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LEARNING THE DYNAMICS FOR UNKNOWN HYPERBOLIC
CONSERVATION LAWS USING DEEP NEURAL NETWORKS

ZHEN CHEN*, ANNE GELB!, AND YOONSANG LEE?

Abstract. We propose a new data-driven method to learn the dynamics of an unknown hy-
perbolic system of conservation laws using deep neural networks. Inspired by classical methods
in numerical conservation laws, we develop a new conservative form network (CFN) in which the
network learns to approximate the numerical flux function of the unknown system. Our numerical
examples demonstrate that the CFN yields significantly better prediction accuracy than what is ob-
tained using a standard non-conservative form network, even when it is enhanced with constraints to
promote conservation. In particular, solutions obtained using the CFN consistently capture the cor-
rect shock propagation speed without introducing non-physical oscillations into the solution. They
are furthermore robust to noisy and sparse observation environments.

1. Introduction. Hyperbolic systems of conservation laws arise in many appli-
cations, in particular where wave motion or advective transport is important, and in-
clude problems in gas dynamics, acoustics, optics and elastodynamics. These typically
non-linear partial differential equations (PDEs) are well known to cause challenges for
numerical simulation. Methods that work well for linear problems break down near
discontinuities in the non-linear case unless special care is taken to mitigate the oscil-
latory behavior that will otherwise cause instabilities. Moreover it is well understood
that numerical solvers must be written in fluz conserving form, since otherwise the
resulting numerical solution may yield the incorrect shock speed, [18, 24, 25].

Since enormous quantities of data can now be collected, and since there is in-
creased capacity in computational storage along with better computational efficiency,
data-driven algorithms that recover unknown dynamical systems from observation
data, mainly for ordinary differential equations (ODEs) [4, 9, 27, 34, 40, 43, 47] but
more recently for PDEs [26, 28, 29, 30, 35, 36, 44, 45] as well, are becoming more
widespread. Many data-driven methods build neural network (NN) models that are
trained to fit observed data. Such an approach is called “blind” since it does not take
into account any information regarding the underlying system. As will be demon-
strated in our numerical results, while a standard NN technique may yield accurate
results within the training time domain, numerical difficulties arise once shocks are
formed beyond that time period. Indeed, the NN may predict non-physical solutions
or the wrong shock propagation speed.

To provide context, we briefly summarize some ODE and PDE dynamics-learning
methods that are designed to impose known physical constraints regarding the un-
derlying system. For instance, regularization terms can be introduced into the loss
function to penalize the NN that would otherwise not satisfy physical constraints
[11, 15]. Another typical approach seeks to integrate general physical principles into
the design of neural networks. For example, the method in [46] embeds GENERIC
formalism into neural networks to learn dynamical systems and involves two separate
generators for reversible and irreversible dynamics, respectively. Systems of ODEs
and PDEs are considered in [2], where general physical principles are integrated into
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what is called dynamic mode decomposition (DMD), which learns low-rank dynamics
from high-dimensional measurements. This case-by-case study does not have a gen-
eral framework that can be extended to conservation laws, however. There is a also
class of data-driven methods that aim to identify the governing system of ODEs or
PDEs, see e.g. [7, 38, 39]. The time derivative must be approximated from the obser-
vation data, thereby limiting observation environments to those where high quality
data are obtainable in very short time intervals. Furthermore, the solution must re-
main smooth and differentiable throughout the considered time domain. In another
category of data-driven approaches, [19, 20, 21, 28, 36], it is possible to obtain either
the forward PDE solution (after some prescribed time), or some unknown parameters
associated with the system of equations. Such methods rely on either knowing the sys-
tem explicitly or terms within its equations. Notably, methods such as those proposed
in [19, 20] are specifically designed for conservation laws and can be used to recover
constant coefficients of inviscid and higher-order fluxes. The framework developed in
[28] learns the Hamiltonian of a dynamical system, which is conserved. Mathemati-
cally this work is based on symplectic dynamics. To obtained desired accuracy, the
method requires the calculation of derivatives of the state variable (or second order
derivatives for KdV equations), which in turn requires dense observations of the state
variables. By contrast, our new CFN approach bypasses such calculations by directly
learning the flux function without relying on the Hamiltonian framework. Finally, we
mention approaches that concentrate exclusively on solving the forward problem by
combining machine learning (ML) techniques with traditional numerical PDE knowl-
edge. Examples of such methods which have been used to solve conservation laws can
be found in [3, 5, 37, 42].

In spite of their ubiquitousness in many applications, to the best of our knowledge
there are no data-driven methods that are specifically designed to learn unknown
systems of hyperbolic conservation laws. In this investigation we therefore seek to
develop a method to do so, and in particular for the case in which the observation
data are comprised of a set of perturbed numerical solutions of the true PDE at a
finite number of different time instances within a short time (training) domain. Our
new method employs tools from ML to construct a model from the training data to
make long-term predictions for a system of hyperbolic conservation laws that extend
beyond the short-time domain for which data are observed. Notably, our method is
a departure from a traditional interpretation of learning where the training data is
designed to contain all of the information eventually needed. In contrast, here we
consider the realistic setting where the snapshot data comes from a given physical
system up to a certain time, and we seek to extrapolate the solution to a future time.
Such a scenario is important in long term predictions of non-linear dynamics that are
modeled by hyperbolic conservation laws.

Based on similar behavior observed in traditional solvers for numerical conser-
vation laws, here we propose a new conservative form network (CFN) for which the
network learns the flux function of the unknown system. By incorporating the con-
servative flux form directly into the network architecture, we are able to mimic the
structure of the conservative form scheme found in classical numerical hyperbolic
conservation laws. Our new method is distinguishable from the aforementioned ap-
proaches as it designs the network to be specifically in conservative form. Our nu-
merical experiments demonstrate that the data-driven method resulting from our new
CFEN is conservative. It furthermore correctly predicts the shock propagation speed
in extended time domains without introducing non-physical oscillations into the solu-
tion. This is in contrast to data-driven methods that use either the standard “blind”
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NN or those that incorporate a penaly term to promote conservation.

The rest of the paper is organized as follows. Section 2 gives a brief review of con-
servation laws along with some standard ideas related to dynamics-learning methods.
We introduce our new conservative form network in Section 3. Section 4 discusses
how our experiments are designed. This is followed by three classical examples of one-
dimensional conservation laws in Section 5 used to validate our approach. Section 6
provides some concluding remarks.

