
IEEE INTERNET OF THINGS JOURNAL 1

ESFL: Efficient Split Federated Learning over
Resource-Constrained Heterogeneous Wireless

Devices
Guangyu Zhu, Yiqin Deng, Member, IEEE, Xianhao Chen, Member, IEEE, Haixia Zhang, Senior

Member, IEEE, Yuguang Fang, Fellow, IEEE, Tan F. Wong, Senior Member, IEEE

Abstract—Federated learning (FL) allows multiple par-
ties (distributed devices) to train a machine learning model
without sharing raw data. How to effectively and efficiently
utilize the resources on devices and the central server is a
highly interesting yet challenging problem. In this paper,
we propose an efficient split federated learning algorithm
(ESFL) to take full advantage of the powerful computing
capabilities at a central server under a split federated
learning framework with heterogeneous end devices (EDs).
By splitting the model into different submodels between the
server and EDs, our approach jointly optimizes user-side
workload and server-side computing resource allocation
by considering users’ heterogeneity. We formulate the
whole optimization problem as a mixed-integer non-linear
program, which is an NP-hard problem, and develop
an iterative approach to obtain an approximate solution
efficiently. Extensive simulations have been conducted to
validate the significantly increased efficiency of our ESFL
approach compared with standard federated learning, split
learning, and splitfed learning.

Index Terms—Distributed machine learning, federated
learning, split learning, wireless networking.

I. INTRODUCTION

In recent years, machine learning (ML) has attracted
intensive attention in many fields and numerous arti-
ficial intelligence (AI) applications, such as computer

Guangyu Zhu and Tan F. Wong are with Department of Electrical
and Computer Engineering, University of Florida, Gainesville, FL
32611, USA. (e-mail: gzhu@ufl.edu, twong@ece.ufl.edu).

Yiqin Deng and Haixia Zhang are with School of Con-
trol Science and Engineering and with Shandong Key Laboratory
of Wireless Communication Technologies, Shandong University, Ji-
nan 250061, Shandong, China (e-mail: yiqin.deng@email.sdu.edu.cn;
haixia.zhang@sdu.edu.cn).

Xianhao Chen is with Department of Electrical and Electronic
Engineering, University of Hong Kong, Pok Fu Lam, Hong Kong,
China (e-mail: xchen@eee.hku.hk).

Yuguang Fang is with Department of Computer Science, City
University of Hong Kong, Kowloon, Hong Kong, China (e-mail:
my.fang@cityu.edu.hk).

This work was supported in part by US National Science Foun-
dation under grant CNS-2106589.

Corresponding author: Yiqin Deng.
Copyright (c) 2024 IEEE. Personal use of this material is

permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to
pubs-permissions@ieee.org.

vision, smart health, connected and autonomous driving,
information access control, and security surveillance [1].
According to Cisco [2], there were nearly 850 zettabyte
of data generated by people, machines, and things at
the network edge in 2021. It is definitely infeasible
to simply send this huge data volume to a central
server to process or compute. To do so, a tremendous
network bandwidth is required, incurring intolerable
latency. Hence, distributed machine learning algorithms
have been developed to cope with the aforementioned
challenges for large geographically distributed volume
of data by distributing the ML workloads to EDs [3].
Moreover, awareness and concerns about users’ privacy
have been raised in the digitalized world [4]. Following
the Privacy-by-Design (PbD) principle, the best way to
achieve user privacy is not to disclose raw data, and so
it would be more effective for EDs not to share private
raw data as much as possible during the machine learning
process.

Federated learning (FL), a privacy-preserving dis-
tributed ML technique enables EDs to collaboratively
learn a global ML model without sharing their raw data,
consequently reducing the requirement of communica-
tion bandwidth between EDs and a central server as well.
The intuitive idea of privacy-preserving distributed ML
was investigated independently by some researchers Xu
et al. [5]–[7], Shokri et al. [8], Gong et al. [9]. McMahan
et al. [10] first constructed a distributed ML framework
based on decentralized datasets held by different users,
and coined their algorithm as FL. The original FL algo-
rithm updates ML models on EDs locally, and aggregates
the updated ML models to obtain the global model at
a central server remotely, in contrast to the traditional
ML requiring EDs to upload their private data to where
the ML model is trained. Since FL retains users’ private
data on EDs without sharing raw data with the server,
the server only aggregates users’ locally updated models,
and thus the privacy of end users is naturally preserved
to some extent. Besides, as all training processes are
performed by the EDs, the computation and communica-
tion capacities of EDs can also be utilized. FL provides
various advantages, such as data privacy preservation,

IEEE INTERNET OF THINGS JOURNAL 2

reduced communication latency, and enhanced learning
performance [2]. However, pushing all training workload
to EDs sometimes is impracticable. Training complex
ML models often consumes unacceptable amount of
training memory and computing power on Internet of
Things (IoT) devices with limited communication and
computing resources, and incurs intolerable latency. Be-
sides, the ML model size sometimes reaches GBs and
even TBs(e.g., GPT-1 has 0.12 billion parameters, GPT-
2 has 1.5 billion parameters, whereas GPT-3 has more
than 175 billion parameters), resulting in a significant
communications burden duo to the need of frequently
uploading local ML models.

To cope with the dilemma between insufficient ED
resources and complicated ML models, we leverage
another ML technique, called split federated learning
(SFL) [11], which introduces model splitting from split
learning (SL) [12] to FL. The SFL framework was
proposed by Thapa et al. [11] in 2020 to integrate
federated learning with split learning, shown in Figure 1.
Under SFL framework, the main server helps the training
process for each client, and the Fed server is tasked
with the aggregation of all locally updated models.
The SFL approach presents a compelling advantage for
resource-constrained environments, since the main server
undertake parts of local training workload.

Fig. 1. The architecture of splitfed learning (SFL) system.

From the conventional FL and SFL implementations
across heterogeneous devices, we have identified several
limitations that can significantly impede the system’s
overall performance and efficiency. In synchronous FL
and SFL, the aggregation process is inherently con-
strained by the pace of the slowest participant due to the
necessity for the server to collect updated local gradients
from all selected EDs. This synchronicity results in
a scenario where devices with abundant computational
resources are rendered idle as they wait for the trans-
mission of local models from less capable devices, often
referred to as “stragglers”. This inefficiency is primarily
attributed to the varying and unpredictable communi-
cation and computational capabilities of heterogeneous
EDs. Therefore, addressing resource heterogeneity (RH),

also called the system heterogeneity in FL, is critical to
enhancing the efficiency and overall feasibility of SFL.

In this paper, we propose a novel efficient split
federated learning algorithm (ESFL) to boost training
efficiency and performance by considering the privacy-
preserving constraints. The cornerstone of ESFL lies
in its proactive strategic utilization of heterogeneity in
system resources and device capabilities. Unlike standard
synchronous FL and SFL, our approach involves the
server in the training phase but dynamically adjusts
the distribution of user-side workload and server-side
resources. The ESFL algorithm thereby capitalizes on
the intrinsic resource variability across EDs to optimize
ML outcomes and system efficiency.

Our major contributions in this paper are summarized
as follows.

1) We design ESFL, a novel distributed machine learn-
ing framework, which significantly improves the
training efficiency of SFL by taking ED heterogene-
ity into consideration.

2) We formulate a mixed-integer non-linear program
(MINLP) by jointly considering the allocation of
user-side workload (model separation) and server-
side resource, and develop an iterative optimization
algorithm to find a suboptimal solution with a low
time complexity.

3) We evaluate the performance of our ESFL ap-
proach through extensive simulations compared to
the state-of-the-art methods such as FL, SL and
SFL, and demonstrate the superiority of the pro-
posed ESFL framework.

