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A High-Order-Accurate 3D Surface
Integral Equation Solver for
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Abstract— This article introduces a high-order accurate sur-
face integral equation (SIE) method for solving 3-D electromag-
netic scattering for dielectric objects with uniaxially anisotropic
permittivity tensors. The N-Müller formulation is leveraged,
resulting in a second-kind integral formulation, and a finite-
difference (FD)-based approach is used to deal with the strongly
singular terms resulting from the dyadic Green’s functions for
uniaxially anisotropic media while maintaining the high-order
accuracy of the discretization strategy. The integral operators are
discretized via a Nyström-collocation approach, which represents
the unknown surface densities in terms of Chebyshev polynomials
on curvilinear quadrilateral surface patches. The convergence
is investigated for various geometries, including a sphere, cube,
a complicated non-uniform rational basis spline (NURBS) geom-
etry imported from a 3-D computer-aided design (CAD) modeler
software, and a nanophotonic silicon waveguide, and the results
are compared against a commercial finite-element (FE) solver.
To the best of our knowledge, this is the first demonstration
of high-order accuracy for objects with uniaxially anisotropic
materials using SIEs.

Index Terms— High-order accuracy, integral equations,
N-Müller formulation, scattering, spectral methods.

I. INTRODUCTION

SURFACE integral equations (SIEs) are a powerful
approach for numerically solving Maxwell’s equations and

have been applied to solve a plethora of scattering problems,
including antennas [1], radar scattering [2], and most recently
nanophotonics [3], [4], [5]. Traditionally known as open
boundary problems due to satisfying the Sommerfeld radiation
condition by design, SIEs have also recently been successfully
applied for solving dielectric waveguiding problems, which
require simulating waveguides extending to and from infinity,
in both two [3], [6] and three [5] dimensions. Unlike other
volumetric computational approaches, such as finite-difference
(FD) and finite-element (FE) methods, which require gener-
ating complicated volume meshes, SIE methods only mesh
the surfaces between material regions. Since SIE methods
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solve for unknowns over surface rather than volume meshes,
they may also result in significantly smaller problems com-
pared with using volumetric approaches in scenarios with
high volume to surface area ratios. SIEs have predomi-
nantly been used for solving problems with homogeneous,
isotropic dielectrics due to the availability of closed-form
dyadic Green’s functions, which can be readily discretized
using suitable numerical quadrature and singularity treatment
approaches. For example, our recent work in [7] demonstrates
high-order convergence discretizing the magnetic field integral
equation (MFIE) and the N-Müller formulation for model-
ing metals and dielectrics, respectively, using a Chebyshev-
based Nyström method. On the other hand, many anisotropic
materials are commonly used in engineering applications,
such as anisotropic dielectric substrates for antennas [8], [9]
and liquid crystal claddings for designing reconfigurable
nanophotonic devices [10]. However, despite the fact that
closed-form Green’s functions have been derived for uniaxially
anisotropic media, there is a dearth of work available using
SIE methods to solve problems with these materials. In fact,
the only discretization approaches in the literature are [11],
[12], [13], [14], and [15], which present compelling results
comparing against volumetric methods but do not report on
error or convergence properties.

Indeed, although closed form expressions for the dyadic
Green’s functions for materials with uniaxially anisotropic
permittivity and permeability do exist [16], they are sig-
nificantly more complex and challenging to discretize than
the corresponding expressions for the isotropic material
case [see (24)]. The Poggio-Miller-Chang-Harrington-Wu-Tsai
(PMCHWT) [17], [18], [19] formulation is used in [11]
and discretized using the method of moments (MoM) and
RWG basis functions [20], [21]. The strongly singular part
of the Gee operator (known as the T operator in the lit-
erature for the isotropic case) is dealt with in the usual
manner by using integration by parts to decrease the kernel
singularity by moving a derivative to the testing function.
However, the Gem ∝ (∇ × Gee) operator (known as the
K operator in the literature for the isotropic case) also con-
tains a strong singularity, which cannot be easily reduced.
Mumcu et al. [11] approximate integrals with Gem by shifting
the target point r slightly off the surface. Unfortunately, this
approach is expected to result in poor accuracy, since the
operator is evaluated on a different target point than the
original intended one on the surface, and, furthermore, because
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Fig. 1. Electromagnetic scattering from a uniaxial anisotropic object
illuminated by an incident wave excitation.

the kernel remains nearly singular and is, therefore, very
challenging to numerically integrate even with the target point
being shifted off the surface. Follow-on work has extended
the approach in [11] to a preconditioned single-source formu-
lation [15], high-order MoM [13], [14], and has accelerated
it using adaptive cross approximation (ACA) [12], although
these works all still use the same low-accuracy approach to
deal with the singularity and do not show convergence results.

In this work, we present a new discretization strategy,
which when combined with the singular integration approach
using Chebhyshev polynomials to represent the unknown
densities introduced in [7] achieves the high-order accuracy
for scattering from objects composed of uniaxially anisotropic
materials. To the best of our knowledge, this is the very first
demonstration of a boundary integral solver for anisotropic
media, which achieves the high-order accuracy. Note that in all
of our examples, we assume that only the permittivity tensor
is anisotropic and that µr = 1; however, the approach pre-
sented can readily be extended to support materials with both
permittivity and permeability tensors having anisotropy. This
article is organized as follows. Section II briefly introduces the
surface integral formulation under consideration for dielectric
scatterers. Section III reviews the dyadic Green’s functions
for uniaxial anisotropic media and sets up a system of integral
equations for a scenario with an anisotropic scatterer inside an
isotropic exterior medium based on the N-Müller formulation.
Section IV analyzes the singular behavior of each anisotropic
kernel operator. Section V presents our Chebyshev-based
discretization and singular integration approach for accurate
evaluation of the integral operators. Finally, Section VI demon-
strates error convergence and both near and far-field numerical
results for four different example cases.

