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ABSTRACT. Three-dimensional (3D) synthetic aperture radar (SAR) imaging
is an active and growing field of research with various applications in both mili-
tary and civilian domains. Sparsity promoting computational inverse methods
have proven to be effective in providing point estimates for the volumetric
image. Such techniques have been enhanced by leveraging sequential joint
sparsity information from nearby aperture windows. This investigation ex-
tends these ideas by introducing a Bayesian volumetric approach that lever-
ages the assumption of sequential joint sparsity. In addition to obtaining a
point estimate, our new approach also enables uncertainty quantification. As
demonstrated in simulated experiments, our approach compares favorably to
currently used methodology for point estimate approximations, and has the ad-
ditional advantage of providing uncertainty quantification for two-dimensional
projections of the volumetric image.

1. Introduction. Spotlight-mode synthetic aperture radar (SAR) is an all-weather
sensing modality capable of imaging through all illumination conditions. SAR data
are ubiquitous in several applications, such as sea ice monitoring and military re-
connaissance. The current state of the art for the reconstruction of two-dimensional
(2D) SAR images includes the matched filter, filtered backprojection, polar format,
and compressive sensing methods, along with sampling-based SAR image formation
[10, 17, 27, 30]. These techniques all enable reconstructions of large scenes with high
resolution and fidelity.

While 2D SAR imaging is already a mature field of study, 3D SAR reconstruc-
tion is becoming increasingly important. Specifically, 3D SAR is capable of pro-
viding practitioners with a more complete representation of a target of interest by
providing height resolution as well as relative scaling of the object’s three spatial
dimensions. Novel techniques and powerful computational capabilities are driving
the push for efficient and accurate reconstructions of 3D landscapes and objects.
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These approaches hold the promise of enhanced target recognition and identifica-
tion, detailed topographic maps, and improved change detection, [1, 2, 7, 33].

In this work we build on two particular methods of 3D SAR image reconstruction,
namely backprojection and sparsity-promoting recovery, [19, 32]. In both of these,
2D images centered at the origin are recovered and then used to form the volumetric
image. Our methods seek to extend the sparsity-promoting inversion approach,
first by leveraging sequential information from neighboring apertures, and then
by utilizing techniques from hierarchical Bayesian modeling, [5, 22]. This serves
not only to extend the dynamic range of the recovered volumetric image and to
lower the dependency on user input when compared to the previous sparsity-based
method, [32], but also has the potential to quantify the uncertainty regarding the
reconstruction, which is not generally possible with point-estimate methods.

The rest of this paper is organized as follows. In Section 2 we provide a brief
overview of the data collection process as well as details of the data set used in
our experiments. In Section 3 we discuss how to leverage sequential joint sparsity
information in point estimate image recovery. We extend these ideas to a Bayesian
framework in Section 4. Section 5 contains some numerical experiments, and we
provide concluding remarks in Section 6.

2. SAR data collection. Spotlight SAR data are acquired as the imaging plat-
form revolves circularly around a scene of interest. A chirp signal is transmitted by
the radar, and backscattered signal is then detected by the antenna, [25]. In a SAR
system that emits linear frequency modulated chirps, the frequency function w(t)
is given by

w(t) = %[wo +2a(t—m)],  |w(t)| < 2/c(wo + aT)), (1)

where ¢ is the speed of light, wy is the carrier frequency of the chirp, 2« is the
chirp rate, T; is the pulse duration, 7y is the round trip time of the chirp to the
scene center, and ¢ is the fast time variable. Other measurement parameters include
azimuth angle #(7) and elevation angle ¢(7), where 7 is the slow time parameter.
The spatial frequency locations k are related to the temporal frequency function

(1) by
k= [ka, ky, k)" = w(t)[cos(8(r)) cos(¢(7)), sin(0(7)) cos(ip(7)), sin(p(1))]T.  (2)

More specifically, each value k where data may be acquired is governed by the flight
path of the imaging platform, which provides (7) and (1), along with the band
where the radar operates, which determines the range of w(t).

Following demodulation, the spotlight SAR data collection process can be mod-
eled as the 3D Fourier transform of the true underlying scene, g : R® — C, and is
given by [18]

i) =Pl = [ o@ew {~i[FF]}az. F-lew’ @

A more thorough introduction to SAR from a mathematical perspective can be
found in [8, 9].

2.1. The Fourier Slice Theorem. The Fourier Slice Theorem, [26], provides a
convenient way to model the collected data. Let f:R3? — C. We are interested in
a specific 2D slice of f, where the slice operator is defined by

S31h) (u, v) = h(p, v, 0). (4)
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Observe that S35 reduces the dimensionality of f to R2.

Remark 2.1. Our use of generic variables in (4) is intentional. Theorem 2.3
(Fourier Slice Theorem), which is foundational to many SAR image recovery al-
gorithms, considers the slice operator in the Fourier domain (with h := ¢ in the
theorem). We later apply (4) in the physical domain for the volumetric SAR recon-
struction using 2D filtered backprojection (see Section 3.2.2).

We will also make use of the following definition:

Definition 2.2. Let B be a rotational change of basis. The function g = fz is a
rotation of f about the origin so that S3[g] = S3[fg] is the 2D slice of interest. The
corresponding inverse rotation B~! is defined such that if g = fz, then gg—1 = f.

Finally, we define the integral projection operator that projects f onto R? by
integrating out the third dimension as

o0

B3] (. v) = / B, v, )€, (5)

Theorem 2.3 relates (3), (5), and (4) in the context of the rotational change of
basis B and provides the foundation for the filtered backprojection algorithm.

Theorem 2.3 (The Fourier Slice Theorem). Suppose we are given k and  in (2),
§(k) in (3), P} in (5), and S3 in (4). Let B be an arbitrary rotational change of
basis given in Definition 2.2. Then the slice S3 of g is the 2D Fourier transform,
F2, of the projection Ps of gg, i.e.

S3[g8] = F? o P3[gg]. (6)

Proof. Due to the rotation property of Fourier transforms, [18, Appendix A}, with-
out loss of generality we can let B be the identity. In this case g = gp and § = 5.
From (3) we then have

Sg[g](kzv ky) = g(kwa ky’ 0)

O

Figure 1 summarizes the implications of Theorem 2.3, which is well-known and
is used in many SAR image recovery algorithms, [17, 19, 32]. We use it here in the
development of our own algorithm by treating 2D slices of frequency domain data
as the Fourier transform of the 2D projections of the 3D spatial scene.

2.2. Data used in experiments. We use one synthetic data set (see Figure 3)
and one measured SAR data collect (see Figure 5) to evaluate our new methods
and compare their performance to established techniques. The synthetic data set
consists of a cube centered at the origin, while the measured data set is the same
model B747 data set used in [19, 32].
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FIGURE 1. A graphical depiction of Theorem 2.3.

