
LEARNING THE DYNAMICS FOR UNKNOWN HYPERBOLIC1

CONSERVATION LAWS USING DEEP NEURAL NETWORKS2

ZHEN CHEN∗∗, ANNE GELB†† , AND YOONSANG LEE†3

Abstract. We propose a new data-driven method to learn the dynamics of an unknown hy-4
perbolic system of conservation laws using deep neural networks. Inspired by classical methods5
in numerical conservation laws, we develop a new conservative form network (CFN) in which the6
network learns to approximate the numerical flux function of the unknown system. Our numerical7
examples demonstrate that the CFN yields significantly better prediction accuracy than what is ob-8
tained using a standard non-conservative form network, even when it is enhanced with constraints to9
promote conservation. In particular, solutions obtained using the CFN consistently capture the cor-10
rect shock propagation speed without introducing non-physical oscillations into the solution. They11
are furthermore robust to noisy and sparse observation environments.12

1. Introduction. Hyperbolic systems of conservation laws arise in many appli-13

cations, in particular where wave motion or advective transport is important, and in-14

clude problems in gas dynamics, acoustics, optics and elastodynamics. These typically15

non-linear partial differential equations (PDEs) are well known to cause challenges for16

numerical simulation. Methods that work well for linear problems break down near17

discontinuities in the non-linear case unless special care is taken to mitigate the oscil-18

latory behavior that will otherwise cause instabilities. Moreover it is well understood19

that numerical solvers must be written in flux conserving form, since otherwise the20

resulting numerical solution may yield the incorrect shock speed, [18, 24, 25].21

Since enormous quantities of data can now be collected, and since there is in-22

creased capacity in computational storage along with better computational efficiency,23

data-driven algorithms that recover unknown dynamical systems from observation24

data, mainly for ordinary differential equations (ODEs) [4, 9, 27, 34, 40, 43, 47] but25

more recently for PDEs [26, 28, 29, 30, 35, 36, 44, 45] as well, are becoming more26

widespread. Many data-driven methods build neural network (NN) models that are27

trained to fit observed data. Such an approach is called “blind” since it does not take28

into account any information regarding the underlying system. As will be demon-29

strated in our numerical results, while a standard NN technique may yield accurate30

results within the training time domain, numerical difficulties arise once shocks are31

formed beyond that time period. Indeed, the NN may predict non-physical solutions32

or the wrong shock propagation speed.33

To provide context, we briefly summarize some ODE and PDE dynamics-learning34

methods that are designed to impose known physical constraints regarding the un-35

derlying system. For instance, regularization terms can be introduced into the loss36

function to penalize the NN that would otherwise not satisfy physical constraints37

[11, 15]. Another typical approach seeks to integrate general physical principles into38

the design of neural networks. For example, the method in [46] embeds GENERIC39

formalism into neural networks to learn dynamical systems and involves two separate40

generators for reversible and irreversible dynamics, respectively. Systems of ODEs41

and PDEs are considered in [2], where general physical principles are integrated into42

∗ExxonMobil Technology and Engineering Company, Houston, TX 77002, USA.
†Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA. Emails:

zhen.chen@exxonmobil.com, annegelb@math.dartmouth.edu, Yoonsang.lee@dartmouth.edu Fund-
ing: All authors are supported by the DoD MURI grant ONR #N00014-20-1-2595. AG is also
supported by the AFOSR grant #FA9550-22-1-0411 and the NSF grant DMS #1912685. YL is also
supported by the NSF grant DMS #1912999.

1

This manuscript is for review purposes only.



what is called dynamic mode decomposition (DMD), which learns low-rank dynamics43

from high-dimensional measurements. This case-by-case study does not have a gen-44

eral framework that can be extended to conservation laws, however. There is a also45

class of data-driven methods that aim to identify the governing system of ODEs or46

PDEs, see e.g. [7, 38, 39]. The time derivative must be approximated from the obser-47

vation data, thereby limiting observation environments to those where high quality48

data are obtainable in very short time intervals. Furthermore, the solution must re-49

main smooth and differentiable throughout the considered time domain. In another50

category of data-driven approaches, [19, 20, 21, 28, 36], it is possible to obtain either51

the forward PDE solution (after some prescribed time), or some unknown parameters52

associated with the system of equations. Such methods rely on either knowing the sys-53

tem explicitly or terms within its equations. Notably, methods such as those proposed54

in [19, 20] are specifically designed for conservation laws and can be used to recover55

constant coefficients of inviscid and higher-order fluxes. The framework developed in56

[28] learns the Hamiltonian of a dynamical system, which is conserved. Mathemati-57

cally this work is based on symplectic dynamics. To obtained desired accuracy, the58

method requires the calculation of derivatives of the state variable (or second order59

derivatives for KdV equations), which in turn requires dense observations of the state60

variables. By contrast, our new CFN approach bypasses such calculations by directly61

learning the flux function without relying on the Hamiltonian framework. Finally, we62

mention approaches that concentrate exclusively on solving the forward problem by63

combining machine learning (ML) techniques with traditional numerical PDE knowl-64

edge. Examples of such methods which have been used to solve conservation laws can65

be found in [3, 5, 37, 42].66

In spite of their ubiquitousness in many applications, to the best of our knowledge67

there are no data-driven methods that are specifically designed to learn unknown68

systems of hyperbolic conservation laws. In this investigation we therefore seek to69

develop a method to do so, and in particular for the case in which the observation70

data are comprised of a set of perturbed numerical solutions of the true PDE at a71

finite number of different time instances within a short time (training) domain. Our72

new method employs tools from ML to construct a model from the training data to73

make long-term predictions for a system of hyperbolic conservation laws that extend74

beyond the short-time domain for which data are observed. Notably, our method is75

a departure from a traditional interpretation of learning where the training data is76

designed to contain all of the information eventually needed. In contrast, here we77

consider the realistic setting where the snapshot data comes from a given physical78

system up to a certain time, and we seek to extrapolate the solution to a future time.79

Such a scenario is important in long term predictions of non-linear dynamics that are80

modeled by hyperbolic conservation laws.81

Based on similar behavior observed in traditional solvers for numerical conser-82

vation laws, here we propose a new conservative form network (CFN) for which the83

network learns the flux function of the unknown system. By incorporating the con-84

servative flux form directly into the network architecture, we are able to mimic the85

structure of the conservative form scheme found in classical numerical hyperbolic86

conservation laws. Our new method is distinguishable from the aforementioned ap-87

proaches as it designs the network to be specifically in conservative form. Our nu-88

merical experiments demonstrate that the data-driven method resulting from our new89

CFN is conservative. It furthermore correctly predicts the shock propagation speed90

in extended time domains without introducing non-physical oscillations into the solu-91

tion. This is in contrast to data-driven methods that use either the standard “blind”92

2

This manuscript is for review purposes only.



NN or those that incorporate a penaly term to promote conservation.93

The rest of the paper is organized as follows. Section 2 gives a brief review of con-94

servation laws along with some standard ideas related to dynamics-learning methods.95

We introduce our new conservative form network in Section 3. Section 4 discusses96

how our experiments are designed. This is followed by three classical examples of one-97

dimensional conservation laws in Section 5 used to validate our approach. Section 698

provides some concluding remarks.99

2. Preliminaries.100

2.1. Conservation laws. We are interested in learning the dynamics of an101

unknown hyperbolic system of conservation laws on a spatial domain x ∈ (a, b) and102

temporal domain t ∈ (0, T ). The scalar form is given by103

(2.1) u(x, t)t + f(u(x, t))x = 0104

with appropriate initial and boundary conditions.1 The main difficulty in solving105

(2.1) is due to the formation of shock discontinuities, which will occur even when the106

initial conditions are smooth. To retain the proper shock speed, numerical solvers for107

(2.1) must be written in flux conserving form [25, 24, 18]. Specifically, if the spatial108

domain is discretized as xj , j = 0, . . . , N , and time is incremented at t = tl, numerical109

solvers for the interior of the interval should be of the form110

(2.2)∫ xj+1

xj

u(x, tl+1)dx =

∫ xj+1

xj

u(x, tl)dx+

∫ tl+1

tl

f(u(xj , t))dt−
∫ tl+1

tl

f(u(xj+1, t))dt.111

In this investigation we seek to approximate the solution u(t) = {ūj(t)}Nj=1 for t ∈112

(0, T ), where ūj(t) is the cell average over a uniform grid {xj}Nj=1 given by113

(2.3) ūj(t) =

∫ xj+
∆x
2

xj−∆x
2

u(x, t)dx, j = 1, . . . , N, ∆x =
b− a
N

.114

Studies regarding numerical conservation laws typically assume the flux term is115

known, with the goal to construct accurate, robust, and efficient solvers for u(t)116

by appropriately discretizing (2.2). Here, by contrast, we are interested in the case117

where we know apriori that the governing equation is a conservation law, but the118

flux function itself is unknown. The goal is then to determine how the solution will119

evolve given some early observations regarding the governing PDE. We will exploit120

our understanding of conservation laws by designing our numerical method to be in121

conservative form, as is given by (2.2). Once we are able to construct the numerical122

flux, it can be used to predict the evolution of the unknown PDE.123

We now introduce some notation for the observable data. We will assume that124

the solution to the PDE is available at a set of discrete time instances {tl}Ll=1 for125

Ntraj initial conditions resulting in so-called snapshots of the solution,126

(2.4) u(k)(tl), l = 1, . . . , L, k = 1, . . . , Ntraj .127

The superscript k in (2.4) denotes the k-th “trajectory”, which implies all L snapshots128

are evolved from the same initial state, with Ntraj denoting the total number of129

trajectories. The Ntraj initial conditions in our experiments are chosen by perturbing130

1We will consider systems of conservation laws in our numerical experiments.

