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Abstract—The Chebyshev-based Boundary Integral (CBIE)
method is a computationally efficient implementation of the
Nyström method, which enables discretization and solution of
boundary integral problems with high-order accuracy. The far
source/target point interactions leverage the Nyström method,
whereas self-singular and near-singular interactions are handled
by expanding the unknown densities using Chebyshev polynomi-
als and precomputing the interactions of the integral operators
and the Chebyshev basis to high numerical accuracy. In this
work, we present a p-adaptive quadrature scheme which enables
these precomputation integrals to be evaluated efficiently to a
desired level of accuracy without requiring any manual fine-
tuning or knowledge of the geometry. This approach matches the
same level of accuracy achieved by the previous implementations
based on fixed-size refined integration grids, while achieving
up to a 16.9X speed-up in computing time. The advantages
of the p-adaptive approach are demonstrated by comparing it
to the prior fixed-grid method for solving the Magnetic Field
Integral Equation (MFIE) applied to an edge-refined metallic
cube geometry.

I. INTRODUCTION

Efficient and accurate numerical solution of Maxwell’s
equations is of significant importance, since most electro-
magnetic devices of engineering interest, such as antennas
and nanophotonic devices, do not have analytical solutions.
Boundary Integral Equation (BIE) methods are often used
to solve such problems, since they require discretization of
the problem on surfaces rather than in volumes, unlike other
approaches such as Finite Difference and Finite Element meth-
ods. Typical BIE implementations use low-order Rao-Wilton-
Glisson (RWG) basis functions with the Method of Moments
(MoM) to discretize the system [1]. While this approach has
been used successfully to solve many problems, its low-order
nature is often not well suited to represent complex surfaces
and may require very fine meshing to achieve acceptable
error tolerances, leading to high memory requirements and
long solution times. To overcome this potential drawback, a
high-order polynomial representation for the surface current
densities can be used instead; however, the implementation
of these high-order representations in the context of MoM
can be prohibitive due to Galerkin testing requiring expensive
evaluation of four-dimensional integrals. On the other hand,
Nyström methods, rely on point-matching instead of Galerkin
for testing and can achieve similar accuracy with higher
efficiency when compared to high-order MoM methods.

Recently, a Chebyshev-based Boundary Integral Equation
(CBIE) implementation of the Nyström method has been
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introduced [2]– [4], which achieves both high accuracy and
high computational efficiency. The CBIE method separates
interactions between source and target points based on their
distances into singular, near-singular, and far interactions. For
the points which are far enough apart such that the kernels
of the integral equations are not singular or near-singular, the
method uses Fejér’s first quadrature rule to compute the re-
quired integrals efficiently with high accuracy. For singular and
near-singular interactions, however, custom quadrature weights
are precomputed by integrating the kernels against tensor-
products of Chebyshev polynomial basis functions on a highly
refined grid. The action of the integral operator on an arbitrary
density can then be evaluated by using a Chebyshev transform
to expand the density in terms of its Chebyshev coefficients
and multiplying and accumulating against the aforementioned
precomputed weights. Previously published implementations
of the CBIE method all used a single fixed-size refined grid,
designated at compilation time, to evaluate these integration
weights for all the singular and near-singular interactions.
However, the fixed-grid approach requires manual, geometry-
dependent tuning to determine a grid which is refined enough
in order to not limit the accuracy of final solution, while also
coarse enough so as to not incur an unnecessary computational
penalty.

In this work we present a p-refinement-based adaptive inte-
gration method for dealing with the precomputations needed
by the CBIE solver using a high-order nested Clenshaw-
Curtis quadrature rule. The adaptive integration approach does
not require a priori knowledge of the level of refinement
required and can choose the coarsest refinement needed for
each interaction to achieve the desired accuracy. The adaptive
approach uses up to 5.6X fewer singular kernel evaluations
than the static fixed-grid Fejér quadrature, which results in
up to 16.9X improvement in wall-clock time for certain
geometries. To showcase these improvements, we compare the
accuracy and speed of the new p-adaptive and prior fixed-grid
quadrature rules when used for solving the Magnetic Field
Integral Equation(MFIE) on an edge refined perfect electrically
conducting (PEC) cube with a side length of 2λ.

