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Abstract—Deep learning beamformers have demonstrated the
ability to remove a variety of artifacts from ultrasound images
in recent years. Many of these algorithms operate on channel
data, where in vivo ground truth data, free of any degradation,
is unavailable. Much of the existing work estimates the ground
truth distribution with synthetic data. Under this framework, the
domain gap between the synthetic training data and in vivo test
data limits the beamformer performance on inference. In this
work, we introduce a multi-step, semi-supervised approach that
leverages synthetic and in vivo data in training via cross-domain
cycleGANs. We evaluate the intermediate generators with VCZ
curves, and demonstrate that the beamformer trained with the
proposed approach achieves a CNR gain of 2.72 + 1.40 dB and
gCNR gain of 0.284 4+ 0.094 over delay-and-sum in a 32-frame
test cine loop.

Index Terms—semi-supervised networks, domain adaptation,
beamformer

I. INTRODUCTION

In recent years, deep learning beamformers have demon-
strated potential in improving ultrasound image quality [1]-
[3]. Operating at the image-formation stage, these beamform-
ers need to contend with missing ground truth data. While
easy-to-image patients certainly make better images than their
difficult-to-image counterparts, it is unclear whether in vivo
data free of any sources of image degradation is obtainable.
To address this limitation, many groups rely on simulations
[1]-[3]. Simulations [4]-[6] provide researchers with unpar-
alleled control over the parameters that govern the outcome.
Setting these parameters to some theoretical limit is arguably
a closer approximation to the ground truth than any in vivo
samples. Furthermore, some simulations are designed to apply
to arbitrary inputs (e.g., scatter strength and position in Field
II), enabling researchers to build up a diverse data set in little
time. The main drawback of using simulations is the significant
mismatch between training (synthetic) and test (in vivo) data.
This paper discusses one approach to address this domain gap.

II. METHODS

We propose a semi-supervised network that incorporates
synthetic and in vivo data in training using cross-domain maps.
This work is a more thorough investigation into the original
domain-adaptive deep neural network proposed by Tierney
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et al. [7] with two important contributions. 1) This work
eliminates the constraint that clean output style transfer map
be identical to the noisy input style transfer map, and 2) this
work evaluates the quality of these style transfer maps with van
Cittert-Zernike (VCZ) curves [8]. In section II-A we describe
the synthetic and in vivo data used in this work. In section
II-B we define the four domains in our problem, recap the
original work [7], and highlight the main difference in our
approach. In section II-C we introduce the multi-step training
approach. And lastly, in section II-D we discuss the validation
of cross-domain maps with VCZ curves.

A. Data preparation

We trained our networks on delayed channel data. Each
training example contained 10 axial samples (with an overlap
of 90%) and one receive beam. We used analytic signal rep-
resentation, and stacked the imaginary samples after the real
samples [7]. The synthetic data consisted of six hypoechoic
cysts (CR=10 dB) and six anechoic cysts (CR=Inf dB). The
noisy synthetic data was corrupted with various levels of
reverberation clutter (signal to clutter ratio of 0 or 10 dB)
simulated in Field I [9]. The clean synthetic data had no
clutter (SCR = oo dB), and off-axis scattering was removed
with the same method proposed by Luchies et al. [3]. The
in vivo training data included four consecutive frames of
cardiac cineloops from three patients. Fig. 1 shows the first
frame of the three cine loops.

B. Cross-domain Maps

When leveraging paired synthetic data to train a network
that generalizes well to in vivo data, we categorize the data
into four domains (Fig. 2). Noisy synthetic (z) and clean
synthetic (ys) domains provide the paired data required by
the conventional supervised framework. Noisy in vivo () is
the intended input domain, and the missing clean in vivo (y;)
marks the last domain that is only estimated.

In the original semi-supervised beamformer [7], Tierney et
al. trained a pair of cross-domain maps between xs and x;
using CycleGANs [10]. These maps enabled synthetic and
in vivo data to contribute to the final, universal regressor (F’)
which used a set of domain-agnostic weights and another
set of domain-specific weights when regressing synthetic data
(denoted with Fy) and in vivo data (F}) through the augmented
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Fig. 1: In vivo training data consists of echocardiographs of
different quality and views. All images are normalized by the
maximum absolute value and shown on a 60 dB dynamic
range.

feature mapping technique [11]. Altogether, these components
composed the following regressor loss:

‘cgenl(F; Gt Gts) = HFt(xt) - Gst(Fs(Gts(xt)))H
+ [1Fe(Gse(5)) — Ge(ys )|
+ |[Fs(@s) — ys||

This approach assumed that the cross-domain map on the
clean side is identical to the map trained between the noisy
domains. In the rest of this work we eliminate this assumption
by training two additional cross-domain maps on the clean
side.

