
1.  Introduction
Earth's continents are important for understanding many Earth processes. They contribute to the evolution of the 
biosphere and climate via the negative feedback between atmospheric CO2 concentration and terrestrial silicate 
weathering which acts to stabilize Earth's climate on geologic timescales (J. C. Walker et al., 1981). The composi-
tion of the continental crust is key to understanding crust formation and evolution, as it informs the mass-balance 
constraints on the relative roles of processes such as arc and rift magmatism, fractional crystallization, relam-
ination, delamination, and erosion (Alonso-Perez et al., 2009; Grove et al., 2003; Hacker et al., 2011; Kay & 
Kay, 1993; Keller et al., 2015; Liu et al., 2001). In addition, crustal composition directly informs our understand-
ing of the partitioning of Earth's overall budget of major and trace elements, including inorganic nutrients such as 
phosphorous which are critical for the surface biosphere (T. Walker & Syers, 1976), and heat-producing elements 
like K, Th, and U which influence the thermal stability of the crust (Mareschal & Jaupart, 2013).

Many previous studies have attempted to estimate the composition of Earth's crust. Perhaps the most widely cited 
review, and the estimate of the composition of the continental crust that is most widely used today, is that of 
Rudnick and Gao (2014), shown beside other estimates in Figure 1. Estimates of Earth's upper crustal composi-
tion can use surveys of surface compositions, but estimates in the lower crust must rely on indirect data (Rudnick 
& Gao, 2014). The seismic properties of the Earth's crust and present-day surface heat flow are the physical 
observations most often used to inform estimates of the composition of the deep crust.

Such estimates are possible because a rock's composition influences its seismic properties (Behn & Kelemen, 2003; 
Christensen, 1996). However, this relationship is not unique. Very different compositions can have similar seismic 

Abstract  Due to the inaccessibility of Earth's deep interior, geologists have long attempted to estimate the 
composition of the continental crust from its seismic properties. Despite numerous sources of error including 
nonuniqueness in the mapping between composition and seismic properties, the corresponding uncertainties 
have typically been estimated qualitatively at best. We propose a Bayesian approach that uses mineralogical 
modeling to combine prior knowledge about the composition of the crust with seismic data to give a posterior 
distribution of the predicted composition at any location, combined with a Monte Carlo simulation to estimate 
the average composition of the Earth's crust. Our approach yields an estimated composition of 59.5% silica 
in the upper crust (90% credible interval 58.9 %–60.1%), 57.9% in the middle crust (90% credible interval 
57.2%–58.6%), and 53.6% in the lower crust (90% credible interval 53.0%–54.2%). Our estimate exhibits less 
compositional stratification over depth and a more intermediate composition in the upper and middle crust than 
previous estimates. Testing our approach on a simulated crust reveals the importance of prior assumptions in 
estimating the composition of the crust from its seismic properties, and suggests that future work should focus 
on quantifying those assumptions.

Plain Language Summary  The composition of the continental crust is important for understanding 
Earth's evolution on global and regional scales. We build on previous work estimating Earth's composition 
with a new approach using Bayesian statistics, where prior information from rocks sampled at Earth's surface is 
combined with information from seismic properties to estimate Earth's crustal composition at depth. To connect 
seismic properties and compositions, we model the seismic properties of rock compositions. Our approach 
provides rigorous uncertainty estimates for crust composition at depth. By quantifying the sources of this 
uncertainty, we are able to propose a path forward for future work to further improve compositional estimates 
for Earth's crust at depth.
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properties, and a single composition can have different seismic properties 
depending on formation conditions, alteration or cracking, and the current 
temperature and pressure conditions of the rock.

Estimates using seismic properties use one of two approaches to manage this 
inherent nonuniqueness: either the implicit incorporation of prior knowl-
edge (Christensen & Mooney, 1995; Rudnick & Fountain, 1995), resulting 
in a single composition estimate without uncertainty, or exclusion of prior 
knowledge (Behn & Kelemen, 2003; Hacker et al., 2015), resulting in a wide 
range of possible compositions with no estimate of their relative likelihoods. 
Implementation of both approaches usually lacks a rigorous statistical frame-
work, instead using a variety of relatively ad-hoc algorithms to match seismic 
properties to compositions.

Hacker et al. (2015) is one approach which is agnostic to prior information. 
They identify the most mafic and felsic compositions that could possibly 
form the middle and lower crust, producing wide boundaries of possible 
crust composition but no guidance for identifying what within those bounds 
is most likely. At the other extreme, Rudnick and Fountain  (1995)identify 
overlapping bands of seismic properties for each composition they consider 
for the lower crust. They implicitly incorporate prior information when 
choosing from among the multiple compositions which match the seismic 
data, where they use qualitative ideas about which compositions are more 
likely to occur at depth. For a full review of existing approaches, see Huang 
et al. (2013).

In many previous approaches, prior knowledge is incorporated into esti-
mates of the crust's composition at depth via observations of exposed rocks 
and assumptions about which exposures are representative of compositions 
at depth. Although these assumptions add valuable information to the esti-
mates they produce, their qualitative nature makes it difficult to determine 
the extent to which they influence the resulting estimates. Because results 
using prior knowledge are able to estimate narrow ranges of compositions 
compared to the wide range of compositions allowed by the seismic prop-
erties (Hacker et al., 2015), we infer that the prior influences the accuracy 
and precision of resulting estimates. Our method allows us to interrogate 
the extent to which prior assumptions determine resulting composition 
estimates.

Some attempts have been made toward a probabilistic approach to this problem. Sammon et al. (2022). use a 
distribution of surface exposed granulite terrains and xenoliths in the Southwestern United States as the range of 
possible compositions at depth in the region, and use a probabilistic framework to compare the modeled seismic 
properties of those granulites to the seismic properties of the crust. However, the distribution of surface granulites 
was not treated as a true prior distribution, nor was the relationship between this prior and the resulting estimate 
formally expressed.

Bayesian statistics provides a formal approach for combining uncertain knowledge with uncertain observations, 
exactly the problem we face in estimating the composition of the deep crust. We begin by assuming that compo-
sitions at Earth's surface provide a prior for the compositions we might find at depth, and combine that prior with 
seismic data describing the deep crust to form estimates of crust composition. Our approach addresses the limi-
tations of previous work by providing an estimate of the composition of the crust with meaningful uncertainty, 
and by providing a way to explicitly include prior information or assumptions about the composition of the crust.

In Section 2 we provide a general overview of our approach, including how we formulate crust composition esti-
mates as a Bayesian problem. We then provide details on each key step of our approach in Section 3, including 
tests we did to compare the robustness of our approach to key methodological choices. Finally, in Section 4 we 
present our results along with their geologic implications.

