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Quantum information technologies demand highly accurate control over quantum systems.
Achieving this requires control techniques that perform well despite the presence of decohering
noise and other adverse effects. Here, we review a general technique for designing control fields that
dynamically correct errors while performing operations using a close relationship between quantum
evolution and geometric space curves. This approach provides access to the global solution space
of control fields that accomplish a given task, facilitating the design of experimentally feasible gate
operations for a wide variety of applications.
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I. INTRODUCTION

Leveraging the power of quantum mechanics to realize novel technologies capable of performing tasks far beyond
present-day means is the central goal in the fields of quantum computing, sensing, and communication [1–5]. These
goals demand the ability to control and entangle microscopic quantum systems with unprecedented accuracy, a task
that is particularly challenging due to unwanted interactions with the surrounding environment [6]. Such interactions
cannot be removed completely through careful system engineering since some contact with the environment is necessary
in order to manipulate the quantum system. Therefore, achieving the requisite level of control requires the development
of control protocols capable of coherently manipulating the systems while simultaneously mitigating the deleterious
effects of the environment dynamically.

The fact that it is possible to drive a system with external control pulses that are engineered to produce an automatic
self-cancellation of errors due to the environment or driving imperfections, without the need for a precise knowledge of
these errors, was discovered several decades ago. This concept originated in the early literature on nuclear magnetic
resonance (NMR) [7–11], where square or delta-function pulse sequences such as Hahn spin echo and the Carr-Purcell-
Meiboom-Gill (CPMG) sequence quickly became indispensable tools for extending the coherence of nuclear spins for
a variety of applications such as magnetic resonance imaging. These techniques have been extended to more recent
contexts such as quantum information processing, where NMR sequences such as Hahn echo and CPMG have proven
effective at preserving the information stored in qubits [12–16]. These newer applications have also driven the search
for additional sequences that can more efficiently extend qubit lifetimes [17–21].

There has also been substantial progress in developing control schemes that not only remove errors but also simul-
taneously rotate the quantum state of the system in some desired way [22–33]. The analytical tractability of ideal
pulse waveforms such as delta-functions and square pulses make them attractive as building blocks in such methods.
However, the use of such waveforms can also potentially limit their applicability. This is because idealized waveforms
are experimentally infeasible in many quantum systems, where the need for ultrafast microsecond or nanosecond
control pushes the limits of state-of-the-art waveform generators to the point where these pulse shapes cannot be
reliably created, incurring large driving errors. Moreover, restricting to the use of only a few specialized pulse shapes
can lead to unnecessarily long pulse sequences that quickly run up against limitations set by additional decoherence
or loss mechanisms.

A further challenge that often arises when designing gate operations is the existence of physical restrictions on the
range of control field amplitudes. As an example, consider the case of entangling gates between spin qubits realized
through an exchange interaction (as is commonly used in electron spin-based quantum computing [34]). The fact that
such exchange interactions are typically non-negative often rules out protocols that assume the control field can be
tuned to both positive and negative values. Most NMR techniques in fact make this assumption because they are
based on time-dependent magnetic field control, where such a requirement is easily met. This problem was solved
in a series of publications [30, 32, 35] that introduced a new method known as supcode. It was shown that it is
possible to generate arbitrary spin operations while removing the leading-order errors due to both charge noise and
nuclear spin noise. This is achieved using specially designed sequences of square pulses, and it was further shown [35]
that this approach still works if the square pulses are deformed into trapezoidal shapes to allow for finite rise time
restrictions. The first experimental demonstration of the supcode sequences was performed in the context of NV
centers in diamond [36].

An additional limitation of many existing schemes for both dynamical decoupling and dynamically corrected gates
is that they are usually designed around the assumption that errors are essentially static during a gate operation.
This is often a reasonable starting point since error fluctuations, due to the environment or from waveform generators,
are frequently found to vary slowly in time compared to the time scale of the system dynamics [37–40]. However,
for quantum information applications such as quantum computing which demand an unprecedented level of control
accuracy, the fact that error fluctuations are not constant in time must ultimately be taken into account. Much has
been learned about the structure of environmental noise in a variety of qubit systems over the past decade [37, 39, 41–
49], and this information can be used to further refine error-suppressing control schemes.

This Review describes a recently developed framework for designing dynamically corrected gates that we call Space
Curve Quantum Control (SCQC). This framework relies on a geometric structure underlying the Schrödinger equation
that can be exploited to overcome limitations of existing approaches. In the SCQC method, one visualizes the evolution
error caused by noise as a geometric space curve. This curve lives in a space of operators that depends on the form of
the control Hamiltonian and on the way in which the noise affects the system. As the system evolves in time, the curve
winds through this space with constant velocity. The net displacement between the initial and final points of the curve
quantify the deviation from the system’s ideal evolution. Any dynamically corrected gate therefore corresponds to a
closed space curve, providing a global view of the solution space of robust gates. We show how one can systematically
design robust gate operations by starting from closed space curves and computing control fields from their generalized
curvatures. The general strategy is illustrated in Fig. 1. As we describe in this work, this approach can be applied to
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FIG. 1. Geometric space curves provide a general method to design quantum gates that are robust to environmental noise and
other sources of error. The evolution of a system subject to noise can be mapped onto a space curve. We can reverse engineer
this evolution by starting from a space curve and extracting the control Hamiltonian from its generalized curvatures. Choosing
the space curve to be closed yields noise-cancelling control pulses.

a variety of contexts, including the design of single- or multi-qubit gates and Landau-Zener interferometry, both for
quasistatic and time-dependent noise. Moreover, it can be combined with holonomic methods to suppress multiple
noise sources simultaneously. Space curves also provide a natural way to obtain dynamically corrected gates that
operate near the quantum speed limit. While here we focus on correcting noise errors, the method can be applied to
any situation in which reverse-engineering the evolution of a quantum system is needed.

This Review is organized as follows. In Sec. II, we show how the evolution of a driven qubit subject to noise maps to
closed space curves in two or three dimensions. We also show how to obtain time-optimal dynamically corrected gates
by finding curves of minimal length. In Sec. III, we adapt the SCQC formalism to the Landau-Zener problem in which
the energy gap at the avoided crossing fluctuates. We show that non-monotonic sweeps through the avoided crossing
can suppress noise errors while performing operations, while monotonic sweeps cannot. We also present a general
recipe for constructing closed curves of constant torsion, which are the curves that describe Landau-Zener physics. We
extend the SCQC framework to multi-level and multi-qubit systems in Sec. IV. There we present a general method
for relating control Hamiltonians to generalized curvatures, and we also give examples of dynamically corrected gates
in coupled two-qubit systems. In Sec. V, we show that pulses which cancel low-frequency time-dependent noise can
be obtained from sequences of closed curves, and we describe a systematic numerical technique for obtaining such
sequences. We demonstrate that the resulting pulses are effective in suppressing 1/f noise, a type of noise that is
ubiquitous in solid-state qubit platforms [42]. Sec. VI discusses the case of two noise sources afflicting a qubit. We
survey several approaches to designing gates that cancel both types of noise simultaneously, focusing primarily on the
recently developed “doubly geometric” approach, which combines holonomic evolution with the SCQC framework. A
discussion of the relationship between SCQC and numerical optimal control methods is given in Sec. VII, along with
some concluding remarks.

II. DYNAMICALLY CORRECTED GATES FROM SPACE CURVES

A. Resonantly driven qubit and plane curves

We begin by illustrating how the SCQC formalism works in the simplest example: a qubit driven by a single control
field and subject to stochastic noise that is transverse to the driving field axis. The Hamiltonian is

H =
Ω(t)

2
σx + εσz, (1)

where σx and σz are Pauli matrices, and ε represents a stochastic fluctuation in the energy levels of the qubit, and
Ω(t) is the envelope of the driving field. In the context of a qubit driven by a laser or by ac electric or magnetic
fields, this Hamiltonian corresponds to resonant driving in the absence of the noise error ε. This model was used to
derive many of the classic dynamical decoupling protocols, including Hahn spin echo, CPMG, etc. This can be done
by expanding the evolution operator U(t) that is generated by H in powers of ε:

U(t) =
∑

n

εnUn(t). (2)

One finds that Un(t) for n > 0 is a matrix that depends solely on the complex function

gn(t) =

∫ t

0

dt′ei
∫ t′
0
dt′′Ω(t′′)g∗n−1(t′). (3)
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FIG. 2. (a) Example of a graphical solution to the first-order transverse noise constraint g1(T ) = 0, and (b) the corresponding
driving field that implements error-suppressed evolution. The opening angle ∆θ of the curve in (a) determines the angle of
rotation ϕ of the gate operation, the length of the curve is the duration of the pulse, and its extrinsic curvature gives the driving
field shown in (b). (c) Several curves satisfying the first-order error cancellation condition with different values of ∆θ and (d)
their corresponding pulses. This figure is adapted from [50].
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FIG. 3. (a) Examples of graphical solutions to the second-order transverse noise constraint g2(T ) = 0, and (b) the corresponding
driving fields that implement error-suppressed evolution. Any closed curve with zero net area gives a pulse that cancels errors
to second order. This figure is adapted from [50].

Note that this function is defined recursively order by order, with g0(t) = 1. Removing the error at order n is
tantamount to requiring Un(T ) = 0, where T is the final time/gate duration. This in turn requires gn(T ) = 0. Our
goal therefore is to find choices of the pulse profile Ω(t) that satisfy this condition. Dynamical decoupling sequences
like spin echo or CPMG can be derived by choosing an ansatz for Ω(t) comprised of a superposition of delta-function
pulses and then solving gn(T ) = 0 to determine the times at which the pulses should be applied.