The remainder of this paper is organized as follows.
In Section II, we discuss related works about FL, SFL,
and RH. In Section III, we expound on the framework
and system model of ESFL. In Section IV, we present
the optimization problem formulation and the solution
to the joint resource allocation and model separation
problem. In Section V, results of extensive simulations
and experiments are presented. In Section VI, we sum-
marize the proposed algorithm and experimental results
and conclude the paper.

II. RELATED WORKS

There exist quite extensive research on splitting learn-
ing (SL) and federated learning (FL) in the current liter-
ature. In this section, we will concentrate on closely re-
lated works to review. In [13], Ang et al. offered a robust
architecture for FL to increase communication efficiency
by reducing transmission noise in wireless networks. To
address the communications overhead in FL, Wang et
al. [14] developed an algorithm, named Communication
Mitigated Federated Learning (CMFL), to eliminate ir-
relevant local model updates that were trained over users’
biased data. It should be noted that the aforementioned

IEEE INTERNET OF THINGS JOURNAL 3

two methods only address communication efficiency in
FL, as all training processes are executed by users at
EDs. FedMMD was proposed in [15] to reduce commu-
nication and computing costs during the local training
process in FL using a two-stream model with Maximum
Mean Discrepancy (MMD) to replace the local training
for a single model in FedAVG [10]. However, while this
method reduces the number of communication rounds,
it concurrently increases the user-side workload due to
the need of computing the MMD loss functions. Shi
et al. [16] address both communication and computing
resource heterogeneities in wireless FL by providing a
joint device scheduling and resource allocation strategy.
Despite this integrated approach, the limitation of FL
is still evident, as the user-side workload cannot be
reduced. There exist also some other innovative ap-
proaches to ease the work load for communications and
computing for federated learning. Watanabe et al. [17]
and Chen et al. [18] leveraged wireless mesh networks
to either facilitate communications or reduce communi-
cations traffic. Guo et al. [19], [20] utilized edge nodes
and federated reinforcement learning to help resource-
constrained D2D devices in industrial IoT systems and
5G networks, which can address the device heterogeneity
issue to some extent.

In [11], Thapa et al. designed a novel framework,
called split federated learning (SFL), to take advantage
of parallel training among different users in FL and
the model splitting in SL to reduce the computing
workload on EDs. In [21], Gao et al. implemented
SFL and evaluated the performance on IoT devices.
In [22], Lin et al. developed an efficient parallel split
learning algorithm by applying the last-layer gradient
aggregation to reduce communication and computing
overheads in SL. In [23], Wu et al. designed a resource
allocation strategy for cluster-based SFL. In [24], Kim
et al. devised a bargaining game to negotiate the cut
layer in personalized parallel SL. All aforementioned
literature on SFL overlook the crucial aspect of the joint
consideration of both user-side resource and workload
heterogeneities. This oversight is evidenced by the fact
that the cut layer remains the same at all EDs. However,
it is obvious that adjusting cut layers can significantly
change user-side workload distribution.

To reduce the computing and communication work-
load at EDs when considering RH in FL, Sattler et al.
[25] designed a novel model compression algorithm to
extend the commonly used top-k gradient sparsification
to FL to compress both model uploading and down-
loading. However, since model compression inevitably
results in performance degradation, it is advisable to
maintain the integrity of the model architecture through-
out the training process. With the emergence of edge
computing [26], utilizing the computing resources at the
both the central server and edges can be leveraged to

reduce workload at EDs. For instance, in [27], Wang
et al. proposed to enable EDs to collaborate with edge
nodes by exchanging model parameters to reduce the
user-side workload, and to apply deep reinforcement
learning to optimize the operations of multi-access edge
computing (MEC), caching, and communications. Sev-
eral researchers attempted to leverage edge nodes to
assist FL by fully uploading local training tasks to trusted
edge nodes to reduce the user-side workloads [28].
Unfortunately, the trustworthiness of training edge nodes
is often hard to guarantee. Our ESFL algorithm introduce
an integrated strategy for the allocation of server-side
computing resource and user-side training workloads.
This approach is designed to accommodate the variations
in computing and communication resources inherent in
heterogeneous EDs. We will present the detailed design
next.

III. EFFICIENT SPLIT FEDERATED LEARNING

A. Motivation

While SFL only address the resource constraints at
EDs, it does not account for the variations in data
distribution (DH) and resource availability (resource
heterogeneity or RH) inherent in EDs. Within the SFL
framework, clients or EDs are required to partition their
models following an identical structure, leading to a
scenario where the communication and computational
workload on the client side is influenced solely by
the volume of data. In contrast, our Efficient Split
Federated Learning (ESFL) takes a holistic approach,
considering both the client-side workload and the server-
side computing resource allocation, which is designed to
mitigate “stragglers” problem in FL, thereby enhancing
the training efficiency of SFL. It is worth noting that our
method is a scheme for joint optimization of resource
and workload allocation, which can be integrated with
any user selection algorithms presently existed in FL.
The ESFL framework demonstrates the capability to
increase training efficiency across the board, independent
of the particular user selection algorithm integrated in the
framework. This underscores the inherent adaptability
and effectiveness of our proposed scheme in enhancing
the training efficacy of FL.

B. ESFL framework

In this subsection, we elaborate our framework of
ESFL consist of four components, namely, split train-
ing, federated aggregation, communication model, and
resource allocation. We assume that an ML task is
composed of multiple training rounds. The FL server first
initializes ML model in the initial round of training and
the subsequent training rounds. The one-round training
procedure is given as follows.

IEEE INTERNET OF THINGS JOURNAL 4

1) User selection: The server selects users randomly
from the available users (EDs), who are willing
and ready to participate this round of training (these
users are called the selected users).

2) Model splitting and resource allocation: The
server first acquires the information of the selected
EDs, including data amount, available communi-
cation, and computing resources. Then, the server
jointly splits the ML model into user-side models
and server-side models (the so-called cut layer de-
cision) and allocates adequate server-side resources
based on the users’ information and the ML model
structure for the selected user.

3) Model distribution: The server distributes user-
side models (with the corresponding architectures)
to the selected users.

4) Split training: The server and all selected users
then collaboratively update both user-side and
server-side ML models simultaneously and the
server determines the ML hyperparameters, such
as learning rate, data batch size, and local training
epochs.

5) Federated aggregation: After repeating several
epochs of the split training step, all selected users
that have finished their training upload their updated
user-side ML models to the server, and then the
server generates an updated global ML model based
on the user-side ML models collected from the
selected users and the corresponding server-side
ML models at the server.

In what follows, we will provide more details for the
whole procedure below.

1) Split Training: Different from federated learning,
which only relies on EDs to update local ML models,
we split the local training across EDs and the server.
Similar to the SplitFed [11], local training is repeatedly
conducted ✏i epochs for user i before one-round global
ML model aggregation at the server. The user-side ML
model for user i is Wr,e

u,i at epoch e in the r-th round.
We denote the updated local user-side ML model at the
epoch e+ 1 as

Wr,e+1
u,i = BP (Wr,e

u,i, ⇢r,rAr,e
li

), (1)

where BP is the backpropagation algorithm, ⇢r is the
local learning rate in the r-th round, and rAr,e

li
=

Ar,e
li
� Â

r,e

li is the activation difference, which is the
loss value for BP, and Â

r,e

li is the updated activation
calculated by the server using backpropagation algorithm
with the shared labels and the estimated labels.