C. Multi-step Approach

Training the cross-domain maps between the clean domains
(ys and y,) requires an estimate of y;. To achieve this, we adopt
a three-step approach. In the first step, we train an intermediate
regressor (F7) with Tierney et al.’s approach. We label the
synthetic and in vivo components of this network with Fy;
and Fi; respectively. Along the way, we obtain some initial
estimate of G4 and Gys. In the second step, we initialize the

new generators on the clean output side (G, G},) with the
noisy generators from step one (G, Gts) respectively, and
estimate the clean in vivo distribution ¢y = F}(2;). Using
¥ and y,, we fine-tune G, and Gj,. In the third and final
step, after the losses for all four generators have stabilized,
we reinitialize a new regressor F> = F} and fine-tune it with

the following losses:

Lgen2(Fo; Gat, G, Gy) = |[Fra(w1) — Gy (Faa(Grs (1))
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Regressor losses:

Synthetic regressor (Fs) loss 1: ||Ft(xt) - Gst'(Fs(Gts(xt)))|[1
Synthetic regressor loss 2: ||Fs(xs) - ys||1
Invivo regressor (Ft): ||Ft(Gst(xs)) - Gst'(ys)||1

Fig. 2: Proposed framework. Curved arrows indicate gener-
ators trained to map between domains. Each generator has
an associated discriminator that is omitted for notational
simplicity.

D. van Cittert-Zernike Evaluation

The proposed approach involves a total of ten networks
(four cross-domain generators each with their own discrim-
inator, the intermediate regressor Fj, and the final regressor
F5. Each of these regressors also has domain-specific weights
for synthetic F and in vivo F; data). While regressors can
be evaluated with image quality metrics (e.g., CNR, gCNR),
the intermediate generators are harder to evaluate. Here we
propose to evaluate the synthetic-to-in vivo maps G and
G’, with VCZ curves of diffuse scatterers. The VCZ theorem
states that “’in the case of a focused illumination, the spatial
covariance of the backscattered pressure field is proportional to
the autocorrelation of the transmitting aperture function” [8].
In our simulation of phased array with no transmit apodization,
this implies the coherence function should be a triangular
function whose base is twice the aperture size. In this analysis,
we simulated 12 realizations of diffuse scatterers, mapped
them to the style of noisy in vivo data (with G;) and clean
in vivo data (with G7,), and computed their VCZ curves. To
our knowledge, this is the first time VCZ curves are used to
evaluate any component of a deep learning beamformer.
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III. RESULTS

Cross-domain maps G and G, learned distinct styles.
When diffuse scatterers were passed into G, the output
contained several sources of degradation including phase
aberration and reverberation (Fig. 3). Recall in section II-A
that the synthetic data only contains off-axis scattering and
reverberation clutter. This implies that the synthetic-to-in vivo
map on the noisy side learned to recreate phase aberration from
in vivo data. This suggests that cross-domain maps are capable
of bridging the domain gap. In contrast, diffuse scatterers
mapped with G, retained the gradual decorrelation across the
aperture that is expected of an incoherent source.

We also saw this difference in coherence with the VCZ
curves (Fig. 4). The coherence of synthetic diffuse target fol-
lowed the triangular function predicted by the VCZ theorem.
G introduced in vivo noise sources into the diffuse scatterer
data and caused the coherence to roll off quickly [12]. In
contrast, G, learned to transform diffuse scatterers without
significantly changing the coherence curve expected of an
incoherent source.

Testing the final regressor F5 on a fourth patient’s cineloop
of 32 frames, we found that our method outperformed con-
ventional delay-and-sum (DAS) in several metrics (Table. I).
In vivo comparison are shown in Fig. 5a and Fig. 5b.

TABLE I: Image quality metrics evaluated on a 32-frame cine
loop

| CNR (dB) | gCNR
DAS 1.05 £ 0.97 | 0.698 £+ 0.09
Proposed | 3.77 & 0.99 | 0.982 £ 0.03

IV. DISCUSSIONS

The proposed method is highly flexible and imposes few
constraints on data distribution. This advantage comes at the
cost of a large number of networks and optimization chal-
lenges. The multi-step optimization approach was designed to
mitigate training instability. And thankfully, the VCZ theorem
defines some expected outcome that our cross-domain maps
satisfied in a post hoc analysis. A future step is to incorporate
the VCZ curves into the loss function to guide the cross-
domain maps in training.

Another aspect to investigate is a lack of output diversity.
The narrow error bars in Fig. 4 show that outputs mapped
by the noisy generator GG, are similar. This does not fully
represent the diversity of training data quality shown in Fig. 1
and suggests mode collapse in the network. Future iterations
of this work should consider alternative GAN losses that are
more robust against mode collapse (e.g., Wasserstein GAN

[13]D.
V. CONCLUSION

In this work we proposed a multi-step, semi-supervised
training approach for training a beamformer, and showed
that cross-domain maps between the noisy input domains
(G st, Gis) behave differently from the maps between the clean
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Fig. 3: Diffuse scatterers mapped with two different genera-

tors. G introduces sources of image degradation to channel

data of diffuse scatterers (middle panel), whereas G, trans-

forms the input data while preserving the spatial coherence

(bottom panel).
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Fig. 4: VCZ curves of diffuse scatterers and outputs mapped
by two different generators. This figure summarizes the visual
differences observed in Fig. 3, showing the average coherence
computed for a rectangular window centered around the trans-
mit focus.

output domains (G%,, G},). These distinct maps enabled us to

more accurately incorporate synthetic and in vivo data when
training a final, universal regressor (F5).
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