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AbstractÐDeep learning beamformers have demonstrated the
ability to remove a variety of artifacts from ultrasound images
in recent years. Many of these algorithms operate on channel
data, where in vivo ground truth data, free of any degradation,
is unavailable. Much of the existing work estimates the ground
truth distribution with synthetic data. Under this framework, the
domain gap between the synthetic training data and in vivo test
data limits the beamformer performance on inference. In this
work, we introduce a multi-step, semi-supervised approach that
leverages synthetic and in vivo data in training via cross-domain
cycleGANs. We evaluate the intermediate generators with VCZ
curves, and demonstrate that the beamformer trained with the
proposed approach achieves a CNR gain of 2.72± 1.40 dB and
gCNR gain of 0.284 ± 0.094 over delay-and-sum in a 32-frame
test cine loop.

Index TermsÐsemi-supervised networks, domain adaptation,
beamformer

I. INTRODUCTION

In recent years, deep learning beamformers have demon-

strated potential in improving ultrasound image quality [1]±

[3]. Operating at the image-formation stage, these beamform-

ers need to contend with missing ground truth data. While

easy-to-image patients certainly make better images than their

difficult-to-image counterparts, it is unclear whether in vivo

data free of any sources of image degradation is obtainable.

To address this limitation, many groups rely on simulations

[1]±[3]. Simulations [4]±[6] provide researchers with unpar-

alleled control over the parameters that govern the outcome.

Setting these parameters to some theoretical limit is arguably

a closer approximation to the ground truth than any in vivo

samples. Furthermore, some simulations are designed to apply

to arbitrary inputs (e.g., scatter strength and position in Field

II), enabling researchers to build up a diverse data set in little

time. The main drawback of using simulations is the significant

mismatch between training (synthetic) and test (in vivo) data.

This paper discusses one approach to address this domain gap.

II. METHODS

We propose a semi-supervised network that incorporates

synthetic and in vivo data in training using cross-domain maps.

This work is a more thorough investigation into the original

domain-adaptive deep neural network proposed by Tierney
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et al. [7] with two important contributions. 1) This work

eliminates the constraint that clean output style transfer map

be identical to the noisy input style transfer map, and 2) this

work evaluates the quality of these style transfer maps with van

Cittert-Zernike (VCZ) curves [8]. In section II-A we describe

the synthetic and in vivo data used in this work. In section

II-B we define the four domains in our problem, recap the

original work [7], and highlight the main difference in our

approach. In section II-C we introduce the multi-step training

approach. And lastly, in section II-D we discuss the validation

of cross-domain maps with VCZ curves.

A. Data preparation

We trained our networks on delayed channel data. Each

training example contained 10 axial samples (with an overlap

of 90%) and one receive beam. We used analytic signal rep-

resentation, and stacked the imaginary samples after the real

samples [7]. The synthetic data consisted of six hypoechoic

cysts (CR=10 dB) and six anechoic cysts (CR=Inf dB). The

noisy synthetic data was corrupted with various levels of

reverberation clutter (signal to clutter ratio of 0 or 10 dB)

simulated in Field II [9]. The clean synthetic data had no

clutter (SCR = ∞ dB), and off-axis scattering was removed

with the same method proposed by Luchies et al. [3]. The

in vivo training data included four consecutive frames of

cardiac cineloops from three patients. Fig. 1 shows the first

frame of the three cine loops.

B. Cross-domain Maps

When leveraging paired synthetic data to train a network

that generalizes well to in vivo data, we categorize the data

into four domains (Fig. 2). Noisy synthetic (xs) and clean

synthetic (ys) domains provide the paired data required by

the conventional supervised framework. Noisy in vivo (xt) is

the intended input domain, and the missing clean in vivo (yt)
marks the last domain that is only estimated.

In the original semi-supervised beamformer [7], Tierney et

al. trained a pair of cross-domain maps between xs and xt

using CycleGANs [10]. These maps enabled synthetic and

in vivo data to contribute to the final, universal regressor (F )
which used a set of domain-agnostic weights and another

set of domain-specific weights when regressing synthetic data

(denoted with Fs) and in vivo data (Ft) through the augmented
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Fig. 1: In vivo training data consists of echocardiographs of

different quality and views. All images are normalized by the

maximum absolute value and shown on a 60 dB dynamic

range.

feature mapping technique [11]. Altogether, these components

composed the following regressor loss:

Lgen1(F ;Gst, Gts) = ||Ft(xt)−Gst(Fs(Gts(xt)))||

+ ||Ft(Gst(xs))−Gst(ys)||

+ ||Fs(xs)− ys||

This approach assumed that the cross-domain map on the

clean side is identical to the map trained between the noisy

domains. In the rest of this work we eliminate this assumption

by training two additional cross-domain maps on the clean

side.