II. ADAPTIVE INTEGRATION APPROACH

The p-adaptive integration approach leverages Fejér’s sec-
ond quadrature rule, which has the same nodes as Clenshaw-
Curtis (CC) quadrature but does not include the end-points [5].
Similar to Fejér’s first quadrature rule, this method is also
based on integrating a Chebyshev expansion of the integrands;
however, the arrangement of the qudrature nodes enables it to
be used in a nested fashion (e.g., an order 2N rule shares
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half of its nodes with an order N rule). This allows efficient
error estimation by evaluating an integral using an order N
rule and comparing it against the result using an order 2N
rule, while only requiring 2N total function evaluations of the
integrand. Note that although the method is described here
in one-dimension for simplicity, the actual implementation
leverages a tensor-product rule to handle the 2D integrals. The
inputs to the adaptive integrator are the order of the starting
rule, Nβ , and the number of times that it is allowed to double
the refinement grid (p). If p = 1, the scheme is equivalent to a
fixed quadrature method. However, for p > 1, the scheme first
estimates the value of the integral (I1) using an Nβ-order rule,
as well as its value (I2) using a higher-order 2Nβ refined rule
and approximates the absolute integration error as abs(I2−I1).
If the result is determined to be sufficiently accurate as defined
by abs(I2 − I1) < max(tolabs, tolrel ∗ abs(I2)), where tolabs
and tolres are the prescribed absolute and relative tolerances
respectively, the algorithm concludes and returns the result I2.
Otherwise, Ik for k > 2 is computed and compared against the
previously computed Ik−1 for increasing k until convergence
is achieved or the maximum number of levels have been
reached (k = p). The efficiency in the approach lies in the
fact that all the expensive evaluations used to compute Ik−1

are stored and reused to compute Ik, significantly reducing the
number of additional function evaluations required.

III. NUMERICAL RESULTS

We use an 2λ side-length cube to compare the new p-
adaptive approach with the previous fixed-grid method for
a challenging object with sharp edges and corners in a
realistic setting. An edge-refinement change of variables is
used to properly resolve the singular field-enhancement at
the edges [2]. Fig. 1(a) visualizes the solved current surface
density on the cube, and Fig. 1(b) plots the the relative
error of the solved scattered field at a point in the far-
field (19λ above the surface of the cube) vs. the number of
unknowns. A highly refined numerical result is used as the
reference solution. Fig. 1(c) and (d) compare the total number
of MFIE kernel evaluations and total time needed to evalu-
ate all the precomputation integrals for the two approaches
respectively. In Fig. 1, ”Fejér: Best case” refers to fixed-
grid Fejér quadrature that has been manually fine-tuned over
multiple simulation runs to use the smallest possible singular
refinement grid for each discretization, such that the refinement
does not limit the accuracy of the solution. On the other
hand, the curve labeled ”Fejér” uses the same fixed-grid for
every discretization, corresponding to the refinement needed
to achieve the lowest error for the highest mesh discretization.
All cases were run on a server with dual AMD Epyc 7763
CPUs using 128 cores. Although both methods can achieve
similar solution accuracy for a given discretization, the new
adaptive quadrature approach requires up to 5.6X fewer kernel
evaluations in most cases than the fixed-grid method, which
results in up to 16.9X savings in wall-clock time. Thus, the p-
adaptive integration method introduced in this paper not only
enables automatic error control in the accuracy of the singular

and near-singular interactions (removing the requirement for
specifying a geometry dependent fixed-grid refinement param-
eter), but also leads to significant improvement in computing
times.
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Fig. 1. Results using edge-refined PEC cube. a) Surface current density dis-
tribution (log(|J|)). b) Far-field error vs. number of unknowns. c) Number of
kernel evaluations needed for precomputation integrals vs. solution accuracy.
d) Total precomputation time vs. solution accuracy.
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