Figure 1.  Previous estimates of weight % SiO2 in the continental crust to 
40 km depth. Upper, middle, and lower crust boundaries are the average 
boundary depths from Crust1.0 Laske et al. (2013). Upper, middle, and 
lower crust estimates are shown for Rudnick and Fountain (1995) (purple) and 
Rudnick and Gao (2014) (orange). The most felsic and most mafic models for 
the middle and lower crust found by Hacker et al. (2015) are in green; they do 
not model the upper crust. The depth-composition relationship of Christensen 
and Mooney (1995) is shown in blue. The high and low weight % SiO2 bounds 
of Behn and Kelemen (2003) are shown in yellow; they do not estimate surface 
composition. The results of this work (gray histograms) are shown for the 
upper, middle, and lower crust (specific depth of layers depends on location). 
Our results are shown using a surface distribution (narrower distribution, 
reflective of seismic information and prior knowledge about compositions 
exposed at the surface) and an uninformative prior (wider distribution, 
reflective of seismic information alone).
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2.  Problem Formulation: A Bayesian Approach
Using the Bayes rule, the posterior distribution of compositions 𝐴𝐴 ℙ

(
𝑐𝑐𝑙𝑙|𝑠𝑠𝑙𝑙

)
 at a location l with seismic properties 

𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 is:

ℙ
(
𝑐𝑐𝑙𝑙|𝑠𝑠𝑙𝑙

)
=

ℙ
(
𝑠𝑠𝑙𝑙|𝑐𝑐𝑙𝑙

)
ℙ
(
𝑐𝑐𝑙𝑙
)

ℙ
(
𝑠𝑠𝑙𝑙
)� (1)

This formulation illuminates the centrality of the two sources of information that will drive the discussion in 
much of this paper: first, the relationship of a composition to its seismic properties, and second, the prior distri-
bution 𝐴𝐴 ℙ

(
𝑐𝑐𝑙𝑙
)
 .

The physical properties 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 could include any property of the crust measurable from the surface. Since they 
are readily modeled from surface measurements of wave arrival times (Pasyanos et al., 2014; N. A. Simmons 
et al., 2021), here we consider seismic properties, specifically the pressure wave velocity (Vp), the ratio of pres-
sure to shear wave velocity (Vp/Vs), and the density (ρ). We note that Vp is the seismic property most commonly 
used to predict composition (Rudnick & Gao, 2014), while Vp/Vs can differentiate between rock types with similar 
Vp (Christensen, 1996), and has been used along with Vp to predict composition with crust seismic properties 
(Hacker et al., 2015; Holbrook et al., 1992).

This framework allows the use of any distribution, either empirical or theoretical, of compositions as a prior. 
Here, we use the distribution of compositions observed at the surface, collected in the Earthchem database 
and compiled by (Keller & Schoene, 2012) as the prior distribution of compositions in the upper, middle, and 
lower crust. Since the same processes of magmatic differentiation are responsible for the compositional diversity 
of crustal rocks both at the surface and at depth, features of the surface distribution can inform us about features 
of the distribution of compositions at depth (Alonso-Perez et al., 2009; Grove et al., 2003; Keller et al., 2015). 
For example, the relative scarcity of intermediate igneous rocks compared to mafic and felsic rocks, a widely 
observed phenomenon sometimes called the Daly Gap (Chayes, 1963; Daly, 1925; Dufek & Bachmann, 2010; 
Keller et al., 2015; Keller & Harrison, 2020), is present in our prior (Figure S1 in Supporting Information S1).

Some previous investigations use databases of rocks limited to those thought to originate in the lower crust to esti-
mate lower crustal composition (Huang et al., 2013; Rudnick & Fountain, 1995). The exclusion of many surface 
compositions is supported by arguing based on geological evidence that some rocks found at the surface are 
unlikely to make up most of the crust at depth. To test the effect of this assumption, we compare our results using 
the Earthchem prior to results using a prior from Huang et al. (2013) (Figure S1 in Supporting Information S1).

Figure S2 in Supporting Information  S1 shows the major data products and key computational steps of our 
proposed approach. The process begins with the calculation of the empirical prior distribution from a large data-
base of igneous and metaigneous rocks (Keller & Schoene, 2012), which we resample to correct for sampling 
biases. We then model the seismic properties of each composition 𝐴𝐴 𝐴𝐴𝐴  in the prior (Figure S3 in Supporting Infor-
mation S1) using the thermodynamic software Perple_X at temperature and pressure conditions θ, described 
below, and porosity and exhumation conditions Φ, described in Section 3.3:

𝑓𝑓𝑠𝑠

(
𝑐𝑐; 𝜃𝜃𝜃Φ

)
� (2)

The parameters θ and ϕ are important because of the dependence of seismic properties on a rock's current temper-
ature and pressure and on physical alteration since the rock's formation, including porosity and exhumation. For 
temperature and pressure, included in θ, we use estimates based on geotherms, discussed further in Section 3.3. 
Unlike θ, Φ includes parameters which affect seismic properties but which are not well constrained across the 
crust, including porosity and exhumation. Our choices for these parameters, including a sensitivity analysis, 
are discussed further in Section 3.3. For simplicity, we drop the parameters θ and Φ when writing 𝐴𝐴 𝐴𝐴𝑠𝑠

(
𝑐𝑐
)
 in the 

remainder of this paper.

We formulate the likelihood 𝐴𝐴 ℙ
(
𝑠𝑠𝑙𝑙|𝑐𝑐𝑙𝑙

)
 through a noise model between the observed properties 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 and the modeled 

properties 𝐴𝐴 𝐴𝐴𝑠𝑠

(
𝑐𝑐𝑙𝑙
)
 , where increasing differences between 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 and 𝐴𝐴 𝐴𝐴𝑠𝑠

(
𝑐𝑐𝑙𝑙
)
 result in decreasing likelihood described by 

𝐴𝐴 𝐴𝐴
0⃗,Σ

(
𝑓𝑓𝑠𝑠

(
𝑐𝑐𝑙𝑙
)
− 𝑠𝑠𝑙𝑙

)
 , derived in Section 3.4. The properties of the crust, 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 , include its seismic velocities and density 

and are provided by the SPiRaL and Litho1.0 models (Artemieva, 2006; Laske et al., 2013; N. A. Simmons 
et al., 2021).
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Implicit in the comparison of modeled seismic properties to the properties of the crust is the assumption that aver-
aging of seismic properties and compositions is commutative. That is, we assume that the average seismic proper-
ties of a volume of crust, which is the aggregate of many compositions, is the same as the seismic properties of the 
average composition of that volume of crust. A reasonable assumption is that this holds for randomly or uniformly 
mixed compositions, where mineral modes are mixed through a heterogeneous section of crust similarly to the 
way they are spread through a homogeneous composition which itself is formed of mixed minerals. However, 
there are two common cases where it may not hold. First, at some pressures, temperatures, and compositions, 
different mineral modes may be present and stable in two separate compositions than if those compositions were 
mixed. Second, some patterns of heterogeneity might themselves induce different seismic behavior; for exam-
ple, the repeated layering of compositions with different wave speeds. As in previous investigations, our work 
assumes that composition averaging is commutative, but future work could explore the limits of this assumption.

