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Figure 1: LaserShoes is a ground surface detection system based on wearable laser speckle imaging. (a) The hardware of
LaserShoes, which consists of two major components: 1) a detecting component, which consists of a laser emitter and an image
sensor and is set on shoes; and 2) a processing and assistant component, which mainly consists of a Raspberry Pi. The processing
and assistant component is attached to a user’s lower leg; (b) To detect ground surfaces, LaserShoes recognizes patterns exhibited
by laser speckles induced on different ground surfaces. (c) One example application of LaserShoes is personal running assistant.
LaserShoes can identify ground surfaces on which the user is running and log this information for running analysis.

ABSTRACT

Ground surfaces are often carefully designed and engineered with
various textures to fit the functionalities of human environments

“The first and second authors contributed equally to the paper.
*Corresponding author: Guanyun Wang, guanyun@zju.edu.cn.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’23, April 23-28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581344

and thus could contain rich context information for smart wear-
ables. Ground surface detection could power a wide array of appli-
cations including activity recognition, mobile health, and context-
aware computing, and potentially provide an additional channel
of information for many existing kinesiology approaches such as
gait analysis. To facilitate the detection of ground surfaces, we
present LaserShoes, a texture-sensing-enabled system using laser
speckle imaging that can be retrofitted to shoes. Our system cap-
tures videos of speckle patterns induced on ground surfaces and
uses pre-processing to identify ideal images with clear speckle
patterns collected when users’ feet are in contact with ground sur-
faces. We demonstrated our technique with a ResNet-18 model and
achieved real-time inference. We conducted an evaluation in differ-
ent conditions and demonstrated results that verified the feasibility.
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1 INTRODUCTION

Human environments contain rich contextual information that
could be used to power a variety of context-aware computing appli-
cations. Users’ presence in a kitchen, for example, often indicates
food preparation activities, whereas classrooms indicate learning
and theaters indicate entertainment. As a result, accurate and ro-
bust sensing of user presence in environments with varying func-
tionalities has long been desired in HCI [1, 70, 71]. Additionally,
fine-grained information on user location could also facilitate con-
ventional sensor-aided approaches such as gait analysis [14, 30],
activity logging [26], and beyond for medical research and many
more in-the-wild studies.

In this research, we create a wearable system to recognize ground
surfaces, which are a universal and expressive feature of human en-
vironments and often are strong indicators of user contexts. Surface
texture, as a distinguishing feature of any ground surface defined
by four characteristics including lay, flaw, roughness, and waviness
[43], has recently received tons of attention in the sensing research
field. For example, texture-based ground surface detection has been
widely used in applications of robotics, such as assisting mobile
robots in detecting obstacles [73] and promoting autonomous agri-
culture [42].

As we lay barefoot on ground surfaces, we feel the soft grass
of a lawn, lumpy fabrics on a carpet, gritty soil of a hiking trail,
smooth tiles of a bathroom, grainy wood of a floor, and rough sands
on a beach. We believe that wearable intelligence could benefit
from enhanced perceptual capabilities of sensing ground surfaces,
similar to what humans can do but without limitations in sensitivity,
granularity, latency, and time of operation, in order to achieve a
better understanding of environments and user contexts, and to
provide assistance, accommodate for natural interactions, and log
important patterns in information for analysis and diagnosis.

As users’ feet are almost always in contact with ground surfaces,
shoe-instrumented wearables serve as an ideal platform for sensing
ground surfaces. To enable shoe wearables to sense ground sur-
faces, we propose LaserShoes, a low-cost ground surface detection
system using the laser speckle imaging technique (Fig. 1). In com-
parison with conventional vision-based approaches taking RGB
photos of ground surfaces, laser speckle imaging reveals richer
and more accurate information about textures of ground surfaces

using an active signal — laser beams. When compared to cameras,
laser speckle imaging can distinguish surface textures that appear
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visually similar. Additionally, unlike conventional imaging systems
which require lenses, laser speckle imaging does not require a lens
and thus cannot provide clear visuals of users’ backgrounds to
preserve privacy.

Our system mainly consists of a laser emitter, an image sensor
(CCD), and a Raspberry Pi board. The laser emitter and the image
sensor are connected to shoes to capture videos of speckle patterns
that reflect surface textures. The Raspberry Piboard is instrumented
to a user’s lower leg and runs the detection pipeline which features
a pre-processing phase to eliminate blurry images, and a deep
learning model to acquire ground surface types. The entire system
costs $136. We recruited 15 participants in a user study where they
were asked to walk on 24 ground surfaces for 1~2 minutes. In total,
we collected 28,492 1.5s video sessions. We validated our system
under within-user and cross-user conditions, and the classification
accuracy of within-user and cross-user conditions is 86.93% and
80.57%, respectively. We also carried out three additional studies to
tease out the performance of our system in detecting dry, wet, and
frozen surfaces, and sand surfaces of different grain sizes, and under
various lighting conditions. Finally, we demonstrated applications
enabled by our system, such as personal running assistant, gait
analysis, surface-aware cleaning equipment, coarse navigation, and
daily activity recognition through localization.

In summary, our main contributions include:

e We designed and implemented LaserShoes, a laser-imaging-
based ground surface detection wearable system that can
identify ground surfaces.

e We designed a data process method for LaserShoes to identify
relative stationary frames from collected videos and com-
pleted an end-to-end real-time inference pipeline based on
contemporary deep learning techniques.

e We conducted an evaluation with 15 participants to inves-
tigate the performance of LaserShoes with two validation
mechanisms (i.e., within- and cross-user), and under various
surface and environmental conditions.

2 RELATED WORK
2.1 Sensing Ground Surface with Smart Shoes

With the rise of ubiquitous computing, various smart shoes are
designed and developed for sensing ground surfaces and accommo-
dating novel interaction modalities [62, 67]. Taking advantage of
their unique position, and linking the foot with ground surfaces,
smart shoes can often yield information beyond what is possible
through wearables at other body locations.

Prior work has demonstrated ground surface identification using
foot kinematics, which could be used for danger alerts and human
activity recognition. Specifically, Otis et al. [37] used a variety of
sensors, including accelerometers, gyroscopes, and force sensors,
to distinguish between the physical properties of different soils.
Cheng et al. [8] designed wearable capacitive sensors and applied
them around users’ ankles to recognize whether users were walking
on concrete or in the meadow. Furthermore, Matthies et al. [31]
designed CapSoles leveraging the capacitive ground coupling effect
to detect six different ground surfaces. Zrenner et al. [75] revealed
the relationship between foot kinematics and ground surfaces with
different properties using inertial measurement units (IMU). Strada
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et al. [50] used gait data collected by inertial sensors embedded in
the shoes’ soles to identify surface types and conducted experiments
on four different ground surfaces. However, foot kinematics can be
largely affected by the user’s intrinsic walking characteristics [31]
and health conditions [41]. In contrast, LaserShoes uses laser speckle
imaging to recognize ground surfaces of different textures, which
is immune to differences in gait, and has been evaluated on 24
different ground surfaces and demonstrated robustness under a
variety of environmental conditions.

2.2 Surface Texture Detection Techniques

Surface texture is a complex condition resulting from a combina-
tion of roughness (nano and micro-roughness), waviness (macro-
roughness), and lay and flaw [43]. Surface texture recognition has
been widely used in various application domains [2, 6, 35, 49]. Con-
ventional approaches to texture recognition include microscopes
and roughness meters which are expensive and often stationary,
making them difficult to be instrumented on a user’s body as wear-
able devices. It is also possible to use tactile sensors with a portable
form factor to identify surface textures [12, 38, 57, 60, 66]. These tac-
tile sensors can augment the sensation of touch and assist surface
texture recognition.

Closer to our system, several prior works have investigated op-
tical approaches for surface texture recognition. For example, Su
et al. [53] acquired subsurface scattering characteristics measured
by time-of-flight (ToF) cameras to identify surface texture features.
Researchers also combined a multi-spectral light source and an
image sensor to recognize surface textures [20, 65]. These tech-
niques, however, often rely on complex devices or multiple light
sources, which are expensive to scale. In this research, we chose
laser speckle imaging, a relatively low-cost approach consisting
of mainly a laser and an image sensor, to capture surface texture
features at high fidelity. We furthered this sensing approach into
an end-to-end system and evaluated it with realistic surface and
environmental conditions.