II. SIE FORMULATION

We consider the problem of evaluating the scattered field
from a nonmagnetic uniaxial anisotropic object (V2) embedded
in a free space region (V1), as shown in Fig. 1. Note that
for the subsequent derivations, we assume V1 is free space
without loss of generality; however, it can also be any arbitrary
isotropic homogeneous background medium. The object is

illuminated by an incident field excitation
(
Einc, Hinc

)
that will

lead to both scattered fields
(
Escat, Hscat

)
outside the object and

transmitted fields
(
Et, Ht

)
inside the object.

To obtain an equivalent problem for the exterior region
based on surface equivalence principle, the interior fields can
be nulled, and the total fields in the exterior region (E1, H1)

are a superposition of incident and scattered fields, which can
be represented as follows:

E1(r) = Einc(r) +
∫

S
G1

em

(
r, r′

)
· M1

(
r′
)
dσ
(
r′
)

+

∫
S

G1
ee

(
r, r′

)
· J1

(
r′
)
dσ
(
r′
) (1)

H1(r) = Hinc(r) +
∫

S
G1

mm

(
r, r′

)
· M1

(
r′
)
dσ
(
r′
)

+

∫
S

G1
me

(
r, r′

)
· J1

(
r′
)
dσ
(
r′
) . (2)

J1 = n̂ × H1 and M1 = E1 × n̂ are the equivalent surface
electric and magnetic current densities for the exterior region.
G1

ee and G1
em (resp. G1

me and G1
mm) are the dyadic Green’s

functions of the exterior region, corresponding to the electric
fields (respectively, magnetic fields) produced by delta electric
and magnetic current sources, respectively, in V1. By letting
the target point r approach the surface S from the exterior V1
and taking the cross products of (1) and (2) with the unit
normal vector to the surface n̂, the first set of equations is
obtained as follows:

1
2

M1 +K1
emM1 +K1

eeJ1 = −n̂ × Einc (3)

1
2

J1 −K1
mmM1 −K1

meJ1 = n̂ × Hinc (4)

with

K1
αβ[a](r) = n̂(r) ×

∫
S

G1
αβ

(
r, r′

)
· a
(
r′
)
dσ
(
r′
)

r ∈ S (5)

where the subscripts α and β can be either e or m. Similarly,
the equivalent problem for the interior region can be formu-
lated by setting the exterior field to zero, allowing the total
fields inside the anisotropic uniaxial region (E2, H2), which
are the same as the transmitted fields, to be represented as
follows:

E2(r) =
∫

S
G2

em

(
r, r′

)
· M2

(
r′
)
dσ
(
r′
)

+

∫
S

G2
ee

(
r, r′

)
· J2

(
r′
)
dσ
(
r′
)

(6)

H2(r) =
∫

S
G2

mm

(
r, r′

)
· M2

(
r′
)
dσ
(
r′
)

+

∫
S

G2
me

(
r, r′

)
· J2

(
r′
)
dσ
(
r′
)
. (7)

Analogous to the exterior problem, J2 = (−n̂) × H2 and
M2 = E2 × (−n̂) are the equivalent surface electric and
magnetic current densities for the interior problem, and G2

ee,
G2

em , G2
me, and G2

mm are the four dyadic Green’s functions
for the internal anisotropic uniaxial region V2 for which the
subscripts can be interpreted in the same manner as the
exterior functions described above. By letting the target point r
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approach surface S from the interior V2 and taking the cross
products of (6) and (7) with the surface normal vector n̂, the
second set of equations is obtained

1
2

M2 −K2
emM2 −K2

eeJ2 = 0 (8)

1
2

J2 +K2
mmM2 +K2

meJ2 = 0 (9)

with the integral operator K2
αβ(α, β ∈ {e, m}) defined the

same way as in (5), except superscript “2” now indicates the
uniaxially anisotropic interior region V2.

Note that due to the tangential continuity conditions of the
fields across the boundary, we must have that

J = J1 = −J2, M = M1 = −M2, (10)

which leaves two remaining unknowns J and M and four
equations. As is commonly done, the four equations can be
reduced to two via linear combination

α1(3) + α2(8)

β1(4) + β2(9) (11)

which is the system of integral equations that is used in
our formulation. After the equivalent surface densities J and
M have been solved, the total fields outside and inside the
uniaxial object can be determined anywhere by evaluating
the representation formulas (1) and (2), and (6) and (7),
respectively. The specific choice of coefficients α and β and
the explicit form of each dyadic Green’s function will be
explained in Section III.