C. Multi-step Approach

Training the cross-domain maps between the clean domains

(ys and yt) requires an estimate of yt. To achieve this, we adopt

a three-step approach. In the first step, we train an intermediate

regressor (F1) with Tierney et al.’s approach. We label the

synthetic and in vivo components of this network with Fs1

and Ft1 respectively. Along the way, we obtain some initial

estimate of Gst and Gts. In the second step, we initialize the

new generators on the clean output side (G′

st, G
′

ts) with the

noisy generators from step one (Gst, Gts) respectively, and

estimate the clean in vivo distribution ŷt = Ft1(xt). Using

ŷt and ys, we fine-tune G′

st and G′

ts. In the third and final

step, after the losses for all four generators have stabilized,

we reinitialize a new regressor F2 = F1 and fine-tune it with

the following losses:

Lgen2(F2;Gst, Gts, G
′

st) = ||Ft2(xt)−G′

st(Fs2(Gts(xt)))||

+ ||Ft2(Gst(xs))−G′

st(ys)||

+ ||Fs2(xs)− ys||

Fig. 2: Proposed framework. Curved arrows indicate gener-

ators trained to map between domains. Each generator has

an associated discriminator that is omitted for notational

simplicity.

D. van Cittert-Zernike Evaluation

The proposed approach involves a total of ten networks

(four cross-domain generators each with their own discrim-

inator, the intermediate regressor F1, and the final regressor

F2. Each of these regressors also has domain-specific weights

for synthetic Fs and in vivo Ft data). While regressors can

be evaluated with image quality metrics (e.g., CNR, gCNR),

the intermediate generators are harder to evaluate. Here we

propose to evaluate the synthetic-to-in vivo maps Gst and

G′

st with VCZ curves of diffuse scatterers. The VCZ theorem

states that ºin the case of a focused illumination, the spatial

covariance of the backscattered pressure field is proportional to

the autocorrelation of the transmitting aperture functionº [8].

In our simulation of phased array with no transmit apodization,

this implies the coherence function should be a triangular

function whose base is twice the aperture size. In this analysis,

we simulated 12 realizations of diffuse scatterers, mapped

them to the style of noisy in vivo data (with Gst) and clean

in vivo data (with G′

st), and computed their VCZ curves. To

our knowledge, this is the first time VCZ curves are used to

evaluate any component of a deep learning beamformer.
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III. RESULTS

Cross-domain maps Gst and G′

st learned distinct styles.

When diffuse scatterers were passed into Gst, the output

contained several sources of degradation including phase

aberration and reverberation (Fig. 3). Recall in section II-A

that the synthetic data only contains off-axis scattering and

reverberation clutter. This implies that the synthetic-to-in vivo

map on the noisy side learned to recreate phase aberration from

in vivo data. This suggests that cross-domain maps are capable

of bridging the domain gap. In contrast, diffuse scatterers

mapped with G′

st retained the gradual decorrelation across the

aperture that is expected of an incoherent source.

We also saw this difference in coherence with the VCZ

curves (Fig. 4). The coherence of synthetic diffuse target fol-

lowed the triangular function predicted by the VCZ theorem.

Gst introduced in vivo noise sources into the diffuse scatterer

data and caused the coherence to roll off quickly [12]. In

contrast, G′

st learned to transform diffuse scatterers without

significantly changing the coherence curve expected of an

incoherent source.

Testing the final regressor F2 on a fourth patient’s cineloop

of 32 frames, we found that our method outperformed con-

ventional delay-and-sum (DAS) in several metrics (Table. I).

In vivo comparison are shown in Fig. 5a and Fig. 5b.

TABLE I: Image quality metrics evaluated on a 32-frame cine

loop

CNR (dB) gCNR

DAS 1.05 ± 0.97 0.698 ± 0.09
Proposed 3.77 ± 0.99 0.982 ± 0.03

IV. DISCUSSIONS

The proposed method is highly flexible and imposes few

constraints on data distribution. This advantage comes at the

cost of a large number of networks and optimization chal-

lenges. The multi-step optimization approach was designed to

mitigate training instability. And thankfully, the VCZ theorem

defines some expected outcome that our cross-domain maps

satisfied in a post hoc analysis. A future step is to incorporate

the VCZ curves into the loss function to guide the cross-

domain maps in training.

Another aspect to investigate is a lack of output diversity.

The narrow error bars in Fig. 4 show that outputs mapped

by the noisy generator Gst are similar. This does not fully

represent the diversity of training data quality shown in Fig. 1

and suggests mode collapse in the network. Future iterations

of this work should consider alternative GAN losses that are

more robust against mode collapse (e.g., Wasserstein GAN

[13]).

V. CONCLUSION

In this work we proposed a multi-step, semi-supervised

training approach for training a beamformer, and showed

that cross-domain maps between the noisy input domains

(Gst, Gts) behave differently from the maps between the clean

Fig. 3: Diffuse scatterers mapped with two different genera-

tors. Gst introduces sources of image degradation to channel

data of diffuse scatterers (middle panel), whereas G′

st trans-

forms the input data while preserving the spatial coherence

(bottom panel).

Fig. 4: VCZ curves of diffuse scatterers and outputs mapped

by two different generators. This figure summarizes the visual

differences observed in Fig. 3, showing the average coherence

computed for a rectangular window centered around the trans-

mit focus.

output domains (G′

st, G
′

ts). These distinct maps enabled us to

more accurately incorporate synthetic and in vivo data when

training a final, universal regressor (F2).
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