
Leveraging structural information for enhanced coherent
change detection

Scott Daytona, Oliver Milledgea, Jovana Nikitovica, Anne Gelba, Dylan Greena, and Aditya
Viswanathanb

aDartmouth College, 27 N. Main Street, Hanover, NH, 03755, USA
bUniversity of Michigan – Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA

ABSTRACT

We consider the two-pass coherent change detection problem for SAR imaging. Inspired by classical maximum
likelihood-based coherent change detectors (Jakowatz, 1996)1 and multi-polarization SAR change detection tech-
niques (Novak, 2005),2 we propose a method of incorporating underlying structural image information using
specially formulated kernels. In particular, we utilize a class of convolutional edge detection kernels to extract
underlying edge information in the scene of interest given noisy and potentially incomplete data. We then adapt
existing multi-polarization SAR change detection methods to incorporate such edge information to improve the
quality and robustness of resulting change maps. We validate the proposed method using real-world SAR im-
ages from the CCD Challenge Problem dataset and demonstrate improved change detection performance using
empirical ROC studies.
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1. INTRODUCTION

We consider the two-pass synthetic aperture radar (SAR) change detection problem,1,3 where we have access to
data (or suitably processed complex-valued SAR imagery) of the same underlying scene at two different times.
These are often referred to as the reference (or time-1) and mission (or time-2) images. It is assumed that the
data are co-registered; i.e., the pixel locations in the processed SAR imagery of any common (unchanged) objects
in the scene are identical between the two times. Changes in the scene may be significant – such as insertions or
deletions of objects (such as cars or buildings) between the two passes, or more subtle – such as a disturbance
of the ground in some small local region. We are interested in identifying such changes or regions of changes in
the scene accurately and efficiently, with particular emphasis on urban environments. We do this by computing
a change map, or more specifically a change statistic α ∈ [0, 1] for each pixel location in the scene, such that
α = 0 denotes a change between time-1 and time-2 while α = 1 denotes no change. The continuum of values for
α between 0 and 1 indicate varying levels of confidence in identifying changes in the scene.

Fig. 1a and Fig. 1b display representative time-1 and time-2 images (magnitudes of complex-valued SAR
recoveries) of such a scene (see (Scarborough et al., 2010)3 for details of the scene and corresponding dataset),
with the corresponding change “map” computed using the classical maximum-likelihood-based change detector
(see [1, Section 5.5] for details) shown in Fig. 1c. The two passes correspond to a single co-registered underlying
scene containing a parking lot with cars (towards the bottom right of the scene), a large region of foliage (towards
the top left of the scene), a couple of buildings, some roads, and a running track towards the right-center of the
scene. Of note is the large shadow in the immediate vicinity of the building at the bottom right. From time-1
to time-2, there are insertions and deletions of vehicles in the parking lots, especially in the bottom right of the
scene, as well as changes due to usage of the running track. The change map computed using the MLE-based
change detector identifies many of these changes. However, it is evident that there are significant false changes
recorded in regions of foliage and around building shadows. Results using the proposed method incorporating
edge information are shown in Fig. 1d and discussed in §3.
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(a) Reference (time-1) image (b) Mission (time-2) image
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(c) Change map (MLE-based method) (d) Change map (proposed method)

Figure 1: Representative SAR change detection scene and change maps. The top panel shows the time-1 and
time-2 images of the scene (magnitude images plotted on a log scale with 60dB of dynamic range). Fig. 1c shows
the change map computed using the classical MLE-based method; Fig. 1d shows equivalent results using the
proposed method.