Since there is no analytical solution for the posterior 𝐴𝐴 ℙ
(
𝑐𝑐𝑙𝑙|𝑠𝑠𝑙𝑙

)
 at each location, we use rejection sampling to sample 

from the posterior distribution (Smith & Gelfand, 1992) (Section 3.5). Using samples from location-specific 
posterior distributions, we use a Monte Carlo simulation [gp]for to calculate our global mean composition esti-
mate (Section 3.6). We first randomly select N uncorrelated locations on Earth's continental crust. We sample a 
composition from the posterior at each location and compute the average of these samples. Repeating this process 
provides the empirical distribution of estimates of the global average crustal composition for each crustal layer.

Because our approach is analytical, we are able to test it by estimating the composition of a synthetic model of 
Earth's crust with a known true composition, as well as testing with a variety of priors. We find that the accuracy 
of the composition estimate of the simulated crust depends on the prior distribution and the amount of seismic 
variables used. The latter of these observations illustrates the impact of the Bayesian likelihood, while the former 
illustrates the importance of the Bayesian prior. Improving either improves the quality of our estimates.

3.  Methods
3.1.  Defining a Prior Distribution

We use a dataset compiled by Keller and Schoene (2012) from Earthchem, an online geochemistry database 
(http://portal.Earthchem.org/), as the surface composition distribution. The dataset contains 68,696 samples with 
major element compositions, lithology, and sampling location. We reduce the spatial and temporal biases of the 
original database using weighted resampling, where each sample is weighted in inverse proportion to its spatial 
and temporal distance from other samples. We sample according to these weights and add Gaussian noise to each 
resampled composition. Details are provided in Text S1 in Supporting Information S1, and spatio-temporal distri-
butions before and after resampling are shown in Figure S9 in Supporting Information S1. Resampling decreases 
biases, but is not effective in places with very few samples, for example, Antarctica and much of western Africa. 
Despite these biases, the dataset provides a measure of the relative probability of all major rock types observed 
on the surface.

The major element composition 𝐴𝐴 𝐴𝐴𝐴  includes the 10 most common oxides in the crust, namely, SiO2, TiO2, Al2O3, 
FeO, CaO, Na2O, K2O, H2O, and CO2. We limit 𝐴𝐴 𝐴𝐴𝐴  to these major elements because they control the mineral 
composition and so the seismic properties of a rock.

We use the distribution of Earthchem samples because we believe that the distribution of rocks at the surface 
are informative of the rocks found at depth. However, a reasonable alternative might be to assume that a dataset 
of rocks exhumed from deep within the crust are better representative of the middle and lower crust. To test the 
impact of this assumption, we use the Huang et al. (2013) distribution as an alternative prior. Another reasonable 
alternative, which we do not test here, could be to assume the mean crust compositions of upper, middle, and 
lower crust from previous experiments, and to use prior distributions adjusted to center at those average composi-
tions. Using different priors in the upper, middle, and lower crust could also be used to produce crust composition 
estimates that align with theories of density-driven compositional stratification.

A final option, for those interested in understanding what the seismic data alone can tell us about the crust, is to 
use an uninformative prior, which is a common tool in Bayesian analysis. It provides a result dependent only on 
the likelihood. Because of the Monte Carlo step in the method presented here, a flat composition distribution is 
not an uninformative prior, since the global average composition result will be biased toward the center of even 
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a uniform prior. Instead, we use a Gaussian mixture model to produce a distribution of random priors, where the 
distribution of prior means is uniform, as an uninformative prior within the bounds of the distribution of prior 
means, here 51.27%–68.69% SiO2. These bounds likely limit our lower crust estimates, since we see probability 
densities clustered around the lower bound in our average compositon estimates (Figure 5) (The reverse may 
be true in the upper crust in our synthetic test, see Figure 6). This limitation could be resolved by using a more 
flexible model to create the uninformative prior. Even given the limitation, our results on the uninformative prior 
provide a meaningful estimate of what seismic information alone can tell us about crust composition.

3.2.  Crust Datasets

To apply the methodology used here to the Earth's crust, we need a set of global datasets describing its seismic 
properties. In selecting these datasets, we consider several features. Wherever possible, we wanted to use models 
of crust properties derived from seismic data, not models of crust type, to avoid relying on existing  models of 
crust type and composition. This rules out the widely-used Crust1.0 (Laske et al., 2013; Mooney et al., 1998), 
where seismic properties are assigned according to crust age and tectonic setting where seismic constraints 
are unavailable. The seismic properties should also not be assigned according to assumptions about compo-
sition at depth, because this is in fact what we are trying to learn. This prevents us from using the Vp data 
from Litho1.0, which is derived from Litho1.0's modeled Vs using constant Vp/Vs ratios from Crust1.0 
(Pasyanos et al., 2014). Despite its being informed by Crust1.0 crust type assumptions, we use density from 
Litho1.0, since crust density estimates are required for the Perple_X seismic modeling employed in our 
investigation. Future work could explore alternative modeling approaches to avoid this dependency on a density 
dataset. Our interest here is in global crust properties, including global averages, so we do not use available 
high-quality, high-resolution regional seismic models, although our methodology could be applied to those 
datasets to estimate regional compositions. We use the SPiRaL seismic model for Vp and Vs (N. A. Simmons 
et al., 2021) (Figure S5 in Supporting Information S1), which fits the above criteria.

The seismic datasets we use divide the crust into three layers. The layer depths in SPiRaL are inherited from 
Crust1.0. These divisions may obfuscate more complex compositional stratification within the crust, which 
some higher resolution regional datasets could reveal. Our approach could be extended to consider more crust 
layers, but would need to be adapted to efficiently handle many layers.

Litho1.0 reports a measure of model uncertainty, while SPiRaL does not. The uncertainty provided by 
Litho1.0 is powerful because it can be propagated through estimates of other properties, including the compo-
sition estimation proposed here. However, because only one of the datasets we use provides uncertainty estimates, 
we do not propagate seismic dataset uncertainty here, although it could easily be added to future work.

We use the thermal TC1 model of Artemieva (2006) as our model of crust geotherms. The TC1 model is derived 
from borehole heat flow measurements, where they are available, combined with thermal models extending to 
areas where direct measurements are not available. The TC1 model is the most spatially limited of the three 
data models used here, lacking coverage of the continental shelves and limiting the extent of our composition 
estimates.

3.3.  Modeling the Seismic Properties of Compositions

To estimate the seismic properties of a given composition, we use Perple_X, a thermodynamic software pack-
age that calculates the mineral assemblage and physical properties of any major element composition 𝐴𝐴 𝐴𝐴𝐴  at any 
temperature and pressure θ (Connolly, 2005). Perple_X has been used in previous estimates of crust composi-
tion (Behn & Kelemen, 2003; Sammon et al., 2022). To more accurately apply Perple_X throughout the crust, 
we further model the impact of metastability and cracks on Perple_X-calculated seismic properties. We denote 
as Φ all of the parameters defining a rock's porosity and exhumation, so that the modeled properties are given by 

𝐴𝐴 𝐴𝐴𝑠𝑠

(
𝑐𝑐; 𝜃𝜃𝜃Φ

)
 (Equation 2).