Ref. [50] showed that the constraints gn(T ) = 0 admit simple geometrical interpretations that reveal the most
general solution to this problem. The starting point is to notice that since g1(t) is a complex function, it can be
thought of as describing a curve in a two-dimensional plane spanned by Re(g1) and Im(g1). The curve starts at the
origin at t = 0 (since g1(0) = 0) and traces out a path as time evolves. In this picture, we can interpret the constraint
g1(T ) = 0 as the condition that this curve comes back to the origin and closes on itself at time T . Thus, driving fields
which cancel the first-order constraint are in one-to-one correspondence with closed curves in the plane. Furthermore,
it was shown that the opening angle of the curve at the origin determines the angle of the rotation that is implemented
by Ω(t). Examples of such curves are shown in Fig. 2(a,c). Additional examples were also presented in Ref. [51].

Driving fields which also satisfy the second-order constraint g2(T ) = 0 again correspond to curves in a two-
dimensional plane that start and end at the origin, but now they must enclose a region that has zero net area. This
follows from the observation that g2(T ) is proportional to the enclosed area. Examples of such curves are shown in
Fig. 3(a). These planar curves have a built-in orientation, and for self-crossing curves as in Fig. 3(a), this orientation
is opposite in the two loops. Thus, the areas enclosed by the two loops exactly cancel. Geometrical interpretations of
the third- and fourth-order constraints in terms of signed volumes over the plane curve were also discovered in [50].
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FIG. 4. Delta function and square pulses in the SCQC formalism. (a) A straight line that starts and ends at the origin,
retracing itself in the second half of the evolution corresponds to (b) a spin echo π pulse. (c) A straight line that starts and
ends at the origin, retracing itself multiple times yields (d) the CPMG sequence. (e) A circle corresponds to (f) a square pulse.
This figure is adapted from [50].

A remarkable feature of this geometrical framework is that the pulse shape is the curvature of the curve:

Ω(t) = ẋÿ − ẍẏ. (4)

Here, we have expressed the curve as r(t) = x(t)x̂ + y(t)ŷ, where x = Re(g1) and y = Im(g1). This formula can
be confirmed easily by computing the derivatives of g1(t) using its definition, Eq. (3). Furthermore, time is the
arc-length parameterization of the curve: ‖ṙ(t)‖ = 1. This is a direct consequence of the fact that ġ1(t) is a pure
phase. This simple relationship between plane curves and robust pulse shapes facilitates the process of producing
experimentally feasible control waveforms. Moreover, this approach provides a global view of the solution space since
any noise-cancelling pulse can be obtained from the curvature of a closed curve.

Because this framework is general, it must also include all previously known dynamical decoupling and dynamically
corrected gate sequences developed for quasi-static noise. This is indeed the case. As illustrated in Fig. 4, delta-
function sequences translate to curves that lie on a line. In the case of Hahn spin echo [7], where a single delta-function
π pulse is applied halfway through the evolution, the curve starts at the origin and extends outward linearly since
the curvature is zero. The curve turns around at the midpoint of the evolution (t = T/2) and then retraces its path,
returning to the origin at time t = T (Fig. 4(a)). At the midpoint, the curvature is infinite, which corresponds to
the delta-function pulse (Fig. 4(b)). Any other sequence of delta-function π pulses that cancels noise also maps to a
straight line, although now the line is retraced multiple times, and a π pulse is included in the sequence each time the
curve turns around. This is illustrated for a 4-pulse CPMG sequence in Fig. 4(c,d). On the other hand, sequences
based on square pulses correspond to curves comprised of connected circular arcs, since a constant pulse maps to a
curve of constant curvature. A complete circle corresponds to a square pulse that implements an identity operation
while cancelling noise to first order (see Fig. 4(e,f)). In Ref. [50], it was pointed out that, for fixed T , the pulses must
become more sharply peaked as the order of noise cancellation is increased. This finding is consistent with a theorem
proven in Ref. [30] which states that noise cancellation at arbitrarily high orders cannot be achieved with smooth
pulses. In practical implementations, however, it is typically not necessary to go beyond the first few orders in order
to achieve sufficient control accuracy.

B. Time-optimal pulses from short plane curves

The fact that in the SCQC framework the length of the curve is equal to the evolution time provides a powerful
mechanism to find the fastest possible pulses that implement operations while cancelling noise, as was first shown
in Ref. [52]. Experimental constraints on the pulse shape must be taken into account, because otherwise the fastest
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FIG. 5. (a) Curve that yields the fastest single-qubit π-rotation while canceling noise to second order and respecting the pulse
constraint |Ω(t)| ≤ Ωmax. (b) Corresponding driving pulse. This figure is adapted from [52].

pulses will be delta functions. This is because the gate time can always be reduced by shrinking the curve while
keeping its shape fixed, at the expense of increasing the curvature, and hence the pulse amplitude. Of course, in
any real physical qubit system, there will be a limit on the driving power that can be applied, and this is taken into
account by placing a restriction on the pulse amplitude:

|Ω(t)| ≤ Ωmax, (5)

for some constant Ωmax.
Geometrically, Eq. (5) imposes an upper bound on the curvature of the plane curve. The problem of looking

for the fastest pulses then amounts to searching for the shortest curves that respect this curvature bound while
also satisfying error-cancellation constraints (closed curve, zero net area) and the target rotation constraint (angle
subtended at origin). Ref. [52] solved this problem by recasting it as a variational calculus problem in which the
objective function to be minimized is the curve length, with the pulse amplitude and zero-area constraints included
with slack variables and Lagrange multipliers. The closed-curve condition is imposed through boundary conditions.
In Ref. [52], it was shown that there is a unique optimal solution to this problem corresponding to a curve comprised
of five circular arcs connected together. An example curve that yields a π rotation and its corresponding pulse are
shown in Fig. 5(a,b). Since circular arcs have constant curvature, they correspond to driving pulses of constant
amplitude, i.e., square pulses. Thus, the global time-optimal pulse is a composite square pulse. Similar findings were
also recently obtained using the Pontryagin Maximum Principle and shortcuts to adiabaticity [53, 54]. We see that
the SCQC formalism naturally provides a geometric understanding of the quantum speed limit [55–58] for a given
target operation in the presence of control field constraints.

Although these composite square pulses respect the experimental constraint of finite pulse amplitude, they are not
yet experimentally practical because they require infinitely fast pulse rise times. However, they still constitute a good
starting point for designing smooth pulses that accomplish the same tasks at speeds close to the global optimum. In
Ref. [52], two approaches to producing smooth pulses were presented: one based on smoothing the square waveform,
and one based on first applying a smoothing procedure to the curve itself before extracting the pulse from its curvature.
It was found that the latter approach provides better pulses, because it is easier to maintain the noise-cancellation
conditions if one works directly with the curve.

C. Arbitrary single-qubit gates from space curves in three dimensions

All the results described so far apply to the case of single-axis (resonant) driving, Eq. (1). In subsequent work [59],
it was discovered that additional geometrical structure hidden within the time-dependent Schrödinger equation allows
one to obtain all robust driving fields in the most general case of three-axis driving. In this case, the Hamiltonian of
a driven two-level system subject to a single source of quasistatic noise can be expressed as

H(t) = Hc(t) + δH =
Ω(t) cos Φ(t)

2
σx +

Ω(t) sin Φ(t)

2
σy +

∆(t)

2
σz + εσz, (6)

where Ω(t), Φ(t), and ∆(t) are three independent driving fields. δH = εσz is the quasistatic noise term, which is
assumed to be weak compared to the maximum amplitudes of the driving fields Ω(t) and ∆(t). Ref. [59] showed that
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the evolution operators generated by Hamiltonians of the form of Hc(t) in (6) are in one-to-one correspondence with
geometric space curves in three dimensions. The space curve is defined in terms of the integral of the interaction-
picture Hamiltonian:

∫ t

0

U†c (t′)σzUc(t′)dt′ = r(t) · σ = x(t)σx + y(t)σy + z(t)σz, (7)

where Uc(t) is the evolution operator generated by Hc(t). Any space curve in three dimensions is characterized by
two real functions known as the curvature and torsion. The curvature κ(t) quantifies how quickly the tangent vector,
ṙ(t), is changing direction at each point along the curve, while the torsion τ(t) provides a measure of how quickly
the curve is bending out of a plane spanned by the tangent vector and its derivative. In the SCQC formalism, the
curvature and torsion are determined by the driving fields:

κ(t) = ‖r̈(t)‖ = Ω(t), (8)

τ(t) =
(ṙ × r̈) · ...r∥∥ṙ × r̈

∥∥2 = Φ̇(t)−∆(t). (9)

Thus, given any space curve, the driving field Ω(t) that generates this evolution can be extracted from the curvature of

the curve. However, notice that only the difference Φ̇(t)−∆(t) is fixed by the torsion, meaning that Φ and ∆ are not
uniquely determined by the space curve. This is related to the fact that one can always transform to a frame in which

one of these fields is effectively eliminated. For example, performing a frame transformation R(t) = e−i
∫ t
0

∆(t′)
2 σzdt

′

converts the control Hamiltonian into H̃c = R†HR − iR†Ṙ = Ω
2 (cos Φ̃σx + cos Φ̃σy), where

˙̃
Φ = Φ̇ − ∆. The space

curve therefore encodes the qubit evolution up to such a frame transformation. Different evolutions that are related
by a frame transformation of this form all map to the same space curve.

The space curve r(t) contains full information about the evolution operator Uc(t). To see how to extract this

information, first write Uc(t) = R(t)Ũc(t), where Ũc(t) is the evolution operator generated by H̃c(t). This avoids

the frame ambiguity described above and allows Ũc(t) to be uniquely determined from the space curve. To see this
explicitly, parameterize the evolution operator as

Ũc(t) =

(
ei(ζ+λ)/2 cos(θ/2) −ie−i(ζ−λ)/2 sin(θ/2)
−iei(ζ−λ)/2 sin(θ/2) e−i(ζ+λ)/2 cos(θ/2)

)
, (10)

where ζ, λ, θ are all real functions of time. The tangent curve (also known as tangent indicatrix or tantrix for short)
is then given by

ṙ = U†cσzUc = Ũ†cσzŨc = − sin θ sin ζx̂+ sin θ cos ζŷ + cos θẑ. (11)

We see that two of the three functions (θ and ζ) in the evolution operator can be obtained from ṙ, while λ cannot.