The server-side ML model for user i at epoch e + 1
in the r-th round is given by

Wr,e+1
s,i = BP (Wr,e

s,i , ⇢r,rl(W
r,e
s,i , Ŷ,Y)). (2)

TABLE I
SUMMARY OF IMPORTANT NOTATIONS OF ESFL

66

Notation Description

S The set of selected users
R The total training rounds
✏i The number of local training epochs of user i
Wr,e

u,i The user-side model for user i at epoch e at round r
Wr,e

s,i The server-side model for user i at epoch e at round r
Ar,e

li
The activation calculated by the user i at epoch e at
round r using forward propagation algorithm

⌘ The step size factor of the federated aggregation
N The number of total one-round training data samples
ni The number of one-round training data samples for user

i
Wr The global model at round r
Wr

i The cascaded local model generated by user Wu,i and
server-side model Ws,i at round r

bui Uploading data rate of user i
bdi Downloading data rate of user i
Bi The bandwidth allocated to user i
Pu

i The uplink transmission power of user i
Pd

i The downlink transmission power of user i
�u
i The uplink channel gain of user i

�d
i The downlink channel gain of user i

N0 The noise power density
T The total training time
Tr,i The r-th round training time for user i
TU
i The r-th round local model uploading time for user i

TD
i The r-th round global model downloading time for user

i
T e
i The split training time at epoch e for user i

Tagg The federated aggregation time for the server at round
r

M
li
i The local model uploading/ downloading time for user

i
te,ci The user-side computing time for user i at epoch e
te,bi The uploading time of the user-side activation for user

i at epoch e
te,Ci The server-side computing time for user i at epoch e
te,Bi The downloading time of the server-side updated acti-

vation for user i at epoch e
Dl

c The user-side computing workload of the cut layer l for
training one sample

Dl
b The user-side communication workload of the cut layer

l for training one sample
D The computing workload for training one data sample
ci The local available computing resource for user i
Ci The allocated server-side computing resource to user i
xi The cut layer indicator vector of user i
si The available storage space for user i
mi The available memory space for user i

To update the server-side ML model, we use the loss
function l(Wr,e

s,i , Ŷ,Y), where Ŷ is the estimated result
computed by the server-side ML model and Y is the
true label shared by the user. The estimated result Ŷ is
the output of the current server-side ML model Wr,e

s,i
and the input data Ar,e

li
is the activation generated by

the user i’s samples and user-side ML model. Split
training divides the local training into four parts in FL,
i.e., user-side forward propagation, server-side forward
propagation, server-side backpropagation, and user-side
backpropagation. The entire split training procedure is
shown in Figure 2.

The pseudocode for our ESFL is shown in Algorithm 1
and Algorithm 2. The split training is shown in Algo-
rithm 1, while Step 2 is to let users send activations of

IEEE INTERNET OF THINGS JOURNAL 5

Algorithm 1: SplitUpdate
Input: At epoch e of round r, user-side model Wr,e

u,i, server-side model Wr,e
s,i , and local learning rate ⇢;

Output: Updated user-side Wr+1,e
u,i and server-side model Wr+1,e

s,i ;
1 User i forwards propagation of Wr,e

u,i and generate activation Ar,e
li

and the label vector Y;
2 User i sends Ar,e

li
at the cut layer and Y to the server;

3 The server uses backpropagation to calculate the server-side gradient rl(Wr,e
s,i ,Y) and the activation

difference rAr,e
li

;
4 The server-side model update: Wr,e+1

s,i = BP (Wr,e
s,i , ⇢,rl(W

r,e
s,i ,Y));

5 The server sends rAr,e
li

to user i;
6 The user-side model update: Wr,e+1

u,i = BP (Wr,e
u,i, ⇢,rAr,e

li
)

Fig. 2. The split training procedure, where all selected users simulta-
neously transmit activation data and labels to the server, and the server
sends back the corresponding activation difference.

the cut layer together with the label to the server.

2) Federated Aggregation: In ESFL, we leverage the
FedAVG algorithm [10] to aggregate multiple user-side
and server-side updated ML models using ⌘ as a step
size factor. We call this aggregation method federated
aggregation, which mitigates training oscillations by
leveraging the global ML model in the previous round.
This differs from FedAVG which only aggregates the
current-round updated local ML models to generate
the next-round global ML model. The architecture of
federated aggregation is shown in Figure 3. We define
the whole ML model trained by user i in round r as w

r
i

and the global model at round r is Wr. The update of
the global ML model at round r + 1 is

Wr+1 = Wr � ⌘ ⇤ (Wr �Wr
⇤)

= Wr � ⌘ ⇤

Wr �
X

i

ni ⇤Wr
i

N

!
,

(3)

where N =
P

i ni indicating the number of total training
samples.

The whole training model is split into two parts,
namely, user-side model Wr

u,i trained by a user-side ED
and the server-side model Wr

s,i trained by a virtual server
vi. All virtual servers are either virtual machines or
containers at the central server, which are allocated with
corresponding computing and communication resources
according to the model training demands at this round.
Thus, after concatenating the user-side ML model and
the server-side ML model, for each selected user, the
concatenated ML model will have the same architecture
as the global ML model. The updated concatenated ML
model for user i at round r + 1 is

Wr+1
i {Wr+1

u,i ,Wr+1
s,i }. (4)

In Algorithm 2, the resource allocation scheme and cut
layer decision based on idle resource states of selected
users are shown in Step 5. In this section, we focus on
synchronous federated learning, where the aggregation
of all selected user-side ML models and server-side
models can only be conducted after one-round training
is finished.

3) Communication Model: Since we only intend
to demonstrate the effectiveness of our proposed ML
scheme, we will adopt a simple communication system
model for our study. For uplink and downlink transmis-
sions, we assume uploading and downloading transmis-
sion bandwidth are equal. Specifically, the orthogonal
multiple access (OMA) techniques are adopted where
each user can be allocated with one orthogonal spectrum
band for the needed data transmissions determined by

IEEE INTERNET OF THINGS JOURNAL 6

Algorithm 2: Efficient Split Federated Learning
Input: The number of model aggregation round R, global learning rate ⌘, local learning rate ⇢, and user i’s

number of local epochs ✏i;
Output: Final Updated global model WR+1;

1 Initialize the global model parameters W;
2 for r = 1, 2, ..., R do
3 The server randomly selects users S to participate the r-th round training;
4 The server acquires states of available computing resource c⇤, communication resource (uplink data

rate) b⇤, memory m⇤, and storage space s⇤ from S;
5 The server allocates its resources C⇤ and B⇤ and determines cut layer l⇤ based on c⇤ and b⇤;
6 for selected user i = 1, 2, ..., |S| do
7 Send Wr

u,i to user i based on li and Wr�1;
8 for local epoch e = 1, 2, ..., ✏i do
9 Wr,e+1

u,i ,Wr,e+1
s,i SplitUpdate(Wr,e

u,i,Wr,e
s,i , ⇢);

10 end
11 User i sends back the updated Wr

u,i to the server;
12 end
13 Server-side model update: Wr+1

s = Wr
s � ⌘

P
i
ni
NrWr

s,i;
14 User-side model update: Wr+1

u = Wr
u � ⌘

P
i
ni
NrWr

u,i;
15 end

Fig. 3. This figure illustrates the federated aggregation, where the
previous global ML model is Wr , the aggregated global ML model is
Wr

⇤ and the updated global ML model is Wr+1

the server (e.g., the base station). The uploading and
downloading data rate for user i is given by:

bui = Bi log

✓
1 +

Pu
i �

u
i

BiN0

◆
,

bdi = Bi log

✓
1 +

P d
i �

d
i

BiN0

◆
,

(5)

where the communication bandwidth allocated to the
user i is Bi, and the total available bandwidth is B wherePS

i=1 Bi  B, �u
i is the uplink channel gain and �d

i is
the downlink channel gain for user i, Pu

i and P d
i are the

uplink and downlink transmission powers, respectively,
when the resource block Bi is used, where Pu

i , P d
i , �u

i ,
and �d

i are predetermined constant values, and N0 is the
noise power density. We assume that the transmission
environment is stationary during one training round. For
example, EDs can be cameras in smart homes, whose
deployment locations remain fixed for a relatively long
period.

