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Interaction Power Generation - == On-body Power Transmission

Figure 1: Interaction-Power Stations enable power generation and wireless charging to wearables during routine activities,
prolonging the lifespan of wearables’ batteries and potentially eliminating the necessity to remove them for charging.

ABSTRACT

Despite the promise of wearable devices, people can be discour-
aged from using them due to the necessity for frequent charging
and the subsequent interruption of usage. On another front, an
inexhaustible yet unexploited power source can be found in the
environment in the form of people’s physical interaction with am-
bient objects, generating a substantial amount of kinetic energy.
We proposed Interaction-Power Stations, a new energy harvesting
approach for wearables, leveraging interaction energy from people
and simultaneously charging their wearables through capacitive
couplings of the human body. We designed circuits and mechanical
mechanisms retrofitted to various objects to convert kinetic energy
into electrical signals that travel through the user body at capacitive
frequencies, and deliver energy to multiple on-body receivers. We
validated our design by preliminary tests and evaluated the system
through a short user study which indicates promise for future work.
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1 INTRODUCTION

Wearable devices, such as smartwatches, rings, garments, glasses,
etc., have been advancing to facilitate ubiquitous sensing of human
activities and enrich user interactions with computing resources.
However, the adoption of wearable intelligence has been limited
due to the need for frequent maintenance of their batteries. Further-
more, the necessity for users to remove these devices for charging
purposes interrupts their continuous functionality, leading to a
further degradation in user experience, particularly for wearables
designed to monitor health and physical activities.

In response to this challenge, researchers have explored novel
charging solutions for wearable devices. One solution involves
wearables wirelessly drawing power from sources that are either
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body-worn [37, 38], or on-object [27, 28, 45]. This approach en-
ables the redistribution of power among wearables and eliminates
the need for the removal of devices in charging. However, this
approach still relies on plugged-in or rechargeable power sources,
which poses challenges in terms of scalability and reliability. An-
other approach seeks energy from the surroundings (e.g., light [20],
RF signals [10, 19]) and the human body (e.g., heat [31], sweat [24],
breath [11]) to recharge wearables. However, these energy sources
considerably vary across space and time, yielding unpredictable har-
vesting efficiency. On the other hand, integrating generators into
wearables, which harness energy from the motions of joints, limbs,
and foot strikes, typically yields larger amount of power, in which
prior research have shown great promise [2, 7, 40]. Unfortunately,
these generators are often perceived as bulky because of the me-
chanical mechanisms used to harness relative movements between
body parts, limiting their practicality, especially in applications
requiring continuous daily uses.

The aforementioned challenges prompted us to investigate an
alternative wearable charging approach that is capable of (1) col-
lecting sufficient energy with an unobtrusive wearable form factor,
(2) providing ubiquitous, versatile, and scalable charging to wear-
ables, while (3) ensuring sustainability and usability. We notice
that user interactions with everyday objects (e.g., opening/closing
doors, working out with exercise tools), which contain significant
amounts of kinetic energy, serve as exploitable power sources in
user environments, as demonstrated in prior work [17, 34, 46].
Furthermore, we found that these interactions often involve users’
physical contact with objects, making the human body a convenient
transmission medium for energy flow between the environment
and wearable devices.

In this paper, we propose Interaction-Power Stations, an power
generation system that harvests user interaction power to charge
wearables. Power is generated when users interact with instru-
mented objects during daily activities, then it is converted into
high-frequency signals that propagate through a user’s body to
wearables via capacitive coupling. Our work introduces a novel im-
plementation of energy harvesting for wearables while not requir-
ing harvesters to be featured on wearables, enabling a lightweight
form factor. In fact, this power delivery scheme has long been
embraced by industrial power stations, where electrical power is
produced on a concentrated and significant scale and then transmit-
ted through power lines to appliances in residential areas. Similarly,
our research turns the environment into ubiquitous power sta-
tions and leverages the human body as the "power lines" for power
delivery, establishing an intuitive link between harvesters and wear-
ables. The closest prior work to this research is ShaZam [27], which
investigated power transfer from objects to wearables using a pow-
ered signal generator. However, incorporating interaction-powered
transmitters into everyday objects introduces new design and tech-
nical challenges that remain largely unexplored. This underscores
the significance of our work.