2. Preliminaries.

2.1. Conservation laws. We are interested in learning the dynamics of an
unknown hyperbolic system of conservation laws on a spatial domain x € (a,b) and
temporal domain ¢ € (0,T). The scalar form is given by

(2.1) u(z, t)e + f(u(z,t)) =0

with appropriate initial and boundary conditions.! The main difficulty in solving

(2.1) is due to the formation of shock discontinuities, which will occur even when the
initial conditions are smooth. To retain the proper shock speed, numerical solvers for
(2.1) must be written in flux conserving form [25, 24, 18]. Specifically, if the spatial

domain is discretized as x;, 7 =0, ..., N, and time is incremented at ¢ = ¢;, numerical
solvers for the interior of the interval should be of the form
(2.2)
Tjt1 Tjp1 tiga ti41
/ (i, trs ) = / w(w, t)dz + / Flu(as, t))dt — / Fulayar, )t
T T t ty

In this investigation we seek to approximate the solution u(t) = {u; (t)};vzl for t €
(0,T), where ;(t) is the cell average over a uniform grid {x;}}_, given by

Az

Tt b—a
(2.3) aj(t)z/ w(, de, =1, N, Az=>"2
;A N

i

Studies regarding numerical conservation laws typically assume the flux term is
known, with the goal to construct accurate, robust, and efficient solvers for u(¢)
by appropriately discretizing (2.2). Here, by contrast, we are interested in the case
where we know apriori that the governing equation is a conservation law, but the
flux function itself is unknown. The goal is then to determine how the solution will
evolve given some early observations regarding the governing PDE. We will exploit
our understanding of conservation laws by designing our numerical method to be in
conservative form, as is given by (2.2). Once we are able to construct the numerical
flux, it can be used to predict the evolution of the unknown PDE.

We now introduce some notation for the observable data. We will assume that
the solution to the PDE is available at a set of discrete time instances {t;}/, for
Nyrqj initial conditions resulting in so-called snapshots of the solution,

(2.4) u®(t), 1=1,...,L, k=1,...,Niyaj.

The superscript & in (2.4) denotes the k-th “trajectory”, which implies all L snapshots
are evolved from the same initial state, with Ny.q; denoting the total number of
trajectories. The Ny.q; initial conditions in our experiments are chosen by perturbing

We will consider systems of conservation laws in our numerical experiments.
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the true initial conditions of the PDE. The time step between two consecutive time
instances is given by

At=ti 1 —t, 1=1,...L—1,

and for simplicity we assume At is constant so that t; = [At. Our (temporal) training
domain is therefore given by

(25) Dirain = [OatL] = [07LAt]

We note that in this investigation we are interested in model prediction after time tr,.
Our framework may also be used for learning some previous behavior, for instance at
time (n +n)At, n < L and n € (0,1). This would be especially useful for cases when
the time difference At is very large.

2.2. Flow map-based dynamics learning. We now briefly review flow map-
based deep learning of system dynamics for ordinary differential equations (ODEs)
first proposed in [34], which will serve as a starting point for our flux learning tech-
nique. To this end, we consider the dynamical system given by
(2.6) CLZTI: = g(u), uecRY,
where u = u(z;,t) and g(u) = —%(u(m,t))|mzmj, j =0,...,N. The fundamental
distinction between the problem formulation in [34] and the problem in this inves-
tigation is that here we are considering a conservation law PDE model instead of a
nonlinear system of ODEs. In either case, although we can observe snapshots of the
solution u, the flux function f in (2.1) and correspondingly ¢ in (2.6) are unknown.

The flow map of (2.6), ® : RY x R — R, characterizes its dynamics by mapping
the state variable at current time ¢ = 0 into a future state after some time At so
that u(At) = ®(u(0), At). The main idea in [34] is to use a deep neural network to
approximate the unknown flow map ® from the observation data.

The flow map-based dynamics deep learning approach begins by regrouping the

observed data in (2.4) into pairs of adjacent time instances,
(2.7) {u™(0),u™ (A1)}, m=1,..., M,

where M is the total number of such data pairs. Then a standard fully connected
feed-forward deep neural network whose input and output layers both have N neurons
is constructed. Specifically, we let A : RV — R¥ be the associated mapping operator
and define the residual network (ResNet) mapping as (see [17])

(2.8) Yy =+ N (™),

where Z : RY — R¥ is the identity operator. Using the data set in (2.4) and setting
y" + ul™(0) and y°* « u("™ (At), we obtain a network model

(2.9) ul" (At;©) = u™(0) + N (u™(0); ©).

The network operator A/ can be trained by minimizing the mean square loss function,

M
1 m m
(2.10) £(0) = 37 D Iy (At ©) —u™ (A3,
m=1
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where © denotes the network parameter set. Once the network is satisfactorily trained
we can obtain a predictive model for any arbitrarily given initial condition u(¢p).
Network structure variations and network theoretical properties can be found in [34].
In [33], the flow-map based learning was extended to include variable time stepping
as well as other system parameters. Systems with missing variables were discussed in
[12].

2.3. Learning PDE dynamics. To provide more general context for our new
method, we briefly describe how the flow-map idea used for ODEs in subsection 2.2
can be extended to learn PDE dynamics, [8, 44], although we do not use this approach
directly in our current investigation. In particular, our construction of the predictive
model in (3.7) is equivalent to using the method of lines and then learning the flow-
map of the discretized PDE dynamics. Importantly, this occurs after we learn the
numerical flux, which is the central idea to our method.

The focus in [8] was on general deep neural networks (DNN), resulting in the
development of a network structure for modeling non-specific types of unknown PDEs.
The network structure is based on a user specified numerical PDE solver and consists
of a set of multiple disassembly layers and one assembly layer? used to model the
hidden spatial differential operators in the unknown PDE. The DNN model used in
[8] defines the mapping

(2.11) uyny(At) =u(0) + A(F1(u(0)),. .., Fs(u(0)),

where Fi,...,Fy are the NN operators for the disassembly layers and A is the NN
operator for the assembly layer. The mapping in (2.11) can be viewed as an applica-
tion of ResNet (2.8) with N’ = Ao (Fy,...,Fs). The same training process and loss
function (2.10) for ResNet (2.8) can then also be applied to (2.11). After satisfac-
tory training, given any new initial condition, predictions can be made by iteratively
applying (2.11).

REMARK 2.1. The method in [8], which directly applies (2.11), also seeks to learn
PDE dynamics from data. A primary motivation for the method given there is to be
able to consider environments where data are collected on structure-free grids. It is
not guaranteed to capture the correct shock propagation speed for systems governed
by conservation laws, however. Moreover, the assembly and disassmebly layers in
(2.11) require a considerable amount of hand-tuning. This investigation, by contrast,
is interested in learning the dynamics of hyperbolic conservation laws by incorporating
the form (2.2) directly into the neural network. We also assume a structured grid
of data, allowing the use of standard neural network structures (fully connected feed-
forward networks).

3. Constructing the network. Given trajectory data in (2.4), we now seek
to construct a neural network N that learns the evolution of the underlying system.
More precisely, we want A to learn to predict the state value u(#;11) from the current
state value u(¢;). In Section 3.2 we describe our approach for designing the network
N for a system that is known to be conservative but for which the flux is unknown.
The more traditional approach for constructing a network without considering its
conservation properties is first reviewed in Section 3.1.

2We make use of the terms assembly and disassembly layers from [8] to help visualize the network
architecture, and note that they are fully-connected.
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3.1. Standard (non-conservative) form network (nCFN). A standard ap-
proach is to use a deep neural network G to approximate f(u(z,t)), in (2.1) directly
for each cell average @;(t™) as

(31) g(“?—pa"'a“?a"'a”?—i—q) ~ f(ﬂ](tn))m

where u}! = 1;(t,), p > 0,q > 0, and then solve the ODE given by

(3.2) %uj + Gy Uy Ujg) = 0,
with some pre-determined time integration technique. Importantly, (3.1), which we
will refer to as the non-conservative form network (nCFN), does not account for con-
servation in its design. As will be demonstrated in Section 5, the nCFN is not able
to capture the dynamics of the solution u(z,t) for ¢ that extends beyond the train-
ing domain, given by Dyrqin in (2.5). In particular using the nCFN may result in a
numerical solution that yields the wrong shock speed.

