P., and Wellner, J. A. (1992), Information Bounds and Non-
parametric Maximum Likelihood Estimation (Vol. 19), Basel: Springer.
[1,6,9]

Hannig, J., Iyer, H., Lai, R. C., and Lee, T. C. (2016), “Generalized Fiducial
Inference: A Review andNewResults,” Journal of the American Statistical
Association, 111, 1346–1361. [2,9]

Hannig, J., Riman, S., Iyer,H., andVallone, P.M. (2019), “AreReported Like-
lihood Ratios Well Calibrated?” Forensic Science International: Genetics
Supplement Series, 7, 572–574, the 28th Congress of the International
Society for Forensic Genetics. [2]

Hjort, N. L., and Schweder, T. (2018), “Confidence Distributions and
Related Themes,” Journal of Statistical Planning and Inference, 195, 1–13.
[2]

Huang, J. (1999), “Asymptotic Properties of Nonparametric Estimation
based on Partly Interval-Censored Data,” Statistica Sinica, 9, 501–519.
[5]

Huang, J., and Wellner, J. A. (1997), “Interval Censored Survival Data: A
Review of Recent Progress,” in Proceedings of the First Seattle Symposium
in Biostatistics, Springer, pp. 123–169. [1]

Jacobsen, M., and Keiding, N. (1995), “Coarsening at Random in General
Sample Spaces andRandomCensoring inContinuous Time,”TheAnnals
of Statistics, 23, 774–786. [1]

Jongbloed, G. (1998), “The Iterative Convex Minorant Algorithm for Non-
parametric Estimation,” Journal of Computational and Graphical Statis-
tics, 7, 310–321. [9]

Kalbfleisch, J. D., and Prentice, R. L. (2011),The Statistical Analysis of Failure
Time Data (Vol. 360), Hoboken, NJ: Wiley. [2]

Keiding, N., Begtrup, K., Scheike, T. H., and Hasibeder, G. (1996), “Esti-
mation from Current-Status Data in Continuous Time,” Lifetime Data
Analysis, 2, 119–129. [7,8]

Kosorok, M. R. (2008), “Bootstrapping the Grenander Estimator,” in
Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor
of Professor Pranab K. Sen, Institute of Mathematical Statistics,
pp. 282–292. [1]

Law, C. G., and Brookmeyer, R. (1992), “Effects ofMid-Point Imputation on
the Analysis of Doubly Censored Data,” Statistics in Medicine, 11, 1569–
1578. [2]

Lawless, J. F., and Babineau, D. (2006), “Models for Interval Censoring and
Simulation-based Inference for Lifetime Distributions,” Biometrika, 93,
671–686. [2]

Lee, S. M. S., and Pun, M. C. (2006), “On m out of n Bootstrapping for
Nonstandard M-Estimation With Nuisance Parameters,” Journal of the
American Statistical Association, 101, 1185–1197. [1]

Liu, Y., and Hannig, J. (2016), “Generalized Fiducial Inference
for Binary Logistic Item Response Models,” Psychometrika, 81,
290–324. [2]

(2017), “Generalized Fiducial Inference for Logistic Graded
Response Models,” Psychometrika, 82, 1097–1125. [2]

Liu, Y., Hannig, J., and PalMajumder, A. (2019), “Second-Order Probability
Matching Priors for the Person Parameter in Unidimensional IRTMod-
els,” Psychometrika, 84, 701–718. [2]

Martin, R., and Liu, C. (2013), “Inferential Models: A Framework for Prior-
Free Posterior Probabilistic Inference,” Journal of the American Statistical
Association, 108, 301–313. [2]

(2015), Inferential Models: Reasoning with Uncertainty, Chapman
& Hall/CRC Monographs on Statistics & Applied Probability, London:
CRC Press. [2]

Neupert, S. D., and Hannig, J. (2019), “BFF: Bayesian, Fiducial, Frequentist
Analysis of Age Effects in Daily Diary Data,”The Journals of Gerontology:
Series B, 75, 67–79. [2]

Oller, R., Gómez, G., and Calle, M. L. (2004), “Interval Censoring: Model
Characterizations for the Validity of the Simplified Likelihood,” Cana-
dian Journal of Statistics, 32, 315–326. [2]

Parzen, M., Wei, L., and Ying, Z. (1994), “A Resampling Method Based on
Pivotal Estimating Functions,” Biometrika, 81, 341–350. [9]



12 Y. CUI, J. HANNIG, ANDM. R. KOSOROK

Peto, R. (1973), “Experimental Survival Curves for Interval-CensoredData,”
Journal of the Royal Statistical Society, Series C, 22, 86–91. [1]

Politis, D. N., Romano, J. P., and Wolf, M. (1999), Subsampling, New
York:Springer. [1]

Robins, J., and Tsiatis, A. A. (1992), “Semiparametric Estimation of an
Accelerated Failure Time Model with Time-Dependent Covariates,”
Biometrika, 79, 311–319. [9]

Schick, A., and Yu, Q. (2000), “Consistency of the GMLE with Mixed Case
Interval-Censored Data,” Scandinavian Journal of Statistics, 27, 45–55.
[1]

Schweder, T., and Hjort, N. L. (2016), Confidence, Likelihood, Probability
(Vol. 41), Cambridge: Cambridge University Press. [2]