We developed an end-to-end power generation and transmission
system with customized hardware to prove the feasibility of our
approach, consisting of (1) motor and gear mechanisms retrofitted
to existing objects to harvest interaction energy, (2) transmitters
that deliver harvested energy to wearables, and (3) receivers that
collect energy from human body. We evaluated our system through
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preliminary validation tests and a short user study including three
wearable locations with three tested objects. Our results showed
average amounts of harvested energy of 66.3 p], 0.87 pJ and 0.08 piJ
from one revolution of biking, one trial of door opening/closing, and
one revolution of cranking respectively, when receivers’ grounding
conditions were improved by connections with floating measuring
probes. Given the frequent manipulation of everyday objects, we
anticipate that the seemingly minimal energy identified in our study
will accumulate to a significant volume to serve as a practical, sup-
plementary power source for wearables. These preliminary research
findings point at promising directions for future improvements on
interaction-powered wearable charging systems to eliminate con-
straints imposed by grounding conditions, and are expected to have
higher efficiency, enabling a new charging scheme to strengthen
wearable devices’ benefits.

2 RELATED WORK
2.1 Human as Power Source

Human body is a rich source of energy for interactive devices,
including thermal energy [31], chemical energy [24] and kinetic
energy [17, 34, 40]. The combination of multiple energy sources has
been leveraged in clothing and wearables to maximize energy uti-
lization and enhance overall efficiency [11]. Closer to our research
is prior work that investigated user interaction-excited power gen-
eration. Traditional interaction energy harvesting relies on power
generation from intentional user actions such as cranking, shaking,
and twisting [4, 21, 35, 43]. For example, users can turn cranks to
power flashlights whenever light is needed, but the cranking mo-
tions are considered extrinsic to users’ interaction with flashlights —
cranking is an additional movement a user has to perform before
flipping the toggle flashlight button, which on the other hand is
intrinsic. Recent research has been shifting towards implicit inter-
action energy harvesting, where power generation is intrinsic to
original interactions of objects [12, 15, 46]. Interaction-Power Sta-
tions builds upon the growing interest in this area, and expands the
use of interaction power to charging wearable devices.

2.2 Human as Power Transmission Medium

Human body has been modeled as conductive line, resistor, capac-
itor, antenna, and ground in various applications [16]. Electricity
has been employed on the human body to alter haptic sensations
for interactivity enhancement [29] and tactile texture rendering
[5]. Electrical muscle stimulation (EMS) technology has been used
to assist learning of musical instruments [30], and provide body
movement actuation [39]. Prior work has also applied signals to
human bodies for sensing purposes, including user recognition
[36], on-skin touch sensing [47, 48], activity recognition [18], and
communication [41]. Closer to our research is prior work that lever-
ages human body as a medium to transmit power. For example,
SkinnyPower [37] enables power transfer from battery-powered
wearables to other battery-free on-body devices, while ShaZam [27]
and CASPER [45] focused on obtaining power from objects that
have active power sources and are in contact with the user body.
These works utilize capacitive coupling, a technique also leveraged
by our research. Nevertheless, our work sets itself apart from prior
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Wearable Prototypes Containing Receivers

Figure 2: Left: Illustration of capacitive coupling via human body, transmitters, receivers, and the ground. Right from top
to bottom: Interaction power harvesters on (1) bicycle (2) roller wheel (3) hand crank (4) door; Hardware of transmitter and
receiver; Three wearable prototypes containing receivers: (A) necklace (B) smartwatch (C) anklet. Note that throughout the
paper we refer to our prototypes using names of commonly seen wearables (e.g., smartwatches) to differentiate their locations.

works by using power generated from user interactions, facilitating
a flexible and sustainable power supply for wearable devices.