2.3 Laser Speckle Imaging

LaserShoes is closely related to prior works on Laser speckle imag-
ing [19], which is a technique that uses an image sensor to obtain
patterns in laser speckle images corresponding to surface textures
when a beam of coherent light, such as a laser, illuminates the sur-
face. This method has been used in a variety of fields. In the medical
field, for example, it is used to monitor capillary perfusion in human
skin tissues and brain blood flow maps in rodents [10, 11, 16]. In
HCI, Laser Speckle Imaging has been used to recognize appliance
use and home activities [54, 72] to achieve motion sensing and
motion tracking [36, 48, 74]. And a non-contact force sensing can
also be achieved by applying Laser Speckle Imaging to manifest sur-
face deformation which is corresponded to force [40]. Furthermore,
Laser Speckle Imaging techniques can be used to expose surface
characteristics for surface material identification. SpecTrans [45]
leverages Laser Speckle Imaging in conjunction with multi-spectral
LED illumination to classify textureless, specular, and transparent
materials for interactivity. Laser Speckle Imaging is highly sensitive
and can even reveal small composition differences of materials that
appear identical to human eyes. SensiCut [13], for example, applies
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this technique on a laser cutting machine to identify the pending
materials before cutting, to improve its safety and workflow.

Our work leveraged this sensing approach to identify ground
surfaces, a drastically different class of surfaces than the ones in the
prior work. Our different application scenario comes with unique
challenges such as the relative motion between a user’s feet and
the ground surface. To overcome these challenges, we developed an
end-to-end wearable system with a custom pre-processing phase to
filter out blurry speckle images due to the motion effect, resulting
in a robust system that we evaluated with a wide range of common
ground surface types.

3 PRINCIPLES OF OPERATION

LaserShoes is based on two principles of operation: 1) we used Laser
Speckle Imaging to detect ground surface textures, and 2) we used
the variance of grayscale-converted frames from recorded videos
to infer gait status and obtain speckle images with high quality.

First, Laser Speckle Imaging can reveal surface texture charac-
teristics. When a beam of coherent light (e.g., laser) illuminates a
ground surface, the light will be reflected, and captured by a nearby
image sensor, forming an image with laser speckles, as shown in
Fig. 2 (a). This phenomenon occurs because ground surfaces are
rough - the micro geometry of ground surfaces varies the optical
paths of the laser beam. Thus, each pixel of the image sensor will
receive the reflected laser beam with different constructive and
destructive interference, forming laser speckles. Because different
ground surfaces have different micro geometries, the resulting laser
speckle patterns vary and could be leveraged to identify ground
surfaces.

Second, we applied Laser Speckle Imaging with the consideration
that a user’s feet could be in constant motion (e.g., walking and
running) in relation to ground surfaces. The sensor’s movements
relative to the ground manifest as the motion effect on images,
resulting in blurry laser speckle images that have lower variances
compared with those that have sharp speckles. As illustrated in
Fig. 2 (b), the laser speckle images are much clearer when a user’s
foot is in contact with the ground than when the foot is moving
in the air. We utilized the variances of grayscale speckle images
to identify the foot-ground contact period from recorded videos
and used only speckle images collected from this period for the
subsequent classification.

4 HARDWARE DESIGN

We prototype LaserShoes to investigate the capabilities of laser
imaging in ground surface detection. Although our current imple-
mentation is relatively bulky and impractical for direct adoption,
our end-to-end prototype enables us to effectively verify our sens-
ing principle, conduct technical evaluation, and explore potential
applications. The form factor of our current prototype is akin to
established works in the HCI community [7, 61, 68]. In this section,
we introduce our hardware configurations and fabrication.

4.1 Embedded System

We apply Laser Speckle Imaging to capture speckle patterns and
recognize ground surfaces. The technique has been used in the
HCI community and could be eye-safe [4]. To utilize this technique,
our system consists of four parts: 1) a laser emitter, 2) an image
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Figure 2: Two principles of operation and speckle patterns induced by different ground surfaces. (a) The principle of Laser
Speckle Imaging. The optical paths of laser beams vary due to variances of the surface micro geometry, resulting in constructive
and destructive interference on a nearby image sensor; (b) The gait status affects the blurriness of the laser speckle images.
When a user’s foot moves in the air, the corresponding laser speckle images are blurry, whereas when the foot comes into
contact with the ground surface the corresponding laser speckle images are clear; (c) Ground surfaces and the induced laser
speckles. The speckle images measure 256 X 256 pixels.

Figure 3: The hardware of LaserShoes. (a) The circuit connection of electronic components; (b) Individual unit of the system, in
which b1-b7 are electronic components, b8-10 are mechanical components for housing the Raspberry Pi and other assistant
modules, and b11-15 are the mechanical components for housing the laser emitter and the image sensor and affixing our
system to shoes. b1-battery module, b2-Raspberry Pi Zero 2 W, b3-connector between b2 and b4, b4-USB interface module,
b5-switch module for the laser emitter power supply, b6-laser emitter, b7-image sensor, b8-support component between a
user’s lower leg and the hardware, b9-square housing to cover the Raspberry Pi and assistant modules, b10-top lid of b9,
b11-one of the semi-cubic shell of the container, b12-fixture for the laser emitter, b13-another semi-cubic shells of the container,
b14-cylindrical housing that connect the container and the clamping part, b15-clamping part that attaches this structure set to
shoes with a series of holes for adjusting the angle of the container to it using b14; (c) LaserShoes worn on a user’s foot and
lower leg with all components annotated.

sensor, 3) a Raspberry Pi board, and 4) assistant modules. The laser
emitter and the image sensor compose the detecting component,
while other parts compose the processing and assistant component.
The hardware details of our system are shown in Fig. 3. Compared
to prior works [20, 65], the core sensors bundled in our system
are more compact to set on shoes. The enclosure of the system is
3D printed using photosensitive resin. The entire system and its
manufacturing cost are $135.23, and the combined cost of the laser
emitter and image sensor is $23.14. The cost of each component is
shown in Table 1.

Laser Emitter. We select a laser emitter with a 520nm wavelength

and 5mW output power based on our configuration experiments
(see Section 4.2.2). Given that using a low-power laser emitter will

result in insufficient illumination and unclear speckle patterns, and
that using a high-power laser may not be eye-safe, we ultimately
choose a 5mW laser (Class IIIA) which is chronic viewing hazard
but safe for transient exposures. Additionally, in order to have
maximum laser reflection to preserve signal-to-noise ratio (SNR),
we set the laser emitter vertical to ground surfaces.

Image Sensor. Given that our system is mounted on users’ shoes,
it is subject to movement as users walk, leading to the loss of speckle
information in parts of the image due to motion blur. To extract
images with clear speckle patterns from captured videos, we select
an OV2710 image sensor with a relatively high frame rate of 60
fps. We set the resolution of the image sensor as 1280 X 720 pixels,



LaserShoes: Low-Cost Ground Surface Detection Using Laser Speckle Imaging

CHI 23, April 23-28, 2023, Hamburg, Germany

Table 1: Costs of main components of LaserShoes.

Module ‘ Laser Emitter Image Sensor Switch Module Raspberry Pi Board with USB interface board Battery Module Fabrication

Price ($) | 7.00 16.14 0.52

76.86 17.57 17.14

which is the highest resolution under the 60-fps frame rate. It is
worth noting that our system does not use a lens because laser
beams reflected by ground surfaces are always in focus, resulting
in sharp speckle patterns that are distributed uniformly across the
captured images when a user’s shoe is relatively still with respect
to ground surfaces. To further improve SNR, the image sensor is
placed right next to the laser emitter.

Raspberry Pi Board and Assistant Modules. For image acquisi-
tion and processing, we choose the Raspberry Pi Zero 2 W, for its
compact size, superior speed, and wireless connectivity. With the
connected laser emitter and image sensor, the Raspberry Pi board
carries out three functions: 1) supplying power to the laser emitter
from GPIO, 2) acquiring videos from the image sensor through a
USB interface and 3) processing acquired videos and yielding the
detected type of ground surface to users. The assistant modules
include a battery module, a USB interface module, and a switch
module to safely supply power to the entire system.

4.2 Configurations

In order to identify the optimal configuration of our system, we
conducted experiments using various combinations of laser wave-
lengths and distances, as they are two significant factors affecting
the formation of laser speckles, and investigated their performance
in surface classification. In these experiments, we used an image
sensor which was a model commonly used on webcams with a pixel
size of 3um X 3um.