Sen, B., andBanerjee,M. (2007), “APseudolikelihoodMethod forAnalyzing
Interval Censored Data,” Biometrika, 94, 71–86. [1,2,4,6,7,8]

Sen, B., Banerjee, M., and Woodroofe, M. (2010), “Inconsistency of Boot-
strap: The Grenander Estimator,” The Annals of Statistics, 38, 1953–1977.
[1]

Sen, B., and Xu, G. (2015), “Model based Bootstrap Methods for Interval
Censored Data,” Computational Statistics & Data Analysis, 81, 121–129.
[1]

Shafer, G. (1976), AMathematical Theory of Evidence, Princeton: Princeton
University Press. [2,4,5]

Shorack, G. R. (2017), Probability for Statisticians, Springer Texts in Statis-
tics, New York: Springer. [6]

Singh, K., Xie, M., and Strawderman, W. E. (2005), “Combining Informa-
tion from Independent Sources through Confidence Distributions,” The
Annals of Statistics, 33, 159–183. [2]

Sun, J. (2007), The Statistical Analysis of Interval-Censored Failure Time
Data, New York: Springer. [1,2,9]

Tang, R., Banerjee, M., and Kosorok, M. R. (2012), “Likelihood based
Inference for Current Status Data on a Grid: A Boundary Phenomenon
and anAdaptive Inference Procedure,”TheAnnals of Statistics, 40, 45–72.
[6]

Taraldsen, G., and Lindqvist, B. H. (2013), “Fiducial Theory and Optimal
Inference,” The Annals of Statistics, 41, 323–341. [2,9]

Tian, L., Liu, J., Zhao, Y., and Wei, L. J. (2004), “Statistical Inference based
on Non-smooth Estimating Functions,” Biometrika, 91, 943–954. [9]

Tian, L., Liu, J. S., and Wei, L. (2007), “Implementation of Estimating
Function-based Inference Procedures with Markov chain Monte Carlo
Samplers,” Journal of the American Statistical Association, 102, 881–888.
[9]

Turnbull, B. W. (1976), “The Empirical Distribution Function with Arbi-
trarily Grouped, Censored and Truncated Data,” Journal of the Royal
Statistical Society, Series B, 38, 290–295. [1,9]

van der Vaart, A., and Wellner, J. A. (2000), “Preservation Theorems
for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes,” in High
Dimensional Probability II, eds. E. Giné, D. M. Mason, and J. A. Wellner,
pp. 115–133, Boston: Springer. [1]

Wang, Y. H. (2000), “Fiducial Intervals: What Are They?” The American
Statistician, 54, 105–111. [2]

Wei, L.-J. (1992), “The Accelerated Failure Time Model: A Useful Alter-
native to the Cox Regression Model in Survival Analysis,” Statistics in
Medicine, 11, 1871–1879. [9]

Wellner, J. A. (1995), “Interval Censoring, Case 2: Alternative Hypotheses,”
Lecture Notes-Monograph Series, 27, 271–291. [1]

Wellner, J. A., and Zhan, Y. (1997), “A Hybrid Algorithm for Computa-
tion of the Nonparametric Maximum Likelihood Estimator from Cen-
sored Data,” Journal of the American Statistical Association, 92, 945–959.
[9]

Wu, S., Hannig, J., and Lee, T. (2019), “Uncertainty Quantification in
Ensembles of Honest Regression Trees using Generalized Fiducial Infer-
ence,” arXiv preprint arXiv:1911.06177. [9]

Xie, M., and Singh, K. (2013), “Confidence Distribution, the Frequentist
Distribution Estimator of a Parameter: A Review,” International Statis-
tical Review, 81, 3–39. [2]

Ye, Y., andTse, E. (1989), “An extension ofKarmarkar’s ProjectiveAlgorithm
for Convex Quadratic Programming,” Mathematical programming, 44,
157–179. [3]

Yu, Q., Schick, A., Li, L., and Wong, G. Y. C. (1998), “Asymptotic Prop-
erties of the GMLE in the Case 1 Interval-Censorship Model with
Discrete Inspection Times,” Canadian Journal of Statistics, 26, 619–627.
[6]

Zhu, R., and Kosorok, M. R. (2012), “Recursively Imputed Survival Trees,”
Journal of the American Statistical Association, 107, 331–340. [7]


	Abstract
	1.  Introduction
	2.  Methodology
	2.1.  Setup and Notation
	2.2.  A Data Generating Equation Perspective
	2.3.  A Simple Gibbs Sampler
	2.4.  Further Illustration with Two Simulated Examples

	3.  Theoretical Results
	3.1.  Connection to the Nonparametric Maximum Likelihood Estimator
	3.2.  Bernstein-von Mises Theorem Under Various Settings

	4.  Simulation Experiments
	4.1.  Current Status Data
	4.2.  Case II and Mixed Case Censoring
	4.3.  Mean Squared Error of the Point Estimators

	5.  Real Data Application
	5.1.  Current Status Data
	5.2.  Mixed Case Censoring Data

	6.  Discussion
	Appendix
	Appendix A:  [lemma:equiv2]Lemma A.1 and its Proof
	Appendix B:  Proof of [theorem:consistency]Proposition 3.1
	Appendix C:  Proof of [main]Theorem 3.1
	Appendix D:  Proof of [main2]Theorem 3.2
	Appendix E:  [corollary]Lemma E.1 and its proof
	Appendix F:  Censoring Mechanism
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	References