Parameter Dataset Value
Elevation Range [—3°,3°]
Elevation Sampling 0.5°
Frequency Range [27,39]GHz
Frequency Sampling 50MHz
Bandwidth 12GHz
Center Frequency 33GHz
Azimuth Range [0°,359.9°]
Azimuth Sampling 0.1°

TABLE 1. Parameters of data sets used for experimentation.

The B747 data set is created with an asymptotic prediction code that simulates
data collections taken over multiple passes around a target of interest in a circular
flight path. All data were collected in the Ka band where a total of 13 passes are
made over the full azimuth range with elevation —3° to 3° with 0.5° spacing. Table
1 summarizes these parameters.

2.3. SAR image recovery. Our technique builds on methodology used in SAR
image formation and hierarchical Bayesian inference. In particular, our forward
problem is discretized from (3) and then modeled as

g=Fg+e, (7)

where g € CM is the SAR phase history data (PHD), e € CM is complex-valued
circularly symmetric Gaussian noise with covariance matrix %I, g € C¥ is the
image we seek to recover, and F is the (discrete) nonuniform Fourier transform
(NUFT) matrix. The d-dimensional NUFT matrix F¢ € CM®X¥ is given by

[FYnn = exp(—iDm - @n)y  Pm,dn € RY,

where p,,, are the nonuniform frequencies and g,, are the nonuniform sources. Note
that g and g may be 2D or 3D, but we are able to vectorize g and g and then
formulate F accordingly. All numerical experiments in this investigation are imple-
mented using the nonuniform fast Fourier transform library FINUFFT developed in
[3]. In (7) we assume errors corresponding to aliasing and gridding are insignificant
compared to inherent system noise.
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3. SAR imaging leveraging sequential information. The data considered in
the SAR image formation process are in general determined by the flight path of the
SAR imaging platform along with the frequency band over which data are collected.
From (7), the SAR PHD measurements g in 3D k-space at the respective equispaced
azimuth angles, elevation angles, and frequencies, are given by

(fmCOSQpCOS(pT,fmsinapCOS(pr,fmsingor), {9;0}5:17 {Qor}f:la {fm}zkzl (8)

We will denote the spacing between azimuth angles, elevation angles, and frequen-
cies as A0, Ap, and Af. We also have that the data are collected by a total of
N, = PR pulses and that each of these pulses occurs at slow time 7, ,, p=1,..., P,
r=1,..., R. In several of the techniques that follow, it may become necessary to
further partition the azimuth angles.! In such cases we consider the azimuth angles
01,...,0p to be partitioned into Ny sets ©1,...,0n, as

P P
L=10,: D) +1<p<—nb =1, N,
€] {0], N, (n—-1)4+41<p< Nan} n P (9)

An example of SAR PHD collected at three elevation angles over all azimuth angles
is given in Figure 2.

FIGURE 2. A graphical depiction of SAR PHD g (3) in k-space as
well as the partitioning of the data into Ny partitions according to
the azimuthal angle sets 0, given by (9).

Due to SAR’s specular scattering physics, the level of backscatter detected is not
only dependent on the imaging platform position, but also on the geometry of the
imaging scene. Hence the measured return from a point in the scene may have a
strong dependence on the angle from which it is viewed, i.e. the scattering is not
isotropic as suggested in the model given by (7). This issue has been addressed
using composite imaging, which mitigates the effects of this incorrect assumption
by using some weighted average, or maximum, of image approximations recovered
from different subapertures, see e.g. [12, 29, 31].

In Section 3.1 we review a composite 2D SAR imaging technique which lever-
ages the assumption that neighboring subapertures have similar support in their
sparse domain, [31]. In Section 3.2 we review a volumetric approach using a three-
dimensional analogue of the classic backprojection algorithm, [32]. These two ideas
are then fused in Section 3.3 to construct an algorithm that compares the spatial
information in neighboring imaging planes and penalizes the differences.

LConsistent with standard SAR imaging practices, it is always assumed that the data acquisi-
tion is sufficient for such partitions.
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3.1. 2D SAR imaging leveraging sequential information. We first explore
the sequential imaging approach introduced in [31]. This method seeks to recover
a 2D scene from SAR PHD gathered at a single (fixed) elevation angle ¢,.. We
will use all data g(") gathered at elevation angle o, to reconstruct the 2D scene of
interest g = g(") for any r € {1,..., R}.

To begin the image formation process, we first partition the SAR PHD data (3)
into Ny sequential subaperture bins QY), e 75}%2 so that the forward model (7)
becomes

g'gz.):fngn"'sny n=1,..., Ny,

where g,, are the optimized 2D images we seek to recover, F,, is the corresponding
NUFT for subaperture ©,,, and &,, is complex-valued circularly-symmetric Gaussian
noise with covariance matrix o2I. We note that the partitioning of the SAR PHD
is based on (9).

Though the strength of the backscatter may change as the azimuth changes, it
tends to do so continuously as a function of the viewing angle. We can therefore
expect images formed from sequential subapertures to contain similarities. It is
important to keep in mind that g is complex-valued. In this regard, when we are
discussing sparsity, it is the magnitude of g that is sparse, not the signal itself. Hence
when computing terms involving sparsity, the magnitude must first be extracted.
This can be accomplished by decomposing g,, = |g»|¥,. We then approximate the
phase of the pixels of each image using ¥,, = D (exp(iang(g,))), where D(:) =
diag(-), yielding the estimate |g,| ~ ¥2g,. Using this reasoning as well as the
assumption that the images themselves are sparse, we obtain the objective function,

[31],
Ny 2
~ . 1% ~(r)
G = argmin Z <2"ann —ay’||l + ||Qn||1>
(q1,-ang) (=1 ° 10
. 2 (10)
P ol (RN
n=1
Here G = (g1,---,9n,)T, p and v are regularization parameters and ¥,, are di-

agonal matrices containing the estimated phase at each pixel of g,. Observe that
(10) describes a compressive sensing (CS) approach, [6], coupled with a term that
leverages neighboring (sequential) information, which is designed to promote so-
lutions that are sequentially structurally similar. In particular, the assumption
here is that two sequential images, g,, gn+1, should have the same sparse magni-
tude structure. We solve (10) using the well-known alternating direction method
of multipliers (ADMM) algorithm, [4]. Once all g1, ...,gn, are recovered, a final
composite vectorized image g is formed where

g' = argmax|gy| (11)
n€[1,Ng]

for each pixel i =1,..., N.

Remark 3.1. We note that leveraging sequential information in the sparse domain
in (10) does not require use of the ¢; norm. This is because it is not the sparsity
property that is being utilized in this term, but rather the idea that the difference
should be small. This is in contrast to the #; norm used in the first term, which
is designed to promote sparsity in the underlying scene. There is an advantage to
considering sequential sparse domain information, however, as opposed to sequential
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measurement information. This is because most entries in the sparse domain will
contribute (close to) zero value, and the overall difference between neighboring
apertures can be better captured this way.