4.2.1 Image sensor. Given that our system operates in a moving
scenario, an image sensor with a sufficient frame rate is required to
ensure the quality of captured videos and to extract clear speckle
patterns from those videos. Through experiments in which we
collected videos while researchers with the camera configured at
different frame rates were walking at their normal speed, we dis-
covered that the standard 30-fps frame rate is insufficient due to the
motion effect, resulting in an excessive number of blurry images.
On the other end, sensors with higher frame rates are often costly,
which contradicts our design goal of being low-cost. As a result,
we choose a frame rate of 60 and rely on a custom pre-processing
pipeline to mitigate the motion blur (see in Section 5.1).

4.2.2  Wavelength and distance. Since infrared lasers are difficult
to debug, we selected wavelengths of laser in the visible spectrum.
Specially, in our experiments, we investigated 4 different represen-
tative laser wavelengths (405nm, 450nm, 520nm, and 650nm). In
terms of distance, considering that our system is intended to be
fixed on shoes, which often hold a relatively short distance with
ground surfaces, we kept the distance as short as possible while
maintaining sufficient clearance for the light path (i.e., from the
emitter to ground surfaces and back to the image sensor). Thus,
in this case, for each wavelength, we investigated its performance

at distances with the ground surfaces of 1cm, 3cm, 5¢cm, 7cm, 9cm,
11cm, 13cm and 15c¢m (Fig. 4).

For each wavelength-and-distance combination, we collected a
number of images with speckle patterns on five surfaces (wood,
fabric, concrete, rubber, and ceramic). During the collection, we
manually swapped the laser emitter of different wavelengths and
adjusted the sensor distance to the ground surface. In order to
evaluate the qualities of these images, we conducted a quick val-
idation using ResNet-18 [21], with collected images split into a
training set and a testing set. Our assumption is that laser speckle
images with high-quality speckle patterns will yield relatively high
classification accuracy, revealing optimal wavelength-and-distance
combinations.

The average classification accuracies and their standard devia-
tions of all wavelength-and-distance combinations are shown in
Appendix A. Results indicate that the green laser (520nm) exhibits
both high accuracy and stability, though almost all combinations
reach high classification accuracies. When the distance is under
11cm, the accuracies of the green laser are all above 98%. Thus, in
our subsequent studies, we choose the green laser with a 520nm
wavelength and set the distance between the sensor and ground
surfaces to under 11cm when affixing the sensor to users’ shoes.

4.3 Mechanical Structure and Fabrication

We build a mechanical structure of two modules that can achieve
angle adjustment of the detecting component to ground surfaces
and the fixation of the system on a user’s leg (Fig. 3). The first mod-
ule consists of five parts: two semi-cubic shells forming a container
(b11, b13), a limiter with two cylindrical channels (b12), a cylindrical
housing (b14), and a clamping part (b15). The two semi-cubic shell
surfaces are joined together into a cube container by screws on the
side. The image sensor is fixed inside the cube housing via slots in
the four corners of the cube container’s inner side, and the laser is
fixed on the bottom side of the cube housing via a fixture (b12). A
number of rivet structures are used to connect the cube container
to the column housing b14, and to implement the rotatable con-
nection between the column housing b14 and the clamping part
(b15). Screws are used to secure a series of discontinuous holes in
the column housing and the clamping part, allowing an adjustable
angle between the cube container and the clamping part, ranging
from 0 to 90 degrees in a 15-degree step. As the clamping part of the
first module is fixed to the outer side of a user’s ankle, adjusting the
angle between the cube container and the clamping part changes
the angle between the laser sensing beam with the user’s leg and
thus with the ground surfaces.

The second module contains four parts: a supporting part (b8), a
square housing (b9), a top lid (b10), and a controller box (b5). Among
these, b8, b9, and b10 are jointed by three studs on the corners to
form a container for the combined structure of the Raspberry Pi
board and the battery module. The container measures approxi-
mately 65.7mm in length, 30.6mm in width, and 46.0mm in height.
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Figure 4: 32 wavelength-and-distance combinations that we selected and the corresponding sample speckle imaging data of
each wavelength-and-distance combination. We selected four different wavelengths of 405nm, 450nm, 520nm and 650nm and
eight different distances of 1cm, 3cm, 5cm, 7cm, 9cm, 11cm, 13cm and 15cm. When collecting data, we adjusted the wavelength by

swapping laser emitters manually.

The USB port and the charging port are reserved for the exterior of
the container. The controller box (b5) contains the switch module
and is attached to the rest of the module with a side slide. This
module is fixed to the outside of the user’s lower leg with straps
fitting through b8 and the main structure of the container is kept
away from the user’s skin to avoid possible discomfort due to the
heat dissipation of our system. The above mechanical structures
are 3D printed with photosensitive resin at a 0.05 mm resolution
using a Lite600HD 3D printer.

5 GROUND SURFACE DETECTION

The whole ground surface detection pipeline of LaserShoes is il-
lustrated in Fig. 5. LaserShoes device is expected to work despite
the constant motion with ground surfaces while users are walking.
Every 90 frames are treated as a video session, taking about 1.5
seconds to collect. This duration is selected for our observation that
at least one foot-ground contact would appear in the video session
when users walk at normal speeds.

Video sessions are fed into our ground surface detection system,
which consists of a pre-processing phase and a deep learning model
for classification. Specifically, with this pre-processing phase, we
select images with clear speckle patterns from the collected videos
and crop selected speckle images into small images before feed-
ing them into a deep learning model for classification, as a data
enhancement technique to increase our data collection efficiency.
This pre-processing phase allows LaserShoes to deal with distance
change and motion blur caused by users’ gait.

5.1 Data Pre-processing

The motion of users’ feet causes the speckle patterns to be blurry
and thus contain little information on ground surfaces (Fig. 2 (b)).
To achieve high detection accuracy, it is necessary to extract high-
quality images with clear speckle patterns. Our pre-processing
phase contains four stages (Fig. 5 (b)-(e)), including 1) identifying
the foot-ground contact periods, 2) cropping images, 3) removing
partial blurry images, and 4) removing fuzzy patterns. Specifically,
we first identify images collected from foot-ground contact periods.

We then crop these foot-ground contact images into small images
with the size of 256 x 256. We discard cropped images with partial

blur or fuzzy patterns. After the pre-processing phase, we obtain a
group of cropped images with clear speckle patterns to feed into
our deep-learning model. The details of each stage of this pre-
processing phase are explained below, and the efficacy of the data
pre-processing is discussed in Section 8.1.

Algorithm 1: Identifying Foot-Ground Contact Period

Input: The image list ImgLst, the variance threshold thj,g;
from the last session.
Output: The list of foot-ground contact images FLst.

for i in range len(ImgLst) do
Calculate the variance of ImgLst; and save it in list

VarLst;

for i in range len(VarLst) do

if i=0o0ri=Ilen(VarLst) — 1 then
L Continue;

if VarLst; >= th;,s; and VarLst;_q1 >= thy,s and
VaLstriy1 >= thy,s then
L Center-crop ImgLst; and save it in FLst;

Calculate the top 8% variance value in list VarLst and use it
to update thy,g;
Result: FLst

5.1.1 Identifying foot-ground contact periods with variance-based
threshold. We observe that the distribution of bright and dark re-
gions in speckle images contains the majority of information about
ground surfaces, and that color is not a significant factor. Therefore,
to increase the efficiency of our pre-processing phase, we convert
all speckle images to grayscale.