1.1 Problem Setup

The scene is represented with images of size N1 × N2. The complex-valued pixel reflectivities are respectively
denoted by fj1,j2 and gj1,j2 at time-1 and time-2, with (j1, j2) ∈ {1, . . . , N1} × {1, . . . , N2}. The neighborhood
NM

j1,j2
of pixel (j1, j2) is defined by

NM
j1,j2 = {(k1, k2), | k1 = j1 −M, . . . , j1 +M, k2 = j2 −M, . . . , j2 +M}, M ∈ N, (1)

which describes a symmetric (2M + 1) × (2M + 1) square patch of pixels closest to pixel (j1, j2). The pixel
intensities in the scene are further assumed to follow a zero mean∗ i.i.d. (complex) Gaussian distribution, with

∗In practice, we subtract the sample mean (evaluated over the neighborhoods (1)) before computing the change map.
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independent (complex) zero mean additive white Gaussian noise so that

(time-1) fj1,j2 = rj1,j2 + nfj1,j2

(time-2) gj1,j2 = αj1,j2 rj1,j2 eiϕ +
√
1− α2

j1,j2
zj1,j2 + ngj1,j2

.
(2)

Here rj1,j2 ∼ CN (0, σ2
r) and zj1,j2 ∼ CN (0, σ2

r) are uncorrelated with each other and used to model terrain
reflectivities at pixel (j1, j2). The additive noise nfj1,j2

, ngj1,j2
∼ CN (0, σ2

n) is such that the individual noise
components are both uncorrelated with each other as well as with the signal components. The change statistic
is denoted by αj1,j2 , and finally eiϕ with ϕ ∈ [0, 2π) is a phase term included to account for unavoidable phase
errors in multi-pass SAR setups. Note that if the phase term is neglected, setting α = 1 in (2) corresponds
to the “no change” scenario (as desired), while setting α = 0 corresponds to change in reflectivity between the
two passes. For reference, the classical MLE change detector is obtained by computing the maximum likelihood
estimate for α in (2) (while treating ϕ as an unknown nuisance parameter). Assuming independent observations
of the reflectivities in a neighborhood of pixel (j1, j2), it can be shown (see [1, Section 5.5] for details) that

αMLE
j1,j2 =

2

∣∣∣∣∣∣∣
∑∑

(k1,k2)∈NM
j1,j2

fk1,k2
gk1,k2

∣∣∣∣∣∣∣∑∑
(k1,k2)∈NM

j1,j2

∣∣fk1,k2

∣∣2 + ∑∑
(k1,k2)∈NM

j1,j2

∣∣gk1,k2

∣∣2 , (3)

where fk1,k2
denotes the complex conjugate of fk1,k2

and | · | denotes the component-wise absolute value.

1.2 Related Work

An early method proposed in (Touzi et al., 1988)4 involved estimating and comparing the mean backscatter
powers of the scene in the two passes. The classical MLE change detector described in (3) is derived, for
example, in (Jakowatz et al., 1996).1 This method essentially computes a scaled version of the magnitude of the
sample coherence, also called complex cross-correlation. For low clutter-to-noise scenarios, a related method for
estimating complex reflectance change in (2) and introduced in (Wahl et al., 2016)5 has been shown to provide
better results. An alternate Bayesian hypothesis testing-based problem formulation and resulting log-likelihood
change statistic is described in (Preiss et al., 2006).6 In (Cha et al., 2015),7 the authors propose a two-stage
technique which combines a non-coherent intensity change statistic – suitable for identifying significant scene
changes – with an alternative (Berger’s) coherence-based estimator to identify more subtle scene changes. A
framework based on tracking the evolution of local statistics between passes, computed using cumulant-based
series expansions and compared using Kullback-Leibler divergence measures, along with the potential for its
application in a multi-scale approach, is discussed in (Inglada and Mercier, 2007).8

The methods mentioned above are generally utilized with single polarization SAR data. For multi-polarization
SAR, a generalized likelihood ratio test (GLRT) for the change detection problem was introduced in (Novak,
2005)2 and partly motivates the proposed method in this manuscript. False alarm mitigation techniques for SAR
change detection are addressed, for example, in (Phillips, 2011)9 and (Newey et al., 2013).10

1.3 Contributions

We propose a new coherent change detection scheme which incorporates relevant underlying structural infor-
mation. In particular, we extract descriptors of object and region boundaries in the magnitude image via edge
detection and use a multi-polarization change detection framework to incorporate such information into the
change statistic. Moreover, we use image connectivity analysis in local patches, as well as entropy filtering-based
low-RCS detection techniques to distinguish true changes from false positives. Empirical results on real-world
SAR images are presented using the CCD challenge problem dataset.3