III. DYADIC GREEN’S FUNCTIONS FOR
UNIAXIAL ANISOTROPIC MEDIA

The interior region V2 in the formulation is filled with a
uniaxially anisotropic dielectric, which can characterized by
the relative permittivity tensor

ϵ = ϵ⊥I +
(
ϵ∥ − ϵ⊥

)
ĉĉ (12)

where ĉ is a unit vector parallel to the distinguished axis,
ϵ∥ is the relative permittivity along the direction of ĉ, ϵ⊥ is
the relative permittivity along the directions perpendicular
to ĉ, and I represents the unit dyadic. It has been shown
in [11] and [16] that closed-form expressions exist for the
dyadic Green’s functions for this type of material, which we
reproduce here for completeness

G2
ee =

iωµ0

4π

{
∇∇

k2
⊥

eik⊥Re

Re
+ ϵ∥

eik⊥Re

Re
ϵ−1

−

[
ϵ∥eik⊥Re

ϵ⊥Re
−

eik⊥R

R

][
(R × ĉ)(R × ĉ)

(R × ĉ)2

]
−

[
ϵ∥ − ϵ⊥

ϵ⊥

eik⊥(Re+R)/2

Re + R
sin (k⊥(Re − R)/2)

(k⊥(Re − R)/2)

]
×

[
I − ĉĉ − 2

(R × ĉ)(R × ĉ)
(R × ĉ)2

]}
(13)

G2
mm =

iωϵ0

4π

{
∇∇

k2
0

eik⊥R

R
+ ϵ⊥

eik⊥R

R
I

+

[
ϵ∥eik⊥Re

Re
−

ϵ⊥eik⊥R

R

][
(R × ĉ)(R × ĉ)

(R × ĉ)2

]
+

[
(ϵ∥ − ϵ⊥)

eik⊥(Re+R)/2

Re + R
sin (k⊥(Re − R)/2)

(k⊥(Re − R)/2)

]
×

[
I − ĉĉ − 2

(R × ĉ)(R × ĉ)
(R × ĉ)2

]}
(14)

G2
em =

i
ωϵ0

ϵ−1
· ∇ × G2

mm (15)

G2
me =

1
iωµ0

∇ × G2
ee (16)

where ϵ0 and µ0 are the permittivity and permeability of free
space, respectively, ω is the angular frequency of the incident
field, k0 = ω

√
ϵ0µ0 is the wavenumber in free space, R =

r − r′ and R = |R| are the relative position vector and the
distance, respectively, from a source point to an observation
point, ϵ−1

= ϵ−1
⊥

I + (ϵ−1
∥

− ϵ−1
⊥

)ĉĉ is the inverse of ϵ, and Re
and k⊥ are given by

Re =

√
ϵ∥
(
R · ϵ−1

· R
)
, k⊥ = k0

√
ϵ⊥. (17)

Note that if the permittivity tensor is set to ϵ = I, the
above uniaxially anisotropic Green’s functions simplify to the
well-known isotropic dyadic Green’s functions for free space

G1
ee =

iωµ0

4π

[
∇∇

k2
0

eik0R

R
+

eik0R

R
I
]

(18)

G1
mm =

iωϵ0

4π

[
∇∇

k2
0

eik0R

R
+

eik0R

R
I
]

(19)

G1
em =

i
ωϵ0

∇ × G1
mm (20)

G1
me =

1
iωµ0

∇ × G1
ee. (21)

The linear combination coefficients in the integral equation
system (11) are chosen according to the N-Müller formulation
to be: α1 = ϵr1 = 1, α2 = ϵr2 = ϵ⊥, and β1 = µr1 =

β2 = µr2 = 1. Although the hypersingular part of the G1
ee

and G2
ee operator does not fully cancel each other out as in

the isotropic case [22] due to the directional dependence of the
gradient of the anisotropic Green’s function, this formulation
is still expected to result in a well-conditioned system due to
its second-kind nature. Table I reports the number of iterations
required for generalized minimum residual method (GMRES)
to converge for a number of test cases. The resulting integral
equations can be represented in matrix form as follows:[

K1
em − ϵ⊥K2

em +
1+ϵ⊥

2 I K1
ee − ϵ⊥K2

ee
K2

mm −K1
mm K2

me −K1
me + I

][
M
J

]
=

[
−n̂ × Einc

n̂ × Hinc

]
(22)

where I is the identity operator, and the expressions for

dyadic Green’s functions Gi
αβ involved in each of the integral

operators Ki
αβ(i ∈ {1, 2};α, β ∈ {e, m}) are given by (13)–(16)

and (18)–(21).
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TABLE I
NUMBER OF GMRES ITERATIONS VERSUS TOTAL NUMBER OF

UNKNOWNS Q WITH THE RELATIVE RESIDUAL ERROR
TOLERANCE 10−3 FOR VARIOUS GEOMETRY

AND PERMITTIVITY SETTINGS

IV. SINGULARITY ANALYSIS OF INTEGRAL OPERATORS

In order to evaluate the action of each of the integral
operators Ki

αβ on the densities with high accuracy, care must
be taken to analyze and properly handle the singular behavior
of each operator.

A. Singularity of K2
ee

At first glance, the Ki
ee and Ki

mm(i ∈ {1, 2}) operators
appear to both be hypersingular with O(1/R3) singularities
due to the ∇∇ operator acting on a term with O(1/R) singu-
larity. However, vector identities can be utilized to transfer the
one of the ∇ operators to the density term, and the other ∇,
which can be made to not depend on the source integration
coordinate, can be pulled outside of the integral.1 For example,
taking the K2

ee operator with a target point approaching the
surface from the inside

K2
eeJ =n̂(r) ×

∫
S

G2
ee(r, r′) · J(r′)dσ(r′)

∣∣∣∣
r∈S

=n̂(r) ×
∫

S
G2

ee(r, r′) · J(r′)dσ(r′)
∣∣∣∣
r→r−

=
iωµ0

4π
n̂(r) ×

∫
S

{
∇∇

k2
⊥

eik⊥Re

Re
+ D

}
· J(r′)dσ(r′)

∣∣∣∣
r→r−

=
iωµ0

4π
n̂(r) ×

{
1

k2
⊥

∇

∫
S
∇

eik⊥Re

Re
· J(r′)dσ(r′)

+

∫
S

D · J(r′)dσ(r′)
}∣∣∣∣

r→r−

=
iωµ0

4π
n̂(r) ×

{
1

k2
⊥

∇

∫
S

eik⊥Re

Re
∇

′

s · J(r′)dσ(r′)

+

∫
S

D · J(r′)dσ(r′)
}∣∣∣∣

r→r−
(23)

where

D =ϵ∥
eik⊥Re

Re
ϵ−1

−

[
ϵ∥eik⊥Re

ϵ⊥Re
−

eik⊥R

R

][
(R × ĉ)(R × ĉ)

(R × ĉ)2

]
1Note: Moving the gradient (∇) outside the integral is not strictly necessary

when using the Müller formulation, since its coefficients are designed to cancel
the singularity.