However, using the Schrödinger equation for Ũc(t), we can also derive a formula for this phase in the evolution
operator:

λ = −
∫ t

0

dt′τ(t′) + arctan

(
ẍẏ − ÿẋ

z̈

)
. (12)

Thus, the full evolution operator in the original frame can be obtained from
∫ t

0
dt′∆(t′) and from data extracted from

the space curve: ṙ, r̈, and the integral of the torsion.
Notice that in Eq. (7) we defined the space curve to be the Pauli coefficients of the first-order term in the Magnus

expansion of the evolution operator in the interaction picture: UI(t) ≈ exp[−iε
∫ t

0
U†c (t′)σzUc(t′)dt′] = exp[−iεr(t) ·σ].

In the absence of noise (ε = 0) we would have UI(t) = 1. We see that this result can be recovered at the final time
t = T to first order in ε by requiring the space curve to be closed: r(T ) = r(0) = 0. Therefore, control fields that
dynamically suppress noise can be obtained by drawing closed curves and extracting the curvature and torsion. The
desired target evolution can be chosen by fixing the tangent vector at the end of the curve and by choosing the total
torsion (i.e., the integral of the torsion) appropriately. This simple relationship between space curves and robust
control fields makes the process of producing experimentally feasible pulse waveforms transparent. It is possible to
obtain smooth, dynamically correcting pulses for any desired single-qubit gate with this approach. It is also important
to point out that this constitutes a general solution to the problem: Any pulse that cancels noise corresponds to a
closed space curve.If we restrict to Hamiltonians for which Φ̇ = ∆, then the corresponding space curves have zero
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torsion. In this case, the curves lie in a plane, and we recover the SCQC formalism for single-axis driving discussed
in Sec. II A.

An example of how this geometrical structure can be exploited to design dynamically corrected gates is shown in
Fig. 6. Here, the target gate operation is one of the Clifford gates: Uc(T ) = R(−x̂+ ŷ+ ẑ, 2π/3), i.e., a rotation about
the axis −x̂+ ŷ+ ẑ by angle 2π/3. A pulse that generates this gate while canceling first-order errors can be obtained
from a closed curve that has the appropriate slope as it returns to the origin, as shown in Fig. 6(a). The control
fields extracted from the curvature and torsion are shown in Fig. 6(b). A plot of the infidelity of the resulting gate
as a function of the noise strength is shown in Fig. 6(c), where for comparison, the result for a square pulse of the
same duration is also shown. It is evident that the noise-suppressing pulse makes the operation orders of magnitude
more robust than a naive square pulse, and the slope of the log-log infidelity plot confirms that the first-order error
is cancelled.

In Ref. [59], it was also shown that second-order errors can be cancelled by designing closed curves with vanishing-
area planar projections. This is because the second-order term in the Magnus expansion of UI(t) is proportional
to

∫ t

0

∫ t1

0

[U†c (t1)σzUc(t1),U†c (t2)σzUc(t2)]dt1dt2 ∝
(∫ t

0

r(t1)× ṙ(t1)dt1

)
· σ. (13)

Each component of the integral on the right-hand side equals the area enclosed by r(t) after it is projected onto a
plane orthogonal to the Cartesian unit vector corresponding to that component. Notice that this generalizes a similar
result found for plane curves in Sec. II A. Here, we see that in the most general case of driving along two or three
axes, three areas must vanish instead of only one. An example of a curve for which all three planar projections vanish
in this way is shown in Fig. 7(a). The pulses extracted from this curve (Fig. 7(b)) perform an identity operation that
is robust to noise up to second order.
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FIG. 8. A linear Landau-Zener sweep (a) translates to an Euler spiral (b) in the SCQC formalism. This figure is adapted from
[90], which has been submitted for publication.

III. NOISE-RESISTANT LANDAU-ZENER SWEEPS THROUGH AVOIDED CROSSINGS

In addition to constructing noise-resistant pulses, the SCQC formalism can be used to design high-fidelity control
protocols that involve tuning a system close to a noisy avoided crossing. Landau-Zener (LZ) transitions [60–63]
induced by an avoided crossing are widely used for qubit operations, system characterization, initialization, and
readout [64–82]. The performance of operations that rely on avoided crossings can be degraded by noise in the energy
gap [83]. This can be an issue when driving the system through either a level crossing or an anti-crossing. In the
former case, noise fluctuations can create a small energy gap, converting the crossing into an anti-crossing and causing
unwanted LZ transitions. Similarly, in situations where the objective is to tune the system to a desired level on the
opposite side of an avoided crossing, noise can cause undesirable transitions to the other level. Noise can also lower
the fidelity in cases where anti-crossings are exploited to perform operations. Several methods have been developed to
address these issues dynamically, including composite LZ pulses [84], super-adiabatic LZ pulses [76, 85], and LZ sweeps
based on geometric phases [86–89]. However, these methods can sometimes lead to long control times, experimentally
impractical pulse waveforms, or imperfect noise cancellation.

The LZ problem is typically described by a Hamiltonian of the form H(t) = Ω(t)
2 σz + ∆

2 σx + εσx. ∆ is the energy
gap of the anti-crossing at zero bias (Ω = 0), while ε is a stochastic fluctuation in this energy. This is similar to the
Hamiltonian considered in the previous section (Eq. (6) with Φ = 0), except that the driving is now along the z axis,
while the noise is along x. This choice of basis is more natural for the LZ problem, where one typically tunes the
system energy to approach the anti-crossing. In this context, we are generally not interested in pulses Ω(t) that start
and end at zero like before, but rather the focus is on control fields with nonzero initial and final values. This can be
accounted for in the SCQC formalism by constructing curves that possess nonzero curvature at the initial and final
points. For this Hamiltonian, the curvature and torsion are given by κ(t) = −Ω(t) and τ = −∆, respectively [90]. In
terms of the geometry of space curves, two important differences arise here compared to the previous section. The
first is that here we want to allow the curvature to assume both positive and negative values since in the LZ problem,
one is generally interested in what happens when the system is swept through the anti-crossing at Ω = 0. However,
the curvature of a space curve is usually defined to be strictly nonnegative as in Eq. (8). Ref. [90] modified this
definition slightly to allow for both positive and negative curvatures. A second important difference compared to the
previous section is that here, we are interested in the case of constant ∆, which means that we must find space curves
that have constant torsion. A general procedure for carrying out this nontrivial task was presented in Ref. [90].

Ref. [90] showed that by carefully designing Ω(t), it is possible to suppress unwanted transitions caused by the
noise fluctuation ε, such that the desired state or gate operation is realized at the final time T with high fidelity. We
first discuss the case in which the avoided crossing is caused purely by noise, i.e., in the absence of noise it becomes
a crossing. A key ingredient is to notice that the original linear LZ sweep, Ω(t) ∼ t [60–63], corresponds to a plane
curve known as an Euler spiral (see Fig. 8) [91–94].

It is evident from the figure that Euler spirals do not close. However, we can combine pieces of Euler spirals together
to make closed curves, which in turn yield robust sweep profiles Ω(t). An example of such a curve constructed from
Euler spiral and circular arc segments, along with its corresponding pulse, are shown in Fig. 9. The figure also
shows the probability of an unwanted LZ transition as a function of noise strength. A naive linear sweep is included
for comparison, and it is evident that the SCQC-engineered sweep protocol performs better by several orders of
magnitude. A striking feature of the robust LZ sweep shown in Fig. 9(b) is that it is non-monotonic. Ref. [90] in fact
proved that it is impossible to cancel noise using a monotonic sweep. This is essentially a consequence of a result in
differential geometry known as the Tait-Kneser theorem. Ref. [90] also presented families of arbitrary-angle single-axis
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FIG. 9. (a) A closed curve of zero net area (blue) and an Euler spiral (orange). (b) LZ control fields obtained from the
curvatures of the curves in (a). v is the LZ velocity of the linear ramp in the geometrically engineered pulse (blue). (c) LZ
probability PLZ = |〈1|U(T )|0〉|2 versus noise strength for both pulses shown in (b). For each value of σ, PLZ is averaged over 100
instances of ε randomly sampled from a normal distribution with zero mean and standard deviation σ. This figure is adapted
from [90], which has been submitted for publication.

gates that are robust to noise up to second order.
These ideas can be generalized to the case of a nonzero gap (∆ > 0). This requires developing a technique to

construct closed curves of constant torsion, which is well known in the differential geometry community to be a
challenging problem [95]. Ref. [90] introduced a general procedure to accomplish this task. One starts by drawing a
closed planar curve, p(s) = [x(s), y(s)], that satisfies certain rotational symmetries. This is then projected onto the
surface of a unit sphere to form the binormal indicatrix b(t) of a space curve. (After projecting onto the sphere, the
binormal must be reparameterized so that t is its arc length.) The space curve can then be obtained from b(t) using
the formula

r(t) = − 1

∆

∫ t

0

b(s)× ḃ(s)ds. (14)

We can see from this formula that closure of the space curve corresponds to three vanishing-area conditions for the
three Cartesian projections of b(t). This is mathematically similar to the vanishing-area constraints on r(t) needed
for second-order noise cancellation (see Eq. (13)). In the present problem, these vanishing-area constraints can be
satisfied by building rotational symmetries into the initial plane curve p(s). Once we obtain the space curve from the
binormal curve, we can read off the driving field from its curvature. An example is shown in Fig. 10. The sweep profile
obtained from this example has rather sharp features, but these can be softened using additional curve engineering.
The figure also shows the fidelity as a function of noise strength for both the SCQC sweep and two noise-sensitive
linear sweeps. It is evident that the former performs substantially better as expected.