3 PRINCIPLES OF OPERATION

The conductivity of human body allows it to form a capacitive
link with external conductive elements that carry signals in the
Electro-Quasistatic (EQS) range (typically less than 1 MHz), where
electric field dominates and the signals primarily flow through the
human body. A demonstrative model is shown in Figure 2 left. A
transmitter signal electrode (TX-S) and a receiver electrode (RX-
S) are in contact with the human body, forming an through-body
power flow (forward path). A transmitter grounding electrode (TX-
G) and a receiver grounding electrode (RX-G) are floating over the
air, coupling with the human body and the earth ground through the
air to form a return path. An electrical potential (Vgx) is generated
between RX-S and RX-G, realizing the power transfer from the
transmitter to the receiver [8].

Prior work has investigated a simplified equivalent circuit model
of human body-involved capacitive coupling, as shown in Figure 3
[8, 13, 22, 26]. In this model, Cg and Rp denote human body capac-
itance and resistance, while Cpg denotes the capacitance between
human body and ground. This model assumes (1) human body
shows equal potential throughout human body in EQS frequency
region, and can be approximated as a single point node (2) dimmed
components (Crr, Crr) have negligible effect and thus excluded
from the equivalent model (3) Cpqe is merged to Crxg and Crxg
(22, 26].

There are generally two approaches to increase the power deliv-
ered to the load on the receiver: (1) with a certain hardware and
body setup (Crxc, CrxG, CBg and Crx), increasing Vrx could

increase Vrx, and (2) with a certain V1, impedance matching on
the transmitter or receiver side could maximize power transfer
from Vrx to VRx, and Vg to V. respectively. Due to the capacitive
nature of the load impedance looking from the transmitter outward,
inserting an inductor LTx can compensate the impedance of the
return path and increase the voltage gain with a series of approxi-
mations [26]. Similarly, an inductor Lgx on the receiver end can
further increase V. In addition, a high impedance load termination
is expected to avoid most voltage drop across the human body [22].
Heuristically, these criteria guided the design and validation of our
system, which will be detailed in later sections.

To generate stable high-frequency signals for capacitive cou-
pling, we adopted a common approach with the rectifier-inverter-
transformer converting topology (Figure 3). With this topology, the
inverter convert DC power into AC power featuring a controllable
frequency. The use of transformers can (1) boost up the output volt-
age of the inverter (i.e., increase Vx) and (2) introduce inductance
to cancel the return path capacitance, increasing the voltage of the
receiver Vgx. For these merits, our system utilized this topology to
transform harvested power into energy carrier signals to transmit
through the human body. Details of our system implementation
can be found in Section 4.

4 IMPLEMENTATION

Our system consists of three main components: (1) mechanisms
instrumented to objects that convert kinetic energy into electrical
energy during interactions, (2) a power transmitter that delivers
power to the human body, and (3) a power receiver that obtains
power from the human body. We proceeded to conduct a validation
process on each component, which proved their effectiveness and
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Figure 3: Electrical path and equivalent model of human body-involved capacitive coupling in our system. Dimmed components
have negligible effect and thus excluded from the equivalent model. "G" denotes the generator.

comprehended the factors affecting their charging efficiency. To
demonstrate Interaction-Power Stations, we integrated our system
components with accompanying 3D printed interaction harvesters
into four representative objects — a door, a bicycle, a roller wheel,
and a 3D printed hand cranker.

4.1 Interaction Power Harvester

Users interactions with objects (e.g., pulling, twisting) consist of
various types of motions of limbs, which can be converted into
rotational motions using gear mechanisms to facilitate the use
of motor generators for harvesting kinetic energy as a common
practice [40, 46]. These harvesters should: (1) harvest as much
energy as possible, (2) minimize the impact on the usability of their
host objects, and (3) be non-intrusive to the environment. Adding
gearboxes can increase the ratio between the rotational speed of
the generator shaft and the input interaction leading to increased
power generation, which is, however, at the cost of requiring users
to apply greater forces for manipulation that could lower usability.
We used the chain fixtures of an off-the-shelf device for bicycle
[23], and customized mechanisms with different gear ratios and
number of generators for other objects, considering the space and
length of interaction strokes of each object, and the minimum and
maximum power limits of the power transmitter (Figure 2). The
harvesters were made by 3D printing and integrated with three-
phase AC motors [9] to generate electrical power from mechanical
movements.