The first step, after acquiring the grayscale frames, is to identify
speckle images that correspond to the foot-ground contact period.
These images are often less blurry, revealing much information
about ground surfaces. We note that, when LaserShoes is moving in
relation to the ground, the collected speckle images are less visible,
resulting in lower variances of pixel intensities across an image
for the edge of the speckle patterns being fuzzy. Fig. 6 shows some
example speckle images from the foot-ground contact period and
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Figure 5: The pipeline of ground surface detection. (a) The overview of this pipeline: all frames of the collected video are
converted into grayscale and fed into a pre-processing phase, which identifies a set of images with distinct speckle patterns,
which will then be fed into a ResNet-18 model to determine the type of ground surface; (b)-(e) Four main stages of the pre-
processing phase; (b) We select speckle images with pixel variances higher than a threshold. These images (i.e., foot-ground
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discarded; (c) We crop the foot-ground contact images along the leftmost column and threshold the variance of cropped images.
If the cropped image has a higher-than-threshold variance, the entire row of the foot-ground contact images which has the
cropped image is preserved for the next steps. Rows with cropped images of lower-than-threshold variances are discarded.
Then we slice the preserved rows of the foot-ground contact images to get multiple candidate images which are enhanced for
better contrast by histogram equalization; (d) We divide one candidate image into four regions and calculate the sum of each
part. If the difference between any two sums is smaller than the threshold thg;ff.,1, the candidate image will be considered not
blurry and passed to the final selection stage; (e) Finally, we apply 8 Gabor filters with various angles to candidate images and
calculate the sum of each result. If all the sums are larger than the threshold thg,,; and differences of any two sums are all
smaller than another threshold thy;¢ sy, the candidate image is clear and ready for the subsequent detection. In other words,
these clear candidate images are outputs of this pre-processing phase.

histogram clear candidate fuzzy patter

equalization l l
output discard

from a user’s foot in motion, illustrating the difference in blurriness. CCD module, not being able to output clear laser speckles. The
Hence, by comparing the variances of pixels, we identify speckle pseudo-code of this pre-processing stage is shown in Algorithm 1.
images that are collected from the foot-ground contact period and
pass them to the next stage.

We calculate the grayscale variance of each speckle image in
each video session. Then, for each speckle image, we recognize it as
one collected from the foot-ground contact period if it has a cross-
pixel variance that is larger than the top 8% variance value of the
previous 90-frame video segment. To further improve robustness,
we use adjacent images to aid in identification — we consider a
speckle image to be a foot-ground contact image only when both
its previous frame and next frame have high variance. Finally, before
feeding these selected images into the next stage, we conduct a
center crop on them for the lack of sensitivity at the edges of the

5.1.2  Cropping images. The first stage yields foot-ground contact
images of 1024x592 pixels. We conduct a test to investigate the
effect of image size on the detection performance in Section 5.3,
and choose 256x256 pixels as the size of our input data. Specifically,
we use an extraction window of that size to crop out input images
from each foot-ground contact image. This cropping operation also
increases the number of samples and improves the efficiency of
deep learning model training.

However, within each foot-ground contact image, some regions
may still be blurry while others have clear speckle patterns. We
eliminate those with blurry speckle patterns in this stage to further
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Algorithm 2: Cropping Images

Input: The list of foot-ground contact images FLst, the
number of cropped images along the height
dimension numy, and the number of cropped images
along the width dimension nums,,.

Output: The list of candidate images CILst.

for i in range len(FLst) do

for j in range numy, do
Crop the images along height dimension at height
index j;
Save the variances of the cropped images in list
CVarLst;

Calculate the top 20% of the values in variance list CVarLst
as the threshold therop;
for i in range len(CVarLst) do
if CVarLst; > therop then
Calculate the corresponding image index idx; and
cropped image height index idxy,;
for j in range num,, do
Use the height index idx;, and the width index j
to crop the image Fjgy, and get CandImg;
CandImg = HistogramEqualization(CandImg);
Save CandImyg in the list CILst;

R;sult: CILst

20 Foot-ground Contact Image — Variance
200 Foot-ground Contact Image
2150
£100 tion Inage
50
0 M"ILHJLURU WJ UL MW Y {M }‘\M{j JL)'
0 500 1000 1500 2000 2500 3000 3500
Frame Numbers
Blurry Part»
Clear Part »
P s

Foot-ground Contact Image Motion Image
Figure 6: The grayscale variances of all images in one col-
lected video. Images with small variances are motion images
that own no speckle patterns but blur while images with
large variances correspond to foot-ground contact periods
and own speckle patterns. In some foot-ground contact im-
ages, some parts own blurry speckle patterns while others
own clear ones. And the distribution of speckle patterns is
often similar along the image width direction which aligns
with the foot breadth direction.

improve our system’s robustness. Instead of using the intuitive
approach to calculating pixel variance of all cropped images, which
could be computationally expensive, we calculate the variances of
the cropped images along the left edge of a foot-ground contact
image to decide the blurriness of rows in these cropped images
reside. We note that the distributions of speckle patterns in each
image row are often similar to the rolling shutter of our image
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sensor (Fig. 6). Thus, we can determine if a row has clear speckle
patterns by inspecting only one section of it. Specifically, we slide
the extraction window in the y direction to crop out different image
patches and check whether they are clear by thresholding their
pixel variances (Fig. 5). The slide stride is 56 pixels, and thus for each
foot-ground contact image, six cropped images will be extracted. If
a cropped image has a variance higher than the top 20 percent of all
variances of all foot-ground contact images belonging to the current
video session, we consider it to have clear speckle patterns and save
it in a buffer. We also save the indexes of these cropped images for
sliding the extraction window along rows of these indexes with a
128-pixel stride. The extracted patches from this step are candidate
images. Histogram equalization is applied to candidate images to
amplify their contrast. All candidate images are fed into the next
pre-processing stage after histogram equalization. Algorithm 2
shows the pseudo-code of this stage.

5.1.3 Removing partial blurry images with region-based sum com-
parison. There could still be blurry images resulting from the afore-
mentioned stages. To eliminate these images, we design an addi-
tional pre-processing stage for fine selection. Because the contrasts
of these potentially blurry candidate images become much larger
after histogram equalization, the pixel variances of different regions
of these images all vary greatly (shown in Fig. 7 (a)). Thus, to iden-
tify blurry images, each candidate image is equally divided into
four sub-images. We calculate the sum of the grayscale values of

every sub-image and eliminate the candidate image if the difference
between any two sums exceeds a given threshold. The rest of the

candidate images are then fed into the final pre-processing stage.

5.1.4 Removing fuzzy patterns with Gabor filter. Since there may
still be relative motions between our sensor and ground surfaces
during the foot-ground contact period due to the deformation of
ground surfaces, fuzzy patterns can be generated in the speckle
images. These fuzzy patterns often appear as stripes oriented in
a particular direction, while clear speckle images have patterns
with no obvious orientation (as shown in Fig.7(b) and (c)). To re-
move images with fuzzy patterns, we apply 8 Gabor Filters with
different directions (30, 60, 120, 150, 210, 240, 300, and 330 degrees)
and remove those with unbalanced filtered results. Specifically, we
eliminate an image if there is a difference between any two filtered
results greater than a given threshold. The candidate images that
are not eliminated by the third and fourth stages are the output
of our pre-processing phase and are the input to the deep learn-
ing model. The pseudo-code for these two pre-processing stages is
described in Algorithm 3.

5.2 Deep Learning Model

Image classification is a mature field in Computer Vision (CV), and
many deep learning algorithms have shown remarkable perfor-
mance. To choose a proper model for our sensing, we conduct a
comparison study with different models, including ResNet-18[21],
VGG [47], GoogleNet [55], and MobileNetV3 [24]. As shown in Ta-
ble 2, ResNet-18 and GoogleNet achieve comparatively high accura-
cies. We eventually choose ResNet-18 to implement LaserShoes for
its smaller size, despite its slightly lower accuracy than GoogleNet.

In the ResNet model, input images first pass through a convolu-
tion layer, a batch normalization (BN) layer, and a rectified linear
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Table 2: Classification accuracy results of different models
and their model sizes.

Model ‘ ResNet-18 VGG-16 GoogleNet MobileNetV3
Accuracy 88.95% 79.50% 89.95% 77.88%
Model Size 42.8M 512.6M 48.2M 6.3M

Figure 7: Three kinds of candidate images. (a) Blurry can-
didate image; (b) Fuzzy candidate image with one-direction
stripes; (c) Clear candidate image.

Algorithm 3: Removing Partial Blurry Images and Fuzzy
Patterns
Input: The list of candidate images CILst, the threshold
thqif fer1 Which is used to identify partial blurry
images, the threshold thum and thg;ffer2 which are
used to identify fuzzy patterns and the angle list
ALst used for Gabor Filter.
Output: The list of clear candidate images ClearImgLst.

for CandImg in CILst do
Divide CandImg into 4 parts and calculate the sum of

the grayscale values of every part;

Calculate the difference between any two sums and save
the result in the list Dif f1Lst;

if Every element in Dif f1Lst < thg;ffer1 then

for Angle in ALst do

FilterRes = GaborFilter(CandImg, Angle);

Calculate the grayscale sum of FilterRes and
save it in the list SLst;

if Every sum in list SLst > thsym then
Calculate the difference between any two sum in
list SLst and save the result in the list
Diff2Lst;
if Every element in Dif f2Lst < thgjffers then
L Save the CandImg in list ClearImgLst;

Result: ClearImgLst

unit (ReLU) layer. The data then goes through a series of basic blocks
which consists of a residual mapping and an identity mapping. For
the residual mapping, the input passes through a convolution layer,
a BN layer, a ReLU layer, another convolution layer, and another BN
layer, while for the identity mapping, the input only passes through
a 1x1 convolution layer to be downsampled to the same size as the
residual mapping result. Then the two mapping results are added
and the sum passes through a ReLU layer to get the output of a
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basic block. Finally, an average pooling and a full connection layer
are operated to obtain the classification results. During training,
we select Cross Entropy Loss as the loss function and use the Adam
optimizer. The learning rate and the batch size are set to 0.0001 and
32, respectively. We do not use a pre-trained model to initialize our
parameters and use 150 epochs for the model training because we
find that it is enough for our models to be converged.