A typical approach to embed the conservation property into the network model is
to add a regularization term to the loss function [11, 15, 36]. Denoting the magnitude
of the conserved quantity remainder in the system as C'(u), which we will derive in
discrete form in Section 4.3, the regularization term can be constructed as

L

(3.3) R(©) = Clunn(t:0))*.

=1

Here © denotes the network parameter set. In this way, the regularization term R(©)
penalizes the remainder of each conserved quantity in the network prediction. We will
refer to the approach of regularizing the nCFN with the loss function (3.3) as nCFN-
reg. Our numerical examples will demonstrate that the solutions resulting from a
non-conservative neural network are still unsatisfactory even when incorporating the
regularization term, especially in long-term prediction.

3.2. Conservative form network (CFN). Motivated by classical results in
numerical conservation laws, we propose a flux form network that seeks to preserve
the conservation property. Specifically, we seek to update the cell average @;(t,,) using
the flux differences at the cell edges as

d _ 1
(3.4) 74T AL (fj+1/2 - fj71/2) =0,

where f;1/o denotes the flux at the cell edge x = x;,,/5. To approximate f; /o we
define the neural fluz as

(3.5) Mo = F@)_p, . U, TUjig),

where F is a fully connected feed-forward neural network operator and the inputs
uj_p, ..., Uj,. .., Ujyq are neighboring cell averages centered at z = x;_p, ..., Tj4q, TCE-
spectively. For ease of presentation we denote the right hand side of (3.5) as Fp 4(@;).
Our implementation is also simplified by using a symmetric stencil around z;_; s,
so that p = ¢ — 1, although this is not required. To distinguish between the non-
conservative flux forms, nCFN and nCFN-reg, we will refer to the conservative flux

form network as CFN when discussing our numerical experiments.
6
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3.3. Time integration. With the neural flux (3.5) in hand we now write the
neural net form of (3.4) as

d _ 1 _ _
(3.6) %uj + Ar (-an(uj) - ]:p,q(uj—l)) =0.

We solve (3.6) as well as the non-conservative system in (3.2) using the method-of-lines
approach. In our examples we will use the total variation diminishing Runge-Kutta
(TVD-RK3) method, [14], which for the generic system of ODEs in (2.6) is given by

u = u” + AtF(u"),
@3y Ly 1 M
u® =-"u —|—4u +4At]-"(u ),
1 2 2
(3.7 u"tt = gu" + gu(z) + gAt}"(u(z)),

for integration between time steps n and n 4 1. Figure 1 provides a diagram showing
the evolution of the state variable u for one time step through the conservative neural
network model.

n+1
current state u”™ next state u

@)
&)