IV. SPACE CURVE FORMALISM FOR MULTI-LEVEL AND MULTI-QUBIT SYSTEMS

A. Control Hamiltonians from generalized curvatures

The results described above only apply for individual qubits. It is equally important to find dynamical methods
to combat noise during multi-qubit operations, which are a fundamental requirement for most quantum information
technologies. It is also necessary to develop such techniques for multi-level systems since logical qubit states always
reside in a larger spectrum of energy levels. Achieving high-precision control over the logical states requires taking
into account the states outside this subspace, as they can give rise to “leakage” errors due to population escaping
from the logical subspace.

In Ref. [96], it was discovered that a geometric structure also underlies the Schrödinger equation for multi-level and
multi-qubit systems. These more general cases have a geometric interpretation in terms of curves in higher dimensions.
A curve in any number of dimensions is described by a set of vectors called the Frenet-Serret basis vectors and by a
set of “generalized curvatures” that generalize the concepts of curvature and torsion that arise in three dimensions,
as discussed in Sec. II C. The key to extending the geometric formalism to larger Hilbert spaces is to determine how
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FIG. 10. A modified Landau-Zener sweep that cancels noise to first order in the case of a nonzero gap ∆ = |τ | > 0. (a) The
binormal vector b(s) obtained by projecting a closed plane curve p(s) (which is chosen to have certain rotational symmetries)
onto the unit sphere. (b) The space curve r(t) corresponding to the binormal curve shown on the left. (c) The pulse (blue)
obtained from the curvature of the space curve. Two different linear sweeps (orange and purple) are also shown for comparison.
(d) Process fidelity versus noise strength ε (in units of the energy gap ∆ = |τ |) for the SCQC sweep (blue) and naive linear
sweeps (orange and purple). This figure is adapted from [90], which has been submitted for publication.

these basis vectors and curvatures can be derived from a given multi-level or multi-qubit Hamiltonian. A systematic
procedure that achieves this will be described after a brief review of the Frenet-Serret basis and generalized curvatures.

A curve r(t) in d-dimensional Euclidean space defines a set of Frenet-Serret basis vectors {en}, n = 1, ..., d. As in
the single-qubit case described above, each point along the curve r(t) is labeled by the evolution time t. For each
value of t, the Frenet-Serret vectors form an orthonormal basis: em(t) · en(t) = δnm. The first vector, e1(t), is chosen
to be the tangent vector of the curve at time t: e1(t) = ṙ(t). Thus, the Frenet-Serret frame rigidly rotates with the
curve as time progresses. The orthonormality condition immediately implies that ėm · en = −em · ėn. In the case
m = n, it follows that ėn · en = 0, or in other words ėn lies in a direction orthogonal to en. In the case of the first
vector, this direction defines e2: ė1 = κ1e2, where κ1 is the magnitude of ė1. The time derivative of e2 can then be
written as ė2 = −κ1e1 +κ2e3, where the first term is included to ensure that ė1 ·e2 = −e1 · ė2 is satisfied, and where
e3 is defined to be the component of ė2 that is orthogonal to both e1 and e2. Continuing on to ė3, etc., and following
the same logic then leads to definitions of the remaining en, as well as to a set of self-consistency conditions known
as the Frenet-Serret equations:

ėn = −κn−1en−1 + κnen+1, (15)

where the κn are referred to as generalized curvatures, and e0 = 0 = ed+1. If we return to the special case of d = 3
dimensions, then we recognize κ1 as the usual curvature, while κ2 is the torsion.

If quantum evolution under the Schrödinger equation can be represented by a geometric space curve, then it should
be possible to identify a set of Frenet-Serret vectors for a given Hamiltonian and show that they satisfy Eq. (15). This
identification will in turn yield relations between the generalized curvatures and control fields in the Hamiltonian.
Consider the following Hamiltonian:

H = Hc(t) + δH, (16)

where Hc is the control Hamiltonian, and δH is a noise term. Define Q ≡ δH/|δH|, and assume that {Hc, Q} = 0.

Here, the magnitude of an operator is defined by |O| =
√
O · O, where the inner product of two operators is O1 ·O2 =
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k−1Tr (O1O2), with k the dimension of the Hilbert space. Note that if Q is a Pauli string on n qubits, then we can
always transform into a frame in which the condition {Hc, Q} = 0 holds. In this case, we would also have that Q2 = 1,
which we will assume in what follows for the sake of simplicity. Define a set of unit vectors expressed in terms of a
set of operators {An} with n = 1, ..., d:

en = U†cAnQUc, (17)

where Uc is the evolution operator generated by Hc: iU̇c = HcUc. These vectors will satisfy en · en = 1 provided An
either commutes or anti-commutes with Q (and provided An is normalized appropriately). Differentiating Eq. (17),
yields

ėn = iU†c {Hc, An}QUc + U†c ȦnQUc. (18)

It is tempting to identify the two terms in Eq. (18) with the two terms in Eq. (15). Ref. [96] showed that this can in
fact be done if the An obey the following recursion relation:

κnAn+1 =

{
i{Hc, An} if n is odd

Ȧn if n is even
, (19)

where A1 = 1. The curvatures, κn, can be obtained by taking the magnitudes of these expressions, since An has unit
magnitude. Eq. (19) thus provides a general mapping between control fields in the Hamiltonian and the generalized
curvatures. From Eq. (19), it can be seen that the An obey the following (anti)commutation relations:

[A1, Q] = 0, {A2, Q} = 0, {A3, Q} = 0, [A4, Q] = 0, [A5, Q] = 0, {A6, Q} = 0, . . . (20)

Thus, the normalization of the Frenet-Serret vectors is guaranteed.
As in the single-qubit case, the components xα(t) of the space curve r(t) are given by the integral of the tangent

vector:

d∑

α=1

xα(t)Vα =

∫ t

0

dt′e1(t′) =

∫ t

0

dt′U†c (t′)QUc(t′). (21)

The number of distinct basis operators Vα that emerge from the final integral determines the dimension d of the
Euclidean space in which the space curve resides. This in turn depends on the number of operators in Hc and on the
commutativity of these operators with each other and with Q, the operator governing the error term δH. Because
the final integral in Eq. (21) is proportional to the leading-order term in a Magnus expansion of the interaction-
picture evolution operator generated by U†c (t)δHUc(t), we again see that cancellation of the leading-order error in
U(T ) requires r(t) to be closed: r(T ) = r(0) = 0. Thus, by constructing closed curves in d dimensions, we can obtain
noise-cancelling control fields from the generalized curvatures of these curves.

Relations (19) tell us how the generalized curvatures of the space curve are related to the various terms of the
Hamiltonian. However, this does not yet constitute a general procedure for obtaining error-correcting control fields
for multi-level or multi-qubit systems. A remaining challenge is that not all curves correspond to physical control
fields. As a simple example of this, consider the case of a single qubit driven by an off-resonant pulse, as described
in Sec. II C. Here, the system is described by a curve in d = 3 dimensions with constant torsion (corresponding to
a constant pulse detuning). However, a general curve in three dimensions has a torsion that varies in time, and
so it does not describe a constant-detuning pulse. As described in Sec. III, this problem was solved in Ref. [90] in
the three-dimensional case. In higher dimensions however, a general procedure to systematically find curves with a
number of generalized curvatures held constant remains an open problem. Although we do not yet have a general
recipe, explicit examples of curves constrained in this way can still be found in special cases, as we show in the next
section.

Another important aspect of the multi-level/multi-qubit SCQC formalism that remains to be understood is how to
formulate higher-order noise-cancellation constraints. The results described above show that closed curves guarantee
leading-order noise cancellation as in the single-qubit case. In the case of a single qubit, Ref. [59] showed that second-
order noise errors are also cancelled by ensuring that the planar projections of the curve have vanishing enclosed area
(see Fig. 7). How this condition generalizes in the multi-level/multi-qubit context has not yet been worked out.

B. Noise-cancellation in multi-qubit quantum gates

In Ref. [96], it was shown that the multi-dimensional SCQC formalism described above can be used to design noise-
cancelling pulses for an important class of two-qubit problems. This class includes systems in which the two qubits
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are coupled via an Ising-like interaction, as is the case for superconducting transmon qubits in the dispersive regime
[97–102] and also for capacitively coupled or exchange-coupled singlet-triplet spin qubits in semiconductor quantum
dots [103–108]. In these cases, the two-qubit control Hamiltonian has the form

Hc =



E1 Ω(t) 0 0

Ω(t) −E1 0 0
0 0 E2 Ω(t)
0 0 Ω(t) −E2


 . (22)

Here, Ω(t) is the driving field we wish to design, while E1 and E2 are constant energy splittings. This Hamiltonian
describes two coupled qubits (where the coupling creates the difference between E1 and E2) in a situation where
only the second qubit is driven. This provides enough control to create two-qubit entanglement [98, 99]. We can
also use the formalism to derive pulses that rotate only one qubit without changing the state of the other qubit and
while also suppressing noise. This is a challenging problem for quantum processors in which the couplings are always
on [100, 101].