It is computationally intractable to model the seismic properties of each composition in the prior at every set of 
conditions θl. We therefore divide crust geotherms into 10 evenly spaced bins (Figure S4 in Supporting Informa-
tion S1, Section 3.2). We model the seismic properties of each composition 𝐴𝐴 𝐴𝐴𝐴  in the prior at 10 crust configurations 
θ. Each θ describes the geotherm (Δtemperature/Δdepth) at the center of each bin and the median crust depth 
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of all locations with that geotherm. Assuming an average crustal density of 2900 km/m 2, we can then  calculate 
crustal temperature and pressure in each bin.

Unlike θ, which includes parameters known for the crust at each location, Φ includes parameters which affect 
seismic properties but which are not well constrained across the crust, including porosity and exhumation.

Metastability is the propensity of rocks to be exhumed to conditions far from those at which they reached equilib-
rium. Metastability is an important feature of the crust, with implications for mountain building and crust strength 
(Jackson et al., 2004). Because Perple_X calculates the thermodynamic equilibrium of a given composition, it 
is incapable of modeling exhumed rocks. To model these rocks, we use the Perple_X-calculated temperature 
and pressure derivatives of the density ρ and bulk modulus κ of a rock at formation conditions A, defined by θ 
and the exhumation parameter in Φ, to estimate the properties of that rock at a different, shallower location in the 
crust with conditions described by θ (Guerri et al., 2015). We then use the temperature and pressure-dependent 
shear moduli of Holland and Powell (1998) of each of the Perple_X-calculated minerals at A to calculate the 
shear modulus of the rock at θ.

In the upper crust, where rocks are above the brittle-ductile transition, porosity introduces an additional divergence 
between an idealized Perple_X model and observed seismic properties (Rudnick & Jackson, 1995). Porosity 
has been directly observed to depths of 12 km in the Kola Superdeep Borehole, where it affects regional seismic 
studies of the upper crust (Ganchin et al., 1998). Although most locations on Earth lack superdeep boreholes, it 
is reasonable to assume that rocks in the upper crust, particularly above the brittle-ductile transition, generally 
feature cracking and pore space (Vitovtova et al., 2014). We model pore space, both dry and fluid-filled, using 
the approximations derived by (David & Zimmerman, 2011) and porosities derived from (Vitovtova et al., 2014), 
described further in Text S1 in Supporting Information  S1. Cracking, pore space, and alteration on average 
decrease the density and p-wave velocity of each sample.

In our central result, we use values at the center of possible ranges for all parameters in Φ: 5 km exhumation, a 
formation temperature of 550°C. In the upper crust, we assume there is total porosity of 0.7% (Chen et al., 2020; 
Vitovtova et  al.,  2014), with 5% of that being low-aspect ratio pore space (cracks) and alteration of 1%. We 
assume upper crust porosity is dry.

We perform a sensitivity analysis to better understand the dependence of our result on the poorly constrained 
parameter (Figure S12 in Supporting Information S1). We find that our result is somewhat sensitive to both 
exhumation depth and formation temperature, with results most sensitive to formation temperature in the lower 
crust. In the upper crust, where we assume there is porosity, we find that our result is somewhat sensitive to the 
amount of porosity, but not sensitive to other porosity parameters (Figure S7 in Supporting Information S1). The 
use of single values for the uncertain properties Φ is a limitation of our approach. A better approach might be to 
consider a distribution of possible Φ, then marginalize the resulting distribution 𝐴𝐴 ℙ(𝑐𝑐𝑐Φ|𝑠𝑠𝑠 𝑠𝑠) over Φ. This would 
require adaptations to our rejection sampling approach.

3.4.  The Likelihood

A key part of the Bayesian framework proposed here is the likelihood 𝐴𝐴 ℙ
(
𝑠𝑠𝑙𝑙|𝑐𝑐𝑙𝑙

)
 , the probability of observing seis-

mic properties 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 if the crust at that location is composed of some composition 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 .

We estimate the likelihood by assuming that our modeled seismic properties for a composition are not exactly 
the true properties of a rock with that composition in the crust, but that we can estimate the range of errors we 
expect between modeled and actual properties by looking at the range of errors between modeled and laboratory 
samples. Specifically, we model the relationship between the true seismic properties of a sample, 𝐴𝐴 𝐴𝐴𝐴  , and the 
modeled seismic properties 𝐴𝐴 𝐴𝐴𝑠𝑠

(
𝑐𝑐
)
 as

𝑠𝑠 = 𝑓𝑓𝑠𝑠

(
𝑐𝑐
)
+ 𝜖𝜖� (3)

where 𝐴𝐴 𝐴𝐴 ∼  (0,Σ) , a multivariate Gaussian distribution with parameters estimated by the difference statis-
tics between laboratory and modeled seismic properties (Vp, Vp/Vs, and ρ) for the samples described in (Kern 
et al., 1999). Σ is given in Table S1 in Supporting Information S1.

We can then formalize the likelihood 𝐴𝐴 ℙ
(
𝑠𝑠𝑙𝑙|𝑐𝑐𝑙𝑙

)
 as the probability of observing an error of a certain size, specifically
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ℙ
(
𝑠𝑠𝑙𝑙|𝑐𝑐𝑙𝑙

)
= ℙ

(
𝜖𝜖 = 𝑓𝑓𝑠𝑠

(
𝑐𝑐𝑙𝑙
)
− 𝑠𝑠𝑙𝑙

)
= 𝑓𝑓0,Σ

(
𝑓𝑓𝑠𝑠

(
𝑐𝑐𝑙𝑙
)
− 𝑠𝑠𝑙𝑙

)
� (4)

where f0,Σ is the normal pdf of the error ϵ.

To parameterize the likelihood distribution, we compare our calculated seismic properties to laboratory meas-
urements for 30 samples from (Kern et al., 1999) (Figure S10 in Supporting Information S1). We find a system-
atic bias in the errors, with the Vp errors between calculated and laboratory measurements distributed around 
Vp = 0.12, and Vp/Vs errors distributed around Vp/Vs = −0.019 (these means exclude granulite samples, for which 
the formation temperature and pressure used for the comparison are inappropriately low). This systematic bias 
has been previously described in modeling deep crustal samples (Hacker et al., 2015; Rudnick & Jackson, 1995). 
The differences are usually attributed to irreversible alteration in laboratory samples during exhumation.

To explore the source of our observed systematic error, we use the mineral modes listed for each (Kern et al., 1999) 
and the seismic property toolbox of Hacker and Abers (2004) to find a modeled estimate of the seismic proper-
ties of each sample without any error from mineralogical modeling (Figure S11 in Supporting Information S1). 
The resulting errors are similar to our systematic error using Perple_X, supporting our interpretation that the 
systematic error between Perple_X and laboratory samples is not due to incorrect mineral assemblages or 
Perple_X-specific errors but instead primarily due to alteration and cracking of the laboratory samples not 
present at depth. We therefore assume that the true distribution of errors between Perple_X-calculated prop-
erties and the true properties of a rock at depth is centered around zero. We assume that the variance of errors 
between Perple_X and laboratory properties (Figure S10) is representative of the variance of errors between 
Perple_X-modeled properties and the true properties of the same composition at depth, so we use the variance 
Σ of a multidimensional normal distribution fit to the errors between Perple_X and laboratory samples to 
parameterize f0,Σ.