4) Workload and Resource Allocation: To reduce the
training workload on user-side EDs, we split ML training
into local training and server ML training. Thus, the
next problem is how to appropriately determine user-side
communication and computing workload, alongside the
strategic allocation of computing resources on the server
to different virtual servers. Due to the varying sizes of
data collected by different users/EDs and the heteroge-
neous available resources on EDs, simply assigning the
same amount of resources and randomly choosing the cut
layers for different users will not help the training time
and the training performance. To maximize the training
efficiency, one should address a joint optimization of
workload and resource.

We denote the total training time as T and the r-th
round training time as Tr. To cope with the aforemen-
tioned joint optimization problem, we formulate the total
training time as

T =
RX

r=1

Tr =
RX

r=1

max
i

Tr,i, (6)

where Tr,i is the r-th round training time for user i.
Since the times of individual training rounds are inde-

IEEE INTERNET OF THINGS JOURNAL 7

pendent, minimizing the total training time is equivalent
to minimizing the training time for each training round.
Thus, in the subsequent development, we will only focus
on one round of training and omit the training round
index r for notational simplicity. One-round training time
is composed of four parts, namely, model distribution
time TD

i , model upload time TU
i , model aggregation

time T agg , and training time T e
i for local epoch e. Thus,

the one-round training time can be expressed as

Ti = TU
i + TD

i +
✏iX

e=1

T e
i + T agg,

TU
i =

M li
i

bui
, TD

i =
M li

i

bdi
,

(7)

where bUi and bDi are the uplink and downlink data rate
for user i as defined in (5). We denote the index of the cut
layer for user i as li and ✏i as the number of local epochs
for user i. The uploading and downloading workload are
assumed to be M l

i , equal to the user-side model size
of user i. Since each selected user applies the same
local dataset to train ML model and the idle resource
is also stationary, to simplify the following optimization
problem, in this paper, we assume that the training times
of all epochs are constant in each round of training time.

Since both user-side EDs and the server partici-
pate in each epoch model updating, one-epoch train-
ing time contains four parts, namely, local/user-side
computing time te,c, uploading time for activation te,b,
remote/server-side computing time te,C , and download-
ing time for updated activation te,B . Thus, one epoch
time can be denoted as

T e
i = te,ci + te,bi + te,Ci + te,Bi

=
we,c

i

ci
+

we,b
i

bi
+

W e,C
i

Ci
+

we,B
i

Bi

=

P
l D

l
cx

l
i · ni

ci
+

P
l D

l
bx

l
i · ni

bui
+

(D �
P

l D
l
cx

l
i) · ni

Ci
+

P
l D

l
bx

l
i · ni

bdi
.

(8)

The cut layer for user i is li 2 [1, 2, ..., L], where
the whole ML neural network is composed of L layers,
and the server-side model and the user-side model for
user i are split at the li-th layer. To simplify the notation
of workloads, we denote xl

i as an indicator function,
where

P
l x

l
i = 1, and xl

i = 1 indicates that l layer is
chosen as the cut layer for user i while xl

i = 0 indicates
that l layer is not selected as the cut layer. The total
computing workload for training one sample is D and
the user-side computing workload for user i is wc

i =P
l D

l
cx

l
i · ni, where Dl is the computing workload for

one training sample for user-side EDs when the cut layer
is l. The upload and download data size for user i is

wb
i =

P
l D

l
bx

l
i · ni, where Dl

b is the size of activation
data for one training sample while the cut layer is l. For
user i, computing capability is ci, uplink transmission
rate is bui , and downlink transmission rate is bdi . The
computing resource that the server allocates to user i is
Ci.

IV. OPTIMIZATION AND SOLUTION APPROACH

The ultimate objective of the ESFL training is to
minimize the total training time. However, since every
round training time are independent, minimizing the
total training time is equivalent to minimizing the total
training time in each round including computing and
communication time given by (as we mentioned earlier,
we will omit the dependence of the round number r for
notational simplicity)

minT = min
X

r

max
i

Ti. (9)

To run Algorithm 2, we need to consider a few opti-
mization problems for resource allocation, which should
be solved during the ESFL training. The joint resource
allocation and model splitting in our ESFL is a min-
max optimization problem. To linearize the formulated
optimization problem, we introduce an auxiliary variable
Tmax, which is no less than the training time for the
straggler (i.e., the client who takes the longest time to
complete one-round training). Thus, our problem can be
formulated as

min
xl
i,Ci

Tmax

s.t. Ti  Tmax, i 2 {1, ..., S}
SX

i=1

Ci  Ctotal,

LX

l=1

xl
iM

l
i  si,

LX

l=1

xl
im

l
i  mi,

LX

l=1

xl
i = 1, xl

i 2 {0, 1}.

(10)

The total computing resource owned by the server is
Ctotal, M l

i is the data size of user i’s user-side ML
model, and si is the available storage space at user i. To
compute the user-side model, ml

i is the required memory
space, and mi is the available memory space for user i.
We denote xi = {x1

i , ..., x
L
i } as the cut layer indicator

vector, where xl
i indicates whether the ML model is split

at layer l, in the sense that xl
i = 1 when l = li, and

xl
i = 0 otherwise.

IEEE INTERNET OF THINGS JOURNAL 8

Algorithm 3: Alternative Optimization
1 Initialization: Allocating identical computing

resource to all users, Ci =
Ctotal
|S| ;

2 while Cn�1
i = Cn

i do
3 Obtain the optimal {l⇤} of subproblem for

cut layer decision for given {C⇤} by solving
(11);

4 Obtain the optimal {C⇤} of subproblem for
resource allocation for the given cut layer
decision {l⇤} by solving (12);

5 end
Output: {l⇤}, {C⇤} for problem (10)

The alternative optimization algorithm is shown in
Algorithm 3. For the notational convenience, we use
{C⇤} to denote {C1, C2, ..., CS} and {l⇤} denote
{l1, l2, ..., lS}. The reason why we use an alternative
optimization approach is that the cut layer decisions for
different selected users lead to the variance at the user-
side workload. Moreover, the allocation of server-side
computing resource to individual one user will affect the
availability of resources for others, given the fixed total
capacity of server-side resources, where the joint opti-
mization of worklaods and resources incurs the coupling
effect for different users. To address this coupling effect,
our ESFL algorithm transforms the optimization prob-
lem into a mixed-integer non-linear program (MINLP),
which is typically NP-hard. To solve the problem ef-
ficiently, we decompose it into two subproblems and
solve them iteratively. We construct the first subproblem
for cut layer decision by treating computing resource
allocation as fixed decision variables:

min
xl
i

T e
i =

P
l D

l
cx

l
i · ni

ci
+

P
l D

l
bx

l
i · ni

bUi
+

(D �
P

l D
l
cx

l
i) · ni

Ci
+

P
l D

l
bx

l
i · ni

bDi

s.t.
LX

l=1

xl
i = 1, xl

i 2 {0, 1},

M l
i  si,

ml
i  mi.

(11)

Leveraging the iterative optimization approach, the cor-
relation between different users can be eliminated in the
sense that we can focus on solving the first subproblem
for each user independently, as shown in (11). This is
because the cut layer decision for each user is indepen-
dent of others when computing resource allocation is
given. The resulting subproblem for cut layer decision
can be easily solved by a linear programming (LP) solver
or exhaustive search with the time complexity reduced

from O(LS) to O(SL).
Based on the determined cut layers, we construct the

second subproblem for the resource allocation scheme
for computing resources for user i as

min
Ci

maxT e
i =

wli
c · ni

ci
+

wli
b · ni

bui
+

(D � wli
c) · ni

Ci
+

wli
b · ni

bdi

s.t.
SX

i=0

0  Ci  Ctotal,

(12)

where communication and computing workloads for all
users are constant since the cut layers li are predeter-
mined by solving the previous subproblem. Plus, the
downlink bdi , uplink communication resource bui and
user-side available computing resource ci are constant.
Therefore, the equation (12) can be abbreviated as:

min
Ci

maxT e
i =

a

Ci
+ b, (13)

where a and b are constant. To solve this min-max
problem, we assume there exists a variable K, where for
all Ci, K � a

Ci
+b. Then, we construct the equation(13)

as a minimizing problem:

minK

s.t.
SX

i=0

0  Ci  Ctotal,

K � a1
C1

+ b1

K � a2
C2

+ b2

...