4.2 Power Transmitter

Figure 2 shows our transmitter. The output of the motor is low-
frequency AC signals, which is not ideal for inducing capacitive
couplings through the user body. To increase and control their fre-
quencies, we used an AC-DC-AC conversion topology as discussed
in Section 3. The AC output of the motor is followed by a rectifier
(CDBHD140L) and a low-dropout voltage regulator (MCP1703) to
generate a 3.3V voltage for an ultra-low-power controller mod-
ule (MDBT42Q-512KV2), which can generate up to 4 MHz control
signals with a 16 MHz system clock to the inverter. The rectified
DC motor output is turned into high-frequency (i.e., 250 kHz) AC
signals using an H-bridge inverter (DRV8837), and then amplified
by a transformer that improves power delivered to the load while
lowering the transmitted current for skin safety. The AC signals are
applied to a pair of electrodes, one floating in the air serving as the

ground electrode (TX-G), and the other (TX-S) positioned in the area
where users come into contact with their bodies during interactions
(i.e., handles, crank). Two types of materials were employed for
electrodes to facilitate applications with various sizes, shapes and
comfort during contact: Faraday fabric [3] and conductive fabric

(1].

4.3 Power Receiver

We made multiple wearable prototypes (Figure 2), each of which
features a 3D-printed casing, with a signal electrode (RX-S) on
the underside in contact with the skin and a grounding electrode
(RX-G) on top coupling through the air. Our receiver electrodes
feature the same fabrics as the ones used on the transmitter. The
dimensions are 46x37x12 (mm) for smartwatch, and 30x28x9 (mm)
for anklet and necklace, considering the form factor of commercial
smartwatch and wearables. The power fed to the receiver is rectified
by a full-wave rectifier (CDBHD140L) with low forward-voltage and
consistent performance, and then stored to a 0.01 F super capacitor
(KEMET FYLOH103ZF). This capacitor is probed with a unplugged
multimeter in our later tests. In real-world applications, energy
stored in this capacitor can be siphoned, boosted and transferred to
a wearable battery, the process of which is standard and efficient
(e.g., > 90% for BQ25504 [14]), and thus is not evaluated in our work.

4.4 Technical Validation

4.4.1 Transmitter Validation. The manipulation of objects by users
leads to varying rotational speeds of generators, consequently re-
sulting in distinct transmitter outputs. We first ran a test to validate
our transmitter’s capability of outputting effective excitation sig-
nals under different speeds. Specifically, we used a coaxial powered
motor to drive the power generator, which is connected to the
transmitter board we designed. The transmitter was configured to
output a 250 kHz AC signal. An experimenter wore the smartwatch
and positioned the hand on a transmitter signal electrode of 10x20
(cm), similar to the size of a palm. The ground electrode is placed
30 cm apart at a size of 2020 (cm). The dimensions and positions of
these electrodes are on average similar to those used in real-world
mechanisms. We adjusted the spinning speed of the motor and mea-
sured the corresponding generator output (i.e., V) and transmitter
output (i.e., V1x), both of which are AC signals and are evaluated
by their peak-to-peak values and frequency. The result is shown in
Figure 4 top. As Vg increases (i.e., rotating speed increases), Vrx
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Figure 4: Transmitter validation. Top: variation of peak-to-
peak voltage and frequency of transmitter output with out-
put voltage of the generator. Bottom: variation of power de-
livered to different resistive loads.

increases proportionally, indicating a greater amount of power out-
put given the same load. The stability of Vrx at 250 kHz proved
the transmitter’s efficacy in converting signals with varying mag-
nitudes and voltages into AC signals with consistent frequency for
capacitive coupling excitation. In addition, we measured a maxi-
mum of 4 mA of current and 5 V voltage across human body (i.e.,
TX-S and RX-S), well below the safety threshold of power (Section
6.1) and imperceptible to users.