3.5.  Rejection Sampling the Posterior

We use rejection sampling to sample from the posterior distribution. The general algorithm for rejection sampling 
from a distribution with pdf 𝐴𝐴 ℙ(𝑥𝑥) = 𝑓𝑓 (𝑥𝑥) is to sample from a proposal distribution with 𝐴𝐴 ℙ(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) . Each sample 
x from the proposal distribution is accepted with a probability proportional to f(x)/g(x), the ratio of the proba-
bilities of observing that sample in the proposal and target distributions. The accepted samples are equivalent to 
samples drawn from the target distribution f(x).

In this case, we are interested in sampling from 𝐴𝐴 ℙ
(
𝑐𝑐|𝑠𝑠

)
 . We use the prior distribution 𝐴𝐴 ℙ

(
𝑐𝑐
)
 as the proposal distri-

bution, so the acceptance probability for a sample 𝐴𝐴 𝐴𝐴𝐴  is proportional to

ℙ
(
𝑐𝑐|𝑠𝑠

)

ℙ
(
𝑐𝑐
) =

ℙ
(
𝑠𝑠|𝑐𝑐

)
ℙ
(
𝑐𝑐
)

ℙ
(
𝑐𝑐
)
ℙ
(
𝑠𝑠
) =

ℙ
(
𝑠𝑠|𝑐𝑐

)

ℙ
(
𝑠𝑠
)� (5)

where equation 5 is simplified using equation 1. Equation 5 can be further simplified using the fact that 𝐴𝐴 ℙ
(
𝑠𝑠
)
 is 

constant for a given 𝐴𝐴 𝐴𝐴𝐴  , so we can consider 𝐴𝐴 ℙ
(
𝑠𝑠
)
 as a normalization constant. The conditional probability 𝐴𝐴 ℙ

(
𝑠𝑠|𝑐𝑐

)
 

is the likelihood described above. We can then calculate equation  5 for each step of the rejection sampling 
algorithm, allowing us to sample from 𝐴𝐴 ℙ

(
𝑐𝑐|𝑠𝑠

)
 at any location on the crust. Algorithm pseudocode is supplied in 

Supporting Information S1.

3.6.  A Monte Carlo Algorithm for Estimating Global Average Composition

The rejection sampling algorithm described above samples points from the posterior density 𝐴𝐴 ℙ
(
𝑐𝑐|𝑠𝑠

)
 at one loca-

tion. However, we are also interested in the global average composition of the entire crust, both because it allows 
comparison with prior work that attempts to estimate global averages and because of its importance for biogeo-
chemical, petrological, and geophysical questions concerning Earth's major and trace element balance. We use 
a Monte Carlo approach, where we sample M times from each of N locations on the crust and find the distri-
bution of average compositions across locations. Critically, sampling from all available 22,530 locations would 
far underestimate the uncertainty of the global average composition, because the compositions of those 22,530 
locations are not statistically independent.

There are spatial correlations between the compositions at different locations on Earth, with closer locations 
more likely to be similar than distant locations. To estimate this correlation, we use the spatial covariance of 
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surface samples (Figure S13 in Supporting Information S1). Although there 
is no way to measure the spatial correlation of compositions at depth, it is 
reasonable to assume that correlation also exists at depth, and we assume that 
correlation at depth occurs up to the same scale as correlation at the surface. 
Because we use surface correlation to calculate regions, we may over- or 
under-estimate spatial correlation in the middle and lower crust, so we are 
less confident in our uncertainty estimates in the middle and lower crust.

In our Monte Carlo approach, instead of sampling from all available locations, 
we take the average of samples from the posterior distributions at each of N 
uncorrelated locations on the continental crust, where N is an approximation 
of the number of uncorrelated regions in the continental crust. To calculate 
N, we divide the land area of the continents, approximately 149 million km 2, 
by the area of the minimum uncorrelated scale (Figure S13 in Supporting 
Information S1), about 769.5 km 2. This calculation gives N = 252 regions.

Each Monte Carlo run then results in one global average composition esti-
mate 𝐴𝐴 ⃖⃖⃗𝐶𝐶𝑚𝑚 :

⃖⃖⃗𝐶𝐶𝑚𝑚 =

1

𝑁𝑁

𝑁𝑁∑

𝑙𝑙=1

𝑐𝑐𝑙𝑙� (6)

where 𝐴𝐴 𝑐𝑐𝑙𝑙 ∼ ℙ
(
⃗𝑐𝑐|𝑠𝑠𝑙𝑙

)
 and l iterates through the N uncorrelated locations on the 

crust. The distribution of these means provides a distribution of the global 
average crust composition. We do not currently weight the average by the 
volume of each location, which varies as crust thickness varies. Further work 
could address this shortcoming.

Larger N, or less spatial correlation, would narrow the uncertainty of 
the mean, while smaller N would have the opposite effect (Figure S14 in 

Supporting Information S1). Although N affects the uncertainty of the estimate, it does not change the center of 
the distribution of estimated crust compositions.

Because our distributions are of compositions, they are limited both theoretically and practically. The compo-
nents of each composition vector must sum to one, and each composition must appear in a sample dataset (either 
Earthchem or Huang et  al.  (2013)). This means that the silica compositions of our samples are generally 
limited to between 30 and 90 (Figure S1 in Supporting Information S1). Because of this, the posterior distribution 
for a felsic sample will have a tail toward mafic samples, but not vise versa, since there are relatively fewer felsic 
samples to make up a tail on the other side of the distribution's mode (Figure 2). The opposite is true for mafic 
samples. When sampling from many such distributions, as in the Monte Carlo approach here, the sampled results 
will be biased in the direction of the tail, which is toward intermediate samples. This effect partially explains 
the bias toward intermediate average compositions seen in our result across priors (Figure 5) and in a test on a 
synthetic crust (Figure 6). Although this effect limits the most extreme mafic or felsic composition estimates, we 
believe this accurately reflects the fact that it is unlikely that all of Earth's crust is composed of the most mafic or 
most felsic possible compositions.

3.7.  Testing Our Approach on a Synthetic Crust of Known Composition

We test our method on a simulated crust to explore the accuracy and limitations of our approach. We first calcu-
late the seismic properties of a simulated planetary crust (Guerri et al., 2015), then use our Bayesian approach to 
estimate the composition of this simulated crust. We can then compare our estimates to the true composition of 
the simulated crust. Our insights from this test allow us to propose promising avenues to reducing uncertainty and 
increasing both the accuracy and precision of crust composition estimates.