3

This manuscript is for review purposes only.



the true initial conditions of the PDE. The time step between two consecutive time131

instances is given by132

∆t = tl+1 − tl, l = 1, . . . L− 1,133

and for simplicity we assume ∆t is constant so that tl = l∆t. Our (temporal) training134

domain is therefore given by135

(2.5) Dtrain = [0, tL] = [0, L∆t].136

We note that in this investigation we are interested in model prediction after time tL.137

Our framework may also be used for learning some previous behavior, for instance at138

time (n+ η)∆t, n < L and η ∈ (0, 1). This would be especially useful for cases when139

the time difference ∆t is very large.140

2.2. Flow map-based dynamics learning. We now briefly review flow map-141

based deep learning of system dynamics for ordinary differential equations (ODEs)142

first proposed in [34], which will serve as a starting point for our flux learning tech-143

nique. To this end, we consider the dynamical system given by144

(2.6)
du

dt
= g(u), u ∈ RN ,145

where u = u(xj , t) and g(u) = −∂f∂x (u(x, t))|x=xj
, j = 0, . . . , N . The fundamental146

distinction between the problem formulation in [34] and the problem in this inves-147

tigation is that here we are considering a conservation law PDE model instead of a148

nonlinear system of ODEs. In either case, although we can observe snapshots of the149

solution u, the flux function f in (2.1) and correspondingly g in (2.6) are unknown.150

The flow map of (2.6), Φ : RN ×R→ RN , characterizes its dynamics by mapping151

the state variable at current time t = 0 into a future state after some time ∆t so152

that u(∆t) = Φ(u(0),∆t). The main idea in [34] is to use a deep neural network to153

approximate the unknown flow map Φ from the observation data.154

The flow map-based dynamics deep learning approach begins by regrouping the155

observed data in (2.4) into pairs of adjacent time instances,156

(2.7) {u(m)(0),u(m)(∆t)}, m = 1, . . . ,M,157

where M is the total number of such data pairs. Then a standard fully connected158

feed-forward deep neural network whose input and output layers both have N neurons159

is constructed. Specifically, we let N : RN → RN be the associated mapping operator160

and define the residual network (ResNet) mapping as (see [17])161

(2.8) yout = [I +N ]
(
yin
)
,162

where I : RN → RN is the identity operator. Using the data set in (2.4) and setting163

yin ← u(m)(0) and yout ← u(m)(∆t), we obtain a network model164

(2.9) u
(m)
NN (∆t; Θ) = u(m)(0) +N (u(m)(0); Θ).165

The network operator N can be trained by minimizing the mean square loss function,166

(2.10) L(Θ) =
1

M

M∑
m=1

‖u(m)
NN (∆t; Θ)− u(m)(∆t)‖22,167

4

This manuscript is for review purposes only.



where Θ denotes the network parameter set. Once the network is satisfactorily trained168

we can obtain a predictive model for any arbitrarily given initial condition u(t0).169

Network structure variations and network theoretical properties can be found in [34].170

In [33], the flow-map based learning was extended to include variable time stepping171

as well as other system parameters. Systems with missing variables were discussed in172

[12].173

2.3. Learning PDE dynamics. To provide more general context for our new174

method, we briefly describe how the flow-map idea used for ODEs in subsection 2.2175

can be extended to learn PDE dynamics, [8, 44], although we do not use this approach176

directly in our current investigation. In particular, our construction of the predictive177

model in (3.7) is equivalent to using the method of lines and then learning the flow-178

map of the discretized PDE dynamics. Importantly, this occurs after we learn the179

numerical flux, which is the central idea to our method.180

The focus in [8] was on general deep neural networks (DNN), resulting in the181

development of a network structure for modeling non-specific types of unknown PDEs.182

The network structure is based on a user specified numerical PDE solver and consists183

of a set of multiple disassembly layers and one assembly layer2 used to model the184

hidden spatial differential operators in the unknown PDE. The DNN model used in185

[8] defines the mapping186

(2.11) uNN (∆t) = u(0) +A(F1(u(0)), . . . ,FJ(u(0)),187

where F1, . . . ,FJ are the NN operators for the disassembly layers and A is the NN188

operator for the assembly layer. The mapping in (2.11) can be viewed as an applica-189

tion of ResNet (2.8) with N = A ◦ (F1, . . . ,FJ). The same training process and loss190

function (2.10) for ResNet (2.8) can then also be applied to (2.11). After satisfac-191

tory training, given any new initial condition, predictions can be made by iteratively192

applying (2.11).193

Remark 2.1. The method in [8], which directly applies (2.11), also seeks to learn194

PDE dynamics from data. A primary motivation for the method given there is to be195

able to consider environments where data are collected on structure-free grids. It is196

not guaranteed to capture the correct shock propagation speed for systems governed197

by conservation laws, however. Moreover, the assembly and disassmebly layers in198

(2.11) require a considerable amount of hand-tuning. This investigation, by contrast,199

is interested in learning the dynamics of hyperbolic conservation laws by incorporating200

the form (2.2) directly into the neural network. We also assume a structured grid201

of data, allowing the use of standard neural network structures (fully connected feed-202

forward networks).203

3. Constructing the network. Given trajectory data in (2.4), we now seek204

to construct a neural network N that learns the evolution of the underlying system.205

More precisely, we want N to learn to predict the state value u(tl+1) from the current206

state value u(tl). In Section 3.2 we describe our approach for designing the network207

N for a system that is known to be conservative but for which the flux is unknown.208

The more traditional approach for constructing a network without considering its209

conservation properties is first reviewed in Section 3.1.210

2We make use of the terms assembly and disassembly layers from [8] to help visualize the network
architecture, and note that they are fully-connected.

5

This manuscript is for review purposes only.



3.1. Standard (non-conservative) form network (nCFN). A standard ap-211

proach is to use a deep neural network G to approximate f(u(x, t))x in (2.1) directly212

for each cell average ūj(t
n) as213

(3.1) G(unj−p, . . . , u
n
j , . . . , u

n
j+q) ≈ f(ūj(t

n))x214

where unj = ūj(tn), p ≥ 0, q ≥ 0, and then solve the ODE given by215

(3.2)
d

dt
uj + G(unj−p, . . . , uj , . . . , uj+q) = 0,216

with some pre-determined time integration technique. Importantly, (3.1), which we217

will refer to as the non-conservative form network (nCFN), does not account for con-218

servation in its design. As will be demonstrated in Section 5, the nCFN is not able219

to capture the dynamics of the solution u(x, t) for t that extends beyond the train-220

ing domain, given by Dtrain in (2.5). In particular using the nCFN may result in a221

numerical solution that yields the wrong shock speed.222

A typical approach to embed the conservation property into the network model is223

to add a regularization term to the loss function [11, 15, 36]. Denoting the magnitude224

of the conserved quantity remainder in the system as C(u), which we will derive in225

discrete form in Section 4.3, the regularization term can be constructed as226

(3.3) R(Θ) =

L∑
l=1

C(uNN (tl; Θ))2.227

Here Θ denotes the network parameter set. In this way, the regularization term R(Θ)228

penalizes the remainder of each conserved quantity in the network prediction. We will229

refer to the approach of regularizing the nCFN with the loss function (3.3) as nCFN-230

reg. Our numerical examples will demonstrate that the solutions resulting from a231

non-conservative neural network are still unsatisfactory even when incorporating the232

regularization term, especially in long-term prediction.233

3.2. Conservative form network (CFN). Motivated by classical results in234

numerical conservation laws, we propose a flux form network that seeks to preserve235

the conservation property. Specifically, we seek to update the cell average ūj(tn) using236

the flux differences at the cell edges as237

(3.4)
d

dt
ūj +

1

∆x

(
fj+1/2 − fj−1/2

)
= 0,238

where fj+1/2 denotes the flux at the cell edge x = xj+1/2. To approximate fj+1/2 we239

define the neural flux as240

(3.5) fNNj+1/2 = F(ūnj−p, . . . , ūj , . . . , ūj+q),241

where F is a fully connected feed-forward neural network operator and the inputs242

ūnj−p, . . . , ūj , . . . , ūj+q are neighboring cell averages centered at x = xj−p, ..., xj+q, re-243

spectively. For ease of presentation we denote the right hand side of (3.5) as Fp,q(ūj).244

Our implementation is also simplified by using a symmetric stencil around xj−1/2,245

so that p = q − 1, although this is not required. To distinguish between the non-246

conservative flux forms, nCFN and nCFN-reg, we will refer to the conservative flux247

form network as CFN when discussing our numerical experiments.248

6

This manuscript is for review purposes only.