Ref. [96] studied the case where the two-qubit system is subject to slow noise fluctuations in the energy levels of
both qubits. In the context of superconducting transmon qubits, these fluctuations typically arise from magnetic flux
noise [109], while for semiconductor spin qubits they are caused by nuclear spin noise [45, 110]. These fluctuations
are described by the noise Hamiltonian δH = ε1 ⊗ σz. Ref. [96] showed that the evolution of the two-qubit system
can be mapped to a curve in d = 6 dimensions, with generalized curvatures:

κ1 = 2|Ω|,

κ2 =
√

2(E2
1 + E2

2),

κ3 =

√
2|E2

1 − E2
2 |√

E2
1 + E2

2

,

κ4 = 2

√
Ω2 +

2E2
1E

2
2

E2
1 + E2

2

,

κ5 =
E1E2

√
2(E2

1 + E2
2)

Ω2(E2
1 + E2

2) + 2E2
1E

2
2

dΩ

dt
. (23)

This curve must be closed in order for the leading-order error to cancel. At first glance, constructing such a curve
appears challenging because two of the five curvatures (κ2 and κ3) must be held constant, while the remaining three
depend on a single function, Ω(t). The six-dimensional curves that are relevant to this problem are thus highly
constrained, making it harder to construct examples. However, it was found that this difficulty can be circumvented
by decomposing the six-dimensional curves into two curves in three dimensions. The fact that this can be done can
be seen from Eq. (22), where the 4 × 4 Hamiltonian contains two 2 × 2 blocks. Each block can be viewed as an
effective two-level system and can thus be mapped to a three-dimensional space curve. Both two-level systems have
the same driving field Ω(t) but different “detunings”: 2E1 in the first block and 2E2 in the second. Therefore, to
obtain physical solutions, one must construct two space curves that have the same curvature and distinct but constant
torsions. Ref. [96] constructed examples of such curves by piecing together constant-torsion segments to form closed
loops. An example pair of such curves that satisfy all the necessary constraints and the corresponding pulse are shown
in Fig. 11. The resulting pulse implements a z rotation on one qubit while leaving the other qubit alone. The fact that
this pulse successfully suppresses noise at the same time is demonstrated in Fig. 12, which shows the gate infidelity
as a function of the noise strength. Ref. [96] also constructed an example of a pair of curves that yield a maximally
entangling CNOT gate. In this case, one of the two curves must exhibit a cusp at the origin, so that an x rotation is
implemented in one of the 2× 2 subspaces.

This example illustrates that decomposing a higher-dimensional curve into lower-dimensional curves can make it
easier to obey physical constraints. However, it remains to develop a systematic procedure that can be applied to
more general Hamiltonians, particularly ones that do not exhibit a block-diagonal structure like in Eq. (22), as well
as to Hamiltonians that contain more than one driving field.

V. CANCELLING TIME-DEPENDENT NOISE ERRORS

In the works described in the previous sections, it was assumed the noise is quasistatic (i.e., ε in Eqs. (1) and
(6) is constant over the duration of the pulse Ω(t)). This is a good first approximation for most qubit platforms,
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5

in each case. This means that no real 2-qubit gates can
be performed using this method, since these pulses cor-
rect against the Z1Z2 term used to create the interaction
needed for 2-qubit gates in the first place. Thus, we will
focus instead on the case where E1 and E2 differ signifi-
cantly.

To demonstrate the utility of this formalism, we nu-
merically derive a dynamically corrected gate that im-
plements a Z rotation on one qubit while canceling the
effects of noise on both qubits. One simple way of doing
so is to use a method inspired by Supcode [19] and look
for a series of square pulses which cancels errors. In three
dimensions, a square pulse corresponds to a helix, so in
the representation of the error as two 3D curves, this
will consist of piecing together sets of helices to make
two smooth closed curves, with constraints on the cur-
vatures and torsions of the helices. Specifically, all the
helices that make up a curve must all have the same tor-
sion (determined by E1 or E2). Additionally, we must
impose that both curves have the same curvature and
total length. Alternatively, in the 6-dimensional picture,
higher dimensional generalizations of helices (curves with
constant curvature coefficients) can be used. These will
be five dimensional, since κ5 is zero, due to dΩ/dt van-
ishing for a square pulse. Care must be taken for the
step function transition between different values of Ω, as
dΩ/dt becomes a delta function at these points. At these
transitions, Ω(t) can be treated as a steep constant slope
over a short interval of time ε, in the limit where ε→ 0.
In this case κ1 through κ4 will be finite, and thus will
have no effect on the curve as ε→ 0. κ5 will have a delta
function contribution, resulting in a rotation between ê5

and ê6 at the point along the curve corresponding to the
transition. The exact angle of rotation φ corresponding
to a step from Ω1 to Ω2 will be given by:

φ =

∫ Ω2

Ω1

E1E2

√
2(E2

1 + E2
2)

Ω2(E2
1 + E2

2) + 2E2
1E

2
2

dΩ. (23)

A simple way of finding closed curves of constant tor-
sion is to consider curves which are n-fold rotationally
symmetric. Then we consider one curve segment where
the Frenet-Serret frame at one endpoint is equal to the
Frenet-Serret frame at the other endpoint after having
undergone a relative 2kπ/n rotation, for any integer k
coprime to n. Any curve segment such as this will pro-
duce a closed curve when repeated n times, provided that
the displacement vector between endpoints lies within
the plane of rotation. For our numerics, we consider
3-fold symmetric curves, which amounts to choosing a
periodic pulse with period one third of the total pulse
length. Then we numerically adjust the parameters cor-
responding to the legnths and curvatures of the helices
until the conditions on the displacement vector and the
Frenet-Serret frames at the endpoints are met. Fig. 1
shows an example of a square pulse derived this way, with
E2 = 2E1. In experiments, square pulses cannot be ex-
actly performed, since pulse generators have bandwidth

0 5 10 15 20
t

1

2

3

4
Ω(t)

FIG. 2: Top: A smooth pulse implementing a Z1 gate which
dynamically cancels error to first order in δH for the Hamil-
tonian given by eq. (21). This pulse is of the form given by
eq. (24). Bottom: Error curves for the two 2 × 2 blocks of
the Hamiltonian. These are curves of constant torsion, with
torsions τ = 1 and 2 for the left and right respectively. The
curves are colored to illustrate which points correspond to
which part of the pulse in the top part of the figure.

and pulse rise-time limitations. However, we can numer-
ically search for a smooth pulse similar in shape to the
square pulse already obtained. We do this by choosing a
pulse shape of the following form.

Ω(t) = c0+
c1

1 + a2
1 sin2(πt/tp + φ1)

+
c2

1 + a2
2 sin2(πt/tp + φ2)

(24)
The form is meant to approximate a Lorentzian pulse,

except that it is periodic with period tp. The curves
can then be numerically generated, and the parameters
in Eq. (24) adjusted until closed curves are obtained.
Because we use more parameters than the dimension of
the space, solutions which produce closed curves are not
necessarily unique. If finding solutions inside a desired
parameter regime is difficult, a third Lorentzian can be
added to the pulse to allow for more parameters. Using
this method, we find the pulse and curves shown in Fig.
2. In Fig. 3, we plot the error curve in the 6-dimensional
representation of the same pulse by projecting it into two
3D subspaces. We see that it retains its 3-fold rotational
symmetry. In two of these dimensions, ~e1(0) and ~e4(0),
the curve covers much more distance than in the other
four.

By looking at each 2 × 2 block in the block-diagonal
matrix individually, we can use the same method as with
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0 5 10 15 20
|E2|t

0.5
1.0
1.5
2.0
2.5
(t)/|E2|

FIG. 1. Top: a square pulse sequence implementing a Z1 gate
that dynamically cancels error to first order in the noise strength
ε for the Hamiltonian given by Eq. (26). Bottom: error curves
for the two 2 × 2 blocks of the Hamiltonian. These are curves of
constant torsion, with torsions −2E1 and −2E2 = −4E1 for the
left and right, respectively. They are comprised of helices, and
are colored to demonstrate which part of the curve corresponds
to which part of the pulse in the top part of the figure.

the Frenet-Serret frames at the endpoints are met. In
Fig. 1 we show an example of a composite square pulse
derived in this way for the case E2 = 2E1. This rela-
tion between E1 and E2 corresponds to setting the drive
frequency to

ωd = ω2 + η − λZZ . (29)

From Fig. 1, we see that the pulse duration is tpulse ≈
23/|E2|, which is the time at which the crosstalk and
noise effects are removed. Therefore, tpulse should be cho-
sen to equal the desired idling time. For this particu-
lar example where |E2| = 2|E1| = |λZZ |, we have tpulse ≈
23/|λZZ |. For |λZZ | = 10 MHz, this corresponds to tpulse ≈
360 ns. This timescale can be adjusted by changing the
ratio E2/E1 and by changing λZZ through its dependence
on the tunable frequency ω2 [see Eq. (23)]. The latter
amounts to rescaling the curves and, hence, the pulse
amplitude.

In experiments, square pulses cannot be exactly per-
formed, since pulse generators have bandwidth and pulse
rise-time limitations. However, we can numerically search
for a smooth pulse similar in shape to the square pulse
sequence already obtained. We do this by choosing a pulse
shape of the form

�(t) = c0 + c1

1 + a2
1 sin2(π t/tp + φ1)

+ c2

1 + a2
2 sin2(π t/tp + φ2)

. (30)

The form is meant to approximate a Lorentzian pulse,
except that it is periodic with period tp . The curves can then
be numerically generated, and the parameters in Eq. (30)
adjusted until closed curves are obtained. Because we use
more parameters than the dimension of the space, solu-
tions that produce closed curves are not necessarily unique.
Uniqueness is not essential here since all we need is a
solution providing dynamical decoupling, and the fact that
there may be other solutions is not a problem. If finding
solutions inside a desired parameter regime is difficult, a
third Lorentzian can be added to the pulse to allow for
more parameters. Adding more parameters should sim-
plify the process of finding a possible solution as long as
we do not insist on unique solutions; however, the shape
of the resulting pulse will be more complicated as more
parameters are used. Using this method, we find the pulse
and curves shown in Fig. 2. The parameter values used
to produce these results are given in Table I. The total
pulse time is tpulse = 3tp ≈ 21.3/|E2|. In Fig. 3, we plot

FIG. 2. Top: a smooth pulse implementing a Z1 gate that
dynamically cancels error to first order in the noise strength ε

for the Hamiltonian given by Eq. (26). This pulse is of the form
given by Eq. (30) with parameter values shown in Table I. Bot-
tom: error curves for the two 2 × 2 blocks of the Hamiltonian.
These are curves of constant torsion, with torsions −2E1 and
−2E2 = −4E1 for the left and right, respectively. The curves are
colored to illustrate which points correspond to which part of the
pulse in the top part of the figure.