We use the estimates of Rudnick and Gao (2014) as the global average compositions for our simulated crust, 
namely, 66.6% SiO2 in the upper crust, 63.5% in the middle crust, and 53.4% in the lower crust. This choice of 
test composition allows us to ascertain whether our approach could accurately estimate the composition of a crust 

Figure 2.  Posterior distributions of predicted composition at three locations 
on a test crust, where the true composition is intermediate (a), mafic (b), or 
felsic (c), using the Bayesian model proposed here. The true composition of 
each location is shown as a dotted line. The modeled seismic properties of the 
three locations are, for the mafic location, ρ = 2,976 kg/m 3, Vp = 5.658 km/s, 
Vp/Vs = 1.585); for the intermediate location, ρ = 2,732 kg/m 3, Vp = 5.634, 
Vp/Vs = 1.532); and for the felsic location ρ = 2672 kg/m 3, Vp = 5.73 km/s, 
Vp/Vs = 1.572). The posterior distribution is 10-dimensional, since all major 
elements are included, but only silica is shown here. The prior distribution 
is shown in blue and is the same in all three panels. The uncertainty in the 
posterior distributions comes from two factors: (1) very different compositions 
can have similar seismic properties; and (2) the seismic properties of a single 
composition can vary significantly due to differences in formation conditions.
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with significant compositional stratification with depth. An additional benefit of this choice is that it allows us to 
test whether we could recover the composition of Earth's crust if the most commonly used estimate in the existing 
literature is accurate.

For each layer in the simulated crust, we randomly select N compositions from the Earthchem prior whose 
global average composition is within 0.01% of the target for that layer. Each location on Earth's continents is 
assigned a composition, with an associated geotherm from TC1 (Artemieva, 2006). Seismic properties of each 
sample are calculated as described in Section 3.3.

When using our Bayesian methodology on the synthetic crust, we use the same priors as on real data, namely, the 
Earthchem distribution of surface samples, the Huang et al. (2013) prior, and an uninformative prior. We do 
not re-estimate the distribution of surface samples, even though the upper and middle simulated crust are signifi-
cantly more felsic than the mean of the Earthchem prior and the lower crust is more mafic.

Because of the non-unique nature of the seismic data used here, our compositionally stratified synthetic test 
cannot be recovered using the same prior in all layers. This suggests that we would not be able to accurately 
estimate the true crust composition using the same prior in all layers if it is as highly stratified as the Rudnick and 
Gao (2014) estimate. This test demonstrates that the prior is an important control on our results. In Section 4.1, 
we discuss the implications of this sensitivity for interpreting the crust composition estimates of this and other 
work.

4.  Results and Discussion
We present a new estimate of Earth's crustal composition using the Earthchem prior and seismic data from the 
SPiRaL (N. A. Simmons et al., 2021) and Litho1.0 (Pasyanos et al., 2014) models (Figure S5 in Supporting 
Information S1, Section 3.2). The major element breakdown of our estimate is given in Table 1. The prior has a 
large impact on our estimate (Figure 5), with the more mafic Huang et al. (2013) prior resulting in more mafic 
composition throughout the crust. An uninformative prior (in contrast to the results from both the Earthchem 
and Huang et al. (2013)) yields an imprecise estimate. This demonstrated importance of the prior means that iden-
tifying and using a good prior is essential to an accurate estimate of Earth's crust composition. Here, we focus on 
our estimate using the Earthchem prior, because, as discussed above, we believe it to be a contain information 
about the rocks present throughout the crust. That is, while future work should absolutely consider alternative 
priors, we believe igneous and metaigneous rocks to be a reasonable starting point considering that (a) given that 
they must form at the surface, sedimentary and metasedimentary rocks are likely volumetrically secondary at 
depth and (b) may require different treatment during equilibrium thermodynamic and seismic property modeling. 
For applications where an estimate informed by seismic information alone is appropriate, we provide the major 
element breakdown of our result using an uninformative prior in Table 2.

Our approach allows us to break down results spatially and temporally, as well as to consider the global average 
composition. When we consider the composition of crust of different ages (Figure S6 in Supporting Informa-
tion S1), we find that there is a trend toward more felsic younger crust in the upper and middle crust, while lower 
crust composition is more stable over time. However, these trends are small relative to the uncertainty in crust 
composition estimate, with differences over time bins generally smaller than the width of the 90% credible inter-
val. Future work could explore which of these trends are significant and which formation processes they might 
be related to.

We show the composition of the crust over space in Figure 4. Large batholiths in the Sierra Nevada, the Andes, 
and the Himalayas are visible as felsic regions (Figure 4, panels a–c). The felsic tops (Figure 4, panel a) and 
mafic roots (panel c) of subduction arcs including Japan, New Zealand, and Indonesia are also visible. The spatial 
distribution of standard deviations (Figure 4, panels d–f), with less variance in more mafic regions, reveals that 
our uncertainty is correlated with predicted composition. This may be because the seismic properties of felsic 
rocks are less unique (which we speculate may be attributed to the relatively similar seismic properties of many 
felsic minerals and/or greater diversity in felsic magma genesis), leading to broader posterior distributions in 
those locations.

To compare our results with previous work presenting results by crust region (Christensen & Mooney, 1995; 
Rudnick & Fountain, 1995; Sammon et al., 2021), we present the breakdown of our results by category in Table 
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S4 in Supporting Information S1. We use the categories of Sammon et al. (2021), facilitating comparison to an 
estimate using a probabilistic but non-Bayesian approach. Our result is more mafic throughout all middle and 
lower crust regions, which is likely due to methodological differences. Based on the central importance of the 
prior, as demonstrated in this work, the difference in results may be due to the lack of a formal prior in Sammon 
et al. (2021).

When we consider our average crust composition estimates, we find that the middle crustal composition is 
slightly more mafic, on average, than the upper crust, while the lower crust is significantly more mafic (Figure 5, 
Table 1). This trend agrees with previous work modeling the Earth as increasingly mafic with depth; however, we 
find less variation in composition between the upper and middle crust than previous work. This less differentiated 
crust is consistent with some work arguing that seismic boundaries in the crust are the result of phase transitions, 
not compositional differences (Guerri et al., 2015).

When the same prior distribution is used for all layers of the crust, as in our work, we find intermediate average 
crust compositions in the upper, middle, and lower crust. This demonstrates that the seismic properties of the 
crust alone do not determine the composition estimates of Rudnick and Gao (2014) and other similarly stratified 
models; instead, a combination of prior assumptions about the crust and the seismic properties of the Earth 
are responsible for current estimates of crust composition. Although previous estimates do not explicitly use a 
“prior”, they still build on theories about compositional stratification to narrow down composition estimates from 
non-unique seismic data. In our Bayesian framework, evidence for composition stratification in the crust could 
be used to formulate a prior that reflects this stratification (i.e., a more mafic lower crust prior and a more felsic 
upper crust prior). This could be achieved either by using a prior in the lower crust of exclusively xenoliths and 
exhumed terraines, or by resampling a prior of surface compositions in accordance with theoretical compositional 
stratification.