K �
a|S|

C|S|
+ b|S|.

(14)

When Ci � 0, T e
i is a convex function (r2T e

i � 0).
Then, a convex optimization solver [29] can be leveraged
to solve this subproblem.

V. EXPERIMENTS

In this section, we demonstrate that our ESFL can
inherently offer similar performance under the same
resource limitation for all users, while significantly re-
ducing total training time (time efficiency). We then show
the superior training performance with limited resources
and limited training time (model performance). Finally,
we validate our iterative optimization approach under
various system settings.

A. Experimental Setup
For all following experiments, we evaluate the perfor-

mance on image classification tasks over the common

IEEE INTERNET OF THINGS JOURNAL 9

dataset CIFAR-10 and leverage VGG13, VGG16 and
VGG19 [30] framework as the neural network archi-
tecture to implement the distributed applications. We
compare our ESFL with the alternatives such as FedAVG
(FL), original split learning (SL), and splitfed learning
(SFL).

Dataset: CIFAR-10 [31] [32] contains 50, 000 color
training images and 10, 000 testing images with 32⇥ 32
resolution in 10 classes, with 6, 000 images per class.
We assume that there are 100 users participating in
the whole training process, while only 10 users are
randomly selected to join one-round training. Under the
assumption that all users’ data samples are independently
and identically distributed (IID), the data is shuffled and
then partitioned into 100 clients with no replacement,
every user owning 500 training samples.

Training Configuration: We use a distributed ma-
chine learning framework, similar to federated learning,
which has several learning hyperparameters including
local learning rate ⇢r, where ⇢0 = 0.01 and ⇢r is de-
caying as the round number r increases and the constant
number of local epochs ✏i = 5. Moreover, we introduce
a global learning rate ⌘ = 0.5 to control the global model
updating pace. According to the experimental results,
when choosing a mini-batch size of 32, we can obtain a
well trained model.

Neural Network Architecture: We deploy the
VGG19 network [30] as the training model, which pri-
marily consists of convolutional layers (CONV), fully-
connected layers (FC), and softmax layer (SoftMax). We
resize the input layer of the original VGG13, VGG16,
and VGG19 from 224 ⇥ 224 to 32 ⇥ 32 to fit the
CIFAR-10 dataset. The mini-batch size is set to 32. We
present VGG19 architecture and workload of each layer
in Table II.

B. Model Performance

One key hyperparameter in our ESFL that affect the
final convergence performance such as testing accuracy
and loss is the number of training rounds, since we lever-
age FedAVG for all distributed ML algorithms except
SL. For a fair comparison, we set the training threshold
for VGG13 to 88%, VGG16 to 87.5% and VGG19 to
86.5% testing accuracy based on the worst converged
accuracy. Three distributed ML algorithms (FL, SFL,
ESFL) achieve the expected convergence performance at
the 1500-th training round, and SL achieves the expected
convergence performance at the 200-th training round.
The testing performance results are shown in Figure. 4.

The rationals for choosing IID configuration rather
than Non-IID in our model training process is to mit-
igate the impact of data distribution heterogeneities for
fair training performance comparisons across different
distributed ML frameworks.

TABLE II
VGG19 NETWORK ARCHITECTURE AND PARAMETERS

Layer Layer size FP FLOPs Activation
(MBs) (MBs) (MBs)

CONV1 0.0017 1.796 0.0655

CONV2 0.0369 37.749 0.0328

CONV3 0.0737 18.874 0.0328

CONV4 0.147 37.749 0.0164

CONV5 0.295 18.874 0.0164

CONV6 0.590 37.749 0.0164

CONV7 0.590 37.749 0.0164

CONV8 0.590 37.749 0.0082

CONV9 1.180 18.874 0.0082

CONV10 2.359 37.749 0.0082

CONV11 2.359 37.749 0.0082

CONV12 2.359 37.749 0.0020

CONV13 2.359 9.437 0.0020

CONV14 2.359 9.437 0.0020

CONV15 2.359 9.437 0.0020

CONV16 2.359 9.437 0.0010

FC1 102.760 2.097 4.08E-5

FC2 16.777 0.524 4.08E-5

FC3 4.096 0.131 1E-5

SoftMax \ \ \

C. Time Efficiency

In our simulation, at each round, the server randomly
selects 10% users (the selected users) from available
users to join one-round training. Since we assume that
the server possesses sufficient but limited computing re-
sources, in this experiment, the training server is installed
with an A100 GPU with 130 teraFLOPs (TFLOPs)
computing capability and 128 GigaBytes (GBs) memory
space. We compare the time efficiency of our ESFL with
original federated learning (FL) [10], split learning [33]
and splitfed learning (SFL) [11].

1) Resource Limitation: We separate the impacts of
user-side communication and computing resource limi-
tation by simulating four resource settings shown in Ta-
ble III: Both Poor (BP) indicates that both communica-
tion and computing resources are highly limited at EDs,
Poorcom Richcmp (PR) indicates that communication
resources are highly limited while computing resources

IEEE INTERNET OF THINGS JOURNAL 10

(a) Testing accuracy and loss of VGG13, VGG16 and VGG19
using FL

(b) Testing accuracy and loss of VGG13, VGG16 and VGG19
using SL

Fig. 4. Testing accuracy and loss over CIFAR-10 testing dataset for FL, SFL, ESFL and SL using three different NN (VGG13, VGG16 and
VGG19). Fair comparison are guaranteed by the required training rounds to achieve the convergence threshold.

(a) Layers distributions of VGG13 (b) Layers distributions of VGG16 (c) Layers distributions of VGG19

Fig. 5. Cut layer distributions (user-side workloads allocation) of three NNs under four different resource limitations using ESFL algorithm.

TABLE III
COMMUNICATION AND COMPUTING RESOURCE SETTINGS

Communication(KBps) Computing(TFLOPs)

BP [10, 15, 20, 25] [1.3, 1.95, 2.6, 3.25]

PR [10, 15, 20, 25] [6.5, 9.75, 13, 16.25]

RP [50, 75, 100, 125] [1.3, 1.95, 2.6, 3.25]

BR [50, 75, 100, 125] [6.5, 9.75, 13, 16.25]

are slightly limited (five times larger than that for the
highly limited case), Richcom Poorcmp (RP) indicates
that communication resources are slightly limited while
computing resources are highly limited, and Both Rich
(BR) indicates that both communication and computing
resources are slightly limited. The selection process for
each user-side resource setting is similar to Table III.
For learning algorithmic implementation, we use original
FL and SL, and SFL, which is similar to that for ESFL
introduced in Section III.

Table IV presents the average one-round training and
communication time and one-round communication time
for different NNs under different resource scenarios
using FL, SL, SFL and efficient split federated learning
ESFL, respectively. Figure. 5 shows the allocation results
of user-side training workload represented as cut layer
distributions. The cut layer distribution represents the

empirical probability of selecting layer l for user i in
the total training rounds, which is Pi,l =

PR
r

xl
i,r

R ,
where xl

i,r is the cutting layer decision showing in
equation 8 and

P
l Pi,l = 1. The cut layer distribution

combining with the amounts of user-side data indicates
the allocated user-side computing and communication
workload. Therefore, from cut layer distributions, as the
user-side resource becomes more sufficient, our ESFL
applies more identical cut layer distributions strategies
for all NNs. For the results in those two tables, our
ESFL algorithm significantly reduces one-round train-
ing and communication time under all circumstances.
These advantages often stem from the dynamics be-
tween user-side computing and communication resource.
In scenarios where local computing resource are poor
whereas communication resource are rich (RP), ESFL
remains fewer layers of user-side models by leveraging
more on server-side computing power. Conversely, under
the PR scenario, ESFL mitigates these limitations by
remaining more layers of user-side model to rely less
on communication. Comparing one-round training and
communication time of SFL and FL, an intriguing phe-
nomenon emerges. Although SFL leverages the server-
side resource to accelerate training, improper user-side
workload allocation (model separation) and server-side
resource allocation lead to decreased time efficiency.