−

[
ϵ∥ − ϵ⊥

ϵ⊥

eik⊥(Re+R)/2

Re + R
sin (k⊥(Re − R)/2)

(k⊥(Re − R)/2)

]
×

[
I − ĉĉ − 2

(R × ĉ)(R × ĉ)
(R × ĉ)2

]
(24)

and r → r− indicates that operator is evaluated for a target
point that is approaching r ∈ S along −n̂ from V2. Since
the kernels of both integrals, D and eik⊥Re/Re, have O(1/R)

singularity, the integral operator K2
ee in this form is weakly

singular. K2
mm,K1

ee, and K1
mm can also be readily transformed

into weakly singular operators by following the same proce-
dure as K2

ee.

B. Singularity of K2
me

The action of the ∇× operator on weakly singular kernels
with O(1/R) singularities makes the dyadic Green’s functions
of the Ki

me and Ki
em(i ∈ {1, 2}) operators strongly singular

with O(1/R2)-type singularity. Nevertheless, these operators
can also be manipulated to become weakly singular when
acting on densities by applying vector identities. For example,
consider K2

me acting on J, with the target point r approaching
the surface from the inside as before

K2
meJ = n̂(r) ×

∫
S

G2
me(r, r′) · J(r′)dσ(r′)

∣∣∣∣
r∈S

= n̂(r) ×
∫

S
G2

me(r, r′) · J(r′)dσ(r′)
∣∣∣∣
r→r−

+
1
2

J

= n̂(r) ×
∫

S

1
iωµ0

∇ × G2
ee · J(r′)dσ(r′)

∣∣∣∣
r→r−

+
1
2

J

=
1

4π
n̂(r) ×

{∫
S
∇ ×

∇∇

k2
⊥

eik⊥Re

Re
· J(r′)dσ(r′)

∣∣∣∣
r→r−

+

∫
S
∇ × D(r, r′) · J(r′)dσ(r′)

∣∣∣∣
r→r−

}
+

1
2

J

=
1

4π
n̂(r) ×∇ ×

∫
S

D(r, r′) · J(r′)dσ(r′)
∣∣∣∣
r→r−

+
1
2

J

(25)

where D is given in (24), and the second equality follows
from the jump condition. Note that the ∇∇ term can be
removed, since ∇ × ∇ ≡ 0. It can be seen that the kernel
inside the integral [D(r, r′)] is now weakly singular, since the
curl operation has been factored out of the integral. The same
procedure can be used to also transform K2

em , K1
me, and K1

em
into weakly singular forms.

These operators in their weakly singular form can now be
discretized with high-order accuracy using the Chebyshev-
based Nyström method that was first introduced in [7] for
perfect conductors and isotropic dielectric materials. Section V
briefly reviews the key points of the Chebyshev method and
discusses our adaptation and application of it to the present
anisotropic formulation.

V. EVALUATION OF ACTION OF INTEGRAL OPERATORS
Ki

αβ USING CHEBYSHEV EXPANSION-BASED METHOD

According to the analysis in Section IV, two types of weakly
singular integrals as well as their gradient and curl need to be
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evaluated to compute the action of the integral operators K2
ee

and K2
me on the current density J

φ(r) =

∫
S

eik⊥Re

Re
∇

′

s · J
(
r′
)
dσ
(
r′
)
, n̂(r) ×∇φ(r)|r=r−

A(r) =

∫
S

D
(
r, r′

)
· J
(
r′
)
dσ
(
r′
)
, n̂(r) ×∇ × A(r)|r=r−

(26)

where φ(r) and A(r) are scalar and vector functions of
the target point r, respectively, and D is defined in (24).
Note that we focus on the operators acting on J, since the
same procedure can be used to discretize the K 2

mm and K 2
em

operators, which act on M.

A. Evaluation of φ(r) and A(r)

In order to compute φ(r) and A(r), the whole surface
S is split into M nonoverlapping curvilinear quadrilateral
patches Sp, p = 1, 2, . . . , M . A parametric mapping is defined
from the unit square [−1, 1] × [−1, 1] in UV space to each
surface Sp in Cartesian coordinates. Specifically, we introduce
parameterization r = rp(u, v) = (x p(u, v), y p(u, v), z p(u, v))

for patch Sp. The tangential covariant basis vectors and normal
vectors on Sp can then be defined as follows:

ap
u =

∂rp(u, v)

∂u
, ap

v =
∂rp(u, v)

∂v
, n̂

p
=

ap
u × ap

v

||ap
u × ap

v ||
. (27)

The tangential electric current density vector J on the surface
Sp can be expanded in terms of the local tangential coordinate
basis as follows:

Jp(u, v) = J p,u(u, v)ap
u (u, v) + J p,v(u, v)ap

v (u, v) (28)

where Jp(u, v) ≡ J(rp(u, v)), and J p,u and J p,v are the
contravariant components of the surface current density J.
For sufficiently smooth surface geometries, J p,u and J p,v

are smooth functions of u and v and can be approximated
with spectral convergence by using Chebyshev polynomials
as follows:

J p,a
=

N p
v −1∑

m=0

N p
u −1∑

n=0

γ p,a
n,m Tn(u)Tm(v), for a = u, v (29)

where the Chebyshev coefficients γ
p,a

n,m can be computed from
the values of J p,a on Sp at the Chebyshev nodes, which is
where the discretized set of unknowns are located, by using
the discrete orthogonality property of Chebyshev polynomials

γ p,a
n,m =

αnαm

N p
u N p

v

N p
v −1∑

k=0

N p
u −1∑
l=0

J p,a(ul , vk)Tn(ul)Tm(vk). (30)

After the Chebyshev coefficients are obtained from the density
values on Chebyshev nodes, we are able to compute the
density values J p,a(u, v) for arbitrary (u, v) by interpolating
via (29), and the Cartesian components J p

i (u, v) can be
computed by taking dot product of Cartesian basis vectors
ei (i = x, y, z) and Jp(u, v). Thus, φ(r) and the i th Cartesian
component of the integral A(r) can be represented as follows:

φ(r) =
M∑

p=1

∫
Sp

eik⊥Re

Re
∇

′

s · J(r′)dσ(r′)

=

M∑
p=1

∫ 1

−1

∫ 1

−1

eik⊥Re

Re

(
∂(
√
|G p|J p,u)

∂u

+
∂(
√
|G p|J p,v)

∂v

)
dudv (31)

Ai (r) =
M∑

p=1

∫
Sp

ei · D(r, r′) · J(r′)dσ(r′)

=

M∑
p=1

∫ 1

−1

∫ 1

−1
(Di x J p

x + Diy J p
y + Di z J p

z )
√
|G p|dudv

(32)

where Di j = Di j (r, rp(u, v))(i, j = x, y, z) is the Cartesian
component of the dyadic D(r, r′), J p

j = J p
j (u, v) is the

Cartesian component of current density J, and
√
|G p| =

√
|G p(u, v)| is the surface element Jacobian on the source

patch Sp. If the target point r is far away from Sp, the kernels
Di j and eik⊥Re/Re are smooth, and Fejer’s first quadrature
rule [23] can be used directly on the discrete densities at the
Chebyshev nodes to evaluate the integrals numerically with
high-order accuracy. When the target point r is on the source
patch Sp itself or nearby, the integrals become singular or
nearly singular and require special treatment. Since the density
on each patch can be expanded in terms of a Chebyshev
polynomial basis via (29), the action of these integrals on
the density J can be computed by first precomputing their
action on each Chebyshev basis polynomial, followed by
multiplying the resulting values against the expanded Cheby-
shev coefficients of the density and accumulating over all n
and m indices. Since all of the kernels involved have been
manipulated to be weakly singular, we adopt the change of
variables proposed in [7], [24], and [25, Sec. 3.5] to regularize
the integrals by annihilating the singularity with the surface
Jacobian, allowing the precomputations to be computed with
very high accuracy using a standard Fejer quadrature rule. The
Chebyshev discretization and singular integration approaches
for the Nyström method are described in depth in [7].

B. Evaluation of n̂(r) ×∇φ(r)|r=r−

In view of the surface representation in terms of nonover-
lapping patches, for a target point r on pth patch Sp, we first
expand the ∇ operator in the local coordinate frame as follows:

∇ = ap,u ∂

∂u
+ ap,v ∂

∂v
+ n̂

p ∂

∂ n̂ p (33)

where ap,u and ap,v are contravariant basis vectors that satisfy
the orthogonality relation

ap,a
· ap

b =

{
1 a = b
0 a ̸= b

. (34)

The operator can then be expanded as follows:

n̂(r) ×∇φ(r)|r→r−

= n̂
p
×

(
ap,u ∂φ

∂u
+ ap,v ∂φ

∂v
+ n̂

p ∂φ

∂ n̂ p

)∣∣∣∣
r→r−

=
∂φ

∂u

∣∣∣∣
r→r−

n̂
p
× ap,u

+
∂φ

∂v

∣∣∣∣
r→r−

n̂
p
× ap,v

=
∂φ

∂u

∣∣∣∣
r∈Sp

n̂
p
× ap,u

+
∂φ

∂v

∣∣∣∣
r∈Sp

n̂
p
× ap,v. (35)
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Note that the third equality follows from the fact that φ(r) has
continuous tangential derivatives across the surface without
any jump condition. As in Section V-A, φ(r) is first computed
at each Chebyshev node (ul , vk) on Sp and then expanded with
a Chebyshev transform as follows:

φ
(
rp(u, v)

)
=

N p
v −1∑

m=0

N p
u −1∑

n=0

ζ p
n,m Tn(u)Tm(v) (36)

where the values of ζ
p

n,m are the Chebyshev coefficients
obtained by using (30) and replacing J p,a(ul , vk) with
φ(rp(ul , vk)). The partial derivatives with respect to u and
v can then be readily computed by taking the derivatives
of Chebyshev polynomials Tn(u) and Tm(v), respectively,
as follows:

∂φ

∂u

(
rp(u, v)

)
=

N p
v −1∑

m=0

N p
u −1∑

n=0

ζ p
n,m T ′

n(u)Tm(v)

∂φ

∂v

(
rp(u, v)

)
=

N p
v −1∑

m=0

N p
u −1∑

n=0

ζ p
n,m Tn(u)T ′

m(v) (37)

for all target points r = rp(u, v) ∈ Sp, and n̂(r)×∇φ(r)|r=r−

can then be computed by substituting into expansion (35).