Our upper crust estimate is the most different of the layers from that of Rudnick and Gao (2014), perhaps due to 
a difference in methodology. The upper crust estimate of Rudnick and Gao (2014) is derived not from seismic 
properties but from sediment averages, which may be biased by mechanical or chemical weathering processes, 
and surface exposure data, which may be biased toward cratons. Our approach, which uses in situ data about 
upper crust seismic properties to estimate composition, avoids these biases. However, using upper crustal seis-
mic properties introduces uncertainties around pore space not present in the middle and lower crust. Although 
the upper crust has some porosity, the amount and shape of pore space throughout the upper crust is poorly 
constrained (Vitovtova et al., 2014). We test our approach with a range of pore space parameterizations and find 
that increasing porosity results in more mafic estimates of upper crustal composition (Figure S7 in Supporting 
Information S1). This sensitivity to poorly constrained parameters means that we are less confident in our esti-
mate of upper crustal composition than middle and lower crustal composition. However, even an estimate with 
no porosity results in an upper crust significantly more mafic than that estimated by Rudnick and Gao (2014), 
indicating that the difference in our estimate is not only due to uncertainty stemming from porosity. Most of the 
difference appears to be due to discrepancies in the prior assumptions, as described above.

Although the major elements affect the mineral composition and seismic properties of the crust, they are not the 
only elements of interest to geoscientists. The trace element makeup of the crust is important for understanding 
its heat production and evolution (Rudnick & Gao, 2014) To that end, previous estimates of crust composition 
use correlations between major and trace elements to estimate trace element composition in the crust (Sammon 
et al., 2021). We take a similar approach, propagating trace elements defined for samples in our prior distribution 
through to the posterior distributions at each location on the crust. We can then use our Monte Carlo algorithm to 
estimate the global trace element composition of Earth's crust (Table S5 in Supporting Information S1).

4.1.  Sensitivity of Results to the Prior

We expect the composition estimate to be influenced by our prior, and we observe this in our results on the simu-
lated crust, where the estimated composition is biased toward the center of the prior distribution. In the upper and 
middle layers, where the simulated Earth's composition is more felsic than the center of the Earthchem prior 
distribution, the distribution of predicted averages is biased toward mafic compositions (Figure 6). The opposite 
is true in the lower crust, where the simulated Earth's composition is more mafic than the center of the prior. 
This illustrates a limitation of using the same prior distribution in the upper, middle, and lower crust. If there are 
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significant differences between the layers, as proposed in Rudnick and Gao (2014) and modeled in our simulated 
crust, different priors might be appropriate in the upper, middle, and lower crust.

When we use the more mafic Huang et al. (2013) prior, we estimate all three layers of the simulated crust to 
be more mafic relative to their estimates using the Earthchem prior, as seen in Figure 6. These results agree 
with prior work finding that seismic observations alone cannot constrain a precise estimate of crust composition 
(Hacker et al., 2015). The prior is therefore not incidental to the problem but a central influence on the accuracy 
of the result.

We extend our analysis of the impact of the prior by testing our simulated earth with a wide range of artificial 
priors whose means are uniformly distributed between 51.27% and 68.69% SiO2. During each Monte Carlo run, 
we use as our prior a random distribution from this family of priors. The mean of the prior affects the estimated 
crust composition, with priors with more felsic average composition yielding more felsic average crust estimates. 
At each layer in the crust, a range of priors with means around 5% of the true simulated crust composition all 
result in composition estimates close to the true composition of simulated crust (Figure  3). This insight can 
illuminate the source of the error observed in our estimates of the composition of the simulated crust. The inter-
section of the mean of the Earthchem prior and the true composition in the upper and lower crust is far from 

Figure 3.  Estimated compositions of upper (a), middle (b), and lower (c) crust of simulated crust using different randomly generated priors. Each composition estimate 
was calculated using a different prior. The mean of each prior is plotted on the x-axis, while the estimated mean crustal composition is plotted on the y-axis. Each panel 
also shows the true simulated crust composition by a horizontal line, and the mean composition of the Earthchem prior as a vertical line. The histograms shown in 
Figure S6 in Supporting Information S1 can be thought of as vertical slices through the scatter plots shown here.

Figure 4.  The results of the algorithm described here shown over space. The top panels show the % SiO2, while the bottom 
show the standard deviation of the results at each latitude and longitude. 2,975,000 samples from the posterior distributions at 
each of 2,975,000 randomly chosen locations are binned into 1° × 1° latitude and longitude bins, and the mean and standard 
deviation of silica composition in each latitude/longitude bin in the upper, middle, and lower crust are visualized.
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the band of crust estimates (Figure 3), indicating that the Earthchem prior is too far from the true composition 
of the simulated crust to yield accurate results in the upper and middle crust. In the real crust, we must rely on 
geologic understanding to ensure that our prior is ”good enough”. We interpret this dependence on the prior not 
as a weakness of our approach, but instead as a necessary effect of the non-uniqueness of seismic data. Given 
this, any method must rely on prior assumptions to narrow down the possible options. Our approach quantifies 
this effect.

We find that the uninformative prior leads to a much wider range of compositions, and a range of compositions 
which, in all layers of the crust, includes the true composition of the simulated crust (Figure 6). This is an impor-
tant check on our method, illustrating that the use of an uninformative prior provides results that include the true 
composition, even if the result is much less precise than a result using an informative prior. Even with less infor-
mation from the prior, the Bayesian approach was still able to identify differences between the simulated crust 
layers, with more mafic predictions in the lower crust than the upper and middle crust, and somewhat more felsic 
predictions in the upper crust than the middle crust.

While seismic properties alone, with an uninformative prior, can provide wide bounds on composition estimates, 
narrow composition estimates are the result of combining information from the prior with the seismic properties 
of the crust. We find that the prior distribution has a large effect on both accuracy and precision. Average crust 
composition estimates are biased toward the center of the prior, and precise composition estimates require the 
use of an informative prior. The centrality of prior assumptions in estimates of crust composition suggests that 
improving crust composition estimates relies not only on the gathering of additional physical data on the crust 
but also improved priors.

4.2.  Sensitivity of the Results to Seismic Variables

The information in a Bayesian approach comes from two sources, the prior and the likelihood. The likelihood, 
𝐴𝐴 ℙ

(
𝑠𝑠|𝑐𝑐

)
 , describes the information the model gets from the observation 𝐴𝐴 𝐴𝐴𝐴  . Using more information in the like-

lihood would make for a narrower posterior distribution 𝐴𝐴 ℙ
(
𝑐𝑐|𝑠𝑠

)
 , and ultimately a more precise Monte Carlo 

estimate of the global average composition. There are two ways to decrease uncertainty through the likelihood.