3.3. Time integration. With the neural flux (3.5) in hand we now write the249

neural net form of (3.4) as250

(3.6)
d

dt
ūj +

1

∆x

(
Fp,q(ūj)−Fp,q(ūj−1)

)
= 0.251

We solve (3.6) as well as the non-conservative system in (3.2) using the method-of-lines252

approach. In our examples we will use the total variation diminishing Runge-Kutta253

(TVD-RK3) method, [14], which for the generic system of ODEs in (2.6) is given by254

u(1) = un + ∆tF(un),255

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tF(u(1)),256

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tF(u(2)),(3.7)257

258

for integration between time steps n and n+ 1. Figure 1 provides a diagram showing259

the evolution of the state variable u for one time step through the conservative neural260

network model.

Fig. 1: Evolution of the state variable u for one time step through neural network
model: State variables are fed into a preprocessing layer to incorporate boundary
conditions. The model then computes neural flux terms for each cell edge. The flux
terms and state variables are fed into the time-integration method.

261

Remark 3.1. To the best of our knowledge there are no theoretical results regard-262

ing the choice of time integration schemes that guarantee stability for numerical PDEs263

using neural networks. Thus, due to its theoretical stability guarantees for numerical264

conservation laws when using traditional solvers, we choose the TVD-RK3 method.265

Other time integration techniques may also be appropriate, and in some cases reduce266

computational cost or improve numerical accuracy.267

3.4. Boundary Conditions. For simplicity we will assume that the bound-268

ary conditions in (2.1) are known. In particular, to satisfy the periodic boundary269

conditions in Example 5.1 we simply apply270

(3.8) ū0 = ūN , ūN+1 = ū1.271

7

This manuscript is for review purposes only.



No flux boundary conditions are assumed in Examples 5.3 and 5.4. Since the solu-272

tion profiles near the boundaries remain constant over time, we simply impose the273

boundary conditions for each variable in both examples as274

(3.9) ū0 = ū1, ūN+1 = ūN .275

Higher order numerical boundary conditions can similarly be employed.276

3.5. The Recurrent Loss Function. Given trajectory data in (2.4), where277

each trajectory has multiple measurements, we define the recurrent loss function as278

(3.10) LRNN (Θ) =
1

Ntraj

1

L

Ntraj∑
k=1

L∑
l=1

‖u(k)
NN (tl; Θ)− u(k)(tl)‖22,279

where280

(3.11) u
(k)
NN (tl; Θ) = N ◦ · · · ◦ N︸ ︷︷ ︸

l times

(u(k)(t0)).281

As already discussed, the network evolution operator N is designed to predict the282

state value u(tl+1) from the current state value u(tl), where Θ again denotes network283

parameter set. In contrast to (2.10), the recurrent loss function (3.10) calculates loss284

over multiple time steps. Using the recurrent loss approach has been found to improve285

numerical stability [8]. As mentioned in Section 3.1, one can embed the conservation286

property into the network by adding a regularization term in the loss function,287

(3.12) LλRNN (Θ) = LRNN (Θ) + λ2R(Θ),288

where R is defined in (3.3). Following ML conventional notation we use λ2 to denote289

the weighting parameter for the regularization term.290

4. Experiment design. Our results presented in Section 5 will demonstrate291

that for the classical one-dimensional conservation laws, [24] studied in this investi-292

gation, using the CFN, for which the network learns to approximate the numerical293

flux function of the unknown conservation law via (3.5) from observation data, yields294

significantly better results than those obtained using either the nCFN in (3.1) or the295

nCFN regularized by the loss function, nCFN-reg. Below we provide the framework296

necessary to ensure the robustness and reliability of our experimental results. To this297

end we consider details related both to data collection and training.298

4.1. Data Collection. To test our method we will consider examples of con-299

servation laws for which the fluxes are known.3 We will use this information both300

to generate synthetic training data with which to train the DNN for the evolution301

process as well as to compute reference solutions to evaluate our results. Importantly302

we note that knowledge of the true system does not in any way facilitate the DNN303

model approximation.304

Our test problems range from idealistic, where we assume we have noise-free305

densely observed data for training and validation, to more difficult situations, where306

we consider two cases: (1) the observable data are accurate (noiseless) but sparsely ob-307

served and (2) the observable data are noisy but densely observed. To mimic observed308

3Indeed in some of our examples the true solution is also known. However, since we randomly
generate the initial conditions to obtain a set of Ntraj snapshots, we will simply consider the “exact”
(reference) solution to be the highly resolved numerical result.

8

This manuscript is for review purposes only.



data in (2.4) that would be available for training and validation, we numerically simu-309

late the true underlying PDE model according to the observational settings provided310

in the particular case study for our examples.4 We furthermore randomly sample the311

parameters in the initial conditions to obtain various trajectories of the observed data312

(see e.g. (5.3)). The number of trajectories Ntraj and the trajectory length L vary313

depending on the underlying properties of the PDE (e.g. time to shock formation).314

4.2. Network and Training Details. As shown in Figure 1, the CFN consists315

of the preprocessing layer, which ensures that the boundary conditions are satisfied,316

and the neural flux operator, which computes the flux at cell edges. The neural317

flux operator is constructed using a fully connected feedforward neural network and318

is obtained by training the network hyperparameters (weights and biases) as the319

minimum of the recurrent loss function (3.10). We employ the stochastic optimization320

method Adam [22] for this purpose. The nCFN and nCFN-reg utilize the same321

preprocessing layer for the boundary conditions and each employs one fully connected322

feedforward network to learn the increment of the state variables. For consistency323

all models are trained for 10,000 epochs with learning rate 10−4 in every example.324

The same set of network structures is also employed. Finally, we use the commonly325

chosen Rectified Linear Unit (ReLU) [23] as the activation function. These network326

and training details are summarized in Table 1.

model (p,q) hidden layers hidden nodes activations
CFN (2,3) 5 64 ReLU
nCFN (3,3) 5 64 ReLU
nCFN-reg (3,3) 5 64 ReLU

Table 1: Neural network architecture details for all examples. Note that for each
model p and q are chosen to provide symmetry (p = q − 1 for CFN and p = q for
nCFN), although this is not a requirement.

327

It is also possible to tune the regularization parameter λ2 for the nCFN-reg loss328

function in (3.12). Indeed, one can choose λ2 = λ2(t), so that the influence of the329

regularization can fluctuate as the PDE evolves. This would add considerable com-330

putational cost, however, and moreover, it is not readily apparent that employing331

standard approaches, such as the L−curve method or the discrepancy principle, [16],332

are appropriate here. For simplicity, here we let λ2i = 102(1−i), i = 1, . . . , 4, and then333

choose λ2 to be the λ2i corresponding to the smallest loss value in (3.12) on a separate334

validation dataset after training is completed. In general we found that in Examples335

5.1 and 5.3 that λ2 = 10−2 (i = 2) yielded the best results. Example 5.4 (the Euler336

equations for gas dynamics) was considerably more sensitive to the choice of λ2, likely337

due to the oscillatory nature of the solution. In this case we refined our search to338

include λ25 = 5 × 10−2. We therefore see that as an added advantage our new CFN339

approach does not require extensive regularization parameter tuning.340

We emphasize that while our numerical experiments indicate that these parameter341

choices provide enough network complexity for each required learning task, we did not342

further try to optimize performance. Moreover, as we want to ensure the robustness of343

our method, in our experiments we typically follow the common practice for learning344

4Unless otherwise noted we use the CLAWPACK conservation laws package, [10].

9

This manuscript is for review purposes only.



system dynamics [34, 32, 33, 44] and use the default values in Tensorflow [1] or other345

standard choices for all hyperparameters.346

4.3. Constructing the Regularization Term. The regularization term (3.3)347

is designed to promote conservation in the nCFN-reg method. Below we show how348

this term is constructed for the scalar case. A straightforward extension can be made349

for systems.350

We first expand (2.2) to the physical domain of the problem, (a, b), yielding351

(4.1)∫ b

a

u(x, tl+1)dx−
∫ b

a

u(x, tl)dx =

∫ tl+1

tl

f(u(a, t))dt−
∫ tl+1

tl

f(u(b, t))dt, l = 0, . . . , L,352

where each tl denotes the time at which a data trajectory in (2.4) is initially obtained.353

Example 5.1 considers the inviscid Burgers equation with periodic boundary con-354

ditions. In this case (4.1) simplifies to355

(4.2)

∫ b

a

u(x, tl)dx =

∫ b

a

u(x, t0)dx, l = 0, . . . , L.356

For equations with non-periodic boundary conditions, (4.2) does not hold since in357

general f(u(a, t)) 6= f(u(b, t)). Hence to construct (3.3) we first define358

F (l)
a =

1

∆t

∫ tl+1

tl

f(u(a, t))dt, F
(l)
b =

1

∆t

∫ tl+1

tl

f(u(b, t))dt, l = 0, . . . , L− 1,

(4.3)

359

360

and then use (4.3) to approximate (4.1) as361

(4.4)

N∑
j=1

ūj(tl+1)∆x−
N∑
j=1

ūj(tl)∆x = F (l)
a ∆t− F (l)

b ∆t, l = 0, . . . L− 1,362

which leads to363

(4.5)