The rest of this paper is organized as follows: Section 2 explains the components of the proposed method,
with §2.1 detailing the entropy filtering technique to identify low-RCS regions, §2.2 explaining the false positive
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mitigation technique based on image connectivity analysis, §2.3 reviewing the multi-polarization change detection
framework of (Novak, 2005),2 and §2.4 detailing the edge detection methods used in our empirical results. Section
3 explains how these components work together to construct an enhanced change detection algorithm and provides
representative empirical results (including ROC analysis) on real-world SAR images. Finally, Section 4 provides
some concluding remarks and avenues for future work.

2. COMPONENTS OF THE PROPOSED METHOD

2.1 Low-RCS Masking

It is easy to verify that (3) is undefined when |fk1,k2 | = |gk1,k2 | = 0 for all pixels in a neighborhood. Moreover,
there is a distinct possibility of spurious change detection results in areas of the scene corresponding to low
signal or radar cross-section (RCS), as is evident in building shadow regions, and to a lesser extent along roads in
Fig. 1c. Identifying such regions and setting the corresponding pixel values in the time-1 and time-2 images to be
identical mitigates this issue. Following the convention in (Stojanovic and Novak, 2013)11 we set the pixel values
to be identically unity, although any non-zero value will also work. Furthermore, since entropy is a statistical
measure of randomness, it is useful in distinguishing pixels containing random noise only – as is likely the case
with low radar signal – versus regions of structure. We therefore propose the use of entropy filtering (Gonzalez
and Woods, 2017)12 to identify such regions robustly, with

ej1,j2 = −
∑∑

(k1,k2)∈NM
j1,j2

pk1,k2 log2(pk1,k2). (4)

Here ej1,j2 denotes the computed entropy at pixel (j1, j2), and pk1,k2
represents normalized histogram counts for

the magnitude image. Note that we apply (4) in neighborhoods defined by (1) to be consistent with the change
detection scheme. Moreover, we apply the entropy filter to the time-1 and time-2 magnitude images separately
before taking the pixel-wise minimum entropy value between the two results. The results of such a computation,
with values re-scaled to [0, 1], are shown in Fig. 2a. Entropy values above a user-specified threshold (0.85 in
our computations) are used to identify regions of low signal, while the corresponding pixel locations are used
to generate a mask identifying such regions. The results of applying the MLE change detector (3) after such
masking and signal correction is shown in Fig. 2b. Comparing with Fig. 1c, note the lack of change recorded in
the building shadow region toward the bottom right of the scene.

(a) Low-RCS region identification (b) Change detection (MLE) with low-RCS masking

Figure 2: Low-RCS region identification via entropy filtering (Fig. 2a) and change detection (using the MLE
method) with low-RCS masking (Fig. 2b). Note the absence of false changes in the building shadow regions at
the bottom right of the image when compared to Fig. 1c
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2.2 False Positive Mitigation via Image Connectivity

Fig. 1c identifies changes in regions with foliage, the running track, and cars (parking lots). Since we are
interested in change detection in urban environments, large scale and intermittent (scattered) changes in foliage
regions are likely to be false positives caused by sensitivity of the radar system to the rustling of leaves. We
identify such changes from the computed change map and apply a post-processing procedure to minimize false
positives. Towards this end, we utilize ideas from image connectivity. A connected component (Gonzalez and
Woods, 2017)12 in a binary image is a set of “adjacent” pixels, with two pixels being consider adjacent if they
are both nonzero, and occupy consecutive horizontal, vertical or diagonal pixel locations.

(a) Connected components in images (b) Connected components in different regions of the scene

Figure 3: Connected components – illustration and application to the scene. Fig. 3a illustrates the concept of
connected components in (binary) images. Fig. 3b applies this concept to the change map image from Fig. 1c in
three distinct regions of the scene. Note the significantly larger number of connected components in the foliage
region.