010341-7

FIG. 11. Designing pulses for two-qubit gates using the multi-qubit SCQC formalism. Two closed 3-dimensional curves of
constant torsion are shown on the left. The curves are colored to illustrate which points correspond to which part of the pulse,
Ω(t), they generate (right). This figure was adapted from [96].
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in an identity operation. Thus, the total two-qubit oper-
ation will be a CNOT or CZ gate, respectively, up to a
phase difference between the two blocks. In Fig. 4 we
show an error-correcting pulse produced by this method
that implements the gate

R =

⎛

⎜
⎝

0 −i 0 0
−i 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎠ . (33)

This gate is equivalent to a CNOT gate up to a single-qubit
Z1 rotation.

In order to demonstrate that these pulses do properly
correct against error, we numerically calculate the infi-
delity of the gate using the full noisy Hamiltonian for noise
strengths ε ranging across several orders of magnitude.
We plot the resulting infidelity versus the noise strength
in Fig. 5. We define infidelity as |U − R|, where U is the
noisy gate and R is the ideal gate (in this case Z1). We see
that the infidelity scales as the square of the noise strength,
indicating that the gates cancel error to first order in ε.
In the case where |E2| = |λZZ | = 10 MHz, the infidelity is
reduced by 2–3 orders of magnitude for noise strengths in
the range 10–100 kHz. Thus, the geometrically designed

FIG. 5. Infidelity versus noise strength ε (solid blue curve) for
the pulses shown in Fig. 2 (top) and Fig. 4 (bottom). The dashed
lines show linear and quadratic scaling with noise strength for
comparison. It is clear that the gate infidelity is consistent with
quadratic scaling, indicating that first-order noise errors have
been canceled.

pulse indeed corrects against noise while suppressing the
unwanted ZZ coupling, as expected.

IV. CONCLUSION

We show how to generalize the geometric formalism
for producing dynamically corrected single-qubit gates to
multiqubit systems. Like the single-qubit case, the cumu-
lative first-order error can be represented as a curve in
Euclidean space. Distance along the curve corresponds to
the elapsed time from the beginning of the pulse, and the
amplitudes of the driving fields can be related to the curva-
ture coefficients at each point on the curve. Critically, using
these curvature coefficients circumvents the need to evalu-
ate the time-ordered exponential of the Hamiltonian, which
in general cannot be done analytically except in very spe-
cial cases. We present equations that show how to calculate
these curvature coefficients in terms of the time derivatives
and commutators of the noiseless and error Hamiltonians.
We use this formalism to derive pulses that simultaneously
suppress crosstalk and dephasing noise in qubits coupled
by always-on Ising interactions. Such residual interactions
are a common nuisance in both superconducting qubits and
semiconductor spin qubits. Specifically, we give examples
of pulses that implement single-qubit gates and multiqubit
entangling gates, and we demonstrate that these pulses can-
cel first-order noise errors by computing the infidelity of
the gate as a function of the noise strength.

While this formalism provides a good starting point for
deriving dynamically corrected gates for multiqubit sys-
tems, there are still several challenges. In particular, it is
usually the case that only a few terms in the Hamiltonian
can be controlled dynamically. In this case, we need to
restrict to the subset of curves that produce Hamiltonians
of the desired form. This issue arises when the number of
control fields is less than the number of generalized cur-
vatures, in which case we need to find curves for which
some of the generalized curvatures remain constant. Note
that this is an issue even in the single-qubit case if only
one control field is present. In this circumstance, one needs
to restrict to closed curves of constant torsion. How to do
this in general for multiple curvatures is an important open
question for future work.
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FIG. 12. Infidelity versus noise strength of the pulse shown in Fig. 11 (solid blue curve). The dashed lines show linear and
quadratic scaling with noise strength. It is clear that the gate infidelity is consistent with quadratic scaling, indicating that
first-order noise errors have been canceled. This figure was adapted from [96].

including superconducting transmon qubits, trapped ions, and semiconductor spin qubits. However, in reality the
noise possesses a slow time-dependence, and this can become important if the goal is to achieve very high control
precision, as is necessary to reach quantum error-correction thresholds [111]. This motivates extending the SCQC
formalism to the case of time-dependent noise. This was done in the case of single-qubit gates in Ref. [112].

Consider the general scenario in which a qubit couples to a bath with many degrees of freedom, so that the
Hamiltonian is

H(t) =
Ω(t)

2
σx ⊗ 1 + λσz ⊗B + 1⊗HB , (24)

where Ω(t) is the control field and σα (α = x, y, z) are Pauli matrices acting on the qubit. The operators B and
HB only act on the environmental degrees of freedom and represent a generic quantum bath. The second term is
the qubit-bath interaction with coupling strength λ. This interaction induces pure dephasing and is responsible for
decohering the qubit. The goal is to design control pulses that implement quantum gates while dynamically decoupling
the qubit from the bath. If the bath degrees of freedom fluctuate slowly compared to the gate time, then this problem
can be recast in terms of a stochastic noise parameter ε as in Refs. [50, 52, 59]. However, if the bath fluctuates during
the gate, then this will give rise to additional errors that cannot be eliminated using the methods of Refs. [50, 52, 59].
These errors are quantified by the leading-order gate infidelity [112]:

1−F ≈ 1

3

∫ ∞

−∞

dω

2π
S(ω)F (ω, T ), (25)

where S(ω) is the noise power spectrum (the Fourier transform of the two-point correlation function 〈B(t)B(t′)〉 of
the bath operators), which quantifies how much noise is present at frequency ω. F (ω, T ) ≡ |f(ω, T )|2 + |f(−ω, T )|2
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is called a filter function, where

f(ω, T ) ≡
∫ T

0

dtei[φ(t)−ωt], (26)

and φ(τ) =
∫ τ

0
dtΩ(t) is the integral of the pulse. The similarity of this expression for f(ω, T ) to the noise-cancellation

constraints in the case of quasistatic noise, Eq. (3), suggests that there is an underlying geometric framework in the
case of time-dependent noise too. This is indeed the case, as will now be shown.

The leading time-dependent noise error will be suppressed if the integral in Eq. (25) is small. This in turn requires
F (ω, T ) to be small whenever S(ω) is large. The task then is to find pulses Ω(t) so that F (ω, T ) exhibits this
property. In most solid-state qubit platforms, the noise is concentrated at low frequencies (which is why the quasistatic
approximation is effective at describing the bulk of the error). This means that we need to make the filter function
as flat as possible in the vicinity of ω = 0, or in other words, not only do we need f(0, T ) = 0, but also the first k− 1
derivatives should vanish:

d`

d(ωT )`
f(ω, T )

∣∣∣∣
ω=0

= 0, ` = 0, 1, . . . , k − 1. (27)

There is a geometrical interpretation of these constraints. If we define the following series of plane curves,

rm(t) =

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tm

0

dtm+1e
iφ(tm+1), (28)

labelled by integer m, then through repeated integrations by parts it follows that

i`
d`

d(ωT )`
[T−1f(ω, T )]ωT=0 =

∫ T

0

s`eiφ(t)dt =
∑̀

m=0

(−1)m`!

(`−m)!
rm(T ), (29)

for ` = 0, . . . , k − 1. Thus, the first k derivatives of f(ω, T ) will vanish if each of the rm(t) for m = 0, 1, · · · , k − 1
corresponds to a closed curve. Therefore, suppressing time-dependent noise errors requires that we construct a
sequence of closed curves where each curve in the sequence is the integral of the previous. An example of such a
sequence is illustrated in Fig. 13. Ref. [112] developed a procedure for generating curve sequences like this numerically
using an iterative damped Newton method. The corresponding pulse can be obtained from the curvature of the curve
at the bottom of the hierarchy, r0(t) = dk−1rk−1/dt

k−1. Examples of pulses obtained in this way for values of k
ranging from 2 to 8 are shown in Fig. 14, along with the resulting filter functions. The increasing flatness of the filter
function near ω = 0 with increasing k is evident in the figure. This behavior is similar to that given by the UDD
dynamical decoupling sequence [19].

FIG. 13. An example of a sequence of closed curves r`(t) = d3−`r3/dt
3−`, where k = 4. The red dots represent the origin,

which is also the starting/ending point of the curves. In this example, r0 is the integral of eiφ(t). The integral of r3 is no longer
a closed curve, so the sequence terminates. This figure is adapted from [112], which has been submitted for publication.

A number of qubit platforms suffer from colored noise such as 1/f noise. This type of noise originates from nuclear
spin noise and charge noise in the case of semiconductor spin qubits [37, 45, 110] and from magnetic flux noise [109] in
the case of superconducting qubits. In both cases, it is the dominant source of qubit dephasing. An important question
concerns the tradeoff between pulse bandwidth and the size of the frequency window in which noise is cancelled. From
Fig. 14, it is evident that suppressing noise over larger frequency ranges requires the use of pulses that contain higher
frequency components. At some point, the pulse bandwidth will exceed what is possible to implement experimentally
due to waveform generator limitations. Note that this is a generic feature of cancelling time-dependent noise and is
not specific to the SCQC approach. However, it is likely that some pulses will achieve the same noise suppression



16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

8

16

24

32

(a)

2 4 6 8 10 12
102

103

104

10-4 10-3 10-2 10-1 100 101 102

10-50

10-25

100

(b)

0 2 4 6 8
0

0.5

1

maximal slopes

FIG. 14. (a) Seven pulses (colored lines) which eliminate k derivatives of the filter function for k = 2, ..., 8. Each pulse
implements a logical NOT gate on a single qubit. The inset shows the maximum slopes (pulse bandwidth) required for different
k, which has an approximate ∼ k3 growth at small k (green line). (b) The corresponding filter functions (colored lines), whose
asymptotic slopes ≈ 2k indicate the O(ω2k) suppression near ωT = 0. The inset shows the same filter function in a linear plot.
This figure is adapted from [112], which has been submitted for publication.

while using less bandwidth compared to others. It is also important to note that, as indicated by a no-go theorem
presented in Ref. [113], the noise filtration suggested by Eq. (25) is only efficient for higher k if S(ω) has a hard
frequency cutoff. This makes the suppression of 1/f noise particularly challenging. Nonetheless, it was found in
Ref. [112] that the smooth pulses shown in Fig. 14 can still outperform delta-function sequences such as UDD [19] to
some extent, due to their always-on nature.