preprocessing | —| F - Nl
~~~~~~~ o

i .

L]

=g
<

— | TVD-RK3 |—*

—

EE® - ®
BHOH® -

@
@._
&

(R) Preprocessing state variables (B) Computing neural flux (C) Evolving state variables
to satisfy boundary conditions terms using time-stepping schemes

Fig. 1: Evolution of the state variable u for one time step through neural network
model: State variables are fed into a preprocessing layer to incorporate boundary
conditions. The model then computes neural flux terms for each cell edge. The flux
terms and state variables are fed into the time-integration method.

REMARK 3.1. To the best of our knowledge there are no theoretical results regard-
ing the choice of time integration schemes that guarantee stability for numerical PDEs
using neural networks. Thus, due to its theoretical stability guarantees for numerical
conservation laws when using traditional solvers, we choose the TVD-RKS3 method.
Other time integration techniques may also be appropriate, and in some cases reduce
computational cost or improve numerical accuracy.

3.4. Boundary Conditions. For simplicity we will assume that the bound-
ary conditions in (2.1) are known. In particular, to satisfy the periodic boundary
conditions in Example 5.1 we simply apply

(3.8) g = Un, UN+1 = U1
7
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No flux boundary conditions are assumed in Examples 5.3 and 5.4. Since the solu-
tion profiles near the boundaries remain constant over time, we simply impose the
boundary conditions for each variable in both examples as

(39) Up = U1, UN+1 = UN-

Higher order numerical boundary conditions can similarly be employed.

3.5. The Recurrent Loss Function. Given trajectory data in (2.4), where
each trajectory has multiple measurements, we define the recurrent loss function as

Ntraj L
1 1
(3.10) Lann(©) = 7 ¥ > llaiin(t:0) —u® (@)]3,
traj & 21 =1
where
(3.11) ul (£ 0) = N o+ o N(u® (t)).
| times

As already discussed, the network evolution operator N is designed to predict the
state value u(;41) from the current state value u(t;), where © again denotes network
parameter set. In contrast to (2.10), the recurrent loss function (3.10) calculates loss
over multiple time steps. Using the recurrent loss approach has been found to improve
numerical stability [8]. As mentioned in Section 3.1, one can embed the conservation
property into the network by adding a regularization term in the loss function,

(3.12) Liann(©) = Lrvn(0) + N*R(O),

where R is defined in (3.3). Following ML conventional notation we use A\? to denote
the weighting parameter for the regularization term.

4. Experiment design. Our results presented in Section 5 will demonstrate
that for the classical one-dimensional conservation laws, [24] studied in this investi-
gation, using the CFN, for which the network learns to approximate the numerical
flux function of the unknown conservation law via (3.5) from observation data, yields
significantly better results than those obtained using either the nCFN in (3.1) or the
nCFN regularized by the loss function, nCFN-reg. Below we provide the framework
necessary to ensure the robustness and reliability of our experimental results. To this
end we consider details related both to data collection and training.

4.1. Data Collection. To test our method we will consider examples of con-
servation laws for which the fluxes are known.? We will use this information both
to generate synthetic training data with which to train the DNN for the evolution
process as well as to compute reference solutions to evaluate our results. Importantly
we note that knowledge of the true system does not in any way facilitate the DNN
model approximation.

Our test problems range from idealistic, where we assume we have noise-free
densely observed data for training and validation, to more difficult situations, where
we consider two cases: (1) the observable data are accurate (noiseless) but sparsely ob-
served and (2) the observable data are noisy but densely observed. To mimic observed

3Indeed in some of our examples the true solution is also known. However, since we randomly

generate the initial conditions to obtain a set of Ny.,; snapshots, we will simply consider the “exact”
(reference) solution to be the highly resolved numerical result.

8
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data in (2.4) that would be available for training and validation, we numerically simu-
late the true underlying PDE model according to the observational settings provided
in the particular case study for our examples.* We furthermore randomly sample the
parameters in the initial conditions to obtain various trajectories of the observed data
(see e.g. (5.3)). The number of trajectories Nyqo; and the trajectory length L vary
depending on the underlying properties of the PDE (e.g. time to shock formation).

4.2. Network and Training Details. As shown in Figure 1, the CFN consists
of the preprocessing layer, which ensures that the boundary conditions are satisfied,
and the neural flux operator, which computes the flux at cell edges. The neural
flux operator is constructed using a fully connected feedforward neural network and
is obtained by training the network hyperparameters (weights and biases) as the
minimum of the recurrent loss function (3.10). We employ the stochastic optimization
method Adam [22] for this purpose. The nCFN and nCFN-reg utilize the same
preprocessing layer for the boundary conditions and each employs one fully connected
feedforward network to learn the increment of the state variables. For consistency
all models are trained for 10,000 epochs with learning rate 10~ in every example.
The same set of network structures is also employed. Finally, we use the commonly
chosen Rectified Linear Unit (ReLU) [23] as the activation function. These network
and training details are summarized in Table 1.

model (p,q) hidden layers | hidden nodes | activations
CFN (2,3) 5 64 ReLU
nCFN (3,3) 5 64 ReLU
nCFN-reg (3,3) 5 64 ReLU

Table 1: Neural network architecture details for all examples. Note that for each
model p and ¢ are chosen to provide symmetry (p = ¢ — 1 for CFN and p = ¢ for
nCFN), although this is not a requirement.

It is also possible to tune the regularization parameter \? for the nCFN-reg loss
function in (3.12). Indeed, one can choose A\? = A\2(t), so that the influence of the
regularization can fluctuate as the PDE evolves. This would add considerable com-
putational cost, however, and moreover, it is not readily apparent that employing
standard approaches, such as the L—curve method or the discrepancy principle, [16],
are appropriate here. For simplicity, here we let A\? = 1020=9 §=1,...,4, and then
choose A% to be the A? corresponding to the smallest loss value in (3.12) on a separate
validation dataset after training is completed. In general we found that in Examples
5.1 and 5.3 that A2 = 1072 (i = 2) yielded the best results. Example 5.4 (the Euler
equations for gas dynamics) was considerably more sensitive to the choice of A2, likely
due to the oscillatory nature of the solution. In this case we refined our search to
include A2 = 5 x 1072, We therefore see that as an added advantage our new CFN
approach does not require extensive regularization parameter tuning.

We emphasize that while our numerical experiments indicate that these parameter
choices provide enough network complexity for each required learning task, we did not
further try to optimize performance. Moreover, as we want to ensure the robustness of
our method, in our experiments we typically follow the common practice for learning

4Unless otherwise noted we use the CLAWPACK conservation laws package, [10].
9
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system dynamics [34, 32, 33, 44] and use the default values in Tensorflow [1] or other
standard choices for all hyperparameters.

4.3. Constructing the Regularization Term. The regularization term (3.3)
is designed to promote conservation in the nCFN-reg method. Below we show how
this term is constructed for the scalar case. A straightforward extension can be made
for systems.

We first expand (2.2) to the physical domain of the problem, (a,b), yielding
(4.1)

b b ti1 ti+1
/u(a:,tH_l)dx—/ u(x,tl)dx:/ f(u(a,t))dt—/ Fu(b, )1 =0, ..., L

where each ¢; denotes the time at which a data trajectory in (2.4) is initially obtained.
Example 5.1 considers the inviscid Burgers equation with periodic boundary con-
ditions. In this case (4.1) simplifies to

b b
(4.2) / u(z, t)de = / u(z,to)dz, 1=0,...,L.