3.2. Volumetric SAR using backprojection. Now denote the SAR PHD col-
lected by N, = PR pulses over a range of N;, frequencies as

S(fmsTpr)y m=1,..., Ny, p=1,...,P, r=1,...,R, (12)

where 7, , represent slow time pulses along azimuth 6, and elevation ¢,.

In SAR imaging, the signal returns are sorted into bins corresponding to different
ranges in the spatial domain based on time of arrival. In what follows, each discrete
range bin is indexed by £ = 1,..., L, while & denotes the vector of pixel locations
in the recovered image. Here L is inversely proportional to the range resolution ¢,
[17], which is given by

C

0= 2(Np — DAS’

and c is again the speed of light.

3.2.1. 2D filtered backprojection. Filtered backprojection (FBP) is a common tech-
nique used to recover 2D SAR images, [17]. Due to the polar formatting of the
data, lower frequencies are sampled at a greater rate than higher frequencies. To
account for this, the FBP method applies a filter (e.g. a ramp function) to the PHD
before the data are processed to accentuate the higher frequency terms. The inverse
Fourier transform is then performed on the (filtered) data collected at each time
Tp,r- The resulting 1D function is then backprojected over the whole 2D domain. In
the last step these 2D images are summed together to form the final image. Algo-
rithm 1 summarizes the standard FBP algorithm for 2D SAR. A thorough analysis
of FBP for SAR imaging can be found in [14].

Algorithm 1 FBP for 2D SAR PHD

Input SAR PHD S(fm,mpr), m=1,...,Ng,p=1,...,P,andr=1,...,Rin
(12), and L range bins.
Output Image g.
Apply filter to PHD.
forn=1:Pdo
Set (€, 7p,) = Zﬁ’;l S(fm,Tp,r)exp(%XED), ¢=1,...,L.
Interpolate values of s(/, 7, ,) to a rectangular grid as si,.(x, 7p,).>
end for

~ R P
g =201 2 p1 Sint (T, Tp,r)-

2Since the range bins indexed by [ = 1,..., L typically do not align with Cartesian grid points
x, interpolation is needed to form a final pixelated image. A review of the interpolation methods
commonly used in signal processing can be found in [13].
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3.2.2. Volumetric SAR. With the 2D FBP now in hand, we proceed to incorpo-
rate information from multiple elevation angles to obtain a volumetric SAR im-
age. We begin by considering an arbitrary set of azimuth and elevation angle pairs
{(05,04)}5_,. As we will see, these pairs of angles each define a plane onto which
we will use Algorithm 1 to construct 2D slices of the 3D scene of interest g.

Let Bs, s = 1,...,5, be the 3D rotational change of basis operator (see Definition
2.2) from (z,y, z) to (x%,y., 2%) such that the z.-axis has azimuth angle 6, € [0, 27)
and elevation angle ¢, € (=%, 3] from the (z,y, z) coordinate system. Our goal is
to recover g, = S3[gp.], which is accomplished by performing Algorithm 1 for each
imaging plane using the full data set g in (3), [32]. The resulting S images are then
fused together to form the volumetric image by constructing a radial point cloud,
with the ability to interpolate this point cloud onto a Cartesian grid as desired.
As shown previously in [19, 32], this technique can consider any combination of
azimuth and elevation angles. Algorithm 2 summarizes this process.

Algorithm 2 Volumetric SAR using 2D FBP

Input SAR PHD g (3) and threshhold value cipresh-

Output Binary volumetric image g.

Generate azimuth and elevation angle pairs (65, ps) for s=1,...,5.

Initialize volumetric image g.

for s=1:5do
Derive filtered backprojection gs on imaging plane with angles 65 and ¢, using
Algorithm 1.

1 if |gs| Z Cthresh

Create g5 by thresholding g, with g, =
0 else

For each i =1,..., N such that pixel [(QS)B:l] =1, set g* = 1.
end for

Remark 3.2. Since the data can be backprojected onto as many planes we choose,
S is in some sense arbitrary. The resolution of the image is tied to the amount of
data given in (8), however. For the B747 data set (see Table 1), replaced with .1
degree spacing in elevation, the experiment used in [19] set S = 180 (corresponding
to R = 61 and P = 3600). The emphasis there was to fix the elevation to be 90°
for the purpose of height extraction.

3.3. Volumetric SAR leveraging sequential information. The objective func-
tion (10) considers inter- and intra-image information, but only for data collected
at a single elevation angle. By contrast, Algorithm 2 considers the full SAR PHD
g for azimuth angles ; < --- < 6p and elevation angles 1 < --- < @R, as given
in (8), but depends exclusively on information given by the acquired data. That
is, it does not infer any assumptions regarding the underlying volumetric image,
such as intra-image and sequential sparsity. The method in [19, 32] extends (10)
to three dimensions to include this a priori information. Since this leveraging of a
priori intra-image and sequential information in the the 3D setting inspires our hi-
erarchical Bayesian approach to the 3D SAR image formation problem, we include
it here.

In the first step, an arbitrary set of azimuth and elevation angles, given respec-
tively as ¥4, ...,%y and ¢1, ..., ¢y, is established. The goal is then to recover slices
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of the volumetric image g defined by every possible combination of these azimuth
and elevation angles, i.e.

gu,v:Sg)[gBu,v]a Uzl,...7U, U:L-~-7V7 (13)

where B, , is the rotational change of basis corresponding to azimuth rotation ¢,
and elevation rotation ¢,,.

Letting A, , be the forward operator from each corresponding slice to the full
SAR PHD g in (3), the objective function solved in [19, 32] is then given by

gu,w = arg min {”Au,vqu,v - g”; + )\1||qu,v||1

qu,v
/\2 u+1 v+1 )
+ ? Z Z H\I/?Iivquﬂ) - \I/i[—,[kqi,k||2}7

i=u—1k=v—1

(14)

where A\; and Ay are regularization parameters and ¥, , are diagonal matrices
containing the estimated phase at each pixel of g, ,. As is the case in (10), the first
term in (14) enforces data fidelity, the second term promotes intra-image sparsity,
and the third term encourages inter-image sparsity. The minimization problem
given by (14) is then solved in [19, 32] using ADMM. Once the set {gu,v}g’zvl)vz1 is
recovered, the resulting slices are fused together to form the volumetric image g.*

4. Bayesian approach to 3D SAR image formation. To make use of statistical
inversion methods as well as to quantify the uncertainty of the signal recovery, we
now cast the inverse imaging problem in a Bayesian setting. Consider the linear
inverse problem

G =FiGi+&, j=1,....J, (15)

where G;, Qj7 and f:'j are random variables defined over a common probability space,
and G; and Sj are assumed to be independent. In this framework G; represents the
unknown we seek to recover, éj are the data, F; is a known linear operator, and
&; ~ CN(0,[D(e)]™") with some noise precision vector , where again we have
D(-) = diag(-). In our technique, F; takes the form of the 2D or 3D NUFT.