Table V indicates the total training and communication
time for four ML algorithms to achieve the expected con-
vergence performance. In the context of contrasting FL
and SFL, it is imperative to acknowledge that although

IEEE INTERNET OF THINGS JOURNAL 11

TABLE IV
ONE-ROUND TRAINING AND COMMUNICATION TIME FOR DIFFERENT RESOURCE SETTINGS

NNs Training and communication time(s) Communication time(s)
FL SL SFL ESFL FL SL SFL ESFL

BP
VGG13 40.916 226.444 42.501 28.583 11.182 123.365 21.968 8.726
VGG16 52.960 254.787 48.476 31.125 11.599 115.900 20.284 12.828
VGG19 63.096 282.426 53.231 31.128 10.200 107.575 18.253 16.216

PR
VGG13 18.351 148.283 27.775 8.245 13.300 127.126 23.043 2.461
VGG16 20.933 143.427 27.065 10.242 13.401 114.513 20.616 2.858
VGG19 23.700 141.961 27.532 12.901 14.017 105.299 18.927 3.433

RP
VGG13 34.128 130.896 29.229 19.297 4.238 50.829 8.430 10.961
VGG16 45.713 156.239 35.828 19.657 4.292 45.390 7.585 11.135
VGG19 58.275 181.994 42.161 19.855 4.566 42.756 7.019 11.123

BR
VGG13 10.937 73.141 14.334 6.961 5.005 51.208 9.202 0.989
VGG16 12.929 75.028 15.194 8.671 4.674 45.801 8.118 2.621
VGG19 15.968 78.177 16.220 9.470 5.428 42.736 7.549 3.184

TABLE V
TOTAL TRAINING AND COMMUNICATION TIME FOR DIFFERENT RESOURCE SETTINGS

NNs Training and communication time(s) Communication time(s)
FL SL SFL ESFL FL SL SFL ESFL

BP
VGG13 61, 374 45, 288 63, 751 42, 874 16, 773 24, 673 32, 952 13, 089
VGG16 79, 440 50, 957 72, 714 46, 687 17, 398 23, 180 30, 426 19, 242
VGG19 94, 644 56, 485 79, 725 46, 692 15, 300 21, 515 27, 379 24, 324

PR
VGG13 27, 526 29, 656 41, 662 12, 367 19, 950 25, 425 34, 564 3, 691
VGG16 31, 399 28, 685 41, 298 15, 363 20, 101 22, 902 30, 924 4, 287
VGG19 35, 550 28, 392 41, 298 19, 351 21, 025 21, 059 28, 390 5, 149

RP
VGG13 51, 192 26, 179 43, 843 28, 945 6, 357 10, 165 12, 645 16, 441
VGG16 68, 569 31, 247 53, 742 29, 485 6, 438 9, 078 11, 377 16, 702
VGG19 87, 412 36, 398 63, 241 29, 782 6, 849 64, 134 10, 528 16, 684

BR
VGG13 16, 405 14, 628 21, 501 10, 441 7, 507 10, 241 13, 803 1, 483
VGG16 19, 393 15, 005 22, 791 13, 006 7, 011 9, 160 12, 177 3, 931
VGG19 23, 952 15, 635 24, 330 14, 205 8, 142 8, 547 11, 323 4, 776

SFL, similar to ESFL, utilizes server-side computing re-
source, its overall performance is significantly influenced
by the harmonization of user-side workload and server-
side resource allocation. The lack of effective resource
allocation strategies can result in inferior performance in
SFL when compared to FL. Especially in RP and BR,
when communication resource is notably limited in EDs,
FL outperforms SFL. This performance discrepancy is
attributed to the lack of effective allocating strategies,
which results in inferior performance in SFL when
compared to FL. Nevertheless, our ESFL exhibits a
significant increase in efficiency compared to both FL
and SFL across all tested scenarios. This provides the

evidence that a well-conceived strategy for workload and
resource allocation can markedly enhance the efficiency
of the whole training process. While the model used
here and other ML algorithms are not the state-of-the-art
for this task, it does provide sufficient evidence to show
that our ESFL can significantly reduce training latency
and improve training efficiency by considering user-side
resource heterogeneity.

2) Resource Heterogeneity: In this section, we as-
sume there exist four different communication and com-
puting resource settings to evaluate the efficiency of our
ESFL algorithm under different heterogeneous scenarios.
The detail of our resource simulation setting is shown

IEEE INTERNET OF THINGS JOURNAL 12

(a) Layers distributions of VGG13 (b) Layers distributions of VGG16 (c) Layers distributions of VGG19

Fig. 6. Cut layer distributions (user-side workloads allocation) of three NNs under four different resource heterogeneities using ESFL algorithm.

TABLE VI
COMMUNICATION AND COMPUTING RESOURCE SETTINGS

Communication(KBps) Computing(TFLOPs)

SH [10, 15, 20, 25] [1.3, 1.95, 2.6, 3.25]

SL [10, 15, 20, 25] [0.65, 1.3, 2.6, 4.55]

LS [5, 10, 20, 35] [1.3, 1.95, 2.6, 3.25]

LH [5, 10, 20, 35] [0.65, 1.3, 2.6, 4.55]

in Table VI, where in every training round, the available
communication and computing conditions of the selected
users are randomly chosen from resource options in
one scenario. In particular, considering the fairness,
the average resource amounts in different scenarios are
equal, and only resource distributions are dissimilar to
simulate different resource heterogeneity. Four hetero-
geneous scenarios are considered: Small Heterogeneity
(SH), implying that both communication and comput-
ing resource heterogeneity at EDs is small, Smallcom
Largecmp (SL), implying that communication hetero-
geneity is small while computing resource is large,
Largecom Smallcmp (LS), implying that communica-
tion heterogeneity is large while computing resource is
small, and Large Heterogeneity (LH), implying that
both communication and computing resource hetero-
geneities are large. For instance, in SH, each user will
randomly choose one communication condition from
[10, 15, 20, 25] kiloBytes (KBps) and one computing
condition from [1.3, 1.95, 2.6, 3.25] TFLOPs as their
available resources, and the server will base on the
resource information of the selected users to allocate
appropriate server-side computing resource and make
user-side cutting layer decision for all selected users. To
simulate the training workload heterogeneity, we assume
that all available users have heterogeneous but constant
amounts of data samples, which are chosen from [200,
400, 600, 800].

Table VII presents the average one-round training
and communication time and one-round communication

time, for different NNs under different resource scenarios
using FL, SL, SFL and ESFL, respectively. For the
results in Table VII, our ESFL algorithm significantly re-
duces one-round training and communication time under
all circumstances and is least affected by resource het-
erogeneity, where both communication and computing
heterogeneity seriously impact the training efficiencies
of the other three ML algorithms. It is noteworthy that as
the distribution of resources approaches a state of greater
uniformity (SH), the gap of time efficiency between SFL
and ESFL is decreased. Conversely, with an increase
in resource heterogeneity (LH), the performance differ-
ential between ESFL and SFL widens notably, which
highlights the robustness of ESFL in diverse resource
environments. For instance, the training latency of SFL
in LH is increased by nearly two times compared with
that in SH while training latencies of ESFL are nearly the
same in all scenarios. The user-side training workload
allocation results (cut layer distributions) is shown in
Figure. 6. From this simulation result, ESFL algorithm
demonstrates a trend implementing more uniform cut
layer distributions across all NNs, under more identical
resource distributions.