4.4.2  Receiver Validation. The load characteristic has an impact on
the amount and the efficiency of power absorbed by the receiver,
due to capacitive-dominated high impedance of power sources. To
validate this effect, we set up the load with various resistance and
capacitance configurations, and measured the power delivered to
the load. We used the same setup as described in Section 4.4.1, and
configured the transmitter to produce around 45 V peak-to-peak,
simulating the average rotating speed of generators during inter-
actions. Figure 4 bottom shows the power delivery with resistive
loads (100 Q - 10 MQ). The power reaches at its maximum (more
than 0.6 mW) when Ry, is at a few kilo-ohms, implying an estimated
internal source resistance of a similar magnitude. This is consis-
tent with our previous discussion. Additionally, we investigated
the power performance of the receiver with a capacitive load as
an energy storage element, including a 470 uF tantalum capacitor
(0.4Q ESR) and a 0.01 F super capacitor (< 300Q ESR), which showed
a maximum charging rate of 0.18 mW and 0.05 mW respectively.
Due to capacitive loads yielding lower harvested energy, we chose
to use them to determine the lower bounds of battery charging
efficiency in subsequent evaluations.

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

5 EVALUATION

To evaluate the power transmission performance of our approach,
we conducted studies on three mechanisms (door, bicycle, and
crank) with five participants (2 females, mean age=26). Before the
study, we informed the participants that our system met safety
requirements (Section 6.1). During the study, each participant was
instructed to operate each mechanism for three rounds with three
wearables on their body: a necklace, a smartwatch, and an anklet
(Figure 2 A-C). For the door, each round consisted of two trials (i.e.,
one trial consists of one opening and one closing operation). For
the bicycle and crank, each round consisted of participants actively
engaging with the mechanisms for ten cycles. After one round of
tests, we took measurements on the voltage of the receiver capaci-
tor and calculated the energy using CU? /2, after which we released
the power of the capacitor and started the next round of tests.

On average, the energy delivered to the smartwatch, anklet and
necklace was 0.29 pJ (SD=0.28), 0.37 uJ (SD=0.14), 0.21 uJ (SD=0.27)
for each trial of interacting with the door. The number is 13.3 u]
(SD=5.6), 50.5 ] (SD=25.2), 2.5 ] (SD=1.5) for one cycle of opera-
tion of the bicycle, and 0.06 pJ (SD=0.03), 0.006 xJ (SD=0.004) and
0.01 pJ (SD=0.01) for one cycle of the crank. Figure 5 shows the
results split into individuals, from which we observed a significant
difference in the power allocation across various receivers in the
body. Cranking delivered more power to the smartwatch than oth-
ers, while anklet has the greatest ability of drawing power when
bicycling, primarily due to the different coupling characteristics
resulting from the electrode size and positions relative to receivers.
Our door setup received the largest variation across receiver lo-
cation and participant among all setups, for both electrodes and
participants being in motion during the opening/closing operations,
which made the coupling paths less consistent.

Though the energy delivered to receiver per interaction is at y]
level with our current implementation, this energy can accumulate
quickly as people frequently interact with their physical environ-
ments, and can spend a long time (easily consisting of thousands
and more cycles) on mobility and exercise tools. For example, a
30-minute bicycling is estimated to supply the power of Fitness
Tracker [44] app on a smart wristband for more than one hour,
while charging other wearables the wristband user is wearing si-
multaneously. Advancements in ultra-low power electronics for
wearables, including Bluetooth Low Energy (BLE) [32], LCDs [25],
and accelerometers [6], have led to pW-level power consumption,
paving the way for the future adoption of through-body power
transfer as a source of energy for wearables. Our evaluation also
reveals constraints from grounding conditions as the disconnection
with multimeter probes (i.e., roughly 1m length, unplugged from
common ground) reduced harvested energy amount by a signifi-
cant 95%. Though the multimeter was not grounded, our electrode
design should be improved in the future to improve grounding
conditions to eliminate the need for floating electrodes. Neverthe-
less, our research shows promise as a supplementary power supply
for wearables, with room for further improvement on its power
delivery efficiency.
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Figure 5: Energy received by different wearables grouped by instrumented object.