By treating the data and the unknown image as random variables, we are able to
leverage hierarchical Bayesian learning methods by creating appropriate likelihood
and prior distributions to describe our data and assumptions. As such, we extend
the techniques used in Sections 3.2 and 3.3 to a Bayesian framework. Algorithms
that utilize joint sparsity given multiple measurements in an empirical Bayesian
setting were introduced in [36] and [35] for real-valued images. In [36] multiple data
acquisitions at a single time are assumed, while [35] considered a temporal sequence
of data acquisitions. Here we modify the technique coined the Joint Hierarchical
Bayesian Learning (JHBL) method in [35] to consider a spatial sequence of image
reconstructions. Analogous to the volumetric point estimate in (14), in which the
second term incorporates intra-signal information and the final term leverages the
sequential inter-signal similarities, in our JHBL approach we construct the priors
to leverage intra- and inter-image information for a more accurate point estimate
SAR image recovery. The priors are furthermore designed to be conjugate to the

3We note that (14) is modified from the point estimate derived in [19, 32] in two ways: (1)
Here we include phase extraction in the sequential difference regularization term, and (2) there g
was rotated and projected (according to u,v) before incorporating it into the objective function.
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likelihood, enabling a closed form for the posterior from which we can efficiently
sample.

We derive the general formulation for our approach in Section 4.1. In Section 4.2
we consider sequential data acquisitions along azimuth angles 6,, p =1,..., P, while
in Section 4.3 we incorporate the idea that in the volumetric image reconstruction,
data from neighboring subapertures should contain similar information.

4.1. Hierarchical Bayesian model. Following the Bayesian model in (15), let
¢ ={G; € CN:j=1,...,J} be the collection of signals we seek to recover, where
N is the number of pixels in each of the sequential images, g = {G] eCM.j=
1,...,J} is the collection of J observable measurements in the frequency (PHD)
domain, and £ is circularly symmetric additive Gaussian white noise, i.e.

1

m(e) = W exp(_gHD(a)E),

where ¢ is a realization of £. Samples of signals ¢ and data & are correspondingly
denoted as G = {g; e CV : j =1,...,J} andé:{gj eCM:.j=1,...,J}. While
we have not yet specified how the set G relates to the volumetric image g we are
seeking to recover, we assume for now that the sequential sparsity assumption holds
for the elements of G.

We proceed by recalling that Bayes’ Theorem yields

_ W(G|G7a)W(GW,:Y)W(a)W(ﬂ)W(V)
(@)

where (G, a, 8,~|G) is the posterior density function, 7(G|G, ) is the likelihood,
7(G|B, ) is the prior, and 7(ax), 7(B), w(y) are the hyper-priors. In this context
we also define the random variables A € (RT)”, B € (R*)”*" and C € (R*)”*Y
as the noise precision, the precision of the intra-image prior, and the precision of
the sequential sparsity-promoting prior, with realizations «, 3, and -y, respectively.

Sometimes called the evidence, w(é) # 0 since otherwise there would be no
observations in (15). It is, however, typically unknown so instead it is standard to
employ the relationship

(G, @, B,7|G) o 7(G|G, a)n(G|B,v)m () (B)7(v), (16)
from which we compute the right hand side, i.e. an un-normalized version of the

posterior w(G, a, ,6,7\(?). The task is then to determine each of the five terms on
the right hand side of (16), which we now describe.

(G, a, B,7|G)

)

The likelihood 7(G|G, e). From the noise model in (15) we have
J
7(GIG, @) o< [T exo {~a;1 %59, — 3,13} - (17)
j=1

The hyper-prior for the likelihood (cr). While there are many choices for the hyper-
prior on o, we choose to use an uninformative gamma prior on each a;j, 7 =1,...,J,
to maintain conjugacy and allow for flexibility regarding whether or not prior knowl-
edge of the noise precision is known. Thus we have

J
() o Ha}’”flexp{—l/aaj}, (18)
j=1
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where 7, and v, are chosen either to be in accordance with a priori knowledge of
the noise in the images or to be uninformative. Since the mode of (18) is zero when
Na < 1, values in this range promote sparsity in o, while smaller v, result in more
uninformative hyperpriors, [34].

The joint prior w(G|B,). To leverage both the sparsity assumption in the image
magnitude and sequential information, we define the joint prior as

m(G|B,7) == (G|B)n(G|v),

where 7(G|3) and 7(G|vy) are the intra- and inter-image priors, respectively.

The intra-image prior n(G|3). Sparsity is encouraged in the SAR image magnitude
by imposing a conditional complex-valued Gaussian intra-image prior on each image
pixel as

J N
W(GW)<XHHBj,ieXP{_ﬁj,i’!Jj,i’Q}y j:L...,J, iZL...,N. (19)

j=1i=1

Here each precision 3;; is a random variable. The prior in (19) is commonly em-
ployed to promote sparsity because it is conjugate for the likelihood density function
(17) and therefore results in a closed form posterior, [34]. Other sparsity promoting
priors may also be used.

The intra-image hyper-prior w(3). Since each image is expected to have a number
of relatively small-magnitude pixels, we allow the precision f3;; to vary, specifically
by using a gamma distribution

7(B) o [T TL87 " exp{-vsB;i}. (20)

j=1i=1

where 73 and vg are predetermined shape and rate parameters that are the same
for all B; ;.

The inter-image prior 7(G|vy). As in previous work, [32], we assume that the dif-
ference in magnitude of g; compared with g;_; is small for j = 1,...,J. We can
therefore employ the conditionally inter-image complex-valued Gaussian prior

J N
2
m(Gly) o H H'Yj,i exp {_'Yj,i|\11§{71,i9j71,i - \ijzgjz’ } . (21)
j=1i=1
Since the azimuth angle 6;, j = 1,...,J, is subdivided on [0, 27), we also assume

periodicity and impose g; = go in (21).

The inter-image hyper-prior 7(7y). Similar to the intra-image prior (19), we use
gamma distributed hyper-priors for each v, ; with hyper-parameters 7, and v, akin
to those in (20), i.e.

J N
m(y) o [T T exo{-vyvi}- (22)

j=1i=1
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The posterior. Combining (17), (19), (20), (21) and (22), we are now ready to
calculate the posterior density function, (16) as

(G, a, B7|G) x H [( eXP{*OéjH]'—jgj *Qj||§}) (ﬂﬂggi exp{ﬁj,i|9j,i}2}>
=1
X (H Vi eXp{ V| VI igi-1i — ‘I’figj,i|2}> (a?“_lexp{—’/aajw
i=1

N N
X (H %_lexp{—’/ﬁﬂj,i}> X (H’Yﬂ_lexp{—lfwyyi}> ]
=1 i=1
(23)

Due to the structure of (23), we can decompose 7(G, o, 3,~|@) into conditional
distributions whose modes we are able to analytically derive. Specifically, we can
update from iteration step £ to iteration step £+ 1 for each g;, «;, 35, and ;,; for
j=1...,J,1=1,...,N, as

1
g™ = (o FF+D(B7) +D (1) + D (7)) (24)
¢ ¢ ¢ OH (¢ ¢ ¢ OH (¢
( “ng]+\1/”D( ())\I,() () +\1/”D( J(+>1)\I,§+>19](+)1)
J 2
Vo + ‘fjgj(-lﬂ) _gj ‘2
(e+1) UE
o e (26)
v+ 195,
A _ "v (21)
Dt (+1)H (6+1 (1) H (6+1
vy (WD) gt g(ean

where vy41,; = 71, and yo,; = v, for ¢ = 1,..., N. The derivations of (24), (25),
(26), and (27) are provided in Appendix A. We note that (24) does not rely on any
gj', j #j', from the £+ 1 step, which increases opportunities for parallelization.