For equations with non-periodic boundary conditions, (4.2) does not hold since in
general f(u(a,t)) # f(u(b,t)). Hence to construct (3.3) we first define

(4.3)
o= L /tl+lf(( M, FO = 2 /tmf( (b6)dt, 1=0,...,L—1
a = ul\a, ) ul 0, ) =Y., =1
At J,, b AL

and then use (4.3) to approximate (4.1) as
N N
(4.4) St Az =Y ait)Ar = FOAt — FOAt, 1=0,...L-1,

which leads to
l

N
(4.5) 3 () - w5(t0) Az = 3 (F;k—1> - Flf’“*)) At, 1=1,...,L.

j=1 k=1

From here we define the (discrete) conserved quantity remainder at each ¢; as

l
(4.6) Z a;(ty) — wj(to) Az — Y (Fé’@*” - Fé’“‘”) At

= k=1

where u(t) = (i1 (t),...un(t))T. It follows from (4.5) that if the conservation prop-
erty holds then C(u(t;)) = 0. Regularization in (3.12) is therefore used to promote
solutions that minimize (4.6). In practice the network prediction of uy y (¢;; ©) is used
to calculate (4.6), directly yielding R(©) in (3.3). We note that we will also be able
to analyze the conservation properties of each of our numerical methods in Section 5
by computing (4.6) over the time domain of the solution.

REMARK 4.1. It is important to point out that (4.6) describes a best case scenario,
where we have access to (4.3). In order to construct the regularization term for the
nCFN-reg in our experiments, we compute (4.3) directly from the given flux terms
in each example. This serves to demonstrate that even under ideal circumstances,
regularizing the standard nCFN to promote conservation in the solution (nCFN-reg)
is not as effective as constructing a conservative form network in the first place (CFN).

10
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5. Numerical Examples. We use three well-studied one-dimensional examples
of hyperbolic conservation laws to analyze our new conservative form network (CFN)
approach. We consider three different observational settings for each experiment:
(i) an ideal case, where the observations are dense and noise-free; (ii) the situation
where the observations are sparse but noise-free; and (iii) an environment for which
the observations are dense but noisy. We compare the results of our new CFN ap-
proach to the more traditional non-conservative form network (nCFN) along with the
regularized (nCFN-reg) version.

5.1. Inviscid Burgers Equation. Due to its simple formulation, the inviscid
Burgers equation is often used to test the efficacy of numerical methods for non-linear
conservation laws. Here we demonstrate our method for two cases; In subsection 5.1.1
a single shock is formed from smooth initial conditions while in subsection 5.1.2 the
initial condition contains two discontinuities that subsequently collide and interact.

5.1.1. Single Shock Formation.
ExaMPLE 5.1. The inviscid Burgers equation is given by

u?

(5.1) uy + (?)T =0, ze€(0,2m), t>0,
with periodic boundary conditions u(0,t) = w(2m,t). The initial condition are given

by
u(z,0) = o+ Bsin(x),

a ~ Ul—¢s, €],
(5.2) B~U[l —e€s,1+ €],

where e, = 0.25.

The N¢rqj training data sets are generated by solving (5.1) using the Engquist—Osher
flux along with TVD-RK3 time integration based on the initial conditions

u® (z,0) = a® + g0 sin(x),
a®) ~ Ul—e,, €4,
(5.3) BE) ~ Ul —e5,1+ €]

for k=1,..., Niyqj with €5 = 0.25.

In all of our experiments we set Ni.q; = 200. Each training trajectory has length
L = 20 for either choice of recurrent loss function, (3.10) or (3.12).

To check the robustness of our predictions for Example 5.1, we run our experiments
for 50 choices of fixed @ and S and compare the three methods, CFN, nCFN, and
nCFN-reg. Our reference solution is calculated using the Engquist-Osher flux term on
a fine grid, with Az = 222 in (3.6). All figures use the initial value with o = 0.06342
and 8 = 1.17322 for illustration. Other choices for a and 3 yield comparable results.

Case I: Dense and noise-free observations. We first consider an idealized
environment for which the observations are dense and noise-free. Specifically we
choose N = 512, yielding Az = 52T”2, so that our solution is well-resolved. We also
choose a constant time step At for all experiments so as not to complicate our analysis.
In this regard we observe that the maximum wave speed for Burgers equation, |u(x,t)|,
can be determined for all ¢ using (5.3) as max{|u|} = 1 4 2¢5. We therefore set

At = 0.005 to satisfy the CFL condition with #CFL = 0.9.
11
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We note that the training time domain [0, LA¢] with L = 20 contains only smooth
solution snapshots. Since each DNN model requires the training data to include both
smooth and discontinuous solution profiles to learn the long term dynamics of Example
5.1, a larger trajectory length L is needed. As choosing a larger L would significantly
increase computational costs we employ a sub-sampling technique to generate training
data from observed snapshots of the solution onto an extended domain. The same
sub-sampling technique is used for Examples 5.2 and 5.4. The details are provided
below.

We define a new parameter M > L as the extended length of each trajectory. The
snapshots of the solution, (2.4), are obtained for each of the Ny,,; trajectories at times
t =mAt,m =1,..., M. In our experiments we choose M = 300 which yields the total
training time domain as [0, 1.5]. We then sub-sample each of the k = 1,..., Niq; by

randomly selecting a start time value, tgk), from the set { MAt}fy;OL . Each sub-sampled
trajectory of length L is then built consecutively from the snapshot solutions. That
is, each trajectory is comprised of the solutions in (2.4) at sequential times ték) + IAt,
l=1,...,L. In this way we can train over a longer period of time without increasing
the expense of network training. This approach, of course, requires that more initial

observations are available.
— CFN , — CFN — CFN

2 — cFn
L0 —— nCFN 10 — = nCFN —— nCFN S —— ncFN
05 nCFN-reg s nCFN-reg s i nCFN-reg
-~ reference - reference | --- reference
0.0 0.0 0.0 i
i
s ‘ /

(a) t = 0.75 (b)yt=15 (c) t =225 d)t=3

-~ reference

Fig. 2: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different times for dense (N = 512) and noise-free observations.

4 — CFN
107 —— nCFN
nCFNreg

00 05 10 15 20 25
time

Fig. 3: Discrete conserved quantity remainder C(u) in (4.6) of the network predictions
for Example 5.1. Graph is in semi-log scale for visibility.

Figure 2 presents the solution to Example 5.1 for this ideal case at four differ-
ent times, within and beyond training time domain [0,1.5]. Observe that the three
methods capture the solution profiles and predict the correct shock propagation speed
within the training domain (shown for ¢ = 0.75 and ¢ = 1.5). The nCFN and nCFN-
reg results are less accurate, and do not appear to be completely resolved. Beyond
the training domain (¢ > 1.5), only the CFN and nCFN-reg methods yield the correct
shock propagation speed (Figure 2¢, Figure 2d). The nCFN-reg solution develops a
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non-physical overshoot near the shock location. This behavior is further observed in
Figure 3, where the conserved quantity remainder C'(u) obtained by (4.6) is displayed
for each method. Clearly the CFN produces the only conservative method.

REMARK 5.1. We also compared our results to those obtained using the method
in [8] which has a global design and beyond the fully-connected layers also contains
additional disassembly and assembly layers. This structure inherently means that the
method has significantly more parameters to tune and also requires more training when
compared to our CEFN approach, which has a local flux structure. In particular the set
of training data provided in all of our case studies, including the idealized environment,
leads to overfitting in the training process and fails to yield conservation. Additional
training data will lead to more comparable results, although there is no guarantee that
they will ultimately yield the correct shock speed of propagation. The solution may
furthermore exhibit non-physical oscillations near the shock.”

— CFN — CFN

—= nCFN —= nCFN
nCFN-reg 05 NnCFN-reg

-~ reference -~ reference

a | — cFN — o
| —— ncEN , —= nCFN

nCFNreg 0.5 nCFNreg 0.5
-~ reference {--- reference

i
|
i
i
1

i 2 3 4 5 [3 i 2 3 3 5 [3 i 2 3 3 5 [ i 2 3 ] 5 [3
X X X X

() N=32,t=15 (b)) N=32t=3 (c)N=128t=15 (d)N=128t=3

Fig. 4: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different sparsity levels using noise-free observations.

Case II: Sparse and noise-free observations. In this case the training data