C. Evaluation of n̂(r) ×∇ × A(r)|r=r−

By using the same expansion for ∇ operator as in (33),
we can expand this operator as follows:

n̂(r) ×∇ × A(r)|r→r−

= n̂
p
×

(
ap,u

×
∂A
∂u

+ ap,v
×

∂A
∂v

+ n̂
p
×

∂A
∂ n̂ p

)∣∣∣∣
r→r−

= n̂
p
×

(
ap,u

×
∂A
∂u

∣∣∣∣
r→r−

)
+ n̂

p
×

(
ap,v

×
∂A
∂v

∣∣∣∣
r→r−

)
+n̂

p
×

(
n̂

p
×

∂A
∂ n̂ p

∣∣∣∣
r→r−

)
= ap,u

(
n̂

p
·
∂A
∂u

∣∣∣∣
r∈Sp

)
+ ap,v

(
n̂

p
·
∂A
∂v

∣∣∣∣
r∈Sp

)
−

∂A
∂ n̂ p

∣∣∣∣
r→r−

+n̂
p
(

n̂
p
·

∂A
∂ n̂ p

∣∣∣∣
r→r−

)
(38)

where the tangential derivatives for each Cartesian component
of A, ∂A/∂u and ∂A/∂v, on Sp can be evaluated in the same
way as ∂φ/∂u and ∂φ/∂v in Section V-B.

According to the limit definition of the directional deriva-
tive, the normal derivative of each Cartesian component i of A,
(∂Ai/∂ n̂ p

)|r→r− , can be written as follows:

∂Ai

∂ n̂ p

∣∣∣∣
r→r−

= lim
δ→0+

Ai (r) − Ai
(
r − δn̂ p)

δ
i = x, y, z. (39)

The normal derivative can be transformed into a derivative of
a univariate function by defining auxiliary function, g(δ) =

Ai (r + δn̂ p
)

∂Ai

∂ n̂ p

∣∣∣∣
r=r−

= lim
δ→0+

Ai (r) − Ai
(
r − δn̂ p)

δ

= lim
δ→0+

g(0) − g(−δ)

δ
= g′

−
(0). (40)

In order to approximate the derivative g′
−
(0) numerically with

high accuracy without requiring very close off-surface evalua-
tion, we use the following backward difference approximation:

∂Ai

∂ n̂ p

∣∣∣∣
r=r−

= g′

−
(0) ≈

3g(0) − 4g(−δ) + g(−2δ)

2δ

=
3Ai (r) − 4Ai

(
r − δn̂ p)

+ Ai
(
r − 2δn̂ p)

2δ
(41)

which results in the second-order accuracy O(δ2) as δ → 0+.
Note that the weakly singular integrals Ai (r), Ai (r − δn̂ p

),
and Ai (r−2δn̂ p

) in the numerator can be evaluated with high
accuracy using the rectangular-singular integration method
discussed in Section V-A.

After the two weakly singular integrals φ(r) and A(r) and
their gradient and curl have been evaluated, respectively, K2

eeJ
and K2

meJ can be obtained by substituting into (23) and (25).
The same approach can be used to compute the actions of the
other integral operators required, since the kernels of K2

mmM,
K1

eeJ, and K1
mmM are similar to that of K2

eeJ, and the kernels
of K2

emM, K1
meJ, and K1

emM are similar to that of K2
meJ as

discussed in Section IV. Therefore, the LHS of the whole
system (22) can be evaluated for an arbitrary target point
r ∈ S. As is done in a typical Nyström method, the operators
are evaluated at the same targets points as the unknowns, i.e.,
at the Chebyshev nodes on each patch, and each equation is
tested with the two tangential contravariant basis vectors. This
results in a full-rank linear system with the same number of
equations as unknowns, which can readily be solved using a
suitable linear solver of choice. In this work, we use GMRES
to solve the discretized systems iteratively.

VI. NUMERICAL RESULTS

We first study the convergence of the forward map with
respect to the number of Chebyshev nodes per side of the
patch: N = N p

u = N p
v of the forward map. This can be

done numerically by applying the whole system (22) operator,
which includes the actions of all the integral operators, on ref-
erence current densities J and M on a sphere and comparing
against an analytical Mie series solution [26]. Following this,
we present several examples demonstrating scattering from a
uniaxially anisotropic dielectric sphere and cube to highlight
the high-order accuracy, which can be achieved with our
method. We also solve a scattering example from a 3-D non-
uniform rational basis spline (NURBS) model generated by a
commercial computer-aided design (CAD) software to demon-
strate the ability of our method to handle objects with compli-
cated geometrical features and curvature. Finally, we apply our
method to a silicon nanophotonic phase-shifter waveguiding
structure and compare the results against a commercial FDTD
solver to showcase the potential of our method for simulating
nanophotonic devices with high accuracy.