Remark 4.1. Since F; is a non-uniform Fourier transform matrix, it is not unitary.
However most of the mass in }"JH F; is concentrated near the diagonal, so following
[11] we choose to approximate F. JH Fj = I for computational simplicity. When using
this approximation is not desirable, other techniques may be employed in the g
update to avoid inverting large matrices, such as the gradient descent method, [16].

Algorithm 3 summarizes how the MAP estimate of (23) for each g;, 7 =1,...,J,
is obtained based on the update steps (24), (25), (26) and (27). Observe that each
of these parameters is updated based on the mode of its conditional distribution,
and is then fixed as updates are made on subsequent parameters.

We will employ Algorithm 3 in two different contexts for 3D SAR image recon-
struction. As described in Section 4.2, our first approach considers 2D slices of the
frequency domain data whose Fourier transforms can be interpreted as projections
of the 3D scene of interest onto the corresponding 2D plane, similar to what was
done in [19, 32]. In this case Algorithm 3 is used over sequential azimuthal angles,
{Gp}f;:l (Algorithm 4). By contrast, Algorithm 5 in Section 4.3 is performed over
volumetric images formed by 3D subapertures, i.e. where the sequenced information
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Algorithm 3 Joint Hierarchical Bayesian Learning for J sequential data acquisi-
tions (JHBL)

Input SAR PHD g from (3) and hyperparameters nq, 18, 1y, Va, Vg, V4. Define
Lmaz as the maximum number of iterations and tol as the threshold determining
convergence.

Output Collection of reconstructions G = {g;}/
hierarchical parameters «, 3, and ~.

if 2D IRB (Algorithm 4) then

G = {gp}fﬁ given by (28) and J = P/2.
else if 3D SRCI (Algorithm 5) then

G = {gn}2, according to the azimuth partitions given in (9) and .J = Ny.
end if
Initialize G() using the NUFT, set ¥(©) = ang (G(O)), and a(®) = g(0) = ~4(0) =

-1, corresponding phase ¥, and

. J
while ¢ < £,,4, or }ijl

L
4]-

g](»é_l)’H < tol do
1

G = argmaxg 7 (GIGO, a(®, 80,410, G)
WD = ang (GUHD)
oY = argmax, m (a|GEHY
Bt = arg maxg ™ (B|GUHY)
~ED) = arg max., (v|GE+D)
end while

is over partitions of the azimuthal angles {©; }] 1> (9). A composite image is then
created from these subaperture reconstructions using (30).

4.2. 2D image reconstruction with backprojection (2D IRB). In our first
approach using the JHBL method, which we denote as 2D image reconstruction
with backprojection (2D IRB), we consider g, to be the unknown image and g,
the corresponding PHD on the imaging plane with azimuth angle 6, and elevation
angle ¢ = 7.

This technique for reconstruction begins by partitioning the data g into P/2
slices,” which we denote as the 20,-plane for each p = 1,..., P/2, so that

g» = S3195,], (28)

where S3 is the slice operator defined in (4) and B, is the rotational change of basis
that rotates 6, degrees about the z-axis followed by a rotation of 7 radians about
the z-axis. The set G = {gp},f'ﬁ is then used as input to Algorithm 3, where the
2D NUFT is utilized. Given that g, and gp/, are centered on the z6;-plane and
20p/o-plane, we define go and g1 in Algorithm 3 to respectively be gp/, and g;
reflected over the z-axis. This satisfies the expectation that |g;| should be similar
to a mirrored version of |gp/2|. Then, the volumetric image g is formed from the

4We use P/2 slices instead of P slices since, in each gp, the data along both azimuth 6, and
0p1p/2 = Op + m are included.
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output G = {gp}fﬁ as

P/2

9= (P2lgul))s . (20)
p=1

i.e. backprojecting each |g,| in physical 3D, performing the inverse rotation to the
one that was originally performed on the data, and then summing the resulting
backprojections to form the volumetric image. This reconstruction process relies
on the assumption from Theorem 2.3 that each g, is a projection of the spatial
domain onto the vertical plane intersecting the origin with normal in the azimuth
direction 6,. We note that this assumption is not accurate when the scatterers in
the scene are not isotropic, [31]. We are able to demonstrate, however, that even
when anisotropic scatterers are found in the volumetric image, backprojecting the
magnitude of the two-dimensional images g,, p = 1,..., P/2, still reconstructs the
scene in a robust and predictable manner. Lastly, the resulting image g can be
thresholded according to a user-defined threshold value c;rpp to form a volumet-
ric point cloud g.. This point cloud can then be used for 3D visualization and
error estimation. It is important to note that the thresholding is done as a post-
processing step, so multiple threshold values may be tested on the same volumetric
image g with relatively little additional computational cost. The 2D IRB method
is summarized in Algorithm 4.

Algorithm 4 2D Image Reconstruction with Backprojection (2D IRB)

Input SAR PHD g ((3) for (8)) and threshold value c¢;rp-
Output Volumetric reconstruction g and point cloud g..
Partition g into P/2 slices g,, p =1, ..., P/2 according to (28).

Obtain 2D projections G = {gp}fﬁ by using G = {gp}j,’ﬁ as input to Algorithm
3.
Backproject g, according to (29) to form g.

1 if g¢* > cirB

For each i =1,..., N, set g° =
0 else

Remark 4.2. The 2D projections {gp}f:/%, obtained during the 2D TRB method
in Algorithm 4 can be used as input to other volumetric image recovery methods,

see e.g. [20].

4.3. 3D subaperture reconstruction with composite imaging (3D SRCI).
Our second approach utilizing the JHBL method, which we call 3D subaperture
reconstruction with composite imaging (3D SRCI), partitions the frequency domain
data into J subapertures according to the sets ©; in (9). The sequential sparsity
assumption holds for the J volumetric images g; formed using the partitions of the
data G = {9;}]-1-

With the data partitioned, we then perform Algorithm 3 using the 3D NUFT,
which results in the collection of J volumetric images G = {g; }le. Each of these
3D images describes the entire scene of interest, but the strength of anisotropic
scatterers in each image is affected by the azimuth angles in ©;. Analogous to
the 2D approach given in (11), we mitigate this issue by constructing a composite
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image, [29, 31],
g' = arg max ‘g;‘ (30)
J
for each pixel i = 1,..., N. As with the 2D IRB method in Algorithm 4, the final
point cloud g. is formed by thresholding g in (30), in this case to some threshold

value csrer. Multiple threshold values may again be tested for the same volumetric
image g. The 3D SRCI process is summarized in Algorithm 5.