are obtained by solving Example 5.1 on a coarse grid. Specifically, for Az = QW’T
we choose N = 32,128. Once again we fix the time step as At = 0.005. Figure 4
compares the results using the CFN, nCFN and nCFN-reg for different sparsity levels
at times in (¢ = 1.5) and out of (¢ = 3) the training time domain. Both time
instances are after the shock forms. Observe that for each choice of N only the CFN
captures the correct shock propagation speed. Figure 5 displays the pointwise error
at different sparsity levels for each method when ¢ = 3. It is apparent that the
width of the interval containing the error resulting from shock shrinks (as expected)
with increased resolution for all three methods. However, neither the nCFN nor the

nCFN-reg demonstrate convergence.

Case III: Dense and noisy observations. In this testing environment the
observations in (2.4) now contain noise and are given by

(5.4) a® @) =u® ) +e®, 1=1,...,L, k=1,...,Nia,.

Here eg ) is i.i.d. Gaussian with zero mean and variance 2. We test various o values

scaled from the absolute value mean of the solution, |ul,
(5.5) o=alul, a>0
5We note that a primary motivation in [8] is to learn the dynamics of generic PDEs on unstruc-

tured grids, while the data in our examples are collected on structured grids.
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= N=16 “ee N=16
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(a) nCFN (b) nCFN-reg

Fig. 5: Log-scale absolute error of the trained DNN model predictions to Example 5.1
at different sparsity levels when ¢t = 3. No observation error.

where the mean w is taken over the spatiotemporal domain. We consider noise levels
of 100% , 50%, 20% and 10%, that correspond to o = 1,0.5,0.2, and 0.1 respectively.

—— CFN 7 \ —— CFN

-4 == nCFN =T \ 5 —— nCFN
H NnCFN-reg 0.5 = NnCFN-reg 0.5
reference | -= reference |

[

i

— CFN == [
~0.5{ —— nCFN = —0.5 —— nCFN [
NCFN-reg NCFN-reg L

- reference | == reference

—
3 4

i 2 5 3 - i 2 3 4 5 [ i 2 3 4 5 [3 - i 2 3 4 5 [

X X X X

(a) 100% noise (b) 50% noise (c) 20% noise (d) 10% noise

Fig. 6: Comparison of the reference solution to Example 5.1 with the trained DNN
model predictions at different noise levels using dense (N = 512) observations when
t=3.

(a) nCFN (b) nCFN-reg

Fig. 7: Log-scale absolute error of the trained DNN model predictions to Example 5.1
using different noise levels using dense (N = 512) observations when ¢ = 3.

The solution to Example 5.1 is presented in Figure 6 at time ¢ = 3 after the shock
forms. Learning the underlying dynamics is challenging when the observations are
noisy since the non-physical oscillatory behavior caused by the noise can influence
the training process (overfitting). Indeed Figure 6a demonstrates that none of the
solutions corresponding to any of the three training networks can capture the shock
in high noise environments. However, the CFN method is the only network that
captures the rough profile of the underlying solution. In contrast, solutions resulting
from both nCFN and nCFN-reg deviate significantly from the reference solution.
While all methods improve as the amount of noise decreases, CFN and nCFN-reg
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yield overall better results. In Figure 6¢ and Figure 6d, we observe that CFN and
nCFN-reg capture the correct shock propagation speed (with some magnitude error).
Figure 7 displays the pointwise errors for each of the methods at time ¢t = 3, which are
consistent to what is observed in Figure 2d. That is, even in the “ideal” case, neither
the nCFN nor the nCFN-reg can be adequately resolved. Adding small amount of
noise which is comparable to the error already incurred therefore does not affect the
results. For the same reason, small amounts of noise can reduce the accuracy in the
CFN case (since it is larger than the error produced for Case I). As noise is increased,
the results for the nCFN and nCFN-reg method become meaningless — O(1) in much
of the domain. The largest interval width of error surrounding the discontinuity is
again seen in the nCFN case, which concurs with the results shown in Figure 6.
Figures comparing the discrete conserved quantity remainder, (4.6), of each method
are omitted for Cases II and III since the methods all generate the same general
behavior pattern as what is shown for Case I in Figure 3.

5.1.2. Multiple Shock Interaction.

EXAMPLE 5.2. We again consider the inviscid Burgers equation in (5.1) with pe-
riodic boundary conditions. Here our initial conditions are given by

0.8, xe€l0,2.5)U 45,27,
(5.6) u(z,0) =< —0.1 =z €[2.5,3.5),
0.7 =z €[3.5,4.5).

Observe that in contrast to the solution for Example 5.1 in which a smooth initial con-
dition later forms a shock, here the initial shocks will eventually collide and interact,
with the solution forming a rarefaction wave.

As was done in Example 5.1, we generate Nio; = 200 training data sets by
numerically solving (5.1) with CLAWPACK using the Engquist-Osher flux with N =
1024 so that Az = %, along with TVD-RK3 time integration and At = .005 chosen
to satisfy the CFL condition.

For this example the initial conditions used for training are given by

k . k k k k
(5.7) u(k)($70) _ {Uilk} S [mln{yg )’yg )},ma,x{yg )’yg )}]’
uy , else,

where y%k),yék) ~ UJ0, 2], u(lk),uék) ~ Ul-1,1] for k = ki,..., Nipa;. The form
of (5.7) represents what might be included in the space of initial conditions, but
importantly does not consider any future information regarding how the solution
evolves.

As in Example 5.1, we again employ sub-sampling to generate training data from
the observed snapshots of the solution on an extended domain, with the same length
for extended trajectory M = 300. The sub-sampling is necessary since otherwise
the short trajectories used for training do not contain enough information to capture
the solution containing rarefaction waves occurring in the extended time domain (see
Figure 8).

Case I: Dense and noise-free observations. We first consider an idealized
environment for which the observations are dense and noise-free. Specifically we
choose N = 512, yielding Az = %, so that our solution is well-resolved.

Figure 8 displays the solution for this ideal case at four different times, illustrat-
ing the collision of two shocks and the propagation of a rarefaction wave. While all
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Fig. 8: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different times for dense (N = 512) and noise-free observations.

1072 -~
.
10 4 — CFN
—— nCFN
nCFNreg

3
time

Fig. 9: Discrete conserved quantity remainder C(u) in (4.6) of the network predictions
for Example 5.2. Graph is in semi-log scale for visibility.

approaches are able to capture the general solution dynamics, only the CFN con-
sistently predicts the correct shock speed both before and after the collision occurs.
Moreover, non-physical overshoots are observed in the nCFN-reg solution near the
shock location. Figure 9 shows the discreted conserved quantity remainder C'(u) in
(4.6), demonstrating that the CFN is the only method maintaining conservation.

SR e . i [——
e e —— 10 T 10 T 10 IS
P e 7 ’//
1072 u" 102 K7 107 (j//-ﬂ'fw 102 {7
— N M — CFN — CFN
103 —— nCFN 103 —— nCFN 103 —— nCFN 103 —— nCFN
NnCFN-reg NCFN-reg NnCFN-reg NCFN-reg
[ T 3 3 3 5 ) T 3 3 7 3 [ T 3 3 3 5 ) T 3 3 7 3
time time time time
(a) (6,5,64) (b) (10,5,64) (c) (6,2,128) (d) (6,10,32)

Fig. 10: Relative I3 error of the CFN, nCFN and nCFN-reg predictions using different
hyperparameters. The hyperparameters are written in the sub-captions as (input
stencil size, hidden layer number, hidden node number).

Figure 10 compares the robustness for the CFN with respect to various network
parameters, such as the number of hidden layers, hidden nodes, and input stencil size
p+ q (p,q as in equation (3.1)), to the nCFN and nCFN-reg. The relative Iy error
for each model prediction demonstrate that while the overall performance does not
appear to be strongly influenced by the choice of hyperparameters, the CFN approach
consistently achieves better accuracy.

Case II: Sparse and noise-free observations. As was done for Example 5.1,
we choose N = 32,128 to simulate the sparse observation case with fixed time step
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At = 0.005. Figure 11 compares the results using CFN, nCFN and nCFN-reg for
different sparsity levels at time before (¢ = 1.5) and after (¢ = 3.5) shock collision.
We observe that the lack of resolution (N = 32) similarly affects each method, with