(a) No. of connected components across the entire scene (b) Post-processed MLE-based change map

Figure 4: Applying image connectivity analysis to reduce false positives in change maps. Fig. 4a plots the number
of connected components in local 31 × 31 neighborhoods across the entire scene; Fig. 4b plots a post-processed
(using image connectivity information) change map and shows reduced false positives.

Fig. 3a illustrates this concept by plotting the matrix representing a binary image, the corresponding image,
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and the extracted (indicated using different colors) connected components. The results of applying this analysis
to three distinct regions (identified using yellow boxes in Fig. 1c) of the scene – foliage, running track, and a
parking lot – are shown in Fig. 3b. The top panel in Fig. 3b shows the corresponding regions of the change
map from Fig. 1c while the bottom panel shows the connected components. In each case, the grayscale change
map is converted to a binary image via thresholding† before the connected components are identified using
convolutional kernels or graph-theoretic methods (see, for example (Gonzales and Woods, 2017)12). We use
Matlab’s bwconncomp implementation to perform such connectivity analysis. While properties of these connected
components (area, shape, orientation etc.) may be useful and present an opportunity for further investigation, we
restrict our current attention to the number of such connected components. In particular, note the significantly
larger number of components in the foliage region in comparison to the other regions. Indeed, the results of
performing this analysis across the entire scene (using image patches of size 31 × 31 in a raster scan fashion)
are shown in Fig. 4a. Note the large number of connected components in the foliage (and building shadow)
regions directly coincide with regions yielding a significant number of false positives. By suitably thresholding
this image, for example, here we use 35% of the maximum number of connected components in the scene, we
may generate a binary mask identifying regions with likely false positives. Corresponding pixels in the change
map may be artificially set to 1 (denoting no change) as a post-processing step. The resulting post-processed
change map is shown in Fig. 4b; note the significant reduction in false positives in comparison to the classical
MLE-based results in Fig. 1c.

2.3 Multi-Polarization SAR Change Detection

In multi-polarimetric SAR imaging, we acquire measurements corresponding to multiple polarization returns,
such as HH, HV and VV configurations. For change detection problems, we further assume that two or more
of these returns at two distinct passes are co-registered between themselves as well as between passes, so as
to represent the same underlying scene. For simplicity in presentation we vectorize the SAR image so that

j = (j1, j2), for j = 1, . . . , N1N2. This leads to, for example, fj =
[
fHH
j fHV

j fVV
j

]T
, where each component

represents the reflectivity of the specified area of the scene under the corresponding wave polarization. Assuming
the reflectivities can be modeled as (complex; zero mean) Gaussian random variables, fj is a three-dimensional

complex Gaussian vector with some underlying covariance matrix Cf
j = E

(
fjf

∗
j

)
. Similarly, we have the time-2

vector gj =
[
gHH
j gHV

j gVV
j

]T
, characterized by the corresponding covariance matrix Cg

j = E
(
gjg

∗
j

)
. If there

is no change in the underlying scene between these two passes, we expect (statistically) that Cf
j = Cg

j . The

alternate hypothesis therefore corresponds to a change, that is Cf
j ̸= Cg

j . With independent observations of the

reflectivities in a neighborhood of pixel xj , following (Novak, 2005),2 we formulate a generalized likelihood ratio
test resulting in the change detection statistic

αpol
j =

det

 1∣∣∣NM
j

∣∣∣
∑

i∈NM
j

fif
∗
i

 det

 1∣∣∣NM
j

∣∣∣
∑

i∈NM
j

gig
∗
i


det

1

2

 1∣∣∣NM
j

∣∣∣
∑

i∈NM
j

fif
∗
i +

1∣∣∣NM
j

∣∣∣
∑

i∈NM
j

gig
∗
i




2 , j = 1, . . . , N1N2. (5)