Algorithm 5 3D Subaperture Reconstruction with Composite Imaging (3D SRCI)

Input SAR PHD g ((3) for (8)) and threshold value c¢srcr.

Output Volumetric reconstruction g and point cloud g..

Partition g into J subapertures g;, 7 = 1,...,J, according to the azimuthal sets
@j in (9)

Obtain 3D reconstruction G = {g;}7_, by using G= {g;}7_, as input to Algo-
rithm 3.

Perform the composite imaging step according to (30) to form g.

1 if g' > csrer

0 else ’

For each i =1,..., N, set g° =

A couple of comments are in order:

o In addition to a point estimate for each g;, j = 1,...,J, our method recovers
a MAP estimate for the precisions of the likelihood and both priors. This
information may be used in lieu of (30) to form the final volumetric image,
and will be considered in future investigations. In this regard, the technique
developed to despeckle SAR from composite sub-aperture data in [12] may be
useful.

e Following the discussion regarding composite imaging (30) used in the 3D
SRCI (Algorithm 5), one might wonder why composite imaging is not incor-
porated into the 2D IRB (Algorithm 4). This is because the set of images
{gp}f/ ? reconstructed using JHBL (Algorithm 3) are projections of the volu-
metric image onto different imaging planes. Thus if g were to be calculated
via composite imaging, i.e.

g' = argmax [(Pillgyl)sn |+ i=1. N,
p

the volumetric image would be incorrectly comprised of high-valued intensity
streaks rather than the properly formed local regions of high-valued intensity
resulting from (29).

5. Numerical experiments. We now provide some numerical examples to eval-
uate our methods. While there is no consensus on which error metric best captures
the efficacy of 3D SAR imaging, there is precedent for using the modified Hausdorff
distance (MHD), [15], for comparable 2D and 3D SAR image formation and data
fusion, [21, 24, 32, 37]. Hence we use that here and note that other error metrics
may also be useful.

The MHD between two point clouds S and 7T is given by

MHD(S,T) = max(d(S,T),d(T,S)), (31)
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where

1
d(S.T) = 32 dsT),  d(s,T) = min s — ¢,
sES
and Ny and N; represent the number of points in S and 7, respectively. When
thresholding the reconstructed images, for ease of interpretability we choose to use
a dB scale, where dB is the decibel unit of measurement. In this scaling the dB-
scaled values of a given vector f are

fas = 20log;, (”flnf) . (32)

We also restrict the domain according to the alias-free extents given in [32].

The rest of this section is organized as follows: Section 5.1 establishes the various
parameters used for each numerical experiment. Sections 5.2 and 5.3 analyze the
ideal case, respectively for synthetic and measured data, for which there is no added
noise. In each experiment we calculate and compare the MHD based on various
dB threshold values determined by (32). Section 5.4 considers the more realistic
scenario where the PHD is affected by additive white Gaussian noise. We compare
results using the 2D IRB and 3D SRCI techniques for different signal-to-noise ratio
(SNR) levels. Section 5.5 evaluates both techniques using a sub-sampled data set
with no additional noise, and we compare these results to those obtained in [32].

5.1. Selection of parameters. With respect to parameters, for our experiments
using the 2D IRB approach (Algorithm 4) we have N = 40401, M = 6266, and
J = 1800. We also use a volumetric imaging cube with 201 equispaced gridpoints
in each dimension, and 1800 imaging planes. By contrast, for our experiments
using the 3D SRCI approach (Algorithm 5) we have N = 8120601, M = 313300,
and J = 36. In this case the data are partitioned according to 36 equally-sized
azimuth sets, and the spatial 3D imaging cube contains 201 equispaced gridpoints
in each dimension. The image reconstruction sizes N for both the 2D IRB and 3D
SRCI methods are chosen based on computational feasibility, as are the subaperture
sizes in the 3D SCRI approach. The parameters for both types of experiments are
summarized in Table 2.

Recalling the discussion following (18) regarding the selection of hyperparame-
ters, when using Algorithm 3, we set the hyperparameters to be

Na =15, mg=mn,=05, and vy=vg3=v,= 1073,

We also set the maximum number of iterations, £,,4., and threshold that determines
convergence, tol, in Algorithm 3 to be

lmar = 10 and  tol = 1072,

We evaluate the utility of the JHBL approach in the noisy regime by also consid-
ering reconstructions formed using the MAP of (17), which we call the maximum-
likelihood estimate (MLE), in lieu of the MAP of (23) that is calculated using
Algorithm 3. That is, we compare using just the likelihood density function to
using the full posterior density function. This allows us to analyze the effects of the
intra- and inter-image priors, (20) and (22), in the presence of noise. When recon-
structing the volumetric images in this way, we replace Algorithm 3 with the MLE
in Algorithm 4 or Algorithm 5, in which case we refer to these modified techniques
as MLE (in contrast to JHBL) methods.
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Parameter | 2D IRB (Algorithm 4) | 3D SRCI (Algorithm 5)
Image Size 201 x 201 201 x 201 x 201
Data Size 241 x 13 x 2 241 x 13 x 100

Data Partitions 1800 36

TABLE 2. Sizes of the inputs and outputs of Algorithm 3 for our
numerical experiments.

Finally, we note that the computational cost of each method heavily depends
on the NUFT algorithm used. In particular the 3D SRCI technique requires a
much larger NUFT transform than the 2D IRB method. The value of P in (29)
also contributes significantly to the computational requirements of the 2D IRB
method, as the backprojection step of Algorithm 4 involves rotating a 3D image
and interpolating the result to uniform grid points.
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FiGure 3. Different views at various dB thresholds of the 3D re-
construction of the synthetic cube data set in the ideal case; ground
truth point cloud is displayed in black. The threshold values cho-
sen to best demonstrate reconstruction quality.

5.2. Reconstruction from synthetic data. We first evaluate the 2D IRB and
3D SRCI techniques on the synthetically generated Fourier data (using the NUFT,
[3]) from a hollow cube centered at the origin. The cube is 15 cm in length, the
sides of the cube are 1 cm thick, and the length of the imaging domain is 70 cm
in each direction.® To accurately approximate the integral transform and avoid the
inverse crime, we generate the data with the cube centered on a voxelized grid with
grid size 301 x 301 x 301. All other parameters are consistent with those in Table
1.