Table VIII presents the total training and communi-
cation time under different RH. It can be seen from
the results that our ESFL method is significantly more
efficient compared with the original FL, SL, and SFL in
most scenarios, only except VGG13 in SL. Comparing
communication time of FL in SL and LS, the perfor-
mance of FL is markedly impacted by the RH. How-
ever, ESFL capitalizes on these heterogeneities through
joint workload and resource allocation: in the environ-
ment with low communication heterogeneity (SL), it
increases the user-side communication workload while
decreases computing workload; in the environment with
high communication heterogeneity (LS), it conversely
allocates more computing workload to EDs. Therefore,
our approach optimizes the time efficiency across diverse
scenarios by adaptively leveraging RH.

D. Resource Allocation Convergence Analysis
From Section IV, the joint resource allocation and

model splitting problem has been decomposed into two

IEEE INTERNET OF THINGS JOURNAL 13

TABLE VII
ONE-ROUND TRAINING AND COMMUNICATION TIME FOR DIFFERENT HETEROGENEITIES

NNs Training and communication time(s) Communication time(s)
FL SL SFL ESFL FL SL SFL ESFL

SH
VGG13 50.706 362.412 66.277 34.043 22.853 257.278 45.766 6.170
VGG16 64.136 362.872 67.640 40.658 24.544 225.720 40.473 11.093
VGG19 76.288 381.228 69.879 43.074 24.063 210.248 35.558 22.941

SL
VGG13 78.595 418.746 83.431 55.912 19.913 251.753 44.067 17.867
VGG16 103.394 457.030 92.968 58.576 21.957 229.795 39.047 26.674
VGG19 126.801 502.072 105.241 61.022 22.728 214.884 36.744 31.815

LS
VGG13 79.478 518.936 109.171 37.625 53.200 415.204 90.510 9.832
VGG16 87.448 512.143 109.142 48.904 51.658 369.021 82.441 10.685
VGG19 95.622 522.882 106.500 54.211 49.811 347.786 74.140 19.720

LH
VGG13 91.815 565.541 123.469 61.865 41.606 399.900 86.496 14.211
VGG16 117.439 608.637 130.643 73.708 40.871 386.282 80.686 17.929
VGG19 145.186 601.846 130.470 75.520 44.473 323.242 66.901 42.704

TABLE VIII
TOTAL TRAINING TIME TO ACHIEVE THE CONVERGENCE PERFORMANCE FOR DIFFERENT HETEROGENEITIES

NNs Training and communication time(s) Communication time(s)
FL SL SFL ESFL FL SL SFL ESFL

SH
VGG13 76, 059 72, 482 99, 415 51, 064 34, 279 51, 455 68, 649 9, 255
VGG16 96, 204 72, 574 101, 460 60, 987 36, 816 45, 144 60, 709 16, 639
VGG19 114, 432 72, 574 104, 818 64, 611 36, 816 42, 049 53, 337 34, 411

SL
VGG13 117, 892 83, 749 125, 146 83, 868 29, 869 50, 350 66, 100 26, 800
VGG16 155, 091 91, 406 139, 452 84, 217 32, 935 45, 959 58, 570 40, 011
VGG19 190, 201 100, 414 157, 861 91, 533 34, 092 42, 976 55, 122 47, 722

LS
VGG13 119, 217 103, 787 163, 756 56, 437 79, 800 83, 040 135, 765 14, 748
VGG16 131, 232 102, 428 163, 713 73, 356 77, 487 73, 804 123, 661 16, 027
VGG19 143, 433 104, 576 159, 750 81, 316 74, 716 69, 557 111, 210 29, 580

LH
VGG13 137, 722 113, 108 185, 203 92, 797 62, 409 79, 980 129, 744 21, 316
VGG16 176, 158 121, 727 195, 964 110, 562 61, 306 77, 256 121, 029 26, 893
VGG19 217, 779 120, 369 195, 705 113, 280 66, 709 64, 648 100, 351 64, 056

subproblems due to the time complexity, and we leverage
an alternative optimization approach to solve those sub-
problems. To evaluate the convergence of our alternative
method, we simulate iterative results at four users’
scales in four resource scenarios (Table III), 100 users,
200 users, 400 users, and 800 users. The simulation
results in Figure. 7 shows that even for the largest user
scale (800 users) in all different resource scenarios, our
alternative approach only needs 9 iterations to achieve
convergence, while when the user scales are small, it
only requires a few iterations to achieve convergence.
Comparing average one-round training time across dif-
ferent scenarios, our method significantly enhances train-

ing efficiency, particularly in the resource-constrained
scenario (BP).

VI. CONCLUSION

In this paper, we have designed ESFL, a novel dis-
tributed training approach that tackles the resource het-
erogeneity inherent in both federated learning and split
learning. Unlike previous methods in addressing data
heterogeneity in FL, we have provided a new perspective
by allocating appropriate server-side resources and user-
side workload to effectively address the straggler prob-
lem in the synchronous FL framework. By evaluating
the training efficiency for different ML algorithms under

IEEE INTERNET OF THINGS JOURNAL 14

(a) Average one-round training time in BP (b) Average one-round training time in PR

(c) Average one-round training time in RP (d) Average one-round training time in BR

Fig. 7. Average one-round training time using iterative optimization of VGG19 in four different resource scenarios shown in Table III.

different heterogeneous scenarios, we have performed
extensive analysis and demonstrated the superiority of
our proposed ESFL.

REFERENCES

[1] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong,
“Federated learning for internet of things: Recent advances,
taxonomy, and open challenges,” IEEE Communications Surveys
& Tutorials, 2021.

[2] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li,
and H. V. Poor, “Federated learning for internet of things:
A comprehensive survey,” IEEE Communications Surveys &
Tutorials, 2021.

[3] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances
in Signal Processing, vol. 2016, no. 1, pp. 1–16, 2016.

[4] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey
on federated learning,” Knowledge-Based Systems, vol. 216, p.
106775, 2021.

[5] K. Xu, Y. Guo, L. Guo, Y. Fang, and X. Li, “Control of photo
sharing over online social networks,” in 2014 IEEE Global
Communications Conference. IEEE, 2014, pp. 704–709.

[6] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving
machine learning algorithms for big data systems,” in 2015 IEEE
35th international conference on distributed computing systems.
IEEE, 2015, pp. 318–327.

[7] K. Xu, Y. Guo, L. Guo, Y. Fang, and X. Li, “My privacy my deci-
sion: Control of photo sharing on online social networks,” IEEE
Transactions on Dependable and Secure Computing, vol. 14,
no. 2, pp. 199–210, 2017.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, 2015, pp. 1310–1321.

[9] Y. Gong, Y. Fang, and Y. Guo, “Privacy-preserving collaborative
learning for mobile health monitoring,” in 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–6.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Artificial Intelligence and Statistics.
PMLR, 2017, pp. 1273–1282.

[11] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun,
“Splitfed: When federated learning meets split learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 8, 2022, pp. 8485–8493.

[12] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: Distributed deep learning without sharing raw
patient data,” arXiv preprint arXiv:1812.00564, 2018.

[13] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu,
“Robust federated learning with noisy communication,” IEEE
Transactions on Communications, vol. 68, no. 6, pp. 3452–3464,
2020.

[14] L. Wang, W. Wang, and B. Li, “Cmfl: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th international
conference on distributed computing systems (ICDCS). IEEE,
2019, pp. 954–964.