Here,
∣∣∣NM

j

∣∣∣ denotes the number of pixels in the neighborhood (1) of pixel xj . As before αpol
j ∈ (0, 1], with αpol

j ≈ 0

denoting a change. Representative results using this change detection statistic are shown in Fig. 5b with the
MLE-based change map from Fig. 1c re-plotted in Fig. 5 for reference and easy comparison. Both methods
result in similar change maps, with some minor differences due to the different signal returns from the multi-polar
components. For example, the HH, VV and HV polarizations have slightly different sensitivities to vegetation,

†Global or adaptive local thresholds may be used and are handled automatically by Matlab’s imbinarize command.
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roads and other such scene features. Changes in such features are therefore more (or less) pronounced when
using the multi-polar formulation. Nevertheless, this method provides a simple and effective way to incorporate
multi-component data into the change detection framework.

Foliage

Shadow

Running track

Cars

(a) Change map in Fig. 1c
(b) Change map computed using multi-polarization data
(HH, VV and HV) and the change statistic (5)

Figure 5: Change map (a) classical MLE-based method (Fig. 1c) and (b) using multi-polarization data and
change statistic (5).

Remark: To account for potential disparities in scale with multi-polarization data, we scale the images (across
all polarizations and passes) to have the same Frobenius norm.

2.4 Edge Detection

Edges often encapsulate important features in the underlying scene, especially in urban environments where rigid
objects are prevalent. Rather than constructing the underlying image, it may even be easier to approximate
internal boundaries, especially in cases where the data are corrupted and/or incomplete. Sparse regularization
techniques such as (Stefan et al., 2011)13 are particularly useful for this purpose. Due to the combination of
speckle and additive Gaussian noise components, SAR data is often highly contaminated, however. Moreover,
sparse regularization techniques are typically not designed for complex-valued signals.

Under the assumption that edges manifest in the magnitude rather than the phase of a signal, we apply
convolutional edge detection to the magnitude component, while also incorporating filtering techniques on both
pre- and post-processed data. More specifically, we apply edge preserving anisotropic diffusion-based speckle
filtering (Yu and Acton, 2002),14 followed by a convolutional Sobel kernel edge detector. We then used matched
filtering to reduce false positives. We note that our three-step approach preserves edge “heights” since we skip
the thresholding step typically seen in conventional edge detectors, and that such information proves useful in
subsequent change statistic computations.

A couple of remarks are in order. First, when the underlying scene of interest contains few anisotropic
scatterers, SAR data can be interpreted as nonuniform Fourier data (Jakowatz et. al., 1996).1 Although the
data in our experiments come from pre-formed images, it is possible to use the so-called concentration kernels
(Gelb and Tadmor, 1999).15 These convolution kernels are used to identify edges in real-valued signals directly
from frequency data, and as such data loss is minimized since an initial image recovery is not needed. The
technique can be adapted to recover edges in the square magnitude of complex-valued data. Finally, the use of
concentration kernels has been extended to nonuniform Fourier data (see, for example (Gelb and Song, 2020)16

and (Stefan et al., 2011)13), potentially allowing for use with SAR phase history data (PHD). Second, we use
edges as a prototypical representative of useful features in the underlying scene. Other structurally informed
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features (such as shape and texture) may be used in place of edges; we defer investigations involving such features
to future work.

3. PROPOSED METHOD

The following two main ideas are utilized in constructing an enhanced coherent change detection procedure:
(i) The construction of a structurally informed multi-component representation of the scene at any given pixel;
and (ii) the formulation of a statistical test for identifying change in the relationship between the components of
this multi-component representation at any given pixel from one pass to another. The results in this manuscript
use edges as a surrogate for such structural information. As already noted, other features (topological shape,
texture, morphology etc.) may also be used for this purpose. In addition, we propose use of the entropy filtering-
based low-RCS and/or signal identification scheme from §2.1 to pre-process the given data and reduce resulting
false positives in the change map. Finally, we note that the radar system may be sufficiently sensitive to record
undesirable changes in the scene (such as the rustling of leaves). We propose use of the image connectivity-based
analysis from §2.2 to post-process any intermediate change maps to suppress such false positives. Our proposed
method is summarized in Alg. 1, with representative results provided in the center panel of Fig. 6. For reference
and ease of comparison, the classical MLE-based change map is re-plotted in the left panel of Fig. 6. Observe
that while there is significant reduction in the number of false positives, the changes in the running track region
are no longer clearly identified. There is an inherent trade-off between such changes (which manifest in the
phase of the SAR data) and false positives in regions of vegetation, building shadows etc. Further refinements in
performing the image connectivity analysis in §2.2 will likely lead to better results. Alternatively we can take the
convex combination of two change maps, such as those from Alg. 1 and Fig. 4b, to yield a composite change map
with desired properties, as displayed in the right panel of Fig. 6. Freely available Matlab code used to generate
these figures can be found at (SI-CCD, 2024).17