6 DISCUSSION
6.1 Safety Regulations

Prior work has outlined the safety regulations for applying electric-
ity on the human body [16, 27, 45] under international guidelines
[33]. The major regulations considered in our research include a
maximum contact current of 20 mA and a maximum whole-body
Specific Energy Absorption Rate (SAR) of 0.08 W/kg at a frequency
of 100 kHz-110 MHz.

Our system adheres to these regulations throughout the design,
testing, and research process, with specific measurements presented
in Section 4.4 verifying the safety of our system. In addition, power
only exists at the power transmitter when people actively interact
with objects in our approach, further mitigating the potential risks
of long-term constant exposure to electricity. However, we are
cautious about drawing any conclusions on health implications and
expect future in-depth investigations to shed more light.

6.2 Comparison with Prior Work

Power transfer efficiency is specific to transceiver and electrode
design and their placements, load characteristics, and the surround-
ing environment, making it hard to establish criteria to assess the
system performance. Prior work has realized through-body power
transfer at a charging rate of 1 mW for wearable-to-wearable sce-
nario [37], 0.1-0.9 mW [45], 0.5-1 mW [27], 0.005-0.25 mW [26],
1.385 mW [8] for object-to-wearable scenario, all of which utilized
active power sources on the transmitter side that served as an
inexhaustible power tanks to deliver power to receivers. In com-
parison, our approach achieved a charging rate of 0.05-0.6 mW
with customized power generating mechanisms as the front end of
the transmitter, which consumes non-negligible energy to convert
interaction power, bounded by a user’s motor characteristics into
effective excitation signals for through-body power transmission.
While there is room for future enhancements in power management,
Interaction-Power Stations has achieved comparable performance
with previous efforts, showing promise of through-body power
transfer sourcing energy from user interactions.

6.3 Supplemental Use Scenarios

Interaction-Power Stations could associate human activities with
the customizable characteristics (e.g., frequency) of the AC output
from the transmitter. As shown in Section 4.4, the frequency of the
transmitter output is largely consistent as the speed of the generator

changes (i.e., throughout the interaction process at different speeds),
making it an ideal ID carrier for different objects and the activities
they are engaged in. Specifically, this could be implemented by
configuring the switching frequency of the inverter.

The employment of our system for activity recognition is com-
plimentary to existing body of research which identifies Electro-
magnetic signals emitted from electrical appliances during their
operations [18]. Our system extends this sensing principle to in-
clude passive objects (i.e., those that do not operate on electricity),
making them compatible with it. Future work is needed to balance
between power delivery and information conveyance efficiency.

6.4 Human-Oriented Factors on Power Transfer

Drawing from the modeling in Section 3, power transfer perfor-
mance is sensitive to model parameters to which human body-
oriented factors contribute. Key factors include human posture,
which has been empirically shown that can affect capacitance and
power transfer efficiency due to the change of relative distances
between human body, transmitter and receiver electrodes [42]. An-
other significant factor is the force/torque applied by the user to
the generator. Empirically, although force/torque determines the
input power, we did not observe its influence on the power delivery
efficiency, which is the ratio of output power to input power. Future
research will delve deeper into how these human factors could
influence the power delivery efficiency. Additionally, the impact of
factors such as bio-metric data (i.e., height, weight, skin moisture),
clothing, and body hair should also be investigated.

7 CONCLUSION

We present Interaction-Power Stations, an interaction power har-
vesting and transmitting system to charge wearables using human
body as a transmission medium. We designed energy harvesting
gear mechanisms for various objects, demonstrating the pervasive
presence of interaction power throughout the environment. We
also developed a custom circuit that features conversion between
AC and DC signals, frequency adjustment, and power amplification.
With validation tests and a user study, our approach has shown
great potential in turning objects into ubiquitous power stations, in-
troducing a new energy delivery scheme for wearables, and making
both interaction power as well as wearables more useful.
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