VI. SIMULTANEOUS CANCELLATION OF MULTIPLE NOISE SOURCES

In addition to noise errors that act transversely to the drive, it is often the case that errors enter into the driving
field itself. For a single qubit, the Hamiltonian can then take the form

H(t) =
Ω(t) + δΩ(t)

2
σx +

∆

2
σz + εσz. (30)

The error in the driving field is represented by the stochastic fluctuation δΩ(t). This can be caused by systematic
errors that arise in the process of generating and sending the pulse to the device, or it can be due to a second source
of environmental noise (on top of the source that causes the transverse fluctuation ε). An example of the latter is
charge noise in singlet-triplet spin qubits, which can cause time-dependent fluctuations in the exchange coupling used
to drive qubit rotations [39, 114]. The question is then whether it is possible to find pulses Ω(t) that dynamically
correct both error terms simultaneously. Approaches based on group theory or composite pulses have been developed
to address this problem in general settings [31, 115–118]. More recent methods based on extensions of the SCQC
framework have also been developed, including a direct extension in which additional pulse constraints are imposed
to ensure the cancellation of pulse-amplitude errors [119], a geometric technique based on enforcing noise-cancellation
constraints on the tantrix [120, 121], and a method known as “doubly geometric gates” that combines holonomic
evolution with space curves [122]. Here, we review each of these geometric methods in turn and discuss their relative
merits.
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A. Closed space curves with pulse amplitude constraints

Ref. [119] considered a Hamiltonian of the form (30) but with ∆ = 0 and where the pulse-amplitude noise fluctuation
is of the form δΩ(t) = f [Ω(t)]η, where f [Ω(t)] is a function of the pulse amplitude, and η is a small stochastic constant.
We can expand the evolution operator in powers of ε and η. The first-order term in ε can be used to map the qubit
evolution to a plane curve as in Sec. II A, and requiring this term to vanish again leads to the closed-curve condition.
The requirement that the first-order term in η vanishes at the final time T yields an additional non-local constraint
on the curvature, Ω(t), of the plane curve:

∫ T

0

dtf [Ω(t)] = 0. (31)

If the noise causes a stochastic rescaling of the pulse amplitude, then this is described by setting f [Ω(t)] = Ω(t), in
which case Eq. (31) requires the area of the pulse to vanish. This means that we can only dynamically correct identity
operations in this case. It is also immediately clear from Eq. (31) that if the noise creates a random pulse offset
described by f [Ω(t)] = 1, then it is impossible to cancel noise for any gate operation. On the other hand, Ref. [119]
showed that for f [Ω(t)] ∼ Ω(t)k, it is possible to cancel the leading-order noise in both ε and η while performing
nontrivial gates for odd values of k other than 1. Explicit examples using sequences of four square or trapezoidal
pulses were given for several values of k. Even values of k cannot be canceled because the integral in Eq. (31) is then
strictly positive for any T > 0.

It is important to note that the inability to cancel pulse rescaling errors (k = 1) while performing arbitrary x
rotations is a consequence of having set ∆ = 0. For ∆ 6= 0, it was shown in Ref. [32] that it is possible to cancel
both types of noise errors at the same time while executing arbitrary single-qubit gates using composite supcode
pulses. Next, we discuss two geometric approaches that supplement closed space curves with additional conditions
that suppress pulse-amplitude noise when ∆ 6= 0. These approaches allow for arbitrary control waveforms instead of
relying on fixed pulse shapes.

B. Reverse-engineering approach

The first geometric approach to designing gates that dynamically correct against two types of noise simultaneously
that we discuss here was presented in Ref. [120]. Rather than starting from space curves, this approach begins from a
method for reverse-engineering the evolution of a qubit that was introduced in Refs. [123, 124]. The goal of these earlier
works was to circumvent the analytical intractability of the general time-dependent two-level Schrödinger equation,
which complicates the process of designing quantum logic gates even in the absence of noise. These works developed
a systematic procedure to find control fields for which the resulting evolution operator can be obtained analytically;
the key idea was to utilize an auxiliary function χ(t) from which both the evolution operator and the control fields
can be determined. It was shown that for a Hamiltonian of the form (30) (in the absence of noise: ε = 0, δΩ = 0),
any χ(t) that satisfies the constraint |χ̇| ≤ |∆| yields an analytical solution for the evolution operator along with the
pulse Ω(t) that generates it. Leveraging this result, Ref. [120] then considered the case where both noise terms are
present (ε 6= 0, δΩ 6= 0) and derived constraints that ensure that the leading-order errors in the evolution operator
vanish at the final time:

U(T ) = Uc(T ) +O(ε2, δΩ2, εδΩ). (32)

It was further shown that the noise cancellation constraints can be interpreted as constraints on the shape of a curve
that lives on the surface of a sphere. If we parameterize the evolution operator as in Eq. (10), then this sphere is
parameterized by θ and ζ. Although it was not realized in Ref. [120], this curve is in fact the tantrix ṙ(t) of a three-
dimensional space curve. Moreover, the highly non-local constraints for cancelling the first-order term in ε derived
in that work are precisely the closed curve condition described in Sec. II C. If one works with the tantrix, then this
condition becomes a set of integral constraints that can be challenging to satisfy. On the other hand, the constraints
for cancelling pulse-amplitude noise found in Ref. [120] are not easily understood from the point of view of space
curves. Instead of using the auxiliary function χ(t), these constraints can alternatively be derived by considering a
first-order Magnus expansion in the pulse error δΩ, which then leads to the noise-cancellation conditions

∫ T

0

δΩ(t′)U†c (t′)σxUc(t′) = 0. (33)

Using the relation between Uc(t) and the tantrix, Eq. (11), this can be recast as a highly non-local constraint on the
space curve. Given a form for the pulse fluctuation, e.g., δΩ(t) = Ω(t)η where η � 1, this constraint can be solved
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Made from smooth_curve_VS_tantrix.nb

(a) (b)

For geo_review_paperFIG. 15. (a) Bloch sphere representation and (b) space curve r(t) of the standard “orange-slice” holonomic gate, which is
specified by two geodesic lines that differ by a π/2 azimuthal angle. The holonomic trajectory on the Bloch sphere encloses a
π/2 geometric phase. These curves are colored to indicate which part of the Bloch sphere trajectory corresponds to which part
of the space curve, starting from red at t = 0 and ending with violet at t = T . This figure is adapted from [122], which has
been submitted for publication.

by starting from an ansatz for the space curve containing several adjustable parameters that can be varied without
altering the closed curve condition needed to cancel ε noise. It can prove quite challenging to find smooth pulses using
this approach, although there has been recent progress in simplifying the noise-cancellation conditions to facilitate
the process of finding solutions [121].

C. Doubly geometric gates

An alternative approach to suppressing control field errors is to use holonomic gates [125]. Here, the idea is to
base gate operations on geometric phases [126–133]. Because these phases are given by the solid angle enclosed
by the evolution path traced on the Bloch sphere (Fig. 15(a)), such gates are insensitive to noise errors that leave
this path invariant. This includes pulse-amplitude errors that alter the rate at which the Bloch sphere trajectory is
traversed while leaving its shape intact. Although geometric phases were originally defined in the context of adiabatic
evolution [126], this concept was later generalized to non-adiabatic evolution [134], enabling fast holonomic gates [135–
144]. Such gates have been experimentally implemented in a number of qubit platforms [145–151]. However, such
gates generally remain sensitive to transverse noise errors such as the ε term in Eq. (30). In Ref. [122], it was shown
that this issue can be addressed by combining space curves with holonomic evolution to construct “doubly geometric”
(DoG) gates that simultaneously suppress two orthogonal noise sources. In this section, we review how this approach
works.

A single-qubit holonomic gate is constructed by starting from a state that evolves cyclically under a given control
Hamiltonian, which can in general be taken to have the form given in Eq. (6). Without loss of generality, we can set
the initial state of this cyclic evolution to be the computational state |0〉. Using the parameterization from Eq. (10)

(but now for the full evolution operator Uc instead of Ũc) and setting ζ = 2α + φ+ π/2, λ = −φ− π/2, the state at
later times becomes

|ψ(t)〉 = eiα(t)
[
cos(θ(t)/2) |0〉+ sin(θ(t)/2)eiφ(t) |1〉

]
. (34)

The evolution is then cyclic if θ(T ) = θ(0) = 0, in which case the evolution trajectory on the Bloch sphere starts and
ends at the north pole. The net phase α(T ) accumulated in the process is purely geometric if the evolution satisfies

the parallel transport condition: α̇(t) = − 1
2

(
1− cos θ(t)

)
φ̇(t). A fully-specified holonomic evolution of state |ψ(t)〉 is

sufficient to determine a holonomic quantum gate [122]. A holonomic z-rotation by angle α(T ) is then implemented,

where α(T ) = − 1
2

∫ T
0

(1− cos θ)dφ is the enclosed solid angle. Given θ(t) and φ(t), the three control fields Ω(t), Φ(t),