Figure 3 displays the 2D IRB and 3D SRCI reconstructions of the cube in (A)-
(D) and (E)-(H), respectively. We see from (A)-(B) and (E)-(F) of Figure 3 that the
reconstruction from the 3D SRCI technique (Algorithm 5) tends to more sharply

5Due to how the data are generated the units in this example are arbitrary and are chosen to
remain comparable with the B747 data set.
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define edges of the cube, while the 2D IRB method (Algorithm 4) neither captures
the edges nor the corners of the cube as well thus supporting the hypothesis that
composite imaging for anisotropic scatterers yields better resolution. This is also
observed in the first two panels of Figure 4, which show cross-sections of the 2D
IRB and 3D SRCI reconstructions of the cube before any thresholding occurs. From
the last panel of Figure 4, it also appears that the 3D SRCI technique results both

in a lower global MHD value as well as a wider dynamic range in this ideal case of
no added noise.
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FIGURE 4. Cross-sections of the (left) 2D IRB and (middle) 3D
SRCI reconstructions of the cube data set with no additional noise.
(right) MHD values at various dB threshold values when either
technique is used on the cube data set with no additional noise;
the minimum MHD value calculated for the 2D IRB method is
0.7017cm, and for the 3D SRCI, the minimum MHD is 0.6014cm.

. P - -
027 a2 02 ;
P -

03 ° e o 3 ° e o
%2 0z 01 0 01 oz 02702 %3 0z 01 o o1 oz 02702

. x(m) yim . xm) yim

(A) 2D IRB, (B) 2D IRB, (c) 2D IRB, (p) 2D IRB,
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FicURE 5. Different views at various dB thresholds of the 3D re-
construction of the B747 data set with no added noise; ground
truth CAD model is displayed in black.

5.3. Reconstructions from measured data. Figure 5 displays reconstructions
of the B747 with no additional noise using the 2D IRB and 3D SRCI techniques.
Observe in the 2D IRB (Algorithm 4) reconstructions (A)-(D) that the tail of the
plane is poorly resolved. The tail is particularly difficult to resolve without the
benefit of composite imaging because it is an anisotropic scatterer, and the signal
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does not persist across all viewing angles. Consistent with what we already observed
in the synthetic data case, Figure 5 (E)-(H) show that using the 3D SRCI (Algorithm
5) approach significantly helps to mitigate this issue.

Figure 5 shows that the both the 2D IRB and 3D SRCI techniques can identify
and isolate persistent scatterers in the original scene, such as the engines of the
plane, while the 3D SRCI is able to detect weaker scatterers, such as horizontal
stabilizers in (E)-(F). Figure 6 displays cross sections of the reconstructed B747
data set in the left and middle panels using the 2D IRB and 3D SRCI techniques,
respectively, where the structures of the wings and the horizontal stabilizers are
much clearer in the middle as opposed to the left panel. Observe in the right panel
of Figure 6 that, as in Figure 4, the 3D SRCI approach achieves a smaller global
MHD value as well as a larger dynamic range.

-
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FIGURE 6. Cross-sections of the (left) 2D IRB and (middle) 3D
SRCI reconstructions of the B747 data set with no additional noise.
(right) MHD values at various dB threshold values when either
technique is used on the B747 data set with no additional noise;
the minimum MHD value calculated for the 2D IRB method is
1.832cm, and for the 3D SRCI, the minimum MHD is 1.440cm.

5.4. Noise study. For given SAR PHD with additive complex-valued circularly
symmetric Gaussian noise, we calculate the signal-to-noise ratio (SNR) as

12
where p is the mean of the magnitude of the data, and o is the noise standard
deviation. Note that the SNR is also written in terms of decibels, and this is
not to be confused with the decibel scaling adopted in (32). We now evaluate
our techniques in both high (= 0dB) and low (=~ —24dB) SNR environments.
This compares to the B747 data set used in [19, 32], where the noise was given
as standard deviation values of 0.1 and 1, respectively. We evaluate the MHD at
various threshold values for each noise value tested.

2D IRB (Algorithm 4) | 3D SRCI (Algorithm 5)
MLE JHBL MLE JHBL
Cube, High SNR | 0.7281 0.6774 0.5925 0.5222
Cube, Low SNR 0.6820 0.6408 0.5542 0.5570
B747, High SNR 1.868 2.150 1.354 1.401
B747, Low SNR 2.728 2.882 1.357 1.369

TABLE 3. Minimum MHD (cm) achieved across tested dB thresh-

olds.
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dB dB dB dB

(A) 2D IRB, (B) 3D SRCI, (c) 2D IRB, (p) 3D SRCI,
Cube, High SNR Cube, High SNR B747, High SNR  B747, High SNR

() 2D IRB, (F) 3D SRCI, (@) 2D IRB, (1) 3D SRCI,
Cube, Low SNR  Cube, Low SNR B747, Low SNR B747, Low SNR

FIGURE 7. Threshold value vs. MHD for the cube (left) and B747
(right) data sets comparing the 2D IRB and 3D SRCI for both the
JHBL and MLE approximations. (top) SNR ~ 0 dB; (bottom)
SNR =~ —24 dB. In all plots, the dashed blue lines are the MLE
MHD values, while the solid red lines are the JHBL. MHD values.
In all cases, it is straightforward to infer the rest of the character-
ization of the MHD values by continuing the trends in (A)-(H).

FIGURE 8. Slices of the (left) MLE and (right) JHBL reconstruc-
tions of the B747 with SNR of —30 dB using the 3D SRCI approach.

Table 3 displays the minimum MHD values achieved for the 2D IRB and 3D SRCI
algorithms using either JHBL (Algorithm 3) or replacing it by the MLE. While
comparable minimum MHD values are obtained regardless of whether the MLE or
JHBL is used, the 3D SRCI method tends to outperform the 2D IRB technique at
both noise levels. Figure 7 provides further insight. Here we observe that JHBL
typically yields a larger dynamic range than MLE reconstruction does. A larger
dynamic range is beneficial in applications such as automatic target recognition
(ATR), since a wider distinction between target scatterers and background noise,
and clear separation between distinct scatterers, may lead more accurate target
classification, [23, 28, 38]. Figure 8 shows a cross section of the MLE and JHBL
reconstructions of the B747 at low SNR, highlighting this distinction.

Using the 3D SRCI approach, we are able to maintain data fidelity at even lower
SNR values. Figure 9 shows slices of the 2D IRB and 3D SRCI reconstructions (both
using JHBL) of the B747 with an SNR of approximately —34 dB. Observe that while
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em

FIGURE 9. Slices of the (left) 2D IRB and (right) 3D SRCI recon-
structions of the B747 with SNR of approximately —34 dB. Note
that for interpretability, the threshold dB scale is different for each
figure.

the outline of the hull of the plane is barely visible in the 2D IRB reconstruction,
the front and back of the plane as well as the engines are clearly visible when using
the 3D SRCI approach.

5.5. Sub-sampled data. As our final experiment we consider the case where the
acquired data are noise-free but sub-sampled. In particular, data are given in a
smaller bandwidth with lower frequency and azimuth sampling rates (see Table 4).
The data sizes and partitions used in the sub-sampled case are adjusted accordingly
(as well as for computational feasibility), with the resulting parameters displayed
in Table 5. The same numerical experiment was performed in [32] using (14) (also
see footnote there), where a minimum MHD value of 3.78cm was reported.