5.3 Image Size Selection

The model’s input is the clear candidate images from the data pre-
processing phase, and the model’s output is the type of ground
surfaces. Image size is set to 256 X 256 in our ground surface de-
tection, the same as the size used in SensiCut [13]. To verify the
efficacy of this image size, we extract a number of clear candidate
images with different sizes to train a series of ResNet-18 models.
The experimented image sizes included 64 X 64, 128 X 128, 256 X
256, and 512 x 512. The results of average accuracy and inference
time for the classification of one input image are shown in Table 3.
As expected, input images with larger sizes lead to higher accuracy
but take significantly longer to classify. Given the improvement in
accuracy is modest from 256 X 256 to 512 X 512, we select 256 X
256 as the size of the input images to our model to balance accuracy
with inference time.

Table 3: Classification accuracy and inference time for one
image with various input image sizes.

Image Size ‘ 64 X 64 128 X 128 256 X 256 512 X 512
Accuracy 48.33% 66.95% 88.95% 94.67%
Inference Time 2ms 4ms 17ms 45ms

5.4 Real-Time Inference

In real-time detection, the image sensor continually records frames,
and every 90 frames constitute a video session that is fed into the
pre-processing stage. If no clear candidate images are detected by
the pre-processing phase, the detection pipeline outputs “None” as a
neutral label. We conduct testing using 100 video sessions captured
during participants’ normal walks on various everyday ground
surfaces. Our result shows that for every video session, after the data
pre-process phase, the average number of input images fed into the
subsequent model is 11. We use C++ for implementing the data pre-
processing for a superior speed and use Python for implementing
the deep learning model. For every input image of a video session,
the classification model will output a corresponding surface type.
Among all these types, we choose the surface type that appears
the most frequently as the surface label of this video session. And
the label is also provided to the user as the detection feedback. We
record the average time needed for completing the pre-processing
and inference of one video session, with 100 sessions collected from
various participants and ground surfaces processed on a Raspberry
Pi Zero 2 W, a laptop with a CPU of 3.1 GHz dual-core Intel Core
i5, and a GPU of NVIDIA GeForce RTX 3090 respectively. Results
are shown in Table 4. We find that the current implementation
of LaserShoes running solely on the Raspberry Pi board cannot
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perform real-time detection without dropping input images if the
duty cycle of users’ feet contacting ground surfaces is too high,
which we acknowledge as a limitation of our system.

Table 4: Data processing pipeline average run time for one
session on various devices.

Model ‘ Pre-processing Inference ‘ Total
Laptop CPU 99ms 1211ms | 1310ms
Embedded System 696ms 6082ms | 6778ms
GPU 75ms 194ms 269ms

6 EVALUATION

Our user study consisted of one main study and three supplemen-
tary investigations. The main study involved collecting data with
24 ground surfaces to understand LaserShoes’ ability to classify the
ground surface material while its wearer is walking. In the supple-
mentary studies, we aimed to evaluate the robustness of LaserShoes
under various conditions (i.e., on dry, wet, and icy surfaces, on
sand surfaces of different grain sizes, and under different lighting
conditions).

Considering that when pre-processing, identifying the foot-ground
contact periods of a 1.5s video session is the first stage and is the
basis of the subsequent pre-processing stages, a high detection ac-
curacy (DA) of identifying the foot-ground contact period (FGCP)
is necessary. Thus, we first evaluated this detection accuracy, which
is defined as

DA = # detected 1.5s video sessions containing FGCP

# all 1.5s video sessions containing FGCP

Then, we used accuracy, precision, recall, and F1 score as our
evaluation metrics for the ground surface classification. To calculate
them, we only considered the 1.5s video sessions that have surface
label (SL) output and eliminated those with “None” signals. The
classification accuracy (CA) is defined as

CA = # correctly classified 1.5s video sessions with SL output

# all 1.5s video sessions with SL output

6.1 Main Study with 24 Ground Surface

6.1.1 Ground surface materials. We selected a total of 24 common
ground surfaces, comprising 15 indoor surfaces and 9 outdoor sur-
faces, for our study. These surfaces could be classified into five
groups: 1) rough, 2) smooth, 3) hard, 4) discontinuous, and 5) gran-
ular. These surfaces are shown in detail in Fig. 8. For each ground
surface, we prepared at least one continuous area of 20 square me-
ters in size to allow our participants to walk naturally (e.g., not need
to frequently turn or turn back, not need to keep looking down the
ground) during data collection for our study.

6.1.2  Participants and apparatus. We recruited 15 participants (7
males and 8 females), with ages ranging from 20 to 27 years old
(mean = 23.40, SD = 1.56) via social media and flyers. Their body
weights ranged from 48.0kg to 82.6kg (mean = 61.03, SD = 9.93)
and their heights ranged from 158.5¢m to 182.0cm (mean = 170.13,

SD = 6.83). Of all the participants, 5 wore sneakers, 6 wore running
shoes, 3 wore canvas shoes, 1 wore ankle boots, and 1 wore snow
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boots. Their shoe sizes ranged from 23.0cm to 27.0cm, with a mean
of 24.67 (SD = 1.12).

Participants wore their own shoes normally and our LaserShoes
as described in Section 4 to collect videos from ground surfaces
while participants were walking on them. Considering that our
device requires proximity to ground surfaces, we required partic-
ipants to wear flat shoes. Fig. 9 shows some example shoe styles
that LaserShoes is compatible with. Distances between our image
sensor and ground surfaces in the study varied from 6cm to 10cm
across the 15 participants. The detection component was attached
tightly to participants’ shoes through our designed clamping mech-
anism, while the processing and assistant component was attached
to participants’ lower legs using Nylon tapes.

6.1.3 Data collection procedure. We started the study with an in-
troduction of the procedure and helped the participant put the
devices on. For each surface, we used tapes to indicate an area that
the participants could walk on. Participants were allowed to walk
freely in the area. Each study had two sessions. A short practice
session was at the start, where the participant walked through all
surfaces. This session was used to familiarize participants with
the system and no data was collected. We asked the participant to
slow down their walk if no clear speckle patterns could be captured
by LaserShoes (i.e., output from the pre-processing phase). After
the practice session, the participants were asked to walk on each
chosen surface for 1~2 minutes in the second session for data col-
lection. The order of the surfaces each participant needed to walk
on was randomized to avoid bias (e.g., a change in walking speed
or gait caused by fatigue). In addition, in order to simulate real-
world scenarios, participants were asked to adjust their LaserShoes
after each session and to take breaks in between sessions (around 2
mins). The study was conducted under typical indoor and outdoor
lighting conditions. To collect the ground truth of foot-ground con-
tact periods, a camera was set up to record the foot movements
of participants during the study and research assistants labeled all
foot-ground contact timestamps manually. In total, we collected
28,492 1.5s video sessions on 24 surfaces from the 15 participants.
And it took around 2 hours for each participant to finish the data
collection.

6.1.4  Results. To evaluate the performance of our system for ground
surface classification, we used both within-user and cross-user ap-
proaches. For within-user evaluation, to ensure there is no over-
lapping between the training set and the test set, we first split all
data into ten folders and randomly selected two folders as the test
datasets. Of note that no time-adjacent input images were included
in both training or test datasets. For cross-user evaluation, we used
leave-one-out evaluation methods using 14 participants’ data to
train and the remaining one to test.

Detection Accuracy of Identifying Foot-Ground Contact
Periods. The collected videos were processed using the method
described in Section 5.1 and we first evaluated the performance
of identifying foot-ground contact periods using the formula de-
fined above. The detection accuracy is 90.91%, indicating that our
method can detect the majority of foot-ground contact periods from
recorded data.