N∑
j=1

(ūj(tl)− ūj(t0)) ∆x =

l∑
k=1

(
F (k−1)
a − F (k−1)

b

)
∆t, l = 1, . . . , L.364

From here we define the (discrete) conserved quantity remainder at each tl as365

(4.6) C(u(tl)) :=

∣∣∣∣∣∣
N∑
j=1

(ūj(tl)− ūj(t0)) ∆x−
l∑

k=1

(
F (k−1)
a − F (k−1)

b

)
∆t

∣∣∣∣∣∣ ,366

where u(t) = (ū1(t), . . . ūN (t))T . It follows from (4.5) that if the conservation prop-367

erty holds then C(u(tl)) = 0. Regularization in (3.12) is therefore used to promote368

solutions that minimize (4.6). In practice the network prediction of uNN (tl; Θ) is used369

to calculate (4.6), directly yielding R(Θ) in (3.3). We note that we will also be able370

to analyze the conservation properties of each of our numerical methods in Section 5371

by computing (4.6) over the time domain of the solution.372

Remark 4.1. It is important to point out that (4.6) describes a best case scenario,373

where we have access to (4.3). In order to construct the regularization term for the374

nCFN-reg in our experiments, we compute (4.3) directly from the given flux terms375

in each example. This serves to demonstrate that even under ideal circumstances,376

regularizing the standard nCFN to promote conservation in the solution (nCFN-reg)377

is not as effective as constructing a conservative form network in the first place (CFN).378

10

This manuscript is for review purposes only.



5. Numerical Examples. We use three well-studied one-dimensional examples379

of hyperbolic conservation laws to analyze our new conservative form network (CFN)380

approach. We consider three different observational settings for each experiment:381

(i) an ideal case, where the observations are dense and noise-free; (ii) the situation382

where the observations are sparse but noise-free; and (iii) an environment for which383

the observations are dense but noisy. We compare the results of our new CFN ap-384

proach to the more traditional non-conservative form network (nCFN) along with the385

regularized (nCFN-reg) version.386

5.1. Inviscid Burgers Equation. Due to its simple formulation, the inviscid387

Burgers equation is often used to test the efficacy of numerical methods for non-linear388

conservation laws. Here we demonstrate our method for two cases; In subsection 5.1.1389

a single shock is formed from smooth initial conditions while in subsection 5.1.2 the390

initial condition contains two discontinuities that subsequently collide and interact.391

5.1.1. Single Shock Formation.392

Example 5.1. The inviscid Burgers equation is given by393

(5.1) ut + (
u2

2
)x = 0, x ∈ (0, 2π), t > 0,394

with periodic boundary conditions u(0, t) = u(2π, t). The initial condition are given395

by396

u(x, 0) = α+ β sin(x),397

α ∼ U [−εs, εs],398

β ∼ U [1− εs, 1 + εs],(5.2)399

where εs = 0.25.400

The Ntraj training data sets are generated by solving (5.1) using the Engquist–Osher401

flux along with TVD-RK3 time integration based on the initial conditions402

u(k)(x, 0) = α(k) + β(k) sin(x),403

α(k) ∼ U [−εs, εs],404

β(k) ∼ U [1− εs, 1 + εs](5.3)405

for k = 1, . . . , Ntraj with εs = 0.25.406

In all of our experiments we set Ntraj = 200. Each training trajectory has length407

L = 20 for either choice of recurrent loss function, (3.10) or (3.12).408

To check the robustness of our predictions for Example 5.1, we run our experiments409

for 50 choices of fixed α and β and compare the three methods, CFN, nCFN, and410

nCFN-reg. Our reference solution is calculated using the Engquist-Osher flux term on411

a fine grid, with ∆x = 2π
1024 in (3.6). All figures use the initial value with α = 0.06342412

and β = 1.17322 for illustration. Other choices for α and β yield comparable results.413

Case I: Dense and noise-free observations. We first consider an idealized414

environment for which the observations are dense and noise-free. Specifically we415

choose N = 512, yielding ∆x = 2π
512 , so that our solution is well-resolved. We also416

choose a constant time step ∆t for all experiments so as not to complicate our analysis.417

In this regard we observe that the maximum wave speed for Burgers equation, |u(x, t)|,418

can be determined for all t using (5.3) as max{|u|} = 1 + 2εs. We therefore set419

∆t = 0.005 to satisfy the CFL condition with #CFL = 0.9.420

11

This manuscript is for review purposes only.



We note that the training time domain [0, L∆t] with L = 20 contains only smooth421

solution snapshots. Since each DNN model requires the training data to include both422

smooth and discontinuous solution profiles to learn the long term dynamics of Example423

5.1, a larger trajectory length L is needed. As choosing a larger L would significantly424

increase computational costs we employ a sub-sampling technique to generate training425

data from observed snapshots of the solution onto an extended domain. The same426

sub-sampling technique is used for Examples 5.2 and 5.4. The details are provided427

below.428

We define a new parameter M > L as the extended length of each trajectory. The429

snapshots of the solution, (2.4), are obtained for each of the Ntraj trajectories at times430

t = m∆t, m = 1, . . . ,M . In our experiments we choose M = 300 which yields the total431

training time domain as [0, 1.5]. We then sub-sample each of the k = 1, . . . , Ntraj by432

randomly selecting a start time value, t
(k)
0 , from the set {µ∆t}M−L

µ=0 . Each sub-sampled433

trajectory of length L is then built consecutively from the snapshot solutions. That434

is, each trajectory is comprised of the solutions in (2.4) at sequential times t
(k)
0 + l∆t,435

l = 1, . . . , L. In this way we can train over a longer period of time without increasing436

the expense of network training. This approach, of course, requires that more initial437

observations are available.438

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(a) t = 0.75

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(b) t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(c) t = 2.25

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(d) t = 3

Fig. 2: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different times for dense (N = 512) and noise-free observations.

0.0 0.5 1.0 1.5 2.0 2.5
time

10−6

10−4

10−2

CFN
nCFN
nCFNreg

Fig. 3: Discrete conserved quantity remainder C(u) in (4.6) of the network predictions
for Example 5.1. Graph is in semi-log scale for visibility.

Figure 2 presents the solution to Example 5.1 for this ideal case at four differ-439

ent times, within and beyond training time domain [0, 1.5]. Observe that the three440

methods capture the solution profiles and predict the correct shock propagation speed441

within the training domain (shown for t = 0.75 and t = 1.5). The nCFN and nCFN-442

reg results are less accurate, and do not appear to be completely resolved. Beyond443

the training domain (t > 1.5), only the CFN and nCFN-reg methods yield the correct444

shock propagation speed (Figure 2c, Figure 2d). The nCFN-reg solution develops a445

12

This manuscript is for review purposes only.



non-physical overshoot near the shock location. This behavior is further observed in446

Figure 3, where the conserved quantity remainder C(u) obtained by (4.6) is displayed447

for each method. Clearly the CFN produces the only conservative method.448

Remark 5.1. We also compared our results to those obtained using the method449

in [8] which has a global design and beyond the fully-connected layers also contains450

additional disassembly and assembly layers. This structure inherently means that the451

method has significantly more parameters to tune and also requires more training when452

compared to our CFN approach, which has a local flux structure. In particular the set453

of training data provided in all of our case studies, including the idealized environment,454

leads to overfitting in the training process and fails to yield conservation. Additional455

training data will lead to more comparable results, although there is no guarantee that456

they will ultimately yield the correct shock speed of propagation. The solution may457

furthermore exhibit non-physical oscillations near the shock.5458

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFNreg
reference

(a) N = 32, t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFNreg
reference

(b) N = 32, t = 3

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(c) N = 128, t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(d) N = 128, t = 3

Fig. 4: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different sparsity levels using noise-free observations.

Case II: Sparse and noise-free observations. In this case the training data459

are obtained by solving Example 5.1 on a coarse grid. Specifically, for ∆x = 2π
N460

we choose N = 32, 128. Once again we fix the time step as ∆t = 0.005. Figure 4461

compares the results using the CFN, nCFN and nCFN-reg for different sparsity levels462

at times in (t = 1.5) and out of (t = 3) the training time domain. Both time463

instances are after the shock forms. Observe that for each choice of N only the CFN464

captures the correct shock propagation speed. Figure 5 displays the pointwise error465

at different sparsity levels for each method when t = 3. It is apparent that the466

width of the interval containing the error resulting from shock shrinks (as expected)467

with increased resolution for all three methods. However, neither the nCFN nor the468

nCFN-reg demonstrate convergence.469

Case III: Dense and noisy observations. In this testing environment the470

observations in (2.4) now contain noise and are given by471

(5.4) ũ(k)(tl) = u(k)(tl) + ε
(k)
l , l = 1, . . . , L, k = 1, . . . , Ntraj .472

Here ε
(k)
l is i.i.d. Gaussian with zero mean and variance σ2. We test various σ values473

scaled from the absolute value mean of the solution, |u|,474

(5.5) σ = a|u|, a ≥ 0475

5We note that a primary motivation in [8] is to learn the dynamics of generic PDEs on unstruc-
tured grids, while the data in our examples are collected on structured grids.

13

This manuscript is for review purposes only.