Parameter Sub-sampled Value
Elevation Range [—3°,3°]
Elevation Sampling 0.5°
Frequency Range [31,35]GHz
Frequency Sampling 150MHz
Bandwidth 4GHz
Center Frequency 33GHz
Azimuth Range [0°,359.9°]
Azimuth Sampling 0.3°

TABLE 4. Parameters of sub-sampled data set used for experimen-

tation.

Parameter | 2D IRB (Algorithm 4) | 3D SRCI (Algorithm 5)
Image Size 201 x 201 201 x 201 x 201
Data Size 27 x 13 x 2 27 x 13 x 30

Data Partitions 600 40

TABLE 5. Sizes of the parameter inputs and outputs for Algorithm

3 for the sub-sampled data experiments.

Figure 10 shows the results of using the 2D IRB and 3D SRCI techniques in the
sub-sampled data case. Both the 2D IRB and 3D SRCI techniques are still able
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Ficgure 10. Different views at various dB thresholds of the 3D
reconstruction of the B747 sub-sampled data set using our recon-

struction techniques with no additional noise added; ground truth
CAD model is displayed in black.

to recover key features of the B747. The 3D SRCI method in particular is still
able to separate scattering from the nose, tail, and engines when the threshold is
set high enough. As expected, we observe that sub-sampling causes a loss of fine

feature information in the reconstruction, such as the tail in (C)-(D) and the nose
and engines in (E)-(H).

MHD (om)

FIGURE 11. Cross-sections of the (left) 2D IRB and (middle) 3D
SRCI reconstructions of the sub-sampled B747 data set using the

parameters in Tables 4 and 5. (right) MHD values at various dB
threshold values.

Figure 11 shows cross-sections of reconstructions of the B747 using the sub-
sampled data set (no additive noise), as well as MHD values plotted at different dB
thresholds. The minimum MHD value calculated in the 2D IRB case is 2.405cm,
while the minimum MHD using the 3D SRCI technique is 1.442cm. Thus we see
that in the MHD metric, the methods developed in this investigation outperform

the technique in [32] in this sub-sampling experiment. Indeed, it does not appear
that the MHD values differ significantly in the sub-sampling case.

6. Conclusion. This investigation develops a new 3D SAR imaging technique that
leverages joint sparsity using hierarchical Bayesian modeling. The method has the
advantage of both enabling the learning of hyper-parameters as well as efficient
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composite reconstruction. By using standard SAR imaging assumptions and em-
ploying appropriate conjugate priors, we are able to build a posterior from which
we can analytically derive modes of the conditional distributions.

The 2D IRB and 3D SRCI techniques both enable high-fidelity reconstructions
of synthetic and measured data in noisy environments, while also yielding a higher
dynamic range when compared to methods that employ an MLE estimate, that
is, those that do not leverage the sequential joint sparsity. While both approaches
perform well in low SNR environments, the 3D SRCI technique yields a lower MHD
when compared with the 2D IRB approach at all noise levels tested. The 3D
SRCI method is also able to maintain data fidelity at a lower SNR, and it tends
to produce a larger dynamic range when compared with the 2D IRB method. We
hypothesize that this is mainly because the composite imaging helps to further
mitigate the effects of the faulty assumption regarding isotropic scatterers beyond
using sequential joint sparsity. Finally, we evaluated our new techniques in the sub-
sampled regime and again found that both methods outperform previously designed
algorithms.

Future work will focus on evaluating our approach for various levels of under-
sampling in the azimuth, elevation, and frequency domains. We will also leverage
the Bayesian nature of our method to quantify the uncertainty we hold in our
reconstruction and explore how this information can be used in the volumetric
reconstruction process as well as downstream processing tasks, such as coherent
change detection and interferometry.

Appendix A. Derivation of the JHBL updates. Here we derive several of the
update steps given by (24), (25), (26), and (27) that are used in Algorithm 3. Since
the updates for «, 3, and ~ are similarly obtained, we only include the derivation
for the a update step.

A.1. The G update. Let G = {gj} _, in Algorithm 3. To make parallelization
possible, we choose each g; update to depend on the g_; vectors from the previous
update step,®

g]('é—i_l) *&I‘gﬂl&XTf(gﬂg_J, (4)7/6(@)77“)) ) ] = 17"'7<]' (33)

gj
From (23) the probability density function in (33) yields

N
. 2
(919"}, 0,89, 4O o< exp {~al? | Fig; - g3} % (Hexp {=819:.] })
=1
N ¢ ‘ 2
YH H
X (HeXp{ )“I’ ; (ll,i_\lj;,i) gj,i’ })
1=1
N 2
(O)H OHH 4
X (HG‘XP{ ’Y]Jrl Z|\Ijj’b) 95,1 — \Ilgill J(J211| })
=1
uexp( 9i'5g; + o gl Fig; + of gf Fi' g,

g \I,u)D( <e>> wOTGO | g pryl D( <z>) w1y,

6The negative subscript refers to all similarly-named variables with subscripts other than the
one indicated, in this case g_; = {g;» : j' =1,...,J, j/ # j}.
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¢ ¢ OH (¢ OH (¢ ¢ OH
+g/ 0D ('7y(+)1> e+ gD (71(421) v, 93‘)
o exp((g; — 9)"=(g; - 9)),
where D(-) = diag(-) and
¢ ‘ ¢ ¢
2 =aFF5+D(8) +D (%) + D (7).
_ _ ¢ . ¢ ¢ OH (¢ ¢ ¢ OH (¢
=37 (a7, 90D () WAL 490D (0 )
Equivalently, we have
¢ e
7 (95191, a9, 8,40 ~ CN (g, =), (34)
and since (34) is complex Gaussian, the mode is also given by g.

A.2. The «a, 8, and v updates. Since « is only present in (17) and (18) and
each «; is conditionally independent from a_;, for the o update in (25) we have

J
j=1

which is maximized by maximizing each = <0¢J,|g§€+1)>7 j=1,...,J. In this case,

from (23) we have

¢ ¢ P\ pe—
T (Otj|gj(- ﬂ)) x aé\/l exp (—ajH]:jg](- R g; ‘2 Oz;-7 ! exp(—vaq;). (35)

Since the distribution in (35) is continuous, the maximum is obtained simply by

(“‘1)) = 0. In this regard, observe that
2
_ ,,a>
2

solving %w (aj|g-
J
MAna—1 e+1) A |12
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d +1 M + Na — 1 Y/ ~
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Setting the right hand side to zero yields

day; oy

N Na +M—1
j: 2.
+1) A
Vo + H}—j9§ = —9gj ‘2

The B and ~ updates in (26) and (27) are similarly derived.

Distribution Statement A. Approved for public release: distribution unlimited.
PA Approval #: [AFRL-2023-3703].
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