Within-User Evaluation Results. Results of the within-user
detection accuracy for 24 ground surfaces are shown in Fig. 10 (a).



LaserShoes: Low-Cost Ground Surface Detection Using Laser Speckle Imaging

M

coarse  solid wood
brick
A

Smooth

gravel

plasticwood foam board

floorin

dark light-colored red carpet glass ceramic
cariet _Wood
concete  artifical
flooring

(O  Indoor

Figure 8: 24 kinds of ground surfaces that were selected for the u

o

CHI 23, April 23-28, 2023, Hamburg, Germany

Hard

Discontinuous ~ Granular

discontinuous Ilght—cblored asphall

smooth terrazzo
steel plate brick lastic

coarse slabstone real wood dark rubber
steel plate plastic

”é”ilh. L

Al
rick

b
with lines

marble

(O Outdoor

ser study. 15 of them are indoor, while the other 9 surfaces are

outdoor surfaces. Based on their characteristics, these ground surfaces are divided into five categories: rough, smooth, hard,

discontinuous, and granular.
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shoes; (d) Canvas shoes; (e) Sneakers.

The average classification accuracy of the 24 ground surfaces is
86.93%, with the recall of 87.17% (SD = 10.09), the precision of
85.82% (SD = 13.57) and the F1 score of 85.94% (SD = 10.59). For 15
indoor surfaces, the average classification accuracy is 91.53%, with
the recall of 90.60% (SD = 9.62), the precision of 92.48% (SD = 7.23)
and the F1 score of 91.23% (SD = 7.06), while for 9 outdoor surfaces,
the average classification accuracy is 78.86%, with the recall of
81.46% (SD = 8.07), the precision of 74.73% (SD = 14.39) and the
F1 score of 77.13% (SD = 9.58). Indoor surface detection is more
accurate than outdoor surface detection. The reason for this could
be that the light condition outside is less stable than it is indoors
due to changes in intensity and angle of sunlight. This may reduce
the quality of collected images, resulting in poor detection results.

Besides, we also evaluated the detection accuracy of surfaces
with different characteristics and the results are shown in Table 5.
The results show that rough surfaces have the highest accuracy and
the lowest standard deviation among the five surface groups with
varying characteristics. This makes sense because the microstruc-
ture of rough surfaces is more complex, resulting in more subtle
patterns. Furthermore, discontinuous surfaces have the lowest av-

erage accuracy and a large standard deviation.
Cross-User Evaluation Results. For cross-user evaluation,

the detection results are shown in Fig. 10 (b). The average classifi-
cation accuracy of the cross-user model is 80.57%, with the recall

of 80.36% (SD = 10.48), the precision of 78.32% (SD = 17.62) and
the F1 score of 78.73% (SD = 13.86). For indoors and outdoors, the
average classification accuracy are 83.22% and 73.13%, with the
recalls of 85.48% (SD = 8.95) and 71.85% (SD = 6.56), the precision
of 87.79% (SD = 10.00) and 62.54% (SD = 16.21), and the F1 scores
0f 86.39% (SD = 8.45) and 65.97% (SD = 11.53), respectively. In con-
trast to within-user results, classification accuracy decreases in the
cross-user evaluation. This could be due to the fact that participants
were wearing different shoes in the study, which caused different
distances between the image sensor and ground surfaces. Further-
more, different foot postures of participants when their feet come
into contact with ground surfaces contribute to a decrease in accu-
racy. Some participants’ feet were in aversion, while others were
in inversion or in neutral positions. These different foot postures
(shown in Fig. 11) cause a distance change between the image sensor
and ground surfaces. The distance differences result in differently
formed speckle patterns and thus variance between training and
test datasets — the same type of ground surface may correspond to
multiple speckle patterns. This variance may decrease the accuracy
of the cross-user evaluation. And indoor detection, like within-user
results, outperformed outdoor detection.

We also tested the performance of the cross-user model for five
groups of surfaces with different characteristics. The results are
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Figure 10: The confusion matrices of two trained classification models of the 24 ground surfaces. (a) Classification results using
a within-user model. (b) Classification results using a cross-user model.

Table 5: Average Accuracy (%) and SD results of the within-user model and cross-user model for five surface characteristics.

‘ Rough Smooth Hard Discontinuous  Granular
Within-user | 91.77 +£6.92  86.57 £ 12.98  84.03 £ 7.66 83.40+11.87 85.33+9.91
Cross-user | 79.93+9.67 87.04+10.79 82.98 +11.00 72.42 £ 4.41 77.24 + 8.87

Table 6: Ground surface classification results in different lighting conditions.

Lighting Conditions | Indoor-with-light Indoor-without-light Outdoor-at-daytime Outdoor-at-dusk Outdoor-at-night

Accuracy (%) | 90.05 88.99

71.85 90.94 87.69

shown in Table 5, which indicates that compared to within-user
results, detection accuracy did not change a lot for smooth and hard
surfaces. However, for rough, discontinuous, and granular surfaces,
there is a large decrease. The reason may be that surfaces with

Figure 11: Three types of foot postures. (a) Eversion; (b) Neu-
trality; (c) Inversion.

complex microstructure amplified the difference in participants’
foot postures, resulting in larger differences of speckle patterns
belonging to the same type of ground surfaces.

Visually Similar Ground Surfaces. Among our selected ground
surfaces, light-colored wood and artificial flooring look very similar,
which are not easy to distinguish by conventional RGB cameras.
The results shown in Fig. 10 reveal that in both within-user and
cross-user conditions, these two visually similar surfaces can be
distinguished from the other one with LaserShoes.

6.2 Supplementary Investigation

Given the length of the primary data collection, the supplementary
study is not conducted on the same day to avoid the fatigue of
participants. 12 participants took part in our supplementary studies.
The basic procedure was the same as the main study procedure. We
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finally collected 19,319, 4,250, and, 41,005 1.5s video sessions for
each study, respectively.

6.2.1 Dry, wet, and icy surfaces. In outdoor settings, ground sur-
faces could be dry, wet, or icy due to different types of weather. This
may pose a potential danger to pedestrians. Thus, the sensing capa-
bility of LaserShoes to identify ground surface conditions could have
real-world uses. We conducted experiments to classify ground sur-
face conditions on nine types of outdoor surfaces, shown in Fig. 8,
under three conditions (i.e, dry, wet, and icy). For the wet condition,
we poured water on the ground while for the icy condition, we put
crushed ice on the ground. We conducted two evaluations in this
study. We treated each combination of surface and condition as
a separate label (27 in total) in the first validation. In the second
evaluation, we combined all of the surfaces of the icy condition
into one label (19 in total). The detailed results are shown in Fig. 12.
In the first evaluation, the detection model has a 62.89% recall, a
66.06% precision, and a 59.91% F1. In the second evaluation, after
merging icy surfaces, the detection model has a 76.06% recall, a
76.75% precision, and a 74.29% F1. These results show the feasibility
of LaserShoes detecting ground surface conditions in real-world
applications to improve pedestrian safety.

6.2.2 Sand surfaces with different grain sizes. Even when the mate-
rial is the same, the physical state of the material (e.g., graininess,
looseness) can vary. We also investigated how LaserShoes could
perform finer-grained ground surface material sensing. Participants
were asked to walk on three different types of sand surfaces with
the same procedure as the main study. To be more specific, we
assess the classification performance using data collected on sand
surfaces with sands of three different grain sizes (i.e., small, medium,
and large). The classification accuracy for the sand types is 92.28%
with an 87.60% recall, a 95.56% precision, and a 90.59% F1, which
indicates that LaserShoes could identify the same type of surfaces
with different fine-grained surface geometries.

6.2.3 Different lighting conditions. Lighting conditions may affect
the quality of speckle images and thus the ground surface detec-
tion performance. To test the robustness of LaserShoes against this
factor, we collected data in five different lighting conditions. These
conditions included two for the 15 indoor surfaces and three for
the 9 outdoor surfaces, and are listed as follows:

e Indoor-with-light: lamps (cold light source) on in a room.

o Indoor-without-light: lamps off in a room.

o Outdoor-at-daytime: much sunlight outdoors at daytime.

e Outdoor-at-dusk: little sunlight outdoors at dusk.

o Outdoor-at-night: no sunlight, with streetlamps on, outdoors

at night.