A. Forward Map Convergence

We evaluate convergence of the forward map (application
of the integral operator to a prescribed density) on a uni-
axially anisotropic dielectric sphere with diameter D = 2λ0,
anisotropic permittivity ϵ⊥ = 2, ϵ∥ = 3, and distinguished
axis ĉ = (0, 0, 1). Since a refined grid on each patch is used
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Fig. 2. (a) Forward mapping error with respect to N for different Nβ values
on a uniaxially anisotropic dielectric sphere (D = 2λ0) with FD step size
δ = 10−5. (b) Forward mapping error with respect to N for different step
sizes δ on the same sphere with Nβ = 600.

to accurately precompute the action of the integral operator
on each Chebyshev polynomial when evaluating the weakly
singular integrals, as in [7], the number of refinement grid
points (Nβ×Nβ), and the FD step size (δ) in (41), both impact
the overall forward map accuracy of the system. In order to
study their effect on the convergence, Fig. 2(a) and (b) plots
the forward mapping error versus N for increasing Nβ and
decreasing δ in (41), respectively. Note that a sufficiently small
δ = 10−5 is used for the plot versus Nβ , and a sufficiently
large Nβ = 600 is used for the plot versus δ, such that
the convergence is dominated by the parameter that is under
consideration in each plot. An analytical Mie series solution
for scattering from a uniaxially anisotropic dielectric sphere
due to an incident plane wave [26] is used for the reference
densities. As expected and discussed in Section V, both the δ

and Nβ parameters affect the overall accuracy significantly and
should be chosen judiciously according to the desired overall
solution accuracy. Although the curves plotted in Fig. 2 show
the forward map convergence of the sphere, they can also
be used as guidelines for choosing the Nβ and δ parameter
values to achieve a desired accuracy for different geometrical

configurations. For example, choosing Nβ = 150 and δ =

10−3 should be suitable for achieving a 10−3 relative error.

B. Uniaxially Anisotropic Sphere

Next, we investigate solving the full scattering problem for
the same sphere considered in Section VI-A. The electric field
of the incident plane wave is given by Einc

= ex eik0z . To verify
the correctness and accuracy of our results, the result of our
solver is compared with the analytical Mie series solution [26].

Fig. 3(a) and (c) shows the magnitudes of electric and
magnetic surface current densities, |J| and |M|, on the sphere
for N = 24. In Fig. 3(b) and (d), we plot the associated error
of each density on the surface with respect to the analytical
solution. Fig. 3(e) compares the RCS for both the E-plane
(φ = 0◦) and H-plane (φ = 90◦) computed by using a
discretization of 12×12 points per patch versus the analytical
solution. As can be seen, the results from the solver are
indistinguishable from the analytical solution. Fig. 3(f) shows
the corresponding relative errors in the solved surface densities
concatenated into a single vector [J, M] and the computed
RCS far-field in both planes with respect to the analytical
solution versus N (number of points per side of each patch),
demonstrating the solver’s high-order convergence. Note that
normalized units c0 = ϵ0 = µ0 = 1 are used. The relative error
of the solved densities for the same sphere with a number of
other ϵ⊥ and ϵ∥ configurations, as well as a cube with 1λ0 side
length and high index contrast (ϵ⊥ = 10 and ϵ∥ = 20), is also
plotted in Fig. 3(f). Due to lack of an analytical solution,
the cube example was compared against a highly refined
numerical solution. Although the surface densities of the cube
also converge, their rate of convergence is lower than that of
the sphere examples, since no particular refinement strategy is
used to deal with the edge singularities.

C. Uniaxially Anisotropic Cube

We also consider scattering from a uniaxially aniostropic
dielectric cube with 1λ0 edge length, anisotropic permittivity
ϵ⊥ = 3, ϵ∥ = 5, and distinguished axis ĉ = (1/2, 1/2,

√
2/2).

The same plane wave incident field is used as the previous
example, and the surface of the cube is made up of six patches.
Since we are not aware of an analytical solution for this
structure, we also compared the result of our solver with a
highly refined solution (N = 40) as well as with a solution
obtained from a commercial FE method (FEM) simulation
software.

Fig. 4(a) and (b) shows the magnitudes of the surface
electric and magnetic current densities, |J| and |M|, for
N = 16. Fig. 4(c) compares the RCS at the E-plane (φ = 0◦)
obtained by using a coarse discretization N = 16, a highly
refined discretization N = 40, and the commercial FEM solver
ANSYS HFSS [27]. As can be seen, the results from N = 16
and N = 40 are completely overlapped with each other,
demonstrating that the solver has already converged for a rela-
tively coarse discretization, despite the known challenges with
objects that have sharp edges and corners that often plague
Mawxell solvers. A maximum deviation less than 0.3 dB
between our result and the FEM solver result is observed,
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Fig. 3. (a) Magnitude of surface electric current density distribution |J|
on a uniaxially anisotropic dielectric sphere (D = 2λ0) induced by incident
plane wave. (b) Error of surface |J| distribution. Max error: 7.4 × 10−7.
(c) Magnitude of surface magnetic current density distribution |M|. (d) Error
of surface |M| distribution. Max error: 2.3×10−7. (e) RCS at E-plane (φ = 0◦)
and H-plane (φ = 90◦) comparing a discretization of N = 12 with the exact
solution. (f) Far-field relative error for both E- and H-planes and surface
density (combined J and M vector) relative error for different ϵ configurations,
as well as for a 1λ0 side length cube. The errors in the numerical solutions
are compared against analytical Mie series solutions for the sphere examples
and against a highly refined numerical solution for the cube. Normalized units
c0 = ϵ0 = µ0 = 1 are used.

which further validates the correctness and effectiveness of
our solver for scatters with sharp edges. Note that no particular

Fig. 4. (a) Magnitude of surface electric current density distribution |J|
on a 1λ0 edge length uniaxially anisotropic dielectric cube. (b) Magnitude of
surface magnetic current density distribution |M| on the same cube. (c) RCS at
E-plane (φ = 0◦) from a coarse discretization N = 16, a refined discretization
N = 40 m, and the commercial FEM solver, ANSYS HFSS.

edge refinement strategy was used in this example, although a
similar approach as the edge change of variables used in [7]
could be applied to improve the convergence further.