(a) Change map (MLE-based method) (b) Change map (proposed method) (c) Change map (composite)

Figure 6: Change map using the proposed method. The left panel re-plots Fig. 1c for reference and comparison;
the center panel is the change map obtained using Alg. 1 (proposed method); the right panel is a composite
change map obtained by taking a convex combination of the results from the proposed method and Fig. 4b

Since ground truth changes are difficult to determine with the CCD challenge problem dataset, we instead
present empirical ROC studies on representative (synthetic) test functions shown in Figs. 7a and 7b. These
complex-valued test functions have two large rectangular model objects which do not change from time-1 to
time-2. However, the three smaller square and circular objects change position between the two times. Both
images are subject to i.i.d. additive complex Gaussian noise. The empirical ROC is computed using Monte Carlo
simulations over 1000 trials and the four locations indicated by red x’s in Fig. 7 (these include two locations
each of change and no change). Figs. 7d and 7e plot representative change maps without and with incorporated
edge information respectively. Note the improved performance when incorporating edges in the change detection
procedure. In particular, we observe reduced false positives in regions of no change (α ≈ 1) and stronger correct
detection performance in regions of change (α ≈ 0). This is also reflected in the empirical ROC plot in Fig. 7f.
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(a) Synthetic test function (time-1) (b) Synthetic test function (time-2) (c) Representative edge detection

(d) Change map (MLE)
10.5dB SNR

(e) Change map (with edges)
10.5dB SNR

(f) Empirical ROC
9.4dB SNR

Figure 7: Empirical ROC studies: (Top panel) (a) and (b) magnitudes of the synthetic test functions; (c) a
representative edge detection plot. (Bottom panel) representative change maps (d) without and (e) with edge
information. Note the improved performance (reduced false positives in regions of no change (α ≈ 1) and
stronger correct detection in regions with jumps (α ≈ 0) at potentially the expense of a small loss of resolution.
(f) Empirical ROC plot in the bottom right for red x’s in (a), (b), (d), and (e).

Algorithm 1 Structurally informed coherent change detection

Input: Reference (time-1) and mission (time-2) images f, g ∈ CN1×N2

Output: Change map α ∈ CN1×N2

1: Apply the entropy filtering-based low-RCS masking procedure detailed in §2.1.
2: Compute edges in the time-1 and time-2 magnitude images as detailed in §2.4.
3: Apply the multi-polarization change detection statistic of §2.3 - with the input images and computed edge

information.
4: Apply the image connectivity-based false positive mitigation scheme from §2.2.

4. CONCLUDING REMARKS

This paper introduces a new change detection technique which incorporates structural information in the under-
lying scene. This was accomplished via two primary avenues: edge detection to collect descriptors of region and
object boundaries, and image connectivity analysis to distinguish true changes from false positives. Other de-
scriptors of structure such as texture, topological shape, and morphology could be used in place of or in addition
to edges and/or image connectivity, as well as within machine learning frameworks; these would provide potential
avenues for future investigation. This work also assumed pre-registered time-1 and time-2 images of the scene.
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Extensions of the proposed method to unregistered datasets could provide an appealing challenge. Finally, we
have restricted our attention to change detection in urban environments. It would also be instructive to establish
the efficacy of the proposed method in other types of datasets in environmental monitoring, agriculture, disaster
response and border security.
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