We trained five classification models, each using the data col-
lected under different lighting conditions. Table 6 shows the average
surface classification accuracies for the five different lighting con-
ditions. The results demonstrate that, with the exception of the
outdoor-at-daytime condition, the classification accuracy for all
other conditions was above 87%. This indicates the robustness of
LaserShoes, except under lighting conditions with strong ambient
light, which requires further improvement.
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7 APPLICATION

To demonstrate our system as a real-time assistant in many use
cases by sensing ground surfaces, we developed five application
examples as shown in Fig. 14.

7.1 Personal Running Assistant

A considerable amount of research has been dedicated to assisting
and promoting running activity. For instance, sensing techniques
have been developed to help users understand their body (e.g., track-
ing kinesiological data about feet and gait) [59], some data-driven
interfaces are designed to motivate users’ actions [34], while others
are proposed to support natural navigation running in unknown
places [28, 46]. Some previous works have taken the form of smart
shoes, which people envision as being capable of adapting to dif-
ferent terrains to improve runner performance and health in the
future, becoming an active support tool [33].

However, there are currently few smart shoes that can yield
rich terrain surface information that one can use to correlate with
running experience. For example, a cross-country runner who runs
over a variety of ground surfaces of varying difficulty levels may
want to understand how running performance is related to the
ground surface. Our body has different reactions and biomechanical
demands with different types of ground [3, 15]. For instance, the
degree of compliance of the ground surface will impact the speed of
energy transfer between people’s foot and ground surface, resulting
in different foot-ground contact time and energy consumption
[23, 32]. In this case, LaserShoes could be used to support running
analysis and yield guidance with fine granularity. Fig. 14 (a) shows
an example of using LaserShoes to support running analysis. During
the running trial, the user ran over various ground surfaces such
as carpet, rubber, asphalt, and discontinuous brick, and LaserShoes
detected these different surfaces. As a result, the detection results
could be used to generate reports for each surface, such as time,
speed, and energy consumption.

7.2 Gait Analysis

Gait parameters variability is an important diagnostic indicator of
health [41], related to both the quality of life and mortality [51], cor-
relating with the rehabilitation degree of specific joint injuries [56],
and thus has received significant attention to both clinicians and
researchers. However, the terrain type can significantly influence
the gait pattern [31, 50], which underscores the need to consider
different terrain types while analyzing. Our LaserShoes can be used
to support such analysis. Specifically, as shown in Fig. 14 (b), when
the user steps on soft surfaces like sand and mud, her gait will
change due to the softness of the surface. However, when stepping
on hard surfaces like asphalt, the user can maintain a normal gait.
We can incorporate a simple IMU module into our LaserShoes to
monitor users’ gait information, as well as use LaserShoes to col-
lect terrain ground surface information. In this case, the additional
information can be leveraged to examine how gait is changed on
various types of ground surfaces, providing insights that could be
of use in medical applications.
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Figure 12: The confusion matrices of two trained classification models to identify dry, wet, and icy ground surfaces. (a) Classifi-
cation results using the model that differentiates various icy ground surfaces; (b) Classification results using the model that

merges various icy ground surfaces into one category.

Figure 13: Five kinds of lighting conditions in which we collected data. (a) Indoor-with-light; (b) Indoor-without-light; (c) Outdoor-
at-daytime; (d) Outdoor-at-dusk; (e) Outdoor-at-night.

7.3 Cleaning Equipment Auto-Control

There is a wide variety of cleaning equipment (e.g., UnoClean '), de-
signed for indoor and outdoor applications. Many advanced clean-
ing machines have numerous cleaning modes (e.g., vacuuming
power, whether water is used) for various types of ground surface
and dirt cleaning needs. For example, the cleaning mode used for
grass cannot be directly applied to real leather carpets. A high-
power mode will likely damage the carpet. In this case, users must
frequently change the working mode due to the various physical
forms and chemical compositions of the ground surface. As the
variety of decoration materials in our living environments grows,
automatically switching the cleaning machine’s working mode
based on the floor material can provide much convenience and
reduce errors in our daily cleaning tasks. As shown in Fig. 14 (c), if

!https://www.unoclean.com/

the user wears LaserShoes while cleaning, our system detects the
material of the floor the user is walking on, such as ceramic, carpet,
or wood, and automatically changes the cleaning mode of the ma-
chine. Similar to floor cleaning equipment, other types of mobile
tools (e.g., pressure washer, leaf blower) or even smart devices (e.g.,
smartphones, AR/VR headsets) could also leverage ground surface
as side-channel information to improve their performances.

7.4 Coarse Navigation

Navigation tools have greatly facilitated our lives. Even with GPS
navigation, people might get disoriented in outdoor places with
complex layouts or crowded areas. GPS also does not work in indoor
settings such as museums, airports, and shopping malls [5]. These
environments often have floors made of various materials. For
example, different stores in the mall may have different decorative
floor materials. The route for outdoor running may include grass,
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Figure 14: Five applications using LaserShoes. (a) Personal running assistant: LaserShoes can detect ground surface that users
are currently running on, and these detection results can be used to generate running analysis reports for each surface; (b) Gait
analysis on different terrains: When combined with gait analysis sensors (e.g., IMU), LaserShoes can help users to detect changes
in gait on different terrains; (c) Cleaning equipment auto-control: When a user is cleaning, LaserShoes will detect on which
surface the user is stepping and the working mode of the cleaning equipment can be changed automatically according to the
detection feedback; (d) Coarse navigation: LaserShoes can provide users coarse navigation. For example, when the detection
feedback of LaserShoes is brick, it means that the user is walking in the proper way. However, if the feedback changes to
asphalt that is unexpected, it means the user may be walking in the wrong, or a dangerous way, and some alerts will be given to
the user; (e) Daily activity recognition through localization: The space in which a user is staying can be recognized by using
LaserShoes to detect ground surface types. For instance, detecting carpet is likely to correspond to staying in the living room
for entertainment, while detecting wood may mean staying in the study and working. Thus, based on space recognition, we can
calculate how much time the user spends in various spaces and roughly achieve an analysis of the user’s daily activities.

gravel, asphalt, and other surfaces. LaserShoes can infer coarse user
locations from ground surfaces and alert users when they are off-
course. As shown in Fig. 14 (d), the proper route for the user is the
sidewalk made of bricks. However, if LaserShoes detects that the
current surface is asphalt, its user is likely on the wrong route and
will receive an alert.

The negation system can also be applied to accessibility for
which we envision LaserShoes to work in concert with accessible
infrastructure in urban environments. Visually impaired individ-
uals could rely on additional information (e.g., tactile feedback of
ground surfaces) to acquire spatial awareness [63]. Previous re-
search attempted to design physical tactile maps to enable users
to access information with audio [22, 27, 44, 52], tactile [58], and a
combination of tactile and audio feedback [18, 25, 39, 64]. Instead
of relying solely on the tactile sensation of users’ feet (e.g., tactile
ground surfaces, blind pathways), LaserShoes could sense ground
surfaces for users, providing an alternative solution that could take
advantage of sensory substitution techniques - converting ground
textures into sounds to guide visually impaired individuals to stay
on track of pathways that are safe for them.

7.5 Daily Activity Recognition through
Localization

Recognized activities provide rich contextual information to sup-
port natural human-computer interactions. Statistical analysis of a

person’s behavior in an environmental space helps with the infer-
ence for the design of the space and the user’s lifestyle. For instance,
logged activity data can be used to help older adults to encourage
healthy daily routines and active lifestyles, and to monitor chronic
health conditions and enjoyment [29]. Among all types of in-home
contextual information, the ground surface texture is often unique
to living spaces of different functions. For example, the bathroom
floor is typically made of easy-to-clean and waterproof tile surfaces,
the bedroom floor soft carpets or rugs, and the living room wood
or plastic floor materials. In this case, we can use LaserShoes to
recognize the ground texture and determine which space the user
is in to coarsely infer their activities. As shown in Fig. 14 (e), when
LaserShoes detects carpet, the user is more likely to be relaxing in
the living room. However, when LaserShoes detects wood floors,
the user is more likely to be working in the study. We can, for exam-
ple, alert users when they spend too much time on the toilet (e.g.,
playing with smartphones), which is detrimental to their health.