0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

N=512
N=128
N=64
N=32
N=16

(a) nCFN

0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

N=512
N=128
N=64
N=32
N=16

(b) nCFN-reg

0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

N=512
N=128
N=64
N=32
N=16

(c) CFN

Fig. 5: Log-scale absolute error of the trained DNN model predictions to Example 5.1
at different sparsity levels when t = 3. No observation error.

where the mean u is taken over the spatiotemporal domain. We consider noise levels476

of 100% , 50%, 20% and 10%, that correspond to α = 1, 0.5, 0.2, and 0.1 respectively.477

0 1 2 3 4 5 6
x

−1.5

−1.0

−0.5

0.0

0.5

1.0 CFN
nCFN
nCFN-reg
reference

(a) 100% noise

0 1 2 3 4 5 6
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

CFN
nCFN
nCFN-reg
reference

(b) 50% noise

0 1 2 3 4 5 6
x

−1.5

−1.0

−0.5

0.0

0.5

1.0 CFN
nCFN
nCFN-reg
reference

(c) 20% noise

0 1 2 3 4 5 6
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

CFN
nCFN
nCFN-reg
reference

(d) 10% noise

Fig. 6: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different noise levels using dense (N = 512) observations when
t = 3.

478

0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

no noise
10% noise
20% noise
50% noise
100% noise

(a) nCFN

0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

no noise
10% noise
20% noise
50% noise
100% noise

(b) nCFN-reg

0 1 2 3 4 5 6
x

10−6

10−4

10−2

100

no noise
10% noise
20% noise
50% noise
100% noise

(c) CFN

Fig. 7: Log-scale absolute error of the trained DNN model predictions to Example 5.1
using different noise levels using dense (N = 512) observations when t = 3.

The solution to Example 5.1 is presented in Figure 6 at time t = 3 after the shock479

forms. Learning the underlying dynamics is challenging when the observations are480

noisy since the non-physical oscillatory behavior caused by the noise can influence481

the training process (overfitting). Indeed Figure 6a demonstrates that none of the482

solutions corresponding to any of the three training networks can capture the shock483

in high noise environments. However, the CFN method is the only network that484

captures the rough profile of the underlying solution. In contrast, solutions resulting485

from both nCFN and nCFN-reg deviate significantly from the reference solution.486

While all methods improve as the amount of noise decreases, CFN and nCFN-reg487

14

This manuscript is for review purposes only.



yield overall better results. In Figure 6c and Figure 6d, we observe that CFN and488

nCFN-reg capture the correct shock propagation speed (with some magnitude error).489

Figure 7 displays the pointwise errors for each of the methods at time t = 3, which are490

consistent to what is observed in Figure 2d. That is, even in the “ideal” case, neither491

the nCFN nor the nCFN-reg can be adequately resolved. Adding small amount of492

noise which is comparable to the error already incurred therefore does not affect the493

results. For the same reason, small amounts of noise can reduce the accuracy in the494

CFN case (since it is larger than the error produced for Case I). As noise is increased,495

the results for the nCFN and nCFN-reg method become meaningless – O(1) in much496

of the domain. The largest interval width of error surrounding the discontinuity is497

again seen in the nCFN case, which concurs with the results shown in Figure 6.498

Figures comparing the discrete conserved quantity remainder, (4.6), of each method499

are omitted for Cases II and III since the methods all generate the same general500

behavior pattern as what is shown for Case I in Figure 3.501

5.1.2. Multiple Shock Interaction.502

Example 5.2. We again consider the inviscid Burgers equation in (5.1) with pe-503

riodic boundary conditions. Here our initial conditions are given by504

u(x, 0) =


0.8, x ∈ [0, 2.5) ∪ [4.5, 2π],

−0.1 x ∈ [2.5, 3.5),

−0.7 x ∈ [3.5, 4.5).

(5.6)505

Observe that in contrast to the solution for Example 5.1 in which a smooth initial con-506

dition later forms a shock, here the initial shocks will eventually collide and interact,507

with the solution forming a rarefaction wave.508

As was done in Example 5.1, we generate Ntraj = 200 training data sets by509

numerically solving (5.1) with CLAWPACK using the Engquist-Osher flux with N =510

1024 so that ∆x = 2π
1024 , along with TVD-RK3 time integration and ∆t = .005 chosen511

to satisfy the CFL condition.512

For this example the initial conditions used for training are given by513

u(k)(x, 0) =

{
u
(k)
1 , x ∈ [min{y(k)1 , y

(k)
2 },max{y(k)1 , y

(k)
2 }],

u
(k)
2 , else,

(5.7)514

where y
(k)
1 , y

(k)
2 ∼ U [0, 2π], u

(k)
1 , u

(k)
2 ∼ U [−1, 1] for k = k1, . . . , Ntraj . The form515

of (5.7) represents what might be included in the space of initial conditions, but516

importantly does not consider any future information regarding how the solution517

evolves.518

As in Example 5.1, we again employ sub-sampling to generate training data from519

the observed snapshots of the solution on an extended domain, with the same length520

for extended trajectory M = 300. The sub-sampling is necessary since otherwise521

the short trajectories used for training do not contain enough information to capture522

the solution containing rarefaction waves occurring in the extended time domain (see523

Figure 8).524

Case I: Dense and noise-free observations. We first consider an idealized525

environment for which the observations are dense and noise-free. Specifically we526

choose N = 512, yielding ∆x = 2π
512 , so that our solution is well-resolved.527

Figure 8 displays the solution for this ideal case at four different times, illustrat-528

ing the collision of two shocks and the propagation of a rarefaction wave. While all529

15

This manuscript is for review purposes only.



0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(a) t = 0.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0

CFN
nCFN
nCFN-reg
reference

(b) t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(c) t = 2.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(d) t = 3.5

Fig. 8: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different times for dense (N = 512) and noise-free observations.

0 1 2 3 4
time

10−6

10−4

10−2

CFN
nCFN
nCFNreg

Fig. 9: Discrete conserved quantity remainder C(u) in (4.6) of the network predictions
for Example 5.2. Graph is in semi-log scale for visibility.

approaches are able to capture the general solution dynamics, only the CFN con-530

sistently predicts the correct shock speed both before and after the collision occurs.531

Moreover, non-physical overshoots are observed in the nCFN-reg solution near the532

shock location. Figure 9 shows the discreted conserved quantity remainder C(u) in533

(4.6), demonstrating that the CFN is the only method maintaining conservation.534

0 1 2 3 4 5
time

10−3

10−2

10−1

CFN
nCFN
nCFN-reg

(a) (6,5,64)

0 1 2 3 4 5
time

10−3

10−2

10−1

CFN
nCFN
nCFN-reg

(b) (10,5,64)

0 1 2 3 4 5
time

10−3

10−2

10−1

CFN
nCFN
nCFN-reg

(c) (6,2,128)

0 1 2 3 4 5
time

10−3

10−2

10−1

CFN
nCFN
nCFN-reg

(d) (6,10,32)

Fig. 10: Relative l2 error of the CFN, nCFN and nCFN-reg predictions using different
hyperparameters. The hyperparameters are written in the sub-captions as (input
stencil size, hidden layer number, hidden node number).

Figure 10 compares the robustness for the CFN with respect to various network535

parameters, such as the number of hidden layers, hidden nodes, and input stencil size536

p + q (p, q as in equation (3.1)), to the nCFN and nCFN-reg. The relative l2 error537

for each model prediction demonstrate that while the overall performance does not538

appear to be strongly influenced by the choice of hyperparameters, the CFN approach539

consistently achieves better accuracy.540

Case II: Sparse and noise-free observations. As was done for Example 5.1,541

we choose N = 32, 128 to simulate the sparse observation case with fixed time step542

16

This manuscript is for review purposes only.



∆t = 0.005. Figure 11 compares the results using CFN, nCFN and nCFN-reg for543

different sparsity levels at time before (t = 1.5) and after (t = 3.5) shock collision.544

We observe that the lack of resolution (N = 32) similarly affects each method, with545

little difference in the solutions once the data are sufficiently resolved (N = 128). The546

results seen here seem to suggest that some overfitting occurs in Case I (N = 512) in547

both the nCFN and nCFN-reg solutions.548

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(a) N = 32, t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(b) N = 32, t = 3.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0

CFN
nCFN
nCFN-reg
reference

(c) N = 128, t = 1.5

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(d) N = 128, t = 3.5

Fig. 11: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different sparsity levels using noise-free observations.

549

Case III: Dense and noisy observations. We now consider the case where the550

observations are given by (5.4) with noise levels given by 100% , 50%, 20% and 10%551

respectively corresponding to α = 1, 0.5, 0.2, and 0.1 in (5.5). As shown in Figure 12,552

none of the methods are able to predict the correct solution in the noisiest case. The553

situation dramatically improves as the noise level decreases to 50%. Although some554

error is apparent, the CFN consistently captures the correct shock speed and appears555

to have the best overall accuracy.556

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0

CFN
nCFN
nCFN-reg
reference

(a) 100% noise

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(b) 50% noise

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(c) 20% noise

0 1 2 3 4 5 6
x

−1.0

−0.5

0.0

0.5

1.0
CFN
nCFN
nCFN-reg
reference

(d) 10% noise

Fig. 12: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different noise levels for N = 512 observations at time t = 3.5.