little difference in the solutions once the data are sufficiently resolved (N = 128). The
results seen here seem to suggest that some overfitting occurs in Case I (N = 512) in
both the nCFN and nCFN-reg solutions.

Fig. 11: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different sparsity levels using noise-free observations.

Case III: Dense and noisy observations. We now consider the case where the
observations are given by (5.4) with noise levels given by 100% , 50%, 20% and 10%
respectively corresponding to o = 1,0.5,0.2, and 0.1 in (5.5). As shown in Figure 12,
none of the methods are able to predict the correct solution in the noisiest case. The
situation dramatically improves as the noise level decreases to 50%. Although some
error is apparent, the CFN consistently captures the correct shock speed and appears
to have the best overall accuracy.

(a) 100% noise (b) 50% noise (c) 20% noise (d) 10% noise

Fig. 12: Comparison of the reference solution to Example 5.2 with the trained DNN
model predictions at different noise levels for N = 512 observations at time ¢t = 3.5.

Finally, we note that the discrete conserved quantity remainder calculated by
(4.6) for both Case IT and Case III exhibits the same qualitative behavior as seen in
Figure 9.

5.2. Shallow water equations. When combined with initial conditions given
in (5.9), Example 5.3 is known as the dam break problem which over time admits

both shock and contact discontinuities.
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ExaMPLE 5.3. Consider the system of equations
ht + (’l}h)z = 0,
1
(5.8) (hv)¢ + (hv? + ighz)x =0,

fort >0 and x € (—5,5). Here we use g = 1. We assume no flux boundary conditions
and initial conditions given by

(5.9) h(z,0) = {hl’ if @ < o, v(z,0) = {Ul’ ifz < @,

h,, otherwise, v, otherwise,

where

thU[Q—Gh“Q-FEhlL €n, = 0.2,
hr"’U[lf‘fhr,l‘i’ehr]a €h, =0.1,

v, U, ko ~ U[—¢€, €], e=0.1.

Example 5.3 describes the one-dimensional dam break problem in which the initial
heights of the water, h; and h,., are different on each side of the dam, located at xq
in our numerical experiments. After the dam breaks, a rarefaction wave forms and
travels to the left of the dam, while a shock wave starts to propagate on the right.
The training data are observed at different time intervals up until time ¢ = 0.1 and
then used to train each of the three networks to predict the long term dynamics.

The Nirq; = 200 training data sets of length L = 20 are generated by solving
(5.8) using CLAWPACK (HLLE Riemann Solver) for initial conditions given by

RE i g < 2P o it < 2
B9 (z,0) =4 L’ -0 v (2,0) =4 L, -0
(,0) hf«k), otherwise, (,0) vﬁk), otherwise,
where
hl(k) ~UR—en, 246, P ~ULl—ep,1+6,], vl(k),vﬁ.k),x(()k) ~ Ul—¢, €,
with €5, = 0.2, ¢4, = .1, e = .1 and k = 1,..., Nyq;. We obtain a reference so-

lution using CLAWPACK using N = 1024 so that Az = %. All figures shown
for Example 5.3 correspond to (5.9) with h; = 3.5691196,h, = 1.17867352,v; =
—0.06466697, v, = —0.04519738, 9 = 0.00383271. While some parameter choices
yield comparable solutions for each method, the CFN consistently outperforms the
other techniques.

Case I: Dense and noise-free observations. In the ideal environment we set
N =512 so that Az = %. We numerically impose the no flux boundary conditions
using (3.9). CLAWPACK is employed to simulate solutions up to time ¢ = .1 with data
collections at time instances t; = IAt for [ = 1,...,20. The time step At =5 x 1073
is chosen to satisfy At < min{Atcraw }, where CLAWPACK determines Atcraw
to guarantee stability for the solution in the given time domain.

Figure 13 compares the numerical solutions at time ¢t = 0.5 and ¢t = 1, both of
which extend past the training time. While all methods capture the main features of
the solution at t = 0.5, it is evident that the CFN yields the most accurate results.
The errors in both the nCFN and nCFN-reg solutions are significantly larger when
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Fig. 13: Comparison of the references solution to Example 5.3 and the trained DNN
model predictions at different times for dense and noise-free observations.

—— CFN
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nCFN-reg 10-5 nCFN-reg
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(a) C(h) (b) C(howv)

Fig. 14: Discrete conserved quantity remainder given by (4.6) of each method for
Example 5.3. (a) C(h) and (b) C(h ® v). Graphs are in semi-log scale for visibility.

t = 1, and the rarefaction wave structure is not discernible in the nCFN case. We
determine the conservation of each method by calculating (4.6) for h and h®v, where
©® denotes elementwise multiplication, and show the results in Figure 14. As in the
case for Burgers equation, only the CFN method is conservative.

As we did for Example 5.2 Case I, we again conducted experiments to test the
robustness of the CFN method with respect to different network parameters. We
obtained similar results as displayed in Figure 10, demonstrating both the robustness
of our method as well as better performance when compared to both the nCFN and
nCFN-reg.

Case II: Sparse and noise-free observations. To simulate this environment
we use CLAWPACK to solve Example 5.3 on coarser grids, respectively N = 64 and
N = 128, to obtain the training data collected at t; = IAt, I = 1,..., L, where L = 20.
For consistency we again choose At = 0.005 so that the training trajectory final time
ist=0.1.

Figure 15 compares the solutions using CFN, nCFN and nCFN-reg with the
reference solution (again defined as the CLAWPACK solution with N = 1024) at time
t = 1. For N = 64 it is apparent that none of the methods are able to accurately learn
the system dynamics, and large fluctuations are particularly noticeable in the region
between the rarefaction and shock wave. For N = 128 we observe improvement for
all models. The CFN clearly yields the most accurate results, and is the only method
able to capture the structure of the rarefaction wave. This is not surprising since we
already observed in Figure 13 that IV = 512 did not provide enough resolution, even
for the nCFN-reg case. Thus we see the importance of training the network using the
flux form.
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Fig. 15: Comparison of the reference solutions to Example 5.3 and the trained DNN
model predictions using noise free observations at time ¢ = 1 for N = 64 and 128.

Case III: Dense and noisy observations. In this case the training data are
given by

B (1) = (1) +
(5.10) (h® & vE) (1) = (WP © vF)) (1) + "h(k)’

forl=1,...,Land k =1,..., Nyqj. The added noise el(k) and nl(k) are i.i.d. Gaussian
with zero mean and variance determined using various noise values based on the mean
of u (5.5). We again consider noise levels corresponding to 100%, 50%, 20%, and 10%.

The solution profiles for height and momentum in Example 5.3 obtained using
the different network constructions are shown in Figure 16. It is apparent that all
three methods yield significant diffusion in high noise environments. It is noteworthy
that when the amount of noise is at 20%, both the nCFN and nCFN-reg methods
produce solutions that seem to increase (rather than diffuse) energy, suggesting that
these methods are learning noise-related dynamics. In this regard, the CFN method
appears to be the most robust, meaning that along with the overall improved quality of
the solution with decreasing amounts of noise, the solution itself behaves consistently
as a function of the noise level, with less diffusion apparent as the amount of noise
decreases.

We again omit figures comparing the discrete conserved quantity remainder, (4.6),
of each method for Cases I and III since the methods all generate the same general
behavior pattern as what is shown for Case I in Figure 14.

5.3. Euler equation. As a final example we consider the Euler equations for
gas dynamics, specifically the Shu-Osher problem [41]. The problem is challenging
since the resulting shock wave impacts a sinusoidally-varying density field yielding
more complex structures than apparent in Examples 5.1 and 5.3.

EXAMPLE 5.4. Consider the system of equations for t > 0 given by

pt + (pu)e = 0,
(pu)s + (pu* + p)z =0,
(5.11) Ei+ (u(E+p). =0,

in the domain (—5,5). We assume no fluxz boundary conditions and initial conditions
20
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Fig. 16: Comparison of the reference solution for height h (top) and momentum hv
(bottom) in Example 5.3 and the trained DNN model predictions at ¢ = 1 for dense