8 DISCUSSION
8.1 Efficacy of Data Pre-processing

Although machine learning models are somewhat resilient to noisy
data points, they require more computation power during inference.
To alleviate the such burden, a denoising process is commonly
performed prior to feeding into machine learning models [68, 69]. In
our case, if we do not remove blurry images, the time consumption
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for inference will be large, which is opposite to our goal of real-
time prediction. Even if we only extract one image by cropping one
raw frame and do not perform data pre-processing, the number
of images from one video session fed into the classification model
will be 90. However, the average number of images fed into the
classification model after data pre-processing is 11, indicating that
our data pre-processing step can significantly reduce computation
costs during inference.
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Figure 15: (a) Illustration of early alert by sensing ground
surfaces ahead of users. When facing toward the front with
the angles of 60, 45, 30, and 15 degree, LaserShoes could still
capture discernable speckle patterns; (b) Example speckle
images captured on three different surfaces with and without
a transparent glass coating layer.

Further, to evaluate the influence of the data pre-processing step
in terms of ground surface classification performance, we conducted
experiments on data collected from one of our participants. The
experiment procedure is the same as our main study except that
we replaced the pre-processing part with cropping one 256 X 256
image from each frame. For the classification model trained with
raw data, the recall, precision, and F1 are 64.25%, 67.22%, and 60.60%,
respectively. For the classification model trained with data after
pre-processing, the recall, precision, and F1 are 88.45%, 88.05%, and
87.60%, respectively. Therefore, conducting our data pre-processing
step can achieve better performance compared to using raw data.

8.2 Avoid Overfitting

Opverfitting is a common issue in deep learning applications, espe-
cially when the number of training samples is small. To prevent the
deep model in our system from overfitting, common techniques, in-
cluding data augmentation, and normalization, were applied during
the training process. Besides, as described in Section 5.1.2, cropping
a raw speckle image to generate multiple smaller input images
helps increase the number of training samples. Moreover, we set
the number of training epochs of the model to 150, after we con-
ducted experiments using a validation set of data and found that the
training loss converged while the validation loss did not degrade at
around 150 epochs. The evaluation results with high classification
accuracies, especially those from the cross-user study, demonstrate
effective mitigation of overfitting.

8.3 Power Consumption

There are three main parts that consume power in our system: The
laser emitter with a switch module (51.3 mW), the image sensor
(1047.9 mW), and the Raspberry Pi (2643.6 mW). LaserShoes has a
relatively high total consumption, which prevents it from being
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continuously used for a long time without battery exchange. In
the future, to reduce the power consumption on Raspberry Pi, the
collected data could be transferred to a cloud server via low-power
wireless communications. We could also design a custom circuit
and reduce power consumption by removing components that are
not in use and using low-power MCU and communication modules.
Besides, the current image sensor captures images of 1280 X 720
pixels for efficient data collection. However, in live classification,
the input images need not be that large, possibly taken by smaller
image sensors to preserve power.

8.4 Sense Surfaces ahead for Early Alert

Since LaserShoes uses images captured when a user’s foot is in
contact with the ground, our system in its current implementation
could not predict ground surface conditions in advance, limiting use
scenarios such as alerts of dangerous surface conditions. To achieve
this, LaserShoes should be able to leverage in-flight images. To
mitigate the motion effect, we could add an IMU sensor to measure
motion speed and implement deblurring methods [9, 17]. Image
sensors with a short exposure time could also help to obtain clear
images when the user’s foot is moving in the air. Second, we could
tilt up our device to sense ground surfaces in front of a user for
early alerts (Fig. 15 (a)). We performed a test to see if our sensing
system could still function with our device tilted up, pointing to
the front of a shoe. Results indicate discernable speckle patterns up
to 45 degrees for the three types of surfaces we tested (Fig. 15 (b)).
However, it merits future research to investigate how this sensor
configuration could work in real-use cases powered by real-time
signal processing and classification.

8.5 Loose or Transparent Ground Surfaces

In practice, we discover that LaserShoes cannot capture frames
with high-quality speckle patterns on loose ground surfaces such
as grass for insufficient reflected light intensity. We suspect that
grass surfaces diffused or absorbed most of the laser energy due
to their layered surface micro geometries. Besides, for transparent
ground surfaces such as glass (Fig. 15 (b)), the reflected laser is
also weakened. Though speckle patterns can still be formed on
transparent ground surfaces, information on the textured surfaces
underneath the transparent coating layer is much deluded, resulting
in less discernable speckle patterns than ones induced on surfaces
without the transparent coating laser.
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Figure 16: Illustration of two alternative designs with opti-
mized form factors. (a) Attaching the system onto a height-
adjustable mechanical module; (b) Integrating the system
into a smart sole.
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8.6 LaserShoes under Intense Ambient Light

When the ambient light is too intense, the image sensor receives too
much ambient light, which lowers the signal-to-noise ratio (SNR).
As a result, the speckle patterns become blurry or invisible under
some outdoor conditions in our study. To mitigate this issue, future
systems could leverage optical filters. Given that laser light is polar-
ized and has a narrow frequency band, we could include a polarizer
or a band-pass filter between ground surfaces and the image sensor.
These filters could make the laser a dominant signal on captured
laser speckle images that have sufficient SNR for classification. An-
other tactic to preserve SNR is to implement synchronous detection,
with the image sensor and the laser in sync. Specifically, we could
leverage high-speed image sensors to take two consecutive photos
with and without the laser turning on. The subtraction between
these two consecutive photos should reveal little effect imposed
by the ambient light which is relatively constant and therefore the
effect could be subtracted out.

8.7 Form Factor Optimization

Our current implementation is relatively bulky. Furthermore, dif-
ferent image sensor heights, which are affected by shoe styles and
foot postures, will reduce ground detection accuracy as discussed
in Section 6.1.4. In the future, LaserShoes could be replicated with
better form factor designs.

One possible solution is to make the height of the image sensor
consistent across shoe styles by adding a height-adjustable me-
chanical module as shown in Fig. 16 (a). This module could also
mitigate variances introduced by the foot posture by asking users
to calibrate and adjust LaserShoes before use.

Since the diode of a laser emitter and the chip of an image sensor
are both very small, they can be combined into a single integrated
component that might be sufficiently thin to be integrated on a
smart sole under shoes as shown in Fig. 16 (b). In this case, the
sensing distance is short and consistent, and the sensor is isolated
from the ambient light when the sole is in contact with ground
surfaces, all of which could result in an improved SNR that yields
higher classification accuracies.

9 CONCLUSION

We present LaserShoes, a texture-sensing wearable system that
detects ground surfaces using Laser Speckle Imaging. Our system
can retrofit shoes, and consists of a laser emitter that illuminates
ground surfaces and an image sensor that records videos with laser
speckles. The recorded videos first pass through a pre-processing
phase with which we extract input images from speckle images
captured when a user’s foot is in contact with ground surfaces. Next,
these input images are fed into a ResNet-18 classification model
for surface type detection. We conducted a main study and three
supplementary investigations to evaluate our system’s classification
accuracy and robustness across various surface conditions and
under different lighting conditions. We showed five applications
of LaserShoes to demonstrate its potential use cases. Finally, we
discussed our evaluation results and future work needed to further
improve our system.
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A CONFIGURATION EXPERIMENT
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Table 1: Classification results of different wavelength-and-distance combinations. Accuracy greater than 98% are bolded.

Wavelength (nm) Distance (cm) Accuracy (%) ‘ Wavelength (nm) Distance (cm)

Accuracy (%)

1 82.35 + 2.15 1 98.09 + 1.53

3 96.84 + 1.97 3 99.96 + 0.23

5 96.69 + 0.97 5 98.61 + 1.29

650 7 99.91 + 0.34 520 7 99.60 + 0.67
(red) 9 97.49 + 1.55 (green) 9 99.36 + 0.79
11 94.13 + 2.14 11 99.92 + 0.32

13 98.88 +£ 1.19 13 89.09 £ 0.55

15 95.44 + 1.84 15 9233 + 1.72

Wavelength (nm) Distance (cm) Accuracy (%) ‘ Wavelength (nm) Distance (cm) Accuracy (%)
1 96.60 + 1.92 1 90.80 + 2.51

3 67.48 + 2.44 3 91.55 + 1.82

5 91.92 + 2.16 5 99.99 + 0.13

450 7 99.69 + 0.59 405 7 99.53 + 0.85
(blue) 9 97.76 + 1.23 (purple) 9 100.00 + 0.00
11 94.56 + 2.49 11 91.53 + 248

13 98.20 + 1.34 13 91.91 + 0.34
15 83.69 + 0.96 15 100.00 + 0.00
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