Table I shows the number of GMRES iterations required
to reach the relative residual error 10−3 versus the number of
unknowns Q for various geometry and permittivity settings.
It can be seen that the number of iterations remains constant
for the cube case and decreases for the two sphere cases
as Q increases, indicating that the linear system is well
conditioned and does not suffer from dense mesh breakdown.

D. Hummingbird 3-D NURBS CAD Model

We also compute the fields scattered by a hummingbird
composed of a uniaxially anisotropic dielectric material. The
hummingbird geometry used is a 3-D NURBS CAD model
that is available freely online [28]. The same incident exci-
tation and permittivity tensor settings are used as in the
sphere example. The hummingbird is sized, such that it has a
total length of 4.3 wavelengths and a wingspan of 6.5 wave-
lengths. This geometry consists of 311 curvilinear quadrilateral
patches that were generated by the commerical CAD software
Rhino [29].

We plot the magnitude of surface magnetic current density
|M| in Fig. 5(a) and RCS versus θ at φ = 0◦ for two
discretizations N = 10 and N = 12 in Fig. 5(b). The
RCS computed using the commercial FE software, ANSYS
HFSS [27], is also plotted for comparison. Although this
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Fig. 5. (a) Magnitude of surface magnetic current density |M| on a uniaxially
anistropic dielectric hummingbird CAD model with surface composed of
311 patches. (b) Comparison of RCS at E-plane (φ = 0◦) computed using
N = 10 and N = 12 discretization orders with the commercial FEM solver
ANSYS HFSS.

model contains sharp corners at the beak, tail, and wing tips
that could be challenging to simulate accurately, very close
agreement is observed for the RCS patterns resulting from the
two discretizations and HFSS.

E. Silicon Photonic Phase Shifter

We conclude Section VI with one final example of a
silicon-based nanophotonic phase shifter embedded in a liq-
uid crystal background medium. This is a simplified design
inspired by Pfeifle et al. [10] and consists of two parallel
rectangular silicon waveguides embedded within a uniaxially
anisotropic liquid crystal cladding. The orientation of the dis-
tinguished axis ĉ of the liquid crystal media can be electrically
controlled by an external voltage. By altering the amplitude
of this voltage, the distinguished axis is rotated, causing the
permittivity experienced by the dominant field component to
change and leading to a different corresponding propagation
constant. This changes the phase shift experienced by light
propagating in the fundamental mode of the waveguide over
a certain distance as discussed in [10].

In our example, the width and the height of the rectangular
cross sections of both waveguides are 0.24 and 0.22 µm,
respectively, and the spacing between the two silicon rods
is 0.12 µm. The anisotropic permittivity of the liquid crystal
cladding is set to be ϵ⊥ = 2.3409 and ϵ∥ = 2.9241, the

Fig. 6. (a) Phase variation of Ex along the propagation direction for
both ĉ = x̂ and ĉ = ẑ. (b) Real part of Ex on the planar cross section
−0.4 µm ≤ x ≤ 0.4 µm and −2 µm ≤ z ≤ 2 µm.

distinguished axis ĉ is set to either x̂ or ẑ, and the silicon
waveguide has permittivity ϵSi = 12.11. We use an electric
dipole polarized along (1, 0, 0) direction with unit amplitude
and 1.55 µm free space wavelength placed at (0, 0,−1) as
the source excitation. The windowed Green function (WGF)
method is used to simulate the waveguides extending into
infinity from both directions [3], [5], [6].

Fig. 6(a) shows the phase variation of the dominant field
component Ex along the propagation direction for both ĉ = x̂
and ĉ = ẑ obtained by using our solver as well as a commercial
FDTD solver. The results of the two solvers match very closely
with each other. As expected, due to the difference in the
propagation constants of the propagating modes caused by
rotating the distinguished axis of the liquid crystal cladding
from ĉ = x̂ to ĉ = ẑ, the slopes of the phase versus position
for the two scenarios are different. The discretization mesh
is shown on the left side of Fig. 6(b), and the real part of
the Ex field on the planar cross section −0.4 µm ≤ x ≤

0.4 µm,−2 µm ≤ z ≤ 2 µm is depicted on the right,
indicating single mode propagation along the waveguide.

VII. CONCLUSION

We introduced a high-order accurate approach to solve
the 3-D Maxwell surface integral equation (SIE) formulation
for scattering from uniaxially anisotropic objects and media.
Specifically, we utilized vector identities to represent the inte-
gral operators in terms of weakly singular integrals and their
gradients and curls. A Chebyshev polynomial expansion-based
approach similar to the one used in our previous work for
isotropic dielectric and metallic objects [7] is applied for
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discretizing and evaluating these operators numerically. The
high accuracy of the method is verified by comparing the
convergence of the solution for scattering from a uniaxial
anisotropic dielectric sphere to an analytical solution. Other
examples were also presented, including scattering from a
uniaxially anisotropic cube, a 3-D NURBS model generated
by a commercial CAD software, and a silicon photonic phase
shifter embedded in a liquid crystal background medium,
which demonstrate the effectiveness and versatility of the
solver for handling many different scenarios. Future work
includes using the solver to inverse design high-performance
radio-frequency and nanophotonic devices using uniaxially
anisotropic materials, such as liquid crystals, which can
be dynamically reconfigured by switching their polarization
states.
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