[15] X. Yao, C. Huang, and L. Sun, “Two-stream federated learning:
Reduce the communication costs,” in 2018 IEEE Visual Com-
munications and Image Processing (VCIP). IEEE, 2018, pp.
1–4.

[16] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint de-
vice scheduling and resource allocation for latency constrained

IEEE INTERNET OF THINGS JOURNAL 15

wireless federated learning,” IEEE Transactions on Wireless
Communications, vol. 20, no. 1, pp. 453–467, 2020.

[17] Y. Watanabe, Y. Kawamoto, and N. Kato, “A novel routing
control method using federated learning in large-scale wireless
mesh networks,” IEEE Transactions on Wireless Communica-
tions, vol. 22, no. 12, pp. 9291–9300, 2023.

[18] X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated learning
over multihop wireless networks with in-network aggregation,”
IEEE Transactions on Wireless Communications, vol. 21, no. 6,
pp. 4622–4634, 2022.

[19] Q. Guo, F. Tang, and N. Kato, “Federated reinforcement learning-
based resource allocation in D2D-enabled 6G,” IEEE Network,
2024, DOI : 10.1109/MNET.122.2200102.

[20] ——, “Federated reinforcement learning-based resource alloca-
tion for D2D-aided digital twin edge networks in 6G industrial
IoT,” IEEE Transactions on Industrial Informatics, vol. 19, no. 5,
pp. 7228–7236, 2023.

[21] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim,
S. A. Camtepe, H. Kim, and S. Nepal, “End-to-end evaluation of
federated learning and split learning for internet of things,” arXiv
preprint arXiv:2003.13376, 2020.

[22] Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang,
“Efficient parallel split learning over resource-constrained wire-
less edge networks,” arXiv preprint arXiv:2303.15991, 2023.

[23] W. Wu, M. Li, K. Qu, C. Zhou, W. Zhuang, X. Li, W. Shi
et al., “Split learning over wireless networks: Parallel design and
resource management,” IEEE J. Sel. Areas Commun., vol. 41,
no. 4, pp. 1051 – 1066, Feb. 2022.

[24] M. Kim, A. DeRieux, and W. Saad, “A bargaining game for per-
sonalized, energy efficient split learning over wireless networks,”
arXiv preprint arXiv:2212.06107, 2022.

[25] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Ro-
bust and communication-efficient federated learning from non-
iid data,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[26] Y. Deng, X. Chen, G. Zhu, Y. Fang, Z. Chen, and X. Deng,
“Actions at the edge: Jointly optimizing the resources in multi-
access edge computing,” IEEE Wireless Communications, vol. 29,
no. 2, pp. 192–198, 2022.

[27] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Network, vol. 33,
no. 5, pp. 156–165, 2019.

[28] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile
edge networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[29] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 10.1., 2024. [Online]. Available: http://docs.mosek.com/
latest/toolbox/index.html

[30] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[31] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[32] A. Krizhevsky and G. Hinton, “Convolutional deep belief net-
works on cifar-10,” Unpublished manuscript, vol. 40, no. 7, pp.
1–9, 2010.

[33] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1–8, 2018.

Guangyu Zhu received the B.Eng. degree
from Xidian University, Xi’an, China, in
2019. Since 2019, he has been pursuing the
Ph.D degree with the Department of Electri-
cal and Computer Engineering, University of
Florida, Gainesville, FL, USA. His research
interests include machine learning, wireless
networks, and edge computing.

Yiqin Deng (Member, IEEE) received her
M.S. degree in software engineering and
her Ph.D. degree in computer science and
technology from Central South University,
Changsha, China, in 2017 and 2022, re-
spectively. She is currently a Postdoctoral
Research Fellow withthe School of Con-
trol Science and Engineering, Shandong
University,Jinan, China. She was a visit-
ing researcher at the University of Florida,
Gainesville, from 2019 to 2021. Her research

interests include edge/fog computing, Internet of Vehicles, and resource
management.

Xianhao Chen (Member, IEEE) received the
B.Eng. degree in electronic information from
Southwest Jiaotong University in 2017, and
the Ph.D. degree in electrical and computer
engineering from the University of Florida in
2022. He is currently an assistant professor at
the Department of Electrical and Electronic
Engineering, the University of Hong Kong.
He serves as an Associate Editor of ACM
Computing Surveys. He received the 2022
ECE graduate excellence award for research

from the University of Florida. His research interests include wireless
networking, edge intelligence, and machine learning.

Haixia Zhang (Senior Member, IEEE) re-
ceived the B.E. degree from the Depart-
ment of Communication and Information En-
gineering, Guilin University of Electronic
Technology, Guilin, China, in 2001, and the
M.Eng. and Ph.D. degrees in communication
and information systems from the School of
Information Science and Engineering, Shan-
dong University, Jinan, China, in 2004 and
2008, respectively.

From 2006 to 2008, she was with the
Institute for Circuit and Signal Processing, Munich University of
Technology, Munich, Germany, as an Academic Assistant. From 2016
to 2017, she was a Visiting Professor with the University of Florida,
Gainesville, FL, USA. She is currently a Full Professor with Shandong
University, Jinan, China. Dr. Zhang is actively participating in many
professional services. She is/was an editor of the IEEE Transactions
on Wireless Communications, IEEE Internet of Things Journal, IEEE
Wireless Communication Letters, and China Communications and
serves/served as Symposium Chairs, TPC Members, Session Chairs,
and Keynote Speakers of many conferences. Her research interests
include wireless communication and networks, industrial Internet of
Things, wireless resource management, and mobile edge computing.

http://docs.mosek.com/latest/toolbox/index.html
http://docs.mosek.com/latest/toolbox/index.html

IEEE INTERNET OF THINGS JOURNAL 16

Yuguang Fang (Fellow, IEEE) received an
MS degree from Qufu Normal University, a
PhD degree from Case Western Reserve Uni-
versity, and a PhD degree from Boston Uni-
versity. He joined the Department of Electri-
cal and Computer Engineering at University
of Florida in 2000 as an assistant professor,
then was promoted to associate professor,
full professor, and distinguished professor,
in 2003, 2005, and 2019, respectively. Since
2022, he has been a Global STEM Scholar

and the Chair Professor of Internet of Things with Department of
Computer Science, City University of Hong Kong.

He received many awards including US NSF CAREER Award,
US ONR Young Investigator Award, 2018 IEEE Vehicular Technol-
ogy Outstanding Service Award, and IEEE Communications Soci-
ety awards (AHSN Technical Achievement Award, CISTC Technical
Recognition Award, and WTC Recognition Award). He was the Editor-
in-Chief of IEEE Transactions on Vehicular Technology and IEEE
Wireless Communications. He is a fellow of ACM, IEEE, and AAAS.

Tan F. Wong (Senior Member, IEEE) re-
ceived the B.Sc. degree in electronic engi-
neering from the Chinese University of Hong
Kong in 1991 and the M.S.E.E. and Ph.D.
degrees in electrical engineering from Purdue
University in 1992 and 1997, respectively.
He was a Research Engineer at the Depart-
ment of Electronics, Macquarie University,
Sydney, Australia. He also served as a Post-
doctoral Research Associate at the School of
Electrical and Computer Engineering, Purdue

University. Since August 1998, he has been with the University of
Florida, where he is currently a Professor of Electrical and Computer
Engineering.

	Introduction
	Related Works
	Efficient Split Federated Learning
	Motivation
	ESFL framework
	Split Training
	Federated Aggregation
	Communication Model
	Workload and Resource Allocation

	Optimization and Solution Approach
	Experiments
	Experimental Setup
	Model Performance
	Time Efficiency
	Resource Limitation
	Resource Heterogeneity

	Resource Allocation Convergence Analysis

	Conclusion
	References
	Biographies
	Guangyu Zhu
	Yiqin Deng
	Xianhao Chen
	Haixia Zhang
	Yuguang Fang
	Tan F. Wong