(N = 512) and noisy observations.

given by’

Pl fo < Zo, f <
u, ifz<wo,
p(x,0) = < 1+ esin(5x), ifxg <w<mq, ulz,0)= ! ) 0
. Azt . 0, otherwise,
1+ esin(5z)e~@=20"  otherwise,

P, fo S X, o 1 ,
K O = E 5 O = + O , O .
pe0) {pr, otherwise, (z,0) v—1 2p(x Ju(z,0)

The parameters are given by

p(1—¢), p(l+e)], p=3.857135,

(1 — 6)7 El+e)], =02,

p~Ulp(1—¢€), pi(l1+6€)], p =10.33333,

or(1—e€), pr(l+6), pr=1,

w(l—e), w(l+e)], i =2.62936,
(

(512) To ~ Ulz Zo 1-— 6)7 .’20(1 + 6)], Ci'o = —47

with € = .1, x1 = 3.29867 and v = 1.4. We note that p, p;, U are the same values as
those used in the CLAWPACK Shu-Osher example.

The k = 1,..., Nyyq; training sets are generated by solving (5.4) using CLAW-

6The usual Shu-Osher problem does not use p(z,0) = 1 + z—:sin(5m)6_("_‘”1)4 for z in the right
part of the domain. We include this term to “flatten” the solution at the boundary so that we can
apply (3.9) without introducing an artificial boundary layer.
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PACK (HLLE Riemann Solver) for initial conditions given by

pl(k), ifx < x(()k)7
(k) — (k) o e ()
P\ (z,0) 1+ W™ sin(5z), ifry’ <o <a,

14+ ¢ sin(5x)e*($"’“)4, otherwise,

k) (k) (k) . (k)
u® (,0) = u, ifx g Ty, p(k)(x, 0) = pl(k), ifx < a.;o ,
0, otherwise, pr’, otherwise,

(k)
E®(z,0) = Loy lp(k) (z,0)u™ (,0)2.
y—1 2

The corresponding parameters are given in (5.12) (written without the superscript k)
and the boundary conditions are imposed using (3.9) in all experiments. The reference
solution is obtained using CLAWPACK with N = 1024 so that Az = 750

To train over a longer period of time without increasing the computational cost we
once again employ the same sub-sampling technique used in Example 5.1 to generate
training data from observed snapshots of the solution on an extended domain. As
before we set M = 300 as the extended length of each trajectory. The snapshots of the
solution, (2.4), are obtained via CLAWPACK for each of the Ny.q; = 300 trajectories
at times t = mAt, m = 1,..., M, where At = 0.002 (chosen to satisfy the CFL
condition). Each sub-sampled trajectory of length L is then built consecutively from

the snapshot solutions. That is, each trajectory is comprised of the solutions in (2.4)
at sequential times ték) +IAt, l=1,..., L.

. N —— CFN
~ i s b -—- nCFN | = EE===
nCFNreg

nCFNreg
————— true

(a) p,t =0.8 (b) p,t=1.6 (c) E,t=0.8 (d) E,t=1.6

Fig. 17: Comparison of the reference density p and energy E solutions to Example 5.4
and the trained DNN model predictions at different times for dense (N = 512) and
noise-free observations.

Case I: Dense and noise-free observations. We first consider an idealized
environment for which the observations are dense and noise-free. Specifically we
choose N = 512, yielding Az = %, so that our solution is well-resolved. Figure 17
shows the solutions p and E at times ¢t = 0.8 and ¢ = 1.6, both of which are outside
of training time domain [0,0.6]. Observe that as the shock wave interacts with the
density field, the solution exhibits oscillations to the left side of the shock front. It is
evident that only the CFN network produces a solution that captures the oscillatory
features of the solution. By contrast, the nCFN solution exhibits significant errors
with non-physical oscillations to the right of the shock. It moreover produces the
wrong shock front location at ¢ = 1.6. The results for nCFN-reg are somewhat
improved, but still do not accurately capture the dynamics of the system.

22

This manuscript is for review purposes only.



\\ {

1072

— CFN
—:— nCFN 1073 —:— nCFN
nCFN-reg nCFN-reg

— CFN

10~
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
time time

(a) C(p) (b) C(E)

Fig. 18: Discrete conserved quantity remainder given in (4.6) of each method for
Example 5.4. (a) C(p) and (b) C(E). Graphs are in semi-log scale for visibility.

Figure 18 confirms our observations in Figure 17. Specifically, we see that none
of the methods are conservative, with the error increasing more rapidly in the nCFN
and the nCFN-reg cases. The error corresponding to the CFN appears to grow lin-
early with time, suggesting long term numerical stability when considering classical
numerical conservation laws analysis.

21 — CFN
——= nCFN

N nCFNreg
————— true - true
o 3

) H 3 . 2 [ 3 a o e ]
X X X

(a) p, N =128 (b) p, N =256 (c) E,N =128

Fig. 19: Comparison of the reference density p and energy E solutions to Example 5.4
and the trained DNN model predictions at t = 1.6 for sparse and noise-free observa-
tions.

Case II: Sparse and noise-free observations. We now consider more sparsely
observed data by choosing N = 128 and N = 256 shown in Figure 19. Given the
results in the idealized environment, it is not surprising that neither the nCFN or
nCFN-reg is able to capture the dynamics of Example 5.4 in the sparse observation
case. While some solution details are lost, and there is noticeable error in the loca-
tion of the shock front, it is evident that the CFN network still provides qualitative
structure commensurate with the given resolution.

Case III: Dense and noisy observations. In this case the training data are
P (1) = p(t) + efY,
(p(k) ® u(k))(tl) — (p(k) ® u(k))(tl) + nl(k)a
(5.13) E(k)(tl) - E(k)(tl) + 51(16)’

forl=1,...,L and k =1,..., N¢rqj. The added noise el(k), nl(k), and 5l(k) are i.i.d.
Gaussian with zero mean and variance determined by various noise levels (5.5). We
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Fig. 20: Comparison of the reference solution of density p (top) and Energy E (bot-
tom) in Example 5.4 to the trained DNN model predictions at time ¢t = 1.6 for dense
(N = 512) and noisy observations.

The solutions for density p and energy E are presented in Figure 20. We observe
similar behavior as was seen for Case I1I in Example 5.3. Specifically, all three methods
yield significant diffusion in high noise environments, 100% and 50%, and cannot
predict the oscillatory structure to the left of the shock front. Unlike what was
observed in Example 5.3, neither the nCFN nor the nCFN-reg appear to learn the
noise-related dynamics, as even in the 10% noise level case the solutions still appear
diffusive. This is likely because loss function still promotes a diffuse solution as
opposed to one that contains noise-related dynamics. As the noise decreases, the
CFEN appears to capture some of the oscillatory details in the solution. In this regard,
we again see that the CFN is a more robust network with respect to noise.

We again omit figures comparing the discrete conserved quantity remainder, (4.6),
of each method for Cases II and III since the methods all generate the same general
behavior pattern as what is shown for Case I in Figure 18.

6. Conclusion. In this investigation we proposed a conservative form network
(CFN) to learn the dynamics of unknown hyperbolic systems of conservation laws from
observation data. Inspired by classical finite volume methods for hyperbolic conserva-
tion laws, our new method employs a neural network to learn the flux function of the
unknown system. The predictions using CFN yield the appropriate conserved quan-
tities and also recover the correct physical structures, including the shock speed, even
outside the training domain. We validated the effectiveness and robustness of our
CFEN approach through a series of numerical experiments for three classic examples
of one-dimensional conservation laws. Even in non-ideal environments, our results
consistently demonstrate that the CFN outperforms the traditional non-conservative
form network (nCFN) and its regularized version (nCFN-reg) in terms of accuracy,
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efficiency, and robustness, in particular since it does not require fine-tuning of regu-
larization parameters.

The current study does not attempt to optimize model performance for the real-
istic data cases, and we will attempt to do this in future investigations. For the sparse
observation environment, the Mori-Zwanzig formalism [31, 48], for which memory is
included in the network, may potentially enhance the overall performance. In the
noisy data environment one might consider using a denoising technique such as reg-
ularization [6, 13]. Future investigations will also consider two-dimensional examples
with more complex boundary conditions. Finally, we will also study mixed-form sys-
tems, where the CFN may be used for equations representing conserved quantities
within the system.
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