Finally, we note that the discrete conserved quantity remainder calculated by557

(4.6) for both Case II and Case III exhibits the same qualitative behavior as seen in558

Figure 9.559

5.2. Shallow water equations. When combined with initial conditions given560

in (5.9), Example 5.3 is known as the dam break problem which over time admits561

both shock and contact discontinuities.562

17

This manuscript is for review purposes only.



Example 5.3. Consider the system of equations563

ht + (vh)x = 0,564

(hv)t + (hv2 +
1

2
gh2)x = 0,(5.8)565

566

for t > 0 and x ∈ (−5, 5). Here we use g = 1. We assume no flux boundary conditions567

and initial conditions given by568

h(x, 0) =

{
hl, if x ≤ x0,
hr, otherwise,

v(x, 0) =

{
vl, if x ≤ x0,
vr, otherwise,

(5.9)569

570

where571

hl ∼ U [2− εhl
, 2 + εhl

], εhl
= 0.2,572

hr ∼ U [1− εhr , 1 + εhr ], εhl
= 0.1,573

vl, vr, x0 ∼ U [−ε, ε], ε = 0.1.574575

Example 5.3 describes the one-dimensional dam break problem in which the initial576

heights of the water, hl and hr, are different on each side of the dam, located at x0577

in our numerical experiments. After the dam breaks, a rarefaction wave forms and578

travels to the left of the dam, while a shock wave starts to propagate on the right.579

The training data are observed at different time intervals up until time t = 0.1 and580

then used to train each of the three networks to predict the long term dynamics.581

The Ntraj = 200 training data sets of length L = 20 are generated by solving582

(5.8) using CLAWPACK (HLLE Riemann Solver) for initial conditions given by583

h(k)(x, 0) =

{
h
(k)
l , if x ≤ x(k)0 ,

h
(k)
r , otherwise,

v(k)(x, 0) =

{
v
(k)
l , if x ≤ x(k)0 ,

v
(k)
r , otherwise,

584

585

where

h
(k)
l ∼ U [2− εhl

, 2 + εhl
], h(k)r ∼ U [1− εhr , 1 + εhr ], v

(k)
l , v(k)r , x

(k)
0 ∼ U [−ε, ε],

with εhl
= 0.2, εhr

= .1, ε = .1 and k = 1, . . . , Ntraj . We obtain a reference so-586

lution using CLAWPACK using N = 1024 so that ∆x = 10
1024 . All figures shown587

for Example 5.3 correspond to (5.9) with hl = 3.5691196, hr = 1.17867352, vl =588

−0.06466697, vr = −0.04519738, x0 = 0.00383271. While some parameter choices589

yield comparable solutions for each method, the CFN consistently outperforms the590

other techniques.591

Case I: Dense and noise-free observations. In the ideal environment we set592

N = 512 so that ∆x = 10
512 . We numerically impose the no flux boundary conditions593

using (3.9). CLAWPACK is employed to simulate solutions up to time t = .1 with data594

collections at time instances tl = l∆t for l = 1, . . . , 20. The time step ∆t = 5× 10−3595

is chosen to satisfy ∆t ≤ min{∆tCLAW }, where CLAWPACK determines ∆tCLAW596

to guarantee stability for the solution in the given time domain.597

Figure 13 compares the numerical solutions at time t = 0.5 and t = 1, both of598

which extend past the training time. While all methods capture the main features of599

the solution at t = 0.5, it is evident that the CFN yields the most accurate results.600

The errors in both the nCFN and nCFN-reg solutions are significantly larger when601

18

This manuscript is for review purposes only.



−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(a) h, t = 0.5

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(b) h, t = 1

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(c) hv, t = 0.5

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(d) hv, t = 1

Fig. 13: Comparison of the references solution to Example 5.3 and the trained DNN
model predictions at different times for dense and noise-free observations.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time

10−5

10−4

10−3

10−2

10−1

CFN
nCFN
nCFN-reg

(a) C(h)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time

10−5

10−4

10−3

10−2

10−1

100

CFN
nCFN
nCFN-reg

(b) C(h� v)

Fig. 14: Discrete conserved quantity remainder given by (4.6) of each method for
Example 5.3. (a) C(h) and (b) C(h� v). Graphs are in semi-log scale for visibility.

t = 1, and the rarefaction wave structure is not discernible in the nCFN case. We602

determine the conservation of each method by calculating (4.6) for h and h�v, where603

� denotes elementwise multiplication, and show the results in Figure 14. As in the604

case for Burgers equation, only the CFN method is conservative.605

As we did for Example 5.2 Case I, we again conducted experiments to test the606

robustness of the CFN method with respect to different network parameters. We607

obtained similar results as displayed in Figure 10, demonstrating both the robustness608

of our method as well as better performance when compared to both the nCFN and609

nCFN-reg.610

Case II: Sparse and noise-free observations. To simulate this environment611

we use CLAWPACK to solve Example 5.3 on coarser grids, respectively N = 64 and612

N = 128, to obtain the training data collected at tl = l∆t, l = 1, . . . , L, where L = 20.613

For consistency we again choose ∆t = 0.005 so that the training trajectory final time614

is t = 0.1.615

Figure 15 compares the solutions using CFN, nCFN and nCFN-reg with the616

reference solution (again defined as the CLAWPACK solution with N = 1024) at time617

t = 1. For N = 64 it is apparent that none of the methods are able to accurately learn618

the system dynamics, and large fluctuations are particularly noticeable in the region619

between the rarefaction and shock wave. For N = 128 we observe improvement for620

all models. The CFN clearly yields the most accurate results, and is the only method621

able to capture the structure of the rarefaction wave. This is not surprising since we622

already observed in Figure 13 that N = 512 did not provide enough resolution, even623

for the nCFN-reg case. Thus we see the importance of training the network using the624

flux form.625

19

This manuscript is for review purposes only.



−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(a) h,N = 64

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(b) h,N = 128

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(c) hv,N = 64

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(d) hv,N = 128

Fig. 15: Comparison of the reference solutions to Example 5.3 and the trained DNN
model predictions using noise free observations at time t = 1 for N = 64 and 128.

Case III: Dense and noisy observations. In this case the training data are626

given by627

h̃(k)(tl) = h(k)(tl) + ε
(k)
l ,628

˜(h(k) � v(k))(tl) = (h(k) � v(k))(tl) + η
(k)
l ,(5.10)629

for l = 1, . . . , L and k = 1, . . . , Ntraj . The added noise ε
(k)
l and η

(k)
l are i.i.d. Gaussian630

with zero mean and variance determined using various noise values based on the mean631

of u (5.5). We again consider noise levels corresponding to 100%, 50%, 20%, and 10%.632

The solution profiles for height and momentum in Example 5.3 obtained using633

the different network constructions are shown in Figure 16. It is apparent that all634

three methods yield significant diffusion in high noise environments. It is noteworthy635

that when the amount of noise is at 20%, both the nCFN and nCFN-reg methods636

produce solutions that seem to increase (rather than diffuse) energy, suggesting that637

these methods are learning noise-related dynamics. In this regard, the CFN method638

appears to be the most robust, meaning that along with the overall improved quality of639

the solution with decreasing amounts of noise, the solution itself behaves consistently640

as a function of the noise level, with less diffusion apparent as the amount of noise641

decreases.642

We again omit figures comparing the discrete conserved quantity remainder, (4.6),643

of each method for Cases II and III since the methods all generate the same general644

behavior pattern as what is shown for Case I in Figure 14.645

5.3. Euler equation. As a final example we consider the Euler equations for646

gas dynamics, specifically the Shu-Osher problem [41]. The problem is challenging647

since the resulting shock wave impacts a sinusoidally-varying density field yielding648

more complex structures than apparent in Examples 5.1 and 5.3.649

Example 5.4. Consider the system of equations for t > 0 given by650

ρt + (ρu)x = 0,651

(ρu)t + (ρu2 + p)x = 0,652

Et + (u(E + p))x = 0,(5.11)653654

in the domain (−5, 5). We assume no flux boundary conditions and initial conditions655

20

This manuscript is for review purposes only.