∆(t) that generate this evolution can be obtained from Hc = iU̇cU†c .
Ref. [122] mapped common examples of holonomic evolutions onto space curves and showed that these curves are

not closed in general, indicating a failure to suppress ε noise. One such example is given in Fig. 15, which shows
the open space curve corresponding to the well-known “orange-slice model” holonomic gate [146, 148, 152]. The fact
that these curves do not close is expected since such noise typically acts transversely to the Bloch sphere trajectory.
However, Ref. [122] went on to demonstrate that it is possible to find holonomic evolutions for which the space curve
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FIG. 16. (a) Twisted space curve rξ(t) for ξ = π/2000. (b-d) DoG control fields Ω(t), Φ(t), ∆(t) generated from rξ(t) in (a).
(e) Gate fidelities of the DoG gate constructed from rξ(t) in (a) versus detuning error rate (the ratio of the detuning error ε to
the time-averaged driving strength Ω̄). Results for the standard orange-slice model-based holonomic gate (HG) are shown for
comparison. This figure is adapted from [122], which has been submitted for publication.

is closed. Moreover, a general recipe for finding such evolutions was presented. In particular, it was shown that there
is a unique holonomic evolution associated with every smooth, closed space curve and that the control fields that
generate this evolution can be obtained from the space curve using the following expressions:

Ω(t) = ‖r̈(t)‖, ∆(t) =
ẋÿ − ẏẍ

ż
, Φ(t) =

∫ t

0

[τ(t′) + ∆(t′)]dt′. (35)

Before employing these expressions, it is important to first ensure that the curve r(t) has been parameterized such
that ‖ṙ(t)‖ = 1. Any smooth, closed space curve can therefore be used to construct DoG gates that are simultaneously
holonomic and robust to ε noise. It is interesting to note that while a given space curve corresponds to a family of
control Hamiltonians related by frame transformations (as noted in Sec. II C), the parallel transport condition picks
out a unique Hamiltonian from this family.

Ref. [122] presented several explicit examples of DoG gates. A continuous family of such gates with adjustable
geometric phases α(T ) was obtained by starting from a plane curve r0(t) = y(t)ŷ + z(t)ẑ and applying an operation
that twists the curve into the third dimension (x). The twisted version of the curve is obtained from the formula

r̃ξ(t) = −(y − π/2) sin(ξz3)x̂+ (y − π/2) cos(ξz3)ŷ + zẑ, (36)

where ξ is the “twist” parameter. Here, the original planar curve r0(t) is chosen such that its curvature is given by
a superposition of hyperbolic secant pulses: Ω(t) = Ω0sech(Ω0t − 10)Θ(20 − Ω0t) + Ω0sech(Ω0t − 30)Θ(Ω0t − 20),
where Θ represents the step function, and the final time is T = 40/Ω0. The motivation for starting from hyperbolic
secant pulses is that they have nice analytical properties that facilitates their use in experiments [153–157]. After
twisting, it is necessary to reparameterize the curve to obtain a new curve rξ(t) such that the tantrix is properly
normalized: ‖ṙξ(t)‖ = 1. For each value of ξ, we can then employ Eq. (35) to obtain the control fields that implement
the DoG gate. As an example, the curve and resulting control fields for ξ = π/2000 are shown in Fig. 16(a-d); the
corresponding holonomic gate is U(ξ = π/2000) = diag{e−i0.41π, ei0.41π}. The noise-cancelling power of this DoG
gate is confirmed in Fig. 16(e), which shows the gate fidelity as a function of the noise error. For comparison, the
fidelity for the orange-slice model holonomic gate is also shown. Both types of gate are chosen to implement the same
operation U(ξ = π/2000), which is a z-rotation whose angle depends linearly on ξ. It is clear that the DoG gate
substantially outperforms the standard orange-slice gate in the presence of this type of error.
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FIG. 17. Using space curves to analyze pulses obtained from GRAPE. (a-d) The space curves and their projections onto the
xy, yz, and xz planes corresponding to four different microwave pulses (e-h) designed to implement four different single-qubit
gates (identity, π/2 rotation about x (X/2), π/2 rotation about z (Z/2), and Hadamard gate (H)) while cancelling noise in a
silicon quantum dot spin qubit [158]. Arrows on the curves represent the phase in the evolution operator that is controlled by
the total torsion (e.g., Eq. (12)). For example, for the I gate in (a) this phase is 0, while for the Z/2 gate in (c) it is π/2. In
panels (e-h), the dashed orange and green curves are Ωx(t)/2 and Ωy(t)/2, while the solid blue curve is the total magnitude of
the pulse envelope. This figure is adapted from [59].

VII. OUTLOOK

The results reviewed here show that the SCQC formalism provides access to the full solution space of noise-resistant
control fields. Because all such control fields correspond to closed space curves, we can identify the control Hamiltoni-
ans that generate globally optimal gate operations by looking for closed curves that obey certain constraints dictated
by the physics of the system and other experimental considerations. As discussed at various points above, there
remain several directions in need of further investigation, especially in the case of the multi-qubit/multi-level SCQC
formalism, such as finding ways to systematically construct curves in higher dimensions with constant generalized
curvatures, including multiple (possibly time-dependent) noise sources, and finding the shortest curves under a given
set of constraints to obtain time-optimal pulses for a given task.

In addition to these future directions, it is also important to emphasize that SCQC is complementary to state-of-
the-art numerical methods for designing pulses [159–168]. This is because the SCQC framework provides a global view
of the optimal control landscape—something that is rarely possible with numerical techniques. Numerical methods
often operate based on local information in the parameter space of control fields, and this can sometimes lead to
catastrophic failures that are difficult to predict or diagnose. There are at least two ways in which SCQC could be
used as a tool to assist with numerical optimal control techniques. The first is that it could be used to identify good
initial guesses that can then be further refined with numerical algorithms. The second is that SCQC can be used
as a diagnostic tool to analyze the extent to which numerically generated control fields are successful in cancelling
different components of the noise error.

The first steps toward this second application were taken in Ref. [59] by using the geometric framework as a tool
to diagnose the noise-cancelling properties of pulses produced by the numerical algorithm known as Gradient Ascent
Pulse Engineering (GRAPE) [161]. Ref. [59] used the SCQC framework to analyze pulses that were recently designed
to implement high-fidelity single-qubit gates on silicon quantum dot spin qubits using GRAPE [158]. Fig. 17 shows
the space curves for four such pulses, which perform four different single-qubit gates, including an identity operation
(I), a π/2 rotation about x (X/2), a π/2 rotation about z (Z/2), and a Hadamard operation (H). The GRAPE

algorithm is implemented with gate fidelity as the cost function and with a noise level corresponding to
√
〈ε2〉 = 16.7

kHz, which was attributed to nuclear spin noise in Ref. [158]. Constraints were also imposed on the pulse bandwidth
through filtering, where the pulses are strongly smoothed out and forced to approach zero at the beginning and end
of the gate.

From the figure, it is evident that in each case, the corresponding space curve is almost closed, showing that the
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first-order error-cancellation constraint is almost perfectly satisfied. Moreover, the two-dimensional projections of
the curves form symmetric figure-eight shapes in most cases, showing that the second-order cancellation constraint is
nearly satisfied as well. Interestingly, it was found that these pulses needed to be 4-5 times longer than the typical
time scale of a π pulse (1.75 µs for the parameters used in Ref. [158]); the reason for this is apparent from the space
curve, where the bandwidth constraints require pulse durations on the order of 8 µs in order for the planar projections
of the curves to complete their respective figure-eights and thus suppress second-order noise. It is clear from these
results that experimental limitations on pulse amplitude or bandwidth are fully compatible with the SCQC formalism,
and that realistic pulses correspond to smooth curves that respect the geometrical noise-cancellation conditions.

A goal of future work will be to combine both geometric and numerical methods to achieve the best performance
possible in leading quantum computing platforms. Combining these techniques can make it easier to find control pulses
that suppress noise while respecting experimental constraints and while implementing a desired quantum operation
as quickly as possible.
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[110] Malinowski F K, Martins F, Cywiński L, Rudner M S, Nissen P D, Fallahi S, Gardner G C, Manfra M J, Marcus C M and
Kuemmeth F 2017 Phys. Rev. Lett. 118(17) 177702 URL https://link.aps.org/doi/10.1103/PhysRevLett.118.177702

[111] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86(3) 032324 URL https://link.aps.

org/doi/10.1103/PhysRevA.86.032324

[112] Li B, Calderon-Vargas F A, Zeng J and Barnes E 2021 Designing arbitrary single-axis rotations robust against perpen-
dicular time-dependent noise (Preprint 2103.08506)

[113] Wang Z Y and Liu R B 2013 Phys. Rev. A 87(4) 042319 URL https://link.aps.org/doi/10.1103/PhysRevA.87.042319

[114] Reed M D, Maune B M, Andrews R W, Borselli M G, Eng K, Jura M P, Kiselev A A, Ladd T D, Merkel S T, Milosavljevic
I, Pritchett E J, Rakher M T, Ross R S, Schmitz A E, Smith A, Wright J A, Gyure M F and Hunter A T 2016 Phys.
Rev. Lett. 116(11) 110402 URL https://link.aps.org/doi/10.1103/PhysRevLett.116.110402

[115] Viola L and Knill E 2003 Phys. Rev. Lett. 90 037901
[116] Brown K R, Harrow A W and Chuang I L 2004 Phys. Rev. A 70(5) 052318 URL https://link.aps.org/doi/10.1103/

PhysRevA.70.052318

[117] Khodjasteh K and Viola L 2009 Phys. Rev. Lett. 102(8) 080501 URL https://link.aps.org/doi/10.1103/PhysRevLett.

102.080501

[118] Merrill J T and Brown K R 2014 vol. 154 (ed. S. Kais), John Wiley & Sons, Inc. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/9781118742631.ch10

[119] Throckmorton R E and Das Sarma S 2019 Phys. Rev. B 99(4) 045422 URL https://link.aps.org/doi/10.1103/

PhysRevB.99.045422

[120] Barnes E, Wang X and Das Sarma S 2015 Sci. Rep. 5 12685
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