The simplest way to add information in the likelihood is to expand the seismic properties 𝐴𝐴 𝐴𝐴𝐴  . We explore the 
impact of this by estimating the composition of our simulated crust with only Vp, then with both Vp and Vp/Vs, 
and comparing the quality of those results to the result of using all three of Vp, Vp/Vs, and ρ. As each additional 
seismic variable is added, the composition estimates become closer to the true composition of the simulated crust 

Figure 5.  The composition of the crust using different priors. Panel (a) shows the result using the Earthchem prior (prior 
mean silica is 58.7%), panel (b) shows the result using the (Huang et al., 2013) (prior mean silica 52.3%), and panel (c) shows 
the result using an uninformative prior (prior means uniformly distributed from 51.3% silica to 68.7% silica). The lower crust 
estimate from the uninformative prior is artificially narrower because it is bounded below by the range of the uninformative 
prior, which is a limitation of how we designed the uninformative prior. Each empirical pdf is normalized such that its area 
sums to one. Different panels use different y-axis scales.
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Figure 6.  Estimated composition of simulated crust using three variations on the Bayesian method proposed here. Simulated crust has the same average silica 
composition as (Rudnick & Gao, 2014), shown as diamonds. Histograms show compositions from 500 Monte Carlo runs. (a) shows estimate using Vp, Vp/Vs, and ρ 
of simulated crust and using the Earthchem prior composition distribution; this is the basic method proposed here. (b) shows the result of using the more mafic 
prior composition distribution from (Huang et al., 2013), which causes composition estimates to be shifted toward more mafic compositions. (c) shows the result of 
using only Vp of the simulated crust, using the same Earthchem prior as (a), which performs worse at estimating the composition of the simulated crust. The purple 
histogram in each figure shows the distribution of crust composition estimates using the prior alone (Earthchem in (a) and (c), Huang in (b)) without any seismic 
data. In panel (d), each histogram shows the distribution of 1,000 estimates of the mean composition of a simulated crust with the true mean composition of Rudnick 
and Gao (2014), shown as diamonds. Each estimate was produced using a randomly generated prior distribution. The resulting distributions are wider, reflecting the 
uncertainty introduced by an uncertain prior.
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(Figure 6). This is a general property of a Bayesian posterior, which is always made more certain by additional 
informative observations.

The alternative to using additional seismic variables could be narrowing the noise model of modeled seismic 
properties. Functionally, this increases the penalty for compositions whose modeled seismic properties are 
further from the crust's seismic properties. However, when we explored the potential effects of this by using an 
error distribution with half the standard deviation of the actual error found in Section 3.3, we find only a minimal 
impact on the results (Figure S8 in Supporting Information S1). We conclude that more data would be a more 
productive direction for further work than narrowing the error distribution.

Two potential sources of information about the crust not used here are anisotropy and heat flow. Heterogene-
ity, aligned cracking, and platey minerals all contribute to anisotropy throughout the crystalline crust (Maupin 
et al., 2007) and may contain information about crust composition. SPiRaL, unlike previous global-scale models, 
explicitly models anisotropy by allowing the vertical and horizontal velocities of the crust to vary separately (N. 
Simmons & Myers, 2018). We do not make use of this data here, but it is an opportunity for future work. Heat 
flow, like anisotropy, is related to crust composition and has available global models (Artemieva, 2006), so its 
inclusion could also improve the accuracy of crust composition estimates.

Layer SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O H2O CO2

Upper Mean 59.5 0.901 17.3 6.53 2.88 5.39 4.14 3.24 0.0673 0.0615

5th 58.9 0.843 17.0 6.23 2.66 5.08 3.98 3.0 0.0442 0.0461

95th 60.1 0.965 17.6 6.86 3.1 5.73 4.3 3.47 0.0942 0.0806

Middle 57.9 0.975 16.1 7.16 4.46 6.56 3.6 2.13 0.719 0.379

57.2 0.906 15.8 6.82 4.13 6.23 3.46 1.93 0.633 0.316

58.6 1.05 16.4 7.49 4.81 6.88 3.74 2.34 0.813 0.447

Lower 53.6 1.07 15.6 8.26 7.11 8.21 3.15 1.21 1.1 0.68

53.0 0.996 15.2 7.94 6.59 7.88 3.01 1.04 0.971 0.582

54.2 1.16 16.0 8.58 7.59 8.51 3.3 1.39 1.21 0.779

Table 1 
Estimated Mean, Fifth Percentile of Estimates, and 95th Percentile of Estimates for Each Major Element in Each Layer of 
the Crust Using the Earthchem Prior

Layer SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O H2O CO2

Upper 5th 55.7 0.586 15.4 4.86 1.71 3.22 3.42 1.89 1.08 0.519

Median 60.8 0.835 15.6 6.25 3.19 4.75 3.67 2.8 1.42 0.642

95th 65.1 1.14 15.9 7.9 4.97 6.64 3.91 3.48 1.84 0.798

Middle 55.4 0.624 15.5 4.97 1.99 3.63 3.55 1.62 0.862 0.535

59.9 0.874 15.7 6.28 3.69 5.3 3.77 2.47 1.34 0.666

64.4 1.13 16.0 7.59 5.36 6.93 4.03 3.25 1.83 0.818

Lower 53.0 0.821 15.2 6.74 3.99 5.68 3.1 1.09 0.867 0.519

54.8 1.02 15.7 7.78 6.26 7.55 3.34 1.54 1.35 0.651

58.8 1.15 16.2 8.37 7.35 8.36 3.82 2.56 1.62 0.768

Note. The prior is limited to mean compositions between 50.27% and 68.69% SiO2, but falls off quickly outside of those 
bounds. In the lower crust, relatively large probability density at the mafic end of the distribution (see Figure 5) indicates that 
these limits may artificially constrain the more mafic end of the composition estimate.

Table 2 
Estimated Mean, Fifth Percentile of Estimates, and 95th Percentile of Estimates for Each Major Element in Each Layer of 
the Crust Using an Uninformative Prior
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5.  Conclusions
We formulate a novel Bayesian approach for estimating the composition of Earth's combination from a prior 
distribution of compositions and measured seismic data. This approach formalizes the conceptual framework 
often used in previous work, where assumptions of the relative likelihood of various compositions at depth 
informed results but lacked a mathematical framework.

We use the Earthchem distribution of surface compositions as our prior and seismic data from the SPiRaL and 
Litho1.0 models to generate a posterior distribution. We suggest that using the full range of observed surface 
compositions as a prior may provide a good first-order solution as it involves fewer assumptions than most other 
more opinionated priors. We find a more mafic upper and middle crust than previous work, likely driven by the 
intermediate average composition of our prior. Our lower crust composition estimate is similar to previous work. 
For all layers, we provide uncertainty distributions.

Using our approach, we are able to quantify the effect of using different prior distributions. We find that an unin-
formative prior results in a wide range of composition estimates, spanning the estimates in previous work, while 
a more mafic distribution of compositions from Huang et al. (2013) results in more mafic estimates. Future work 
could explore using opinionated priors that reflect theories of crustal differentiation or incorporate additional 
sources of evidence.

Data Availability Statement
The crust-composition code repository used for calculating the composition results presented here is preserved at 
https://doi.org/10.5281/zenodo.7407276, available via MIT license, and developed openly at https://github.com/
gailin-p/crust-composition-release (Pease & Keller, 2022).
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