−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(a) 100% noise

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(b) 50% noise

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(c) 20% noise

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5 CFN
nCFN
nCFN-reg
reference

(d) 10% noise

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(e) 100% noise

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(f) 50% noise

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(g) 20% noise

−4 −2 0 2 4
x

0.0

0.5

1.0

1.5

2.0 CFN
nCFN
nCFN-reg
reference

(h) 10% noise

Fig. 16: Comparison of the reference solution for height h (top) and momentum hv
(bottom) in Example 5.3 and the trained DNN model predictions at t = 1 for dense
(N = 512) and noisy observations.

given by6656

ρ(x, 0) =


ρl, if x ≤ x0,
1 + ε sin(5x), if x0 < x ≤ x1,
1 + ε sin(5x)e−(x−x1)

4

otherwise,

u(x, 0) =

{
ul, if x ≤ x0,
0, otherwise,

657

p(x, 0) =

{
pl, if x ≤ x0,
pr, otherwise,

E(x, 0) =
p0

γ − 1
+

1

2
ρ(x, 0)u(x, 0)2.658

659

The parameters are given by660

ρl ∼ U [ρ̂l(1− ε), ρ̂l(1 + ε)], ρ̂l = 3.857135,661

ε ∼ U [ε̂(1− ε), ε̂(1 + ε)], ε̂ = 0.2,662

pl ∼ U [p̂l(1− ε), p̂l(1 + ε)], p̂l = 10.33333,663

pr ∼ U [p̂r(1− ε), p̂r(1 + ε)], p̂r = 1,664

ul ∼ U [ûl(1− ε), ûl(1 + ε)], ûl = 2.62936,665

x0 ∼ U [x̂0(1− ε), x̂0(1 + ε)], x̂0 = −4,(5.12)666667

with ε = .1, x1 = 3.29867 and γ = 1.4. We note that ρ̂, p̂l, û are the same values as668

those used in the CLAWPACK Shu-Osher example.669

The k = 1, . . . , Ntraj training sets are generated by solving (5.4) using CLAW-670

6The usual Shu-Osher problem does not use ρ(x, 0) = 1 + ε sin(5x)e−(x−x1)
4

for x in the right
part of the domain. We include this term to “flatten” the solution at the boundary so that we can
apply (3.9) without introducing an artificial boundary layer.

21

This manuscript is for review purposes only.



PACK (HLLE Riemann Solver) for initial conditions given by671

ρ(k)(x, 0) =


ρ
(k)
l , if x ≤ x(k)0 ,

1 + ε(k) sin(5x), if x
(k)
0 < x ≤ x1,

1 + ε(k) sin(5x)e−(x−x1)
4

, otherwise,

672

u(k)(x, 0) =

{
u
(k)
l , if x ≤ x(k)0 ,

0, otherwise,
p(k)(x, 0) =

{
p
(k)
l , if x ≤ x(k)0 ,

p
(k)
r , otherwise,

673

E(k)(x, 0) =
p
(k)
0

γ − 1
+

1

2
ρ(k)(x, 0)u(k)(x, 0)2.674

675

The corresponding parameters are given in (5.12) (written without the superscript k)676

and the boundary conditions are imposed using (3.9) in all experiments. The reference677

solution is obtained using CLAWPACK with N = 1024 so that ∆x = 10
1024 .678

To train over a longer period of time without increasing the computational cost we679

once again employ the same sub-sampling technique used in Example 5.1 to generate680

training data from observed snapshots of the solution on an extended domain. As681

before we set M = 300 as the extended length of each trajectory. The snapshots of the682

solution, (2.4), are obtained via CLAWPACK for each of the Ntraj = 300 trajectories683

at times t = m∆t, m = 1, . . . ,M , where ∆t = 0.002 (chosen to satisfy the CFL684

condition). Each sub-sampled trajectory of length L is then built consecutively from685

the snapshot solutions. That is, each trajectory is comprised of the solutions in (2.4)686

at sequential times t
(k)
0 + l∆t, l = 1, . . . , L.687

−4 −2 0 2 4

x
0

1

2

3

4

5 CFN
nCFN
nCFNreg
true

(a) ρ, t = 0.8

−4 −2 0 2 4

x
0

1

2

3

4

5

CFN
nCFN
nCFNreg
true

(b) ρ, t = 1.6

−4 −2 0 2 4

x
0

10

20

30

40

50 CFN
nCFN
nCFNreg
true

(c) E, t = 0.8

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(d) E, t = 1.6

Fig. 17: Comparison of the reference density ρ and energy E solutions to Example 5.4
and the trained DNN model predictions at different times for dense (N = 512) and
noise-free observations.

Case I: Dense and noise-free observations. We first consider an idealized688

environment for which the observations are dense and noise-free. Specifically we689

choose N = 512, yielding ∆x = 10
512 , so that our solution is well-resolved. Figure 17690

shows the solutions ρ and E at times t = 0.8 and t = 1.6, both of which are outside691

of training time domain [0, 0.6]. Observe that as the shock wave interacts with the692

density field, the solution exhibits oscillations to the left side of the shock front. It is693

evident that only the CFN network produces a solution that captures the oscillatory694

features of the solution. By contrast, the nCFN solution exhibits significant errors695

with non-physical oscillations to the right of the shock. It moreover produces the696

wrong shock front location at t = 1.6. The results for nCFN-reg are somewhat697

improved, but still do not accurately capture the dynamics of the system.698

22

This manuscript is for review purposes only.



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
time

10−4

10−3

10−2

10−1

100

CFN
nCFN
nCFN-reg

(a) C(ρ)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
time

10−4

10−3

10−2

10−1

100

101

CFN
nCFN
nCFN-reg

(b) C(E)

Fig. 18: Discrete conserved quantity remainder given in (4.6) of each method for
Example 5.4. (a) C(ρ) and (b) C(E). Graphs are in semi-log scale for visibility.

Figure 18 confirms our observations in Figure 17. Specifically, we see that none699

of the methods are conservative, with the error increasing more rapidly in the nCFN700

and the nCFN-reg cases. The error corresponding to the CFN appears to grow lin-701

early with time, suggesting long term numerical stability when considering classical702

numerical conservation laws analysis.703

−4 −2 0 2 4

x
0

1

2

3

4

5

CFN
nCFN
nCFNreg
true

(a) ρ,N = 128

−4 −2 0 2 4

x
0

1

2

3

4

5

CFN
nCFN
nCFNreg
true

(b) ρ,N = 256

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(c) E,N = 128

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(d) E,N = 256

Fig. 19: Comparison of the reference density ρ and energy E solutions to Example 5.4
and the trained DNN model predictions at t = 1.6 for sparse and noise-free observa-
tions.

Case II: Sparse and noise-free observations. We now consider more sparsely704

observed data by choosing N = 128 and N = 256 shown in Figure 19. Given the705

results in the idealized environment, it is not surprising that neither the nCFN or706

nCFN-reg is able to capture the dynamics of Example 5.4 in the sparse observation707

case. While some solution details are lost, and there is noticeable error in the loca-708

tion of the shock front, it is evident that the CFN network still provides qualitative709

structure commensurate with the given resolution.710

Case III: Dense and noisy observations. In this case the training data are711

ρ̃(k)(tl) = ρ(k)(tl) + ε
(k)
l ,712

˜(ρ(k) � u(k))(tl) = (ρ(k) � u(k))(tl) + η
(k)
l ,713

Ẽ(k)(tl) = E(k)(tl) + δ
(k)
l ,(5.13)714

for l = 1, . . . , L and k = 1, . . . , Ntraj . The added noise ε
(k)
l , η

(k)
l , and δ

(k)
l are i.i.d.715

Gaussian with zero mean and variance determined by various noise levels (5.5). We716

23

This manuscript is for review purposes only.



again consider the same noise levels, 100%, 50%, 20%, and 10%.717

−4 −2 0 2 4

x
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CFN
nCFN
nCFNreg
true

(a) ρ, 100% noise

−4 −2 0 2 4

x
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CFN
nCFN
nCFNreg
true

(b) ρ, 50% noise

−4 −2 0 2 4

x
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CFN
nCFN
nCFNreg
true

(c) ρ, 20% noise

−4 −2 0 2 4
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CFN
nCFN
nCFNreg
true

(d) ρ, 10% noise

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(e) E, 100% noise

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(f) E, 50% noise

−4 −2 0 2 4

x
0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(g) E, 20% noise

−4 −2 0 2 4
x

0

10

20

30

40

50

CFN
nCFN
nCFNreg
true

(h) E, 10% noise

Fig. 20: Comparison of the reference solution of density ρ (top) and Energy E (bot-
tom) in Example 5.4 to the trained DNN model predictions at time t = 1.6 for dense
(N = 512) and noisy observations.

The solutions for density ρ and energy E are presented in Figure 20. We observe718

similar behavior as was seen for Case III in Example 5.3. Specifically, all three methods719

yield significant diffusion in high noise environments, 100% and 50%, and cannot720

predict the oscillatory structure to the left of the shock front. Unlike what was721

observed in Example 5.3, neither the nCFN nor the nCFN-reg appear to learn the722

noise-related dynamics, as even in the 10% noise level case the solutions still appear723

diffusive. This is likely because loss function still promotes a diffuse solution as724

opposed to one that contains noise-related dynamics. As the noise decreases, the725

CFN appears to capture some of the oscillatory details in the solution. In this regard,726

we again see that the CFN is a more robust network with respect to noise.727

We again omit figures comparing the discrete conserved quantity remainder, (4.6),728

of each method for Cases II and III since the methods all generate the same general729

behavior pattern as what is shown for Case I in Figure 18.730

6. Conclusion. In this investigation we proposed a conservative form network731

(CFN) to learn the dynamics of unknown hyperbolic systems of conservation laws from732

observation data. Inspired by classical finite volume methods for hyperbolic conserva-733

tion laws, our new method employs a neural network to learn the flux function of the734

unknown system. The predictions using CFN yield the appropriate conserved quan-735

tities and also recover the correct physical structures, including the shock speed, even736

outside the training domain. We validated the effectiveness and robustness of our737

CFN approach through a series of numerical experiments for three classic examples738

of one-dimensional conservation laws. Even in non-ideal environments, our results739

consistently demonstrate that the CFN outperforms the traditional non-conservative740

form network (nCFN) and its regularized version (nCFN-reg) in terms of accuracy,741

24

This manuscript is for review purposes only.



efficiency, and robustness, in particular since it does not require fine-tuning of regu-742

larization parameters.743

The current study does not attempt to optimize model performance for the real-744

istic data cases, and we will attempt to do this in future investigations. For the sparse745

observation environment, the Mori–Zwanzig formalism [31, 48], for which memory is746

included in the network, may potentially enhance the overall performance. In the747

noisy data environment one might consider using a denoising technique such as reg-748

ularization [6, 13]. Future investigations will also consider two-dimensional examples749

with more complex boundary conditions. Finally, we will also study mixed-form sys-750

tems, where the CFN may be used for equations representing conserved quantities751

within the system.752

REFERENCES753

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,754
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,755
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,756
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,757
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,758
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Ten-759
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available760
from tensorflow.org.761

[2] P. J. Baddoo, B. Herrmann, B. J. McKeon, J. N. Kutz, and S. L. Brunton, Physics-762
informed dynamic mode decomposition piDMD, arXiv preprint arXiv:2112.04307, (2021).763

[3] A. D. Beck, J. Zeifang, A. Schwarz, and D. G. Flad, A neural network based shock detection764
and localization approach for discontinuous galerkin methods, Journal of Computational765
Physics, 423 (2020), p. 109824.766

[4] T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis, On learning hamiltonian systems767
from data, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019).768

[5] D. A. Bezgin, S. J. Schmidt, and N. A. Adams, A data-driven physics-informed finite-volume769
scheme for nonclassical undercompressive shocks, Journal of Computational Physics, 437770
(2021), p. 110324.771

[6] C. M. Bishop, Training with noise is equivalent to tikhonov regularization, Neural Comput.,772
7 (1995), pp. 108–116.773

[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data774
by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113 (2016),775
pp. 3932–3937.776

[8] Z. Chen, V. Churchill, K. Wu, and D. Xiu, Deep neural network modeling of unknown777
partial differential equations in nodal space, J. Comput. Phys., 449 (2022), p. 110782.778

[9] Z. Chen and D. Xiu, On generalized residual network for deep learning of unknown dynamical779
systems, Journal of Computational Physics, 438 (2021), p. 110362.780

[10] Clawpack Development Team, Clawpack software, 2020, http://www.clawpack.org. Version781
5.7.1.782

[11] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, Lagrangian783
neural networks, in ICLR 2020 Workshop on Integration of Deep Neural Models and Dif-784
ferential Equations, 2020.785

[12] X. Fu, W. Mao, L.-B. Chang, and D. Xiu, Modeling unknown dynamical systems with hidden786
parameters, J. Mach. Learn. Model. Comput., 3 (2022), pp. 79–95.787

[13] G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least788
squares, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 185–194.789

[14] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Com-790
put., 67 (1998), pp. 73–85.791

[15] S. Greydanus, M. Dzamba, and J. Yosinski, Hamiltonian neural networks, in Adv. Neural792
Inf. Process Syst., vol. 32, 2019.793

[16] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.794
[17] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc.795

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.796
[18] J. S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms,797

SIAM, Philadelphia, PA, 2018.798

25

This manuscript is for review purposes only.

http://www.clawpack.org


[19] A. D. Jagtap and G. E. Karniadakis, Extended physics-informed neural networks (xpinns):799
A generalized space-time domain decomposition based deep learning framework for nonlin-800
ear partial differential equations, in Proceedings of the AAAI 2021 Spring Symposium on801
Combining Artificial Intelligence and Machine Learning with Physical Sciences, Stanford,802
CA, USA, March 22nd - to - 24th, 2021, J. Lee, E. F. Darve, P. K. Kitanidis, M. W. Ma-803
honey, A. Karpatne, M. W. Farthing, and T. J. Hesser, eds., vol. 2964 of CEUR Workshop804
Proceedings, CEUR-WS.org, 2021.805

[20] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, Conservative physics-informed neu-806
ral networks on discrete domains for conservation laws: Applications to forward and in-807
verse problems, Computer Methods in Applied Mechanics and Engineering, 365 (2020),808
p. 113028.809

[21] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, Physics-810
informed machine learning, Nature Reviews Physics, 3 (2021), pp. 422–440.811

[22] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proc. Int. Conf.812
Learn. Representations, 2015.813

[23] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), pp. 436–444.814
[24] R. J. LeVeque, Numerical Methods for Conservation Laws, vol. 214, Springer, 1992.815
[25] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge University816

Press, 2002.817
[26] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and818

A. Anandkumar, Fourier neural operator for parametric partial differential equations,819
in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,820
Austria, May 3-7, 2021, OpenReview.net, 2021.821

[27] Z. Li, M. Liu-Schiaffini, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,822
A. M. Stuart, and A. Anandkumar, Learning chaotic dynamics in dissipative systems,823
in NeurIPS, 2022.824

[28] Z. Liu, V. Madhavan, and M. Tegmark, Machine learning conservation laws from differential825
equations, Physical Review E, 106 (2022), p. 045307, https://doi.org/10.1103/PhysRevE.826
106.045307.827

[29] Z. Long, Y. Lu, X. Ma, and B. Dong, Pde-net: Learning pdes from data, in International828
conference on machine learning, PMLR, 2018, pp. 3208–3216.829

[30] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learning nonlinear operators via830
deeponet based on the universal approximation theorem of operators, Nat. Mach. Intell., 3831
(2021), pp. 218–229.832

[31] H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965),833
pp. 423–455.834

[32] T. Qin, Z. Chen, J. D. Jakeman, and D. Xiu, Data-driven learning of nonautonomous sys-835
tems, SIAM J. Sci. Comput., 43 (2021), pp. A1607–A1624.836

[33] T. Qin, Z. Chen, J. D. Jakeman, and D. Xiu, Deep learning of parameterized equations with837
applications to uncertainty quantification, Int. J. Uncertain. Quantif., 11 (2021), pp. 63–82.838

[34] T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using deep neural839
networks, J. Comput. Phys., 395 (2019), pp. 620–635.840

[35] M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial differential equa-841
tions, The Journal of Machine Learning Research, 19 (2018), pp. 932–955.842

[36] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep843
learning framework for solving forward and inverse problems involving nonlinear partial844
differential equations, J. Comput. Phys., 378 (2019), pp. 686–707.845

[37] R. Rodriguez-Torrado, P. Ruiz, L. Cueto-Felgueroso, M. C. Green, T. Friesen, S. Ma-846
tringe, and J. Togelius, Physics-informed attention-based neural network for hyperbolic847
partial differential equations: application to the buckley–leverett problem, Scientific reports,848
12 (2022), p. 7557.849

[38] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-driven discovery of partial850
differential equations, Sci. Adv., 3 (2017), p. e1602614.851

[39] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimiza-852
tion, Proc. R. Soc. A., 473 (2017), p. 20160446.853

[40] H. Schaeffer, G. Tran, and R. Ward, Extracting sparse high-dimensional dynamics from854
limited data, SIAM Journal on Applied Mathematics, 78 (2018), pp. 3279–3295.855

[41] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-856
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.857

[42] B. Stevens and T. Colonius, Enhancement of shock-capturing methods via machine learning,858
Theoretical and Computational Fluid Dynamics, 34 (2020), pp. 483–496.859

[43] J. H. Tu, Dynamic mode decomposition: Theory and applications, PhD thesis, Princeton860

26

This manuscript is for review purposes only.

https://doi.org/10.1103/PhysRevE.106.045307
https://doi.org/10.1103/PhysRevE.106.045307
https://doi.org/10.1103/PhysRevE.106.045307


University, 2013.861
[44] K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in modal space,862

J. Comput. Phys., 408 (2020), p. 109307.863
[45] S. Zhang and G. Lin, Robust data-driven discovery of governing physical laws with error bars,864

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474865
(2018), p. 20180305.866

[46] Z. Zhang, Y. Shin, and G. Em Karniadakis, GFINNs: GENERIC formalism informed neural867
networks for deterministic and stochastic dynamical systems, Phil. Trans. R. Soc. A., 380868
(2022), p. 20210207.869

[47] Y. D. Zhong, B. Dey, and A. Chakraborty, Symplectic ode-net: Learning hamiltonian870
dynamics with control, in 8th International Conference on Learning Representations, ICLR871
2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.872

[48] R. Zwanzig, Nonlinear generalized langevin equations, J. Stat. Phys., 9 (1973), pp. 215–220.873

27

This manuscript is for review purposes only.


	Introduction
	Preliminaries
	Conservation laws
	Flow map-based dynamics learning
	Learning PDE dynamics

	Constructing the network
	Standard (non-conservative) form network (nCFN)
	Conservative form network (CFN)
	Time integration
	Boundary Conditions
	The Recurrent Loss Function

	Experiment design
	Data Collection
	Network and Training Details
	Constructing the Regularization Term

	Numerical Examples
	Inviscid Burgers Equation
	Single Shock Formation
	Multiple Shock Interaction

	Shallow water equations
	Euler equation

	Conclusion
	References

